1 //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements C++ template argument deduction.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Sema/TemplateDeduction.h"
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclAccessPair.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/RecursiveASTVisitor.h"
28 #include "clang/AST/TemplateBase.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/AST/UnresolvedSet.h"
33 #include "clang/Basic/AddressSpaces.h"
34 #include "clang/Basic/ExceptionSpecificationType.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/PartialDiagnostic.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "clang/Sema/Ownership.h"
41 #include "clang/Sema/Sema.h"
42 #include "clang/Sema/Template.h"
43 #include "llvm/ADT/APInt.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/FoldingSet.h"
48 #include "llvm/ADT/SmallBitVector.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <optional>
57 #include <tuple>
58 #include <type_traits>
59 #include <utility>
60
61 namespace clang {
62
63 /// Various flags that control template argument deduction.
64 ///
65 /// These flags can be bitwise-OR'd together.
66 enum TemplateDeductionFlags {
67 /// No template argument deduction flags, which indicates the
68 /// strictest results for template argument deduction (as used for, e.g.,
69 /// matching class template partial specializations).
70 TDF_None = 0,
71
72 /// Within template argument deduction from a function call, we are
73 /// matching with a parameter type for which the original parameter was
74 /// a reference.
75 TDF_ParamWithReferenceType = 0x1,
76
77 /// Within template argument deduction from a function call, we
78 /// are matching in a case where we ignore cv-qualifiers.
79 TDF_IgnoreQualifiers = 0x02,
80
81 /// Within template argument deduction from a function call,
82 /// we are matching in a case where we can perform template argument
83 /// deduction from a template-id of a derived class of the argument type.
84 TDF_DerivedClass = 0x04,
85
86 /// Allow non-dependent types to differ, e.g., when performing
87 /// template argument deduction from a function call where conversions
88 /// may apply.
89 TDF_SkipNonDependent = 0x08,
90
91 /// Whether we are performing template argument deduction for
92 /// parameters and arguments in a top-level template argument
93 TDF_TopLevelParameterTypeList = 0x10,
94
95 /// Within template argument deduction from overload resolution per
96 /// C++ [over.over] allow matching function types that are compatible in
97 /// terms of noreturn and default calling convention adjustments, or
98 /// similarly matching a declared template specialization against a
99 /// possible template, per C++ [temp.deduct.decl]. In either case, permit
100 /// deduction where the parameter is a function type that can be converted
101 /// to the argument type.
102 TDF_AllowCompatibleFunctionType = 0x20,
103
104 /// Within template argument deduction for a conversion function, we are
105 /// matching with an argument type for which the original argument was
106 /// a reference.
107 TDF_ArgWithReferenceType = 0x40,
108 };
109 }
110
111 using namespace clang;
112 using namespace sema;
113
114 /// Compare two APSInts, extending and switching the sign as
115 /// necessary to compare their values regardless of underlying type.
hasSameExtendedValue(llvm::APSInt X,llvm::APSInt Y)116 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
117 if (Y.getBitWidth() > X.getBitWidth())
118 X = X.extend(Y.getBitWidth());
119 else if (Y.getBitWidth() < X.getBitWidth())
120 Y = Y.extend(X.getBitWidth());
121
122 // If there is a signedness mismatch, correct it.
123 if (X.isSigned() != Y.isSigned()) {
124 // If the signed value is negative, then the values cannot be the same.
125 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
126 return false;
127
128 Y.setIsSigned(true);
129 X.setIsSigned(true);
130 }
131
132 return X == Y;
133 }
134
135 static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch(
136 Sema &S, TemplateParameterList *TemplateParams, QualType Param,
137 QualType Arg, TemplateDeductionInfo &Info,
138 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
139 bool PartialOrdering = false, bool DeducedFromArrayBound = false);
140
141 static Sema::TemplateDeductionResult
142 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
143 ArrayRef<TemplateArgument> Ps,
144 ArrayRef<TemplateArgument> As,
145 TemplateDeductionInfo &Info,
146 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
147 bool NumberOfArgumentsMustMatch);
148
149 static void MarkUsedTemplateParameters(ASTContext &Ctx,
150 const TemplateArgument &TemplateArg,
151 bool OnlyDeduced, unsigned Depth,
152 llvm::SmallBitVector &Used);
153
154 static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
155 bool OnlyDeduced, unsigned Level,
156 llvm::SmallBitVector &Deduced);
157
158 /// If the given expression is of a form that permits the deduction
159 /// of a non-type template parameter, return the declaration of that
160 /// non-type template parameter.
161 static const NonTypeTemplateParmDecl *
getDeducedParameterFromExpr(const Expr * E,unsigned Depth)162 getDeducedParameterFromExpr(const Expr *E, unsigned Depth) {
163 // If we are within an alias template, the expression may have undergone
164 // any number of parameter substitutions already.
165 while (true) {
166 if (const auto *IC = dyn_cast<ImplicitCastExpr>(E))
167 E = IC->getSubExpr();
168 else if (const auto *CE = dyn_cast<ConstantExpr>(E))
169 E = CE->getSubExpr();
170 else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
171 E = Subst->getReplacement();
172 else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) {
173 // Look through implicit copy construction from an lvalue of the same type.
174 if (CCE->getParenOrBraceRange().isValid())
175 break;
176 // Note, there could be default arguments.
177 assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg");
178 E = CCE->getArg(0);
179 } else
180 break;
181 }
182
183 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
184 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()))
185 if (NTTP->getDepth() == Depth)
186 return NTTP;
187
188 return nullptr;
189 }
190
191 static const NonTypeTemplateParmDecl *
getDeducedParameterFromExpr(TemplateDeductionInfo & Info,Expr * E)192 getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) {
193 return getDeducedParameterFromExpr(E, Info.getDeducedDepth());
194 }
195
196 /// Determine whether two declaration pointers refer to the same
197 /// declaration.
isSameDeclaration(Decl * X,Decl * Y)198 static bool isSameDeclaration(Decl *X, Decl *Y) {
199 if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
200 X = NX->getUnderlyingDecl();
201 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
202 Y = NY->getUnderlyingDecl();
203
204 return X->getCanonicalDecl() == Y->getCanonicalDecl();
205 }
206
207 /// Verify that the given, deduced template arguments are compatible.
208 ///
209 /// \returns The deduced template argument, or a NULL template argument if
210 /// the deduced template arguments were incompatible.
211 static DeducedTemplateArgument
checkDeducedTemplateArguments(ASTContext & Context,const DeducedTemplateArgument & X,const DeducedTemplateArgument & Y)212 checkDeducedTemplateArguments(ASTContext &Context,
213 const DeducedTemplateArgument &X,
214 const DeducedTemplateArgument &Y) {
215 // We have no deduction for one or both of the arguments; they're compatible.
216 if (X.isNull())
217 return Y;
218 if (Y.isNull())
219 return X;
220
221 // If we have two non-type template argument values deduced for the same
222 // parameter, they must both match the type of the parameter, and thus must
223 // match each other's type. As we're only keeping one of them, we must check
224 // for that now. The exception is that if either was deduced from an array
225 // bound, the type is permitted to differ.
226 if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) {
227 QualType XType = X.getNonTypeTemplateArgumentType();
228 if (!XType.isNull()) {
229 QualType YType = Y.getNonTypeTemplateArgumentType();
230 if (YType.isNull() || !Context.hasSameType(XType, YType))
231 return DeducedTemplateArgument();
232 }
233 }
234
235 switch (X.getKind()) {
236 case TemplateArgument::Null:
237 llvm_unreachable("Non-deduced template arguments handled above");
238
239 case TemplateArgument::Type: {
240 // If two template type arguments have the same type, they're compatible.
241 QualType TX = X.getAsType(), TY = Y.getAsType();
242 if (Y.getKind() == TemplateArgument::Type && Context.hasSameType(TX, TY))
243 return DeducedTemplateArgument(Context.getCommonSugaredType(TX, TY),
244 X.wasDeducedFromArrayBound() ||
245 Y.wasDeducedFromArrayBound());
246
247 // If one of the two arguments was deduced from an array bound, the other
248 // supersedes it.
249 if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound())
250 return X.wasDeducedFromArrayBound() ? Y : X;
251
252 // The arguments are not compatible.
253 return DeducedTemplateArgument();
254 }
255
256 case TemplateArgument::Integral:
257 // If we deduced a constant in one case and either a dependent expression or
258 // declaration in another case, keep the integral constant.
