1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/GuardUtils.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/GenericDomTree.h"
54 #include "llvm/Support/InstructionCost.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar/LoopPassManager.h"
57 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
58 #include "llvm/Transforms/Utils/Cloning.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include "llvm/Transforms/Utils/LoopUtils.h"
61 #include "llvm/Transforms/Utils/ValueMapper.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <iterator>
65 #include <numeric>
66 #include <optional>
67 #include <utility>
68
69 #define DEBUG_TYPE "simple-loop-unswitch"
70
71 using namespace llvm;
72 using namespace llvm::PatternMatch;
73
74 STATISTIC(NumBranches, "Number of branches unswitched");
75 STATISTIC(NumSwitches, "Number of switches unswitched");
76 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
77 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
78 STATISTIC(
79 NumCostMultiplierSkipped,
80 "Number of unswitch candidates that had their cost multiplier skipped");
81
82 static cl::opt<bool> EnableNonTrivialUnswitch(
83 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
84 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
85 "following the configuration passed into the pass."));
86
87 static cl::opt<int>
88 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
89 cl::desc("The cost threshold for unswitching a loop."));
90
91 static cl::opt<bool> EnableUnswitchCostMultiplier(
92 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
93 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
94 "explosion in nontrivial unswitch."));
95 static cl::opt<int> UnswitchSiblingsToplevelDiv(
96 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
97 cl::desc("Toplevel siblings divisor for cost multiplier."));
98 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
99 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
100 cl::desc("Number of unswitch candidates that are ignored when calculating "
101 "cost multiplier."));
102 static cl::opt<bool> UnswitchGuards(
103 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
104 cl::desc("If enabled, simple loop unswitching will also consider "
105 "llvm.experimental.guard intrinsics as unswitch candidates."));
106 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
107 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
108 cl::init(false), cl::Hidden,
109 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
110 "null checks to save time analyzing if we can keep it."));
111 static cl::opt<unsigned>
112 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
113 cl::desc("Max number of memory uses to explore during "
114 "partial unswitching analysis"),
115 cl::init(100), cl::Hidden);
116 static cl::opt<bool> FreezeLoopUnswitchCond(
117 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
118 cl::desc("If enabled, the freeze instruction will be added to condition "
119 "of loop unswitch to prevent miscompilation."));
120
121 namespace {
122 struct NonTrivialUnswitchCandidate {
123 Instruction *TI = nullptr;
124 TinyPtrVector<Value *> Invariants;
125 std::optional<InstructionCost> Cost;
NonTrivialUnswitchCandidate__anon57c681190111::NonTrivialUnswitchCandidate126 NonTrivialUnswitchCandidate(
127 Instruction *TI, ArrayRef<Value *> Invariants,
128 std::optional<InstructionCost> Cost = std::nullopt)
129 : TI(TI), Invariants(Invariants), Cost(Cost){};
130 };
131 } // end anonymous namespace.
132
133 // Helper to skip (select x, true, false), which matches both a logical AND and
134 // OR and can confuse code that tries to determine if \p Cond is either a
135 // logical AND or OR but not both.
skipTrivialSelect(Value * Cond)136 static Value *skipTrivialSelect(Value *Cond) {
137 Value *CondNext;
138 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
139 Cond = CondNext;
140 return Cond;
141 }
142
143 /// Collect all of the loop invariant input values transitively used by the
144 /// homogeneous instruction graph from a given root.
145 ///
146 /// This essentially walks from a root recursively through loop variant operands
147 /// which have perform the same logical operation (AND or OR) and finds all
148 /// inputs which are loop invariant. For some operations these can be
149 /// re-associated and unswitched out of the loop entirely.
150 static TinyPtrVector<Value *>
collectHomogenousInstGraphLoopInvariants(const Loop & L,Instruction & Root,const LoopInfo & LI)151 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root,
152 const LoopInfo &LI) {
153 assert(!L.isLoopInvariant(&Root) &&
154 "Only need to walk the graph if root itself is not invariant.");
155 TinyPtrVector<Value *> Invariants;
156
157 bool IsRootAnd = match(&Root, m_LogicalAnd());
158 bool IsRootOr = match(&Root, m_LogicalOr());
159
160 // Build a worklist and recurse through operators collecting invariants.
161 SmallVector<Instruction *, 4> Worklist;
162 SmallPtrSet<Instruction *, 8> Visited;
163 Worklist.push_back(&Root);
164 Visited.insert(&Root);
165 do {
166 Instruction &I = *Worklist.pop_back_val();
167 for (Value *OpV : I.operand_values()) {
168 // Skip constants as unswitching isn't interesting for them.
169 if (isa<Constant>(OpV))
170 continue;
171
172 // Add it to our result if loop invariant.
173 if (L.isLoopInvariant(OpV)) {
174 Invariants.push_back(OpV);
175 continue;
176 }
177
178 // If not an instruction with the same opcode, nothing we can do.
179 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
180
181 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
182 (IsRootOr && match(OpI, m_LogicalOr())))) {
183 // Visit this operand.
184 if (Visited.insert(OpI).second)
185 Worklist.push_back(OpI);
186 }
187 }
188 } while (!Worklist.empty());
189
190 return Invariants;
191 }
192
replaceLoopInvariantUses(const Loop & L,Value * Invariant,Constant & Replacement)193 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
194 Constant &Replacement) {
195 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
196
197 // Replace uses of LIC in the loop with the given constant.
198 // We use make_early_inc_range as set invalidates the iterator.
199 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
200 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
201
202 // Replace this use within the loop body.
203 if (UserI && L.contains(UserI))
204 U.set(&Replacement);
205 }
206 }
207
208 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
209 /// incoming values along this edge.
areLoopExitPHIsLoopInvariant(const Loop & L,const BasicBlock & ExitingBB,const BasicBlock & ExitBB)210 static bool areLoopExitPHIsLoopInvariant(const Loop &L,
211 const BasicBlock &ExitingBB,
212 const BasicBlock &ExitBB) {
213 for (const Instruction &I : ExitBB) {
214 auto *PN = dyn_cast<PHINode>(&I);
215 if (!PN)
216 // No more PHIs to check.
217 return true;
218
219 // If the incoming value for this edge isn't loop invariant the unswitch
220 // won't be trivial.
221 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
222 return false;
223 }
224 llvm_unreachable("Basic blocks should never be empty!");
225 }
226
227 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
228 /// end of \p BB and conditionally branch on the copied condition. We only
229 /// branch on a single value.
buildPartialUnswitchConditionalBranch(BasicBlock & BB,ArrayRef<Value * > Invariants,bool Direction,BasicBlock & UnswitchedSucc,BasicBlock & NormalSucc,bool InsertFreeze,const Instruction * I,AssumptionCache * AC,const DominatorTree & DT)230 static void buildPartialUnswitchConditionalBranch(
231 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
232 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
233 const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
234 IRBuilder<> IRB(&BB);
235
236 SmallVector<Value *> FrozenInvariants;
237 for (Value *Inv : Invariants) {
238 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
239 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
240 FrozenInvariants.push_back(Inv);
241 }
242
243 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
244 : IRB.CreateAnd(FrozenInvariants);
245 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
246 Direction ? &NormalSucc : &UnswitchedSucc);
247 }
248
249 /// Copy a set of loop invariant values, and conditionally branch on them.
buildPartialInvariantUnswitchConditionalBranch(BasicBlock & BB,ArrayRef<Value * > ToDuplicate,bool Direction,BasicBlock & UnswitchedSucc,BasicBlock & NormalSucc,Loop & L,MemorySSAUpdater * MSSAU)250 static void buildPartialInvariantUnswitchConditionalBranch(
251 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
252 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
253 MemorySSAUpdater *MSSAU) {
254 ValueToValueMapTy VMap;
255 for (auto *Val : reverse(ToDuplicate)) {
256 Instruction *Inst = cast<Instruction>(Val);
257 Instruction *NewInst = Inst->clone();
258 NewInst->insertInto(&BB, BB.end());
259 RemapInstruction(NewInst, VMap,
260 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
261 VMap[Val] = NewInst;
262
263 if (!MSSAU)
264 continue;
265
266 MemorySSA *MSSA = MSSAU->getMemorySSA();
267 if (auto *MemUse =
268 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
269 auto *DefiningAccess = MemUse->getDefiningAccess();
270 // Get the first defining access before the loop.
271 while (L.contains(DefiningAccess->getBlock())) {
272 // If the defining access is a MemoryPhi, get the incoming
273 // value for the pre-header as defining access.
274 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
275 DefiningAccess =
276 MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
277 else
278 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
279 }
280 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
281 NewInst->getParent(),
282 MemorySSA::BeforeTerminator);
283 }
284 }
285
286 IRBuilder<> IRB(&BB);
287 Value *Cond = VMap[ToDuplicate[0]];
288 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
289 Direction ? &NormalSucc : &UnswitchedSucc);
290 }
291
292 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
293 ///
294 /// Requires that the loop exit and unswitched basic block are the same, and
295 /// that the exiting block was a unique predecessor of that block. Rewrites the
296 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
297 /// PHI nodes from the old preheader that now contains the unswitched
298 /// terminator.
rewritePHINodesForUnswitchedExitBlock(BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH)299 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
300 BasicBlock &OldExitingBB,
301 BasicBlock &OldPH) {
302 for (PHINode &PN : UnswitchedBB.phis()) {
303 // When the loop exit is directly unswitched we just need to update the
304 // incoming basic block. We loop to handle weird cases with repeated
305 // incoming blocks, but expect to typically only have one operand here.
306 for (auto i : seq<int>(0, PN.getNumOperands())) {
307 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
308 "Found incoming block different from unique predecessor!");
309 PN.setIncomingBlock(i, &OldPH);
310 }
311 }
312 }
313
314 /// Rewrite the PHI nodes in the loop exit basic block and the split off
315 /// unswitched block.
316 ///
317 /// Because the exit block remains an exit from the loop, this rewrites the
318 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
319 /// nodes into the unswitched basic block to select between the value in the
320 /// old preheader and the loop exit.
rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock & ExitBB,BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH,bool FullUnswitch)321 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
322 BasicBlock &UnswitchedBB,
323 BasicBlock &OldExitingBB,
324 BasicBlock &OldPH,
325 bool FullUnswitch) {
326 assert(&ExitBB != &UnswitchedBB &&
327 "Must have different loop exit and unswitched blocks!");
328 Instruction *InsertPt = &*UnswitchedBB.begin();
329 for (PHINode &PN : ExitBB.phis()) {
330 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
331 PN.getName() + ".split", InsertPt);
332
333 // Walk backwards over the old PHI node's inputs to minimize the cost of
334 // removing each one. We have to do this weird loop manually so that we
335 // create the same number of new incoming edges in the new PHI as we expect
336 // each case-based edge to be included in the unswitched switch in some
337 // cases.
338 // FIXME: This is really, really gross. It would be much cleaner if LLVM
339 // allowed us to create a single entry for a predecessor block without
340 // having separate entries for each "edge" even though these edges are
341 // required to produce identical results.
342 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
343 if (PN.getIncomingBlock(i) != &OldExitingBB)
344 continue;
345
346 Value *Incoming = PN.getIncomingValue(i);
347 if (FullUnswitch)
348 // No more edge from the old exiting block to the exit block.
349 PN.removeIncomingValue(i);
350
351 NewPN->addIncoming(Incoming, &OldPH);
352 }
353
354 // Now replace the old PHI with the new one and wire the old one in as an
355 // input to the new one.
356 PN.replaceAllUsesWith(NewPN);
357 NewPN->addIncoming(&PN, &ExitBB);
358 }
359 }
360
361 /// Hoist the current loop up to the innermost loop containing a remaining exit.
362 ///
363 /// Because we've removed an exit from the loop, we may have changed the set of
364 /// loops reachable and need to move the current loop up the loop nest or even
365 /// to an entirely separate nest.
hoistLoopToNewParent(Loop & L,BasicBlock & Preheader,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU,ScalarEvolution * SE)366 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
367 DominatorTree &DT, LoopInfo &LI,
368 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
369 // If the loop is already at the top level, we can't hoist it anywhere.
370 Loop *OldParentL = L.getParentLoop();
371 if (!OldParentL)
372 return;
373
374 SmallVector<BasicBlock *, 4> Exits;
375 L.getExitBlocks(Exits);
376 Loop *NewParentL = nullptr;
377 for (auto *ExitBB : Exits)
378 if (Loop *ExitL = LI.getLoopFor(ExitBB))
379 if (!NewParentL || NewParentL->contains(ExitL))
380 NewParentL = ExitL;
381
382 if (NewParentL == OldParentL)
383 return;
384
385 // The new parent loop (if different) should always contain the old one.
386 if (NewParentL)
387 assert(NewParentL->contains(OldParentL) &&
388 "Can only hoist this loop up the nest!");
389
390 // The preheader will need to move with the body of this loop. However,
391 // because it isn't in this loop we also need to update the primary loop map.
392 assert(OldParentL == LI.getLoopFor(&Preheader) &&
393 "Parent loop of this loop should contain this loop's preheader!");
394 LI.changeLoopFor(&Preheader, NewParentL);
395
396 // Remove this loop from its old parent.
397 OldParentL->removeChildLoop(&L);
398
399 // Add the loop either to the new parent or as a top-level loop.
400 if (NewParentL)
401 NewParentL->addChildLoop(&L);
402 else
403 LI.addTopLevelLoop(&L);
404
405 // Remove this loops blocks from the old parent and every other loop up the
406 // nest until reaching the new parent. Also update all of these
407 // no-longer-containing loops to reflect the nesting change.
408 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
409 OldContainingL = OldContainingL->getParentLoop()) {
410 llvm::erase_if(OldContainingL->getBlocksVector(),
411 [&](const BasicBlock *BB) {
412 return BB == &Preheader || L.contains(BB);
413 });
414
415 OldContainingL->getBlocksSet().erase(&Preheader);
416 for (BasicBlock *BB : L.blocks())
417 OldContainingL->getBlocksSet().erase(BB);
418
419 // Because we just hoisted a loop out of this one, we have essentially
420 // created new exit paths from it. That means we need to form LCSSA PHI
421 // nodes for values used in the no-longer-nested loop.
422 formLCSSA(*OldContainingL, DT, &LI, SE);
423
424 // We shouldn't need to form dedicated exits because the exit introduced
425 // here is the (just split by unswitching) preheader. However, after trivial
426 // unswitching it is possible to get new non-dedicated exits out of parent
427 // loop so let's conservatively form dedicated exit blocks and figure out
428 // if we can optimize later.
429 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
430 /*PreserveLCSSA*/ true);
431 }
432 }
433
434 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
435 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
436 // as exiting block.
getTopMostExitingLoop(const BasicBlock * ExitBB,const LoopInfo & LI)437 static const Loop *getTopMostExitingLoop(const BasicBlock *ExitBB,
438 const LoopInfo &LI) {
439 const Loop *TopMost = LI.getLoopFor(ExitBB);
440 const Loop *Current = TopMost;
441 while (Current) {
442 if (Current->isLoopExiting(ExitBB))
443 TopMost = Current;
444 Current = Current->getParentLoop();
445 }
446 return TopMost;
447 }
448
449 /// Unswitch a trivial branch if the condition is loop invariant.
450 ///
451 /// This routine should only be called when loop code leading to the branch has
452 /// been validated as trivial (no side effects). This routine checks if the
453 /// condition is invariant and one of the successors is a loop exit. This
454 /// allows us to unswitch without duplicating the loop, making it trivial.
