1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for metadata subclasses.
11 /// They represent the different flavors of metadata that live in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_IR_METADATA_H
16 #define LLVM_IR_METADATA_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/ilist_node.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <iterator>
36 #include <memory>
37 #include <string>
38 #include <type_traits>
39 #include <utility>
40
41 namespace llvm {
42
43 class Module;
44 class ModuleSlotTracker;
45 class raw_ostream;
46 template <typename T> class StringMapEntry;
47 template <typename ValueTy> class StringMapEntryStorage;
48 class Type;
49
50 enum LLVMConstants : uint32_t {
51 DEBUG_METADATA_VERSION = 3 // Current debug info version number.
52 };
53
54 /// Magic number in the value profile metadata showing a target has been
55 /// promoted for the instruction and shouldn't be promoted again.
56 const uint64_t NOMORE_ICP_MAGICNUM = -1;
57
58 /// Root of the metadata hierarchy.
59 ///
60 /// This is a root class for typeless data in the IR.
61 class Metadata {
62 friend class ReplaceableMetadataImpl;
63
64 /// RTTI.
65 const unsigned char SubclassID;
66
67 protected:
68 /// Active type of storage.
69 enum StorageType { Uniqued, Distinct, Temporary };
70
71 /// Storage flag for non-uniqued, otherwise unowned, metadata.
72 unsigned char Storage : 7;
73
74 unsigned char SubclassData1 : 1;
75 unsigned short SubclassData16 = 0;
76 unsigned SubclassData32 = 0;
77
78 public:
79 enum MetadataKind {
80 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
81 #include "llvm/IR/Metadata.def"
82 };
83
84 protected:
Metadata(unsigned ID,StorageType Storage)85 Metadata(unsigned ID, StorageType Storage)
86 : SubclassID(ID), Storage(Storage), SubclassData1(false) {
87 static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
88 }
89
90 ~Metadata() = default;
91
92 /// Default handling of a changed operand, which asserts.
93 ///
94 /// If subclasses pass themselves in as owners to a tracking node reference,
95 /// they must provide an implementation of this method.
handleChangedOperand(void *,Metadata *)96 void handleChangedOperand(void *, Metadata *) {
97 llvm_unreachable("Unimplemented in Metadata subclass");
98 }
99
100 public:
getMetadataID()101 unsigned getMetadataID() const { return SubclassID; }
102
103 /// User-friendly dump.
104 ///
105 /// If \c M is provided, metadata nodes will be numbered canonically;
106 /// otherwise, pointer addresses are substituted.
107 ///
108 /// Note: this uses an explicit overload instead of default arguments so that
109 /// the nullptr version is easy to call from a debugger.
110 ///
111 /// @{
112 void dump() const;
113 void dump(const Module *M) const;
114 /// @}
115
116 /// Print.
117 ///
118 /// Prints definition of \c this.
119 ///
120 /// If \c M is provided, metadata nodes will be numbered canonically;
121 /// otherwise, pointer addresses are substituted.
122 /// @{
123 void print(raw_ostream &OS, const Module *M = nullptr,
124 bool IsForDebug = false) const;
125 void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
126 bool IsForDebug = false) const;
127 /// @}
128
129 /// Print as operand.
130 ///
131 /// Prints reference of \c this.
132 ///
133 /// If \c M is provided, metadata nodes will be numbered canonically;
134 /// otherwise, pointer addresses are substituted.
135 /// @{
136 void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
137 void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
138 const Module *M = nullptr) const;
139 /// @}
140 };
141
142 // Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata,LLVMMetadataRef)143 DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
144
145 // Specialized opaque metadata conversions.
146 inline Metadata **unwrap(LLVMMetadataRef *MDs) {
147 return reinterpret_cast<Metadata**>(MDs);
148 }
149
150 #define HANDLE_METADATA(CLASS) class CLASS;
151 #include "llvm/IR/Metadata.def"
152
153 // Provide specializations of isa so that we don't need definitions of
154 // subclasses to see if the metadata is a subclass.
155 #define HANDLE_METADATA_LEAF(CLASS) \
156 template <> struct isa_impl<CLASS, Metadata> { \
157 static inline bool doit(const Metadata &MD) { \
158 return MD.getMetadataID() == Metadata::CLASS##Kind; \
159 } \
160 };
161 #include "llvm/IR/Metadata.def"
162
163 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
164 MD.print(OS);
165 return OS;
166 }
167
168 /// Metadata wrapper in the Value hierarchy.
169 ///
170 /// A member of the \a Value hierarchy to represent a reference to metadata.
171 /// This allows, e.g., intrinsics to have metadata as operands.
172 ///
173 /// Notably, this is the only thing in either hierarchy that is allowed to
174 /// reference \a LocalAsMetadata.
175 class MetadataAsValue : public Value {
176 friend class ReplaceableMetadataImpl;
177 friend class LLVMContextImpl;
178
179 Metadata *MD;
180
181 MetadataAsValue(Type *Ty, Metadata *MD);
182
183 /// Drop use of metadata (during teardown).
dropUse()184 void dropUse() { MD = nullptr; }
185
186 public:
187 ~MetadataAsValue();
188
189 static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
190 static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
191
getMetadata()192 Metadata *getMetadata() const { return MD; }
193
classof(const Value * V)194 static bool classof(const Value *V) {
195 return V->getValueID() == MetadataAsValueVal;
196 }
197
198 private:
199 void handleChangedMetadata(Metadata *MD);
200 void track();
201 void untrack();
202 };
203
204 /// API for tracking metadata references through RAUW and deletion.
205 ///
206 /// Shared API for updating \a Metadata pointers in subclasses that support
207 /// RAUW.
208 ///
209 /// This API is not meant to be used directly. See \a TrackingMDRef for a
210 /// user-friendly tracking reference.
211 class MetadataTracking {
212 public:
213 /// Track the reference to metadata.
214 ///
215 /// Register \c MD with \c *MD, if the subclass supports tracking. If \c *MD
216 /// gets RAUW'ed, \c MD will be updated to the new address. If \c *MD gets
217 /// deleted, \c MD will be set to \c nullptr.
218 ///
219 /// If tracking isn't supported, \c *MD will not change.
220 ///
221 /// \return true iff tracking is supported by \c MD.
track(Metadata * & MD)222 static bool track(Metadata *&MD) {
223 return track(&MD, *MD, static_cast<Metadata *>(nullptr));
224 }
225
226 /// Track the reference to metadata for \a Metadata.
227 ///
228 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
229 /// tell it that its operand changed. This could trigger \c Owner being
230 /// re-uniqued.
track(void * Ref,Metadata & MD,Metadata & Owner)231 static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
232 return track(Ref, MD, &Owner);
233 }
234
235 /// Track the reference to metadata for \a MetadataAsValue.
236 ///
237 /// As \a track(Metadata*&), but with support for calling back to \c Owner to
238 /// tell it that its operand changed. This could trigger \c Owner being
239 /// re-uniqued.
track(void * Ref,Metadata & MD,MetadataAsValue & Owner)240 static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
241 return track(Ref, MD, &Owner);
242 }
243
244 /// Stop tracking a reference to metadata.