259 // If both are integral constants with the same value, keep that value.
260 if (Y.getKind() == TemplateArgument::Expression ||
261 Y.getKind() == TemplateArgument::Declaration ||
262 (Y.getKind() == TemplateArgument::Integral &&
263 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
264 return X.wasDeducedFromArrayBound() ? Y : X;
265
266 // All other combinations are incompatible.
267 return DeducedTemplateArgument();
268
269 case TemplateArgument::Template:
270 if (Y.getKind() == TemplateArgument::Template &&
271 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
272 return X;
273
274 // All other combinations are incompatible.
275 return DeducedTemplateArgument();
276
277 case TemplateArgument::TemplateExpansion:
278 if (Y.getKind() == TemplateArgument::TemplateExpansion &&
279 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
280 Y.getAsTemplateOrTemplatePattern()))
281 return X;
282
283 // All other combinations are incompatible.
284 return DeducedTemplateArgument();
285
286 case TemplateArgument::Expression: {
287 if (Y.getKind() != TemplateArgument::Expression)
288 return checkDeducedTemplateArguments(Context, Y, X);
289
290 // Compare the expressions for equality
291 llvm::FoldingSetNodeID ID1, ID2;
292 X.getAsExpr()->Profile(ID1, Context, true);
293 Y.getAsExpr()->Profile(ID2, Context, true);
294 if (ID1 == ID2)
295 return X.wasDeducedFromArrayBound() ? Y : X;
296
297 // Differing dependent expressions are incompatible.
298 return DeducedTemplateArgument();
299 }
300
301 case TemplateArgument::Declaration:
302 assert(!X.wasDeducedFromArrayBound());
303
304 // If we deduced a declaration and a dependent expression, keep the
305 // declaration.
306 if (Y.getKind() == TemplateArgument::Expression)
307 return X;
308
309 // If we deduced a declaration and an integral constant, keep the
310 // integral constant and whichever type did not come from an array
311 // bound.
312 if (Y.getKind() == TemplateArgument::Integral) {
313 if (Y.wasDeducedFromArrayBound())
314 return TemplateArgument(Context, Y.getAsIntegral(),
315 X.getParamTypeForDecl());
316 return Y;
317 }
318
319 // If we deduced two declarations, make sure that they refer to the
320 // same declaration.
321 if (Y.getKind() == TemplateArgument::Declaration &&
322 isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
323 return X;
324
325 // All other combinations are incompatible.
326 return DeducedTemplateArgument();
327
328 case TemplateArgument::NullPtr:
329 // If we deduced a null pointer and a dependent expression, keep the
330 // null pointer.
331 if (Y.getKind() == TemplateArgument::Expression)
332 return TemplateArgument(Context.getCommonSugaredType(
333 X.getNullPtrType(), Y.getAsExpr()->getType()),
334 true);
335
336 // If we deduced a null pointer and an integral constant, keep the
337 // integral constant.
338 if (Y.getKind() == TemplateArgument::Integral)
339 return Y;
340
341 // If we deduced two null pointers, they are the same.
342 if (Y.getKind() == TemplateArgument::NullPtr)
343 return TemplateArgument(
344 Context.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
345 true);
346
347 // All other combinations are incompatible.
348 return DeducedTemplateArgument();
349
350 case TemplateArgument::Pack: {
351 if (Y.getKind() != TemplateArgument::Pack ||
352 X.pack_size() != Y.pack_size())
353 return DeducedTemplateArgument();
354
355 llvm::SmallVector<TemplateArgument, 8> NewPack;
356 for (TemplateArgument::pack_iterator XA = X.pack_begin(),
357 XAEnd = X.pack_end(),
358 YA = Y.pack_begin();
359 XA != XAEnd; ++XA, ++YA) {
360 TemplateArgument Merged = checkDeducedTemplateArguments(
361 Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
362 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()));
363 if (Merged.isNull() && !(XA->isNull() && YA->isNull()))
364 return DeducedTemplateArgument();
365 NewPack.push_back(Merged);
366 }
367
368 return DeducedTemplateArgument(
369 TemplateArgument::CreatePackCopy(Context, NewPack),
370 X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound());
371 }
372 }
373
374 llvm_unreachable("Invalid TemplateArgument Kind!");
375 }
376
377 /// Deduce the value of the given non-type template parameter
378 /// as the given deduced template argument. All non-type template parameter
379 /// deduction is funneled through here.
DeduceNonTypeTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,const DeducedTemplateArgument & NewDeduced,QualType ValueType,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)380 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
381 Sema &S, TemplateParameterList *TemplateParams,
382 const NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced,
383 QualType ValueType, TemplateDeductionInfo &Info,
384 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
385 assert(NTTP->getDepth() == Info.getDeducedDepth() &&
386 "deducing non-type template argument with wrong depth");
387
388 DeducedTemplateArgument Result = checkDeducedTemplateArguments(
389 S.Context, Deduced[NTTP->getIndex()], NewDeduced);
390 if (Result.isNull()) {
391 Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP);
392 Info.FirstArg = Deduced[NTTP->getIndex()];
393 Info.SecondArg = NewDeduced;
394 return Sema::TDK_Inconsistent;
395 }
396
397 Deduced[NTTP->getIndex()] = Result;
398 if (!S.getLangOpts().CPlusPlus17)
399 return Sema::TDK_Success;
400
401 if (NTTP->isExpandedParameterPack())
402 // FIXME: We may still need to deduce parts of the type here! But we
403 // don't have any way to find which slice of the type to use, and the
404 // type stored on the NTTP itself is nonsense. Perhaps the type of an
405 // expanded NTTP should be a pack expansion type?
406 return Sema::TDK_Success;
407
408 // Get the type of the parameter for deduction. If it's a (dependent) array
409 // or function type, we will not have decayed it yet, so do that now.
410 QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType());
411 if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType))
412 ParamType = Expansion->getPattern();
413
414 // FIXME: It's not clear how deduction of a parameter of reference
415 // type from an argument (of non-reference type) should be performed.
416 // For now, we just remove reference types from both sides and let
417 // the final check for matching types sort out the mess.
418 ValueType = ValueType.getNonReferenceType();
419 if (ParamType->isReferenceType())
420 ParamType = ParamType.getNonReferenceType();
421 else
422 // Top-level cv-qualifiers are irrelevant for a non-reference type.
423 ValueType = ValueType.getUnqualifiedType();
424
425 return DeduceTemplateArgumentsByTypeMatch(
426 S, TemplateParams, ParamType, ValueType, Info, Deduced,
427 TDF_SkipNonDependent, /*PartialOrdering=*/false,
428 /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound());
429 }
430
431 /// Deduce the value of the given non-type template parameter
432 /// from the given integral constant.
DeduceNonTypeTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,const llvm::APSInt & Value,QualType ValueType,bool DeducedFromArrayBound,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)433 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
434 Sema &S, TemplateParameterList *TemplateParams,
435 const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value,
436 QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info,
437 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
438 return DeduceNonTypeTemplateArgument(
439 S, TemplateParams, NTTP,
440 DeducedTemplateArgument(S.Context, Value, ValueType,
441 DeducedFromArrayBound),
442 ValueType, Info, Deduced);
443 }
444
445 /// Deduce the value of the given non-type template parameter
446 /// from the given null pointer template argument type.
DeduceNullPtrTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,QualType NullPtrType,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)447 static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument(
448 Sema &S, TemplateParameterList *TemplateParams,
449 const NonTypeTemplateParmDecl *NTTP, QualType NullPtrType,
450 TemplateDeductionInfo &Info,
451 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
452 Expr *Value = S.ImpCastExprToType(
453 new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy,
454 NTTP->getLocation()),
455 NullPtrType,
456 NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer
457 : CK_NullToPointer)
458 .get();
459 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
460 DeducedTemplateArgument(Value),
461 Value->getType(), Info, Deduced);
462 }
463
464 /// Deduce the value of the given non-type template parameter
465 /// from the given type- or value-dependent expression.
466 ///
467 /// \returns true if deduction succeeded, false otherwise.
DeduceNonTypeTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,Expr * Value,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)468 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
469 Sema &S, TemplateParameterList *TemplateParams,
470 const NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info,
471 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
472 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
473 DeducedTemplateArgument(Value),
474 Value->getType(), Info, Deduced);
475 }
476
477 /// Deduce the value of the given non-type template parameter
478 /// from the given declaration.
479 ///
480 /// \returns true if deduction succeeded, false otherwise.