455 ///
456 /// If this routine fails to unswitch the branch it returns false.
457 ///
458 /// If the branch can be unswitched, this routine splits the preheader and
459 /// hoists the branch above that split. Preserves loop simplified form
460 /// (splitting the exit block as necessary). It simplifies the branch within
461 /// the loop to an unconditional branch but doesn't remove it entirely. Further
462 /// cleanup can be done with some simplifycfg like pass.
463 ///
464 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
465 /// invalidated by this.
unswitchTrivialBranch(Loop & L,BranchInst & BI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)466 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
467 LoopInfo &LI, ScalarEvolution *SE,
468 MemorySSAUpdater *MSSAU) {
469 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
470 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
471
472 // The loop invariant values that we want to unswitch.
473 TinyPtrVector<Value *> Invariants;
474
475 // When true, we're fully unswitching the branch rather than just unswitching
476 // some input conditions to the branch.
477 bool FullUnswitch = false;
478
479 Value *Cond = skipTrivialSelect(BI.getCondition());
480 if (L.isLoopInvariant(Cond)) {
481 Invariants.push_back(Cond);
482 FullUnswitch = true;
483 } else {
484 if (auto *CondInst = dyn_cast<Instruction>(Cond))
485 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
486 if (Invariants.empty()) {
487 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n");
488 return false;
489 }
490 }
491
492 // Check that one of the branch's successors exits, and which one.
493 bool ExitDirection = true;
494 int LoopExitSuccIdx = 0;
495 auto *LoopExitBB = BI.getSuccessor(0);
496 if (L.contains(LoopExitBB)) {
497 ExitDirection = false;
498 LoopExitSuccIdx = 1;
499 LoopExitBB = BI.getSuccessor(1);
500 if (L.contains(LoopExitBB)) {
501 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n");
502 return false;
503 }
504 }
505 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
506 auto *ParentBB = BI.getParent();
507 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
508 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n");
509 return false;
510 }
511
512 // When unswitching only part of the branch's condition, we need the exit
513 // block to be reached directly from the partially unswitched input. This can
514 // be done when the exit block is along the true edge and the branch condition
515 // is a graph of `or` operations, or the exit block is along the false edge
516 // and the condition is a graph of `and` operations.
517 if (!FullUnswitch) {
518 if (ExitDirection ? !match(Cond, m_LogicalOr())
519 : !match(Cond, m_LogicalAnd())) {
520 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "
521 "non-full unswitch!\n");
522 return false;
523 }
524 }
525
526 LLVM_DEBUG({
527 dbgs() << " unswitching trivial invariant conditions for: " << BI
528 << "\n";
529 for (Value *Invariant : Invariants) {
530 dbgs() << " " << *Invariant << " == true";
531 if (Invariant != Invariants.back())
532 dbgs() << " ||";
533 dbgs() << "\n";
534 }
535 });
536
537 // If we have scalar evolutions, we need to invalidate them including this
538 // loop, the loop containing the exit block and the topmost parent loop
539 // exiting via LoopExitBB.
540 if (SE) {
541 if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
542 SE->forgetLoop(ExitL);
543 else
544 // Forget the entire nest as this exits the entire nest.
545 SE->forgetTopmostLoop(&L);
546 SE->forgetBlockAndLoopDispositions();
547 }
548
549 if (MSSAU && VerifyMemorySSA)
550 MSSAU->getMemorySSA()->verifyMemorySSA();
551
552 // Split the preheader, so that we know that there is a safe place to insert
553 // the conditional branch. We will change the preheader to have a conditional
554 // branch on LoopCond.
555 BasicBlock *OldPH = L.getLoopPreheader();
556 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
557
558 // Now that we have a place to insert the conditional branch, create a place
559 // to branch to: this is the exit block out of the loop that we are
560 // unswitching. We need to split this if there are other loop predecessors.
561 // Because the loop is in simplified form, *any* other predecessor is enough.
562 BasicBlock *UnswitchedBB;
563 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
564 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
565 "A branch's parent isn't a predecessor!");
566 UnswitchedBB = LoopExitBB;
567 } else {
568 UnswitchedBB =
569 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
570 }
571
572 if (MSSAU && VerifyMemorySSA)
573 MSSAU->getMemorySSA()->verifyMemorySSA();
574
575 // Actually move the invariant uses into the unswitched position. If possible,
576 // we do this by moving the instructions, but when doing partial unswitching
577 // we do it by building a new merge of the values in the unswitched position.
578 OldPH->getTerminator()->eraseFromParent();
579 if (FullUnswitch) {
580 // If fully unswitching, we can use the existing branch instruction.
581 // Splice it into the old PH to gate reaching the new preheader and re-point
582 // its successors.
583 OldPH->splice(OldPH->end(), BI.getParent(), BI.getIterator());
584 BI.setCondition(Cond);
585 if (MSSAU) {
586 // Temporarily clone the terminator, to make MSSA update cheaper by
587 // separating "insert edge" updates from "remove edge" ones.
588 BI.clone()->insertInto(ParentBB, ParentBB->end());
589 } else {
590 // Create a new unconditional branch that will continue the loop as a new
591 // terminator.
592 BranchInst::Create(ContinueBB, ParentBB);
593 }
594 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
595 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
596 } else {
597 // Only unswitching a subset of inputs to the condition, so we will need to
598 // build a new branch that merges the invariant inputs.
599 if (ExitDirection)
600 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
601 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
602 "condition!");
603 else
604 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
605 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
606 " condition!");
607 buildPartialUnswitchConditionalBranch(
608 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
609 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
610 }
611
612 // Update the dominator tree with the added edge.
613 DT.insertEdge(OldPH, UnswitchedBB);
614
615 // After the dominator tree was updated with the added edge, update MemorySSA
616 // if available.
617 if (MSSAU) {
618 SmallVector<CFGUpdate, 1> Updates;
619 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
620 MSSAU->applyInsertUpdates(Updates, DT);
621 }
622
623 // Finish updating dominator tree and memory ssa for full unswitch.
624 if (FullUnswitch) {
625 if (MSSAU) {
626 // Remove the cloned branch instruction.
627 ParentBB->getTerminator()->eraseFromParent();
628 // Create unconditional branch now.
629 BranchInst::Create(ContinueBB, ParentBB);
630 MSSAU->removeEdge(ParentBB, LoopExitBB);
631 }
632 DT.deleteEdge(ParentBB, LoopExitBB);
633 }
634
635 if (MSSAU && VerifyMemorySSA)
636 MSSAU->getMemorySSA()->verifyMemorySSA();
637
638 // Rewrite the relevant PHI nodes.
639 if (UnswitchedBB == LoopExitBB)
640 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
641 else
642 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
643 *ParentBB, *OldPH, FullUnswitch);
644
645 // The constant we can replace all of our invariants with inside the loop
646 // body. If any of the invariants have a value other than this the loop won't
647 // be entered.
648 ConstantInt *Replacement = ExitDirection
649 ? ConstantInt::getFalse(BI.getContext())
650 : ConstantInt::getTrue(BI.getContext());
651
652 // Since this is an i1 condition we can also trivially replace uses of it
653 // within the loop with a constant.
654 for (Value *Invariant : Invariants)
655 replaceLoopInvariantUses(L, Invariant, *Replacement);
656
657 // If this was full unswitching, we may have changed the nesting relationship
658 // for this loop so hoist it to its correct parent if needed.
659 if (FullUnswitch)
660 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
661
662 if (MSSAU && VerifyMemorySSA)
663 MSSAU->getMemorySSA()->verifyMemorySSA();
664
665 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
666 ++NumTrivial;
667 ++NumBranches;
668 return true;
669 }
670
671 /// Unswitch a trivial switch if the condition is loop invariant.
672 ///
673 /// This routine should only be called when loop code leading to the switch has
674 /// been validated as trivial (no side effects). This routine checks if the
675 /// condition is invariant and that at least one of the successors is a loop
676 /// exit. This allows us to unswitch without duplicating the loop, making it
677 /// trivial.
678 ///
679 /// If this routine fails to unswitch the switch it returns false.
680 ///
681 /// If the switch can be unswitched, this routine splits the preheader and
682 /// copies the switch above that split. If the default case is one of the
683 /// exiting cases, it copies the non-exiting cases and points them at the new
684 /// preheader. If the default case is not exiting, it copies the exiting cases
685 /// and points the default at the preheader. It preserves loop simplified form
686 /// (splitting the exit blocks as necessary). It simplifies the switch within
687 /// the loop by removing now-dead cases. If the default case is one of those
688 /// unswitched, it replaces its destination with a new basic block containing
689 /// only unreachable. Such basic blocks, while technically loop exits, are not
690 /// considered for unswitching so this is a stable transform and the same
691 /// switch will not be revisited. If after unswitching there is only a single
692 /// in-loop successor, the switch is further simplified to an unconditional
693 /// branch. Still more cleanup can be done with some simplifycfg like pass.
694 ///
695 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
696 /// invalidated by this.
unswitchTrivialSwitch(Loop & L,SwitchInst & SI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)697 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
698 LoopInfo &LI, ScalarEvolution *SE,
699 MemorySSAUpdater *MSSAU) {
700 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
701 Value *LoopCond = SI.getCondition();
702
703 // If this isn't switching on an invariant condition, we can't unswitch it.
704 if (!L.isLoopInvariant(LoopCond))
705 return false;
706
707 auto *ParentBB = SI.getParent();
708
709 // The same check must be used both for the default and the exit cases. We
710 // should never leave edges from the switch instruction to a basic block that
711 // we are unswitching, hence the condition used to determine the default case
712 // needs to also be used to populate ExitCaseIndices, which is then used to
713 // remove cases from the switch.
714 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
715 // BBToCheck is not an exit block if it is inside loop L.
716 if (L.contains(&BBToCheck))
717 return false;
718 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
719 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
720 return false;
721 // We do not unswitch a block that only has an unreachable statement, as
722 // it's possible this is a previously unswitched block. Only unswitch if
723 // either the terminator is not unreachable, or, if it is, it's not the only
724 // instruction in the block.
725 auto *TI = BBToCheck.getTerminator();
726 bool isUnreachable = isa<UnreachableInst>(TI);
727 return !isUnreachable ||
728 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
729 };
730
731 SmallVector<int, 4> ExitCaseIndices;
732 for (auto Case : SI.cases())
733 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
734 ExitCaseIndices.push_back(Case.getCaseIndex());
735 BasicBlock *DefaultExitBB = nullptr;
736 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
737 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
738 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
739 DefaultExitBB = SI.getDefaultDest();
740 } else if (ExitCaseIndices.empty())
741 return false;
742
743 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
744
745 if (MSSAU && VerifyMemorySSA)
746 MSSAU->getMemorySSA()->verifyMemorySSA();
747
748 // We may need to invalidate SCEVs for the outermost loop reached by any of
749 // the exits.
750 Loop *OuterL = &L;
751
752 if (DefaultExitBB) {
753 // Clear out the default destination temporarily to allow accurate
754 // predecessor lists to be examined below.
755 SI.setDefaultDest(nullptr);
756 // Check the loop containing this exit.
757 Loop *ExitL = LI.getLoopFor(DefaultExitBB);
758 if (!ExitL || ExitL->contains(OuterL))
759 OuterL = ExitL;
760 }
761
762 // Store the exit cases into a separate data structure and remove them from
763 // the switch.
764 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
765 SwitchInstProfUpdateWrapper::CaseWeightOpt>,
766 4> ExitCases;
767 ExitCases.reserve(ExitCaseIndices.size());
768 SwitchInstProfUpdateWrapper SIW(SI);
769 // We walk the case indices backwards so that we remove the last case first
770 // and don't disrupt the earlier indices.
771 for (unsigned Index : reverse(ExitCaseIndices)) {
772 auto CaseI = SI.case_begin() + Index;
773 // Compute the outer loop from this exit.
774 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
775 if (!ExitL || ExitL->contains(OuterL))
776 OuterL = ExitL;
777 // Save the value of this case.
778 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
779 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
780 // Delete the unswitched cases.
781 SIW.removeCase(CaseI);
782 }
783
784 if (SE) {
785 if (OuterL)
786 SE->forgetLoop(OuterL);
787 else
788 SE->forgetTopmostLoop(&L);
789 }
790
791 // Check if after this all of the remaining cases point at the same
792 // successor.
793 BasicBlock *CommonSuccBB = nullptr;
794 if (SI.getNumCases() > 0 &&
795 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
796 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
797 }))
798 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
799 if (!DefaultExitBB) {
800 // If we're not unswitching the default, we need it to match any cases to
801 // have a common successor or if we have no cases it is the common
802 // successor.
803 if (SI.getNumCases() == 0)
804 CommonSuccBB = SI.getDefaultDest();
805 else if (SI.getDefaultDest() != CommonSuccBB)
806 CommonSuccBB = nullptr;
807 }
808
809 // Split the preheader, so that we know that there is a safe place to insert
810 // the switch.
811 BasicBlock *OldPH = L.getLoopPreheader();
812 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
813 OldPH->getTerminator()->eraseFromParent();
814
815 // Now add the unswitched switch.
816 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
817 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
818
819 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
820 // First, we split any exit blocks with remaining in-loop predecessors. Then
821 // we update the PHIs in one of two ways depending on if there was a split.
822 // We walk in reverse so that we split in the same order as the cases
823 // appeared. This is purely for convenience of reading the resulting IR, but
824 // it doesn't cost anything really.
825 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
826 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
827 // Handle the default exit if necessary.
828 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
829 // ranges aren't quite powerful enough yet.
830 if (DefaultExitBB) {
831 if (pred_empty(DefaultExitBB)) {
832 UnswitchedExitBBs.insert(DefaultExitBB);
833 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
834 } else {
835 auto *SplitBB =
836 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
837 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
838 *ParentBB, *OldPH,
839 /*FullUnswitch*/ true);
840 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
841 }
842 }
843 // Note that we must use a reference in the for loop so that we update the
844 // container.
845 for (auto &ExitCase : reverse(ExitCases)) {
846 // Grab a reference to the exit block in the pair so that we can update it.
847 BasicBlock *ExitBB = std::get<1>(ExitCase);
848
849 // If this case is the last edge into the exit block, we can simply reuse it
850 // as it will no longer be a loop exit. No mapping necessary.
851 if (pred_empty(ExitBB)) {
852 // Only rewrite once.
853 if (UnswitchedExitBBs.insert(ExitBB).second)
854 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
855 continue;
856 }
857
858 // Otherwise we need to split the exit block so that we retain an exit
859 // block from the loop and a target for the unswitched condition.
860 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
861 if (!SplitExitBB) {
862 // If this is the first time we see this, do the split and remember it.
863 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
864 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
865 *ParentBB, *OldPH,
866 /*FullUnswitch*/ true);
867 }
868 // Update the case pair to point to the split block.
869 std::get<1>(ExitCase) = SplitExitBB;
870 }
871
872 // Now add the unswitched cases. We do this in reverse order as we built them
873 // in reverse order.
874 for (auto &ExitCase : reverse(ExitCases)) {
875 ConstantInt *CaseVal = std::get<0>(ExitCase);
876 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
877
878 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
879 }
880
881 // If the default was unswitched, re-point it and add explicit cases for
882 // entering the loop.
883 if (DefaultExitBB) {
884 NewSIW->setDefaultDest(DefaultExitBB);
885 NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
886
887 // We removed all the exit cases, so we just copy the cases to the
888 // unswitched switch.