245 ///
246 /// Stops \c *MD from tracking \c MD.
untrack(Metadata * & MD)247 static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
248 static void untrack(void *Ref, Metadata &MD);
249
250 /// Move tracking from one reference to another.
251 ///
252 /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
253 /// except that ownership callbacks are maintained.
254 ///
255 /// Note: it is an error if \c *MD does not equal \c New.
256 ///
257 /// \return true iff tracking is supported by \c MD.
retrack(Metadata * & MD,Metadata * & New)258 static bool retrack(Metadata *&MD, Metadata *&New) {
259 return retrack(&MD, *MD, &New);
260 }
261 static bool retrack(void *Ref, Metadata &MD, void *New);
262
263 /// Check whether metadata is replaceable.
264 static bool isReplaceable(const Metadata &MD);
265
266 using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
267
268 private:
269 /// Track a reference to metadata for an owner.
270 ///
271 /// Generalized version of tracking.
272 static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
273 };
274
275 /// Shared implementation of use-lists for replaceable metadata.
276 ///
277 /// Most metadata cannot be RAUW'ed. This is a shared implementation of
278 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
279 /// and \a TempMDNode).
280 class ReplaceableMetadataImpl {
281 friend class MetadataTracking;
282
283 public:
284 using OwnerTy = MetadataTracking::OwnerTy;
285
286 private:
287 LLVMContext &Context;
288 uint64_t NextIndex = 0;
289 SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
290
291 public:
ReplaceableMetadataImpl(LLVMContext & Context)292 ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
293
~ReplaceableMetadataImpl()294 ~ReplaceableMetadataImpl() {
295 assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
296 }
297
getContext()298 LLVMContext &getContext() const { return Context; }
299
300 /// Replace all uses of this with MD.
301 ///
302 /// Replace all uses of this with \c MD, which is allowed to be null.
303 void replaceAllUsesWith(Metadata *MD);
304 /// Replace all uses of the constant with Undef in debug info metadata
305 static void SalvageDebugInfo(const Constant &C);
306 /// Returns the list of all DIArgList users of this.
307 SmallVector<Metadata *> getAllArgListUsers();
308
309 /// Resolve all uses of this.
310 ///
311 /// Resolve all uses of this, turning off RAUW permanently. If \c
312 /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
313 /// is resolved.
314 void resolveAllUses(bool ResolveUsers = true);
315
316 private:
317 void addRef(void *Ref, OwnerTy Owner);
318 void dropRef(void *Ref);
319 void moveRef(void *Ref, void *New, const Metadata &MD);
320
321 /// Lazily construct RAUW support on MD.
322 ///
323 /// If this is an unresolved MDNode, RAUW support will be created on-demand.
324 /// ValueAsMetadata always has RAUW support.
325 static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
326
327 /// Get RAUW support on MD, if it exists.
328 static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
329
330 /// Check whether this node will support RAUW.
331 ///
332 /// Returns \c true unless getOrCreate() would return null.
333 static bool isReplaceable(const Metadata &MD);
334 };
335
336 /// Value wrapper in the Metadata hierarchy.
337 ///
338 /// This is a custom value handle that allows other metadata to refer to
339 /// classes in the Value hierarchy.
340 ///
341 /// Because of full uniquing support, each value is only wrapped by a single \a
342 /// ValueAsMetadata object, so the lookup maps are far more efficient than
343 /// those using ValueHandleBase.
344 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
345 friend class ReplaceableMetadataImpl;
346 friend class LLVMContextImpl;
347
348 Value *V;
349
350 /// Drop users without RAUW (during teardown).
dropUsers()351 void dropUsers() {
352 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
353 }
354
355 protected:
ValueAsMetadata(unsigned ID,Value * V)356 ValueAsMetadata(unsigned ID, Value *V)
357 : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
358 assert(V && "Expected valid value");
359 }
360
361 ~ValueAsMetadata() = default;
362
363 public:
364 static ValueAsMetadata *get(Value *V);
365
getConstant(Value * C)366 static ConstantAsMetadata *getConstant(Value *C) {
367 return cast<ConstantAsMetadata>(get(C));
368 }
369
getLocal(Value * Local)370 static LocalAsMetadata *getLocal(Value *Local) {
371 return cast<LocalAsMetadata>(get(Local));
372 }
373
374 static ValueAsMetadata *getIfExists(Value *V);
375
getConstantIfExists(Value * C)376 static ConstantAsMetadata *getConstantIfExists(Value *C) {
377 return cast_or_null<ConstantAsMetadata>(getIfExists(C));
378 }
379
getLocalIfExists(Value * Local)380 static LocalAsMetadata *getLocalIfExists(Value *Local) {
381 return cast_or_null<LocalAsMetadata>(getIfExists(Local));
382 }
383
getValue()384 Value *getValue() const { return V; }
getType()385 Type *getType() const { return V->getType(); }
getContext()386 LLVMContext &getContext() const { return V->getContext(); }
387
getAllArgListUsers()388 SmallVector<Metadata *> getAllArgListUsers() {
389 return ReplaceableMetadataImpl::getAllArgListUsers();
390 }
391
392 static void handleDeletion(Value *V);
393 static void handleRAUW(Value *From, Value *To);
394
395 protected:
396 /// Handle collisions after \a Value::replaceAllUsesWith().
397 ///
398 /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
399 /// \a Value gets RAUW'ed and the target already exists, this is used to
400 /// merge the two metadata nodes.
replaceAllUsesWith(Metadata * MD)401 void replaceAllUsesWith(Metadata *MD) {
402 ReplaceableMetadataImpl::replaceAllUsesWith(MD);
403 }
404
405 public:
classof(const Metadata * MD)406 static bool classof(const Metadata *MD) {
407 return MD->getMetadataID() == LocalAsMetadataKind ||
408 MD->getMetadataID() == ConstantAsMetadataKind;
409 }
410 };
411
412 class ConstantAsMetadata : public ValueAsMetadata {
413 friend class ValueAsMetadata;
414
ConstantAsMetadata(Constant * C)415 ConstantAsMetadata(Constant *C)
416 : ValueAsMetadata(ConstantAsMetadataKind, C) {}
417
418 public:
get(Constant * C)419 static ConstantAsMetadata *get(Constant *C) {
420 return ValueAsMetadata::getConstant(C);
421 }
422
getIfExists(Constant * C)423 static ConstantAsMetadata *getIfExists(Constant *C) {
424 return ValueAsMetadata::getConstantIfExists(C);
425 }
426
getValue()427 Constant *getValue() const {
428 return cast<Constant>(ValueAsMetadata::getValue());
429 }
430
classof(const Metadata * MD)431 static bool classof(const Metadata *MD) {
432 return MD->getMetadataID() == ConstantAsMetadataKind;
433 }
434 };
435
436 class LocalAsMetadata : public ValueAsMetadata {
437 friend class ValueAsMetadata;
438
LocalAsMetadata(Value * Local)439 LocalAsMetadata(Value *Local)
440 : ValueAsMetadata(LocalAsMetadataKind, Local) {
441 assert(!isa<Constant>(Local) && "Expected local value");
442 }
443
444 public:
get(Value * Local)445 static LocalAsMetadata *get(Value *Local) {
446 return ValueAsMetadata::getLocal(Local);
447 }
448
getIfExists(Value * Local)449 static LocalAsMetadata *getIfExists(Value *Local) {
450 return ValueAsMetadata::getLocalIfExists(Local);
451 }
452
classof(const Metadata * MD)453 static bool classof(const Metadata *MD) {
454 return MD->getMetadataID() == LocalAsMetadataKind;
455 }
456 };
457
458 /// Transitional API for extracting constants from Metadata.
