1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/OverflowInstAnalysis.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/VectorUtils.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/KnownBits.h"
43 #include <algorithm>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 #define DEBUG_TYPE "instsimplify"
48 
49 enum { RecursionLimit = 3 };
50 
51 STATISTIC(NumExpand,  "Number of expansions");
52 STATISTIC(NumReassoc, "Number of reassociations");
53 
54 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
56 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
57                              const SimplifyQuery &, unsigned);
58 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
59                             unsigned);
60 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
61                             const SimplifyQuery &, unsigned);
62 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
63                               unsigned);
64 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
65                                const SimplifyQuery &Q, unsigned MaxRecurse);
66 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
68 static Value *SimplifyCastInst(unsigned, Value *, Type *,
69                                const SimplifyQuery &, unsigned);
70 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
71                               unsigned);
72 static Value *SimplifySelectInst(Value *, Value *, Value *,
73                                  const SimplifyQuery &, unsigned);
74 
foldSelectWithBinaryOp(Value * Cond,Value * TrueVal,Value * FalseVal)75 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
76                                      Value *FalseVal) {
77   BinaryOperator::BinaryOps BinOpCode;
78   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
79     BinOpCode = BO->getOpcode();
80   else
81     return nullptr;
82 
83   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
84   if (BinOpCode == BinaryOperator::Or) {
85     ExpectedPred = ICmpInst::ICMP_NE;
86   } else if (BinOpCode == BinaryOperator::And) {
87     ExpectedPred = ICmpInst::ICMP_EQ;
88   } else
89     return nullptr;
90 
91   // %A = icmp eq %TV, %FV
92   // %B = icmp eq %X, %Y (and one of these is a select operand)
93   // %C = and %A, %B
94   // %D = select %C, %TV, %FV
95   // -->
96   // %FV
97 
98   // %A = icmp ne %TV, %FV
99   // %B = icmp ne %X, %Y (and one of these is a select operand)
100   // %C = or %A, %B
101   // %D = select %C, %TV, %FV
102   // -->
103   // %TV
104   Value *X, *Y;
105   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
106                                       m_Specific(FalseVal)),
107                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
108       Pred1 != Pred2 || Pred1 != ExpectedPred)
109     return nullptr;
110 
111   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
112     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
113 
114   return nullptr;
115 }
116 
117 /// For a boolean type or a vector of boolean type, return false or a vector
118 /// with every element false.
getFalse(Type * Ty)119 static Constant *getFalse(Type *Ty) {
120   return ConstantInt::getFalse(Ty);
121 }
122 
123 /// For a boolean type or a vector of boolean type, return true or a vector
124 /// with every element true.
getTrue(Type * Ty)125 static Constant *getTrue(Type *Ty) {
126   return ConstantInt::getTrue(Ty);
127 }
128 
129 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
isSameCompare(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)130 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
131                           Value *RHS) {
132   CmpInst *Cmp = dyn_cast<CmpInst>(V);
133   if (!Cmp)
134     return false;
135   CmpInst::Predicate CPred = Cmp->getPredicate();
136   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
137   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
138     return true;
139   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
140     CRHS == LHS;
141 }
142 
143 /// Simplify comparison with true or false branch of select:
144 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
145 ///  %cmp = icmp sle i32 %sel, %rhs
146 /// Compose new comparison by substituting %sel with either %tv or %fv
147 /// and see if it simplifies.
simplifyCmpSelCase(CmpInst::Predicate Pred,Value * LHS,Value * RHS,Value * Cond,const SimplifyQuery & Q,unsigned MaxRecurse,Constant * TrueOrFalse)148 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
149                                  Value *RHS, Value *Cond,
150                                  const SimplifyQuery &Q, unsigned MaxRecurse,
151                                  Constant *TrueOrFalse) {
152   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
153   if (SimplifiedCmp == Cond) {
154     // %cmp simplified to the select condition (%cond).
155     return TrueOrFalse;
156   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
157     // It didn't simplify. However, if composed comparison is equivalent
158     // to the select condition (%cond) then we can replace it.
159     return TrueOrFalse;
160   }
161   return SimplifiedCmp;
162 }
163 
164 /// Simplify comparison with true branch of select
simplifyCmpSelTrueCase(CmpInst::Predicate Pred,Value * LHS,Value * RHS,Value * Cond,const SimplifyQuery & Q,unsigned MaxRecurse)165 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
166                                      Value *RHS, Value *Cond,
167                                      const SimplifyQuery &Q,
168                                      unsigned MaxRecurse) {
169   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
170                             getTrue(Cond->getType()));
171 }
172 
173 /// Simplify comparison with false branch of select
simplifyCmpSelFalseCase(CmpInst::Predicate Pred,Value * LHS,Value * RHS,Value * Cond,const SimplifyQuery & Q,unsigned MaxRecurse)174 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
175                                       Value *RHS, Value *Cond,
176                                       const SimplifyQuery &Q,
177                                       unsigned MaxRecurse) {
178   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
179                             getFalse(Cond->getType()));
180 }
181 
182 /// We know comparison with both branches of select can be simplified, but they
183 /// are not equal. This routine handles some logical simplifications.
handleOtherCmpSelSimplifications(Value * TCmp,Value * FCmp,Value * Cond,const SimplifyQuery & Q,unsigned MaxRecurse)184 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
185                                                Value *Cond,
186                                                const SimplifyQuery &Q,
187                                                unsigned MaxRecurse) {
188   // If the false value simplified to false, then the result of the compare
189   // is equal to "Cond && TCmp".  This also catches the case when the false
190   // value simplified to false and the true value to true, returning "Cond".
191   if (match(FCmp, m_Zero()))
192     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
193       return V;
194   // If the true value simplified to true, then the result of the compare
195   // is equal to "Cond || FCmp".
196   if (match(TCmp, m_One()))
197     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
198       return V;
199   // Finally, if the false value simplified to true and the true value to
200   // false, then the result of the compare is equal to "!Cond".
201   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
202     if (Value *V = SimplifyXorInst(
203             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
204       return V;
205   return nullptr;
206 }
207 
208 /// Does the given value dominate the specified phi node?
valueDominatesPHI(Value * V,PHINode * P,const DominatorTree * DT)209 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
210   Instruction *I = dyn_cast<Instruction>(V);
211   if (!I)
212     // Arguments and constants dominate all instructions.
213     return true;
214 
215   // If we are processing instructions (and/or basic blocks) that have not been
216   // fully added to a function, the parent nodes may still be null. Simply
217   // return the conservative answer in these cases.
218   if (!I->getParent() || !P->getParent() || !I->getFunction())
219     return false;
220 
221   // If we have a DominatorTree then do a precise test.
222   if (DT)
223     return DT->dominates(I, P);
224 
225   // Otherwise, if the instruction is in the entry block and is not an invoke,
226   // then it obviously dominates all phi nodes.
227   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
228       !isa<CallBrInst>(I))
229     return true;
230 
231   return false;
232 }
233 
234 /// Try to simplify a binary operator of form "V op OtherOp" where V is
235 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
236 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
expandBinOp(Instruction::BinaryOps Opcode,Value * V,Value * OtherOp,Instruction::BinaryOps OpcodeToExpand,const SimplifyQuery & Q,unsigned MaxRecurse)237 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
238                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
239                           const SimplifyQuery &Q, unsigned MaxRecurse) {
240   auto *B = dyn_cast<BinaryOperator>(V);
241   if (!B || B->getOpcode() != OpcodeToExpand)
242     return nullptr;
243   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
244   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
245                            MaxRecurse);
246   if (!L)
247     return nullptr;
248   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
249                            MaxRecurse);
250   if (!R)
251     return nullptr;
252 
253   // Does the expanded pair of binops simplify to the existing binop?
254   if ((L == B0 && R == B1) ||
255       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
256     ++NumExpand;
257     return B;
258   }
259 
260   // Otherwise, return "L op' R" if it simplifies.
261   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
262   if (!S)
263     return nullptr;
264 
265   ++NumExpand;
266   return S;
267 }
268 
269 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
270 /// distributing op over op'.
expandCommutativeBinOp(Instruction::BinaryOps Opcode,Value * L,Value * R,Instruction::BinaryOps OpcodeToExpand,const SimplifyQuery & Q,unsigned MaxRecurse)271 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
272                                      Value *L, Value *R,
273                                      Instruction::BinaryOps OpcodeToExpand,
274                                      const SimplifyQuery &Q,
275                                      unsigned MaxRecurse) {
276   // Recursion is always used, so bail out at once if we already hit the limit.
277   if (!MaxRecurse--)
278     return nullptr;
279 
280   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
281     return V;
282   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
283     return V;
284   return nullptr;
285 }
286 
287 /// Generic simplifications for associative binary operations.
288 /// Returns the simpler value, or null if none was found.
SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)289 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
290                                        Value *LHS, Value *RHS,
291                                        const SimplifyQuery &Q,
292                                        unsigned MaxRecurse) {
293   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
294 
295   // Recursion is always used, so bail out at once if we already hit the limit.
296   if (!MaxRecurse--)
297     return nullptr;
298 
299   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
300   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
301 
302   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
303   if (Op0 && Op0->getOpcode() == Opcode) {
304     Value *A = Op0->getOperand(0);
305     Value *B = Op0->getOperand(1);
306     Value *C = RHS;
307 
308     // Does "B op C" simplify?
309     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
310       // It does!  Return "A op V" if it simplifies or is already available.
311       // If V equals B then "A op V" is just the LHS.
312       if (V == B) return LHS;
313       // Otherwise return "A op V" if it simplifies.
314       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
315         ++NumReassoc;
316         return W;
317       }
318     }
319   }
320 
321   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
322   if (Op1 && Op1->getOpcode() == Opcode) {
323     Value *A = LHS;
324     Value *B = Op1->getOperand(0);
325     Value *C = Op1->getOperand(1);
326 
327     // Does "A op B" simplify?
328     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
329       // It does!  Return "V op C" if it simplifies or is already available.
330       // If V equals B then "V op C" is just the RHS.
331       if (V == B) return RHS;
332       // Otherwise return "V op C" if it simplifies.
333       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
334         ++NumReassoc;
335         return W;
336       }
337     }
338   }
339 
340   // The remaining transforms require commutativity as well as associativity.
341   if (!Instruction::isCommutative(Opcode))
342     return nullptr;
343 
344   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
345   if (Op0 && Op0->getOpcode() == Opcode) {
346     Value *A = Op0->getOperand(0);
347     Value *B = Op0->getOperand(1);
348     Value *C = RHS;
349 
350     // Does "C op A" simplify?
351     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
352       // It does!  Return "V op B" if it simplifies or is already available.
353       // If V equals A then "V op B" is just the LHS.
354       if (V == A) return LHS;
355       // Otherwise return "V op B" if it simplifies.
356       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
357         ++NumReassoc;
358         return W;
359       }
360     }
361   }
362 
363   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
364   if (Op1 && Op1->getOpcode() == Opcode) {
365     Value *A = LHS;
366     Value *B = Op1->getOperand(0);
367     Value *C = Op1->getOperand(1);
368 
369     // Does "C op A" simplify?
370     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
371       // It does!  Return "B op V" if it simplifies or is already available.
372       // If V equals C then "B op V" is just the RHS.
373       if (V == C) return RHS;
374       // Otherwise return "B op V" if it simplifies.
375       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
376         ++NumReassoc;
377         return W;
378       }
379     }
380   }
381 
382   return nullptr;
383 }
384 
385 /// In the case of a binary operation with a select instruction as an operand,
386 /// try to simplify the binop by seeing whether evaluating it on both branches
387 /// of the select results in the same value. Returns the common value if so,
388 /// otherwise returns null.
ThreadBinOpOverSelect(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)389 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
390                                     Value *RHS, const SimplifyQuery &Q,
391                                     unsigned MaxRecurse) {
392   // Recursion is always used, so bail out at once if we already hit the limit.
393   if (!MaxRecurse--)
394     return nullptr;
395 
396   SelectInst *SI;
397   if (isa<SelectInst>(LHS)) {
398     SI = cast<SelectInst>(LHS);
399   } else {
400     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
401     SI = cast<SelectInst>(RHS);
402   }
403 
404   // Evaluate the BinOp on the true and false branches of the select.
405   Value *TV;
406   Value *FV;
407   if (SI == LHS) {
408     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
409     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
410   } else {
411     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
412     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
413   }
414 
415   // If they simplified to the same value, then return the common value.
416   // If they both failed to simplify then return null.
417   if (TV == FV)
418     return TV;
419 
420   // If one branch simplified to undef, return the other one.
421   if (TV && Q.isUndefValue(TV))
422     return FV;
423   if (FV && Q.isUndefValue(FV))
424     return TV;
425 
426   // If applying the operation did not change the true and false select values,
427   // then the result of the binop is the select itself.
428   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
429     return SI;
430 
431   // If one branch simplified and the other did not, and the simplified
432   // value is equal to the unsimplified one, return the simplified value.
433   // For example, select (cond, X, X & Z) & Z -> X & Z.
434   if ((FV && !TV) || (TV && !FV)) {
435     // Check that the simplified value has the form "X op Y" where "op" is the
436     // same as the original operation.
437     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
438     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
439       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
440       // We already know that "op" is the same as for the simplified value.  See
441       // if the operands match too.  If so, return the simplified value.
442       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
443       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
444       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
445       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
446           Simplified->getOperand(1) == UnsimplifiedRHS)
447         return Simplified;
448       if (Simplified->isCommutative() &&
449           Simplified->getOperand(1) == UnsimplifiedLHS &&
450           Simplified->getOperand(0) == UnsimplifiedRHS)
451         return Simplified;
452     }
453   }
454 
455   return nullptr;
456 }
457 
458 /// In the case of a comparison with a select instruction, try to simplify the
459 /// comparison by seeing whether both branches of the select result in the same
460 /// value. Returns the common value if so, otherwise returns null.
461 /// For example, if we have:
462 ///  %tmp = select i1 %cmp, i32 1, i32 2
463 ///  %cmp1 = icmp sle i32 %tmp, 3
464 /// We can simplify %cmp1 to true, because both branches of select are
465 /// less than 3. We compose new comparison by substituting %tmp with both
466 /// branches of select and see if it can be simplified.
ThreadCmpOverSelect(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)467 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
468                                   Value *RHS, const SimplifyQuery &Q,
469                                   unsigned MaxRecurse) {
470   // Recursion is always used, so bail out at once if we already hit the limit.
471   if (!MaxRecurse--)
472     return nullptr;
473 
474   // Make sure the select is on the LHS.
475   if (!isa<SelectInst>(LHS)) {
476     std::swap(LHS, RHS);
477     Pred = CmpInst::getSwappedPredicate(Pred);
478   }
479   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
480   SelectInst *SI = cast<SelectInst>(LHS);
481   Value *Cond = SI->getCondition();
482   Value *TV = SI->getTrueValue();
483   Value *FV = SI->getFalseValue();
484 
485   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
486   // Does "cmp TV, RHS" simplify?
487   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
488   if (!TCmp)
489     return nullptr;
490 
491   // Does "cmp FV, RHS" simplify?
492   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
493   if (!FCmp)
494     return nullptr;
495 
496   // If both sides simplified to the same value, then use it as the result of
497   // the original comparison.
498   if (TCmp == FCmp)
499     return TCmp;
500 
501   // The remaining cases only make sense if the select condition has the same
502   // type as the result of the comparison, so bail out if this is not so.
503   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
504     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
505 
506   return nullptr;
507 }
508 
509 /// In the case of a binary operation with an operand that is a PHI instruction,
510 /// try to simplify the binop by seeing whether evaluating it on the incoming
511 /// phi values yields the same result for every value. If so returns the common
512 /// value, otherwise returns null.
ThreadBinOpOverPHI(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)513 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
514                                  Value *RHS, const SimplifyQuery &Q,
515                                  unsigned MaxRecurse) {
516   // Recursion is always used, so bail out at once if we already hit the limit.
517   if (!MaxRecurse--)
518     return nullptr;
519 
520   PHINode *PI;
521   if (isa<PHINode>(LHS)) {
522     PI = cast<PHINode>(LHS);
523     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
524     if (!valueDominatesPHI(RHS, PI, Q.DT))
525       return nullptr;
526   } else {
527     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
528     PI = cast<PHINode>(RHS);
529     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(LHS, PI, Q.DT))
531       return nullptr;
532   }
533 
534   // Evaluate the BinOp on the incoming phi values.
535   Value *CommonValue = nullptr;
536   for (Value *Incoming : PI->incoming_values()) {
537     // If the incoming value is the phi node itself, it can safely be skipped.
538     if (Incoming == PI) continue;
539     Value *V = PI == LHS ?
540       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
541       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
542     // If the operation failed to simplify, or simplified to a different value
543     // to previously, then give up.
544     if (!V || (CommonValue && V != CommonValue))
545       return nullptr;
546     CommonValue = V;
547   }
548 
549   return CommonValue;
550 }
551 
552 /// In the case of a comparison with a PHI instruction, try to simplify the
553 /// comparison by seeing whether comparing with all of the incoming phi values
554 /// yields the same result every time. If so returns the common result,
555 /// otherwise returns null.
ThreadCmpOverPHI(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)556 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
557                                const SimplifyQuery &Q, unsigned MaxRecurse) {
558   // Recursion is always used, so bail out at once if we already hit the limit.
559   if (!MaxRecurse--)
560     return nullptr;
561 
562   // Make sure the phi is on the LHS.
563   if (!isa<PHINode>(LHS)) {
564     std::swap(LHS, RHS);
565     Pred = CmpInst::getSwappedPredicate(Pred);
566   }
567   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
568   PHINode *PI = cast<PHINode>(LHS);
569 
570   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
571   if (!valueDominatesPHI(RHS, PI, Q.DT))
572     return nullptr;
573 
574   // Evaluate the BinOp on the incoming phi values.
575   Value *CommonValue = nullptr;
576   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
577     Value *Incoming = PI->getIncomingValue(u);
578     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
579     // If the incoming value is the phi node itself, it can safely be skipped.
580     if (Incoming == PI) continue;
581     // Change the context instruction to the "edge" that flows into the phi.
582     // This is important because that is where incoming is actually "evaluated"
583     // even though it is used later somewhere else.
584     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
585                                MaxRecurse);
586     // If the operation failed to simplify, or simplified to a different value
587     // to previously, then give up.
588     if (!V || (CommonValue && V != CommonValue))
589       return nullptr;
590     CommonValue = V;
591   }
592 
593   return CommonValue;
594 }
595 
foldOrCommuteConstant(Instruction::BinaryOps Opcode,Value * & Op0,Value * & Op1,const SimplifyQuery & Q)596 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
597                                        Value *&Op0, Value *&Op1,
598                                        const SimplifyQuery &Q) {
599   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
600     if (auto *CRHS = dyn_cast<Constant>(Op1))
601       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
602 
603     // Canonicalize the constant to the RHS if this is a commutative operation.
604     if (Instruction::isCommutative(Opcode))
605       std::swap(Op0, Op1);
606   }
607   return nullptr;
608 }
609 
610 /// Given operands for an Add, see if we can fold the result.
611 /// If not, this returns null.
SimplifyAddInst(Value * Op0,Value * Op1,bool IsNSW,bool IsNUW,const SimplifyQuery & Q,unsigned MaxRecurse)612 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
613                               const SimplifyQuery &Q, unsigned MaxRecurse) {
614   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
615     return C;
616 
617   // X + undef -> undef
618   if (Q.isUndefValue(Op1))
619     return Op1;
620 
621   // X + 0 -> X
622   if (match(Op1, m_Zero()))
623     return Op0;
624 
625   // If two operands are negative, return 0.
626   if (isKnownNegation(Op0, Op1))
627     return Constant::getNullValue(Op0->getType());
628 
629   // X + (Y - X) -> Y
630   // (Y - X) + X -> Y
631   // Eg: X + -X -> 0
632   Value *Y = nullptr;
633   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
634       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
635     return Y;
636 
637   // X + ~X -> -1   since   ~X = -X-1
638   Type *Ty = Op0->getType();
639   if (match(Op0, m_Not(m_Specific(Op1))) ||
640       match(Op1, m_Not(m_Specific(Op0))))
641     return Constant::getAllOnesValue(Ty);
642 
643   // add nsw/nuw (xor Y, signmask), signmask --> Y
644   // The no-wrapping add guarantees that the top bit will be set by the add.
645   // Therefore, the xor must be clearing the already set sign bit of Y.
646   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
647       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
648     return Y;
649 
650   // add nuw %x, -1  ->  -1, because %x can only be 0.
651   if (IsNUW && match(Op1, m_AllOnes()))
652     return Op1; // Which is -1.
653 
654   /// i1 add -> xor.
655   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
656     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
657       return V;
658 
659   // Try some generic simplifications for associative operations.
660   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
661                                           MaxRecurse))
662     return V;
663 
664   // Threading Add over selects and phi nodes is pointless, so don't bother.
665   // Threading over the select in "A + select(cond, B, C)" means evaluating
666   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
667   // only if B and C are equal.  If B and C are equal then (since we assume
668   // that operands have already been simplified) "select(cond, B, C)" should
669   // have been simplified to the common value of B and C already.  Analysing
670   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
671   // for threading over phi nodes.
672 
673   return nullptr;
674 }
675 
SimplifyAddInst(Value * Op0,Value * Op1,bool IsNSW,bool IsNUW,const SimplifyQuery & Query)676 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
677                              const SimplifyQuery &Query) {
678   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
679 }
680 
681 /// Compute the base pointer and cumulative constant offsets for V.
682 ///
683 /// This strips all constant offsets off of V, leaving it the base pointer, and
684 /// accumulates the total constant offset applied in the returned constant. It
685 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
686 /// no constant offsets applied.
687 ///
688 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
689 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
690 /// folding.
stripAndComputeConstantOffsets(const DataLayout & DL,Value * & V,bool AllowNonInbounds=false)691 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
692                                                 bool AllowNonInbounds = false) {
693   assert(V->getType()->isPtrOrPtrVectorTy());
694 
695   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
696   APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth());
697 
698   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
699   // As that strip may trace through `addrspacecast`, need to sext or trunc
700   // the offset calculated.
701   IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
702   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
703 
704   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
705   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
706     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
707   return OffsetIntPtr;
708 }
709 
710 /// Compute the constant difference between two pointer values.
711 /// If the difference is not a constant, returns zero.
computePointerDifference(const DataLayout & DL,Value * LHS,Value * RHS)712 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
713                                           Value *RHS) {
714   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
715   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
716 
717   // If LHS and RHS are not related via constant offsets to the same base
718   // value, there is nothing we can do here.
719   if (LHS != RHS)
720     return nullptr;
721 
722   // Otherwise, the difference of LHS - RHS can be computed as:
723   //    LHS - RHS
724   //  = (LHSOffset + Base) - (RHSOffset + Base)
725   //  = LHSOffset - RHSOffset
726   return ConstantExpr::getSub(LHSOffset, RHSOffset);
727 }
728 
729 /// Given operands for a Sub, see if we can fold the result.
730 /// If not, this returns null.
SimplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q,unsigned MaxRecurse)731 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
732                               const SimplifyQuery &Q, unsigned MaxRecurse) {
733   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
734     return C;
735 
736   // X - undef -> undef
737   // undef - X -> undef
738   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
739     return UndefValue::get(Op0->getType());
740 
741   // X - 0 -> X
742   if (match(Op1, m_Zero()))
743     return Op0;
744 
745   // X - X -> 0
746   if (Op0 == Op1)
747     return Constant::getNullValue(Op0->getType());
748 
749   // Is this a negation?
750   if (match(Op0, m_Zero())) {
751     // 0 - X -> 0 if the sub is NUW.
752     if (isNUW)
753       return Constant::getNullValue(Op0->getType());
754 
755     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
756     if (Known.Zero.isMaxSignedValue()) {
757       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
758       // Op1 must be 0 because negating the minimum signed value is undefined.
759       if (isNSW)
760         return Constant::getNullValue(Op0->getType());
761 
762       // 0 - X -> X if X is 0 or the minimum signed value.