889 for (const auto &Case : SI.cases())
890 NewSIW.addCase(Case.getCaseValue(), NewPH,
891 SIW.getSuccessorWeight(Case.getSuccessorIndex()));
892 } else if (DefaultCaseWeight) {
893 // We have to set branch weight of the default case.
894 uint64_t SW = *DefaultCaseWeight;
895 for (const auto &Case : SI.cases()) {
896 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
897 assert(W &&
898 "case weight must be defined as default case weight is defined");
899 SW += *W;
900 }
901 NewSIW.setSuccessorWeight(0, SW);
902 }
903
904 // If we ended up with a common successor for every path through the switch
905 // after unswitching, rewrite it to an unconditional branch to make it easy
906 // to recognize. Otherwise we potentially have to recognize the default case
907 // pointing at unreachable and other complexity.
908 if (CommonSuccBB) {
909 BasicBlock *BB = SI.getParent();
910 // We may have had multiple edges to this common successor block, so remove
911 // them as predecessors. We skip the first one, either the default or the
912 // actual first case.
913 bool SkippedFirst = DefaultExitBB == nullptr;
914 for (auto Case : SI.cases()) {
915 assert(Case.getCaseSuccessor() == CommonSuccBB &&
916 "Non-common successor!");
917 (void)Case;
918 if (!SkippedFirst) {
919 SkippedFirst = true;
920 continue;
921 }
922 CommonSuccBB->removePredecessor(BB,
923 /*KeepOneInputPHIs*/ true);
924 }
925 // Now nuke the switch and replace it with a direct branch.
926 SIW.eraseFromParent();
927 BranchInst::Create(CommonSuccBB, BB);
928 } else if (DefaultExitBB) {
929 assert(SI.getNumCases() > 0 &&
930 "If we had no cases we'd have a common successor!");
931 // Move the last case to the default successor. This is valid as if the
932 // default got unswitched it cannot be reached. This has the advantage of
933 // being simple and keeping the number of edges from this switch to
934 // successors the same, and avoiding any PHI update complexity.
935 auto LastCaseI = std::prev(SI.case_end());
936
937 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
938 SIW.setSuccessorWeight(
939 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
940 SIW.removeCase(LastCaseI);
941 }
942
943 // Walk the unswitched exit blocks and the unswitched split blocks and update
944 // the dominator tree based on the CFG edits. While we are walking unordered
945 // containers here, the API for applyUpdates takes an unordered list of
946 // updates and requires them to not contain duplicates.
947 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
948 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
949 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
950 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
951 }
952 for (auto SplitUnswitchedPair : SplitExitBBMap) {
953 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
954 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
955 }
956
957 if (MSSAU) {
958 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
959 if (VerifyMemorySSA)
960 MSSAU->getMemorySSA()->verifyMemorySSA();
961 } else {
962 DT.applyUpdates(DTUpdates);
963 }
964
965 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
966
967 // We may have changed the nesting relationship for this loop so hoist it to
968 // its correct parent if needed.
969 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
970
971 if (MSSAU && VerifyMemorySSA)
972 MSSAU->getMemorySSA()->verifyMemorySSA();
973
974 ++NumTrivial;
975 ++NumSwitches;
976 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
977 return true;
978 }
979
980 /// This routine scans the loop to find a branch or switch which occurs before
981 /// any side effects occur. These can potentially be unswitched without
982 /// duplicating the loop. If a branch or switch is successfully unswitched the
983 /// scanning continues to see if subsequent branches or switches have become
984 /// trivial. Once all trivial candidates have been unswitched, this routine
985 /// returns.
986 ///
987 /// The return value indicates whether anything was unswitched (and therefore
988 /// changed).
989 ///
990 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
991 /// invalidated by this.
unswitchAllTrivialConditions(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)992 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
993 LoopInfo &LI, ScalarEvolution *SE,
994 MemorySSAUpdater *MSSAU) {
995 bool Changed = false;
996
997 // If loop header has only one reachable successor we should keep looking for
998 // trivial condition candidates in the successor as well. An alternative is
999 // to constant fold conditions and merge successors into loop header (then we
1000 // only need to check header's terminator). The reason for not doing this in
1001 // LoopUnswitch pass is that it could potentially break LoopPassManager's
1002 // invariants. Folding dead branches could either eliminate the current loop
1003 // or make other loops unreachable. LCSSA form might also not be preserved
1004 // after deleting branches. The following code keeps traversing loop header's
1005 // successors until it finds the trivial condition candidate (condition that
1006 // is not a constant). Since unswitching generates branches with constant
1007 // conditions, this scenario could be very common in practice.
1008 BasicBlock *CurrentBB = L.getHeader();
1009 SmallPtrSet<BasicBlock *, 8> Visited;
1010 Visited.insert(CurrentBB);
1011 do {
1012 // Check if there are any side-effecting instructions (e.g. stores, calls,
1013 // volatile loads) in the part of the loop that the code *would* execute
1014 // without unswitching.
1015 if (MSSAU) // Possible early exit with MSSA
1016 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1017 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1018 return Changed;
1019 if (llvm::any_of(*CurrentBB,
1020 [](Instruction &I) { return I.mayHaveSideEffects(); }))
1021 return Changed;
1022
1023 Instruction *CurrentTerm = CurrentBB->getTerminator();
1024
1025 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1026 // Don't bother trying to unswitch past a switch with a constant
1027 // condition. This should be removed prior to running this pass by
1028 // simplifycfg.
1029 if (isa<Constant>(SI->getCondition()))
1030 return Changed;
1031
1032 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1033 // Couldn't unswitch this one so we're done.
1034 return Changed;
1035
1036 // Mark that we managed to unswitch something.
1037 Changed = true;
1038
1039 // If unswitching turned the terminator into an unconditional branch then
1040 // we can continue. The unswitching logic specifically works to fold any
1041 // cases it can into an unconditional branch to make it easier to
1042 // recognize here.
1043 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1044 if (!BI || BI->isConditional())
1045 return Changed;
1046
1047 CurrentBB = BI->getSuccessor(0);
1048 continue;
1049 }
1050
1051 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1052 if (!BI)
1053 // We do not understand other terminator instructions.
1054 return Changed;
1055
1056 // Don't bother trying to unswitch past an unconditional branch or a branch
1057 // with a constant value. These should be removed by simplifycfg prior to
1058 // running this pass.
1059 if (!BI->isConditional() ||
1060 isa<Constant>(skipTrivialSelect(BI->getCondition())))
1061 return Changed;
1062
1063 // Found a trivial condition candidate: non-foldable conditional branch. If
1064 // we fail to unswitch this, we can't do anything else that is trivial.
1065 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1066 return Changed;
1067
1068 // Mark that we managed to unswitch something.
1069 Changed = true;
1070
1071 // If we only unswitched some of the conditions feeding the branch, we won't
1072 // have collapsed it to a single successor.
1073 BI = cast<BranchInst>(CurrentBB->getTerminator());
1074 if (BI->isConditional())
1075 return Changed;
1076
1077 // Follow the newly unconditional branch into its successor.
1078 CurrentBB = BI->getSuccessor(0);
1079
1080 // When continuing, if we exit the loop or reach a previous visited block,
1081 // then we can not reach any trivial condition candidates (unfoldable
1082 // branch instructions or switch instructions) and no unswitch can happen.
1083 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1084
1085 return Changed;
1086 }
1087
1088 /// Build the cloned blocks for an unswitched copy of the given loop.
1089 ///
1090 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1091 /// after the split block (`SplitBB`) that will be used to select between the
1092 /// cloned and original loop.
1093 ///
1094 /// This routine handles cloning all of the necessary loop blocks and exit
1095 /// blocks including rewriting their instructions and the relevant PHI nodes.
1096 /// Any loop blocks or exit blocks which are dominated by a different successor
1097 /// than the one for this clone of the loop blocks can be trivially skipped. We
1098 /// use the `DominatingSucc` map to determine whether a block satisfies that
1099 /// property with a simple map lookup.
1100 ///
1101 /// It also correctly creates the unconditional branch in the cloned
1102 /// unswitched parent block to only point at the unswitched successor.
1103 ///
1104 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1105 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1106 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1107 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1108 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1109 /// instead the caller must recompute an accurate DT. It *does* correctly
1110 /// update the `AssumptionCache` provided in `AC`.
buildClonedLoopBlocks(Loop & L,BasicBlock * LoopPH,BasicBlock * SplitBB,ArrayRef<BasicBlock * > ExitBlocks,BasicBlock * ParentBB,BasicBlock * UnswitchedSuccBB,BasicBlock * ContinueSuccBB,const SmallDenseMap<BasicBlock *,BasicBlock *,16> & DominatingSucc,ValueToValueMapTy & VMap,SmallVectorImpl<DominatorTree::UpdateType> & DTUpdates,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU,ScalarEvolution * SE)1111 static BasicBlock *buildClonedLoopBlocks(
1112 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1113 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1114 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1115 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1116 ValueToValueMapTy &VMap,
1117 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1118 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU,
1119 ScalarEvolution *SE) {
1120 SmallVector<BasicBlock *, 4> NewBlocks;
1121 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1122
1123 // We will need to clone a bunch of blocks, wrap up the clone operation in
1124 // a helper.
1125 auto CloneBlock = [&](BasicBlock *OldBB) {
1126 // Clone the basic block and insert it before the new preheader.
1127 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1128 NewBB->moveBefore(LoopPH);
1129
1130 // Record this block and the mapping.
1131 NewBlocks.push_back(NewBB);
1132 VMap[OldBB] = NewBB;
1133
1134 return NewBB;
1135 };
1136
1137 // We skip cloning blocks when they have a dominating succ that is not the
1138 // succ we are cloning for.
1139 auto SkipBlock = [&](BasicBlock *BB) {
1140 auto It = DominatingSucc.find(BB);
1141 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1142 };
1143
1144 // First, clone the preheader.
1145 auto *ClonedPH = CloneBlock(LoopPH);
1146
1147 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1148 for (auto *LoopBB : L.blocks())
1149 if (!SkipBlock(LoopBB))
1150 CloneBlock(LoopBB);
1151
1152 // Split all the loop exit edges so that when we clone the exit blocks, if
1153 // any of the exit blocks are *also* a preheader for some other loop, we
1154 // don't create multiple predecessors entering the loop header.
1155 for (auto *ExitBB : ExitBlocks) {
1156 if (SkipBlock(ExitBB))
1157 continue;
1158
1159 // When we are going to clone an exit, we don't need to clone all the
1160 // instructions in the exit block and we want to ensure we have an easy
1161 // place to merge the CFG, so split the exit first. This is always safe to
1162 // do because there cannot be any non-loop predecessors of a loop exit in
1163 // loop simplified form.
1164 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1165
1166 // Rearrange the names to make it easier to write test cases by having the
1167 // exit block carry the suffix rather than the merge block carrying the
1168 // suffix.
1169 MergeBB->takeName(ExitBB);
1170 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1171
1172 // Now clone the original exit block.
1173 auto *ClonedExitBB = CloneBlock(ExitBB);
1174 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1175 "Exit block should have been split to have one successor!");
1176 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1177 "Cloned exit block has the wrong successor!");
1178
1179 // Remap any cloned instructions and create a merge phi node for them.
1180 for (auto ZippedInsts : llvm::zip_first(
1181 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1182 llvm::make_range(ClonedExitBB->begin(),
1183 std::prev(ClonedExitBB->end())))) {
1184 Instruction &I = std::get<0>(ZippedInsts);
1185 Instruction &ClonedI = std::get<1>(ZippedInsts);
1186
1187 // The only instructions in the exit block should be PHI nodes and
1188 // potentially a landing pad.
1189 assert(
1190 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1191 "Bad instruction in exit block!");
1192 // We should have a value map between the instruction and its clone.
1193 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1194
1195 // Forget SCEVs based on exit phis in case SCEV looked through the phi.
1196 if (SE && isa<PHINode>(I))
1197 SE->forgetValue(&I);
1198
1199 auto *MergePN =
1200 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1201 &*MergeBB->getFirstInsertionPt());
1202 I.replaceAllUsesWith(MergePN);
1203 MergePN->addIncoming(&I, ExitBB);
1204 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1205 }
1206 }
1207
1208 // Rewrite the instructions in the cloned blocks to refer to the instructions
1209 // in the cloned blocks. We have to do this as a second pass so that we have
1210 // everything available. Also, we have inserted new instructions which may
1211 // include assume intrinsics, so we update the assumption cache while
1212 // processing this.
1213 for (auto *ClonedBB : NewBlocks)
1214 for (Instruction &I : *ClonedBB) {
1215 RemapInstruction(&I, VMap,
1216 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1217 if (auto *II = dyn_cast<AssumeInst>(&I))
1218 AC.registerAssumption(II);
1219 }
1220
1221 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1222 // have spurious incoming values.
1223 for (auto *LoopBB : L.blocks())
1224 if (SkipBlock(LoopBB))
1225 for (auto *SuccBB : successors(LoopBB))
1226 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1227 for (PHINode &PN : ClonedSuccBB->phis())
1228 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1229
1230 // Remove the cloned parent as a predecessor of any successor we ended up
1231 // cloning other than the unswitched one.
1232 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1233 for (auto *SuccBB : successors(ParentBB)) {
1234 if (SuccBB == UnswitchedSuccBB)
1235 continue;
1236
1237 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1238 if (!ClonedSuccBB)
1239 continue;
1240
1241 ClonedSuccBB->removePredecessor(ClonedParentBB,
1242 /*KeepOneInputPHIs*/ true);
1243 }
1244
1245 // Replace the cloned branch with an unconditional branch to the cloned
1246 // unswitched successor.
1247 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1248 Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1249 // Trivial Simplification. If Terminator is a conditional branch and
1250 // condition becomes dead - erase it.
1251 Value *ClonedConditionToErase = nullptr;
1252 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1253 ClonedConditionToErase = BI->getCondition();
1254 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1255 ClonedConditionToErase = SI->getCondition();
1256
1257 ClonedTerminator->eraseFromParent();
1258 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1259
1260 if (ClonedConditionToErase)
1261 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1262 MSSAU);
1263
1264 // If there are duplicate entries in the PHI nodes because of multiple edges
1265 // to the unswitched successor, we need to nuke all but one as we replaced it
1266 // with a direct branch.
1267 for (PHINode &PN : ClonedSuccBB->phis()) {
1268 bool Found = false;
1269 // Loop over the incoming operands backwards so we can easily delete as we
1270 // go without invalidating the index.
1271 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1272 if (PN.getIncomingBlock(i) != ClonedParentBB)
1273 continue;
1274 if (!Found) {
1275 Found = true;
1276 continue;
1277 }
1278 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1279 }
1280 }
1281
1282 // Record the domtree updates for the new blocks.
1283 SmallPtrSet<BasicBlock *, 4> SuccSet;
1284 for (auto *ClonedBB : NewBlocks) {
1285 for (auto *SuccBB : successors(ClonedBB))
1286 if (SuccSet.insert(SuccBB).second)
1287 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1288 SuccSet.clear();
1289 }
1290
1291 return ClonedPH;
1292 }
1293
1294 /// Recursively clone the specified loop and all of its children.