459 ///
460 /// This namespace contains transitional functions for metadata that points to
461 /// \a Constants.
462 ///
463 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
464 /// operands could refer to any \a Value. There's was a lot of code like this:
465 ///
466 /// \code
467 /// MDNode *N = ...;
468 /// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
469 /// \endcode
470 ///
471 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
472 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
473 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
474 /// cast in the \a Value hierarchy. Besides creating boiler-plate, this
475 /// requires subtle control flow changes.
476 ///
477 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
478 /// so that metadata can refer to numbers without traversing a bridge to the \a
479 /// Value hierarchy. In this final state, the code above would look like this:
480 ///
481 /// \code
482 /// MDNode *N = ...;
483 /// auto *MI = dyn_cast<MDInt>(N->getOperand(2));
484 /// \endcode
485 ///
486 /// The API in this namespace supports the transition. \a MDInt doesn't exist
487 /// yet, and even once it does, changing each metadata schema to use it is its
488 /// own mini-project. In the meantime this API prevents us from introducing
489 /// complex and bug-prone control flow that will disappear in the end. In
490 /// particular, the above code looks like this:
491 ///
492 /// \code
493 /// MDNode *N = ...;
494 /// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
495 /// \endcode
496 ///
497 /// The full set of provided functions includes:
498 ///
499 /// mdconst::hasa <=> isa
500 /// mdconst::extract <=> cast
501 /// mdconst::extract_or_null <=> cast_or_null
502 /// mdconst::dyn_extract <=> dyn_cast
503 /// mdconst::dyn_extract_or_null <=> dyn_cast_or_null
504 ///
505 /// The target of the cast must be a subclass of \a Constant.
506 namespace mdconst {
507
508 namespace detail {
509
510 template <class T> T &make();
511 template <class T, class Result> struct HasDereference {
512 using Yes = char[1];
513 using No = char[2];
514 template <size_t N> struct SFINAE {};
515
516 template <class U, class V>
517 static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
518 template <class U, class V> static No &hasDereference(...);
519
520 static const bool value =
521 sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
522 };
523 template <class V, class M> struct IsValidPointer {
524 static const bool value = std::is_base_of<Constant, V>::value &&
525 HasDereference<M, const Metadata &>::value;
526 };
527 template <class V, class M> struct IsValidReference {
528 static const bool value = std::is_base_of<Constant, V>::value &&
529 std::is_convertible<M, const Metadata &>::value;
530 };
531
532 } // end namespace detail
533
534 /// Check whether Metadata has a Value.
535 ///
536 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
537 /// type \c X.
538 template <class X, class Y>
539 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
hasa(Y && MD)540 hasa(Y &&MD) {
541 assert(MD && "Null pointer sent into hasa");
542 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
543 return isa<X>(V->getValue());
544 return false;
545 }
546 template <class X, class Y>
547 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
hasa(Y & MD)548 hasa(Y &MD) {
549 return hasa(&MD);
550 }
551
552 /// Extract a Value from Metadata.
553 ///
554 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
555 template <class X, class Y>
556 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract(Y && MD)557 extract(Y &&MD) {
558 return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
559 }
560 template <class X, class Y>
561 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
extract(Y & MD)562 extract(Y &MD) {
563 return extract(&MD);
564 }
565
566 /// Extract a Value from Metadata, allowing null.
567 ///
568 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
569 /// from \c MD, allowing \c MD to be null.
570 template <class X, class Y>
571 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract_or_null(Y && MD)572 extract_or_null(Y &&MD) {
573 if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
574 return cast<X>(V->getValue());
575 return nullptr;
576 }
577
578 /// Extract a Value from Metadata, if any.
579 ///
580 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
581 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
582 /// Value it does contain is of the wrong subclass.
583 template <class X, class Y>
584 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract(Y && MD)585 dyn_extract(Y &&MD) {
586 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
587 return dyn_cast<X>(V->getValue());
588 return nullptr;
589 }
590
591 /// Extract a Value from Metadata, if any, allowing null.
592 ///
593 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
594 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
595 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
596 template <class X, class Y>
597 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract_or_null(Y && MD)598 dyn_extract_or_null(Y &&MD) {
599 if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
600 return dyn_cast<X>(V->getValue());
601 return nullptr;
602 }
603
604 } // end namespace mdconst
605
606 //===----------------------------------------------------------------------===//
607 /// A single uniqued string.
608 ///
609 /// These are used to efficiently contain a byte sequence for metadata.
610 /// MDString is always unnamed.
611 class MDString : public Metadata {
612 friend class StringMapEntryStorage<MDString>;
613
614 StringMapEntry<MDString> *Entry = nullptr;
615
MDString()616 MDString() : Metadata(MDStringKind, Uniqued) {}
617
618 public:
619 MDString(const MDString &) = delete;
620 MDString &operator=(MDString &&) = delete;
621 MDString &operator=(const MDString &) = delete;
622
623 static MDString *get(LLVMContext &Context, StringRef Str);
get(LLVMContext & Context,const char * Str)624 static MDString *get(LLVMContext &Context, const char *Str) {
625 return get(Context, Str ? StringRef(Str) : StringRef());
626 }
627
628 StringRef getString() const;
629
getLength()630 unsigned getLength() const { return (unsigned)getString().size(); }
631
632 using iterator = StringRef::iterator;
633
634 /// Pointer to the first byte of the string.
begin()635 iterator begin() const { return getString().begin(); }
636
637 /// Pointer to one byte past the end of the string.
end()638 iterator end() const { return getString().end(); }
639
bytes_begin()640 const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
bytes_end()641 const unsigned char *bytes_end() const { return getString().bytes_end(); }
642
643 /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Metadata * MD)644 static bool classof(const Metadata *MD) {
645 return MD->getMetadataID() == MDStringKind;
646 }
647 };
648
649 /// A collection of metadata nodes that might be associated with a
650 /// memory access used by the alias-analysis infrastructure.
651 struct AAMDNodes {
652 explicit AAMDNodes() = default;
AAMDNodesAAMDNodes653 explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
654 : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
655
656 bool operator==(const AAMDNodes &A) const {
657 return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
658 NoAlias == A.NoAlias;
659 }
660
661 bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
662
663 explicit operator bool() const {
664 return TBAA || TBAAStruct || Scope || NoAlias;
665 }
666
667 /// The tag for type-based alias analysis.