763       return Op1;
764     }
765   }
766 
767   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
768   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
769   Value *X = nullptr, *Y = nullptr, *Z = Op1;
770   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
771     // See if "V === Y - Z" simplifies.
772     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
773       // It does!  Now see if "X + V" simplifies.
774       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
775         // It does, we successfully reassociated!
776         ++NumReassoc;
777         return W;
778       }
779     // See if "V === X - Z" simplifies.
780     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
781       // It does!  Now see if "Y + V" simplifies.
782       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
783         // It does, we successfully reassociated!
784         ++NumReassoc;
785         return W;
786       }
787   }
788 
789   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
790   // For example, X - (X + 1) -> -1
791   X = Op0;
792   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
793     // See if "V === X - Y" simplifies.
794     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
795       // It does!  Now see if "V - Z" simplifies.
796       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
797         // It does, we successfully reassociated!
798         ++NumReassoc;
799         return W;
800       }
801     // See if "V === X - Z" simplifies.
802     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
803       // It does!  Now see if "V - Y" simplifies.
804       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
805         // It does, we successfully reassociated!
806         ++NumReassoc;
807         return W;
808       }
809   }
810 
811   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
812   // For example, X - (X - Y) -> Y.
813   Z = Op0;
814   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
815     // See if "V === Z - X" simplifies.
816     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
817       // It does!  Now see if "V + Y" simplifies.
818       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
819         // It does, we successfully reassociated!
820         ++NumReassoc;
821         return W;
822       }
823 
824   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
825   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
826       match(Op1, m_Trunc(m_Value(Y))))
827     if (X->getType() == Y->getType())
828       // See if "V === X - Y" simplifies.
829       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
830         // It does!  Now see if "trunc V" simplifies.
831         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
832                                         Q, MaxRecurse - 1))
833           // It does, return the simplified "trunc V".
834           return W;
835 
836   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
837   if (match(Op0, m_PtrToInt(m_Value(X))) &&
838       match(Op1, m_PtrToInt(m_Value(Y))))
839     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
840       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
841 
842   // i1 sub -> xor.
843   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
844     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
845       return V;
846 
847   // Threading Sub over selects and phi nodes is pointless, so don't bother.
848   // Threading over the select in "A - select(cond, B, C)" means evaluating
849   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
850   // only if B and C are equal.  If B and C are equal then (since we assume
851   // that operands have already been simplified) "select(cond, B, C)" should
852   // have been simplified to the common value of B and C already.  Analysing
853   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
854   // for threading over phi nodes.
855 
856   return nullptr;
857 }
858 
SimplifySubInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q)859 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
860                              const SimplifyQuery &Q) {
861   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
862 }
863 
864 /// Given operands for a Mul, see if we can fold the result.
865 /// If not, this returns null.
SimplifyMulInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)866 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
867                               unsigned MaxRecurse) {
868   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
869     return C;
870 
871   // X * undef -> 0
872   // X * 0 -> 0
873   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
874     return Constant::getNullValue(Op0->getType());
875 
876   // X * 1 -> X
877   if (match(Op1, m_One()))
878     return Op0;
879 
880   // (X / Y) * Y -> X if the division is exact.
881   Value *X = nullptr;
882   if (Q.IIQ.UseInstrInfo &&
883       (match(Op0,
884              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
885        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
886     return X;
887 
888   // i1 mul -> and.
889   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
890     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
891       return V;
892 
893   // Try some generic simplifications for associative operations.
894   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
895                                           MaxRecurse))
896     return V;
897 
898   // Mul distributes over Add. Try some generic simplifications based on this.
899   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
900                                         Instruction::Add, Q, MaxRecurse))
901     return V;
902 
903   // If the operation is with the result of a select instruction, check whether
904   // operating on either branch of the select always yields the same value.
905   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
906     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
907                                          MaxRecurse))
908       return V;
909 
910   // If the operation is with the result of a phi instruction, check whether
911   // operating on all incoming values of the phi always yields the same value.
912   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
913     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
914                                       MaxRecurse))
915       return V;
916 
917   return nullptr;
918 }
919 
SimplifyMulInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)920 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
921   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
922 }
923 
924 /// Check for common or similar folds of integer division or integer remainder.
925 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
simplifyDivRem(Value * Op0,Value * Op1,bool IsDiv,const SimplifyQuery & Q)926 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv,
927                              const SimplifyQuery &Q) {
928   Type *Ty = Op0->getType();
929 
930   // X / undef -> poison
931   // X % undef -> poison
932   if (Q.isUndefValue(Op1))
933     return PoisonValue::get(Ty);
934 
935   // X / 0 -> poison
936   // X % 0 -> poison
937   // We don't need to preserve faults!
938   if (match(Op1, m_Zero()))
939     return PoisonValue::get(Ty);
940 
941   // If any element of a constant divisor fixed width vector is zero or undef
942   // the behavior is undefined and we can fold the whole op to poison.
943   auto *Op1C = dyn_cast<Constant>(Op1);
944   auto *VTy = dyn_cast<FixedVectorType>(Ty);
945   if (Op1C && VTy) {
946     unsigned NumElts = VTy->getNumElements();
947     for (unsigned i = 0; i != NumElts; ++i) {
948       Constant *Elt = Op1C->getAggregateElement(i);
949       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
950         return PoisonValue::get(Ty);
951     }
952   }
953 
954   // undef / X -> 0
955   // undef % X -> 0
956   if (Q.isUndefValue(Op0))
957     return Constant::getNullValue(Ty);
958 
959   // 0 / X -> 0
960   // 0 % X -> 0
961   if (match(Op0, m_Zero()))
962     return Constant::getNullValue(Op0->getType());
963 
964   // X / X -> 1
965   // X % X -> 0
966   if (Op0 == Op1)
967     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
968 
969   // X / 1 -> X
970   // X % 1 -> 0
971   // If this is a boolean op (single-bit element type), we can't have
972   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
973   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
974   Value *X;
975   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
976       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
977     return IsDiv ? Op0 : Constant::getNullValue(Ty);
978 
979   return nullptr;
980 }
981 
982 /// Given a predicate and two operands, return true if the comparison is true.
983 /// This is a helper for div/rem simplification where we return some other value
984 /// when we can prove a relationship between the operands.
isICmpTrue(ICmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)985 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
986                        const SimplifyQuery &Q, unsigned MaxRecurse) {
987   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
988   Constant *C = dyn_cast_or_null<Constant>(V);
989   return (C && C->isAllOnesValue());
990 }
991 
992 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
993 /// to simplify X % Y to X.
isDivZero(Value * X,Value * Y,const SimplifyQuery & Q,unsigned MaxRecurse,bool IsSigned)994 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
995                       unsigned MaxRecurse, bool IsSigned) {
996   // Recursion is always used, so bail out at once if we already hit the limit.
997   if (!MaxRecurse--)
998     return false;
999 
1000   if (IsSigned) {
1001     // |X| / |Y| --> 0
1002     //
1003     // We require that 1 operand is a simple constant. That could be extended to
1004     // 2 variables if we computed the sign bit for each.
1005     //
1006     // Make sure that a constant is not the minimum signed value because taking
1007     // the abs() of that is undefined.
1008     Type *Ty = X->getType();
1009     const APInt *C;
1010     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1011       // Is the variable divisor magnitude always greater than the constant
1012       // dividend magnitude?
1013       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1014       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1015       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1016       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1017           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1018         return true;
1019     }
1020     if (match(Y, m_APInt(C))) {
1021       // Special-case: we can't take the abs() of a minimum signed value. If
1022       // that's the divisor, then all we have to do is prove that the dividend
1023       // is also not the minimum signed value.
1024       if (C->isMinSignedValue())
1025         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1026 
1027       // Is the variable dividend magnitude always less than the constant
1028       // divisor magnitude?
1029       // |X| < |C| --> X > -abs(C) and X < abs(C)
1030       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1031       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1032       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1033           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1034         return true;
1035     }
1036     return false;
1037   }
1038 
1039   // IsSigned == false.
1040   // Is the dividend unsigned less than the divisor?
1041   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1042 }
1043 
1044 /// These are simplifications common to SDiv and UDiv.
simplifyDiv(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1045 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1046                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1047   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1048     return C;
1049 
1050   if (Value *V = simplifyDivRem(Op0, Op1, true, Q))
1051     return V;
1052 
1053   bool IsSigned = Opcode == Instruction::SDiv;
1054 
1055   // (X * Y) / Y -> X if the multiplication does not overflow.
1056   Value *X;
1057   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1058     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1059     // If the Mul does not overflow, then we are good to go.
1060     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1061         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1062       return X;
1063     // If X has the form X = A / Y, then X * Y cannot overflow.
1064     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1065         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1066       return X;
1067   }
1068 
1069   // (X rem Y) / Y -> 0
1070   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1071       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1072     return Constant::getNullValue(Op0->getType());
1073 
1074   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1075   ConstantInt *C1, *C2;
1076   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1077       match(Op1, m_ConstantInt(C2))) {
1078     bool Overflow;
1079     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1080     if (Overflow)
1081       return Constant::getNullValue(Op0->getType());
1082   }
1083 
1084   // If the operation is with the result of a select instruction, check whether
1085   // operating on either branch of the select always yields the same value.
1086   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1087     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1088       return V;
1089 
1090   // If the operation is with the result of a phi instruction, check whether
1091   // operating on all incoming values of the phi always yields the same value.
1092   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1093     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1094       return V;
1095 
1096   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1097     return Constant::getNullValue(Op0->getType());
1098 
1099   return nullptr;
1100 }
1101 
1102 /// These are simplifications common to SRem and URem.
simplifyRem(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1103 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1104                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1105   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1106     return C;
1107 
1108   if (Value *V = simplifyDivRem(Op0, Op1, false, Q))
1109     return V;
1110 
1111   // (X % Y) % Y -> X % Y
1112   if ((Opcode == Instruction::SRem &&
1113        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1114       (Opcode == Instruction::URem &&
1115        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1116     return Op0;
1117 
1118   // (X << Y) % X -> 0
1119   if (Q.IIQ.UseInstrInfo &&
1120       ((Opcode == Instruction::SRem &&
1121         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1122        (Opcode == Instruction::URem &&
1123         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1124     return Constant::getNullValue(Op0->getType());
1125 
1126   // If the operation is with the result of a select instruction, check whether
1127   // operating on either branch of the select always yields the same value.
1128   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1129     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1130       return V;
1131 
1132   // If the operation is with the result of a phi instruction, check whether
1133   // operating on all incoming values of the phi always yields the same value.
1134   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1135     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1136       return V;
1137 
1138   // If X / Y == 0, then X % Y == X.
1139   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1140     return Op0;
1141 
1142   return nullptr;
1143 }
1144 
1145 /// Given operands for an SDiv, see if we can fold the result.
1146 /// If not, this returns null.
SimplifySDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1147 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1148                                unsigned MaxRecurse) {
1149   // If two operands are negated and no signed overflow, return -1.
1150   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1151     return Constant::getAllOnesValue(Op0->getType());
1152 
1153   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1154 }
1155 
SimplifySDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1156 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1157   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1158 }
1159 
1160 /// Given operands for a UDiv, see if we can fold the result.
1161 /// If not, this returns null.
SimplifyUDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1162 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1163                                unsigned MaxRecurse) {
1164   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1165 }
1166 
SimplifyUDivInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1167 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1168   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1169 }
1170 
1171 /// Given operands for an SRem, see if we can fold the result.
1172 /// If not, this returns null.
SimplifySRemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1173 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1174                                unsigned MaxRecurse) {
1175   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1176   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1177   Value *X;
1178   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1179     return ConstantInt::getNullValue(Op0->getType());
1180 
1181   // If the two operands are negated, return 0.
1182   if (isKnownNegation(Op0, Op1))
1183     return ConstantInt::getNullValue(Op0->getType());
1184 
1185   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1186 }
1187 
SimplifySRemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1188 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1189   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1190 }
1191 
1192 /// Given operands for a URem, see if we can fold the result.
1193 /// If not, this returns null.
SimplifyURemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1194 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1195                                unsigned MaxRecurse) {
1196   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1197 }
1198 
SimplifyURemInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)1199 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1200   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1201 }
1202 
1203 /// Returns true if a shift by \c Amount always yields poison.
isPoisonShift(Value * Amount,const SimplifyQuery & Q)1204 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1205   Constant *C = dyn_cast<Constant>(Amount);
1206   if (!C)
1207     return false;
1208 
1209   // X shift by undef -> poison because it may shift by the bitwidth.
1210   if (Q.isUndefValue(C))
1211     return true;
1212 
1213   // Shifting by the bitwidth or more is undefined.
1214   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1215     if (CI->getValue().uge(CI->getType()->getScalarSizeInBits()))
1216       return true;
1217 
1218   // If all lanes of a vector shift are undefined the whole shift is.
1219   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1220     for (unsigned I = 0,
1221                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1222          I != E; ++I)
1223       if (!isPoisonShift(C->getAggregateElement(I), Q))
1224         return false;
1225     return true;
1226   }
1227 
1228   return false;
1229 }
1230 
1231 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1232 /// If not, this returns null.
SimplifyShift(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,bool IsNSW,const SimplifyQuery & Q,unsigned MaxRecurse)1233 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1234                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1235                             unsigned MaxRecurse) {
1236   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1237     return C;
1238 
1239   // 0 shift by X -> 0
1240   if (match(Op0, m_Zero()))
1241     return Constant::getNullValue(Op0->getType());
1242 
1243   // X shift by 0 -> X
1244   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1245   // would be poison.
1246   Value *X;
1247   if (match(Op1, m_Zero()) ||
1248       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1249     return Op0;
1250 
1251   // Fold undefined shifts.
1252   if (isPoisonShift(Op1, Q))
1253     return PoisonValue::get(Op0->getType());
1254 
1255   // If the operation is with the result of a select instruction, check whether
1256   // operating on either branch of the select always yields the same value.
1257   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1258     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1259       return V;
1260 
1261   // If the operation is with the result of a phi instruction, check whether
1262   // operating on all incoming values of the phi always yields the same value.
1263   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1264     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1265       return V;
1266 
1267   // If any bits in the shift amount make that value greater than or equal to
1268   // the number of bits in the type, the shift is undefined.
1269   KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1270   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1271     return PoisonValue::get(Op0->getType());
1272 
1273   // If all valid bits in the shift amount are known zero, the first operand is
1274   // unchanged.
1275   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1276   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1277     return Op0;
1278 
1279   // Check for nsw shl leading to a poison value.
1280   if (IsNSW) {
1281     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1282     KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1283     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1284 
1285     if (KnownVal.Zero.isSignBitSet())
1286       KnownShl.Zero.setSignBit();
1287     if (KnownVal.One.isSignBitSet())
1288       KnownShl.One.setSignBit();
1289 
1290     if (KnownShl.hasConflict())
1291       return PoisonValue::get(Op0->getType());
1292   }
1293 
1294   return nullptr;
1295 }
1296 
1297 /// Given operands for an Shl, LShr or AShr, see if we can
1298 /// fold the result.  If not, this returns null.
SimplifyRightShift(Instruction::BinaryOps Opcode,Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q,unsigned MaxRecurse)1299 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1300                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1301                                  unsigned MaxRecurse) {
1302   if (Value *V =
1303           SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1304     return V;
1305 
1306   // X >> X -> 0
1307   if (Op0 == Op1)
1308     return Constant::getNullValue(Op0->getType());
1309 
1310   // undef >> X -> 0
1311   // undef >> X -> undef (if it's exact)
1312   if (Q.isUndefValue(Op0))
1313     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1314 
1315   // The low bit cannot be shifted out of an exact shift if it is set.
1316   if (isExact) {
1317     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1318     if (Op0Known.One[0])
1319       return Op0;
1320   }
1321 
1322   return nullptr;
1323 }
1324 
1325 /// Given operands for an Shl, see if we can fold the result.
1326 /// If not, this returns null.
SimplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q,unsigned MaxRecurse)1327 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1328                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1329   if (Value *V =
1330           SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse))
1331     return V;
1332 
1333   // undef << X -> 0
1334   // undef << X -> undef if (if it's NSW/NUW)
1335   if (Q.isUndefValue(Op0))
1336     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1337 
1338   // (X >> A) << A -> X
1339   Value *X;
1340   if (Q.IIQ.UseInstrInfo &&
1341       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1342     return X;
1343 
1344   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1345   if (isNUW && match(Op0, m_Negative()))
1346     return Op0;
1347   // NOTE: could use computeKnownBits() / LazyValueInfo,
1348   // but the cost-benefit analysis suggests it isn't worth it.
1349 
1350   return nullptr;
1351 }
1352 
SimplifyShlInst(Value * Op0,Value * Op1,bool isNSW,bool isNUW,const SimplifyQuery & Q)1353 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1354                              const SimplifyQuery &Q) {
1355   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1356 }
1357 
1358 /// Given operands for an LShr, see if we can fold the result.
1359 /// If not, this returns null.
SimplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q,unsigned MaxRecurse)1360 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1361                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1362   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1363                                     MaxRecurse))
1364       return V;
1365 
1366   // (X << A) >> A -> X
1367   Value *X;
1368   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1369     return X;
1370 
1371   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1372   // We can return X as we do in the above case since OR alters no bits in X.
1373   // SimplifyDemandedBits in InstCombine can do more general optimization for
1374   // bit manipulation. This pattern aims to provide opportunities for other
1375   // optimizers by supporting a simple but common case in InstSimplify.
1376   Value *Y;
1377   const APInt *ShRAmt, *ShLAmt;
1378   if (match(Op1, m_APInt(ShRAmt)) &&
1379       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1380       *ShRAmt == *ShLAmt) {
1381     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1382     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1383     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1384     if (ShRAmt->uge(EffWidthY))
1385       return X;
1386   }
1387 
1388   return nullptr;
1389 }
1390 
SimplifyLShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q)1391 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1392                               const SimplifyQuery &Q) {
1393   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1394 }
1395 
1396 /// Given operands for an AShr, see if we can fold the result.
1397 /// If not, this returns null.
SimplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q,unsigned MaxRecurse)1398 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1399                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1400   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1401                                     MaxRecurse))
1402     return V;
1403 
1404   // all ones >>a X -> -1
1405   // Do not return Op0 because it may contain undef elements if it's a vector.
1406   if (match(Op0, m_AllOnes()))
1407     return Constant::getAllOnesValue(Op0->getType());
1408 
1409   // (X << A) >> A -> X
1410   Value *X;
1411   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1412     return X;
1413 
1414   // Arithmetic shifting an all-sign-bit value is a no-op.
1415   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1416   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1417     return Op0;
1418 
1419   return nullptr;
1420 }
1421 
SimplifyAShrInst(Value * Op0,Value * Op1,bool isExact,const SimplifyQuery & Q)1422 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1423                               const SimplifyQuery &Q) {
1424   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1425 }
1426 
1427 /// Commuted variants are assumed to be handled by calling this function again
1428 /// with the parameters swapped.
simplifyUnsignedRangeCheck(ICmpInst * ZeroICmp,ICmpInst * UnsignedICmp,bool IsAnd,const SimplifyQuery & Q)1429 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1430                                          ICmpInst *UnsignedICmp, bool IsAnd,
1431                                          const SimplifyQuery &Q) {
1432   Value *X, *Y;
1433 
1434   ICmpInst::Predicate EqPred;
1435   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1436       !ICmpInst::isEquality(EqPred))
1437     return nullptr;
1438 
1439   ICmpInst::Predicate UnsignedPred;
1440 
1441   Value *A, *B;
1442   // Y = (A - B);
1443   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1444     if (match(UnsignedICmp,
1445               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1446         ICmpInst::isUnsigned(UnsignedPred)) {
1447       // A >=/<= B || (A - B) != 0  <-->  true
1448       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1449            UnsignedPred == ICmpInst::ICMP_ULE) &&
1450           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1451         return ConstantInt::getTrue(UnsignedICmp->getType());
1452       // A </> B && (A - B) == 0  <-->  false
1453       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1454            UnsignedPred == ICmpInst::ICMP_UGT) &&
1455           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1456         return ConstantInt::getFalse(UnsignedICmp->getType());
1457 
1458       // A </> B && (A - B) != 0  <-->  A </> B
1459       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1460       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1461                                           UnsignedPred == ICmpInst::ICMP_UGT))
1462         return IsAnd ? UnsignedICmp : ZeroICmp;
1463 
1464       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1465       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1466       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1467                                           UnsignedPred == ICmpInst::ICMP_UGE))
1468         return IsAnd ? ZeroICmp : UnsignedICmp;
1469     }
1470 
1471     // Given  Y = (A - B)
1472     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1473     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1474     if (match(UnsignedICmp,
1475               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1476       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1477           EqPred == ICmpInst::ICMP_NE &&
1478           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1479         return UnsignedICmp;
1480       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1481           EqPred == ICmpInst::ICMP_EQ &&
1482           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1483         return UnsignedICmp;
1484     }
1485   }
1486 
1487   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1488       ICmpInst::isUnsigned(UnsignedPred))
1489     ;
1490   else if (match(UnsignedICmp,
1491                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1492            ICmpInst::isUnsigned(UnsignedPred))
1493     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1494   else
1495     return nullptr;
1496 
1497   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1498   // X > Y || Y == 0  -->  X > Y   iff X != 0
1499   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1500       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1501     return IsAnd ? ZeroICmp : UnsignedICmp;
1502 
1503   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1504   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1505   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1506       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1507     return IsAnd ? UnsignedICmp : ZeroICmp;
1508 
1509   // The transforms below here are expected to be handled more generally with
1510   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1511   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1512   // these are candidates for removal.
1513 
1514   // X < Y && Y != 0  -->  X < Y
1515   // X < Y || Y != 0  -->  Y != 0
1516   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1517     return IsAnd ? UnsignedICmp : ZeroICmp;
1518 
1519   // X >= Y && Y == 0  -->  Y == 0
1520   // X >= Y || Y == 0  -->  X >= Y
1521   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1522     return IsAnd ? ZeroICmp : UnsignedICmp;
1523 
1524   // X < Y && Y == 0  -->  false
1525   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1526       IsAnd)
1527     return getFalse(UnsignedICmp->getType());
1528 
1529   // X >= Y || Y != 0  -->  true
1530   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1531       !IsAnd)
1532     return getTrue(UnsignedICmp->getType());
1533 
1534   return nullptr;
1535 }
1536 
1537 /// Commuted variants are assumed to be handled by calling this function again
1538 /// with the parameters swapped.
simplifyAndOfICmpsWithSameOperands(ICmpInst * Op0,ICmpInst * Op1)1539 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1540   ICmpInst::Predicate Pred0, Pred1;
1541   Value *A ,*B;
1542   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1543       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1544     return nullptr;
1545 
1546   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1547   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1548   // can eliminate Op1 from this 'and'.
1549   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1550     return Op0;
1551 
1552   // Check for any combination of predicates that are guaranteed to be disjoint.
1553   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1554       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1555       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1556       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1557     return getFalse(Op0->getType());
1558 
1559   return nullptr;
1560 }
1561 
1562 /// Commuted variants are assumed to be handled by calling this function again
1563 /// with the parameters swapped.
simplifyOrOfICmpsWithSameOperands(ICmpInst * Op0,ICmpInst * Op1)1564 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1565   ICmpInst::Predicate Pred0, Pred1;
1566   Value *A ,*B;
1567   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1568       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1569     return nullptr;
1570 
1571   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1572   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1573   // can eliminate Op0 from this 'or'.
1574   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1575     return Op1;
1576 
1577   // Check for any combination of predicates that cover the entire range of
1578   // possibilities.