1295 ///
1296 /// The target parent loop for the clone should be provided, or can be null if
1297 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1298 /// with the provided value map. The entire original loop must be present in
1299 /// the value map. The cloned loop is returned.
cloneLoopNest(Loop & OrigRootL,Loop * RootParentL,const ValueToValueMapTy & VMap,LoopInfo & LI)1300 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1301 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1302 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1303 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1304 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1305 for (auto *BB : OrigL.blocks()) {
1306 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1307 ClonedL.addBlockEntry(ClonedBB);
1308 if (LI.getLoopFor(BB) == &OrigL)
1309 LI.changeLoopFor(ClonedBB, &ClonedL);
1310 }
1311 };
1312
1313 // We specially handle the first loop because it may get cloned into
1314 // a different parent and because we most commonly are cloning leaf loops.
1315 Loop *ClonedRootL = LI.AllocateLoop();
1316 if (RootParentL)
1317 RootParentL->addChildLoop(ClonedRootL);
1318 else
1319 LI.addTopLevelLoop(ClonedRootL);
1320 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1321
1322 if (OrigRootL.isInnermost())
1323 return ClonedRootL;
1324
1325 // If we have a nest, we can quickly clone the entire loop nest using an
1326 // iterative approach because it is a tree. We keep the cloned parent in the
1327 // data structure to avoid repeatedly querying through a map to find it.
1328 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1329 // Build up the loops to clone in reverse order as we'll clone them from the
1330 // back.
1331 for (Loop *ChildL : llvm::reverse(OrigRootL))
1332 LoopsToClone.push_back({ClonedRootL, ChildL});
1333 do {
1334 Loop *ClonedParentL, *L;
1335 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1336 Loop *ClonedL = LI.AllocateLoop();
1337 ClonedParentL->addChildLoop(ClonedL);
1338 AddClonedBlocksToLoop(*L, *ClonedL);
1339 for (Loop *ChildL : llvm::reverse(*L))
1340 LoopsToClone.push_back({ClonedL, ChildL});
1341 } while (!LoopsToClone.empty());
1342
1343 return ClonedRootL;
1344 }
1345
1346 /// Build the cloned loops of an original loop from unswitching.
1347 ///
1348 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1349 /// operation. We need to re-verify that there even is a loop (as the backedge
1350 /// may not have been cloned), and even if there are remaining backedges the
1351 /// backedge set may be different. However, we know that each child loop is
1352 /// undisturbed, we only need to find where to place each child loop within
1353 /// either any parent loop or within a cloned version of the original loop.
1354 ///
1355 /// Because child loops may end up cloned outside of any cloned version of the
1356 /// original loop, multiple cloned sibling loops may be created. All of them
1357 /// are returned so that the newly introduced loop nest roots can be
1358 /// identified.
buildClonedLoops(Loop & OrigL,ArrayRef<BasicBlock * > ExitBlocks,const ValueToValueMapTy & VMap,LoopInfo & LI,SmallVectorImpl<Loop * > & NonChildClonedLoops)1359 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1360 const ValueToValueMapTy &VMap, LoopInfo &LI,
1361 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1362 Loop *ClonedL = nullptr;
1363
1364 auto *OrigPH = OrigL.getLoopPreheader();
1365 auto *OrigHeader = OrigL.getHeader();
1366
1367 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1368 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1369
1370 // We need to know the loops of the cloned exit blocks to even compute the
1371 // accurate parent loop. If we only clone exits to some parent of the
1372 // original parent, we want to clone into that outer loop. We also keep track
1373 // of the loops that our cloned exit blocks participate in.
1374 Loop *ParentL = nullptr;
1375 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1376 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1377 ClonedExitsInLoops.reserve(ExitBlocks.size());
1378 for (auto *ExitBB : ExitBlocks)
1379 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1380 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1381 ExitLoopMap[ClonedExitBB] = ExitL;
1382 ClonedExitsInLoops.push_back(ClonedExitBB);
1383 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1384 ParentL = ExitL;
1385 }
1386 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1387 ParentL->contains(OrigL.getParentLoop())) &&
1388 "The computed parent loop should always contain (or be) the parent of "
1389 "the original loop.");
1390
1391 // We build the set of blocks dominated by the cloned header from the set of
1392 // cloned blocks out of the original loop. While not all of these will
1393 // necessarily be in the cloned loop, it is enough to establish that they
1394 // aren't in unreachable cycles, etc.
1395 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1396 for (auto *BB : OrigL.blocks())
1397 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1398 ClonedLoopBlocks.insert(ClonedBB);
1399
1400 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1401 // skipped cloning some region of this loop which can in turn skip some of
1402 // the backedges so we have to rebuild the blocks in the loop based on the
1403 // backedges that remain after cloning.
1404 SmallVector<BasicBlock *, 16> Worklist;
1405 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1406 for (auto *Pred : predecessors(ClonedHeader)) {
1407 // The only possible non-loop header predecessor is the preheader because
1408 // we know we cloned the loop in simplified form.
1409 if (Pred == ClonedPH)
1410 continue;
1411
1412 // Because the loop was in simplified form, the only non-loop predecessor
1413 // should be the preheader.
1414 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1415 "header other than the preheader "
1416 "that is not part of the loop!");
1417
1418 // Insert this block into the loop set and on the first visit (and if it
1419 // isn't the header we're currently walking) put it into the worklist to
1420 // recurse through.
1421 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1422 Worklist.push_back(Pred);
1423 }
1424
1425 // If we had any backedges then there *is* a cloned loop. Put the header into
1426 // the loop set and then walk the worklist backwards to find all the blocks
1427 // that remain within the loop after cloning.
1428 if (!BlocksInClonedLoop.empty()) {
1429 BlocksInClonedLoop.insert(ClonedHeader);
1430
1431 while (!Worklist.empty()) {
1432 BasicBlock *BB = Worklist.pop_back_val();
1433 assert(BlocksInClonedLoop.count(BB) &&
1434 "Didn't put block into the loop set!");
1435
1436 // Insert any predecessors that are in the possible set into the cloned
1437 // set, and if the insert is successful, add them to the worklist. Note
1438 // that we filter on the blocks that are definitely reachable via the
1439 // backedge to the loop header so we may prune out dead code within the
1440 // cloned loop.
1441 for (auto *Pred : predecessors(BB))
1442 if (ClonedLoopBlocks.count(Pred) &&
1443 BlocksInClonedLoop.insert(Pred).second)
1444 Worklist.push_back(Pred);
1445 }
1446
1447 ClonedL = LI.AllocateLoop();
1448 if (ParentL) {
1449 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1450 ParentL->addChildLoop(ClonedL);
1451 } else {
1452 LI.addTopLevelLoop(ClonedL);
1453 }
1454 NonChildClonedLoops.push_back(ClonedL);
1455
1456 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1457 // We don't want to just add the cloned loop blocks based on how we
1458 // discovered them. The original order of blocks was carefully built in
1459 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1460 // that logic, we just re-walk the original blocks (and those of the child
1461 // loops) and filter them as we add them into the cloned loop.
1462 for (auto *BB : OrigL.blocks()) {
1463 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1464 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1465 continue;
1466
1467 // Directly add the blocks that are only in this loop.
1468 if (LI.getLoopFor(BB) == &OrigL) {
1469 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1470 continue;
1471 }
1472
1473 // We want to manually add it to this loop and parents.
1474 // Registering it with LoopInfo will happen when we clone the top
1475 // loop for this block.
1476 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1477 PL->addBlockEntry(ClonedBB);
1478 }
1479
1480 // Now add each child loop whose header remains within the cloned loop. All
1481 // of the blocks within the loop must satisfy the same constraints as the
1482 // header so once we pass the header checks we can just clone the entire
1483 // child loop nest.
1484 for (Loop *ChildL : OrigL) {
1485 auto *ClonedChildHeader =
1486 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1487 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1488 continue;
1489
1490 #ifndef NDEBUG
1491 // We should never have a cloned child loop header but fail to have
1492 // all of the blocks for that child loop.
1493 for (auto *ChildLoopBB : ChildL->blocks())
1494 assert(BlocksInClonedLoop.count(
1495 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1496 "Child cloned loop has a header within the cloned outer "
1497 "loop but not all of its blocks!");
1498 #endif
1499
1500 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1501 }
1502 }
1503
1504 // Now that we've handled all the components of the original loop that were
1505 // cloned into a new loop, we still need to handle anything from the original
1506 // loop that wasn't in a cloned loop.
1507
1508 // Figure out what blocks are left to place within any loop nest containing
1509 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1510 // them.
1511 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1512 if (BlocksInClonedLoop.empty())
1513 UnloopedBlockSet.insert(ClonedPH);
1514 for (auto *ClonedBB : ClonedLoopBlocks)
1515 if (!BlocksInClonedLoop.count(ClonedBB))
1516 UnloopedBlockSet.insert(ClonedBB);
1517
1518 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1519 // backwards across these to process them inside out. The order shouldn't
1520 // matter as we're just trying to build up the map from inside-out; we use
1521 // the map in a more stably ordered way below.
1522 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1523 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1524 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1525 ExitLoopMap.lookup(RHS)->getLoopDepth();
1526 });
1527
1528 // Populate the existing ExitLoopMap with everything reachable from each
1529 // exit, starting from the inner most exit.
1530 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1531 assert(Worklist.empty() && "Didn't clear worklist!");
1532
1533 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1534 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1535
1536 // Walk the CFG back until we hit the cloned PH adding everything reachable
1537 // and in the unlooped set to this exit block's loop.
1538 Worklist.push_back(ExitBB);
1539 do {
1540 BasicBlock *BB = Worklist.pop_back_val();
1541 // We can stop recursing at the cloned preheader (if we get there).
1542 if (BB == ClonedPH)
1543 continue;
1544
1545 for (BasicBlock *PredBB : predecessors(BB)) {
1546 // If this pred has already been moved to our set or is part of some
1547 // (inner) loop, no update needed.
1548 if (!UnloopedBlockSet.erase(PredBB)) {
1549 assert(
1550 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1551 "Predecessor not mapped to a loop!");
1552 continue;
1553 }
1554
1555 // We just insert into the loop set here. We'll add these blocks to the
1556 // exit loop after we build up the set in an order that doesn't rely on
1557 // predecessor order (which in turn relies on use list order).
1558 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1559 (void)Inserted;
1560 assert(Inserted && "Should only visit an unlooped block once!");
1561
1562 // And recurse through to its predecessors.
1563 Worklist.push_back(PredBB);
1564 }
1565 } while (!Worklist.empty());
1566 }
1567
1568 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1569 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1570 // in their original order adding them to the correct loop.
1571
1572 // We need a stable insertion order. We use the order of the original loop
1573 // order and map into the correct parent loop.
1574 for (auto *BB : llvm::concat<BasicBlock *const>(
1575 ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1576 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1577 OuterL->addBasicBlockToLoop(BB, LI);
1578
1579 #ifndef NDEBUG
1580 for (auto &BBAndL : ExitLoopMap) {
1581 auto *BB = BBAndL.first;
1582 auto *OuterL = BBAndL.second;
1583 assert(LI.getLoopFor(BB) == OuterL &&
1584 "Failed to put all blocks into outer loops!");
1585 }
1586 #endif
1587
1588 // Now that all the blocks are placed into the correct containing loop in the
1589 // absence of child loops, find all the potentially cloned child loops and
1590 // clone them into whatever outer loop we placed their header into.
1591 for (Loop *ChildL : OrigL) {
1592 auto *ClonedChildHeader =
1593 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1594 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1595 continue;
1596
1597 #ifndef NDEBUG
1598 for (auto *ChildLoopBB : ChildL->blocks())
1599 assert(VMap.count(ChildLoopBB) &&
1600 "Cloned a child loop header but not all of that loops blocks!");
1601 #endif
1602
1603 NonChildClonedLoops.push_back(cloneLoopNest(
1604 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1605 }
1606 }
1607
1608 static void
deleteDeadClonedBlocks(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,DominatorTree & DT,MemorySSAUpdater * MSSAU)1609 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1610 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1611 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1612 // Find all the dead clones, and remove them from their successors.
1613 SmallVector<BasicBlock *, 16> DeadBlocks;
1614 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1615 for (const auto &VMap : VMaps)
1616 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1617 if (!DT.isReachableFromEntry(ClonedBB)) {
1618 for (BasicBlock *SuccBB : successors(ClonedBB))
1619 SuccBB->removePredecessor(ClonedBB);
1620 DeadBlocks.push_back(ClonedBB);
1621 }
1622
1623 // Remove all MemorySSA in the dead blocks
1624 if (MSSAU) {
1625 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1626 DeadBlocks.end());
1627 MSSAU->removeBlocks(DeadBlockSet);
1628 }
1629
1630 // Drop any remaining references to break cycles.
1631 for (BasicBlock *BB : DeadBlocks)
1632 BB->dropAllReferences();
1633 // Erase them from the IR.
1634 for (BasicBlock *BB : DeadBlocks)
1635 BB->eraseFromParent();
1636 }
1637
1638 static void
deleteDeadBlocksFromLoop(Loop & L,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU,ScalarEvolution * SE,function_ref<void (Loop &,StringRef)> DestroyLoopCB)1639 deleteDeadBlocksFromLoop(Loop &L,
1640 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1641 DominatorTree &DT, LoopInfo &LI,
1642 MemorySSAUpdater *MSSAU,
1643 ScalarEvolution *SE,
1644 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1645 // Find all the dead blocks tied to this loop, and remove them from their
1646 // successors.
1647 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1648
1649 // Start with loop/exit blocks and get a transitive closure of reachable dead
1650 // blocks.
1651 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1652 ExitBlocks.end());
1653 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1654 while (!DeathCandidates.empty()) {
1655 auto *BB = DeathCandidates.pop_back_val();
1656 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1657 for (BasicBlock *SuccBB : successors(BB)) {
1658 SuccBB->removePredecessor(BB);
1659 DeathCandidates.push_back(SuccBB);
1660 }
1661 DeadBlockSet.insert(BB);
1662 }
1663 }
1664
1665 // Remove all MemorySSA in the dead blocks
1666 if (MSSAU)
1667 MSSAU->removeBlocks(DeadBlockSet);
1668
1669 // Filter out the dead blocks from the exit blocks list so that it can be
1670 // used in the caller.
1671 llvm::erase_if(ExitBlocks,
1672 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1673
1674 // Walk from this loop up through its parents removing all of the dead blocks.
1675 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1676 for (auto *BB : DeadBlockSet)
1677 ParentL->getBlocksSet().erase(BB);
1678 llvm::erase_if(ParentL->getBlocksVector(),
1679 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1680 }
1681
1682 // Now delete the dead child loops. This raw delete will clear them
1683 // recursively.
1684 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1685 if (!DeadBlockSet.count(ChildL->getHeader()))
1686 return false;
1687
1688 assert(llvm::all_of(ChildL->blocks(),
1689 [&](BasicBlock *ChildBB) {
1690 return DeadBlockSet.count(ChildBB);
1691 }) &&
1692 "If the child loop header is dead all blocks in the child loop must "
1693 "be dead as well!");
1694 DestroyLoopCB(*ChildL, ChildL->getName());
1695 if (SE)
1696 SE->forgetBlockAndLoopDispositions();
1697 LI.destroy(ChildL);
1698 return true;
1699 });
1700
1701 // Remove the loop mappings for the dead blocks and drop all the references
1702 // from these blocks to others to handle cyclic references as we start
1703 // deleting the blocks themselves.
1704 for (auto *BB : DeadBlockSet) {
1705 // Check that the dominator tree has already been updated.