DeduceNonTypeTemplateArgument(Sema & S,TemplateParameterList * TemplateParams,const NonTypeTemplateParmDecl * NTTP,ValueDecl * D,QualType T,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)481 static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument(
482 Sema &S, TemplateParameterList *TemplateParams,
483 const NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T,
484 TemplateDeductionInfo &Info,
485 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
486 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
487 TemplateArgument New(D, T);
488 return DeduceNonTypeTemplateArgument(
489 S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced);
490 }
491
492 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,TemplateName Param,TemplateName Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)493 DeduceTemplateArguments(Sema &S,
494 TemplateParameterList *TemplateParams,
495 TemplateName Param,
496 TemplateName Arg,
497 TemplateDeductionInfo &Info,
498 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
499 TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
500 if (!ParamDecl) {
501 // The parameter type is dependent and is not a template template parameter,
502 // so there is nothing that we can deduce.
503 return Sema::TDK_Success;
504 }
505
506 if (TemplateTemplateParmDecl *TempParam
507 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
508 // If we're not deducing at this depth, there's nothing to deduce.
509 if (TempParam->getDepth() != Info.getDeducedDepth())
510 return Sema::TDK_Success;
511
512 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
513 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
514 Deduced[TempParam->getIndex()],
515 NewDeduced);
516 if (Result.isNull()) {
517 Info.Param = TempParam;
518 Info.FirstArg = Deduced[TempParam->getIndex()];
519 Info.SecondArg = NewDeduced;
520 return Sema::TDK_Inconsistent;
521 }
522
523 Deduced[TempParam->getIndex()] = Result;
524 return Sema::TDK_Success;
525 }
526
527 // Verify that the two template names are equivalent.
528 if (S.Context.hasSameTemplateName(Param, Arg))
529 return Sema::TDK_Success;
530
531 // Mismatch of non-dependent template parameter to argument.
532 Info.FirstArg = TemplateArgument(Param);
533 Info.SecondArg = TemplateArgument(Arg);
534 return Sema::TDK_NonDeducedMismatch;
535 }
536
537 /// Deduce the template arguments by comparing the template parameter
538 /// type (which is a template-id) with the template argument type.
539 ///
540 /// \param S the Sema
541 ///
542 /// \param TemplateParams the template parameters that we are deducing
543 ///
544 /// \param P the parameter type
545 ///
546 /// \param A the argument type
547 ///
548 /// \param Info information about the template argument deduction itself
549 ///
550 /// \param Deduced the deduced template arguments
551 ///
552 /// \returns the result of template argument deduction so far. Note that a
553 /// "success" result means that template argument deduction has not yet failed,
554 /// but it may still fail, later, for other reasons.
555 static Sema::TemplateDeductionResult
DeduceTemplateSpecArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType P,QualType A,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)556 DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams,
557 const QualType P, QualType A,
558 TemplateDeductionInfo &Info,
559 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
560 QualType UP = P;
561 if (const auto *IP = P->getAs<InjectedClassNameType>())
562 UP = IP->getInjectedSpecializationType();
563 // FIXME: Try to preserve type sugar here, which is hard
564 // because of the unresolved template arguments.
565 const auto *TP = UP.getCanonicalType()->castAs<TemplateSpecializationType>();
566 TemplateName TNP = TP->getTemplateName();
567
568 // If the parameter is an alias template, there is nothing to deduce.
569 if (const auto *TD = TNP.getAsTemplateDecl(); TD && TD->isTypeAlias())
570 return Sema::TDK_Success;
571
572 ArrayRef<TemplateArgument> PResolved = TP->template_arguments();
573
574 QualType UA = A;
575 // Treat an injected-class-name as its underlying template-id.
576 if (const auto *Injected = A->getAs<InjectedClassNameType>())
577 UA = Injected->getInjectedSpecializationType();
578
579 // Check whether the template argument is a dependent template-id.
580 // FIXME: Should not lose sugar here.
581 if (const auto *SA =
582 dyn_cast<TemplateSpecializationType>(UA.getCanonicalType())) {
583 TemplateName TNA = SA->getTemplateName();
584
585 // If the argument is an alias template, there is nothing to deduce.
586 if (const auto *TD = TNA.getAsTemplateDecl(); TD && TD->isTypeAlias())
587 return Sema::TDK_Success;
588
589 // Perform template argument deduction for the template name.
590 if (auto Result =
591 DeduceTemplateArguments(S, TemplateParams, TNP, TNA, Info, Deduced))
592 return Result;
593 // Perform template argument deduction on each template
594 // argument. Ignore any missing/extra arguments, since they could be
595 // filled in by default arguments.
596 return DeduceTemplateArguments(S, TemplateParams, PResolved,
597 SA->template_arguments(), Info, Deduced,
598 /*NumberOfArgumentsMustMatch=*/false);
599 }
600
601 // If the argument type is a class template specialization, we
602 // perform template argument deduction using its template
603 // arguments.
604 const auto *RA = UA->getAs<RecordType>();
605 const auto *SA =
606 RA ? dyn_cast<ClassTemplateSpecializationDecl>(RA->getDecl()) : nullptr;
607 if (!SA) {
608 Info.FirstArg = TemplateArgument(P);
609 Info.SecondArg = TemplateArgument(A);
610 return Sema::TDK_NonDeducedMismatch;
611 }
612
613 // Perform template argument deduction for the template name.
614 if (auto Result = DeduceTemplateArguments(
615 S, TemplateParams, TP->getTemplateName(),
616 TemplateName(SA->getSpecializedTemplate()), Info, Deduced))
617 return Result;
618
619 // Perform template argument deduction for the template arguments.
620 return DeduceTemplateArguments(S, TemplateParams, PResolved,
621 SA->getTemplateArgs().asArray(), Info, Deduced,
622 /*NumberOfArgumentsMustMatch=*/true);
623 }
624
IsPossiblyOpaquelyQualifiedTypeInternal(const Type * T)625 static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) {
626 assert(T->isCanonicalUnqualified());
627
628 switch (T->getTypeClass()) {
629 case Type::TypeOfExpr:
630 case Type::TypeOf:
631 case Type::DependentName:
632 case Type::Decltype:
633 case Type::UnresolvedUsing:
634 case Type::TemplateTypeParm:
635 return true;
636
637 case Type::ConstantArray:
638 case Type::IncompleteArray:
639 case Type::VariableArray:
640 case Type::DependentSizedArray:
641 return IsPossiblyOpaquelyQualifiedTypeInternal(
642 cast<ArrayType>(T)->getElementType().getTypePtr());
643
644 default:
645 return false;
646 }
647 }
648
649 /// Determines whether the given type is an opaque type that
650 /// might be more qualified when instantiated.
IsPossiblyOpaquelyQualifiedType(QualType T)651 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
652 return IsPossiblyOpaquelyQualifiedTypeInternal(
653 T->getCanonicalTypeInternal().getTypePtr());
654 }
655
656 /// Helper function to build a TemplateParameter when we don't
657 /// know its type statically.
makeTemplateParameter(Decl * D)658 static TemplateParameter makeTemplateParameter(Decl *D) {
659 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
660 return TemplateParameter(TTP);
661 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
662 return TemplateParameter(NTTP);
663
664 return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
665 }
666
667 /// A pack that we're currently deducing.
668 struct clang::DeducedPack {
669 // The index of the pack.
670 unsigned Index;
671
672 // The old value of the pack before we started deducing it.
673 DeducedTemplateArgument Saved;
674
675 // A deferred value of this pack from an inner deduction, that couldn't be
676 // deduced because this deduction hadn't happened yet.
677 DeducedTemplateArgument DeferredDeduction;
678
679 // The new value of the pack.
680 SmallVector<DeducedTemplateArgument, 4> New;
681
682 // The outer deduction for this pack, if any.
683 DeducedPack *Outer = nullptr;
684
DeducedPackclang::DeducedPack685 DeducedPack(unsigned Index) : Index(Index) {}
686 };
687
688 namespace {
689
690 /// A scope in which we're performing pack deduction.
691 class PackDeductionScope {
692 public:
693 /// Prepare to deduce the packs named within Pattern.
PackDeductionScope(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info,TemplateArgument Pattern)694 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
695 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
696 TemplateDeductionInfo &Info, TemplateArgument Pattern)
697 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
698 unsigned NumNamedPacks = addPacks(Pattern);
699 finishConstruction(NumNamedPacks);
700 }
701
702 /// Prepare to directly deduce arguments of the parameter with index \p Index.