1579   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1580       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1581       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1582       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1583     return getTrue(Op0->getType());
1584 
1585   return nullptr;
1586 }
1587 
1588 /// Test if a pair of compares with a shared operand and 2 constants has an
1589 /// empty set intersection, full set union, or if one compare is a superset of
1590 /// the other.
simplifyAndOrOfICmpsWithConstants(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1591 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1592                                                 bool IsAnd) {
1593   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1594   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1595     return nullptr;
1596 
1597   const APInt *C0, *C1;
1598   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1599       !match(Cmp1->getOperand(1), m_APInt(C1)))
1600     return nullptr;
1601 
1602   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1603   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1604 
1605   // For and-of-compares, check if the intersection is empty:
1606   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1607   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1608     return getFalse(Cmp0->getType());
1609 
1610   // For or-of-compares, check if the union is full:
1611   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1612   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1613     return getTrue(Cmp0->getType());
1614 
1615   // Is one range a superset of the other?
1616   // If this is and-of-compares, take the smaller set:
1617   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1618   // If this is or-of-compares, take the larger set:
1619   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1620   if (Range0.contains(Range1))
1621     return IsAnd ? Cmp1 : Cmp0;
1622   if (Range1.contains(Range0))
1623     return IsAnd ? Cmp0 : Cmp1;
1624 
1625   return nullptr;
1626 }
1627 
simplifyAndOrOfICmpsWithZero(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1628 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1629                                            bool IsAnd) {
1630   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1631   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1632       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1633     return nullptr;
1634 
1635   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1636     return nullptr;
1637 
1638   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1639   Value *X = Cmp0->getOperand(0);
1640   Value *Y = Cmp1->getOperand(0);
1641 
1642   // If one of the compares is a masked version of a (not) null check, then
1643   // that compare implies the other, so we eliminate the other. Optionally, look
1644   // through a pointer-to-int cast to match a null check of a pointer type.
1645 
1646   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1647   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1648   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1649   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1650   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1651       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1652     return Cmp1;
1653 
1654   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1655   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1656   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1657   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1658   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1659       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1660     return Cmp0;
1661 
1662   return nullptr;
1663 }
1664 
simplifyAndOfICmpsWithAdd(ICmpInst * Op0,ICmpInst * Op1,const InstrInfoQuery & IIQ)1665 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1666                                         const InstrInfoQuery &IIQ) {
1667   // (icmp (add V, C0), C1) & (icmp V, C0)
1668   ICmpInst::Predicate Pred0, Pred1;
1669   const APInt *C0, *C1;
1670   Value *V;
1671   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1672     return nullptr;
1673 
1674   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1675     return nullptr;
1676 
1677   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1678   if (AddInst->getOperand(1) != Op1->getOperand(1))
1679     return nullptr;
1680 
1681   Type *ITy = Op0->getType();
1682   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1683   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1684 
1685   const APInt Delta = *C1 - *C0;
1686   if (C0->isStrictlyPositive()) {
1687     if (Delta == 2) {
1688       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1689         return getFalse(ITy);
1690       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1691         return getFalse(ITy);
1692     }
1693     if (Delta == 1) {
1694       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1695         return getFalse(ITy);
1696       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1697         return getFalse(ITy);
1698     }
1699   }
1700   if (C0->getBoolValue() && isNUW) {
1701     if (Delta == 2)
1702       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1703         return getFalse(ITy);
1704     if (Delta == 1)
1705       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1706         return getFalse(ITy);
1707   }
1708 
1709   return nullptr;
1710 }
1711 
1712 /// Try to eliminate compares with signed or unsigned min/max constants.
simplifyAndOrOfICmpsWithLimitConst(ICmpInst * Cmp0,ICmpInst * Cmp1,bool IsAnd)1713 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1714                                                  bool IsAnd) {
1715   // Canonicalize an equality compare as Cmp0.
1716   if (Cmp1->isEquality())
1717     std::swap(Cmp0, Cmp1);
1718   if (!Cmp0->isEquality())
1719     return nullptr;
1720 
1721   // The non-equality compare must include a common operand (X). Canonicalize
1722   // the common operand as operand 0 (the predicate is swapped if the common
1723   // operand was operand 1).
1724   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1725   Value *X = Cmp0->getOperand(0);
1726   ICmpInst::Predicate Pred1;
1727   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1728   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1729     return nullptr;
1730   if (ICmpInst::isEquality(Pred1))
1731     return nullptr;
1732 
1733   // The equality compare must be against a constant. Flip bits if we matched
1734   // a bitwise not. Convert a null pointer constant to an integer zero value.
1735   APInt MinMaxC;
1736   const APInt *C;
1737   if (match(Cmp0->getOperand(1), m_APInt(C)))
1738     MinMaxC = HasNotOp ? ~*C : *C;
1739   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1740     MinMaxC = APInt::getNullValue(8);
1741   else
1742     return nullptr;
1743 
1744   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1745   if (!IsAnd) {
1746     Pred0 = ICmpInst::getInversePredicate(Pred0);
1747     Pred1 = ICmpInst::getInversePredicate(Pred1);
1748   }
1749 
1750   // Normalize to unsigned compare and unsigned min/max value.
1751   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1752   if (ICmpInst::isSigned(Pred1)) {
1753     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1754     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1755   }
1756 
1757   // (X != MAX) && (X < Y) --> X < Y
1758   // (X == MAX) || (X >= Y) --> X >= Y
1759   if (MinMaxC.isMaxValue())
1760     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1761       return Cmp1;
1762 
1763   // (X != MIN) && (X > Y) -->  X > Y
1764   // (X == MIN) || (X <= Y) --> X <= Y
1765   if (MinMaxC.isMinValue())
1766     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1767       return Cmp1;
1768 
1769   return nullptr;
1770 }
1771 
simplifyAndOfICmps(ICmpInst * Op0,ICmpInst * Op1,const SimplifyQuery & Q)1772 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1773                                  const SimplifyQuery &Q) {
1774   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1775     return X;
1776   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1777     return X;
1778 
1779   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1780     return X;
1781   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1782     return X;
1783 
1784   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1785     return X;
1786 
1787   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1788     return X;
1789 
1790   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1791     return X;
1792 
1793   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1794     return X;
1795   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1796     return X;
1797 
1798   return nullptr;
1799 }
1800 
simplifyOrOfICmpsWithAdd(ICmpInst * Op0,ICmpInst * Op1,const InstrInfoQuery & IIQ)1801 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1802                                        const InstrInfoQuery &IIQ) {
1803   // (icmp (add V, C0), C1) | (icmp V, C0)
1804   ICmpInst::Predicate Pred0, Pred1;
1805   const APInt *C0, *C1;
1806   Value *V;
1807   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1808     return nullptr;
1809 
1810   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1811     return nullptr;
1812 
1813   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1814   if (AddInst->getOperand(1) != Op1->getOperand(1))
1815     return nullptr;
1816 
1817   Type *ITy = Op0->getType();
1818   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1819   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1820 
1821   const APInt Delta = *C1 - *C0;
1822   if (C0->isStrictlyPositive()) {
1823     if (Delta == 2) {
1824       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1825         return getTrue(ITy);
1826       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1827         return getTrue(ITy);
1828     }
1829     if (Delta == 1) {
1830       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1831         return getTrue(ITy);
1832       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1833         return getTrue(ITy);
1834     }
1835   }
1836   if (C0->getBoolValue() && isNUW) {
1837     if (Delta == 2)
1838       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1839         return getTrue(ITy);
1840     if (Delta == 1)
1841       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1842         return getTrue(ITy);
1843   }
1844 
1845   return nullptr;
1846 }
1847 
simplifyOrOfICmps(ICmpInst * Op0,ICmpInst * Op1,const SimplifyQuery & Q)1848 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1849                                 const SimplifyQuery &Q) {
1850   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1851     return X;
1852   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1853     return X;
1854 
1855   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1856     return X;
1857   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1858     return X;
1859 
1860   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1861     return X;
1862 
1863   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1864     return X;
1865 
1866   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1867     return X;
1868 
1869   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1870     return X;
1871   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1872     return X;
1873 
1874   return nullptr;
1875 }
1876 
simplifyAndOrOfFCmps(const TargetLibraryInfo * TLI,FCmpInst * LHS,FCmpInst * RHS,bool IsAnd)1877 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1878                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1879   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1880   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1881   if (LHS0->getType() != RHS0->getType())
1882     return nullptr;
1883 
1884   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1885   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1886       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1887     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1888     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1889     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1890     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1891     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1892     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1893     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1894     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1895     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1896         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1897       return RHS;
1898 
1899     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1900     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1901     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1902     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1903     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1904     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1905     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1906     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1907     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1908         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1909       return LHS;
1910   }
1911 
1912   return nullptr;
1913 }
1914 
simplifyAndOrOfCmps(const SimplifyQuery & Q,Value * Op0,Value * Op1,bool IsAnd)1915 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1916                                   Value *Op0, Value *Op1, bool IsAnd) {
1917   // Look through casts of the 'and' operands to find compares.
1918   auto *Cast0 = dyn_cast<CastInst>(Op0);
1919   auto *Cast1 = dyn_cast<CastInst>(Op1);
1920   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1921       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1922     Op0 = Cast0->getOperand(0);
1923     Op1 = Cast1->getOperand(0);
1924   }
1925 
1926   Value *V = nullptr;
1927   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1928   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1929   if (ICmp0 && ICmp1)
1930     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1931               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1932 
1933   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1934   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1935   if (FCmp0 && FCmp1)
1936     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1937 
1938   if (!V)
1939     return nullptr;
1940   if (!Cast0)
1941     return V;
1942 
1943   // If we looked through casts, we can only handle a constant simplification
1944   // because we are not allowed to create a cast instruction here.
1945   if (auto *C = dyn_cast<Constant>(V))
1946     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1947 
1948   return nullptr;
1949 }
1950 
1951 /// Given a bitwise logic op, check if the operands are add/sub with a common
1952 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
simplifyLogicOfAddSub(Value * Op0,Value * Op1,Instruction::BinaryOps Opcode)1953 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1954                                     Instruction::BinaryOps Opcode) {
1955   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1956   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1957   Value *X;
1958   Constant *C1, *C2;
1959   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1960        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1961       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1962        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1963     if (ConstantExpr::getNot(C1) == C2) {
1964       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1965       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1966       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1967       Type *Ty = Op0->getType();
1968       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1969                                         : ConstantInt::getAllOnesValue(Ty);
1970     }
1971   }
1972   return nullptr;
1973 }
1974 
1975 /// Given operands for an And, see if we can fold the result.
1976 /// If not, this returns null.
SimplifyAndInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)1977 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1978                               unsigned MaxRecurse) {
1979   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1980     return C;
1981 
1982   // X & undef -> 0
1983   if (Q.isUndefValue(Op1))
1984     return Constant::getNullValue(Op0->getType());
1985 
1986   // X & X = X
1987   if (Op0 == Op1)
1988     return Op0;
1989 
1990   // X & 0 = 0
1991   if (match(Op1, m_Zero()))
1992     return Constant::getNullValue(Op0->getType());
1993 
1994   // X & -1 = X
1995   if (match(Op1, m_AllOnes()))
1996     return Op0;
1997 
1998   // A & ~A  =  ~A & A  =  0
1999   if (match(Op0, m_Not(m_Specific(Op1))) ||
2000       match(Op1, m_Not(m_Specific(Op0))))
2001     return Constant::getNullValue(Op0->getType());
2002 
2003   // (A | ?) & A = A
2004   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2005     return Op1;
2006 
2007   // A & (A | ?) = A
2008   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2009     return Op0;
2010 
2011   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2012     return V;
2013 
2014   // A mask that only clears known zeros of a shifted value is a no-op.
2015   Value *X;
2016   const APInt *Mask;
2017   const APInt *ShAmt;
2018   if (match(Op1, m_APInt(Mask))) {
2019     // If all bits in the inverted and shifted mask are clear:
2020     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2021     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2022         (~(*Mask)).lshr(*ShAmt).isNullValue())
2023       return Op0;
2024 
2025     // If all bits in the inverted and shifted mask are clear:
2026     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2027     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2028         (~(*Mask)).shl(*ShAmt).isNullValue())
2029       return Op0;
2030   }
2031 
2032   // If we have a multiplication overflow check that is being 'and'ed with a
2033   // check that one of the multipliers is not zero, we can omit the 'and', and
2034   // only keep the overflow check.
2035   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2036     return Op1;
2037   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
2038     return Op0;
2039 
2040   // A & (-A) = A if A is a power of two or zero.
2041   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2042       match(Op1, m_Neg(m_Specific(Op0)))) {
2043     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2044                                Q.DT))
2045       return Op0;
2046     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2047                                Q.DT))
2048       return Op1;
2049   }
2050 
2051   // This is a similar pattern used for checking if a value is a power-of-2:
2052   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2053   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2054   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2055       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2056     return Constant::getNullValue(Op1->getType());
2057   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2058       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2059     return Constant::getNullValue(Op0->getType());
2060 
2061   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2062     return V;
2063 
2064   // Try some generic simplifications for associative operations.
2065   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2066                                           MaxRecurse))
2067     return V;
2068 
2069   // And distributes over Or.  Try some generic simplifications based on this.
2070   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2071                                         Instruction::Or, Q, MaxRecurse))
2072     return V;
2073 
2074   // And distributes over Xor.  Try some generic simplifications based on this.
2075   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2076                                         Instruction::Xor, Q, MaxRecurse))
2077     return V;
2078 
2079   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2080     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2081       // A & (A && B) -> A && B
2082       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2083         return Op1;
2084       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2085         return Op0;
2086     }
2087     // If the operation is with the result of a select instruction, check
2088     // whether operating on either branch of the select always yields the same
2089     // value.
2090     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2091                                          MaxRecurse))
2092       return V;
2093   }
2094 
2095   // If the operation is with the result of a phi instruction, check whether
2096   // operating on all incoming values of the phi always yields the same value.
2097   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2098     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2099                                       MaxRecurse))
2100       return V;
2101 
2102   // Assuming the effective width of Y is not larger than A, i.e. all bits
2103   // from X and Y are disjoint in (X << A) | Y,
2104   // if the mask of this AND op covers all bits of X or Y, while it covers
2105   // no bits from the other, we can bypass this AND op. E.g.,
2106   // ((X << A) | Y) & Mask -> Y,
2107   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2108   // ((X << A) | Y) & Mask -> X << A,
2109   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2110   // SimplifyDemandedBits in InstCombine can optimize the general case.
2111   // This pattern aims to help other passes for a common case.
2112   Value *Y, *XShifted;
2113   if (match(Op1, m_APInt(Mask)) &&
2114       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2115                                      m_Value(XShifted)),
2116                         m_Value(Y)))) {
2117     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2118     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2119     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2120     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
2121     if (EffWidthY <= ShftCnt) {
2122       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2123                                                 Q.DT);
2124       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
2125       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2126       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2127       // If the mask is extracting all bits from X or Y as is, we can skip
2128       // this AND op.
2129       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2130         return Y;
2131       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2132         return XShifted;
2133     }
2134   }
2135 
2136   return nullptr;
2137 }
2138 
SimplifyAndInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)2139 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2140   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2141 }
2142 
2143 /// Given operands for an Or, see if we can fold the result.
2144 /// If not, this returns null.
SimplifyOrInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)2145 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2146                              unsigned MaxRecurse) {
2147   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2148     return C;
2149 
2150   // X | undef -> -1
2151   // X | -1 = -1
2152   // Do not return Op1 because it may contain undef elements if it's a vector.
2153   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2154     return Constant::getAllOnesValue(Op0->getType());
2155 
2156   // X | X = X
2157   // X | 0 = X
2158   if (Op0 == Op1 || match(Op1, m_Zero()))
2159     return Op0;
2160 
2161   // A | ~A  =  ~A | A  =  -1
2162   if (match(Op0, m_Not(m_Specific(Op1))) ||
2163       match(Op1, m_Not(m_Specific(Op0))))
2164     return Constant::getAllOnesValue(Op0->getType());
2165 
2166   // (A & ?) | A = A
2167   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2168     return Op1;
2169 
2170   // A | (A & ?) = A
2171   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2172     return Op0;
2173 
2174   // ~(A & ?) | A = -1
2175   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2176     return Constant::getAllOnesValue(Op1->getType());
2177 
2178   // A | ~(A & ?) = -1
2179   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
2180     return Constant::getAllOnesValue(Op0->getType());
2181 
2182   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2183     return V;
2184 
2185   Value *A, *B, *NotA;
2186   // (A & ~B) | (A ^ B) -> (A ^ B)
2187   // (~B & A) | (A ^ B) -> (A ^ B)
2188   // (A & ~B) | (B ^ A) -> (B ^ A)
2189   // (~B & A) | (B ^ A) -> (B ^ A)
2190   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2191       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2192        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2193     return Op1;
2194 
2195   // Commute the 'or' operands.
2196   // (A ^ B) | (A & ~B) -> (A ^ B)
2197   // (A ^ B) | (~B & A) -> (A ^ B)
2198   // (B ^ A) | (A & ~B) -> (B ^ A)
2199   // (B ^ A) | (~B & A) -> (B ^ A)
2200   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2201       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2202        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2203     return Op0;
2204 
2205   // (A & B) | (~A ^ B) -> (~A ^ B)
2206   // (B & A) | (~A ^ B) -> (~A ^ B)
2207   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2208   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2209   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2210       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2211        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2212     return Op1;
2213 
2214   // Commute the 'or' operands.
2215   // (~A ^ B) | (A & B) -> (~A ^ B)
2216   // (~A ^ B) | (B & A) -> (~A ^ B)
2217   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2218   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2219   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2220       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2221        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2222     return Op0;
2223 
2224   // (~A & B) | ~(A | B) --> ~A
2225   // (~A & B) | ~(B | A) --> ~A
2226   // (B & ~A) | ~(A | B) --> ~A
2227   // (B & ~A) | ~(B | A) --> ~A
2228   if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2229                          m_Value(B))) &&
2230       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2231     return NotA;
2232 
2233   // Commute the 'or' operands.
2234   // ~(A | B) | (~A & B) --> ~A
2235   // ~(B | A) | (~A & B) --> ~A
2236   // ~(A | B) | (B & ~A) --> ~A
2237   // ~(B | A) | (B & ~A) --> ~A
2238   if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2239                          m_Value(B))) &&
2240       match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2241     return NotA;
2242 
2243   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2244     return V;
2245 
2246   // If we have a multiplication overflow check that is being 'and'ed with a
2247   // check that one of the multipliers is not zero, we can omit the 'and', and
2248   // only keep the overflow check.
2249   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2250     return Op1;
2251   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2252     return Op0;
2253 
2254   // Try some generic simplifications for associative operations.
2255   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2256                                           MaxRecurse))
2257     return V;
2258 
2259   // Or distributes over And.  Try some generic simplifications based on this.
2260   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2261                                         Instruction::And, Q, MaxRecurse))
2262     return V;
2263 
2264   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2265     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2266       // A | (A || B) -> A || B
2267       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2268         return Op1;
2269       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2270         return Op0;
2271     }
2272     // If the operation is with the result of a select instruction, check
2273     // whether operating on either branch of the select always yields the same
2274     // value.
2275     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2276                                          MaxRecurse))
2277       return V;
2278   }
2279 
2280   // (A & C1)|(B & C2)
2281   const APInt *C1, *C2;
2282   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2283       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2284     if (*C1 == ~*C2) {
2285       // (A & C1)|(B & C2)
2286       // If we have: ((V + N) & C1) | (V & C2)
2287       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2288       // replace with V+N.
2289       Value *N;
2290       if (C2->isMask() && // C2 == 0+1+
2291           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2292         // Add commutes, try both ways.
2293         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2294           return A;
2295       }
2296       // Or commutes, try both ways.
2297       if (C1->isMask() &&
2298           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2299         // Add commutes, try both ways.
2300         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2301           return B;
2302       }
2303     }
2304   }
2305 
2306   // If the operation is with the result of a phi instruction, check whether
2307   // operating on all incoming values of the phi always yields the same value.
2308   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2309     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2310       return V;
2311 
2312   return nullptr;
2313 }
2314 
SimplifyOrInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)2315 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2316   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2317 }
2318 
2319 /// Given operands for a Xor, see if we can fold the result.
2320 /// If not, this returns null.
SimplifyXorInst(Value * Op0,Value * Op1,const SimplifyQuery & Q,unsigned MaxRecurse)2321 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2322                               unsigned MaxRecurse) {
2323   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2324     return C;
2325 
2326   // A ^ undef -> undef
2327   if (Q.isUndefValue(Op1))
2328     return Op1;
2329 
2330   // A ^ 0 = A
2331   if (match(Op1, m_Zero()))
2332     return Op0;
2333 
2334   // A ^ A = 0
2335   if (Op0 == Op1)
2336     return Constant::getNullValue(Op0->getType());
2337 
2338   // A ^ ~A  =  ~A ^ A  =  -1
2339   if (match(Op0, m_Not(m_Specific(Op1))) ||
2340       match(Op1, m_Not(m_Specific(Op0))))
2341     return Constant::getAllOnesValue(Op0->getType());
2342 
2343   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2344     return V;
2345 
2346   // Try some generic simplifications for associative operations.
2347   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2348                                           MaxRecurse))
2349     return V;
2350 
2351   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2352   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2353   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2354   // only if B and C are equal.  If B and C are equal then (since we assume
2355   // that operands have already been simplified) "select(cond, B, C)" should
2356   // have been simplified to the common value of B and C already.  Analysing
2357   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2358   // for threading over phi nodes.
2359 
2360   return nullptr;
2361 }
2362 
SimplifyXorInst(Value * Op0,Value * Op1,const SimplifyQuery & Q)2363 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2364   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2365 }
2366 
2367 
GetCompareTy(Value * Op)2368 static Type *GetCompareTy(Value *Op) {
2369   return CmpInst::makeCmpResultType(Op->getType());
2370 }
2371 
2372 /// Rummage around inside V looking for something equivalent to the comparison
2373 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2374 /// Helper function for analyzing max/min idioms.
ExtractEquivalentCondition(Value * V,CmpInst::Predicate Pred,Value * LHS,Value * RHS)2375 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2376                                          Value *LHS, Value *RHS) {
2377   SelectInst *SI = dyn_cast<SelectInst>(V);
2378   if (!SI)
2379     return nullptr;
2380   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2381   if (!Cmp)
2382     return nullptr;
2383   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2384   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2385     return Cmp;
2386   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2387       LHS == CmpRHS && RHS == CmpLHS)
2388     return Cmp;
2389   return nullptr;
2390 }
2391 
2392 // A significant optimization not implemented here is assuming that alloca
2393 // addresses are not equal to incoming argument values. They don't *alias*,
2394 // as we say, but that doesn't mean they aren't equal, so we take a
2395 // conservative approach.
2396 //
2397 // This is inspired in part by C++11 5.10p1:
2398 //   "Two pointers of the same type compare equal if and only if they are both
2399 //    null, both point to the same function, or both represent the same
2400 //    address."
2401 //
2402 // This is pretty permissive.
2403 //
2404 // It's also partly due to C11 6.5.9p6:
2405 //   "Two pointers compare equal if and only if both are null pointers, both are
2406 //    pointers to the same object (including a pointer to an object and a
2407 //    subobject at its beginning) or function, both are pointers to one past the
2408 //    last element of the same array object, or one is a pointer to one past the
2409 //    end of one array object and the other is a pointer to the start of a
2410 //    different array object that happens to immediately follow the first array
2411 //    object in the address space.)
2412 //
2413 // C11's version is more restrictive, however there's no reason why an argument
2414 // couldn't be a one-past-the-end value for a stack object in the caller and be
2415 // equal to the beginning of a stack object in the callee.
2416 //
2417 // If the C and C++ standards are ever made sufficiently restrictive in this
2418 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2419 // this optimization.
2420 static Constant *
computePointerICmp(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q)2421 computePointerICmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2422                    const SimplifyQuery &Q) {
2423   const DataLayout &DL = Q.DL;
2424   const TargetLibraryInfo *TLI = Q.TLI;
2425   const DominatorTree *DT = Q.DT;
2426   const Instruction *CxtI = Q.CxtI;
2427   const InstrInfoQuery &IIQ = Q.IIQ;
2428 
2429   // First, skip past any trivial no-ops.