1706 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1707 LI.changeLoopFor(BB, nullptr);
1708 // Drop all uses of the instructions to make sure we won't have dangling
1709 // uses in other blocks.
1710 for (auto &I : *BB)
1711 if (!I.use_empty())
1712 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1713 BB->dropAllReferences();
1714 }
1715
1716 // Actually delete the blocks now that they've been fully unhooked from the
1717 // IR.
1718 for (auto *BB : DeadBlockSet)
1719 BB->eraseFromParent();
1720 }
1721
1722 /// Recompute the set of blocks in a loop after unswitching.
1723 ///
1724 /// This walks from the original headers predecessors to rebuild the loop. We
1725 /// take advantage of the fact that new blocks can't have been added, and so we
1726 /// filter by the original loop's blocks. This also handles potentially
1727 /// unreachable code that we don't want to explore but might be found examining
1728 /// the predecessors of the header.
1729 ///
1730 /// If the original loop is no longer a loop, this will return an empty set. If
1731 /// it remains a loop, all the blocks within it will be added to the set
1732 /// (including those blocks in inner loops).
recomputeLoopBlockSet(Loop & L,LoopInfo & LI)1733 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1734 LoopInfo &LI) {
1735 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1736
1737 auto *PH = L.getLoopPreheader();
1738 auto *Header = L.getHeader();
1739
1740 // A worklist to use while walking backwards from the header.
1741 SmallVector<BasicBlock *, 16> Worklist;
1742
1743 // First walk the predecessors of the header to find the backedges. This will
1744 // form the basis of our walk.
1745 for (auto *Pred : predecessors(Header)) {
1746 // Skip the preheader.
1747 if (Pred == PH)
1748 continue;
1749
1750 // Because the loop was in simplified form, the only non-loop predecessor
1751 // is the preheader.
1752 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1753 "than the preheader that is not part of the "
1754 "loop!");
1755
1756 // Insert this block into the loop set and on the first visit and, if it
1757 // isn't the header we're currently walking, put it into the worklist to
1758 // recurse through.
1759 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1760 Worklist.push_back(Pred);
1761 }
1762
1763 // If no backedges were found, we're done.
1764 if (LoopBlockSet.empty())
1765 return LoopBlockSet;
1766
1767 // We found backedges, recurse through them to identify the loop blocks.
1768 while (!Worklist.empty()) {
1769 BasicBlock *BB = Worklist.pop_back_val();
1770 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1771
1772 // No need to walk past the header.
1773 if (BB == Header)
1774 continue;
1775
1776 // Because we know the inner loop structure remains valid we can use the
1777 // loop structure to jump immediately across the entire nested loop.
1778 // Further, because it is in loop simplified form, we can directly jump
1779 // to its preheader afterward.
1780 if (Loop *InnerL = LI.getLoopFor(BB))
1781 if (InnerL != &L) {
1782 assert(L.contains(InnerL) &&
1783 "Should not reach a loop *outside* this loop!");
1784 // The preheader is the only possible predecessor of the loop so
1785 // insert it into the set and check whether it was already handled.
1786 auto *InnerPH = InnerL->getLoopPreheader();
1787 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1788 "but not contain the inner loop "
1789 "preheader!");
1790 if (!LoopBlockSet.insert(InnerPH).second)
1791 // The only way to reach the preheader is through the loop body
1792 // itself so if it has been visited the loop is already handled.
1793 continue;
1794
1795 // Insert all of the blocks (other than those already present) into
1796 // the loop set. We expect at least the block that led us to find the
1797 // inner loop to be in the block set, but we may also have other loop
1798 // blocks if they were already enqueued as predecessors of some other
1799 // outer loop block.
1800 for (auto *InnerBB : InnerL->blocks()) {
1801 if (InnerBB == BB) {
1802 assert(LoopBlockSet.count(InnerBB) &&
1803 "Block should already be in the set!");
1804 continue;
1805 }
1806
1807 LoopBlockSet.insert(InnerBB);
1808 }
1809
1810 // Add the preheader to the worklist so we will continue past the
1811 // loop body.
1812 Worklist.push_back(InnerPH);
1813 continue;
1814 }
1815
1816 // Insert any predecessors that were in the original loop into the new
1817 // set, and if the insert is successful, add them to the worklist.
1818 for (auto *Pred : predecessors(BB))
1819 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1820 Worklist.push_back(Pred);
1821 }
1822
1823 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1824
1825 // We've found all the blocks participating in the loop, return our completed
1826 // set.
1827 return LoopBlockSet;
1828 }
1829
1830 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1831 ///
1832 /// The removal may have removed some child loops entirely but cannot have
1833 /// disturbed any remaining child loops. However, they may need to be hoisted
1834 /// to the parent loop (or to be top-level loops). The original loop may be
1835 /// completely removed.
1836 ///
1837 /// The sibling loops resulting from this update are returned. If the original
1838 /// loop remains a valid loop, it will be the first entry in this list with all
1839 /// of the newly sibling loops following it.
1840 ///
1841 /// Returns true if the loop remains a loop after unswitching, and false if it
1842 /// is no longer a loop after unswitching (and should not continue to be
1843 /// referenced).
rebuildLoopAfterUnswitch(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,LoopInfo & LI,SmallVectorImpl<Loop * > & HoistedLoops,ScalarEvolution * SE)1844 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1845 LoopInfo &LI,
1846 SmallVectorImpl<Loop *> &HoistedLoops,
1847 ScalarEvolution *SE) {
1848 auto *PH = L.getLoopPreheader();
1849
1850 // Compute the actual parent loop from the exit blocks. Because we may have
1851 // pruned some exits the loop may be different from the original parent.
1852 Loop *ParentL = nullptr;
1853 SmallVector<Loop *, 4> ExitLoops;
1854 SmallVector<BasicBlock *, 4> ExitsInLoops;
1855 ExitsInLoops.reserve(ExitBlocks.size());
1856 for (auto *ExitBB : ExitBlocks)
1857 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1858 ExitLoops.push_back(ExitL);
1859 ExitsInLoops.push_back(ExitBB);
1860 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1861 ParentL = ExitL;
1862 }
1863
1864 // Recompute the blocks participating in this loop. This may be empty if it
1865 // is no longer a loop.
1866 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1867
1868 // If we still have a loop, we need to re-set the loop's parent as the exit
1869 // block set changing may have moved it within the loop nest. Note that this
1870 // can only happen when this loop has a parent as it can only hoist the loop
1871 // *up* the nest.
1872 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1873 // Remove this loop's (original) blocks from all of the intervening loops.
1874 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1875 IL = IL->getParentLoop()) {
1876 IL->getBlocksSet().erase(PH);
1877 for (auto *BB : L.blocks())
1878 IL->getBlocksSet().erase(BB);
1879 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1880 return BB == PH || L.contains(BB);
1881 });
1882 }
1883
1884 LI.changeLoopFor(PH, ParentL);
1885 L.getParentLoop()->removeChildLoop(&L);
1886 if (ParentL)
1887 ParentL->addChildLoop(&L);
1888 else
1889 LI.addTopLevelLoop(&L);
1890 }
1891
1892 // Now we update all the blocks which are no longer within the loop.
1893 auto &Blocks = L.getBlocksVector();
1894 auto BlocksSplitI =
1895 LoopBlockSet.empty()
1896 ? Blocks.begin()
1897 : std::stable_partition(
1898 Blocks.begin(), Blocks.end(),
1899 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1900
1901 // Before we erase the list of unlooped blocks, build a set of them.
1902 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1903 if (LoopBlockSet.empty())
1904 UnloopedBlocks.insert(PH);
1905
1906 // Now erase these blocks from the loop.
1907 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1908 L.getBlocksSet().erase(BB);
1909 Blocks.erase(BlocksSplitI, Blocks.end());
1910
1911 // Sort the exits in ascending loop depth, we'll work backwards across these
1912 // to process them inside out.
1913 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1914 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1915 });
1916
1917 // We'll build up a set for each exit loop.
1918 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1919 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1920
1921 auto RemoveUnloopedBlocksFromLoop =
1922 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1923 for (auto *BB : UnloopedBlocks)
1924 L.getBlocksSet().erase(BB);
1925 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1926 return UnloopedBlocks.count(BB);
1927 });
1928 };
1929
1930 SmallVector<BasicBlock *, 16> Worklist;
1931 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1932 assert(Worklist.empty() && "Didn't clear worklist!");
1933 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1934
1935 // Grab the next exit block, in decreasing loop depth order.
1936 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1937 Loop &ExitL = *LI.getLoopFor(ExitBB);
1938 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1939
1940 // Erase all of the unlooped blocks from the loops between the previous
1941 // exit loop and this exit loop. This works because the ExitInLoops list is
1942 // sorted in increasing order of loop depth and thus we visit loops in
1943 // decreasing order of loop depth.
1944 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1945 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1946
1947 // Walk the CFG back until we hit the cloned PH adding everything reachable
1948 // and in the unlooped set to this exit block's loop.
1949 Worklist.push_back(ExitBB);
1950 do {
1951 BasicBlock *BB = Worklist.pop_back_val();
1952 // We can stop recursing at the cloned preheader (if we get there).
1953 if (BB == PH)
1954 continue;
1955
1956 for (BasicBlock *PredBB : predecessors(BB)) {
1957 // If this pred has already been moved to our set or is part of some
1958 // (inner) loop, no update needed.
1959 if (!UnloopedBlocks.erase(PredBB)) {
1960 assert((NewExitLoopBlocks.count(PredBB) ||
1961 ExitL.contains(LI.getLoopFor(PredBB))) &&
1962 "Predecessor not in a nested loop (or already visited)!");
1963 continue;
1964 }
1965
1966 // We just insert into the loop set here. We'll add these blocks to the
1967 // exit loop after we build up the set in a deterministic order rather
1968 // than the predecessor-influenced visit order.
1969 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1970 (void)Inserted;
1971 assert(Inserted && "Should only visit an unlooped block once!");
1972
1973 // And recurse through to its predecessors.
1974 Worklist.push_back(PredBB);
1975 }
1976 } while (!Worklist.empty());
1977
1978 // If blocks in this exit loop were directly part of the original loop (as
1979 // opposed to a child loop) update the map to point to this exit loop. This
1980 // just updates a map and so the fact that the order is unstable is fine.
1981 for (auto *BB : NewExitLoopBlocks)
1982 if (Loop *BBL = LI.getLoopFor(BB))
1983 if (BBL == &L || !L.contains(BBL))
1984 LI.changeLoopFor(BB, &ExitL);
1985
1986 // We will remove the remaining unlooped blocks from this loop in the next
1987 // iteration or below.
1988 NewExitLoopBlocks.clear();
1989 }
1990
1991 // Any remaining unlooped blocks are no longer part of any loop unless they
1992 // are part of some child loop.
1993 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1994 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1995 for (auto *BB : UnloopedBlocks)
1996 if (Loop *BBL = LI.getLoopFor(BB))
1997 if (BBL == &L || !L.contains(BBL))
1998 LI.changeLoopFor(BB, nullptr);
1999
2000 // Sink all the child loops whose headers are no longer in the loop set to
2001 // the parent (or to be top level loops). We reach into the loop and directly
2002 // update its subloop vector to make this batch update efficient.
2003 auto &SubLoops = L.getSubLoopsVector();
2004 auto SubLoopsSplitI =
2005 LoopBlockSet.empty()
2006 ? SubLoops.begin()
2007 : std::stable_partition(
2008 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
2009 return LoopBlockSet.count(SubL->getHeader());
2010 });
2011 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
2012 HoistedLoops.push_back(HoistedL);
2013 HoistedL->setParentLoop(nullptr);
2014
2015 // To compute the new parent of this hoisted loop we look at where we
2016 // placed the preheader above. We can't lookup the header itself because we
2017 // retained the mapping from the header to the hoisted loop. But the
2018 // preheader and header should have the exact same new parent computed
2019 // based on the set of exit blocks from the original loop as the preheader
2020 // is a predecessor of the header and so reached in the reverse walk. And
2021 // because the loops were all in simplified form the preheader of the
2022 // hoisted loop can't be part of some *other* loop.
2023 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
2024 NewParentL->addChildLoop(HoistedL);
2025 else
2026 LI.addTopLevelLoop(HoistedL);
2027 }
2028 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2029
2030 // Actually delete the loop if nothing remained within it.
2031 if (Blocks.empty()) {
2032 assert(SubLoops.empty() &&
2033 "Failed to remove all subloops from the original loop!");
2034 if (Loop *ParentL = L.getParentLoop())
2035 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2036 else
2037 LI.removeLoop(llvm::find(LI, &L));
2038 // markLoopAsDeleted for L should be triggered by the caller (it is typically
2039 // done by using the UnswitchCB callback).
2040 if (SE)
2041 SE->forgetBlockAndLoopDispositions();
2042 LI.destroy(&L);
2043 return false;
2044 }
2045
2046 return true;
2047 }
2048
2049 /// Helper to visit a dominator subtree, invoking a callable on each node.
2050 ///
2051 /// Returning false at any point will stop walking past that node of the tree.
2052 template <typename CallableT>
visitDomSubTree(DominatorTree & DT,BasicBlock * BB,CallableT Callable)2053 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2054 SmallVector<DomTreeNode *, 4> DomWorklist;
2055 DomWorklist.push_back(DT[BB]);
2056 #ifndef NDEBUG
2057 SmallPtrSet<DomTreeNode *, 4> Visited;
2058 Visited.insert(DT[BB]);
2059 #endif
2060 do {
2061 DomTreeNode *N = DomWorklist.pop_back_val();
2062
2063 // Visit this node.
2064 if (!Callable(N->getBlock()))
2065 continue;
2066
2067 // Accumulate the child nodes.
2068 for (DomTreeNode *ChildN : *N) {
2069 assert(Visited.insert(ChildN).second &&
2070 "Cannot visit a node twice when walking a tree!");
2071 DomWorklist.push_back(ChildN);
2072 }
2073 } while (!DomWorklist.empty());
2074 }
2075
unswitchNontrivialInvariants(Loop & L,Instruction & TI,ArrayRef<Value * > Invariants,IVConditionInfo & PartialIVInfo,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,function_ref<void (bool,bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU,function_ref<void (Loop &,StringRef)> DestroyLoopCB)2076 static void unswitchNontrivialInvariants(
2077 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2078 IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI,
2079 AssumptionCache &AC,
2080 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2081 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2082 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2083 auto *ParentBB = TI.getParent();
2084 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2085 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2086
2087 // We can only unswitch switches, conditional branches with an invariant
2088 // condition, or combining invariant conditions with an instruction or
2089 // partially invariant instructions.
2090 assert((SI || (BI && BI->isConditional())) &&
2091 "Can only unswitch switches and conditional branch!");
2092 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2093 bool FullUnswitch =
2094 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2095 !PartiallyInvariant);
2096 if (FullUnswitch)
2097 assert(Invariants.size() == 1 &&
2098 "Cannot have other invariants with full unswitching!");
2099 else
2100 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2101 "Partial unswitching requires an instruction as the condition!");
2102
2103 if (MSSAU && VerifyMemorySSA)
2104 MSSAU->getMemorySSA()->verifyMemorySSA();
2105
2106 // Constant and BBs tracking the cloned and continuing successor. When we are
2107 // unswitching the entire condition, this can just be trivially chosen to
2108 // unswitch towards `true`. However, when we are unswitching a set of
2109 // invariants combined with `and` or `or` or partially invariant instructions,
2110 // the combining operation determines the best direction to unswitch: we want
2111 // to unswitch the direction that will collapse the branch.