668 MDNode *TBAA = nullptr;
669
670 /// The tag for type-based alias analysis (tbaa struct).
671 MDNode *TBAAStruct = nullptr;
672
673 /// The tag for alias scope specification (used with noalias).
674 MDNode *Scope = nullptr;
675
676 /// The tag specifying the noalias scope.
677 MDNode *NoAlias = nullptr;
678
679 // Shift tbaa Metadata node to start off bytes later
680 static MDNode *shiftTBAA(MDNode *M, size_t off);
681
682 // Shift tbaa.struct Metadata node to start off bytes later
683 static MDNode *shiftTBAAStruct(MDNode *M, size_t off);
684
685 // Extend tbaa Metadata node to apply to a series of bytes of length len.
686 // A size of -1 denotes an unknown size.
687 static MDNode *extendToTBAA(MDNode *TBAA, ssize_t len);
688
689 /// Given two sets of AAMDNodes that apply to the same pointer,
690 /// give the best AAMDNodes that are compatible with both (i.e. a set of
691 /// nodes whose allowable aliasing conclusions are a subset of those
692 /// allowable by both of the inputs). However, for efficiency
693 /// reasons, do not create any new MDNodes.
intersectAAMDNodes694 AAMDNodes intersect(const AAMDNodes &Other) const {
695 AAMDNodes Result;
696 Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
697 Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
698 Result.Scope = Other.Scope == Scope ? Scope : nullptr;
699 Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
700 return Result;
701 }
702
703 /// Create a new AAMDNode that describes this AAMDNode after applying a
704 /// constant offset to the start of the pointer.
shiftAAMDNodes705 AAMDNodes shift(size_t Offset) const {
706 AAMDNodes Result;
707 Result.TBAA = TBAA ? shiftTBAA(TBAA, Offset) : nullptr;
708 Result.TBAAStruct =
709 TBAAStruct ? shiftTBAAStruct(TBAAStruct, Offset) : nullptr;
710 Result.Scope = Scope;
711 Result.NoAlias = NoAlias;
712 return Result;
713 }
714
715 /// Create a new AAMDNode that describes this AAMDNode after extending it to
716 /// apply to a series of bytes of length Len. A size of -1 denotes an unknown
717 /// size.
extendToAAMDNodes718 AAMDNodes extendTo(ssize_t Len) const {
719 AAMDNodes Result;
720 Result.TBAA = TBAA ? extendToTBAA(TBAA, Len) : nullptr;
721 // tbaa.struct contains (offset, size, type) triples. Extending the length
722 // of the tbaa.struct doesn't require changing this (though more information
723 // could be provided by adding more triples at subsequent lengths).
724 Result.TBAAStruct = TBAAStruct;
725 Result.Scope = Scope;
726 Result.NoAlias = NoAlias;
727 return Result;
728 }
729
730 /// Given two sets of AAMDNodes applying to potentially different locations,
731 /// determine the best AAMDNodes that apply to both.
732 AAMDNodes merge(const AAMDNodes &Other) const;
733
734 /// Determine the best AAMDNodes after concatenating two different locations
735 /// together. Different from `merge`, where different locations should
736 /// overlap each other, `concat` puts non-overlapping locations together.
737 AAMDNodes concat(const AAMDNodes &Other) const;
738 };
739
740 // Specialize DenseMapInfo for AAMDNodes.
741 template<>
742 struct DenseMapInfo<AAMDNodes> {
743 static inline AAMDNodes getEmptyKey() {
744 return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
745 nullptr, nullptr, nullptr);
746 }
747
748 static inline AAMDNodes getTombstoneKey() {
749 return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
750 nullptr, nullptr, nullptr);
751 }
752
753 static unsigned getHashValue(const AAMDNodes &Val) {
754 return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
755 DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
756 DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
757 DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
758 }
759
760 static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
761 return LHS == RHS;
762 }
763 };
764
765 /// Tracking metadata reference owned by Metadata.
766 ///
767 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
768 /// of \a Metadata, which has the option of registering itself for callbacks to
769 /// re-unique itself.
770 ///
771 /// In particular, this is used by \a MDNode.
772 class MDOperand {
773 Metadata *MD = nullptr;
774
775 public:
776 MDOperand() = default;
777 MDOperand(const MDOperand &) = delete;
778 MDOperand(MDOperand &&Op) {
779 MD = Op.MD;
780 if (MD)
781 (void)MetadataTracking::retrack(Op.MD, MD);
782 Op.MD = nullptr;
783 }
784 MDOperand &operator=(const MDOperand &) = delete;
785 MDOperand &operator=(MDOperand &&Op) {
786 MD = Op.MD;
787 if (MD)
788 (void)MetadataTracking::retrack(Op.MD, MD);
789 Op.MD = nullptr;
790 return *this;
791 }
792 ~MDOperand() { untrack(); }
793
794 Metadata *get() const { return MD; }
795 operator Metadata *() const { return get(); }
796 Metadata *operator->() const { return get(); }
797 Metadata &operator*() const { return *get(); }
798
799 void reset() {
800 untrack();
801 MD = nullptr;
802 }
803 void reset(Metadata *MD, Metadata *Owner) {
804 untrack();
805 this->MD = MD;
806 track(Owner);
807 }
808
809 private:
810 void track(Metadata *Owner) {
811 if (MD) {
812 if (Owner)
813 MetadataTracking::track(this, *MD, *Owner);
814 else
815 MetadataTracking::track(MD);
816 }
817 }
818
819 void untrack() {
820 assert(static_cast<void *>(this) == &MD && "Expected same address");
821 if (MD)
822 MetadataTracking::untrack(MD);
823 }
824 };
825
826 template <> struct simplify_type<MDOperand> {
827 using SimpleType = Metadata *;
828
829 static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
830 };
831
832 template <> struct simplify_type<const MDOperand> {
833 using SimpleType = Metadata *;
834
835 static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
836 };
837
838 /// Pointer to the context, with optional RAUW support.
839 ///
840 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
841 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
842 class ContextAndReplaceableUses {
843 PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
844
845 public:
846 ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
847 ContextAndReplaceableUses(
848 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
849 : Ptr(ReplaceableUses.release()) {
850 assert(getReplaceableUses() && "Expected non-null replaceable uses");
851 }
852 ContextAndReplaceableUses() = delete;
853 ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
854 ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
855 ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
856 ContextAndReplaceableUses &
857 operator=(const ContextAndReplaceableUses &) = delete;
858 ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
859
860 operator LLVMContext &() { return getContext(); }
861
862 /// Whether this contains RAUW support.
863 bool hasReplaceableUses() const {
864 return Ptr.is<ReplaceableMetadataImpl *>();
865 }
866
867 LLVMContext &getContext() const {
868 if (hasReplaceableUses())
869 return getReplaceableUses()->getContext();
870 return *Ptr.get<LLVMContext *>();
871 }
872
873 ReplaceableMetadataImpl *getReplaceableUses() const {
874 if (hasReplaceableUses())
875 return Ptr.get<ReplaceableMetadataImpl *>();
876 return nullptr;
877 }
878
879 /// Ensure that this has RAUW support, and then return it.