2430   LHS = LHS->stripPointerCasts();
2431   RHS = RHS->stripPointerCasts();
2432 
2433   // A non-null pointer is not equal to a null pointer.
2434   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2435       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2436                            IIQ.UseInstrInfo))
2437     return ConstantInt::get(GetCompareTy(LHS),
2438                             !CmpInst::isTrueWhenEqual(Pred));
2439 
2440   // We can only fold certain predicates on pointer comparisons.
2441   switch (Pred) {
2442   default:
2443     return nullptr;
2444 
2445     // Equality comaprisons are easy to fold.
2446   case CmpInst::ICMP_EQ:
2447   case CmpInst::ICMP_NE:
2448     break;
2449 
2450     // We can only handle unsigned relational comparisons because 'inbounds' on
2451     // a GEP only protects against unsigned wrapping.
2452   case CmpInst::ICMP_UGT:
2453   case CmpInst::ICMP_UGE:
2454   case CmpInst::ICMP_ULT:
2455   case CmpInst::ICMP_ULE:
2456     // However, we have to switch them to their signed variants to handle
2457     // negative indices from the base pointer.
2458     Pred = ICmpInst::getSignedPredicate(Pred);
2459     break;
2460   }
2461 
2462   // Strip off any constant offsets so that we can reason about them.
2463   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2464   // here and compare base addresses like AliasAnalysis does, however there are
2465   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2466   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2467   // doesn't need to guarantee pointer inequality when it says NoAlias.
2468   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2469   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2470 
2471   // If LHS and RHS are related via constant offsets to the same base
2472   // value, we can replace it with an icmp which just compares the offsets.
2473   if (LHS == RHS)
2474     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2475 
2476   // Various optimizations for (in)equality comparisons.
2477   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2478     // Different non-empty allocations that exist at the same time have
2479     // different addresses (if the program can tell). Global variables always
2480     // exist, so they always exist during the lifetime of each other and all
2481     // allocas. Two different allocas usually have different addresses...
2482     //
2483     // However, if there's an @llvm.stackrestore dynamically in between two
2484     // allocas, they may have the same address. It's tempting to reduce the
2485     // scope of the problem by only looking at *static* allocas here. That would
2486     // cover the majority of allocas while significantly reducing the likelihood
2487     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2488     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2489     // an entry block. Also, if we have a block that's not attached to a
2490     // function, we can't tell if it's "static" under the current definition.
2491     // Theoretically, this problem could be fixed by creating a new kind of
2492     // instruction kind specifically for static allocas. Such a new instruction
2493     // could be required to be at the top of the entry block, thus preventing it
2494     // from being subject to a @llvm.stackrestore. Instcombine could even
2495     // convert regular allocas into these special allocas. It'd be nifty.
2496     // However, until then, this problem remains open.
2497     //
2498     // So, we'll assume that two non-empty allocas have different addresses
2499     // for now.
2500     //
2501     // With all that, if the offsets are within the bounds of their allocations
2502     // (and not one-past-the-end! so we can't use inbounds!), and their
2503     // allocations aren't the same, the pointers are not equal.
2504     //
2505     // Note that it's not necessary to check for LHS being a global variable
2506     // address, due to canonicalization and constant folding.
2507     if (isa<AllocaInst>(LHS) &&
2508         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2509       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2510       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2511       uint64_t LHSSize, RHSSize;
2512       ObjectSizeOpts Opts;
2513       Opts.NullIsUnknownSize =
2514           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2515       if (LHSOffsetCI && RHSOffsetCI &&
2516           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2517           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2518         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2519         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2520         if (!LHSOffsetValue.isNegative() &&
2521             !RHSOffsetValue.isNegative() &&
2522             LHSOffsetValue.ult(LHSSize) &&
2523             RHSOffsetValue.ult(RHSSize)) {
2524           return ConstantInt::get(GetCompareTy(LHS),
2525                                   !CmpInst::isTrueWhenEqual(Pred));
2526         }
2527       }
2528 
2529       // Repeat the above check but this time without depending on DataLayout
2530       // or being able to compute a precise size.
2531       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2532           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2533           LHSOffset->isNullValue() &&
2534           RHSOffset->isNullValue())
2535         return ConstantInt::get(GetCompareTy(LHS),
2536                                 !CmpInst::isTrueWhenEqual(Pred));
2537     }
2538 
2539     // Even if an non-inbounds GEP occurs along the path we can still optimize
2540     // equality comparisons concerning the result. We avoid walking the whole
2541     // chain again by starting where the last calls to
2542     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2543     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2544     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2545     if (LHS == RHS)
2546       return ConstantExpr::getICmp(Pred,
2547                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2548                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2549 
2550     // If one side of the equality comparison must come from a noalias call
2551     // (meaning a system memory allocation function), and the other side must
2552     // come from a pointer that cannot overlap with dynamically-allocated
2553     // memory within the lifetime of the current function (allocas, byval
2554     // arguments, globals), then determine the comparison result here.
2555     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2556     getUnderlyingObjects(LHS, LHSUObjs);
2557     getUnderlyingObjects(RHS, RHSUObjs);
2558 
2559     // Is the set of underlying objects all noalias calls?
2560     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2561       return all_of(Objects, isNoAliasCall);
2562     };
2563 
2564     // Is the set of underlying objects all things which must be disjoint from
2565     // noalias calls. For allocas, we consider only static ones (dynamic
2566     // allocas might be transformed into calls to malloc not simultaneously
2567     // live with the compared-to allocation). For globals, we exclude symbols
2568     // that might be resolve lazily to symbols in another dynamically-loaded
2569     // library (and, thus, could be malloc'ed by the implementation).
2570     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2571       return all_of(Objects, [](const Value *V) {
2572         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2573           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2574         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2575           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2576                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2577                  !GV->isThreadLocal();
2578         if (const Argument *A = dyn_cast<Argument>(V))
2579           return A->hasByValAttr();
2580         return false;
2581       });
2582     };
2583 
2584     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2585         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2586         return ConstantInt::get(GetCompareTy(LHS),
2587                                 !CmpInst::isTrueWhenEqual(Pred));
2588 
2589     // Fold comparisons for non-escaping pointer even if the allocation call
2590     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2591     // dynamic allocation call could be either of the operands.
2592     Value *MI = nullptr;
2593     if (isAllocLikeFn(LHS, TLI) &&
2594         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2595       MI = LHS;
2596     else if (isAllocLikeFn(RHS, TLI) &&
2597              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2598       MI = RHS;
2599     // FIXME: We should also fold the compare when the pointer escapes, but the
2600     // compare dominates the pointer escape
2601     if (MI && !PointerMayBeCaptured(MI, true, true))
2602       return ConstantInt::get(GetCompareTy(LHS),
2603                               CmpInst::isFalseWhenEqual(Pred));
2604   }
2605 
2606   // Otherwise, fail.
2607   return nullptr;
2608 }
2609 
2610 /// Fold an icmp when its operands have i1 scalar type.
simplifyICmpOfBools(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q)2611 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2612                                   Value *RHS, const SimplifyQuery &Q) {
2613   Type *ITy = GetCompareTy(LHS); // The return type.
2614   Type *OpTy = LHS->getType();   // The operand type.
2615   if (!OpTy->isIntOrIntVectorTy(1))
2616     return nullptr;
2617 
2618   // A boolean compared to true/false can be simplified in 14 out of the 20
2619   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2620   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2621   if (match(RHS, m_Zero())) {
2622     switch (Pred) {
2623     case CmpInst::ICMP_NE:  // X !=  0 -> X
2624     case CmpInst::ICMP_UGT: // X >u  0 -> X
2625     case CmpInst::ICMP_SLT: // X <s  0 -> X
2626       return LHS;
2627 
2628     case CmpInst::ICMP_ULT: // X <u  0 -> false
2629     case CmpInst::ICMP_SGT: // X >s  0 -> false
2630       return getFalse(ITy);
2631 
2632     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2633     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2634       return getTrue(ITy);
2635 
2636     default: break;
2637     }
2638   } else if (match(RHS, m_One())) {
2639     switch (Pred) {
2640     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2641     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2642     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2643       return LHS;
2644 
2645     case CmpInst::ICMP_UGT: // X >u   1 -> false
2646     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2647       return getFalse(ITy);
2648 
2649     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2650     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2651       return getTrue(ITy);
2652 
2653     default: break;
2654     }
2655   }
2656 
2657   switch (Pred) {
2658   default:
2659     break;
2660   case ICmpInst::ICMP_UGE:
2661     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2662       return getTrue(ITy);
2663     break;
2664   case ICmpInst::ICMP_SGE:
2665     /// For signed comparison, the values for an i1 are 0 and -1
2666     /// respectively. This maps into a truth table of:
2667     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2668     ///  0  |  0  |  1 (0 >= 0)   |  1
2669     ///  0  |  1  |  1 (0 >= -1)  |  1
2670     ///  1  |  0  |  0 (-1 >= 0)  |  0
2671     ///  1  |  1  |  1 (-1 >= -1) |  1
2672     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2673       return getTrue(ITy);
2674     break;
2675   case ICmpInst::ICMP_ULE:
2676     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2677       return getTrue(ITy);
2678     break;
2679   }
2680 
2681   return nullptr;
2682 }
2683 
2684 /// Try hard to fold icmp with zero RHS because this is a common case.
simplifyICmpWithZero(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q)2685 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2686                                    Value *RHS, const SimplifyQuery &Q) {
2687   if (!match(RHS, m_Zero()))
2688     return nullptr;
2689 
2690   Type *ITy = GetCompareTy(LHS); // The return type.
2691   switch (Pred) {
2692   default:
2693     llvm_unreachable("Unknown ICmp predicate!");
2694   case ICmpInst::ICMP_ULT:
2695     return getFalse(ITy);
2696   case ICmpInst::ICMP_UGE:
2697     return getTrue(ITy);
2698   case ICmpInst::ICMP_EQ:
2699   case ICmpInst::ICMP_ULE:
2700     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2701       return getFalse(ITy);
2702     break;
2703   case ICmpInst::ICMP_NE:
2704   case ICmpInst::ICMP_UGT:
2705     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2706       return getTrue(ITy);
2707     break;
2708   case ICmpInst::ICMP_SLT: {
2709     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2710     if (LHSKnown.isNegative())
2711       return getTrue(ITy);
2712     if (LHSKnown.isNonNegative())
2713       return getFalse(ITy);
2714     break;
2715   }
2716   case ICmpInst::ICMP_SLE: {
2717     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2718     if (LHSKnown.isNegative())
2719       return getTrue(ITy);
2720     if (LHSKnown.isNonNegative() &&
2721         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2722       return getFalse(ITy);
2723     break;
2724   }
2725   case ICmpInst::ICMP_SGE: {
2726     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2727     if (LHSKnown.isNegative())
2728       return getFalse(ITy);
2729     if (LHSKnown.isNonNegative())
2730       return getTrue(ITy);
2731     break;
2732   }
2733   case ICmpInst::ICMP_SGT: {
2734     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2735     if (LHSKnown.isNegative())
2736       return getFalse(ITy);
2737     if (LHSKnown.isNonNegative() &&
2738         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2739       return getTrue(ITy);
2740     break;
2741   }
2742   }
2743 
2744   return nullptr;
2745 }
2746 
simplifyICmpWithConstant(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const InstrInfoQuery & IIQ)2747 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2748                                        Value *RHS, const InstrInfoQuery &IIQ) {
2749   Type *ITy = GetCompareTy(RHS); // The return type.
2750 
2751   Value *X;
2752   // Sign-bit checks can be optimized to true/false after unsigned
2753   // floating-point casts:
2754   // icmp slt (bitcast (uitofp X)),  0 --> false
2755   // icmp sgt (bitcast (uitofp X)), -1 --> true
2756   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2757     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2758       return ConstantInt::getFalse(ITy);
2759     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2760       return ConstantInt::getTrue(ITy);
2761   }
2762 
2763   const APInt *C;
2764   if (!match(RHS, m_APIntAllowUndef(C)))
2765     return nullptr;
2766 
2767   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2768   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2769   if (RHS_CR.isEmptySet())
2770     return ConstantInt::getFalse(ITy);
2771   if (RHS_CR.isFullSet())
2772     return ConstantInt::getTrue(ITy);
2773 
2774   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2775   if (!LHS_CR.isFullSet()) {
2776     if (RHS_CR.contains(LHS_CR))
2777       return ConstantInt::getTrue(ITy);
2778     if (RHS_CR.inverse().contains(LHS_CR))
2779       return ConstantInt::getFalse(ITy);
2780   }
2781 
2782   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2783   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2784   const APInt *MulC;
2785   if (ICmpInst::isEquality(Pred) &&
2786       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2787         *MulC != 0 && C->urem(*MulC) != 0) ||
2788        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2789         *MulC != 0 && C->srem(*MulC) != 0)))
2790     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2791 
2792   return nullptr;
2793 }
2794 
simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred,BinaryOperator * LBO,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)2795 static Value *simplifyICmpWithBinOpOnLHS(
2796     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2797     const SimplifyQuery &Q, unsigned MaxRecurse) {
2798   Type *ITy = GetCompareTy(RHS); // The return type.
2799 
2800   Value *Y = nullptr;
2801   // icmp pred (or X, Y), X
2802   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2803     if (Pred == ICmpInst::ICMP_ULT)
2804       return getFalse(ITy);
2805     if (Pred == ICmpInst::ICMP_UGE)
2806       return getTrue(ITy);
2807 
2808     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2809       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2810       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2811       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2812         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2813       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2814         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2815     }
2816   }
2817 
2818   // icmp pred (and X, Y), X
2819   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2820     if (Pred == ICmpInst::ICMP_UGT)
2821       return getFalse(ITy);
2822     if (Pred == ICmpInst::ICMP_ULE)
2823       return getTrue(ITy);
2824   }
2825 
2826   // icmp pred (urem X, Y), Y
2827   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2828     switch (Pred) {
2829     default:
2830       break;
2831     case ICmpInst::ICMP_SGT:
2832     case ICmpInst::ICMP_SGE: {
2833       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2834       if (!Known.isNonNegative())
2835         break;
2836       LLVM_FALLTHROUGH;
2837     }
2838     case ICmpInst::ICMP_EQ:
2839     case ICmpInst::ICMP_UGT:
2840     case ICmpInst::ICMP_UGE:
2841       return getFalse(ITy);
2842     case ICmpInst::ICMP_SLT:
2843     case ICmpInst::ICMP_SLE: {
2844       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2845       if (!Known.isNonNegative())
2846         break;
2847       LLVM_FALLTHROUGH;
2848     }
2849     case ICmpInst::ICMP_NE:
2850     case ICmpInst::ICMP_ULT:
2851     case ICmpInst::ICMP_ULE:
2852       return getTrue(ITy);
2853     }
2854   }
2855 
2856   // icmp pred (urem X, Y), X
2857   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2858     if (Pred == ICmpInst::ICMP_ULE)
2859       return getTrue(ITy);
2860     if (Pred == ICmpInst::ICMP_UGT)
2861       return getFalse(ITy);
2862   }
2863 
2864   // x >> y <=u x
2865   // x udiv y <=u x.
2866   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2867       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2868     // icmp pred (X op Y), X
2869     if (Pred == ICmpInst::ICMP_UGT)
2870       return getFalse(ITy);
2871     if (Pred == ICmpInst::ICMP_ULE)
2872       return getTrue(ITy);
2873   }
2874 
2875   // (x*C1)/C2 <= x for C1 <= C2.
2876   // This holds even if the multiplication overflows: Assume that x != 0 and
2877   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
2878   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
2879   //
2880   // Additionally, either the multiplication and division might be represented
2881   // as shifts:
2882   // (x*C1)>>C2 <= x for C1 < 2**C2.
2883   // (x<<C1)/C2 <= x for 2**C1 < C2.
2884   const APInt *C1, *C2;
2885   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2886        C1->ule(*C2)) ||
2887       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2888        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
2889       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2890        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
2891     if (Pred == ICmpInst::ICMP_UGT)
2892       return getFalse(ITy);
2893     if (Pred == ICmpInst::ICMP_ULE)
2894       return getTrue(ITy);
2895   }
2896 
2897   return nullptr;
2898 }
2899 
2900 
2901 // If only one of the icmp's operands has NSW flags, try to prove that:
2902 //
2903 //   icmp slt (x + C1), (x +nsw C2)
2904 //
2905 // is equivalent to:
2906 //
2907 //   icmp slt C1, C2
2908 //
2909 // which is true if x + C2 has the NSW flags set and:
2910 // *) C1 < C2 && C1 >= 0, or
2911 // *) C2 < C1 && C1 <= 0.
2912 //
trySimplifyICmpWithAdds(CmpInst::Predicate Pred,Value * LHS,Value * RHS)2913 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
2914                                     Value *RHS) {
2915   // TODO: only support icmp slt for now.
2916   if (Pred != CmpInst::ICMP_SLT)
2917     return false;
2918 
2919   // Canonicalize nsw add as RHS.
2920   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2921     std::swap(LHS, RHS);
2922   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2923     return false;
2924 
2925   Value *X;
2926   const APInt *C1, *C2;
2927   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
2928       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
2929     return false;
2930 
2931   return (C1->slt(*C2) && C1->isNonNegative()) ||
2932          (C2->slt(*C1) && C1->isNonPositive());
2933 }
2934 
2935 
2936 /// TODO: A large part of this logic is duplicated in InstCombine's
2937 /// foldICmpBinOp(). We should be able to share that and avoid the code
2938 /// duplication.
simplifyICmpWithBinOp(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)2939 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2940                                     Value *RHS, const SimplifyQuery &Q,
2941                                     unsigned MaxRecurse) {
2942   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2943   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2944   if (MaxRecurse && (LBO || RBO)) {
2945     // Analyze the case when either LHS or RHS is an add instruction.
2946     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2947     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2948     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2949     if (LBO && LBO->getOpcode() == Instruction::Add) {
2950       A = LBO->getOperand(0);
2951       B = LBO->getOperand(1);
2952       NoLHSWrapProblem =
2953           ICmpInst::isEquality(Pred) ||
2954           (CmpInst::isUnsigned(Pred) &&
2955            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2956           (CmpInst::isSigned(Pred) &&
2957            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2958     }
2959     if (RBO && RBO->getOpcode() == Instruction::Add) {
2960       C = RBO->getOperand(0);
2961       D = RBO->getOperand(1);
2962       NoRHSWrapProblem =
2963           ICmpInst::isEquality(Pred) ||
2964           (CmpInst::isUnsigned(Pred) &&
2965            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2966           (CmpInst::isSigned(Pred) &&
2967            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2968     }
2969 
2970     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2971     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2972       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2973                                       Constant::getNullValue(RHS->getType()), Q,
2974                                       MaxRecurse - 1))
2975         return V;
2976 
2977     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2978     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2979       if (Value *V =
2980               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2981                                C == LHS ? D : C, Q, MaxRecurse - 1))
2982         return V;
2983 
2984     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2985     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
2986                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
2987     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
2988       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2989       Value *Y, *Z;
2990       if (A == C) {
2991         // C + B == C + D  ->  B == D
2992         Y = B;
2993         Z = D;
2994       } else if (A == D) {
2995         // D + B == C + D  ->  B == C
2996         Y = B;
2997         Z = C;
2998       } else if (B == C) {
2999         // A + C == C + D  ->  A == D
3000         Y = A;
3001         Z = D;
3002       } else {
3003         assert(B == D);
3004         // A + D == C + D  ->  A == C
3005         Y = A;
3006         Z = C;
3007       }
3008       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3009         return V;
3010     }
3011   }
3012 
3013   if (LBO)
3014     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3015       return V;
3016 
3017   if (RBO)
3018     if (Value *V = simplifyICmpWithBinOpOnLHS(
3019             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3020       return V;
3021 
3022   // 0 - (zext X) pred C
3023   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3024     const APInt *C;
3025     if (match(RHS, m_APInt(C))) {
3026       if (C->isStrictlyPositive()) {
3027         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3028           return ConstantInt::getTrue(GetCompareTy(RHS));
3029         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3030           return ConstantInt::getFalse(GetCompareTy(RHS));
3031       }
3032       if (C->isNonNegative()) {
3033         if (Pred == ICmpInst::ICMP_SLE)
3034           return ConstantInt::getTrue(GetCompareTy(RHS));
3035         if (Pred == ICmpInst::ICMP_SGT)
3036           return ConstantInt::getFalse(GetCompareTy(RHS));
3037       }
3038     }
3039   }
3040 
3041   //   If C2 is a power-of-2 and C is not:
3042   //   (C2 << X) == C --> false
3043   //   (C2 << X) != C --> true
3044   const APInt *C;
3045   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3046       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3047     // C2 << X can equal zero in some circumstances.
3048     // This simplification might be unsafe if C is zero.
3049     //
3050     // We know it is safe if:
3051     // - The shift is nsw. We can't shift out the one bit.
3052     // - The shift is nuw. We can't shift out the one bit.
3053     // - C2 is one.
3054     // - C isn't zero.
3055     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3056         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3057         match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) {
3058       if (Pred == ICmpInst::ICMP_EQ)
3059         return ConstantInt::getFalse(GetCompareTy(RHS));
3060       if (Pred == ICmpInst::ICMP_NE)
3061         return ConstantInt::getTrue(GetCompareTy(RHS));
3062     }
3063   }
3064 
3065   // TODO: This is overly constrained. LHS can be any power-of-2.
3066   // (1 << X)  >u 0x8000 --> false
3067   // (1 << X) <=u 0x8000 --> true
3068   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3069     if (Pred == ICmpInst::ICMP_UGT)
3070       return ConstantInt::getFalse(GetCompareTy(RHS));
3071     if (Pred == ICmpInst::ICMP_ULE)
3072       return ConstantInt::getTrue(GetCompareTy(RHS));
3073   }
3074 
3075   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3076       LBO->getOperand(1) == RBO->getOperand(1)) {
3077     switch (LBO->getOpcode()) {
3078     default:
3079       break;
3080     case Instruction::UDiv:
3081     case Instruction::LShr:
3082       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3083           !Q.IIQ.isExact(RBO))
3084         break;
3085       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3086                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3087           return V;
3088       break;
3089     case Instruction::SDiv:
3090       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3091           !Q.IIQ.isExact(RBO))
3092         break;
3093       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3094                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3095         return V;
3096       break;
3097     case Instruction::AShr:
3098       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3099         break;
3100       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3101                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3102         return V;
3103       break;
3104     case Instruction::Shl: {
3105       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3106       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3107       if (!NUW && !NSW)
3108         break;
3109       if (!NSW && ICmpInst::isSigned(Pred))
3110         break;
3111       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3112                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3113         return V;
3114       break;
3115     }
3116     }
3117   }
3118   return nullptr;
3119 }
3120 
3121 /// Simplify integer comparisons where at least one operand of the compare
3122 /// matches an integer min/max idiom.
simplifyICmpWithMinMax(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)3123 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3124                                      Value *RHS, const SimplifyQuery &Q,
3125                                      unsigned MaxRecurse) {
3126   Type *ITy = GetCompareTy(LHS); // The return type.
3127   Value *A, *B;
3128   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3129   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3130 
3131   // Signed variants on "max(a,b)>=a -> true".
3132   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3133     if (A != RHS)
3134       std::swap(A, B);       // smax(A, B) pred A.
3135     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3136     // We analyze this as smax(A, B) pred A.
3137     P = Pred;
3138   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3139              (A == LHS || B == LHS)) {
3140     if (A != LHS)
3141       std::swap(A, B);       // A pred smax(A, B).
3142     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3143     // We analyze this as smax(A, B) swapped-pred A.
3144     P = CmpInst::getSwappedPredicate(Pred);
3145   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3146              (A == RHS || B == RHS)) {
3147     if (A != RHS)
3148       std::swap(A, B);       // smin(A, B) pred A.
3149     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3150     // We analyze this as smax(-A, -B) swapped-pred -A.
3151     // Note that we do not need to actually form -A or -B thanks to EqP.