2112 bool Direction = true;
2113 int ClonedSucc = 0;
2114 if (!FullUnswitch) {
2115 Value *Cond = skipTrivialSelect(BI->getCondition());
2116 (void)Cond;
2117 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2118 PartiallyInvariant) &&
2119 "Only `or`, `and`, an `select`, partially invariant instructions "
2120 "can combine invariants being unswitched.");
2121 if (!match(Cond, m_LogicalOr())) {
2122 if (match(Cond, m_LogicalAnd()) ||
2123 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2124 Direction = false;
2125 ClonedSucc = 1;
2126 }
2127 }
2128 }
2129
2130 BasicBlock *RetainedSuccBB =
2131 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2132 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2133 if (BI)
2134 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2135 else
2136 for (auto Case : SI->cases())
2137 if (Case.getCaseSuccessor() != RetainedSuccBB)
2138 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2139
2140 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2141 "Should not unswitch the same successor we are retaining!");
2142
2143 // The branch should be in this exact loop. Any inner loop's invariant branch
2144 // should be handled by unswitching that inner loop. The caller of this
2145 // routine should filter out any candidates that remain (but were skipped for
2146 // whatever reason).
2147 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2148
2149 // Compute the parent loop now before we start hacking on things.
2150 Loop *ParentL = L.getParentLoop();
2151 // Get blocks in RPO order for MSSA update, before changing the CFG.
2152 LoopBlocksRPO LBRPO(&L);
2153 if (MSSAU)
2154 LBRPO.perform(&LI);
2155
2156 // Compute the outer-most loop containing one of our exit blocks. This is the
2157 // furthest up our loopnest which can be mutated, which we will use below to
2158 // update things.
2159 Loop *OuterExitL = &L;
2160 SmallVector<BasicBlock *, 4> ExitBlocks;
2161 L.getUniqueExitBlocks(ExitBlocks);
2162 for (auto *ExitBB : ExitBlocks) {
2163 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2164 if (!NewOuterExitL) {
2165 // We exited the entire nest with this block, so we're done.
2166 OuterExitL = nullptr;
2167 break;
2168 }
2169 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2170 OuterExitL = NewOuterExitL;
2171 }
2172
2173 // At this point, we're definitely going to unswitch something so invalidate
2174 // any cached information in ScalarEvolution for the outer most loop
2175 // containing an exit block and all nested loops.
2176 if (SE) {
2177 if (OuterExitL)
2178 SE->forgetLoop(OuterExitL);
2179 else
2180 SE->forgetTopmostLoop(&L);
2181 SE->forgetBlockAndLoopDispositions();
2182 }
2183
2184 bool InsertFreeze = false;
2185 if (FreezeLoopUnswitchCond) {
2186 ICFLoopSafetyInfo SafetyInfo;
2187 SafetyInfo.computeLoopSafetyInfo(&L);
2188 InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
2189 }
2190
2191 // Perform the isGuaranteedNotToBeUndefOrPoison() query before the transform,
2192 // otherwise the branch instruction will have been moved outside the loop
2193 // already, and may imply that a poison condition is always UB.
2194 Value *FullUnswitchCond = nullptr;
2195 if (FullUnswitch) {
2196 FullUnswitchCond =
2197 BI ? skipTrivialSelect(BI->getCondition()) : SI->getCondition();
2198 if (InsertFreeze)
2199 InsertFreeze = !isGuaranteedNotToBeUndefOrPoison(
2200 FullUnswitchCond, &AC, L.getLoopPreheader()->getTerminator(), &DT);
2201 }
2202
2203 // If the edge from this terminator to a successor dominates that successor,
2204 // store a map from each block in its dominator subtree to it. This lets us
2205 // tell when cloning for a particular successor if a block is dominated by
2206 // some *other* successor with a single data structure. We use this to
2207 // significantly reduce cloning.
2208 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2209 for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB),
2210 UnswitchedSuccBBs))
2211 if (SuccBB->getUniquePredecessor() ||
2212 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2213 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2214 }))
2215 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2216 DominatingSucc[BB] = SuccBB;
2217 return true;
2218 });
2219
2220 // Split the preheader, so that we know that there is a safe place to insert
2221 // the conditional branch. We will change the preheader to have a conditional
2222 // branch on LoopCond. The original preheader will become the split point
2223 // between the unswitched versions, and we will have a new preheader for the
2224 // original loop.
2225 BasicBlock *SplitBB = L.getLoopPreheader();
2226 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2227
2228 // Keep track of the dominator tree updates needed.
2229 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2230
2231 // Clone the loop for each unswitched successor.
2232 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2233 VMaps.reserve(UnswitchedSuccBBs.size());
2234 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2235 for (auto *SuccBB : UnswitchedSuccBBs) {
2236 VMaps.emplace_back(new ValueToValueMapTy());
2237 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2238 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2239 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE);
2240 }
2241
2242 // Drop metadata if we may break its semantics by moving this instr into the
2243 // split block.
2244 if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2245 if (DropNonTrivialImplicitNullChecks)
2246 // Do not spend time trying to understand if we can keep it, just drop it
2247 // to save compile time.
2248 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2249 else {
2250 // It is only legal to preserve make.implicit metadata if we are
2251 // guaranteed no reach implicit null check after following this branch.
2252 ICFLoopSafetyInfo SafetyInfo;
2253 SafetyInfo.computeLoopSafetyInfo(&L);
2254 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2255 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2256 }
2257 }
2258
2259 // The stitching of the branched code back together depends on whether we're
2260 // doing full unswitching or not with the exception that we always want to
2261 // nuke the initial terminator placed in the split block.
2262 SplitBB->getTerminator()->eraseFromParent();
2263 if (FullUnswitch) {
2264 // Splice the terminator from the original loop and rewrite its
2265 // successors.
2266 SplitBB->splice(SplitBB->end(), ParentBB, TI.getIterator());
2267
2268 // Keep a clone of the terminator for MSSA updates.
2269 Instruction *NewTI = TI.clone();
2270 NewTI->insertInto(ParentBB, ParentBB->end());
2271
2272 // First wire up the moved terminator to the preheaders.
2273 if (BI) {
2274 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2275 BI->setSuccessor(ClonedSucc, ClonedPH);
2276 BI->setSuccessor(1 - ClonedSucc, LoopPH);
2277 if (InsertFreeze)
2278 FullUnswitchCond = new FreezeInst(
2279 FullUnswitchCond, FullUnswitchCond->getName() + ".fr", BI);
2280 BI->setCondition(FullUnswitchCond);
2281 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2282 } else {
2283 assert(SI && "Must either be a branch or switch!");
2284
2285 // Walk the cases and directly update their successors.
2286 assert(SI->getDefaultDest() == RetainedSuccBB &&
2287 "Not retaining default successor!");
2288 SI->setDefaultDest(LoopPH);
2289 for (const auto &Case : SI->cases())
2290 if (Case.getCaseSuccessor() == RetainedSuccBB)
2291 Case.setSuccessor(LoopPH);
2292 else
2293 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2294
2295 if (InsertFreeze)
2296 SI->setCondition(new FreezeInst(
2297 FullUnswitchCond, FullUnswitchCond->getName() + ".fr", SI));
2298
2299 // We need to use the set to populate domtree updates as even when there
2300 // are multiple cases pointing at the same successor we only want to
2301 // remove and insert one edge in the domtree.
2302 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2303 DTUpdates.push_back(
2304 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2305 }
2306
2307 if (MSSAU) {
2308 DT.applyUpdates(DTUpdates);
2309 DTUpdates.clear();
2310
2311 // Remove all but one edge to the retained block and all unswitched
2312 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2313 // when we know we only keep a single edge for each case.
2314 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2315 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2316 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2317
2318 for (auto &VMap : VMaps)
2319 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2320 /*IgnoreIncomingWithNoClones=*/true);
2321 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2322
2323 // Remove all edges to unswitched blocks.
2324 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2325 MSSAU->removeEdge(ParentBB, SuccBB);
2326 }
2327
2328 // Now unhook the successor relationship as we'll be replacing
2329 // the terminator with a direct branch. This is much simpler for branches
2330 // than switches so we handle those first.
2331 if (BI) {
2332 // Remove the parent as a predecessor of the unswitched successor.
2333 assert(UnswitchedSuccBBs.size() == 1 &&
2334 "Only one possible unswitched block for a branch!");
2335 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2336 UnswitchedSuccBB->removePredecessor(ParentBB,
2337 /*KeepOneInputPHIs*/ true);
2338 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2339 } else {
2340 // Note that we actually want to remove the parent block as a predecessor
2341 // of *every* case successor. The case successor is either unswitched,
2342 // completely eliminating an edge from the parent to that successor, or it
2343 // is a duplicate edge to the retained successor as the retained successor
2344 // is always the default successor and as we'll replace this with a direct
2345 // branch we no longer need the duplicate entries in the PHI nodes.
2346 SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2347 assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2348 "Not retaining default successor!");
2349 for (const auto &Case : NewSI->cases())
2350 Case.getCaseSuccessor()->removePredecessor(
2351 ParentBB,
2352 /*KeepOneInputPHIs*/ true);
2353
2354 // We need to use the set to populate domtree updates as even when there
2355 // are multiple cases pointing at the same successor we only want to
2356 // remove and insert one edge in the domtree.
2357 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2358 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2359 }
2360
2361 // After MSSAU update, remove the cloned terminator instruction NewTI.
2362 ParentBB->getTerminator()->eraseFromParent();
2363
2364 // Create a new unconditional branch to the continuing block (as opposed to
2365 // the one cloned).
2366 BranchInst::Create(RetainedSuccBB, ParentBB);
2367 } else {
2368 assert(BI && "Only branches have partial unswitching.");
2369 assert(UnswitchedSuccBBs.size() == 1 &&
2370 "Only one possible unswitched block for a branch!");
2371 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2372 // When doing a partial unswitch, we have to do a bit more work to build up
2373 // the branch in the split block.
2374 if (PartiallyInvariant)
2375 buildPartialInvariantUnswitchConditionalBranch(
2376 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2377 else {
2378 buildPartialUnswitchConditionalBranch(
2379 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2380 FreezeLoopUnswitchCond, BI, &AC, DT);
2381 }
2382 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2383
2384 if (MSSAU) {
2385 DT.applyUpdates(DTUpdates);
2386 DTUpdates.clear();
2387
2388 // Perform MSSA cloning updates.
2389 for (auto &VMap : VMaps)
2390 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2391 /*IgnoreIncomingWithNoClones=*/true);
2392 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2393 }
2394 }
2395
2396 // Apply the updates accumulated above to get an up-to-date dominator tree.
2397 DT.applyUpdates(DTUpdates);
2398
2399 // Now that we have an accurate dominator tree, first delete the dead cloned
2400 // blocks so that we can accurately build any cloned loops. It is important to
2401 // not delete the blocks from the original loop yet because we still want to
2402 // reference the original loop to understand the cloned loop's structure.
2403 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2404
2405 // Build the cloned loop structure itself. This may be substantially
2406 // different from the original structure due to the simplified CFG. This also
2407 // handles inserting all the cloned blocks into the correct loops.
2408 SmallVector<Loop *, 4> NonChildClonedLoops;
2409 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2410 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2411
2412 // Now that our cloned loops have been built, we can update the original loop.
2413 // First we delete the dead blocks from it and then we rebuild the loop
2414 // structure taking these deletions into account.
2415 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB);
2416
2417 if (MSSAU && VerifyMemorySSA)
2418 MSSAU->getMemorySSA()->verifyMemorySSA();
2419
2420 SmallVector<Loop *, 4> HoistedLoops;
2421 bool IsStillLoop =
2422 rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
2423
2424 if (MSSAU && VerifyMemorySSA)
2425 MSSAU->getMemorySSA()->verifyMemorySSA();
2426
2427 // This transformation has a high risk of corrupting the dominator tree, and
2428 // the below steps to rebuild loop structures will result in hard to debug
2429 // errors in that case so verify that the dominator tree is sane first.
2430 // FIXME: Remove this when the bugs stop showing up and rely on existing
2431 // verification steps.
2432 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2433
2434 if (BI && !PartiallyInvariant) {
2435 // If we unswitched a branch which collapses the condition to a known
2436 // constant we want to replace all the uses of the invariants within both
2437 // the original and cloned blocks. We do this here so that we can use the
2438 // now updated dominator tree to identify which side the users are on.
2439 assert(UnswitchedSuccBBs.size() == 1 &&
2440 "Only one possible unswitched block for a branch!");
2441 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2442
2443 // When considering multiple partially-unswitched invariants
2444 // we cant just go replace them with constants in both branches.
2445 //
2446 // For 'AND' we infer that true branch ("continue") means true
2447 // for each invariant operand.
2448 // For 'OR' we can infer that false branch ("continue") means false
2449 // for each invariant operand.
2450 // So it happens that for multiple-partial case we dont replace
2451 // in the unswitched branch.
2452 bool ReplaceUnswitched =
2453 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2454
2455 ConstantInt *UnswitchedReplacement =
2456 Direction ? ConstantInt::getTrue(BI->getContext())
2457 : ConstantInt::getFalse(BI->getContext());
2458 ConstantInt *ContinueReplacement =
2459 Direction ? ConstantInt::getFalse(BI->getContext())
2460 : ConstantInt::getTrue(BI->getContext());
2461 for (Value *Invariant : Invariants) {
2462 assert(!isa<Constant>(Invariant) &&
2463 "Should not be replacing constant values!");
2464 // Use make_early_inc_range here as set invalidates the iterator.
2465 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2466 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2467 if (!UserI)
2468 continue;
2469
2470 // Replace it with the 'continue' side if in the main loop body, and the
2471 // unswitched if in the cloned blocks.
2472 if (DT.dominates(LoopPH, UserI->getParent()))
2473 U.set(ContinueReplacement);
2474 else if (ReplaceUnswitched &&
2475 DT.dominates(ClonedPH, UserI->getParent()))
2476 U.set(UnswitchedReplacement);
2477 }
2478 }
2479 }
2480
2481 // We can change which blocks are exit blocks of all the cloned sibling
2482 // loops, the current loop, and any parent loops which shared exit blocks
2483 // with the current loop. As a consequence, we need to re-form LCSSA for
2484 // them. But we shouldn't need to re-form LCSSA for any child loops.
2485 // FIXME: This could be made more efficient by tracking which exit blocks are
2486 // new, and focusing on them, but that isn't likely to be necessary.
2487 //
2488 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2489 // loop nest and update every loop that could have had its exits changed. We
2490 // also need to cover any intervening loops. We add all of these loops to
2491 // a list and sort them by loop depth to achieve this without updating
2492 // unnecessary loops.
2493 auto UpdateLoop = [&](Loop &UpdateL) {
2494 #ifndef NDEBUG
2495 UpdateL.verifyLoop();
2496 for (Loop *ChildL : UpdateL) {
2497 ChildL->verifyLoop();
2498 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2499 "Perturbed a child loop's LCSSA form!");
2500 }
2501 #endif
2502 // First build LCSSA for this loop so that we can preserve it when
2503 // forming dedicated exits. We don't want to perturb some other loop's
2504 // LCSSA while doing that CFG edit.
2505 formLCSSA(UpdateL, DT, &LI, SE);
2506
2507 // For loops reached by this loop's original exit blocks we may
2508 // introduced new, non-dedicated exits. At least try to re-form dedicated
2509 // exits for these loops. This may fail if they couldn't have dedicated
2510 // exits to start with.