PackDeductionScope(Sema & S,TemplateParameterList * TemplateParams,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info,unsigned Index)703 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
704 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
705 TemplateDeductionInfo &Info, unsigned Index)
706 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
707 addPack(Index);
708 finishConstruction(1);
709 }
710
711 private:
addPack(unsigned Index)712 void addPack(unsigned Index) {
713 // Save the deduced template argument for the parameter pack expanded
714 // by this pack expansion, then clear out the deduction.
715 DeducedPack Pack(Index);
716 Pack.Saved = Deduced[Index];
717 Deduced[Index] = TemplateArgument();
718
719 // FIXME: What if we encounter multiple packs with different numbers of
720 // pre-expanded expansions? (This should already have been diagnosed
721 // during substitution.)
722 if (std::optional<unsigned> ExpandedPackExpansions =
723 getExpandedPackSize(TemplateParams->getParam(Index)))
724 FixedNumExpansions = ExpandedPackExpansions;
725
726 Packs.push_back(Pack);
727 }
728
addPacks(TemplateArgument Pattern)729 unsigned addPacks(TemplateArgument Pattern) {
730 // Compute the set of template parameter indices that correspond to
731 // parameter packs expanded by the pack expansion.
732 llvm::SmallBitVector SawIndices(TemplateParams->size());
733 llvm::SmallVector<TemplateArgument, 4> ExtraDeductions;
734
735 auto AddPack = [&](unsigned Index) {
736 if (SawIndices[Index])
737 return;
738 SawIndices[Index] = true;
739 addPack(Index);
740
741 // Deducing a parameter pack that is a pack expansion also constrains the
742 // packs appearing in that parameter to have the same deduced arity. Also,
743 // in C++17 onwards, deducing a non-type template parameter deduces its
744 // type, so we need to collect the pending deduced values for those packs.
745 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(
746 TemplateParams->getParam(Index))) {
747 if (!NTTP->isExpandedParameterPack())
748 if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType()))
749 ExtraDeductions.push_back(Expansion->getPattern());
750 }
751 // FIXME: Also collect the unexpanded packs in any type and template
752 // parameter packs that are pack expansions.
753 };
754
755 auto Collect = [&](TemplateArgument Pattern) {
756 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
757 S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
758 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
759 unsigned Depth, Index;
760 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
761 if (Depth == Info.getDeducedDepth())
762 AddPack(Index);
763 }
764 };
765
766 // Look for unexpanded packs in the pattern.
767 Collect(Pattern);
768 assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
769
770 unsigned NumNamedPacks = Packs.size();
771
772 // Also look for unexpanded packs that are indirectly deduced by deducing
773 // the sizes of the packs in this pattern.
774 while (!ExtraDeductions.empty())
775 Collect(ExtraDeductions.pop_back_val());
776
777 return NumNamedPacks;
778 }
779
finishConstruction(unsigned NumNamedPacks)780 void finishConstruction(unsigned NumNamedPacks) {
781 // Dig out the partially-substituted pack, if there is one.
782 const TemplateArgument *PartialPackArgs = nullptr;
783 unsigned NumPartialPackArgs = 0;
784 std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u);
785 if (auto *Scope = S.CurrentInstantiationScope)
786 if (auto *Partial = Scope->getPartiallySubstitutedPack(
787 &PartialPackArgs, &NumPartialPackArgs))
788 PartialPackDepthIndex = getDepthAndIndex(Partial);
789
790 // This pack expansion will have been partially or fully expanded if
791 // it only names explicitly-specified parameter packs (including the
792 // partially-substituted one, if any).
793 bool IsExpanded = true;
794 for (unsigned I = 0; I != NumNamedPacks; ++I) {
795 if (Packs[I].Index >= Info.getNumExplicitArgs()) {
796 IsExpanded = false;
797 IsPartiallyExpanded = false;
798 break;
799 }
800 if (PartialPackDepthIndex ==
801 std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) {
802 IsPartiallyExpanded = true;
803 }
804 }
805
806 // Skip over the pack elements that were expanded into separate arguments.
807 // If we partially expanded, this is the number of partial arguments.
808 if (IsPartiallyExpanded)
809 PackElements += NumPartialPackArgs;
810 else if (IsExpanded)
811 PackElements += *FixedNumExpansions;
812
813 for (auto &Pack : Packs) {
814 if (Info.PendingDeducedPacks.size() > Pack.Index)
815 Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
816 else
817 Info.PendingDeducedPacks.resize(Pack.Index + 1);
818 Info.PendingDeducedPacks[Pack.Index] = &Pack;
819
820 if (PartialPackDepthIndex ==
821 std::make_pair(Info.getDeducedDepth(), Pack.Index)) {
822 Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs);
823 // We pre-populate the deduced value of the partially-substituted
824 // pack with the specified value. This is not entirely correct: the
825 // value is supposed to have been substituted, not deduced, but the
826 // cases where this is observable require an exact type match anyway.
827 //
828 // FIXME: If we could represent a "depth i, index j, pack elem k"
829 // parameter, we could substitute the partially-substituted pack
830 // everywhere and avoid this.
831 if (!IsPartiallyExpanded)
832 Deduced[Pack.Index] = Pack.New[PackElements];
833 }
834 }
835 }
836
837 public:
~PackDeductionScope()838 ~PackDeductionScope() {
839 for (auto &Pack : Packs)
840 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
841 }
842
843 /// Determine whether this pack has already been partially expanded into a
844 /// sequence of (prior) function parameters / template arguments.
isPartiallyExpanded()845 bool isPartiallyExpanded() { return IsPartiallyExpanded; }
846
847 /// Determine whether this pack expansion scope has a known, fixed arity.
848 /// This happens if it involves a pack from an outer template that has
849 /// (notionally) already been expanded.
hasFixedArity()850 bool hasFixedArity() { return FixedNumExpansions.has_value(); }
851
852 /// Determine whether the next element of the argument is still part of this
853 /// pack. This is the case unless the pack is already expanded to a fixed
854 /// length.
hasNextElement()855 bool hasNextElement() {
856 return !FixedNumExpansions || *FixedNumExpansions > PackElements;
857 }
858
859 /// Move to deducing the next element in each pack that is being deduced.
nextPackElement()860 void nextPackElement() {
861 // Capture the deduced template arguments for each parameter pack expanded
862 // by this pack expansion, add them to the list of arguments we've deduced
863 // for that pack, then clear out the deduced argument.
864 for (auto &Pack : Packs) {
865 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
866 if (!Pack.New.empty() || !DeducedArg.isNull()) {
867 while (Pack.New.size() < PackElements)
868 Pack.New.push_back(DeducedTemplateArgument());
869 if (Pack.New.size() == PackElements)
870 Pack.New.push_back(DeducedArg);
871 else
872 Pack.New[PackElements] = DeducedArg;
873 DeducedArg = Pack.New.size() > PackElements + 1
874 ? Pack.New[PackElements + 1]
875 : DeducedTemplateArgument();
876 }
877 }
878 ++PackElements;
879 }
880
881 /// Finish template argument deduction for a set of argument packs,
882 /// producing the argument packs and checking for consistency with prior
883 /// deductions.
finish()884 Sema::TemplateDeductionResult finish() {
885 // Build argument packs for each of the parameter packs expanded by this
886 // pack expansion.
887 for (auto &Pack : Packs) {
888 // Put back the old value for this pack.
889 Deduced[Pack.Index] = Pack.Saved;
890
891 // Always make sure the size of this pack is correct, even if we didn't
892 // deduce any values for it.
893 //
894 // FIXME: This isn't required by the normative wording, but substitution
895 // and post-substitution checking will always fail if the arity of any
896 // pack is not equal to the number of elements we processed. (Either that
897 // or something else has gone *very* wrong.) We're permitted to skip any
898 // hard errors from those follow-on steps by the intent (but not the
899 // wording) of C++ [temp.inst]p8:
900 //
901 // If the function selected by overload resolution can be determined
902 // without instantiating a class template definition, it is unspecified
903 // whether that instantiation actually takes place
904 Pack.New.resize(PackElements);
905
906 // Build or find a new value for this pack.
907 DeducedTemplateArgument NewPack;
908 if (Pack.New.empty()) {
909 // If we deduced an empty argument pack, create it now.