3152     P = CmpInst::getSwappedPredicate(Pred);
3153   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3154              (A == LHS || B == LHS)) {
3155     if (A != LHS)
3156       std::swap(A, B);       // A pred smin(A, B).
3157     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3158     // We analyze this as smax(-A, -B) pred -A.
3159     // Note that we do not need to actually form -A or -B thanks to EqP.
3160     P = Pred;
3161   }
3162   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3163     // Cases correspond to "max(A, B) p A".
3164     switch (P) {
3165     default:
3166       break;
3167     case CmpInst::ICMP_EQ:
3168     case CmpInst::ICMP_SLE:
3169       // Equivalent to "A EqP B".  This may be the same as the condition tested
3170       // in the max/min; if so, we can just return that.
3171       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3172         return V;
3173       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3174         return V;
3175       // Otherwise, see if "A EqP B" simplifies.
3176       if (MaxRecurse)
3177         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3178           return V;
3179       break;
3180     case CmpInst::ICMP_NE:
3181     case CmpInst::ICMP_SGT: {
3182       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3183       // Equivalent to "A InvEqP B".  This may be the same as the condition
3184       // tested in the max/min; if so, we can just return that.
3185       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3186         return V;
3187       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3188         return V;
3189       // Otherwise, see if "A InvEqP B" simplifies.
3190       if (MaxRecurse)
3191         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3192           return V;
3193       break;
3194     }
3195     case CmpInst::ICMP_SGE:
3196       // Always true.
3197       return getTrue(ITy);
3198     case CmpInst::ICMP_SLT:
3199       // Always false.
3200       return getFalse(ITy);
3201     }
3202   }
3203 
3204   // Unsigned variants on "max(a,b)>=a -> true".
3205   P = CmpInst::BAD_ICMP_PREDICATE;
3206   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3207     if (A != RHS)
3208       std::swap(A, B);       // umax(A, B) pred A.
3209     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3210     // We analyze this as umax(A, B) pred A.
3211     P = Pred;
3212   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3213              (A == LHS || B == LHS)) {
3214     if (A != LHS)
3215       std::swap(A, B);       // A pred umax(A, B).
3216     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3217     // We analyze this as umax(A, B) swapped-pred A.
3218     P = CmpInst::getSwappedPredicate(Pred);
3219   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3220              (A == RHS || B == RHS)) {
3221     if (A != RHS)
3222       std::swap(A, B);       // umin(A, B) pred A.
3223     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3224     // We analyze this as umax(-A, -B) swapped-pred -A.
3225     // Note that we do not need to actually form -A or -B thanks to EqP.
3226     P = CmpInst::getSwappedPredicate(Pred);
3227   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3228              (A == LHS || B == LHS)) {
3229     if (A != LHS)
3230       std::swap(A, B);       // A pred umin(A, B).
3231     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3232     // We analyze this as umax(-A, -B) pred -A.
3233     // Note that we do not need to actually form -A or -B thanks to EqP.
3234     P = Pred;
3235   }
3236   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3237     // Cases correspond to "max(A, B) p A".
3238     switch (P) {
3239     default:
3240       break;
3241     case CmpInst::ICMP_EQ:
3242     case CmpInst::ICMP_ULE:
3243       // Equivalent to "A EqP B".  This may be the same as the condition tested
3244       // in the max/min; if so, we can just return that.
3245       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3246         return V;
3247       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3248         return V;
3249       // Otherwise, see if "A EqP B" simplifies.
3250       if (MaxRecurse)
3251         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3252           return V;
3253       break;
3254     case CmpInst::ICMP_NE:
3255     case CmpInst::ICMP_UGT: {
3256       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3257       // Equivalent to "A InvEqP B".  This may be the same as the condition
3258       // tested in the max/min; if so, we can just return that.
3259       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3260         return V;
3261       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3262         return V;
3263       // Otherwise, see if "A InvEqP B" simplifies.
3264       if (MaxRecurse)
3265         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3266           return V;
3267       break;
3268     }
3269     case CmpInst::ICMP_UGE:
3270       return getTrue(ITy);
3271     case CmpInst::ICMP_ULT:
3272       return getFalse(ITy);
3273     }
3274   }
3275 
3276   // Comparing 1 each of min/max with a common operand?
3277   // Canonicalize min operand to RHS.
3278   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3279       match(LHS, m_SMin(m_Value(), m_Value()))) {
3280     std::swap(LHS, RHS);
3281     Pred = ICmpInst::getSwappedPredicate(Pred);
3282   }
3283 
3284   Value *C, *D;
3285   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3286       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3287       (A == C || A == D || B == C || B == D)) {
3288     // smax(A, B) >=s smin(A, D) --> true
3289     if (Pred == CmpInst::ICMP_SGE)
3290       return getTrue(ITy);
3291     // smax(A, B) <s smin(A, D) --> false
3292     if (Pred == CmpInst::ICMP_SLT)
3293       return getFalse(ITy);
3294   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3295              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3296              (A == C || A == D || B == C || B == D)) {
3297     // umax(A, B) >=u umin(A, D) --> true
3298     if (Pred == CmpInst::ICMP_UGE)
3299       return getTrue(ITy);
3300     // umax(A, B) <u umin(A, D) --> false
3301     if (Pred == CmpInst::ICMP_ULT)
3302       return getFalse(ITy);
3303   }
3304 
3305   return nullptr;
3306 }
3307 
simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q)3308 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3309                                                Value *LHS, Value *RHS,
3310                                                const SimplifyQuery &Q) {
3311   // Gracefully handle instructions that have not been inserted yet.
3312   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3313     return nullptr;
3314 
3315   for (Value *AssumeBaseOp : {LHS, RHS}) {
3316     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3317       if (!AssumeVH)
3318         continue;
3319 
3320       CallInst *Assume = cast<CallInst>(AssumeVH);
3321       if (Optional<bool> Imp =
3322               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3323                                  Q.DL))
3324         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3325           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3326     }
3327   }
3328 
3329   return nullptr;
3330 }
3331 
3332 /// Given operands for an ICmpInst, see if we can fold the result.
3333 /// If not, this returns null.
SimplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)3334 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3335                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3336   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3337   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3338 
3339   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3340     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3341       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3342 
3343     // If we have a constant, make sure it is on the RHS.
3344     std::swap(LHS, RHS);
3345     Pred = CmpInst::getSwappedPredicate(Pred);
3346   }
3347   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3348 
3349   Type *ITy = GetCompareTy(LHS); // The return type.
3350 
3351   // For EQ and NE, we can always pick a value for the undef to make the
3352   // predicate pass or fail, so we can return undef.
3353   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3354   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3355     return UndefValue::get(ITy);
3356 
3357   // icmp X, X -> true/false
3358   // icmp X, undef -> true/false because undef could be X.
3359   if (LHS == RHS || Q.isUndefValue(RHS))
3360     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3361 
3362   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3363     return V;
3364 
3365   // TODO: Sink/common this with other potentially expensive calls that use
3366   //       ValueTracking? See comment below for isKnownNonEqual().
3367   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3368     return V;
3369 
3370   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3371     return V;
3372 
3373   // If both operands have range metadata, use the metadata
3374   // to simplify the comparison.
3375   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3376     auto RHS_Instr = cast<Instruction>(RHS);
3377     auto LHS_Instr = cast<Instruction>(LHS);
3378 
3379     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3380         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3381       auto RHS_CR = getConstantRangeFromMetadata(
3382           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3383       auto LHS_CR = getConstantRangeFromMetadata(
3384           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3385 
3386       if (LHS_CR.icmp(Pred, RHS_CR))
3387         return ConstantInt::getTrue(RHS->getContext());
3388 
3389       if (LHS_CR.icmp(CmpInst::getInversePredicate(Pred), RHS_CR))
3390         return ConstantInt::getFalse(RHS->getContext());
3391     }
3392   }
3393 
3394   // Compare of cast, for example (zext X) != 0 -> X != 0
3395   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3396     Instruction *LI = cast<CastInst>(LHS);
3397     Value *SrcOp = LI->getOperand(0);
3398     Type *SrcTy = SrcOp->getType();
3399     Type *DstTy = LI->getType();
3400 
3401     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3402     // if the integer type is the same size as the pointer type.
3403     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3404         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3405       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3406         // Transfer the cast to the constant.
3407         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3408                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3409                                         Q, MaxRecurse-1))
3410           return V;
3411       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3412         if (RI->getOperand(0)->getType() == SrcTy)
3413           // Compare without the cast.
3414           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3415                                           Q, MaxRecurse-1))
3416             return V;
3417       }
3418     }
3419 
3420     if (isa<ZExtInst>(LHS)) {
3421       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3422       // same type.
3423       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3424         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3425           // Compare X and Y.  Note that signed predicates become unsigned.
3426           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3427                                           SrcOp, RI->getOperand(0), Q,
3428                                           MaxRecurse-1))
3429             return V;
3430       }
3431       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3432       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3433         if (SrcOp == RI->getOperand(0)) {
3434           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3435             return ConstantInt::getTrue(ITy);
3436           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3437             return ConstantInt::getFalse(ITy);
3438         }
3439       }
3440       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3441       // too.  If not, then try to deduce the result of the comparison.
3442       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3443         // Compute the constant that would happen if we truncated to SrcTy then
3444         // reextended to DstTy.
3445         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3446         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3447 
3448         // If the re-extended constant didn't change then this is effectively
3449         // also a case of comparing two zero-extended values.
3450         if (RExt == CI && MaxRecurse)
3451           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3452                                         SrcOp, Trunc, Q, MaxRecurse-1))
3453             return V;
3454 
3455         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3456         // there.  Use this to work out the result of the comparison.
3457         if (RExt != CI) {
3458           switch (Pred) {
3459           default: llvm_unreachable("Unknown ICmp predicate!");
3460           // LHS <u RHS.
3461           case ICmpInst::ICMP_EQ:
3462           case ICmpInst::ICMP_UGT:
3463           case ICmpInst::ICMP_UGE:
3464             return ConstantInt::getFalse(CI->getContext());
3465 
3466           case ICmpInst::ICMP_NE:
3467           case ICmpInst::ICMP_ULT:
3468           case ICmpInst::ICMP_ULE:
3469             return ConstantInt::getTrue(CI->getContext());
3470 
3471           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3472           // is non-negative then LHS <s RHS.
3473           case ICmpInst::ICMP_SGT:
3474           case ICmpInst::ICMP_SGE:
3475             return CI->getValue().isNegative() ?
3476               ConstantInt::getTrue(CI->getContext()) :
3477               ConstantInt::getFalse(CI->getContext());
3478 
3479           case ICmpInst::ICMP_SLT:
3480           case ICmpInst::ICMP_SLE:
3481             return CI->getValue().isNegative() ?
3482               ConstantInt::getFalse(CI->getContext()) :
3483               ConstantInt::getTrue(CI->getContext());
3484           }
3485         }
3486       }
3487     }
3488 
3489     if (isa<SExtInst>(LHS)) {
3490       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3491       // same type.
3492       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3493         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3494           // Compare X and Y.  Note that the predicate does not change.
3495           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3496                                           Q, MaxRecurse-1))
3497             return V;
3498       }
3499       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3500       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3501         if (SrcOp == RI->getOperand(0)) {
3502           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3503             return ConstantInt::getTrue(ITy);
3504           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3505             return ConstantInt::getFalse(ITy);
3506         }
3507       }
3508       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3509       // too.  If not, then try to deduce the result of the comparison.
3510       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3511         // Compute the constant that would happen if we truncated to SrcTy then
3512         // reextended to DstTy.
3513         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3514         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3515 
3516         // If the re-extended constant didn't change then this is effectively
3517         // also a case of comparing two sign-extended values.
3518         if (RExt == CI && MaxRecurse)
3519           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3520             return V;
3521 
3522         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3523         // bits there.  Use this to work out the result of the comparison.
3524         if (RExt != CI) {
3525           switch (Pred) {
3526           default: llvm_unreachable("Unknown ICmp predicate!");
3527           case ICmpInst::ICMP_EQ:
3528             return ConstantInt::getFalse(CI->getContext());
3529           case ICmpInst::ICMP_NE:
3530             return ConstantInt::getTrue(CI->getContext());
3531 
3532           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3533           // LHS >s RHS.
3534           case ICmpInst::ICMP_SGT:
3535           case ICmpInst::ICMP_SGE:
3536             return CI->getValue().isNegative() ?
3537               ConstantInt::getTrue(CI->getContext()) :
3538               ConstantInt::getFalse(CI->getContext());
3539           case ICmpInst::ICMP_SLT:
3540           case ICmpInst::ICMP_SLE:
3541             return CI->getValue().isNegative() ?
3542               ConstantInt::getFalse(CI->getContext()) :
3543               ConstantInt::getTrue(CI->getContext());
3544 
3545           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3546           // LHS >u RHS.
3547           case ICmpInst::ICMP_UGT:
3548           case ICmpInst::ICMP_UGE:
3549             // Comparison is true iff the LHS <s 0.
3550             if (MaxRecurse)
3551               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3552                                               Constant::getNullValue(SrcTy),
3553                                               Q, MaxRecurse-1))
3554                 return V;
3555             break;
3556           case ICmpInst::ICMP_ULT:
3557           case ICmpInst::ICMP_ULE:
3558             // Comparison is true iff the LHS >=s 0.
3559             if (MaxRecurse)
3560               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3561                                               Constant::getNullValue(SrcTy),
3562                                               Q, MaxRecurse-1))
3563                 return V;
3564             break;
3565           }
3566         }
3567       }
3568     }
3569   }
3570 
3571   // icmp eq|ne X, Y -> false|true if X != Y
3572   // This is potentially expensive, and we have already computedKnownBits for
3573   // compares with 0 above here, so only try this for a non-zero compare.
3574   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3575       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3576     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3577   }
3578 
3579   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3580     return V;
3581 
3582   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3583     return V;
3584 
3585   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3586     return V;
3587 
3588   // Simplify comparisons of related pointers using a powerful, recursive
3589   // GEP-walk when we have target data available..
3590   if (LHS->getType()->isPointerTy())
3591     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
3592       return C;
3593   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3594     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3595       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3596               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3597           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3598               Q.DL.getTypeSizeInBits(CRHS->getType()))
3599         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
3600                                          CRHS->getPointerOperand(), Q))
3601           return C;
3602 
3603   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3604     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3605       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3606           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3607           (ICmpInst::isEquality(Pred) ||
3608            (GLHS->isInBounds() && GRHS->isInBounds() &&
3609             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3610         // The bases are equal and the indices are constant.  Build a constant
3611         // expression GEP with the same indices and a null base pointer to see
3612         // what constant folding can make out of it.
3613         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3614         SmallVector<Value *, 4> IndicesLHS(GLHS->indices());
3615         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3616             GLHS->getSourceElementType(), Null, IndicesLHS);
3617 
3618         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3619         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3620             GLHS->getSourceElementType(), Null, IndicesRHS);
3621         Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3622         return ConstantFoldConstant(NewICmp, Q.DL);
3623       }
3624     }
3625   }
3626 
3627   // If the comparison is with the result of a select instruction, check whether
3628   // comparing with either branch of the select always yields the same value.
3629   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3630     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3631       return V;
3632 
3633   // If the comparison is with the result of a phi instruction, check whether
3634   // doing the compare with each incoming phi value yields a common result.
3635   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3636     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3637       return V;
3638 
3639   return nullptr;
3640 }
3641 
SimplifyICmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q)3642 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3643                               const SimplifyQuery &Q) {
3644   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3645 }
3646 
3647 /// Given operands for an FCmpInst, see if we can fold the result.
3648 /// If not, this returns null.
SimplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)3649 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3650                                FastMathFlags FMF, const SimplifyQuery &Q,
3651                                unsigned MaxRecurse) {
3652   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3653   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3654 
3655   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3656     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3657       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3658 
3659     // If we have a constant, make sure it is on the RHS.
3660     std::swap(LHS, RHS);
3661     Pred = CmpInst::getSwappedPredicate(Pred);
3662   }
3663 
3664   // Fold trivial predicates.
3665   Type *RetTy = GetCompareTy(LHS);
3666   if (Pred == FCmpInst::FCMP_FALSE)
3667     return getFalse(RetTy);
3668   if (Pred == FCmpInst::FCMP_TRUE)
3669     return getTrue(RetTy);
3670 
3671   // Fold (un)ordered comparison if we can determine there are no NaNs.
3672   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3673     if (FMF.noNaNs() ||
3674         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3675       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3676 
3677   // NaN is unordered; NaN is not ordered.
3678   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3679          "Comparison must be either ordered or unordered");
3680   if (match(RHS, m_NaN()))
3681     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3682 
3683   // fcmp pred x, undef  and  fcmp pred undef, x
3684   // fold to true if unordered, false if ordered
3685   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3686     // Choosing NaN for the undef will always make unordered comparison succeed
3687     // and ordered comparison fail.
3688     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3689   }
3690 
3691   // fcmp x,x -> true/false.  Not all compares are foldable.
3692   if (LHS == RHS) {
3693     if (CmpInst::isTrueWhenEqual(Pred))
3694       return getTrue(RetTy);
3695     if (CmpInst::isFalseWhenEqual(Pred))
3696       return getFalse(RetTy);
3697   }
3698 
3699   // Handle fcmp with constant RHS.
3700   // TODO: Use match with a specific FP value, so these work with vectors with
3701   // undef lanes.
3702   const APFloat *C;
3703   if (match(RHS, m_APFloat(C))) {
3704     // Check whether the constant is an infinity.
3705     if (C->isInfinity()) {
3706       if (C->isNegative()) {
3707         switch (Pred) {
3708         case FCmpInst::FCMP_OLT:
3709           // No value is ordered and less than negative infinity.
3710           return getFalse(RetTy);
3711         case FCmpInst::FCMP_UGE:
3712           // All values are unordered with or at least negative infinity.
3713           return getTrue(RetTy);
3714         default:
3715           break;
3716         }
3717       } else {
3718         switch (Pred) {
3719         case FCmpInst::FCMP_OGT:
3720           // No value is ordered and greater than infinity.
3721           return getFalse(RetTy);
3722         case FCmpInst::FCMP_ULE:
3723           // All values are unordered with and at most infinity.
3724           return getTrue(RetTy);
3725         default:
3726           break;
3727         }
3728       }
3729 
3730       // LHS == Inf
3731       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3732         return getFalse(RetTy);
3733       // LHS != Inf
3734       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3735         return getTrue(RetTy);
3736       // LHS == Inf || LHS == NaN
3737       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3738           isKnownNeverNaN(LHS, Q.TLI))
3739         return getFalse(RetTy);
3740       // LHS != Inf && LHS != NaN
3741       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3742           isKnownNeverNaN(LHS, Q.TLI))
3743         return getTrue(RetTy);
3744     }
3745     if (C->isNegative() && !C->isNegZero()) {
3746       assert(!C->isNaN() && "Unexpected NaN constant!");
3747       // TODO: We can catch more cases by using a range check rather than
3748       //       relying on CannotBeOrderedLessThanZero.
3749       switch (Pred) {
3750       case FCmpInst::FCMP_UGE:
3751       case FCmpInst::FCMP_UGT:
3752       case FCmpInst::FCMP_UNE:
3753         // (X >= 0) implies (X > C) when (C < 0)
3754         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3755           return getTrue(RetTy);
3756         break;
3757       case FCmpInst::FCMP_OEQ:
3758       case FCmpInst::FCMP_OLE:
3759       case FCmpInst::FCMP_OLT:
3760         // (X >= 0) implies !(X < C) when (C < 0)
3761         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3762           return getFalse(RetTy);
3763         break;
3764       default:
3765         break;
3766       }
3767     }
3768 
3769     // Check comparison of [minnum/maxnum with constant] with other constant.
3770     const APFloat *C2;
3771     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3772          *C2 < *C) ||
3773         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3774          *C2 > *C)) {
3775       bool IsMaxNum =
3776           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3777       // The ordered relationship and minnum/maxnum guarantee that we do not
3778       // have NaN constants, so ordered/unordered preds are handled the same.
3779       switch (Pred) {
3780       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3781         // minnum(X, LesserC)  == C --> false
3782         // maxnum(X, GreaterC) == C --> false
3783         return getFalse(RetTy);
3784       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3785         // minnum(X, LesserC)  != C --> true
3786         // maxnum(X, GreaterC) != C --> true
3787         return getTrue(RetTy);
3788       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3789       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3790         // minnum(X, LesserC)  >= C --> false
3791         // minnum(X, LesserC)  >  C --> false
3792         // maxnum(X, GreaterC) >= C --> true
3793         // maxnum(X, GreaterC) >  C --> true
3794         return ConstantInt::get(RetTy, IsMaxNum);
3795       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3796       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3797         // minnum(X, LesserC)  <= C --> true
3798         // minnum(X, LesserC)  <  C --> true
3799         // maxnum(X, GreaterC) <= C --> false
3800         // maxnum(X, GreaterC) <  C --> false
3801         return ConstantInt::get(RetTy, !IsMaxNum);
3802       default:
3803         // TRUE/FALSE/ORD/UNO should be handled before this.
3804         llvm_unreachable("Unexpected fcmp predicate");
3805       }
3806     }
3807   }
3808 
3809   if (match(RHS, m_AnyZeroFP())) {
3810     switch (Pred) {
3811     case FCmpInst::FCMP_OGE:
3812     case FCmpInst::FCMP_ULT:
3813       // Positive or zero X >= 0.0 --> true
3814       // Positive or zero X <  0.0 --> false
3815       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3816           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3817         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3818       break;
3819     case FCmpInst::FCMP_UGE:
3820     case FCmpInst::FCMP_OLT:
3821       // Positive or zero or nan X >= 0.0 --> true
3822       // Positive or zero or nan X <  0.0 --> false
3823       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3824         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3825       break;
3826     default:
3827       break;
3828     }
3829   }
3830 
3831   // If the comparison is with the result of a select instruction, check whether
3832   // comparing with either branch of the select always yields the same value.
3833   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3834     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3835       return V;
3836 
3837   // If the comparison is with the result of a phi instruction, check whether
3838   // doing the compare with each incoming phi value yields a common result.
3839   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3840     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3841       return V;
3842 
3843   return nullptr;
3844 }
3845 
SimplifyFCmpInst(unsigned Predicate,Value * LHS,Value * RHS,FastMathFlags FMF,const SimplifyQuery & Q)3846 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3847                               FastMathFlags FMF, const SimplifyQuery &Q) {
3848   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3849 }
3850 
SimplifyWithOpReplaced(Value * V,Value * Op,Value * RepOp,const SimplifyQuery & Q,bool AllowRefinement,unsigned MaxRecurse)3851 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3852                                      const SimplifyQuery &Q,
3853                                      bool AllowRefinement,
3854                                      unsigned MaxRecurse) {
3855   // Trivial replacement.
3856   if (V == Op)
3857     return RepOp;
3858 
3859   // We cannot replace a constant, and shouldn't even try.
3860   if (isa<Constant>(Op))
3861     return nullptr;
3862 
3863   auto *I = dyn_cast<Instruction>(V);
3864   if (!I || !is_contained(I->operands(), Op))
3865     return nullptr;
3866 
3867   // Replace Op with RepOp in instruction operands.
3868   SmallVector<Value *, 8> NewOps(I->getNumOperands());
3869   transform(I->operands(), NewOps.begin(),
3870             [&](Value *V) { return V == Op ? RepOp : V; });
3871 
3872   if (!AllowRefinement) {
3873     // General InstSimplify functions may refine the result, e.g. by returning
3874     // a constant for a potentially poison value. To avoid this, implement only
3875     // a few non-refining but profitable transforms here.