880 ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
881 if (!hasReplaceableUses())
882 makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
883 return getReplaceableUses();
884 }
885
886 /// Assign RAUW support to this.
887 ///
888 /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
889 /// not be null).
890 void
891 makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
892 assert(ReplaceableUses && "Expected non-null replaceable uses");
893 assert(&ReplaceableUses->getContext() == &getContext() &&
894 "Expected same context");
895 delete getReplaceableUses();
896 Ptr = ReplaceableUses.release();
897 }
898
899 /// Drop RAUW support.
900 ///
901 /// Cede ownership of RAUW support, returning it.
902 std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
903 assert(hasReplaceableUses() && "Expected to own replaceable uses");
904 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
905 getReplaceableUses());
906 Ptr = &ReplaceableUses->getContext();
907 return ReplaceableUses;
908 }
909 };
910
911 struct TempMDNodeDeleter {
912 inline void operator()(MDNode *Node) const;
913 };
914
915 #define HANDLE_MDNODE_LEAF(CLASS) \
916 using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
917 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
918 #include "llvm/IR/Metadata.def"
919
920 /// Metadata node.
921 ///
922 /// Metadata nodes can be uniqued, like constants, or distinct. Temporary
923 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
924 /// until forward references are known. The basic metadata node is an \a
925 /// MDTuple.
926 ///
927 /// There is limited support for RAUW at construction time. At construction
928 /// time, if any operand is a temporary node (or an unresolved uniqued node,
929 /// which indicates a transitive temporary operand), the node itself will be
930 /// unresolved. As soon as all operands become resolved, it will drop RAUW
931 /// support permanently.
932 ///
933 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
934 /// to be called on some member of the cycle once all temporary nodes have been
935 /// replaced.
936 ///
937 /// MDNodes can be large or small, as well as resizable or non-resizable.
938 /// Large MDNodes' operands are allocated in a separate storage vector,
939 /// whereas small MDNodes' operands are co-allocated. Distinct and temporary
940 /// MDnodes are resizable, but only MDTuples support this capability.
941 ///
942 /// Clients can add operands to resizable MDNodes using push_back().
943 class MDNode : public Metadata {
944 friend class ReplaceableMetadataImpl;
945 friend class LLVMContextImpl;
946 friend class DIArgList;
947
948 /// The header that is coallocated with an MDNode along with its "small"
949 /// operands. It is located immediately before the main body of the node.
950 /// The operands are in turn located immediately before the header.
951 /// For resizable MDNodes, the space for the storage vector is also allocated
952 /// immediately before the header, overlapping with the operands.
953 /// Explicity set alignment because bitfields by default have an
954 /// alignment of 1 on z/OS.
955 struct alignas(alignof(size_t)) Header {
956 bool IsResizable : 1;
957 bool IsLarge : 1;
958 size_t SmallSize : 4;
959 size_t SmallNumOps : 4;
960 size_t : sizeof(size_t) * CHAR_BIT - 10;
961
962 unsigned NumUnresolved = 0;
963 using LargeStorageVector = SmallVector<MDOperand, 0>;
964
965 static constexpr size_t NumOpsFitInVector =
966 sizeof(LargeStorageVector) / sizeof(MDOperand);
967 static_assert(
968 NumOpsFitInVector * sizeof(MDOperand) == sizeof(LargeStorageVector),
969 "sizeof(LargeStorageVector) must be a multiple of sizeof(MDOperand)");
970
971 static constexpr size_t MaxSmallSize = 15;
972
973 static constexpr size_t getOpSize(unsigned NumOps) {
974 return sizeof(MDOperand) * NumOps;
975 }
976 /// Returns the number of operands the node has space for based on its
977 /// allocation characteristics.
978 static size_t getSmallSize(size_t NumOps, bool IsResizable, bool IsLarge) {
979 return IsLarge ? NumOpsFitInVector
980 : std::max(NumOps, NumOpsFitInVector * IsResizable);
981 }
982 /// Returns the number of bytes allocated for operands and header.
983 static size_t getAllocSize(StorageType Storage, size_t NumOps) {
984 return getOpSize(
985 getSmallSize(NumOps, isResizable(Storage), isLarge(NumOps))) +
986 sizeof(Header);
987 }
988
989 /// Only temporary and distinct nodes are resizable.
990 static bool isResizable(StorageType Storage) { return Storage != Uniqued; }
991 static bool isLarge(size_t NumOps) { return NumOps > MaxSmallSize; }
992
993 size_t getAllocSize() const {
994 return getOpSize(SmallSize) + sizeof(Header);
995 }
996 void *getAllocation() {
997 return reinterpret_cast<char *>(this + 1) -
998 alignTo(getAllocSize(), alignof(uint64_t));
999 }
1000
1001 void *getLargePtr() const {
1002 static_assert(alignof(LargeStorageVector) <= alignof(Header),
1003 "LargeStorageVector too strongly aligned");
1004 return reinterpret_cast<char *>(const_cast<Header *>(this)) -
1005 sizeof(LargeStorageVector);
1006 }
1007
1008 void *getSmallPtr();
1009
1010 LargeStorageVector &getLarge() {
1011 assert(IsLarge);
1012 return *reinterpret_cast<LargeStorageVector *>(getLargePtr());
1013 }
1014
1015 const LargeStorageVector &getLarge() const {
1016 assert(IsLarge);
1017 return *reinterpret_cast<const LargeStorageVector *>(getLargePtr());
1018 }
1019
1020 void resizeSmall(size_t NumOps);
1021 void resizeSmallToLarge(size_t NumOps);
1022 void resize(size_t NumOps);
1023
1024 explicit Header(size_t NumOps, StorageType Storage);
1025 ~Header();
1026
1027 MutableArrayRef<MDOperand> operands() {
1028 if (IsLarge)
1029 return getLarge();
1030 return MutableArrayRef(
1031 reinterpret_cast<MDOperand *>(this) - SmallSize, SmallNumOps);
1032 }
1033
1034 ArrayRef<MDOperand> operands() const {
1035 if (IsLarge)
1036 return getLarge();
1037 return ArrayRef(reinterpret_cast<const MDOperand *>(this) - SmallSize,
1038 SmallNumOps);
1039 }
1040
1041 unsigned getNumOperands() const {
1042 if (!IsLarge)
1043 return SmallNumOps;
1044 return getLarge().size();
1045 }
1046 };
1047
1048 Header &getHeader() { return *(reinterpret_cast<Header *>(this) - 1); }
1049
1050 const Header &getHeader() const {
1051 return *(reinterpret_cast<const Header *>(this) - 1);
1052 }
1053
1054 ContextAndReplaceableUses Context;
1055
1056 protected:
1057 MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
1058 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = std::nullopt);
1059 ~MDNode() = default;
1060
1061 void *operator new(size_t Size, size_t NumOps, StorageType Storage);
1062 void operator delete(void *Mem);
1063
1064 /// Required by std, but never called.