910 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
911 } else {
912 TemplateArgument *ArgumentPack =
913 new (S.Context) TemplateArgument[Pack.New.size()];
914 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
915 NewPack = DeducedTemplateArgument(
916 TemplateArgument(llvm::ArrayRef(ArgumentPack, Pack.New.size())),
917 // FIXME: This is wrong, it's possible that some pack elements are
918 // deduced from an array bound and others are not:
919 // template<typename ...T, T ...V> void g(const T (&...p)[V]);
920 // g({1, 2, 3}, {{}, {}});
921 // ... should deduce T = {int, size_t (from array bound)}.
922 Pack.New[0].wasDeducedFromArrayBound());
923 }
924
925 // Pick where we're going to put the merged pack.
926 DeducedTemplateArgument *Loc;
927 if (Pack.Outer) {
928 if (Pack.Outer->DeferredDeduction.isNull()) {
929 // Defer checking this pack until we have a complete pack to compare
930 // it against.
931 Pack.Outer->DeferredDeduction = NewPack;
932 continue;
933 }
934 Loc = &Pack.Outer->DeferredDeduction;
935 } else {
936 Loc = &Deduced[Pack.Index];
937 }
938
939 // Check the new pack matches any previous value.
940 DeducedTemplateArgument OldPack = *Loc;
941 DeducedTemplateArgument Result =
942 checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
943
944 // If we deferred a deduction of this pack, check that one now too.
945 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
946 OldPack = Result;
947 NewPack = Pack.DeferredDeduction;
948 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
949 }
950
951 NamedDecl *Param = TemplateParams->getParam(Pack.Index);
952 if (Result.isNull()) {
953 Info.Param = makeTemplateParameter(Param);
954 Info.FirstArg = OldPack;
955 Info.SecondArg = NewPack;
956 return Sema::TDK_Inconsistent;
957 }
958
959 // If we have a pre-expanded pack and we didn't deduce enough elements
960 // for it, fail deduction.
961 if (std::optional<unsigned> Expansions = getExpandedPackSize(Param)) {
962 if (*Expansions != PackElements) {
963 Info.Param = makeTemplateParameter(Param);
964 Info.FirstArg = Result;
965 return Sema::TDK_IncompletePack;
966 }
967 }
968
969 *Loc = Result;
970 }
971
972 return Sema::TDK_Success;
973 }
974
975 private:
976 Sema &S;
977 TemplateParameterList *TemplateParams;
978 SmallVectorImpl<DeducedTemplateArgument> &Deduced;
979 TemplateDeductionInfo &Info;
980 unsigned PackElements = 0;
981 bool IsPartiallyExpanded = false;
982 /// The number of expansions, if we have a fully-expanded pack in this scope.
983 std::optional<unsigned> FixedNumExpansions;
984
985 SmallVector<DeducedPack, 2> Packs;
986 };
987
988 } // namespace
989
990 /// Deduce the template arguments by comparing the list of parameter
991 /// types to the list of argument types, as in the parameter-type-lists of
992 /// function types (C++ [temp.deduct.type]p10).
993 ///
994 /// \param S The semantic analysis object within which we are deducing
995 ///
996 /// \param TemplateParams The template parameters that we are deducing
997 ///
998 /// \param Params The list of parameter types
999 ///
1000 /// \param NumParams The number of types in \c Params
1001 ///
1002 /// \param Args The list of argument types
1003 ///
1004 /// \param NumArgs The number of types in \c Args
1005 ///
1006 /// \param Info information about the template argument deduction itself
1007 ///
1008 /// \param Deduced the deduced template arguments
1009 ///
1010 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1011 /// how template argument deduction is performed.
1012 ///
1013 /// \param PartialOrdering If true, we are performing template argument
1014 /// deduction for during partial ordering for a call
1015 /// (C++0x [temp.deduct.partial]).
1016 ///
1017 /// \returns the result of template argument deduction so far. Note that a
1018 /// "success" result means that template argument deduction has not yet failed,
1019 /// but it may still fail, later, for other reasons.
1020 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const QualType * Params,unsigned NumParams,const QualType * Args,unsigned NumArgs,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering=false)1021 DeduceTemplateArguments(Sema &S,
1022 TemplateParameterList *TemplateParams,
1023 const QualType *Params, unsigned NumParams,
1024 const QualType *Args, unsigned NumArgs,
1025 TemplateDeductionInfo &Info,
1026 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1027 unsigned TDF,
1028 bool PartialOrdering = false) {
1029 // C++0x [temp.deduct.type]p10:
1030 // Similarly, if P has a form that contains (T), then each parameter type
1031 // Pi of the respective parameter-type- list of P is compared with the
1032 // corresponding parameter type Ai of the corresponding parameter-type-list
1033 // of A. [...]
1034 unsigned ArgIdx = 0, ParamIdx = 0;
1035 for (; ParamIdx != NumParams; ++ParamIdx) {
1036 // Check argument types.
1037 const PackExpansionType *Expansion
1038 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
1039 if (!Expansion) {
1040 // Simple case: compare the parameter and argument types at this point.
1041
1042 // Make sure we have an argument.
1043 if (ArgIdx >= NumArgs)
1044 return Sema::TDK_MiscellaneousDeductionFailure;
1045
1046 if (isa<PackExpansionType>(Args[ArgIdx])) {
1047 // C++0x [temp.deduct.type]p22:
1048 // If the original function parameter associated with A is a function
1049 // parameter pack and the function parameter associated with P is not
1050 // a function parameter pack, then template argument deduction fails.
1051 return Sema::TDK_MiscellaneousDeductionFailure;
1052 }
1053
1054 if (Sema::TemplateDeductionResult Result =
1055 DeduceTemplateArgumentsByTypeMatch(
1056 S, TemplateParams, Params[ParamIdx].getUnqualifiedType(),
1057 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF,
1058 PartialOrdering,
1059 /*DeducedFromArrayBound=*/false))
1060 return Result;
1061
1062 ++ArgIdx;
1063 continue;
1064 }
1065
1066 // C++0x [temp.deduct.type]p10:
1067 // If the parameter-declaration corresponding to Pi is a function
1068 // parameter pack, then the type of its declarator- id is compared with
1069 // each remaining parameter type in the parameter-type-list of A. Each
1070 // comparison deduces template arguments for subsequent positions in the
1071 // template parameter packs expanded by the function parameter pack.
1072
1073 QualType Pattern = Expansion->getPattern();
1074 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
1075
1076 // A pack scope with fixed arity is not really a pack any more, so is not
1077 // a non-deduced context.
1078 if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) {
1079 for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) {
1080 // Deduce template arguments from the pattern.
1081 if (Sema::TemplateDeductionResult Result =
1082 DeduceTemplateArgumentsByTypeMatch(
1083 S, TemplateParams, Pattern.getUnqualifiedType(),
1084 Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF,
1085 PartialOrdering, /*DeducedFromArrayBound=*/false))
1086 return Result;
1087
1088 PackScope.nextPackElement();
1089 }
1090 } else {
1091 // C++0x [temp.deduct.type]p5:
1092 // The non-deduced contexts are:
1093 // - A function parameter pack that does not occur at the end of the
1094 // parameter-declaration-clause.
1095 //
1096 // FIXME: There is no wording to say what we should do in this case. We
1097 // choose to resolve this by applying the same rule that is applied for a
1098 // function call: that is, deduce all contained packs to their
1099 // explicitly-specified values (or to <> if there is no such value).
1100 //
1101 // This is seemingly-arbitrarily different from the case of a template-id
1102 // with a non-trailing pack-expansion in its arguments, which renders the
1103 // entire template-argument-list a non-deduced context.
1104
1105 // If the parameter type contains an explicitly-specified pack that we
1106 // could not expand, skip the number of parameters notionally created
1107 // by the expansion.
1108 std::optional<unsigned> NumExpansions = Expansion->getNumExpansions();
1109 if (NumExpansions && !PackScope.isPartiallyExpanded()) {
1110 for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs;
1111 ++I, ++ArgIdx)
1112 PackScope.nextPackElement();
1113 }
1114 }
1115
1116 // Build argument packs for each of the parameter packs expanded by this
1117 // pack expansion.
1118 if (auto Result = PackScope.finish())
1119 return Result;
1120 }
1121
1122 // DR692, DR1395
1123 // C++0x [temp.deduct.type]p10:
1124 // If the parameter-declaration corresponding to P_i ...