3876 
3877     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3878       unsigned Opcode = BO->getOpcode();
3879       // id op x -> x, x op id -> x
3880       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
3881         return NewOps[1];
3882       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
3883                                                       /* RHS */ true))
3884         return NewOps[0];
3885 
3886       // x & x -> x, x | x -> x
3887       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
3888           NewOps[0] == NewOps[1])
3889         return NewOps[0];
3890     }
3891 
3892     if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3893       // getelementptr x, 0 -> x
3894       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()) &&
3895           !GEP->isInBounds())
3896         return NewOps[0];
3897     }
3898   } else if (MaxRecurse) {
3899     // The simplification queries below may return the original value. Consider:
3900     //   %div = udiv i32 %arg, %arg2
3901     //   %mul = mul nsw i32 %div, %arg2
3902     //   %cmp = icmp eq i32 %mul, %arg
3903     //   %sel = select i1 %cmp, i32 %div, i32 undef
3904     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
3905     // simplifies back to %arg. This can only happen because %mul does not
3906     // dominate %div. To ensure a consistent return value contract, we make sure
3907     // that this case returns nullptr as well.
3908     auto PreventSelfSimplify = [V](Value *Simplified) {
3909       return Simplified != V ? Simplified : nullptr;
3910     };
3911 
3912     if (auto *B = dyn_cast<BinaryOperator>(I))
3913       return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), NewOps[0],
3914                                                NewOps[1], Q, MaxRecurse - 1));
3915 
3916     if (CmpInst *C = dyn_cast<CmpInst>(I))
3917       return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), NewOps[0],
3918                                                  NewOps[1], Q, MaxRecurse - 1));
3919 
3920     if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
3921       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
3922                                                  NewOps, Q, MaxRecurse - 1));
3923 
3924     if (isa<SelectInst>(I))
3925       return PreventSelfSimplify(
3926           SimplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q,
3927                              MaxRecurse - 1));
3928     // TODO: We could hand off more cases to instsimplify here.
3929   }
3930 
3931   // If all operands are constant after substituting Op for RepOp then we can
3932   // constant fold the instruction.
3933   SmallVector<Constant *, 8> ConstOps;
3934   for (Value *NewOp : NewOps) {
3935     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
3936       ConstOps.push_back(ConstOp);
3937     else
3938       return nullptr;
3939   }
3940 
3941   // Consider:
3942   //   %cmp = icmp eq i32 %x, 2147483647
3943   //   %add = add nsw i32 %x, 1
3944   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3945   //
3946   // We can't replace %sel with %add unless we strip away the flags (which
3947   // will be done in InstCombine).
3948   // TODO: This may be unsound, because it only catches some forms of
3949   // refinement.
3950   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
3951     return nullptr;
3952 
3953   if (CmpInst *C = dyn_cast<CmpInst>(I))
3954     return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3955                                            ConstOps[1], Q.DL, Q.TLI);
3956 
3957   if (LoadInst *LI = dyn_cast<LoadInst>(I))
3958     if (!LI->isVolatile())
3959       return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3960 
3961   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3962 }
3963 
SimplifyWithOpReplaced(Value * V,Value * Op,Value * RepOp,const SimplifyQuery & Q,bool AllowRefinement)3964 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3965                                     const SimplifyQuery &Q,
3966                                     bool AllowRefinement) {
3967   return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
3968                                   RecursionLimit);
3969 }
3970 
3971 /// Try to simplify a select instruction when its condition operand is an
3972 /// integer comparison where one operand of the compare is a constant.
simplifySelectBitTest(Value * TrueVal,Value * FalseVal,Value * X,const APInt * Y,bool TrueWhenUnset)3973 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3974                                     const APInt *Y, bool TrueWhenUnset) {
3975   const APInt *C;
3976 
3977   // (X & Y) == 0 ? X & ~Y : X  --> X
3978   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3979   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3980       *Y == ~*C)
3981     return TrueWhenUnset ? FalseVal : TrueVal;
3982 
3983   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3984   // (X & Y) != 0 ? X : X & ~Y  --> X
3985   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3986       *Y == ~*C)
3987     return TrueWhenUnset ? FalseVal : TrueVal;
3988 
3989   if (Y->isPowerOf2()) {
3990     // (X & Y) == 0 ? X | Y : X  --> X | Y
3991     // (X & Y) != 0 ? X | Y : X  --> X
3992     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3993         *Y == *C)
3994       return TrueWhenUnset ? TrueVal : FalseVal;
3995 
3996     // (X & Y) == 0 ? X : X | Y  --> X
3997     // (X & Y) != 0 ? X : X | Y  --> X | Y
3998     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3999         *Y == *C)
4000       return TrueWhenUnset ? TrueVal : FalseVal;
4001   }
4002 
4003   return nullptr;
4004 }
4005 
4006 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4007 /// eq/ne.
simplifySelectWithFakeICmpEq(Value * CmpLHS,Value * CmpRHS,ICmpInst::Predicate Pred,Value * TrueVal,Value * FalseVal)4008 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4009                                            ICmpInst::Predicate Pred,
4010                                            Value *TrueVal, Value *FalseVal) {
4011   Value *X;
4012   APInt Mask;
4013   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4014     return nullptr;
4015 
4016   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4017                                Pred == ICmpInst::ICMP_EQ);
4018 }
4019 
4020 /// Try to simplify a select instruction when its condition operand is an
4021 /// integer comparison.
simplifySelectWithICmpCond(Value * CondVal,Value * TrueVal,Value * FalseVal,const SimplifyQuery & Q,unsigned MaxRecurse)4022 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4023                                          Value *FalseVal, const SimplifyQuery &Q,
4024                                          unsigned MaxRecurse) {
4025   ICmpInst::Predicate Pred;
4026   Value *CmpLHS, *CmpRHS;
4027   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4028     return nullptr;
4029 
4030   // Canonicalize ne to eq predicate.
4031   if (Pred == ICmpInst::ICMP_NE) {
4032     Pred = ICmpInst::ICMP_EQ;
4033     std::swap(TrueVal, FalseVal);
4034   }
4035 
4036   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4037     Value *X;
4038     const APInt *Y;
4039     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4040       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4041                                            /*TrueWhenUnset=*/true))
4042         return V;
4043 
4044     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4045     Value *ShAmt;
4046     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4047                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4048     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4049     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4050     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4051       return X;
4052 
4053     // Test for a zero-shift-guard-op around rotates. These are used to
4054     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4055     // intrinsics do not have that problem.
4056     // We do not allow this transform for the general funnel shift case because
4057     // that would not preserve the poison safety of the original code.
4058     auto isRotate =
4059         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4060                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4061     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4062     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4063     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4064         Pred == ICmpInst::ICMP_EQ)
4065       return FalseVal;
4066 
4067     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4068     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4069     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4070         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4071       return FalseVal;
4072     if (match(TrueVal,
4073               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4074         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4075       return FalseVal;
4076   }
4077 
4078   // Check for other compares that behave like bit test.
4079   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4080                                               TrueVal, FalseVal))
4081     return V;
4082 
4083   // If we have a scalar equality comparison, then we know the value in one of
4084   // the arms of the select. See if substituting this value into the arm and
4085   // simplifying the result yields the same value as the other arm.
4086   // Note that the equivalence/replacement opportunity does not hold for vectors
4087   // because each element of a vector select is chosen independently.
4088   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4089     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4090                                /* AllowRefinement */ false, MaxRecurse) ==
4091             TrueVal ||
4092         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4093                                /* AllowRefinement */ false, MaxRecurse) ==
4094             TrueVal)
4095       return FalseVal;
4096     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4097                                /* AllowRefinement */ true, MaxRecurse) ==
4098             FalseVal ||
4099         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4100                                /* AllowRefinement */ true, MaxRecurse) ==
4101             FalseVal)
4102       return FalseVal;
4103   }
4104 
4105   return nullptr;
4106 }
4107 
4108 /// Try to simplify a select instruction when its condition operand is a
4109 /// floating-point comparison.
simplifySelectWithFCmp(Value * Cond,Value * T,Value * F,const SimplifyQuery & Q)4110 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4111                                      const SimplifyQuery &Q) {
4112   FCmpInst::Predicate Pred;
4113   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4114       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4115     return nullptr;
4116 
4117   // This transform is safe if we do not have (do not care about) -0.0 or if
4118   // at least one operand is known to not be -0.0. Otherwise, the select can
4119   // change the sign of a zero operand.
4120   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4121                           Q.CxtI->hasNoSignedZeros();
4122   const APFloat *C;
4123   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4124                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4125     // (T == F) ? T : F --> F
4126     // (F == T) ? T : F --> F
4127     if (Pred == FCmpInst::FCMP_OEQ)
4128       return F;
4129 
4130     // (T != F) ? T : F --> T
4131     // (F != T) ? T : F --> T
4132     if (Pred == FCmpInst::FCMP_UNE)
4133       return T;
4134   }
4135 
4136   return nullptr;
4137 }
4138 
4139 /// Given operands for a SelectInst, see if we can fold the result.
4140 /// If not, this returns null.
SimplifySelectInst(Value * Cond,Value * TrueVal,Value * FalseVal,const SimplifyQuery & Q,unsigned MaxRecurse)4141 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4142                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4143   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4144     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4145       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4146         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4147 
4148     // select undef, X, Y -> X or Y
4149     if (Q.isUndefValue(CondC))
4150       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4151 
4152     // TODO: Vector constants with undef elements don't simplify.
4153 
4154     // select true, X, Y  -> X
4155     if (CondC->isAllOnesValue())
4156       return TrueVal;
4157     // select false, X, Y -> Y
4158     if (CondC->isNullValue())
4159       return FalseVal;
4160   }
4161 
4162   // select i1 Cond, i1 true, i1 false --> i1 Cond
4163   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4164          "Select must have bool or bool vector condition");
4165   assert(TrueVal->getType() == FalseVal->getType() &&
4166          "Select must have same types for true/false ops");
4167   if (Cond->getType() == TrueVal->getType() &&
4168       match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4169     return Cond;
4170 
4171   // select ?, X, X -> X
4172   if (TrueVal == FalseVal)
4173     return TrueVal;
4174 
4175   // If the true or false value is undef, we can fold to the other value as
4176   // long as the other value isn't poison.
4177   // select ?, undef, X -> X
4178   if (Q.isUndefValue(TrueVal) &&
4179       isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT))
4180     return FalseVal;
4181   // select ?, X, undef -> X
4182   if (Q.isUndefValue(FalseVal) &&
4183       isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT))
4184     return TrueVal;
4185 
4186   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4187   Constant *TrueC, *FalseC;
4188   if (isa<FixedVectorType>(TrueVal->getType()) &&
4189       match(TrueVal, m_Constant(TrueC)) &&
4190       match(FalseVal, m_Constant(FalseC))) {
4191     unsigned NumElts =
4192         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4193     SmallVector<Constant *, 16> NewC;
4194     for (unsigned i = 0; i != NumElts; ++i) {
4195       // Bail out on incomplete vector constants.
4196       Constant *TEltC = TrueC->getAggregateElement(i);
4197       Constant *FEltC = FalseC->getAggregateElement(i);
4198       if (!TEltC || !FEltC)
4199         break;
4200 
4201       // If the elements match (undef or not), that value is the result. If only
4202       // one element is undef, choose the defined element as the safe result.
4203       if (TEltC == FEltC)
4204         NewC.push_back(TEltC);
4205       else if (Q.isUndefValue(TEltC) &&
4206                isGuaranteedNotToBeUndefOrPoison(FEltC))
4207         NewC.push_back(FEltC);
4208       else if (Q.isUndefValue(FEltC) &&
4209                isGuaranteedNotToBeUndefOrPoison(TEltC))
4210         NewC.push_back(TEltC);
4211       else
4212         break;
4213     }
4214     if (NewC.size() == NumElts)
4215       return ConstantVector::get(NewC);
4216   }
4217 
4218   if (Value *V =
4219           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4220     return V;
4221 
4222   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4223     return V;
4224 
4225   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4226     return V;
4227 
4228   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4229   if (Imp)
4230     return *Imp ? TrueVal : FalseVal;
4231 
4232   return nullptr;
4233 }
4234 
SimplifySelectInst(Value * Cond,Value * TrueVal,Value * FalseVal,const SimplifyQuery & Q)4235 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4236                                 const SimplifyQuery &Q) {
4237   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4238 }
4239 
4240 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4241 /// If not, this returns null.
SimplifyGEPInst(Type * SrcTy,ArrayRef<Value * > Ops,const SimplifyQuery & Q,unsigned)4242 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4243                               const SimplifyQuery &Q, unsigned) {
4244   // The type of the GEP pointer operand.
4245   unsigned AS =
4246       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4247 
4248   // getelementptr P -> P.
4249   if (Ops.size() == 1)
4250     return Ops[0];
4251 
4252   // Compute the (pointer) type returned by the GEP instruction.
4253   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4254   Type *GEPTy = PointerType::get(LastType, AS);
4255   for (Value *Op : Ops) {
4256     // If one of the operands is a vector, the result type is a vector of
4257     // pointers. All vector operands must have the same number of elements.
4258     if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4259       GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4260       break;
4261     }
4262   }
4263 
4264   // getelementptr poison, idx -> poison
4265   // getelementptr baseptr, poison -> poison
4266   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4267     return PoisonValue::get(GEPTy);
4268 
4269   if (Q.isUndefValue(Ops[0]))
4270     return UndefValue::get(GEPTy);
4271 
4272   bool IsScalableVec =
4273       isa<ScalableVectorType>(SrcTy) || any_of(Ops, [](const Value *V) {
4274         return isa<ScalableVectorType>(V->getType());
4275       });
4276 
4277   if (Ops.size() == 2) {
4278     // getelementptr P, 0 -> P.
4279     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4280       return Ops[0];
4281 
4282     Type *Ty = SrcTy;
4283     if (!IsScalableVec && Ty->isSized()) {
4284       Value *P;
4285       uint64_t C;
4286       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4287       // getelementptr P, N -> P if P points to a type of zero size.
4288       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4289         return Ops[0];
4290 
4291       // The following transforms are only safe if the ptrtoint cast
4292       // doesn't truncate the pointers.
4293       if (Ops[1]->getType()->getScalarSizeInBits() ==
4294           Q.DL.getPointerSizeInBits(AS)) {
4295         auto CanSimplify = [GEPTy, &P, V = Ops[0]]() -> bool {
4296           return P->getType() == GEPTy &&
4297                  getUnderlyingObject(P) == getUnderlyingObject(V);
4298         };
4299         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4300         if (TyAllocSize == 1 &&
4301             match(Ops[1], m_Sub(m_PtrToInt(m_Value(P)),
4302                                 m_PtrToInt(m_Specific(Ops[0])))) &&
4303             CanSimplify())
4304           return P;
4305 
4306         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
4307         // size 1 << C.
4308         if (match(Ops[1], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
4309                                        m_PtrToInt(m_Specific(Ops[0]))),
4310                                  m_ConstantInt(C))) &&
4311             TyAllocSize == 1ULL << C && CanSimplify())
4312           return P;
4313 
4314         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
4315         // size C.
4316         if (match(Ops[1], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
4317                                        m_PtrToInt(m_Specific(Ops[0]))),
4318                                  m_SpecificInt(TyAllocSize))) &&
4319             CanSimplify())
4320           return P;
4321       }
4322     }
4323   }
4324 
4325   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4326       all_of(Ops.slice(1).drop_back(1),
4327              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4328     unsigned IdxWidth =
4329         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4330     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4331       APInt BasePtrOffset(IdxWidth, 0);
4332       Value *StrippedBasePtr =
4333           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4334                                                             BasePtrOffset);
4335 
4336       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4337       // inttoptr is generally conservative, this particular case is folded to
4338       // a null pointer, which will have incorrect provenance.
4339 
4340       // gep (gep V, C), (sub 0, V) -> C
4341       if (match(Ops.back(),
4342                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4343           !BasePtrOffset.isNullValue()) {
4344         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4345         return ConstantExpr::getIntToPtr(CI, GEPTy);
4346       }
4347       // gep (gep V, C), (xor V, -1) -> C-1
4348       if (match(Ops.back(),
4349                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4350           !BasePtrOffset.isOneValue()) {
4351         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4352         return ConstantExpr::getIntToPtr(CI, GEPTy);
4353       }
4354     }
4355   }
4356 
4357   // Check to see if this is constant foldable.
4358   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4359     return nullptr;
4360 
4361   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4362                                             Ops.slice(1));
4363   return ConstantFoldConstant(CE, Q.DL);
4364 }
4365 
SimplifyGEPInst(Type * SrcTy,ArrayRef<Value * > Ops,const SimplifyQuery & Q)4366 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4367                              const SimplifyQuery &Q) {
4368   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4369 }
4370 
4371 /// Given operands for an InsertValueInst, see if we can fold the result.
4372 /// If not, this returns null.
SimplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const SimplifyQuery & Q,unsigned)4373 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4374                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4375                                       unsigned) {
4376   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4377     if (Constant *CVal = dyn_cast<Constant>(Val))
4378       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4379 
4380   // insertvalue x, undef, n -> x
4381   if (Q.isUndefValue(Val))
4382     return Agg;
4383 
4384   // insertvalue x, (extractvalue y, n), n
4385   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4386     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4387         EV->getIndices() == Idxs) {
4388       // insertvalue undef, (extractvalue y, n), n -> y
4389       if (Q.isUndefValue(Agg))
4390         return EV->getAggregateOperand();
4391 
4392       // insertvalue y, (extractvalue y, n), n -> y
4393       if (Agg == EV->getAggregateOperand())
4394         return Agg;
4395     }
4396 
4397   return nullptr;
4398 }
4399 
SimplifyInsertValueInst(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const SimplifyQuery & Q)4400 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4401                                      ArrayRef<unsigned> Idxs,
4402                                      const SimplifyQuery &Q) {
4403   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4404 }
4405 
SimplifyInsertElementInst(Value * Vec,Value * Val,Value * Idx,const SimplifyQuery & Q)4406 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4407                                        const SimplifyQuery &Q) {
4408   // Try to constant fold.
4409   auto *VecC = dyn_cast<Constant>(Vec);
4410   auto *ValC = dyn_cast<Constant>(Val);
4411   auto *IdxC = dyn_cast<Constant>(Idx);
4412   if (VecC && ValC && IdxC)
4413     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4414 
4415   // For fixed-length vector, fold into poison if index is out of bounds.
4416   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4417     if (isa<FixedVectorType>(Vec->getType()) &&
4418         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4419       return PoisonValue::get(Vec->getType());
4420   }
4421 
4422   // If index is undef, it might be out of bounds (see above case)
4423   if (Q.isUndefValue(Idx))
4424     return PoisonValue::get(Vec->getType());
4425 
4426   // If the scalar is poison, or it is undef and there is no risk of
4427   // propagating poison from the vector value, simplify to the vector value.
4428   if (isa<PoisonValue>(Val) ||
4429       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4430     return Vec;
4431 
4432   // If we are extracting a value from a vector, then inserting it into the same
4433   // place, that's the input vector:
4434   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4435   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4436     return Vec;
4437 
4438   return nullptr;
4439 }
4440 
4441 /// Given operands for an ExtractValueInst, see if we can fold the result.
4442 /// If not, this returns null.
SimplifyExtractValueInst(Value * Agg,ArrayRef<unsigned> Idxs,const SimplifyQuery &,unsigned)4443 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4444                                        const SimplifyQuery &, unsigned) {
4445   if (auto *CAgg = dyn_cast<Constant>(Agg))
4446     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4447 
4448   // extractvalue x, (insertvalue y, elt, n), n -> elt
4449   unsigned NumIdxs = Idxs.size();
4450   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4451        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4452     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4453     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4454     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4455     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4456         Idxs.slice(0, NumCommonIdxs)) {
4457       if (NumIdxs == NumInsertValueIdxs)
4458         return IVI->getInsertedValueOperand();
4459       break;
4460     }
4461   }
4462 
4463   return nullptr;
4464 }
4465 
SimplifyExtractValueInst(Value * Agg,ArrayRef<unsigned> Idxs,const SimplifyQuery & Q)4466 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4467                                       const SimplifyQuery &Q) {
4468   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4469 }
4470 
4471 /// Given operands for an ExtractElementInst, see if we can fold the result.
4472 /// If not, this returns null.
SimplifyExtractElementInst(Value * Vec,Value * Idx,const SimplifyQuery & Q,unsigned)4473 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4474                                          const SimplifyQuery &Q, unsigned) {
4475   auto *VecVTy = cast<VectorType>(Vec->getType());
4476   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4477     if (auto *CIdx = dyn_cast<Constant>(Idx))
4478       return ConstantExpr::getExtractElement(CVec, CIdx);
4479 
4480     // The index is not relevant if our vector is a splat.
4481     if (auto *Splat = CVec->getSplatValue())
4482       return Splat;
4483 
4484     if (Q.isUndefValue(Vec))
4485       return UndefValue::get(VecVTy->getElementType());
4486   }
4487 
4488   // If extracting a specified index from the vector, see if we can recursively
4489   // find a previously computed scalar that was inserted into the vector.
4490   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4491     // For fixed-length vector, fold into undef if index is out of bounds.
4492     if (isa<FixedVectorType>(VecVTy) &&
4493         IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements()))
4494       return PoisonValue::get(VecVTy->getElementType());
4495     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4496       return Elt;
4497   }
4498 
4499   // An undef extract index can be arbitrarily chosen to be an out-of-range
4500   // index value, which would result in the instruction being poison.
4501   if (Q.isUndefValue(Idx))
4502     return PoisonValue::get(VecVTy->getElementType());
4503 
4504   return nullptr;
4505 }
4506 
SimplifyExtractElementInst(Value * Vec,Value * Idx,const SimplifyQuery & Q)4507 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4508                                         const SimplifyQuery &Q) {
4509   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4510 }
4511 
4512 /// See if we can fold the given phi. If not, returns null.
SimplifyPHINode(PHINode * PN,const SimplifyQuery & Q)4513 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4514   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4515   //          here, because the PHI we may succeed simplifying to was not
4516   //          def-reachable from the original PHI!
4517 
4518   // If all of the PHI's incoming values are the same then replace the PHI node
4519   // with the common value.
4520   Value *CommonValue = nullptr;
4521   bool HasUndefInput = false;
4522   for (Value *Incoming : PN->incoming_values()) {
4523     // If the incoming value is the phi node itself, it can safely be skipped.
4524     if (Incoming == PN) continue;
4525     if (Q.isUndefValue(Incoming)) {
4526       // Remember that we saw an undef value, but otherwise ignore them.
4527       HasUndefInput = true;
4528       continue;
4529     }
4530     if (CommonValue && Incoming != CommonValue)
4531       return nullptr;  // Not the same, bail out.
4532     CommonValue = Incoming;
4533   }
4534 
4535   // If CommonValue is null then all of the incoming values were either undef or
4536   // equal to the phi node itself.
4537   if (!CommonValue)
4538     return UndefValue::get(PN->getType());
4539 
4540   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4541   // instruction, we cannot return X as the result of the PHI node unless it
4542   // dominates the PHI block.
4543   if (HasUndefInput)
4544     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4545 
4546   return CommonValue;
4547 }
4548 
SimplifyCastInst(unsigned CastOpc,Value * Op,Type * Ty,const SimplifyQuery & Q,unsigned MaxRecurse)4549 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4550                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4551   if (auto *C = dyn_cast<Constant>(Op))
4552     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4553 
4554   if (auto *CI = dyn_cast<CastInst>(Op)) {
4555     auto *Src = CI->getOperand(0);
4556     Type *SrcTy = Src->getType();
4557     Type *MidTy = CI->getType();
4558     Type *DstTy = Ty;
4559     if (Src->getType() == Ty) {
4560       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4561       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4562       Type *SrcIntPtrTy =
4563           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4564       Type *MidIntPtrTy =
4565           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4566       Type *DstIntPtrTy =
4567           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4568       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4569                                          SrcIntPtrTy, MidIntPtrTy,
4570                                          DstIntPtrTy) == Instruction::BitCast)
4571         return Src;
4572     }
4573   }
4574 
4575   // bitcast x -> x
4576   if (CastOpc == Instruction::BitCast)
4577     if (Op->getType() == Ty)
4578       return Op;
4579 
4580   return nullptr;
4581 }
4582 
SimplifyCastInst(unsigned CastOpc,Value * Op,Type * Ty,const SimplifyQuery & Q)4583 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4584                               const SimplifyQuery &Q) {
4585   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4586 }
4587 
4588 /// For the given destination element of a shuffle, peek through shuffles to
4589 /// match a root vector source operand that contains that element in the same
4590 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
foldIdentityShuffles(int DestElt,Value * Op0,Value * Op1,int MaskVal,Value * RootVec,unsigned MaxRecurse)4591 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4592                                    int MaskVal, Value *RootVec,
4593                                    unsigned MaxRecurse) {
4594   if (!MaxRecurse--)
4595     return nullptr;
4596 
4597   // Bail out if any mask value is undefined. That kind of shuffle may be
4598   // simplified further based on demanded bits or other folds.