1065 void operator delete(void *, unsigned) {
1066 llvm_unreachable("Constructor throws?");
1067 }
1068
1069 /// Required by std, but never called.
1070 void operator delete(void *, unsigned, bool) {
1071 llvm_unreachable("Constructor throws?");
1072 }
1073
1074 void dropAllReferences();
1075
1076 MDOperand *mutable_begin() { return getHeader().operands().begin(); }
1077 MDOperand *mutable_end() { return getHeader().operands().end(); }
1078
1079 using mutable_op_range = iterator_range<MDOperand *>;
1080
1081 mutable_op_range mutable_operands() {
1082 return mutable_op_range(mutable_begin(), mutable_end());
1083 }
1084
1085 public:
1086 MDNode(const MDNode &) = delete;
1087 void operator=(const MDNode &) = delete;
1088 void *operator new(size_t) = delete;
1089
1090 static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
1091 static inline MDTuple *getIfExists(LLVMContext &Context,
1092 ArrayRef<Metadata *> MDs);
1093 static inline MDTuple *getDistinct(LLVMContext &Context,
1094 ArrayRef<Metadata *> MDs);
1095 static inline TempMDTuple getTemporary(LLVMContext &Context,
1096 ArrayRef<Metadata *> MDs);
1097
1098 /// Create a (temporary) clone of this.
1099 TempMDNode clone() const;
1100
1101 /// Deallocate a node created by getTemporary.
1102 ///
1103 /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
1104 /// references will be reset.
1105 static void deleteTemporary(MDNode *N);
1106
1107 LLVMContext &getContext() const { return Context.getContext(); }
1108
1109 /// Replace a specific operand.
1110 void replaceOperandWith(unsigned I, Metadata *New);
1111
1112 /// Check if node is fully resolved.
1113 ///
1114 /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
1115 /// this always returns \c true.
1116 ///
1117 /// If \a isUniqued(), returns \c true if this has already dropped RAUW
1118 /// support (because all operands are resolved).
1119 ///
1120 /// As forward declarations are resolved, their containers should get
1121 /// resolved automatically. However, if this (or one of its operands) is
1122 /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
1123 bool isResolved() const { return !isTemporary() && !getNumUnresolved(); }
1124
1125 bool isUniqued() const { return Storage == Uniqued; }
1126 bool isDistinct() const { return Storage == Distinct; }
1127 bool isTemporary() const { return Storage == Temporary; }
1128
1129 /// RAUW a temporary.
1130 ///
1131 /// \pre \a isTemporary() must be \c true.
1132 void replaceAllUsesWith(Metadata *MD) {
1133 assert(isTemporary() && "Expected temporary node");
1134 if (Context.hasReplaceableUses())
1135 Context.getReplaceableUses()->replaceAllUsesWith(MD);
1136 }
1137
1138 /// Resolve cycles.
1139 ///
1140 /// Once all forward declarations have been resolved, force cycles to be
1141 /// resolved.
1142 ///
1143 /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
1144 void resolveCycles();
1145
1146 /// Resolve a unique, unresolved node.
1147 void resolve();
1148
1149 /// Replace a temporary node with a permanent one.
1150 ///
1151 /// Try to create a uniqued version of \c N -- in place, if possible -- and
1152 /// return it. If \c N cannot be uniqued, return a distinct node instead.
1153 template <class T>
1154 static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1155 replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
1156 return cast<T>(N.release()->replaceWithPermanentImpl());
1157 }
1158
1159 /// Replace a temporary node with a uniqued one.
1160 ///
1161 /// Create a uniqued version of \c N -- in place, if possible -- and return
1162 /// it. Takes ownership of the temporary node.
1163 ///
1164 /// \pre N does not self-reference.
1165 template <class T>
1166 static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1167 replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
1168 return cast<T>(N.release()->replaceWithUniquedImpl());
1169 }
1170
1171 /// Replace a temporary node with a distinct one.
1172 ///
1173 /// Create a distinct version of \c N -- in place, if possible -- and return
1174 /// it. Takes ownership of the temporary node.
1175 template <class T>
1176 static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1177 replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1178 return cast<T>(N.release()->replaceWithDistinctImpl());
1179 }
1180
1181 /// Print in tree shape.
1182 ///
1183 /// Prints definition of \c this in tree shape.
1184 ///
1185 /// If \c M is provided, metadata nodes will be numbered canonically;
1186 /// otherwise, pointer addresses are substituted.
1187 /// @{
1188 void printTree(raw_ostream &OS, const Module *M = nullptr) const;
1189 void printTree(raw_ostream &OS, ModuleSlotTracker &MST,
1190 const Module *M = nullptr) const;
1191 /// @}
1192
1193 /// User-friendly dump in tree shape.
1194 ///
1195 /// If \c M is provided, metadata nodes will be numbered canonically;
1196 /// otherwise, pointer addresses are substituted.
1197 ///
1198 /// Note: this uses an explicit overload instead of default arguments so that
1199 /// the nullptr version is easy to call from a debugger.
1200 ///
1201 /// @{
1202 void dumpTree() const;
1203 void dumpTree(const Module *M) const;
1204 /// @}
1205
1206 private:
1207 MDNode *replaceWithPermanentImpl();
1208 MDNode *replaceWithUniquedImpl();
1209 MDNode *replaceWithDistinctImpl();
1210
1211 protected:
1212 /// Set an operand.
1213 ///
1214 /// Sets the operand directly, without worrying about uniquing.
1215 void setOperand(unsigned I, Metadata *New);
1216
1217 unsigned getNumUnresolved() const { return getHeader().NumUnresolved; }
1218
1219 void setNumUnresolved(unsigned N) { getHeader().NumUnresolved = N; }
1220 void storeDistinctInContext();
1221 template <class T, class StoreT>
1222 static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1223 template <class T> static T *storeImpl(T *N, StorageType Storage);
1224
1225 /// Resize the node to hold \a NumOps operands.
1226 ///
1227 /// \pre \a isTemporary() or \a isDistinct()
1228 /// \pre MetadataID == MDTupleKind
1229 void resize(size_t NumOps) {
1230 assert(!isUniqued() && "Resizing is not supported for uniqued nodes");
1231 assert(getMetadataID() == MDTupleKind &&
1232 "Resizing is not supported for this node kind");
1233 getHeader().resize(NumOps);
1234 }
1235
1236 private:
1237 void handleChangedOperand(void *Ref, Metadata *New);
1238
1239 /// Drop RAUW support, if any.
1240 void dropReplaceableUses();
1241
1242 void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1243 void decrementUnresolvedOperandCount();
1244 void countUnresolvedOperands();
1245
1246 /// Mutate this to be "uniqued".
1247 ///
1248 /// Mutate this so that \a isUniqued().
1249 /// \pre \a isTemporary().
1250 /// \pre already added to uniquing set.