1125 // During partial ordering, if Ai was originally a function parameter pack:
1126 // - if P does not contain a function parameter type corresponding to Ai then
1127 // Ai is ignored;
1128 if (PartialOrdering && ArgIdx + 1 == NumArgs &&
1129 isa<PackExpansionType>(Args[ArgIdx]))
1130 return Sema::TDK_Success;
1131
1132 // Make sure we don't have any extra arguments.
1133 if (ArgIdx < NumArgs)
1134 return Sema::TDK_MiscellaneousDeductionFailure;
1135
1136 return Sema::TDK_Success;
1137 }
1138
1139 /// Determine whether the parameter has qualifiers that the argument
1140 /// lacks. Put another way, determine whether there is no way to add
1141 /// a deduced set of qualifiers to the ParamType that would result in
1142 /// its qualifiers matching those of the ArgType.
hasInconsistentOrSupersetQualifiersOf(QualType ParamType,QualType ArgType)1143 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
1144 QualType ArgType) {
1145 Qualifiers ParamQs = ParamType.getQualifiers();
1146 Qualifiers ArgQs = ArgType.getQualifiers();
1147
1148 if (ParamQs == ArgQs)
1149 return false;
1150
1151 // Mismatched (but not missing) Objective-C GC attributes.
1152 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
1153 ParamQs.hasObjCGCAttr())
1154 return true;
1155
1156 // Mismatched (but not missing) address spaces.
1157 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
1158 ParamQs.hasAddressSpace())
1159 return true;
1160
1161 // Mismatched (but not missing) Objective-C lifetime qualifiers.
1162 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
1163 ParamQs.hasObjCLifetime())
1164 return true;
1165
1166 // CVR qualifiers inconsistent or a superset.
1167 return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0;
1168 }
1169
1170 /// Compare types for equality with respect to possibly compatible
1171 /// function types (noreturn adjustment, implicit calling conventions). If any
1172 /// of parameter and argument is not a function, just perform type comparison.
1173 ///
1174 /// \param P the template parameter type.
1175 ///
1176 /// \param A the argument type.
isSameOrCompatibleFunctionType(QualType P,QualType A)1177 bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) {
1178 const FunctionType *PF = P->getAs<FunctionType>(),
1179 *AF = A->getAs<FunctionType>();
1180
1181 // Just compare if not functions.
1182 if (!PF || !AF)
1183 return Context.hasSameType(P, A);
1184
1185 // Noreturn and noexcept adjustment.
1186 QualType AdjustedParam;
1187 if (IsFunctionConversion(P, A, AdjustedParam))
1188 return Context.hasSameType(AdjustedParam, A);
1189
1190 // FIXME: Compatible calling conventions.
1191
1192 return Context.hasSameType(P, A);
1193 }
1194
1195 /// Get the index of the first template parameter that was originally from the
1196 /// innermost template-parameter-list. This is 0 except when we concatenate
1197 /// the template parameter lists of a class template and a constructor template
1198 /// when forming an implicit deduction guide.
getFirstInnerIndex(FunctionTemplateDecl * FTD)1199 static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) {
1200 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl());
1201 if (!Guide || !Guide->isImplicit())
1202 return 0;
1203 return Guide->getDeducedTemplate()->getTemplateParameters()->size();
1204 }
1205
1206 /// Determine whether a type denotes a forwarding reference.
isForwardingReference(QualType Param,unsigned FirstInnerIndex)1207 static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) {
1208 // C++1z [temp.deduct.call]p3:
1209 // A forwarding reference is an rvalue reference to a cv-unqualified
1210 // template parameter that does not represent a template parameter of a
1211 // class template.
1212 if (auto *ParamRef = Param->getAs<RValueReferenceType>()) {
1213 if (ParamRef->getPointeeType().getQualifiers())
1214 return false;
1215 auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>();
1216 return TypeParm && TypeParm->getIndex() >= FirstInnerIndex;
1217 }
1218 return false;
1219 }
1220
getCanonicalRD(QualType T)1221 static CXXRecordDecl *getCanonicalRD(QualType T) {
1222 return cast<CXXRecordDecl>(
1223 T->castAs<RecordType>()->getDecl()->getCanonicalDecl());
1224 }
1225
1226 /// Attempt to deduce the template arguments by checking the base types
1227 /// according to (C++20 [temp.deduct.call] p4b3.
1228 ///
1229 /// \param S the semantic analysis object within which we are deducing.
1230 ///
1231 /// \param RD the top level record object we are deducing against.
1232 ///
1233 /// \param TemplateParams the template parameters that we are deducing.
1234 ///
1235 /// \param P the template specialization parameter type.
1236 ///
1237 /// \param Info information about the template argument deduction itself.
1238 ///
1239 /// \param Deduced the deduced template arguments.
1240 ///
1241 /// \returns the result of template argument deduction with the bases. "invalid"
1242 /// means no matches, "success" found a single item, and the
1243 /// "MiscellaneousDeductionFailure" result happens when the match is ambiguous.
1244 static Sema::TemplateDeductionResult
DeduceTemplateBases(Sema & S,const CXXRecordDecl * RD,TemplateParameterList * TemplateParams,QualType P,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)1245 DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD,
1246 TemplateParameterList *TemplateParams, QualType P,
1247 TemplateDeductionInfo &Info,
1248 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1249 // C++14 [temp.deduct.call] p4b3:
1250 // If P is a class and P has the form simple-template-id, then the
1251 // transformed A can be a derived class of the deduced A. Likewise if
1252 // P is a pointer to a class of the form simple-template-id, the
1253 // transformed A can be a pointer to a derived class pointed to by the
1254 // deduced A. However, if there is a class C that is a (direct or
1255 // indirect) base class of D and derived (directly or indirectly) from a
1256 // class B and that would be a valid deduced A, the deduced A cannot be
1257 // B or pointer to B, respectively.
1258 //
1259 // These alternatives are considered only if type deduction would
1260 // otherwise fail. If they yield more than one possible deduced A, the
1261 // type deduction fails.
1262
1263 // Use a breadth-first search through the bases to collect the set of
1264 // successful matches. Visited contains the set of nodes we have already
1265 // visited, while ToVisit is our stack of records that we still need to
1266 // visit. Matches contains a list of matches that have yet to be
1267 // disqualified.
1268 llvm::SmallPtrSet<const CXXRecordDecl *, 8> Visited;
1269 SmallVector<QualType, 8> ToVisit;
1270 // We iterate over this later, so we have to use MapVector to ensure
1271 // determinism.
1272 llvm::MapVector<const CXXRecordDecl *,
1273 SmallVector<DeducedTemplateArgument, 8>>
1274 Matches;
1275
1276 auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) {
1277 for (const auto &Base : RD->bases()) {
1278 QualType T = Base.getType();
1279 assert(T->isRecordType() && "Base class that isn't a record?");
1280 if (Visited.insert(::getCanonicalRD(T)).second)
1281 ToVisit.push_back(T);
1282 }
1283 };
1284
1285 // Set up the loop by adding all the bases.
1286 AddBases(RD);
1287
1288 // Search each path of bases until we either run into a successful match
1289 // (where all bases of it are invalid), or we run out of bases.
1290 while (!ToVisit.empty()) {
1291 QualType NextT = ToVisit.pop_back_val();
1292
1293 SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(),
1294 Deduced.end());
1295 TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info);
1296 Sema::TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments(
1297 S, TemplateParams, P, NextT, BaseInfo, DeducedCopy);
1298
1299 // If this was a successful deduction, add it to the list of matches,
1300 // otherwise we need to continue searching its bases.
1301 const CXXRecordDecl *RD = ::getCanonicalRD(NextT);
1302 if (BaseResult == Sema::TDK_Success)
1303 Matches.insert({RD, DeducedCopy});
1304 else
1305 AddBases(RD);
1306 }
1307
1308 // At this point, 'Matches' contains a list of seemingly valid bases, however
1309 // in the event that we have more than 1 match, it is possible that the base
1310 // of one of the matches might be disqualified for being a base of another
1311 // valid match. We can count on cyclical instantiations being invalid to
1312 // simplify the disqualifications. That is, if A & B are both matches, and B
1313 // inherits from A (disqualifying A), we know that A cannot inherit from B.
1314 if (Matches.size() > 1) {
1315 Visited.clear();
1316 for (const auto &Match : Matches)
1317 AddBases(Match.first);
1318
1319 // We can give up once we have a single item (or have run out of things to
1320 // search) since cyclical inheritance isn't valid.