4599   if (MaskVal == -1)
4600     return nullptr;
4601 
4602   // The mask value chooses which source operand we need to look at next.
4603   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4604   int RootElt = MaskVal;
4605   Value *SourceOp = Op0;
4606   if (MaskVal >= InVecNumElts) {
4607     RootElt = MaskVal - InVecNumElts;
4608     SourceOp = Op1;
4609   }
4610 
4611   // If the source operand is a shuffle itself, look through it to find the
4612   // matching root vector.
4613   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4614     return foldIdentityShuffles(
4615         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4616         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4617   }
4618 
4619   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4620   // size?
4621 
4622   // The source operand is not a shuffle. Initialize the root vector value for
4623   // this shuffle if that has not been done yet.
4624   if (!RootVec)
4625     RootVec = SourceOp;
4626 
4627   // Give up as soon as a source operand does not match the existing root value.
4628   if (RootVec != SourceOp)
4629     return nullptr;
4630 
4631   // The element must be coming from the same lane in the source vector
4632   // (although it may have crossed lanes in intermediate shuffles).
4633   if (RootElt != DestElt)
4634     return nullptr;
4635 
4636   return RootVec;
4637 }
4638 
SimplifyShuffleVectorInst(Value * Op0,Value * Op1,ArrayRef<int> Mask,Type * RetTy,const SimplifyQuery & Q,unsigned MaxRecurse)4639 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4640                                         ArrayRef<int> Mask, Type *RetTy,
4641                                         const SimplifyQuery &Q,
4642                                         unsigned MaxRecurse) {
4643   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4644     return UndefValue::get(RetTy);
4645 
4646   auto *InVecTy = cast<VectorType>(Op0->getType());
4647   unsigned MaskNumElts = Mask.size();
4648   ElementCount InVecEltCount = InVecTy->getElementCount();
4649 
4650   bool Scalable = InVecEltCount.isScalable();
4651 
4652   SmallVector<int, 32> Indices;
4653   Indices.assign(Mask.begin(), Mask.end());
4654 
4655   // Canonicalization: If mask does not select elements from an input vector,
4656   // replace that input vector with poison.
4657   if (!Scalable) {
4658     bool MaskSelects0 = false, MaskSelects1 = false;
4659     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4660     for (unsigned i = 0; i != MaskNumElts; ++i) {
4661       if (Indices[i] == -1)
4662         continue;
4663       if ((unsigned)Indices[i] < InVecNumElts)
4664         MaskSelects0 = true;
4665       else
4666         MaskSelects1 = true;
4667     }
4668     if (!MaskSelects0)
4669       Op0 = PoisonValue::get(InVecTy);
4670     if (!MaskSelects1)
4671       Op1 = PoisonValue::get(InVecTy);
4672   }
4673 
4674   auto *Op0Const = dyn_cast<Constant>(Op0);
4675   auto *Op1Const = dyn_cast<Constant>(Op1);
4676 
4677   // If all operands are constant, constant fold the shuffle. This
4678   // transformation depends on the value of the mask which is not known at
4679   // compile time for scalable vectors
4680   if (Op0Const && Op1Const)
4681     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4682 
4683   // Canonicalization: if only one input vector is constant, it shall be the
4684   // second one. This transformation depends on the value of the mask which
4685   // is not known at compile time for scalable vectors
4686   if (!Scalable && Op0Const && !Op1Const) {
4687     std::swap(Op0, Op1);
4688     ShuffleVectorInst::commuteShuffleMask(Indices,
4689                                           InVecEltCount.getKnownMinValue());
4690   }
4691 
4692   // A splat of an inserted scalar constant becomes a vector constant:
4693   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4694   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4695   //       original mask constant.
4696   // NOTE: This transformation depends on the value of the mask which is not
4697   // known at compile time for scalable vectors
4698   Constant *C;
4699   ConstantInt *IndexC;
4700   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4701                                           m_ConstantInt(IndexC)))) {
4702     // Match a splat shuffle mask of the insert index allowing undef elements.
4703     int InsertIndex = IndexC->getZExtValue();
4704     if (all_of(Indices, [InsertIndex](int MaskElt) {
4705           return MaskElt == InsertIndex || MaskElt == -1;
4706         })) {
4707       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4708 
4709       // Shuffle mask undefs become undefined constant result elements.
4710       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4711       for (unsigned i = 0; i != MaskNumElts; ++i)
4712         if (Indices[i] == -1)
4713           VecC[i] = UndefValue::get(C->getType());
4714       return ConstantVector::get(VecC);
4715     }
4716   }
4717 
4718   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4719   // value type is same as the input vectors' type.
4720   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4721     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4722         is_splat(OpShuf->getShuffleMask()))
4723       return Op0;
4724 
4725   // All remaining transformation depend on the value of the mask, which is
4726   // not known at compile time for scalable vectors.
4727   if (Scalable)
4728     return nullptr;
4729 
4730   // Don't fold a shuffle with undef mask elements. This may get folded in a
4731   // better way using demanded bits or other analysis.
4732   // TODO: Should we allow this?
4733   if (is_contained(Indices, -1))
4734     return nullptr;
4735 
4736   // Check if every element of this shuffle can be mapped back to the
4737   // corresponding element of a single root vector. If so, we don't need this
4738   // shuffle. This handles simple identity shuffles as well as chains of
4739   // shuffles that may widen/narrow and/or move elements across lanes and back.
4740   Value *RootVec = nullptr;
4741   for (unsigned i = 0; i != MaskNumElts; ++i) {
4742     // Note that recursion is limited for each vector element, so if any element
4743     // exceeds the limit, this will fail to simplify.
4744     RootVec =
4745         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4746 
4747     // We can't replace a widening/narrowing shuffle with one of its operands.
4748     if (!RootVec || RootVec->getType() != RetTy)
4749       return nullptr;
4750   }
4751   return RootVec;
4752 }
4753 
4754 /// Given operands for a ShuffleVectorInst, fold the result or return null.
SimplifyShuffleVectorInst(Value * Op0,Value * Op1,ArrayRef<int> Mask,Type * RetTy,const SimplifyQuery & Q)4755 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4756                                        ArrayRef<int> Mask, Type *RetTy,
4757                                        const SimplifyQuery &Q) {
4758   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4759 }
4760 
foldConstant(Instruction::UnaryOps Opcode,Value * & Op,const SimplifyQuery & Q)4761 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4762                               Value *&Op, const SimplifyQuery &Q) {
4763   if (auto *C = dyn_cast<Constant>(Op))
4764     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4765   return nullptr;
4766 }
4767 
4768 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4769 /// returns null.
simplifyFNegInst(Value * Op,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)4770 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4771                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4772   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4773     return C;
4774 
4775   Value *X;
4776   // fneg (fneg X) ==> X
4777   if (match(Op, m_FNeg(m_Value(X))))
4778     return X;
4779 
4780   return nullptr;
4781 }
4782 
SimplifyFNegInst(Value * Op,FastMathFlags FMF,const SimplifyQuery & Q)4783 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4784                               const SimplifyQuery &Q) {
4785   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4786 }
4787 
propagateNaN(Constant * In)4788 static Constant *propagateNaN(Constant *In) {
4789   // If the input is a vector with undef elements, just return a default NaN.
4790   if (!In->isNaN())
4791     return ConstantFP::getNaN(In->getType());
4792 
4793   // Propagate the existing NaN constant when possible.
4794   // TODO: Should we quiet a signaling NaN?
4795   return In;
4796 }
4797 
4798 /// Perform folds that are common to any floating-point operation. This implies
4799 /// transforms based on undef/NaN because the operation itself makes no
4800 /// difference to the result.
simplifyFPOp(ArrayRef<Value * > Ops,FastMathFlags FMF,const SimplifyQuery & Q)4801 static Constant *simplifyFPOp(ArrayRef<Value *> Ops,
4802                               FastMathFlags FMF,
4803                               const SimplifyQuery &Q) {
4804   for (Value *V : Ops) {
4805     bool IsNan = match(V, m_NaN());
4806     bool IsInf = match(V, m_Inf());
4807     bool IsUndef = Q.isUndefValue(V);
4808 
4809     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4810     // (an undef operand can be chosen to be Nan/Inf), then the result of
4811     // this operation is poison.
4812     if (FMF.noNaNs() && (IsNan || IsUndef))
4813       return PoisonValue::get(V->getType());
4814     if (FMF.noInfs() && (IsInf || IsUndef))
4815       return PoisonValue::get(V->getType());
4816 
4817     if (IsUndef || IsNan)
4818       return propagateNaN(cast<Constant>(V));
4819   }
4820   return nullptr;
4821 }
4822 
4823 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4824 /// returns null.
SimplifyFAddInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)4825 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4826                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4827   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4828     return C;
4829 
4830   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4831     return C;
4832 
4833   // fadd X, -0 ==> X
4834   if (match(Op1, m_NegZeroFP()))
4835     return Op0;
4836 
4837   // fadd X, 0 ==> X, when we know X is not -0
4838   if (match(Op1, m_PosZeroFP()) &&
4839       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4840     return Op0;
4841 
4842   // With nnan: -X + X --> 0.0 (and commuted variant)
4843   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4844   // Negative zeros are allowed because we always end up with positive zero:
4845   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4846   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4847   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4848   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4849   if (FMF.noNaNs()) {
4850     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4851         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4852       return ConstantFP::getNullValue(Op0->getType());
4853 
4854     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4855         match(Op1, m_FNeg(m_Specific(Op0))))
4856       return ConstantFP::getNullValue(Op0->getType());
4857   }
4858 
4859   // (X - Y) + Y --> X
4860   // Y + (X - Y) --> X
4861   Value *X;
4862   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4863       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4864        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4865     return X;
4866 
4867   return nullptr;
4868 }
4869 
4870 /// Given operands for an FSub, see if we can fold the result.  If not, this
4871 /// returns null.
SimplifyFSubInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)4872 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4873                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4874   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4875     return C;
4876 
4877   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4878     return C;
4879 
4880   // fsub X, +0 ==> X
4881   if (match(Op1, m_PosZeroFP()))
4882     return Op0;
4883 
4884   // fsub X, -0 ==> X, when we know X is not -0
4885   if (match(Op1, m_NegZeroFP()) &&
4886       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4887     return Op0;
4888 
4889   // fsub -0.0, (fsub -0.0, X) ==> X
4890   // fsub -0.0, (fneg X) ==> X
4891   Value *X;
4892   if (match(Op0, m_NegZeroFP()) &&
4893       match(Op1, m_FNeg(m_Value(X))))
4894     return X;
4895 
4896   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4897   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4898   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4899       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4900        match(Op1, m_FNeg(m_Value(X)))))
4901     return X;
4902 
4903   // fsub nnan x, x ==> 0.0
4904   if (FMF.noNaNs() && Op0 == Op1)
4905     return Constant::getNullValue(Op0->getType());
4906 
4907   // Y - (Y - X) --> X
4908   // (X + Y) - Y --> X
4909   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4910       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4911        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4912     return X;
4913 
4914   return nullptr;
4915 }
4916 
SimplifyFMAFMul(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)4917 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4918                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4919   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4920     return C;
4921 
4922   // fmul X, 1.0 ==> X
4923   if (match(Op1, m_FPOne()))
4924     return Op0;
4925 
4926   // fmul 1.0, X ==> X
4927   if (match(Op0, m_FPOne()))
4928     return Op1;
4929 
4930   // fmul nnan nsz X, 0 ==> 0
4931   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4932     return ConstantFP::getNullValue(Op0->getType());
4933 
4934   // fmul nnan nsz 0, X ==> 0
4935   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4936     return ConstantFP::getNullValue(Op1->getType());
4937 
4938   // sqrt(X) * sqrt(X) --> X, if we can:
4939   // 1. Remove the intermediate rounding (reassociate).
4940   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4941   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4942   Value *X;
4943   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4944       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4945     return X;
4946 
4947   return nullptr;
4948 }
4949 
4950 /// Given the operands for an FMul, see if we can fold the result
SimplifyFMulInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned MaxRecurse)4951 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4952                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4953   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4954     return C;
4955 
4956   // Now apply simplifications that do not require rounding.
4957   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse);
4958 }
4959 
SimplifyFAddInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)4960 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4961                               const SimplifyQuery &Q) {
4962   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4963 }
4964 
4965 
SimplifyFSubInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)4966 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4967                               const SimplifyQuery &Q) {
4968   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4969 }
4970 
SimplifyFMulInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)4971 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4972                               const SimplifyQuery &Q) {
4973   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4974 }
4975 
SimplifyFMAFMul(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)4976 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4977                              const SimplifyQuery &Q) {
4978   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit);
4979 }
4980 
SimplifyFDivInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned)4981 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4982                                const SimplifyQuery &Q, unsigned) {
4983   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4984     return C;
4985 
4986   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4987     return C;
4988 
4989   // X / 1.0 -> X
4990   if (match(Op1, m_FPOne()))
4991     return Op0;
4992 
4993   // 0 / X -> 0
4994   // Requires that NaNs are off (X could be zero) and signed zeroes are
4995   // ignored (X could be positive or negative, so the output sign is unknown).
4996   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4997     return ConstantFP::getNullValue(Op0->getType());
4998 
4999   if (FMF.noNaNs()) {
5000     // X / X -> 1.0 is legal when NaNs are ignored.
5001     // We can ignore infinities because INF/INF is NaN.
5002     if (Op0 == Op1)
5003       return ConstantFP::get(Op0->getType(), 1.0);
5004 
5005     // (X * Y) / Y --> X if we can reassociate to the above form.
5006     Value *X;
5007     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5008       return X;
5009 
5010     // -X /  X -> -1.0 and
5011     //  X / -X -> -1.0 are legal when NaNs are ignored.
5012     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5013     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5014         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5015       return ConstantFP::get(Op0->getType(), -1.0);
5016   }
5017 
5018   return nullptr;
5019 }
5020 
SimplifyFDivInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)5021 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5022                               const SimplifyQuery &Q) {
5023   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
5024 }
5025 
SimplifyFRemInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q,unsigned)5026 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5027                                const SimplifyQuery &Q, unsigned) {
5028   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5029     return C;
5030 
5031   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
5032     return C;
5033 
5034   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5035   // The constant match may include undef elements in a vector, so return a full
5036   // zero constant as the result.
5037   if (FMF.noNaNs()) {
5038     // +0 % X -> 0
5039     if (match(Op0, m_PosZeroFP()))
5040       return ConstantFP::getNullValue(Op0->getType());
5041     // -0 % X -> -0
5042     if (match(Op0, m_NegZeroFP()))
5043       return ConstantFP::getNegativeZero(Op0->getType());
5044   }
5045 
5046   return nullptr;
5047 }
5048 
SimplifyFRemInst(Value * Op0,Value * Op1,FastMathFlags FMF,const SimplifyQuery & Q)5049 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5050                               const SimplifyQuery &Q) {
5051   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
5052 }
5053 
5054 //=== Helper functions for higher up the class hierarchy.
5055 
5056 /// Given the operand for a UnaryOperator, see if we can fold the result.
5057 /// If not, this returns null.
simplifyUnOp(unsigned Opcode,Value * Op,const SimplifyQuery & Q,unsigned MaxRecurse)5058 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5059                            unsigned MaxRecurse) {
5060   switch (Opcode) {
5061   case Instruction::FNeg:
5062     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5063   default:
5064     llvm_unreachable("Unexpected opcode");
5065   }
5066 }
5067 
5068 /// Given the operand for a UnaryOperator, see if we can fold the result.
5069 /// If not, this returns null.
5070 /// Try to use FastMathFlags when folding the result.
simplifyFPUnOp(unsigned Opcode,Value * Op,const FastMathFlags & FMF,const SimplifyQuery & Q,unsigned MaxRecurse)5071 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5072                              const FastMathFlags &FMF,
5073                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5074   switch (Opcode) {
5075   case Instruction::FNeg:
5076     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5077   default:
5078     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5079   }
5080 }
5081 
SimplifyUnOp(unsigned Opcode,Value * Op,const SimplifyQuery & Q)5082 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5083   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5084 }
5085 
SimplifyUnOp(unsigned Opcode,Value * Op,FastMathFlags FMF,const SimplifyQuery & Q)5086 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5087                           const SimplifyQuery &Q) {
5088   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5089 }
5090 
5091 /// Given operands for a BinaryOperator, see if we can fold the result.
5092 /// If not, this returns null.
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)5093 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5094                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5095   switch (Opcode) {
5096   case Instruction::Add:
5097     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5098   case Instruction::Sub:
5099     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5100   case Instruction::Mul:
5101     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5102   case Instruction::SDiv:
5103     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5104   case Instruction::UDiv:
5105     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5106   case Instruction::SRem:
5107     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5108   case Instruction::URem:
5109     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5110   case Instruction::Shl:
5111     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5112   case Instruction::LShr:
5113     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5114   case Instruction::AShr:
5115     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5116   case Instruction::And:
5117     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5118   case Instruction::Or:
5119     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5120   case Instruction::Xor:
5121     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5122   case Instruction::FAdd:
5123     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5124   case Instruction::FSub:
5125     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5126   case Instruction::FMul:
5127     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5128   case Instruction::FDiv:
5129     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5130   case Instruction::FRem:
5131     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5132   default:
5133     llvm_unreachable("Unexpected opcode");
5134   }
5135 }
5136 
5137 /// Given operands for a BinaryOperator, see if we can fold the result.
5138 /// If not, this returns null.
5139 /// Try to use FastMathFlags when folding the result.
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const FastMathFlags & FMF,const SimplifyQuery & Q,unsigned MaxRecurse)5140 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5141                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5142                             unsigned MaxRecurse) {
5143   switch (Opcode) {
5144   case Instruction::FAdd:
5145     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5146   case Instruction::FSub:
5147     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5148   case Instruction::FMul:
5149     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5150   case Instruction::FDiv:
5151     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5152   default:
5153     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5154   }
5155 }
5156 
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,const SimplifyQuery & Q)5157 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5158                            const SimplifyQuery &Q) {
5159   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5160 }
5161 
SimplifyBinOp(unsigned Opcode,Value * LHS,Value * RHS,FastMathFlags FMF,const SimplifyQuery & Q)5162 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5163                            FastMathFlags FMF, const SimplifyQuery &Q) {
5164   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5165 }
5166 
5167 /// Given operands for a CmpInst, see if we can fold the result.
SimplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q,unsigned MaxRecurse)5168 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5169                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5170   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5171     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5172   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5173 }
5174 
SimplifyCmpInst(unsigned Predicate,Value * LHS,Value * RHS,const SimplifyQuery & Q)5175 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5176                              const SimplifyQuery &Q) {
5177   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5178 }
5179 
IsIdempotent(Intrinsic::ID ID)5180 static bool IsIdempotent(Intrinsic::ID ID) {
5181   switch (ID) {
5182   default: return false;
5183 
5184   // Unary idempotent: f(f(x)) = f(x)
5185   case Intrinsic::fabs:
5186   case Intrinsic::floor:
5187   case Intrinsic::ceil:
5188   case Intrinsic::trunc:
5189   case Intrinsic::rint:
5190   case Intrinsic::nearbyint:
5191   case Intrinsic::round:
5192   case Intrinsic::roundeven:
5193   case Intrinsic::canonicalize:
5194     return true;
5195   }
5196 }
5197 
SimplifyRelativeLoad(Constant * Ptr,Constant * Offset,const DataLayout & DL)5198 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5199                                    const DataLayout &DL) {
5200   GlobalValue *PtrSym;
5201   APInt PtrOffset;
5202   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5203     return nullptr;
5204 
5205   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5206   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5207   Type *Int32PtrTy = Int32Ty->getPointerTo();
5208   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5209 
5210   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5211   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5212     return nullptr;
5213 
5214   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5215   if (OffsetInt % 4 != 0)
5216     return nullptr;
5217 
5218   Constant *C = ConstantExpr::getGetElementPtr(
5219       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5220       ConstantInt::get(Int64Ty, OffsetInt / 4));
5221   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5222   if (!Loaded)
5223     return nullptr;
5224 
5225   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5226   if (!LoadedCE)
5227     return nullptr;
5228 
5229   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5230     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5231     if (!LoadedCE)
5232       return nullptr;
5233   }
5234 
5235   if (LoadedCE->getOpcode() != Instruction::Sub)
5236     return nullptr;
5237 
5238   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5239   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5240     return nullptr;
5241   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5242 
5243   Constant *LoadedRHS = LoadedCE->getOperand(1);
5244   GlobalValue *LoadedRHSSym;
5245   APInt LoadedRHSOffset;
5246   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5247                                   DL) ||
5248       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5249     return nullptr;
5250 
5251   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5252 }
5253 
simplifyUnaryIntrinsic(Function * F,Value * Op0,const SimplifyQuery & Q)5254 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5255                                      const SimplifyQuery &Q) {
5256   // Idempotent functions return the same result when called repeatedly.
5257   Intrinsic::ID IID = F->getIntrinsicID();
5258   if (IsIdempotent(IID))
5259     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5260       if (II->getIntrinsicID() == IID)
5261         return II;
5262 
5263   Value *X;
5264   switch (IID) {
5265   case Intrinsic::fabs:
5266     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5267     break;
5268   case Intrinsic::bswap:
5269     // bswap(bswap(x)) -> x
5270     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5271     break;
5272   case Intrinsic::bitreverse:
5273     // bitreverse(bitreverse(x)) -> x
5274     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5275     break;
5276   case Intrinsic::ctpop: {
5277     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5278     // ctpop(and X, 1) --> and X, 1
5279     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5280     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5281                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5282       return Op0;
5283     break;
5284   }
5285   case Intrinsic::exp:
5286     // exp(log(x)) -> x
5287     if (Q.CxtI->hasAllowReassoc() &&
5288         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5289     break;
5290   case Intrinsic::exp2:
5291     // exp2(log2(x)) -> x
5292     if (Q.CxtI->hasAllowReassoc() &&
5293         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5294     break;
5295   case Intrinsic::log:
5296     // log(exp(x)) -> x
5297     if (Q.CxtI->hasAllowReassoc() &&
5298         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5299     break;
5300   case Intrinsic::log2:
5301     // log2(exp2(x)) -> x
5302     if (Q.CxtI->hasAllowReassoc() &&
5303         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5304          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5305                                                 m_Value(X))))) return X;
5306     break;
5307   case Intrinsic::log10:
5308     // log10(pow(10.0, x)) -> x
5309     if (Q.CxtI->hasAllowReassoc() &&
5310         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5311                                                m_Value(X)))) return X;
5312     break;
5313   case Intrinsic::floor:
5314   case Intrinsic::trunc:
5315   case Intrinsic::ceil:
5316   case Intrinsic::round:
5317   case Intrinsic::roundeven:
5318   case Intrinsic::nearbyint:
5319   case Intrinsic::rint: {
5320     // floor (sitofp x) -> sitofp x
5321     // floor (uitofp x) -> uitofp x
5322     //
5323     // Converting from int always results in a finite integral number or
5324     // infinity. For either of those inputs, these rounding functions always
5325     // return the same value, so the rounding can be eliminated.