1251 void makeUniqued();
1252
1253 /// Mutate this to be "distinct".
1254 ///
1255 /// Mutate this so that \a isDistinct().
1256 /// \pre \a isTemporary().
1257 void makeDistinct();
1258
1259 void deleteAsSubclass();
1260 MDNode *uniquify();
1261 void eraseFromStore();
1262
1263 template <class NodeTy> struct HasCachedHash;
1264 template <class NodeTy>
1265 static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1266 N->recalculateHash();
1267 }
1268 template <class NodeTy>
1269 static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1270 template <class NodeTy>
1271 static void dispatchResetHash(NodeTy *N, std::true_type) {
1272 N->setHash(0);
1273 }
1274 template <class NodeTy>
1275 static void dispatchResetHash(NodeTy *, std::false_type) {}
1276
1277 public:
1278 using op_iterator = const MDOperand *;
1279 using op_range = iterator_range<op_iterator>;
1280
1281 op_iterator op_begin() const {
1282 return const_cast<MDNode *>(this)->mutable_begin();
1283 }
1284
1285 op_iterator op_end() const {
1286 return const_cast<MDNode *>(this)->mutable_end();
1287 }
1288
1289 ArrayRef<MDOperand> operands() const { return getHeader().operands(); }
1290
1291 const MDOperand &getOperand(unsigned I) const {
1292 assert(I < getNumOperands() && "Out of range");
1293 return getHeader().operands()[I];
1294 }
1295
1296 /// Return number of MDNode operands.
1297 unsigned getNumOperands() const { return getHeader().getNumOperands(); }
1298
1299 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1300 static bool classof(const Metadata *MD) {
1301 switch (MD->getMetadataID()) {
1302 default:
1303 return false;
1304 #define HANDLE_MDNODE_LEAF(CLASS) \
1305 case CLASS##Kind: \
1306 return true;
1307 #include "llvm/IR/Metadata.def"
1308 }
1309 }
1310
1311 /// Check whether MDNode is a vtable access.
1312 bool isTBAAVtableAccess() const;
1313
1314 /// Methods for metadata merging.
1315 static MDNode *concatenate(MDNode *A, MDNode *B);
1316 static MDNode *intersect(MDNode *A, MDNode *B);
1317 static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1318 static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1319 static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1320 static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1321 static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1322 };
1323
1324 /// Tuple of metadata.
1325 ///
1326 /// This is the simple \a MDNode arbitrary tuple. Nodes are uniqued by
1327 /// default based on their operands.
1328 class MDTuple : public MDNode {
1329 friend class LLVMContextImpl;
1330 friend class MDNode;
1331
1332 MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1333 ArrayRef<Metadata *> Vals)
1334 : MDNode(C, MDTupleKind, Storage, Vals) {
1335 setHash(Hash);
1336 }
1337
1338 ~MDTuple() { dropAllReferences(); }
1339
1340 void setHash(unsigned Hash) { SubclassData32 = Hash; }
1341 void recalculateHash();
1342
1343 static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1344 StorageType Storage, bool ShouldCreate = true);
1345
1346 TempMDTuple cloneImpl() const {
1347 ArrayRef<MDOperand> Operands = operands();
1348 return getTemporary(getContext(), SmallVector<Metadata *, 4>(
1349 Operands.begin(), Operands.end()));
1350 }
1351
1352 public:
1353 /// Get the hash, if any.
1354 unsigned getHash() const { return SubclassData32; }
1355
1356 static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1357 return getImpl(Context, MDs, Uniqued);
1358 }
1359
1360 static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1361 return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1362 }
1363
1364 /// Return a distinct node.
1365 ///
1366 /// Return a distinct node -- i.e., a node that is not uniqued.
1367 static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1368 return getImpl(Context, MDs, Distinct);
1369 }
1370
1371 /// Return a temporary node.
1372 ///
1373 /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1374 /// not uniqued, may be RAUW'd, and must be manually deleted with
1375 /// deleteTemporary.
1376 static TempMDTuple getTemporary(LLVMContext &Context,
1377 ArrayRef<Metadata *> MDs) {
1378 return TempMDTuple(getImpl(Context, MDs, Temporary));
1379 }
1380
1381 /// Return a (temporary) clone of this.
1382 TempMDTuple clone() const { return cloneImpl(); }
1383
1384 /// Append an element to the tuple. This will resize the node.
1385 void push_back(Metadata *MD) {
1386 size_t NumOps = getNumOperands();
1387 resize(NumOps + 1);
1388 setOperand(NumOps, MD);
1389 }
1390
1391 /// Shrink the operands by 1.
1392 void pop_back() { resize(getNumOperands() - 1); }
1393
1394 static bool classof(const Metadata *MD) {
1395 return MD->getMetadataID() == MDTupleKind;
1396 }
1397 };
1398
1399 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1400 return MDTuple::get(Context, MDs);
1401 }
1402
1403 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1404 return MDTuple::getIfExists(Context, MDs);
1405 }
1406
1407 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1408 return MDTuple::getDistinct(Context, MDs);
1409 }
1410
1411 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1412 ArrayRef<Metadata *> MDs) {
1413 return MDTuple::getTemporary(Context, MDs);
1414 }
1415
1416 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1417 MDNode::deleteTemporary(Node);
1418 }
1419
1420 /// This is a simple wrapper around an MDNode which provides a higher-level
1421 /// interface by hiding the details of how alias analysis information is encoded
1422 /// in its operands.
1423 class AliasScopeNode {
1424 const MDNode *Node = nullptr;
1425
1426 public:
1427 AliasScopeNode() = default;
1428 explicit AliasScopeNode(const MDNode *N) : Node(N) {}
1429
1430 /// Get the MDNode for this AliasScopeNode.
1431 const MDNode *getNode() const { return Node; }
1432
1433 /// Get the MDNode for this AliasScopeNode's domain.
1434 const MDNode *getDomain() const {
1435 if (Node->getNumOperands() < 2)
1436 return nullptr;
1437 return dyn_cast_or_null<MDNode>(Node->getOperand(1));
1438 }
1439 StringRef getName() const {
1440 if (Node->getNumOperands() > 2)
1441 if (MDString *N = dyn_cast_or_null<MDString>(Node->getOperand(2)))
1442 return N->getString();
1443 return StringRef();
1444 }
1445 };
1446
1447 /// Typed iterator through MDNode operands.
1448 ///
1449 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1450 /// particular Metadata subclass.
1451 template <class T> class TypedMDOperandIterator {
1452 MDNode::op_iterator I = nullptr;
1453
1454 public:
1455 using iterator_category = std::input_iterator_tag;
1456 using value_type = T *;
1457 using difference_type = std::ptrdiff_t;
1458 using pointer = void;
1459 using reference = T *;
1460
1461 TypedMDOperandIterator() = default;
1462 explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1463
1464 T *operator*() const { return cast_or_null<T>(*I); }
1465
1466 TypedMDOperandIterator &operator++() {
1467 ++I;
1468 return *this;
1469 }
1470
1471 TypedMDOperandIterator operator++(int) {
1472 TypedMDOperandIterator Temp(*this);
1473 ++I;
1474 return Temp;
1475 }
1476
1477 bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1478 bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1479 };
1480
1481 /// Typed, array-like tuple of metadata.