1321 while (Matches.size() > 1 && !ToVisit.empty()) {
1322 const CXXRecordDecl *RD = ::getCanonicalRD(ToVisit.pop_back_val());
1323 Matches.erase(RD);
1324
1325 // Always add all bases, since the inheritance tree can contain
1326 // disqualifications for multiple matches.
1327 AddBases(RD);
1328 }
1329 }
1330
1331 if (Matches.empty())
1332 return Sema::TDK_Invalid;
1333 if (Matches.size() > 1)
1334 return Sema::TDK_MiscellaneousDeductionFailure;
1335
1336 std::swap(Matches.front().second, Deduced);
1337 return Sema::TDK_Success;
1338 }
1339
1340 /// Deduce the template arguments by comparing the parameter type and
1341 /// the argument type (C++ [temp.deduct.type]).
1342 ///
1343 /// \param S the semantic analysis object within which we are deducing
1344 ///
1345 /// \param TemplateParams the template parameters that we are deducing
1346 ///
1347 /// \param P the parameter type
1348 ///
1349 /// \param A the argument type
1350 ///
1351 /// \param Info information about the template argument deduction itself
1352 ///
1353 /// \param Deduced the deduced template arguments
1354 ///
1355 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
1356 /// how template argument deduction is performed.
1357 ///
1358 /// \param PartialOrdering Whether we're performing template argument deduction
1359 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
1360 ///
1361 /// \returns the result of template argument deduction so far. Note that a
1362 /// "success" result means that template argument deduction has not yet failed,
1363 /// but it may still fail, later, for other reasons.
DeduceTemplateArgumentsByTypeMatch(Sema & S,TemplateParameterList * TemplateParams,QualType P,QualType A,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned TDF,bool PartialOrdering,bool DeducedFromArrayBound)1364 static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch(
1365 Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A,
1366 TemplateDeductionInfo &Info,
1367 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF,
1368 bool PartialOrdering, bool DeducedFromArrayBound) {
1369
1370 // If the argument type is a pack expansion, look at its pattern.
1371 // This isn't explicitly called out
1372 if (const auto *AExp = dyn_cast<PackExpansionType>(A))
1373 A = AExp->getPattern();
1374 assert(!isa<PackExpansionType>(A.getCanonicalType()));
1375
1376 if (PartialOrdering) {
1377 // C++11 [temp.deduct.partial]p5:
1378 // Before the partial ordering is done, certain transformations are
1379 // performed on the types used for partial ordering:
1380 // - If P is a reference type, P is replaced by the type referred to.
1381 const ReferenceType *PRef = P->getAs<ReferenceType>();
1382 if (PRef)
1383 P = PRef->getPointeeType();
1384
1385 // - If A is a reference type, A is replaced by the type referred to.
1386 const ReferenceType *ARef = A->getAs<ReferenceType>();
1387 if (ARef)
1388 A = A->getPointeeType();
1389
1390 if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) {
1391 // C++11 [temp.deduct.partial]p9:
1392 // If, for a given type, deduction succeeds in both directions (i.e.,
1393 // the types are identical after the transformations above) and both
1394 // P and A were reference types [...]:
1395 // - if [one type] was an lvalue reference and [the other type] was
1396 // not, [the other type] is not considered to be at least as
1397 // specialized as [the first type]
1398 // - if [one type] is more cv-qualified than [the other type],
1399 // [the other type] is not considered to be at least as specialized
1400 // as [the first type]
1401 // Objective-C ARC adds:
1402 // - [one type] has non-trivial lifetime, [the other type] has
1403 // __unsafe_unretained lifetime, and the types are otherwise
1404 // identical
1405 //
1406 // A is "considered to be at least as specialized" as P iff deduction
1407 // succeeds, so we model this as a deduction failure. Note that
1408 // [the first type] is P and [the other type] is A here; the standard
1409 // gets this backwards.
1410 Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers();
1411 if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) ||
1412 PQuals.isStrictSupersetOf(AQuals) ||
1413 (PQuals.hasNonTrivialObjCLifetime() &&
1414 AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
1415 PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) {
1416 Info.FirstArg = TemplateArgument(P);
1417 Info.SecondArg = TemplateArgument(A);
1418 return Sema::TDK_NonDeducedMismatch;
1419 }
1420 }
1421 Qualifiers DiscardedQuals;
1422 // C++11 [temp.deduct.partial]p7:
1423 // Remove any top-level cv-qualifiers:
1424 // - If P is a cv-qualified type, P is replaced by the cv-unqualified
1425 // version of P.
1426 P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals);
1427 // - If A is a cv-qualified type, A is replaced by the cv-unqualified
1428 // version of A.
1429 A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals);
1430 } else {
1431 // C++0x [temp.deduct.call]p4 bullet 1:
1432 // - If the original P is a reference type, the deduced A (i.e., the type
1433 // referred to by the reference) can be more cv-qualified than the
1434 // transformed A.
1435 if (TDF & TDF_ParamWithReferenceType) {
1436 Qualifiers Quals;
1437 QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals);
1438 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers());
1439 P = S.Context.getQualifiedType(UnqualP, Quals);
1440 }
1441
1442 if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) {
1443 // C++0x [temp.deduct.type]p10:
1444 // If P and A are function types that originated from deduction when
1445 // taking the address of a function template (14.8.2.2) or when deducing
1446 // template arguments from a function declaration (14.8.2.6) and Pi and
1447 // Ai are parameters of the top-level parameter-type-list of P and A,
1448 // respectively, Pi is adjusted if it is a forwarding reference and Ai
1449 // is an lvalue reference, in
1450 // which case the type of Pi is changed to be the template parameter
1451 // type (i.e., T&& is changed to simply T). [ Note: As a result, when
1452 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
1453 // deduced as X&. - end note ]
1454 TDF &= ~TDF_TopLevelParameterTypeList;
1455 if (isForwardingReference(P, /*FirstInnerIndex=*/0) &&
1456 A->isLValueReferenceType())
1457 P = P->getPointeeType();
1458 }
1459 }
1460
1461 // C++ [temp.deduct.type]p9:
1462 // A template type argument T, a template template argument TT or a
1463 // template non-type argument i can be deduced if P and A have one of
1464 // the following forms:
1465 //
1466 // T
1467 // cv-list T
1468 if (const auto *TTP = P->getAs<TemplateTypeParmType>()) {
1469 // Just skip any attempts to deduce from a placeholder type or a parameter
1470 // at a different depth.
1471 if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth())
1472 return Sema::TDK_Success;
1473
1474 unsigned Index = TTP->getIndex();
1475
1476 // If the argument type is an array type, move the qualifiers up to the
1477 // top level, so they can be matched with the qualifiers on the parameter.
1478 if (A->isArrayType()) {
1479 Qualifiers Quals;
1480 A = S.Context.getUnqualifiedArrayType(A, Quals);
1481 if (Quals)
1482 A = S.Context.getQualifiedType(A, Quals);
1483 }
1484
1485 // The argument type can not be less qualified than the parameter
1486 // type.
1487 if (!(TDF & TDF_IgnoreQualifiers) &&
1488 hasInconsistentOrSupersetQualifiersOf(P, A)) {
1489 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1490 Info.FirstArg = TemplateArgument(P);
1491 Info.SecondArg = TemplateArgument(A);
1492 return Sema::TDK_Underqualified;
1493 }
1494
1495 // Do not match a function type with a cv-qualified type.
1496 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584
1497 if (A->isFunctionType() && P.hasQualifiers())
1498 return Sema::TDK_NonDeducedMismatch;
1499
1500 assert(TTP->getDepth() == Info.getDeducedDepth() &&
1501 "saw template type parameter with wrong depth");
1502 assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy &&
1503 "Unresolved overloaded function");
1504 QualType DeducedType = A;
1505
1506 // Remove any qualifiers on the parameter from the deduced type.
1507 // We checked the qualifiers for consistency above.
1508 Qualifiers DeducedQs = DeducedType.getQualifiers();
1509 Qualifiers ParamQs = P.getQualifiers();
1510 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
1511 if (ParamQs.hasObjCGCAttr())
1512 DeducedQs.removeObjCGCAttr();
1513 if (ParamQs.hasAddressSpace())
1514 DeducedQs.removeAddressSpace();
1515 if (ParamQs.hasObjCLifetime())
1516 DeducedQs.removeObjCLifetime();
1517
1518 // Objective-C ARC:
1519 // If template deduction would produce a lifetime qualifier on a type
1520 // that is not a lifetime type, template argument deduction fails.