5326     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5327       return Op0;
5328     break;
5329   }
5330   case Intrinsic::experimental_vector_reverse:
5331     // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
5332     if (match(Op0,
5333               m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X))))
5334       return X;
5335     break;
5336   default:
5337     break;
5338   }
5339 
5340   return nullptr;
5341 }
5342 
getMaxMinLimit(Intrinsic::ID IID,unsigned BitWidth)5343 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5344   switch (IID) {
5345   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5346   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5347   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5348   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5349   default: llvm_unreachable("Unexpected intrinsic");
5350   }
5351 }
5352 
getMaxMinPredicate(Intrinsic::ID IID)5353 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5354   switch (IID) {
5355   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5356   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5357   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5358   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5359   default: llvm_unreachable("Unexpected intrinsic");
5360   }
5361 }
5362 
5363 /// Given a min/max intrinsic, see if it can be removed based on having an
5364 /// operand that is another min/max intrinsic with shared operand(s). The caller
5365 /// is expected to swap the operand arguments to handle commutation.
foldMinMaxSharedOp(Intrinsic::ID IID,Value * Op0,Value * Op1)5366 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5367   Value *X, *Y;
5368   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5369     return nullptr;
5370 
5371   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5372   if (!MM0)
5373     return nullptr;
5374   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5375 
5376   if (Op1 == X || Op1 == Y ||
5377       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5378     // max (max X, Y), X --> max X, Y
5379     if (IID0 == IID)
5380       return MM0;
5381     // max (min X, Y), X --> X
5382     if (IID0 == getInverseMinMaxIntrinsic(IID))
5383       return Op1;
5384   }
5385   return nullptr;
5386 }
5387 
simplifyBinaryIntrinsic(Function * F,Value * Op0,Value * Op1,const SimplifyQuery & Q)5388 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5389                                       const SimplifyQuery &Q) {
5390   Intrinsic::ID IID = F->getIntrinsicID();
5391   Type *ReturnType = F->getReturnType();
5392   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5393   switch (IID) {
5394   case Intrinsic::abs:
5395     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5396     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5397     // on the outer abs.
5398     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5399       return Op0;
5400     break;
5401 
5402   case Intrinsic::cttz: {
5403     Value *X;
5404     if (match(Op0, m_Shl(m_One(), m_Value(X))))
5405       return X;
5406     break;
5407   }
5408   case Intrinsic::ctlz: {
5409     Value *X;
5410     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
5411       return X;
5412     if (match(Op0, m_AShr(m_Negative(), m_Value())))
5413       return Constant::getNullValue(ReturnType);
5414     break;
5415   }
5416   case Intrinsic::smax:
5417   case Intrinsic::smin:
5418   case Intrinsic::umax:
5419   case Intrinsic::umin: {
5420     // If the arguments are the same, this is a no-op.
5421     if (Op0 == Op1)
5422       return Op0;
5423 
5424     // Canonicalize constant operand as Op1.
5425     if (isa<Constant>(Op0))
5426       std::swap(Op0, Op1);
5427 
5428     // Assume undef is the limit value.
5429     if (Q.isUndefValue(Op1))
5430       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5431 
5432     const APInt *C;
5433     if (match(Op1, m_APIntAllowUndef(C))) {
5434       // Clamp to limit value. For example:
5435       // umax(i8 %x, i8 255) --> 255
5436       if (*C == getMaxMinLimit(IID, BitWidth))
5437         return ConstantInt::get(ReturnType, *C);
5438 
5439       // If the constant op is the opposite of the limit value, the other must
5440       // be larger/smaller or equal. For example:
5441       // umin(i8 %x, i8 255) --> %x
5442       if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth))
5443         return Op0;
5444 
5445       // Remove nested call if constant operands allow it. Example:
5446       // max (max X, 7), 5 -> max X, 7
5447       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5448       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5449         // TODO: loosen undef/splat restrictions for vector constants.
5450         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5451         const APInt *InnerC;
5452         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5453             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5454              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5455              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5456              (IID == Intrinsic::umin && InnerC->ule(*C))))
5457           return Op0;
5458       }
5459     }
5460 
5461     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5462       return V;
5463     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5464       return V;
5465 
5466     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5467     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5468       return Op0;
5469     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5470       return Op1;
5471 
5472     if (Optional<bool> Imp =
5473             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5474       return *Imp ? Op0 : Op1;
5475     if (Optional<bool> Imp =
5476             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5477       return *Imp ? Op1 : Op0;
5478 
5479     break;
5480   }
5481   case Intrinsic::usub_with_overflow:
5482   case Intrinsic::ssub_with_overflow:
5483     // X - X -> { 0, false }
5484     // X - undef -> { 0, false }
5485     // undef - X -> { 0, false }
5486     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5487       return Constant::getNullValue(ReturnType);
5488     break;
5489   case Intrinsic::uadd_with_overflow:
5490   case Intrinsic::sadd_with_overflow:
5491     // X + undef -> { -1, false }
5492     // undef + x -> { -1, false }
5493     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5494       return ConstantStruct::get(
5495           cast<StructType>(ReturnType),
5496           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5497            Constant::getNullValue(ReturnType->getStructElementType(1))});
5498     }
5499     break;
5500   case Intrinsic::umul_with_overflow:
5501   case Intrinsic::smul_with_overflow:
5502     // 0 * X -> { 0, false }
5503     // X * 0 -> { 0, false }
5504     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5505       return Constant::getNullValue(ReturnType);
5506     // undef * X -> { 0, false }
5507     // X * undef -> { 0, false }
5508     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5509       return Constant::getNullValue(ReturnType);
5510     break;
5511   case Intrinsic::uadd_sat:
5512     // sat(MAX + X) -> MAX
5513     // sat(X + MAX) -> MAX
5514     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5515       return Constant::getAllOnesValue(ReturnType);
5516     LLVM_FALLTHROUGH;
5517   case Intrinsic::sadd_sat:
5518     // sat(X + undef) -> -1
5519     // sat(undef + X) -> -1
5520     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5521     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5522     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5523       return Constant::getAllOnesValue(ReturnType);
5524 
5525     // X + 0 -> X
5526     if (match(Op1, m_Zero()))
5527       return Op0;
5528     // 0 + X -> X
5529     if (match(Op0, m_Zero()))
5530       return Op1;
5531     break;
5532   case Intrinsic::usub_sat:
5533     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5534     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5535       return Constant::getNullValue(ReturnType);
5536     LLVM_FALLTHROUGH;
5537   case Intrinsic::ssub_sat:
5538     // X - X -> 0, X - undef -> 0, undef - X -> 0
5539     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5540       return Constant::getNullValue(ReturnType);
5541     // X - 0 -> X
5542     if (match(Op1, m_Zero()))
5543       return Op0;
5544     break;
5545   case Intrinsic::load_relative:
5546     if (auto *C0 = dyn_cast<Constant>(Op0))
5547       if (auto *C1 = dyn_cast<Constant>(Op1))
5548         return SimplifyRelativeLoad(C0, C1, Q.DL);
5549     break;
5550   case Intrinsic::powi:
5551     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5552       // powi(x, 0) -> 1.0
5553       if (Power->isZero())
5554         return ConstantFP::get(Op0->getType(), 1.0);
5555       // powi(x, 1) -> x
5556       if (Power->isOne())
5557         return Op0;
5558     }
5559     break;
5560   case Intrinsic::copysign:
5561     // copysign X, X --> X
5562     if (Op0 == Op1)
5563       return Op0;
5564     // copysign -X, X --> X
5565     // copysign X, -X --> -X
5566     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5567         match(Op1, m_FNeg(m_Specific(Op0))))
5568       return Op1;
5569     break;
5570   case Intrinsic::maxnum:
5571   case Intrinsic::minnum:
5572   case Intrinsic::maximum:
5573   case Intrinsic::minimum: {
5574     // If the arguments are the same, this is a no-op.
5575     if (Op0 == Op1) return Op0;
5576 
5577     // Canonicalize constant operand as Op1.
5578     if (isa<Constant>(Op0))
5579       std::swap(Op0, Op1);
5580 
5581     // If an argument is undef, return the other argument.
5582     if (Q.isUndefValue(Op1))
5583       return Op0;
5584 
5585     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5586     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5587 
5588     // minnum(X, nan) -> X
5589     // maxnum(X, nan) -> X
5590     // minimum(X, nan) -> nan
5591     // maximum(X, nan) -> nan
5592     if (match(Op1, m_NaN()))
5593       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5594 
5595     // In the following folds, inf can be replaced with the largest finite
5596     // float, if the ninf flag is set.
5597     const APFloat *C;
5598     if (match(Op1, m_APFloat(C)) &&
5599         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5600       // minnum(X, -inf) -> -inf
5601       // maxnum(X, +inf) -> +inf
5602       // minimum(X, -inf) -> -inf if nnan
5603       // maximum(X, +inf) -> +inf if nnan
5604       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5605         return ConstantFP::get(ReturnType, *C);
5606 
5607       // minnum(X, +inf) -> X if nnan
5608       // maxnum(X, -inf) -> X if nnan
5609       // minimum(X, +inf) -> X
5610       // maximum(X, -inf) -> X
5611       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5612         return Op0;
5613     }
5614 
5615     // Min/max of the same operation with common operand:
5616     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5617     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5618       if (M0->getIntrinsicID() == IID &&
5619           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5620         return Op0;
5621     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5622       if (M1->getIntrinsicID() == IID &&
5623           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5624         return Op1;
5625 
5626     break;
5627   }
5628   case Intrinsic::experimental_vector_extract: {
5629     Type *ReturnType = F->getReturnType();
5630 
5631     // (extract_vector (insert_vector _, X, 0), 0) -> X
5632     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
5633     Value *X = nullptr;
5634     if (match(Op0, m_Intrinsic<Intrinsic::experimental_vector_insert>(
5635                        m_Value(), m_Value(X), m_Zero())) &&
5636         IdxN == 0 && X->getType() == ReturnType)
5637       return X;
5638 
5639     break;
5640   }
5641   default:
5642     break;
5643   }
5644 
5645   return nullptr;
5646 }
5647 
simplifyIntrinsic(CallBase * Call,const SimplifyQuery & Q)5648 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5649 
5650   // Intrinsics with no operands have some kind of side effect. Don't simplify.
5651   unsigned NumOperands = Call->getNumArgOperands();
5652   if (!NumOperands)
5653     return nullptr;
5654 
5655   Function *F = cast<Function>(Call->getCalledFunction());
5656   Intrinsic::ID IID = F->getIntrinsicID();
5657   if (NumOperands == 1)
5658     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5659 
5660   if (NumOperands == 2)
5661     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5662                                    Call->getArgOperand(1), Q);
5663 
5664   // Handle intrinsics with 3 or more arguments.
5665   switch (IID) {
5666   case Intrinsic::masked_load:
5667   case Intrinsic::masked_gather: {
5668     Value *MaskArg = Call->getArgOperand(2);
5669     Value *PassthruArg = Call->getArgOperand(3);
5670     // If the mask is all zeros or undef, the "passthru" argument is the result.
5671     if (maskIsAllZeroOrUndef(MaskArg))
5672       return PassthruArg;
5673     return nullptr;
5674   }
5675   case Intrinsic::fshl:
5676   case Intrinsic::fshr: {
5677     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5678           *ShAmtArg = Call->getArgOperand(2);
5679 
5680     // If both operands are undef, the result is undef.
5681     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5682       return UndefValue::get(F->getReturnType());
5683 
5684     // If shift amount is undef, assume it is zero.
5685     if (Q.isUndefValue(ShAmtArg))
5686       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5687 
5688     const APInt *ShAmtC;
5689     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5690       // If there's effectively no shift, return the 1st arg or 2nd arg.
5691       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5692       if (ShAmtC->urem(BitWidth).isNullValue())
5693         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5694     }
5695     return nullptr;
5696   }
5697   case Intrinsic::fma:
5698   case Intrinsic::fmuladd: {
5699     Value *Op0 = Call->getArgOperand(0);
5700     Value *Op1 = Call->getArgOperand(1);
5701     Value *Op2 = Call->getArgOperand(2);
5702     if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q))
5703       return V;
5704     return nullptr;
5705   }
5706   case Intrinsic::smul_fix:
5707   case Intrinsic::smul_fix_sat: {
5708     Value *Op0 = Call->getArgOperand(0);
5709     Value *Op1 = Call->getArgOperand(1);
5710     Value *Op2 = Call->getArgOperand(2);
5711     Type *ReturnType = F->getReturnType();
5712 
5713     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
5714     // when both Op0 and Op1 are constant so we do not care about that special
5715     // case here).
5716     if (isa<Constant>(Op0))
5717       std::swap(Op0, Op1);
5718 
5719     // X * 0 -> 0
5720     if (match(Op1, m_Zero()))
5721       return Constant::getNullValue(ReturnType);
5722 
5723     // X * undef -> 0
5724     if (Q.isUndefValue(Op1))
5725       return Constant::getNullValue(ReturnType);
5726 
5727     // X * (1 << Scale) -> X
5728     APInt ScaledOne =
5729         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
5730                             cast<ConstantInt>(Op2)->getZExtValue());
5731     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
5732       return Op0;
5733 
5734     return nullptr;
5735   }
5736   case Intrinsic::experimental_vector_insert: {
5737     Value *Vec = Call->getArgOperand(0);
5738     Value *SubVec = Call->getArgOperand(1);
5739     Value *Idx = Call->getArgOperand(2);
5740     Type *ReturnType = F->getReturnType();
5741 
5742     // (insert_vector Y, (extract_vector X, 0), 0) -> X
5743     // where: Y is X, or Y is undef
5744     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5745     Value *X = nullptr;
5746     if (match(SubVec, m_Intrinsic<Intrinsic::experimental_vector_extract>(
5747                           m_Value(X), m_Zero())) &&
5748         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
5749         X->getType() == ReturnType)
5750       return X;
5751 
5752     return nullptr;
5753   }
5754   default:
5755     return nullptr;
5756   }
5757 }
5758 
tryConstantFoldCall(CallBase * Call,const SimplifyQuery & Q)5759 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
5760   auto *F = dyn_cast<Function>(Call->getCalledOperand());
5761   if (!F || !canConstantFoldCallTo(Call, F))
5762     return nullptr;
5763 
5764   SmallVector<Constant *, 4> ConstantArgs;
5765   unsigned NumArgs = Call->getNumArgOperands();
5766   ConstantArgs.reserve(NumArgs);
5767   for (auto &Arg : Call->args()) {
5768     Constant *C = dyn_cast<Constant>(&Arg);
5769     if (!C) {
5770       if (isa<MetadataAsValue>(Arg.get()))
5771         continue;
5772       return nullptr;
5773     }
5774     ConstantArgs.push_back(C);
5775   }
5776 
5777   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5778 }
5779 
SimplifyCall(CallBase * Call,const SimplifyQuery & Q)5780 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5781   // musttail calls can only be simplified if they are also DCEd.
5782   // As we can't guarantee this here, don't simplify them.
5783   if (Call->isMustTailCall())
5784     return nullptr;
5785 
5786   // call undef -> poison
5787   // call null -> poison
5788   Value *Callee = Call->getCalledOperand();
5789   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5790     return PoisonValue::get(Call->getType());
5791 
5792   if (Value *V = tryConstantFoldCall(Call, Q))
5793     return V;
5794 
5795   auto *F = dyn_cast<Function>(Callee);
5796   if (F && F->isIntrinsic())
5797     if (Value *Ret = simplifyIntrinsic(Call, Q))
5798       return Ret;
5799 
5800   return nullptr;
5801 }
5802 
5803 /// Given operands for a Freeze, see if we can fold the result.
SimplifyFreezeInst(Value * Op0,const SimplifyQuery & Q)5804 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5805   // Use a utility function defined in ValueTracking.
5806   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
5807     return Op0;
5808   // We have room for improvement.
5809   return nullptr;
5810 }
5811 
SimplifyFreezeInst(Value * Op0,const SimplifyQuery & Q)5812 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5813   return ::SimplifyFreezeInst(Op0, Q);
5814 }
5815 
5816 /// See if we can compute a simplified version of this instruction.
5817 /// If not, this returns null.
5818 
SimplifyInstruction(Instruction * I,const SimplifyQuery & SQ,OptimizationRemarkEmitter * ORE)5819 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5820                                  OptimizationRemarkEmitter *ORE) {
5821   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5822   Value *Result;
5823 
5824   switch (I->getOpcode()) {
5825   default:
5826     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5827     break;
5828   case Instruction::FNeg:
5829     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5830     break;
5831   case Instruction::FAdd:
5832     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5833                               I->getFastMathFlags(), Q);
5834     break;
5835   case Instruction::Add:
5836     Result =
5837         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5838                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5839                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5840     break;
5841   case Instruction::FSub:
5842     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5843                               I->getFastMathFlags(), Q);
5844     break;
5845   case Instruction::Sub:
5846     Result =
5847         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5848                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5849                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5850     break;
5851   case Instruction::FMul:
5852     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5853                               I->getFastMathFlags(), Q);
5854     break;
5855   case Instruction::Mul:
5856     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5857     break;
5858   case Instruction::SDiv:
5859     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5860     break;
5861   case Instruction::UDiv:
5862     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5863     break;
5864   case Instruction::FDiv:
5865     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5866                               I->getFastMathFlags(), Q);
5867     break;
5868   case Instruction::SRem:
5869     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5870     break;
5871   case Instruction::URem:
5872     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5873     break;
5874   case Instruction::FRem:
5875     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5876                               I->getFastMathFlags(), Q);
5877     break;
5878   case Instruction::Shl:
5879     Result =
5880         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5881                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5882                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5883     break;
5884   case Instruction::LShr:
5885     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5886                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5887     break;
5888   case Instruction::AShr:
5889     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5890                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5891     break;
5892   case Instruction::And:
5893     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5894     break;
5895   case Instruction::Or:
5896     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5897     break;
5898   case Instruction::Xor:
5899     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5900     break;
5901   case Instruction::ICmp:
5902     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5903                               I->getOperand(0), I->getOperand(1), Q);
5904     break;
5905   case Instruction::FCmp:
5906     Result =
5907         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5908                          I->getOperand(1), I->getFastMathFlags(), Q);
5909     break;
5910   case Instruction::Select:
5911     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5912                                 I->getOperand(2), Q);
5913     break;
5914   case Instruction::GetElementPtr: {
5915     SmallVector<Value *, 8> Ops(I->operands());
5916     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5917                              Ops, Q);
5918     break;
5919   }
5920   case Instruction::InsertValue: {
5921     InsertValueInst *IV = cast<InsertValueInst>(I);
5922     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5923                                      IV->getInsertedValueOperand(),
5924                                      IV->getIndices(), Q);
5925     break;
5926   }
5927   case Instruction::InsertElement: {
5928     auto *IE = cast<InsertElementInst>(I);
5929     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5930                                        IE->getOperand(2), Q);
5931     break;
5932   }
5933   case Instruction::ExtractValue: {
5934     auto *EVI = cast<ExtractValueInst>(I);
5935     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5936                                       EVI->getIndices(), Q);
5937     break;
5938   }
5939   case Instruction::ExtractElement: {
5940     auto *EEI = cast<ExtractElementInst>(I);
5941     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5942                                         EEI->getIndexOperand(), Q);
5943     break;
5944   }
5945   case Instruction::ShuffleVector: {
5946     auto *SVI = cast<ShuffleVectorInst>(I);
5947     Result =
5948         SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5949                                   SVI->getShuffleMask(), SVI->getType(), Q);
5950     break;
5951   }
5952   case Instruction::PHI:
5953     Result = SimplifyPHINode(cast<PHINode>(I), Q);
5954     break;
5955   case Instruction::Call: {
5956     Result = SimplifyCall(cast<CallInst>(I), Q);
5957     break;
5958   }
5959   case Instruction::Freeze:
5960     Result = SimplifyFreezeInst(I->getOperand(0), Q);
5961     break;
5962 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5963 #include "llvm/IR/Instruction.def"
5964 #undef HANDLE_CAST_INST
5965     Result =
5966         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5967     break;
5968   case Instruction::Alloca:
5969     // No simplifications for Alloca and it can't be constant folded.
5970     Result = nullptr;
5971     break;
5972   }
5973 
5974   /// If called on unreachable code, the above logic may report that the
5975   /// instruction simplified to itself.  Make life easier for users by
5976   /// detecting that case here, returning a safe value instead.
5977   return Result == I ? UndefValue::get(I->getType()) : Result;
5978 }
5979 
5980 /// Implementation of recursive simplification through an instruction's
5981 /// uses.
5982 ///
5983 /// This is the common implementation of the recursive simplification routines.
5984 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5985 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5986 /// instructions to process and attempt to simplify it using
5987 /// InstructionSimplify. Recursively visited users which could not be
5988 /// simplified themselves are to the optional UnsimplifiedUsers set for
5989 /// further processing by the caller.
5990 ///
5991 /// This routine returns 'true' only when *it* simplifies something. The passed
5992 /// in simplified value does not count toward this.
replaceAndRecursivelySimplifyImpl(Instruction * I,Value * SimpleV,const TargetLibraryInfo * TLI,const DominatorTree * DT,AssumptionCache * AC,SmallSetVector<Instruction *,8> * UnsimplifiedUsers=nullptr)5993 static bool replaceAndRecursivelySimplifyImpl(
5994     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5995     const DominatorTree *DT, AssumptionCache *AC,
5996     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
5997   bool Simplified = false;
5998   SmallSetVector<Instruction *, 8> Worklist;
5999   const DataLayout &DL = I->getModule()->getDataLayout();
6000 
6001   // If we have an explicit value to collapse to, do that round of the
6002   // simplification loop by hand initially.
6003   if (SimpleV) {
6004     for (User *U : I->users())
6005       if (U != I)
6006         Worklist.insert(cast<Instruction>(U));
6007 
6008     // Replace the instruction with its simplified value.
6009     I->replaceAllUsesWith(SimpleV);
6010 
6011     // Gracefully handle edge cases where the instruction is not wired into any
6012     // parent block.
6013     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6014         !I->mayHaveSideEffects())
6015       I->eraseFromParent();
6016   } else {
6017     Worklist.insert(I);
6018   }
6019 
6020   // Note that we must test the size on each iteration, the worklist can grow.
6021   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
6022     I = Worklist[Idx];
6023 
6024     // See if this instruction simplifies.
6025     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6026     if (!SimpleV) {
6027       if (UnsimplifiedUsers)
6028         UnsimplifiedUsers->insert(I);
6029       continue;
6030     }
6031 
6032     Simplified = true;
6033 
6034     // Stash away all the uses of the old instruction so we can check them for
6035     // recursive simplifications after a RAUW. This is cheaper than checking all
6036     // uses of To on the recursive step in most cases.
6037     for (User *U : I->users())
6038       Worklist.insert(cast<Instruction>(U));
6039 
6040     // Replace the instruction with its simplified value.
6041     I->replaceAllUsesWith(SimpleV);
6042 
6043     // Gracefully handle edge cases where the instruction is not wired into any
6044     // parent block.
6045     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6046         !I->mayHaveSideEffects())
6047       I->eraseFromParent();
6048   }
6049   return Simplified;
6050 }
6051 
replaceAndRecursivelySimplify(Instruction * I,Value * SimpleV,const TargetLibraryInfo * TLI,const DominatorTree * DT,AssumptionCache * AC,SmallSetVector<Instruction *,8> * UnsimplifiedUsers)6052 bool llvm::replaceAndRecursivelySimplify(
6053     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6054     const DominatorTree *DT, AssumptionCache *AC,
6055     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6056   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6057   assert(SimpleV && "Must provide a simplified value.");
6058   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6059                                            UnsimplifiedUsers);
6060 }
6061 
6062 namespace llvm {
getBestSimplifyQuery(Pass & P,Function & F)6063 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6064   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6065   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6066   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6067   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6068   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6069   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6070   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6071 }
6072 
getBestSimplifyQuery(LoopStandardAnalysisResults & AR,const DataLayout & DL)6073 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6074                                          const DataLayout &DL) {
6075   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6076 }
6077 
6078 template <class T, class... TArgs>
getBestSimplifyQuery(AnalysisManager<T,TArgs...> & AM,Function & F)6079 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6080                                          Function &F) {
6081   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6082   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6083   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6084   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6085 }
6086 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6087                                                   Function &);
6088 }
6089