1482 ///
1483 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1484 /// particular type of metadata.
1485 template <class T> class MDTupleTypedArrayWrapper {
1486 const MDTuple *N = nullptr;
1487
1488 public:
1489 MDTupleTypedArrayWrapper() = default;
1490 MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1491
1492 template <class U>
1493 MDTupleTypedArrayWrapper(
1494 const MDTupleTypedArrayWrapper<U> &Other,
1495 std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1496 : N(Other.get()) {}
1497
1498 template <class U>
1499 explicit MDTupleTypedArrayWrapper(
1500 const MDTupleTypedArrayWrapper<U> &Other,
1501 std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1502 : N(Other.get()) {}
1503
1504 explicit operator bool() const { return get(); }
1505 explicit operator MDTuple *() const { return get(); }
1506
1507 MDTuple *get() const { return const_cast<MDTuple *>(N); }
1508 MDTuple *operator->() const { return get(); }
1509 MDTuple &operator*() const { return *get(); }
1510
1511 // FIXME: Fix callers and remove condition on N.
1512 unsigned size() const { return N ? N->getNumOperands() : 0u; }
1513 bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1514 T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1515
1516 // FIXME: Fix callers and remove condition on N.
1517 using iterator = TypedMDOperandIterator<T>;
1518
1519 iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1520 iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1521 };
1522
1523 #define HANDLE_METADATA(CLASS) \
1524 using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1525 #include "llvm/IR/Metadata.def"
1526
1527 /// Placeholder metadata for operands of distinct MDNodes.
1528 ///
1529 /// This is a lightweight placeholder for an operand of a distinct node. It's
1530 /// purpose is to help track forward references when creating a distinct node.
1531 /// This allows distinct nodes involved in a cycle to be constructed before
1532 /// their operands without requiring a heavyweight temporary node with
1533 /// full-blown RAUW support.
1534 ///
1535 /// Each placeholder supports only a single MDNode user. Clients should pass
1536 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1537 /// should be replaced with.
1538 ///
1539 /// While it would be possible to implement move operators, they would be
1540 /// fairly expensive. Leave them unimplemented to discourage their use
1541 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1542 class DistinctMDOperandPlaceholder : public Metadata {
1543 friend class MetadataTracking;
1544
1545 Metadata **Use = nullptr;
1546
1547 public:
1548 explicit DistinctMDOperandPlaceholder(unsigned ID)
1549 : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1550 SubclassData32 = ID;
1551 }
1552
1553 DistinctMDOperandPlaceholder() = delete;
1554 DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1555 DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1556
1557 ~DistinctMDOperandPlaceholder() {
1558 if (Use)
1559 *Use = nullptr;
1560 }
1561
1562 unsigned getID() const { return SubclassData32; }
1563
1564 /// Replace the use of this with MD.
1565 void replaceUseWith(Metadata *MD) {
1566 if (!Use)
1567 return;
1568 *Use = MD;
1569
1570 if (*Use)
1571 MetadataTracking::track(*Use);
1572
1573 Metadata *T = cast<Metadata>(this);
1574 MetadataTracking::untrack(T);
1575 assert(!Use && "Use is still being tracked despite being untracked!");
1576 }
1577 };
1578
1579 //===----------------------------------------------------------------------===//
1580 /// A tuple of MDNodes.
1581 ///
1582 /// Despite its name, a NamedMDNode isn't itself an MDNode.
1583 ///
1584 /// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1585 ///
1586 /// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1587 class NamedMDNode : public ilist_node<NamedMDNode> {
1588 friend class LLVMContextImpl;
1589 friend class Module;
1590
1591 std::string Name;
1592 Module *Parent = nullptr;
1593 void *Operands; // SmallVector<TrackingMDRef, 4>
1594
1595 void setParent(Module *M) { Parent = M; }
1596
1597 explicit NamedMDNode(const Twine &N);
1598
1599 template <class T1, class T2> class op_iterator_impl {
1600 friend class NamedMDNode;
1601
1602 const NamedMDNode *Node = nullptr;
1603 unsigned Idx = 0;
1604
1605 op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1606
1607 public:
1608 using iterator_category = std::bidirectional_iterator_tag;
1609 using value_type = T2;
1610 using difference_type = std::ptrdiff_t;
1611 using pointer = value_type *;
1612 using reference = value_type &;
1613
1614 op_iterator_impl() = default;
1615
1616 bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1617 bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1618
1619 op_iterator_impl &operator++() {
1620 ++Idx;
1621 return *this;
1622 }
1623
1624 op_iterator_impl operator++(int) {
1625 op_iterator_impl tmp(*this);
1626 operator++();
1627 return tmp;
1628 }
1629
1630 op_iterator_impl &operator--() {
1631 --Idx;
1632 return *this;
1633 }
1634
1635 op_iterator_impl operator--(int) {
1636 op_iterator_impl tmp(*this);
1637 operator--();
1638 return tmp;
1639 }
1640
1641 T1 operator*() const { return Node->getOperand(Idx); }
1642 };
1643
1644 public:
1645 NamedMDNode(const NamedMDNode &) = delete;
1646 ~NamedMDNode();
1647
1648 /// Drop all references and remove the node from parent module.
1649 void eraseFromParent();
1650
1651 /// Remove all uses and clear node vector.
1652 void dropAllReferences() { clearOperands(); }
1653 /// Drop all references to this node's operands.
1654 void clearOperands();
1655
1656 /// Get the module that holds this named metadata collection.
1657 inline Module *getParent() { return Parent; }
1658 inline const Module *getParent() const { return Parent; }
1659
1660 MDNode *getOperand(unsigned i) const;
1661 unsigned getNumOperands() const;
1662 void addOperand(MDNode *M);
1663 void setOperand(unsigned I, MDNode *New);
1664 StringRef getName() const;
1665 void print(raw_ostream &ROS, bool IsForDebug = false) const;
1666 void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1667 bool IsForDebug = false) const;
1668 void dump() const;
1669
1670 // ---------------------------------------------------------------------------
1671 // Operand Iterator interface...
1672 //
1673 using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1674
1675 op_iterator op_begin() { return op_iterator(this, 0); }
1676 op_iterator op_end() { return op_iterator(this, getNumOperands()); }
1677
1678 using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1679
1680 const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1681 const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); }
1682
1683 inline iterator_range<op_iterator> operands() {
1684 return make_range(op_begin(), op_end());
1685 }
1686 inline iterator_range<const_op_iterator> operands() const {
1687 return make_range(op_begin(), op_end());
1688 }
1689 };
1690
1691 // Create wrappers for C Binding types (see CBindingWrapping.h).
1692 DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1693
1694 } // end namespace llvm
1695
1696 #endif // LLVM_IR_METADATA_H
1697