2511 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2512 };
2513
2514 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2515 // and we can do it in any order as they don't nest relative to each other.
2516 //
2517 // Also check if any of the loops we have updated have become top-level loops
2518 // as that will necessitate widening the outer loop scope.
2519 for (Loop *UpdatedL :
2520 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2521 UpdateLoop(*UpdatedL);
2522 if (UpdatedL->isOutermost())
2523 OuterExitL = nullptr;
2524 }
2525 if (IsStillLoop) {
2526 UpdateLoop(L);
2527 if (L.isOutermost())
2528 OuterExitL = nullptr;
2529 }
2530
2531 // If the original loop had exit blocks, walk up through the outer most loop
2532 // of those exit blocks to update LCSSA and form updated dedicated exits.
2533 if (OuterExitL != &L)
2534 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2535 OuterL = OuterL->getParentLoop())
2536 UpdateLoop(*OuterL);
2537
2538 #ifndef NDEBUG
2539 // Verify the entire loop structure to catch any incorrect updates before we
2540 // progress in the pass pipeline.
2541 LI.verify(DT);
2542 #endif
2543
2544 // Now that we've unswitched something, make callbacks to report the changes.
2545 // For that we need to merge together the updated loops and the cloned loops
2546 // and check whether the original loop survived.
2547 SmallVector<Loop *, 4> SibLoops;
2548 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2549 if (UpdatedL->getParentLoop() == ParentL)
2550 SibLoops.push_back(UpdatedL);
2551 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2552
2553 if (MSSAU && VerifyMemorySSA)
2554 MSSAU->getMemorySSA()->verifyMemorySSA();
2555
2556 if (BI)
2557 ++NumBranches;
2558 else
2559 ++NumSwitches;
2560 }
2561
2562 /// Recursively compute the cost of a dominator subtree based on the per-block
2563 /// cost map provided.
2564 ///
2565 /// The recursive computation is memozied into the provided DT-indexed cost map
2566 /// to allow querying it for most nodes in the domtree without it becoming
2567 /// quadratic.
computeDomSubtreeCost(DomTreeNode & N,const SmallDenseMap<BasicBlock *,InstructionCost,4> & BBCostMap,SmallDenseMap<DomTreeNode *,InstructionCost,4> & DTCostMap)2568 static InstructionCost computeDomSubtreeCost(
2569 DomTreeNode &N,
2570 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2571 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2572 // Don't accumulate cost (or recurse through) blocks not in our block cost
2573 // map and thus not part of the duplication cost being considered.
2574 auto BBCostIt = BBCostMap.find(N.getBlock());
2575 if (BBCostIt == BBCostMap.end())
2576 return 0;
2577
2578 // Lookup this node to see if we already computed its cost.
2579 auto DTCostIt = DTCostMap.find(&N);
2580 if (DTCostIt != DTCostMap.end())
2581 return DTCostIt->second;
2582
2583 // If not, we have to compute it. We can't use insert above and update
2584 // because computing the cost may insert more things into the map.
2585 InstructionCost Cost = std::accumulate(
2586 N.begin(), N.end(), BBCostIt->second,
2587 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2588 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2589 });
2590 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2591 (void)Inserted;
2592 assert(Inserted && "Should not insert a node while visiting children!");
2593 return Cost;
2594 }
2595
2596 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2597 /// making the following replacement:
2598 ///
2599 /// --code before guard--
2600 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2601 /// --code after guard--
2602 ///
2603 /// into
2604 ///
2605 /// --code before guard--
2606 /// br i1 %cond, label %guarded, label %deopt
2607 ///
2608 /// guarded:
2609 /// --code after guard--
2610 ///
2611 /// deopt:
2612 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2613 /// unreachable
2614 ///
2615 /// It also makes all relevant DT and LI updates, so that all structures are in
2616 /// valid state after this transform.
turnGuardIntoBranch(IntrinsicInst * GI,Loop & L,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)2617 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2618 DominatorTree &DT, LoopInfo &LI,
2619 MemorySSAUpdater *MSSAU) {
2620 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2621 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2622 BasicBlock *CheckBB = GI->getParent();
2623
2624 if (MSSAU && VerifyMemorySSA)
2625 MSSAU->getMemorySSA()->verifyMemorySSA();
2626
2627 // Remove all CheckBB's successors from DomTree. A block can be seen among
2628 // successors more than once, but for DomTree it should be added only once.
2629 SmallPtrSet<BasicBlock *, 4> Successors;
2630 for (auto *Succ : successors(CheckBB))
2631 if (Successors.insert(Succ).second)
2632 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2633
2634 Instruction *DeoptBlockTerm =
2635 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2636 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2637 // SplitBlockAndInsertIfThen inserts control flow that branches to
2638 // DeoptBlockTerm if the condition is true. We want the opposite.
2639 CheckBI->swapSuccessors();
2640
2641 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2642 GuardedBlock->setName("guarded");
2643 CheckBI->getSuccessor(1)->setName("deopt");
2644 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2645
2646 if (MSSAU)
2647 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2648
2649 GI->moveBefore(DeoptBlockTerm);
2650 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2651
2652 // Add new successors of CheckBB into DomTree.
2653 for (auto *Succ : successors(CheckBB))
2654 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2655
2656 // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2657 // successors.
2658 for (auto *Succ : Successors)
2659 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2660
2661 // Make proper changes to DT.
2662 DT.applyUpdates(DTUpdates);
2663 // Inform LI of a new loop block.
2664 L.addBasicBlockToLoop(GuardedBlock, LI);
2665
2666 if (MSSAU) {
2667 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2668 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2669 if (VerifyMemorySSA)
2670 MSSAU->getMemorySSA()->verifyMemorySSA();
2671 }
2672
2673 ++NumGuards;
2674 return CheckBI;
2675 }
2676
2677 /// Cost multiplier is a way to limit potentially exponential behavior
2678 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2679 /// candidates available. Also accounting for the number of "sibling" loops with
2680 /// the idea to account for previous unswitches that already happened on this
2681 /// cluster of loops. There was an attempt to keep this formula simple,
2682 /// just enough to limit the worst case behavior. Even if it is not that simple
2683 /// now it is still not an attempt to provide a detailed heuristic size
2684 /// prediction.
2685 ///
2686 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2687 /// unswitch candidates, making adequate predictions instead of wild guesses.
2688 /// That requires knowing not just the number of "remaining" candidates but
2689 /// also costs of unswitching for each of these candidates.
CalculateUnswitchCostMultiplier(const Instruction & TI,const Loop & L,const LoopInfo & LI,const DominatorTree & DT,ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates)2690 static int CalculateUnswitchCostMultiplier(
2691 const Instruction &TI, const Loop &L, const LoopInfo &LI,
2692 const DominatorTree &DT,
2693 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) {
2694
2695 // Guards and other exiting conditions do not contribute to exponential
2696 // explosion as soon as they dominate the latch (otherwise there might be
2697 // another path to the latch remaining that does not allow to eliminate the
2698 // loop copy on unswitch).
2699 const BasicBlock *Latch = L.getLoopLatch();
2700 const BasicBlock *CondBlock = TI.getParent();
2701 if (DT.dominates(CondBlock, Latch) &&
2702 (isGuard(&TI) ||
2703 llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) {
2704 return L.contains(SuccBB);
2705 }) <= 1)) {
2706 NumCostMultiplierSkipped++;
2707 return 1;
2708 }
2709
2710 auto *ParentL = L.getParentLoop();
2711 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2712 : std::distance(LI.begin(), LI.end()));
2713 // Count amount of clones that all the candidates might cause during
2714 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2715 int UnswitchedClones = 0;
2716 for (auto Candidate : UnswitchCandidates) {
2717 const Instruction *CI = Candidate.TI;
2718 const BasicBlock *CondBlock = CI->getParent();
2719 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2720 if (isGuard(CI)) {
2721 if (!SkipExitingSuccessors)
2722 UnswitchedClones++;
2723 continue;
2724 }
2725 int NonExitingSuccessors =
2726 llvm::count_if(successors(CondBlock),
2727 [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) {
2728 return !SkipExitingSuccessors || L.contains(SuccBB);
2729 });
2730 UnswitchedClones += Log2_32(NonExitingSuccessors);
2731 }
2732
2733 // Ignore up to the "unscaled candidates" number of unswitch candidates
2734 // when calculating the power-of-two scaling of the cost. The main idea
2735 // with this control is to allow a small number of unswitches to happen
2736 // and rely more on siblings multiplier (see below) when the number
2737 // of candidates is small.
2738 unsigned ClonesPower =
2739 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2740
2741 // Allowing top-level loops to spread a bit more than nested ones.
2742 int SiblingsMultiplier =
2743 std::max((ParentL ? SiblingsCount
2744 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2745 1);
2746 // Compute the cost multiplier in a way that won't overflow by saturating
2747 // at an upper bound.
2748 int CostMultiplier;
2749 if (ClonesPower > Log2_32(UnswitchThreshold) ||
2750 SiblingsMultiplier > UnswitchThreshold)
2751 CostMultiplier = UnswitchThreshold;
2752 else
2753 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2754 (int)UnswitchThreshold);
2755
2756 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2757 << " (siblings " << SiblingsMultiplier << " * clones "
2758 << (1 << ClonesPower) << ")"
2759 << " for unswitch candidate: " << TI << "\n");
2760 return CostMultiplier;
2761 }
2762
collectUnswitchCandidates(SmallVectorImpl<NonTrivialUnswitchCandidate> & UnswitchCandidates,IVConditionInfo & PartialIVInfo,Instruction * & PartialIVCondBranch,const Loop & L,const LoopInfo & LI,AAResults & AA,const MemorySSAUpdater * MSSAU)2763 static bool collectUnswitchCandidates(
2764 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
2765 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
2766 const Loop &L, const LoopInfo &LI, AAResults &AA,
2767 const MemorySSAUpdater *MSSAU) {
2768 assert(UnswitchCandidates.empty() && "Should be!");
2769 // Whether or not we should also collect guards in the loop.
2770 bool CollectGuards = false;
2771 if (UnswitchGuards) {
2772 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2773 Intrinsic::getName(Intrinsic::experimental_guard));
2774 if (GuardDecl && !GuardDecl->use_empty())
2775 CollectGuards = true;
2776 }
2777
2778 for (auto *BB : L.blocks()) {
2779 if (LI.getLoopFor(BB) != &L)
2780 continue;
2781
2782 if (CollectGuards)
2783 for (auto &I : *BB)
2784 if (isGuard(&I)) {
2785 auto *Cond =
2786 skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0));
2787 // TODO: Support AND, OR conditions and partial unswitching.
2788 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2789 UnswitchCandidates.push_back({&I, {Cond}});
2790 }
2791
2792 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2793 // We can only consider fully loop-invariant switch conditions as we need
2794 // to completely eliminate the switch after unswitching.
2795 if (!isa<Constant>(SI->getCondition()) &&
2796 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2797 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2798 continue;
2799 }
2800
2801 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2802 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2803 BI->getSuccessor(0) == BI->getSuccessor(1))
2804 continue;
2805
2806 Value *Cond = skipTrivialSelect(BI->getCondition());
2807 if (isa<Constant>(Cond))
2808 continue;
2809
2810 if (L.isLoopInvariant(Cond)) {
2811 UnswitchCandidates.push_back({BI, {Cond}});
2812 continue;
2813 }
2814
2815 Instruction &CondI = *cast<Instruction>(Cond);
2816 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2817 TinyPtrVector<Value *> Invariants =
2818 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2819 if (Invariants.empty())
2820 continue;
2821
2822 UnswitchCandidates.push_back({BI, std::move(Invariants)});
2823 continue;
2824 }
2825 }
2826
2827 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2828 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2829 return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
2830 })) {
2831 MemorySSA *MSSA = MSSAU->getMemorySSA();
2832 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2833 LLVM_DEBUG(
2834 dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2835 << *Info->InstToDuplicate[0] << "\n");
2836 PartialIVInfo = *Info;
2837 PartialIVCondBranch = L.getHeader()->getTerminator();
2838 TinyPtrVector<Value *> ValsToDuplicate;
2839 llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2840 UnswitchCandidates.push_back(
2841 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2842 }
2843 }
2844 return !UnswitchCandidates.empty();
2845 }
2846
isSafeForNoNTrivialUnswitching(Loop & L,LoopInfo & LI)2847 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) {
2848 if (!L.isSafeToClone())
2849 return false;
2850 for (auto *BB : L.blocks())
2851 for (auto &I : *BB) {
2852 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2853 return false;
2854 if (auto *CB = dyn_cast<CallBase>(&I)) {
2855 assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone().");
2856 if (CB->isConvergent())
2857 return false;
2858 }
2859 }
2860
2861 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2862 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2863 // irreducible control flow into reducible control flow and introduce new
2864 // loops "out of thin air". If we ever discover important use cases for doing
2865 // this, we can add support to loop unswitch, but it is a lot of complexity
2866 // for what seems little or no real world benefit.
2867 LoopBlocksRPO RPOT(&L);
2868 RPOT.perform(&LI);
2869 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2870 return false;
2871
2872 SmallVector<BasicBlock *, 4> ExitBlocks;
2873 L.getUniqueExitBlocks(ExitBlocks);
2874 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2875 // instruction as we don't know how to split those exit blocks.
2876 // FIXME: We should teach SplitBlock to handle this and remove this
2877 // restriction.
2878 for (auto *ExitBB : ExitBlocks) {
2879 auto *I = ExitBB->getFirstNonPHI();
2880 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2881 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2882 "in exit block\n");
2883 return false;
2884 }
2885 }
2886
2887 return true;
2888 }
2889
findBestNonTrivialUnswitchCandidate(ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates,const Loop & L,const DominatorTree & DT,const LoopInfo & LI,AssumptionCache & AC,const TargetTransformInfo & TTI,const IVConditionInfo & PartialIVInfo)2890 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(
2891 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L,
2892 const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC,
2893 const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) {
2894 // Given that unswitching these terminators will require duplicating parts of
2895 // the loop, so we need to be able to model that cost. Compute the ephemeral
2896 // values and set up a data structure to hold per-BB costs. We cache each
2897 // block's cost so that we don't recompute this when considering different
2898 // subsets of the loop for duplication during unswitching.
2899 SmallPtrSet<const Value *, 4> EphValues;
2900 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2901 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2902
2903 // Compute the cost of each block, as well as the total loop cost. Also, bail
2904 // out if we see instructions which are incompatible with loop unswitching
2905 // (convergent, noduplicate, or cross-basic-block tokens).
2906 // FIXME: We might be able to safely handle some of these in non-duplicated
2907 // regions.
2908 TargetTransformInfo::TargetCostKind CostKind =
2909 L.getHeader()->getParent()->hasMinSize()
2910 ? TargetTransformInfo::TCK_CodeSize
2911 : TargetTransformInfo::TCK_SizeAndLatency;
2912 InstructionCost LoopCost = 0;
2913 for (auto *BB : L.blocks()) {
2914 InstructionCost Cost = 0;
2915 for (auto &I : *BB) {
2916 if (EphValues.count(&I))
2917 continue;
2918 Cost += TTI.getInstructionCost(&I, CostKind);
2919 }
2920 assert(Cost >= 0 && "Must not have negative costs!");
2921 LoopCost += Cost;
2922 assert(LoopCost >= 0 && "Must not have negative loop costs!");
2923 BBCostMap[BB] = Cost;
2924 }
2925 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
2926
2927 // Now we find the best candidate by searching for the one with the following
2928 // properties in order:
2929 //
2930 // 1) An unswitching cost below the threshold
2931 // 2) The smallest number of duplicated unswitch candidates (to avoid
2932 // creating redundant subsequent unswitching)
2933 // 3) The smallest cost after unswitching.
2934 //
2935 // We prioritize reducing fanout of unswitch candidates provided the cost
2936 // remains below the threshold because this has a multiplicative effect.
2937 //
2938 // This requires memoizing each dominator subtree to avoid redundant work.
2939 //
2940 // FIXME: Need to actually do the number of candidates part above.
2941 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2942 // Given a terminator which might be unswitched, computes the non-duplicated
2943 // cost for that terminator.
2944 auto ComputeUnswitchedCost = [&](Instruction &TI,
2945 bool FullUnswitch) -> InstructionCost {
2946 BasicBlock &BB = *TI.getParent();
2947 SmallPtrSet<BasicBlock *, 4> Visited;
2948
2949 InstructionCost Cost = 0;
2950 for (BasicBlock *SuccBB : successors(&BB)) {
2951 // Don't count successors more than once.
2952 if (!Visited.insert(SuccBB).second)
2953 continue;
2954
2955 // If this is a partial unswitch candidate, then it must be a conditional
2956 // branch with a condition of either `or`, `and`, their corresponding
2957 // select forms or partially invariant instructions. In that case, one of
2958 // the successors is necessarily duplicated, so don't even try to remove
2959 // its cost.
2960 if (!FullUnswitch) {
2961 auto &BI = cast<BranchInst>(TI);
2962 Value *Cond = skipTrivialSelect(BI.getCondition());
2963 if (match(Cond, m_LogicalAnd())) {
2964 if (SuccBB == BI.getSuccessor(1))
2965 continue;
2966 } else if (match(Cond, m_LogicalOr())) {
2967 if (SuccBB == BI.getSuccessor(0))
2968 continue;
2969 } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2970 SuccBB == BI.getSuccessor(0)) ||
2971 (!PartialIVInfo.KnownValue->isOneValue() &&
2972 SuccBB == BI.getSuccessor(1)))
2973 continue;
2974 }
2975
2976 // This successor's domtree will not need to be duplicated after
2977 // unswitching if the edge to the successor dominates it (and thus the
2978 // entire tree). This essentially means there is no other path into this
2979 // subtree and so it will end up live in only one clone of the loop.
2980 if (SuccBB->getUniquePredecessor() ||
2981 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2982 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2983 })) {
2984 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2985 assert(Cost <= LoopCost &&
2986 "Non-duplicated cost should never exceed total loop cost!");
2987 }
2988 }
2989
2990 // Now scale the cost by the number of unique successors minus one. We
2991 // subtract one because there is already at least one copy of the entire
2992 // loop. This is computing the new cost of unswitching a condition.
2993 // Note that guards always have 2 unique successors that are implicit and
2994 // will be materialized if we decide to unswitch it.
2995 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2996 assert(SuccessorsCount > 1 &&
2997 "Cannot unswitch a condition without multiple distinct successors!");
2998 return (LoopCost - Cost) * (SuccessorsCount - 1);
2999 };
3000
3001 std::optional<NonTrivialUnswitchCandidate> Best;
3002 for (auto &Candidate : UnswitchCandidates) {
3003 Instruction &TI = *Candidate.TI;
3004 ArrayRef<Value *> Invariants = Candidate.Invariants;
3005 BranchInst *BI = dyn_cast<BranchInst>(&TI);
3006 InstructionCost CandidateCost = ComputeUnswitchedCost(
3007 TI, /*FullUnswitch*/ !BI ||
3008 (Invariants.size() == 1 &&
3009 Invariants[0] == skipTrivialSelect(BI->getCondition())));
3010 // Calculate cost multiplier which is a tool to limit potentially
3011 // exponential behavior of loop-unswitch.
3012 if (EnableUnswitchCostMultiplier) {
3013 int CostMultiplier =
3014 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
3015 assert(
3016 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
3017 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3018 CandidateCost *= CostMultiplier;
3019 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3020 << " (multiplier: " << CostMultiplier << ")"
3021 << " for unswitch candidate: " << TI << "\n");
3022 } else {
3023 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3024 << " for unswitch candidate: " << TI << "\n");
3025 }
3026
3027 if (!Best || CandidateCost < Best->Cost) {
3028 Best = Candidate;
3029 Best->Cost = CandidateCost;
3030 }
3031 }
3032 assert(Best && "Must be!");
3033 return *Best;
3034 }
3035
unswitchBestCondition(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,AAResults & AA,TargetTransformInfo & TTI,function_ref<void (bool,bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU,function_ref<void (Loop &,StringRef)> DestroyLoopCB)3036 static bool unswitchBestCondition(
3037 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3038 AAResults &AA, TargetTransformInfo &TTI,
3039 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3040 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3041 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3042 // Collect all invariant conditions within this loop (as opposed to an inner
3043 // loop which would be handled when visiting that inner loop).
3044 SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates;
3045 IVConditionInfo PartialIVInfo;
3046 Instruction *PartialIVCondBranch = nullptr;
3047 // If we didn't find any candidates, we're done.
3048 if (!collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
3049 PartialIVCondBranch, L, LI, AA, MSSAU))
3050 return false;
3051
3052 LLVM_DEBUG(
3053 dbgs() << "Considering " << UnswitchCandidates.size()
3054 << " non-trivial loop invariant conditions for unswitching.\n");
3055
3056 NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate(
3057 UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo);
3058
3059 assert(Best.TI && "Failed to find loop unswitch candidate");
3060 assert(Best.Cost && "Failed to compute cost");
3061
3062 if (*Best.Cost >= UnswitchThreshold) {
3063 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost
3064 << "\n");
3065 return false;
3066 }
3067
3068 if (Best.TI != PartialIVCondBranch)
3069 PartialIVInfo.InstToDuplicate.clear();
3070
3071 // If the best candidate is a guard, turn it into a branch.
3072 if (isGuard(Best.TI))
3073 Best.TI =
3074 turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU);
3075
3076 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost
3077 << ") terminator: " << *Best.TI << "\n");
3078 unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT,
3079 LI, AC, UnswitchCB, SE, MSSAU, DestroyLoopCB);
3080 return true;
3081 }
3082
3083 /// Unswitch control flow predicated on loop invariant conditions.
3084 ///
3085 /// This first hoists all branches or switches which are trivial (IE, do not
3086 /// require duplicating any part of the loop) out of the loop body. It then
3087 /// looks at other loop invariant control flows and tries to unswitch those as
3088 /// well by cloning the loop if the result is small enough.
3089 ///
3090 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3091 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3092 /// valid (i.e. its use is enabled).
3093 ///
3094 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3095 /// true, we will attempt to do non-trivial unswitching as well as trivial
3096 /// unswitching.
3097 ///
3098 /// The `UnswitchCB` callback provided will be run after unswitching is
3099 /// complete, with the first parameter set to `true` if the provided loop
3100 /// remains a loop, and a list of new sibling loops created.
3101 ///
3102 /// If `SE` is non-null, we will update that analysis based on the unswitching
3103 /// done.
3104 static bool
unswitchLoop(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,AAResults & AA,TargetTransformInfo & TTI,bool Trivial,bool NonTrivial,function_ref<void (bool,bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,function_ref<void (Loop &,StringRef)> DestroyLoopCB)3105 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3106 AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
3107 bool NonTrivial,
3108 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3109 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3110 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
3111 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3112 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3113 "Loops must be in LCSSA form before unswitching.");
3114
3115 // Must be in loop simplified form: we need a preheader and dedicated exits.
3116 if (!L.isLoopSimplifyForm())
3117 return false;
3118
3119 // Try trivial unswitch first before loop over other basic blocks in the loop.
3120 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3121 // If we unswitched successfully we will want to clean up the loop before
3122 // processing it further so just mark it as unswitched and return.
3123 UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3124 return true;
3125 }
3126
3127 // Check whether we should continue with non-trivial conditions.
3128 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3129 // unswitching for testing and debugging.
3130 // NonTrivial: Parameter that enables non-trivial unswitching for this
3131 // invocation of the transform. But this should be allowed only
3132 // for targets without branch divergence.
3133 //
3134 // FIXME: If divergence analysis becomes available to a loop
3135 // transform, we should allow unswitching for non-trivial uniform
3136 // branches even on targets that have divergence.
3137 // https://bugs.llvm.org/show_bug.cgi?id=48819
3138 bool ContinueWithNonTrivial =
3139 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3140 if (!ContinueWithNonTrivial)
3141 return false;
3142
3143 // Skip non-trivial unswitching for optsize functions.
3144 if (L.getHeader()->getParent()->hasOptSize())
3145 return false;
3146
3147 // Skip cold loops, as unswitching them brings little benefit
3148 // but increases the code size
3149 if (PSI && PSI->hasProfileSummary() && BFI &&
3150 PSI->isFunctionColdInCallGraph(L.getHeader()->getParent(), *BFI)) {
3151 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
3152 return false;
3153 }
3154
3155 // Perform legality checks.
3156 if (!isSafeForNoNTrivialUnswitching(L, LI))
3157 return false;
3158
3159 // For non-trivial unswitching, because it often creates new loops, we rely on
3160 // the pass manager to iterate on the loops rather than trying to immediately
3161 // reach a fixed point. There is no substantial advantage to iterating
3162 // internally, and if any of the new loops are simplified enough to contain
3163 // trivial unswitching we want to prefer those.
3164
3165 // Try to unswitch the best invariant condition. We prefer this full unswitch to
3166 // a partial unswitch when possible below the threshold.
3167 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3168 DestroyLoopCB))
3169 return true;
3170
3171 // No other opportunities to unswitch.
3172 return false;
3173 }
3174
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)3175 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3176 LoopStandardAnalysisResults &AR,
3177 LPMUpdater &U) {
3178 Function &F = *L.getHeader()->getParent();
3179 (void)F;
3180 ProfileSummaryInfo *PSI = nullptr;
3181 if (auto OuterProxy =
3182 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR)
3183 .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
3184 PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3185 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3186 << "\n");
3187
3188 // Save the current loop name in a variable so that we can report it even
3189 // after it has been deleted.
3190 std::string LoopName = std::string(L.getName());
3191
3192 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3193 bool PartiallyInvariant,
3194 ArrayRef<Loop *> NewLoops) {
3195 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3196 if (!NewLoops.empty())
3197 U.addSiblingLoops(NewLoops);
3198
3199 // If the current loop remains valid, we should revisit it to catch any
3200 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3201 if (CurrentLoopValid) {
3202 if (PartiallyInvariant) {
3203 // Mark the new loop as partially unswitched, to avoid unswitching on
3204 // the same condition again.
3205 auto &Context = L.getHeader()->getContext();
3206 MDNode *DisableUnswitchMD = MDNode::get(
3207 Context,
3208 MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3209 MDNode *NewLoopID = makePostTransformationMetadata(
3210 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3211 {DisableUnswitchMD});
3212 L.setLoopID(NewLoopID);
3213 } else
3214 U.revisitCurrentLoop();
3215 } else
3216 U.markLoopAsDeleted(L, LoopName);
3217 };
3218
3219 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3220 U.markLoopAsDeleted(L, Name);
3221 };
3222
3223 std::optional<MemorySSAUpdater> MSSAU;
3224 if (AR.MSSA) {
3225 MSSAU = MemorySSAUpdater(AR.MSSA);
3226 if (VerifyMemorySSA)
3227 AR.MSSA->verifyMemorySSA();
3228 }
3229 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3230 UnswitchCB, &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI,
3231 DestroyLoopCB))
3232 return PreservedAnalyses::all();
3233
3234 if (AR.MSSA && VerifyMemorySSA)
3235 AR.MSSA->verifyMemorySSA();
3236
3237 // Historically this pass has had issues with the dominator tree so verify it
3238 // in asserts builds.
3239 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3240
3241 auto PA = getLoopPassPreservedAnalyses();
3242 if (AR.MSSA)
3243 PA.preserve<MemorySSAAnalysis>();
3244 return PA;
3245 }
3246
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)3247 void SimpleLoopUnswitchPass::printPipeline(
3248 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3249 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3250 OS, MapClassName2PassName);
3251
3252 OS << "<";
3253 OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3254 OS << (Trivial ? "" : "no-") << "trivial";
3255 OS << ">";
3256 }
3257
3258 namespace {
3259
3260 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3261 bool NonTrivial;
3262
3263 public:
3264 static char ID; // Pass ID, replacement for typeid
3265
SimpleLoopUnswitchLegacyPass(bool NonTrivial=false)3266 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3267 : LoopPass(ID), NonTrivial(NonTrivial) {
3268 initializeSimpleLoopUnswitchLegacyPassPass(
3269 *PassRegistry::getPassRegistry());
3270 }
3271
3272 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3273
getAnalysisUsage(AnalysisUsage & AU) const3274 void getAnalysisUsage(AnalysisUsage &AU) const override {
3275 AU.addRequired<AssumptionCacheTracker>();
3276 AU.addRequired<TargetTransformInfoWrapperPass>();
3277 AU.addRequired<MemorySSAWrapperPass>();
3278 AU.addPreserved<MemorySSAWrapperPass>();
3279 getLoopAnalysisUsage(AU);
3280 }
3281 };
3282
3283 } // end anonymous namespace
3284
runOnLoop(Loop * L,LPPassManager & LPM)3285 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3286 if (skipLoop(L))
3287 return false;
3288
3289 Function &F = *L->getHeader()->getParent();
3290
3291 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3292 << "\n");
3293 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3294 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3295 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3296 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3297 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3298 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3299 MemorySSAUpdater MSSAU(MSSA);
3300
3301 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3302 auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3303
3304 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3305 ArrayRef<Loop *> NewLoops) {
3306 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3307 for (auto *NewL : NewLoops)
3308 LPM.addLoop(*NewL);
3309
3310 // If the current loop remains valid, re-add it to the queue. This is
3311 // a little wasteful as we'll finish processing the current loop as well,
3312 // but it is the best we can do in the old PM.
3313 if (CurrentLoopValid) {
3314 // If the current loop has been unswitched using a partially invariant
3315 // condition, we should not re-add the current loop to avoid unswitching
3316 // on the same condition again.
3317 if (!PartiallyInvariant)
3318 LPM.addLoop(*L);
3319 } else
3320 LPM.markLoopAsDeleted(*L);
3321 };
3322
3323 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3324 LPM.markLoopAsDeleted(L);
3325 };
3326
3327 if (VerifyMemorySSA)
3328 MSSA->verifyMemorySSA();
3329 bool Changed =
3330 unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE,
3331 &MSSAU, nullptr, nullptr, DestroyLoopCB);
3332
3333 if (VerifyMemorySSA)
3334 MSSA->verifyMemorySSA();
3335
3336 // Historically this pass has had issues with the dominator tree so verify it
3337 // in asserts builds.
3338 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3339
3340 return Changed;
3341 }
3342
3343 char SimpleLoopUnswitchLegacyPass::ID = 0;
3344 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3345 "Simple unswitch loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)3346 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3347 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3348 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3349 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3350 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3351 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3352 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3353 "Simple unswitch loops", false, false)
3354
3355 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3356 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3357 }
3358