1521 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
1522 !DeducedType->isDependentType()) {
1523 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1524 Info.FirstArg = TemplateArgument(P);
1525 Info.SecondArg = TemplateArgument(A);
1526 return Sema::TDK_Underqualified;
1527 }
1528
1529 // Objective-C ARC:
1530 // If template deduction would produce an argument type with lifetime type
1531 // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
1532 if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() &&
1533 !DeducedQs.hasObjCLifetime())
1534 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
1535
1536 DeducedType =
1537 S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs);
1538
1539 DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound);
1540 DeducedTemplateArgument Result =
1541 checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced);
1542 if (Result.isNull()) {
1543 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
1544 Info.FirstArg = Deduced[Index];
1545 Info.SecondArg = NewDeduced;
1546 return Sema::TDK_Inconsistent;
1547 }
1548
1549 Deduced[Index] = Result;
1550 return Sema::TDK_Success;
1551 }
1552
1553 // Set up the template argument deduction information for a failure.
1554 Info.FirstArg = TemplateArgument(P);
1555 Info.SecondArg = TemplateArgument(A);
1556
1557 // If the parameter is an already-substituted template parameter
1558 // pack, do nothing: we don't know which of its arguments to look
1559 // at, so we have to wait until all of the parameter packs in this
1560 // expansion have arguments.
1561 if (P->getAs<SubstTemplateTypeParmPackType>())
1562 return Sema::TDK_Success;
1563
1564 // Check the cv-qualifiers on the parameter and argument types.
1565 if (!(TDF & TDF_IgnoreQualifiers)) {
1566 if (TDF & TDF_ParamWithReferenceType) {
1567 if (hasInconsistentOrSupersetQualifiersOf(P, A))
1568 return Sema::TDK_NonDeducedMismatch;
1569 } else if (TDF & TDF_ArgWithReferenceType) {
1570 // C++ [temp.deduct.conv]p4:
1571 // If the original A is a reference type, A can be more cv-qualified
1572 // than the deduced A
1573 if (!A.getQualifiers().compatiblyIncludes(P.getQualifiers()))
1574 return Sema::TDK_NonDeducedMismatch;
1575
1576 // Strip out all extra qualifiers from the argument to figure out the
1577 // type we're converting to, prior to the qualification conversion.
1578 Qualifiers Quals;
1579 A = S.Context.getUnqualifiedArrayType(A, Quals);
1580 A = S.Context.getQualifiedType(A, P.getQualifiers());
1581 } else if (!IsPossiblyOpaquelyQualifiedType(P)) {
1582 if (P.getCVRQualifiers() != A.getCVRQualifiers())
1583 return Sema::TDK_NonDeducedMismatch;
1584 }
1585 }
1586
1587 // If the parameter type is not dependent, there is nothing to deduce.
1588 if (!P->isDependentType()) {
1589 if (TDF & TDF_SkipNonDependent)
1590 return Sema::TDK_Success;
1591 if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A)
1592 : S.Context.hasSameType(P, A))
1593 return Sema::TDK_Success;
1594 if (TDF & TDF_AllowCompatibleFunctionType &&
1595 S.isSameOrCompatibleFunctionType(P, A))
1596 return Sema::TDK_Success;
1597 if (!(TDF & TDF_IgnoreQualifiers))
1598 return Sema::TDK_NonDeducedMismatch;
1599 // Otherwise, when ignoring qualifiers, the types not having the same
1600 // unqualified type does not mean they do not match, so in this case we
1601 // must keep going and analyze with a non-dependent parameter type.
1602 }
1603
1604 switch (P.getCanonicalType()->getTypeClass()) {
1605 // Non-canonical types cannot appear here.
1606 #define NON_CANONICAL_TYPE(Class, Base) \
1607 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
1608 #define TYPE(Class, Base)
1609 #include "clang/AST/TypeNodes.inc"
1610
1611 case Type::TemplateTypeParm:
1612 case Type::SubstTemplateTypeParmPack:
1613 llvm_unreachable("Type nodes handled above");
1614
1615 case Type::Auto:
1616 // FIXME: Implement deduction in dependent case.
1617 if (P->isDependentType())
1618 return Sema::TDK_Success;
1619 [[fallthrough]];
1620 case Type::Builtin:
1621 case Type::VariableArray:
1622 case Type::Vector:
1623 case Type::FunctionNoProto:
1624 case Type::Record:
1625 case Type::Enum:
1626 case Type::ObjCObject:
1627 case Type::ObjCInterface:
1628 case Type::ObjCObjectPointer:
1629 case Type::BitInt:
1630 return (TDF & TDF_SkipNonDependent) ||
1631 ((TDF & TDF_IgnoreQualifiers)
1632 ? S.Context.hasSameUnqualifiedType(P, A)
1633 : S.Context.hasSameType(P, A))
1634 ? Sema::TDK_Success
1635 : Sema::TDK_NonDeducedMismatch;
1636
1637 // _Complex T [placeholder extension]
1638 case Type::Complex: {
1639 const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>();
1640 if (!CA)
1641 return Sema::TDK_NonDeducedMismatch;
1642 return DeduceTemplateArgumentsByTypeMatch(
1643 S, TemplateParams, CP->getElementType(), CA->getElementType(), Info,
1644 Deduced, TDF);
1645 }
1646
1647 // _Atomic T [extension]
1648 case Type::Atomic: {
1649 const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>();
1650 if (!AA)
1651 return Sema::TDK_NonDeducedMismatch;
1652 return DeduceTemplateArgumentsByTypeMatch(
1653 S, TemplateParams, PA->getValueType(), AA->getValueType(), Info,
1654 Deduced, TDF);
1655 }
1656
1657 // T *
1658 case Type::Pointer: {
1659 QualType PointeeType;
1660 if (const auto *PA = A->getAs<PointerType>()) {
1661 PointeeType = PA->getPointeeType();
1662 } else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) {
1663 PointeeType = PA->getPointeeType();
1664 } else {
1665 return Sema::TDK_NonDeducedMismatch;
1666 }
1667 return DeduceTemplateArgumentsByTypeMatch(
1668 S, TemplateParams, P->castAs<PointerType>()->getPointeeType(),
1669 PointeeType, Info, Deduced,
1670 TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass));
1671 }
1672
1673 // T &
1674 case Type::LValueReference: {
1675 const auto *RP = P->castAs<LValueReferenceType>(),
1676 *RA = A->getAs<LValueReferenceType>();
1677 if (!RA)
1678 return Sema::TDK_NonDeducedMismatch;
1679
1680 return DeduceTemplateArgumentsByTypeMatch(
1681 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
1682 Deduced, 0);
1683 }
1684
1685 // T && [C++0x]
1686 case Type::RValueReference: {
1687 const auto *RP = P->castAs<RValueReferenceType>(),
1688 *RA = A->getAs<RValueReferenceType>();
1689 if (!RA)
1690 return Sema::TDK_NonDeducedMismatch;
1691
1692 return DeduceTemplateArgumentsByTypeMatch(
1693 S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info,
1694 Deduced, 0);
1695 }
1696
1697 // T [] (implied, but not stated explicitly)
1698 case Type::IncompleteArray: {
1699 const auto *IAA = S.Context.getAsIncompleteArrayType(A);
1700 if (!IAA)
1701 return Sema::TDK_NonDeducedMismatch;
1702
1703 return DeduceTemplateArgumentsByTypeMatch(
1704 S, TemplateParams,
1705 S.Context.getAsIncompleteArrayType(P)->getElementType(),
1706 IAA->getElementType(), Info, Deduced, TDF & TDF_IgnoreQualifiers);
1707 }
1708
1709 // T [integer-constant]
1710 case Type::ConstantArray: {
1711 const auto *CAA = S.Context.getAsConstantArrayType(A),
1712 *CAP = S.Context.getAsConstantArrayType(P);
1713 assert(CAP);
1714 if (!CAA || CAA->getSize() != CAP->getSize())
1715 return Sema::TDK_NonDeducedMismatch;
1716
1717 return DeduceTemplateArgumentsByTypeMatch(
1718 S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info,
1719 Deduced, TDF & TDF_IgnoreQualifiers);
1720 }
1721
1722 // type [i]
1723 case Type::DependentSizedArray: {
1724 const auto *AA = S.Context.getAsArrayType(A);
1725 if (!AA)
1726 return Sema::TDK_NonDeducedMismatch;
1727
1728 // Check the element type of the arrays
1729 const auto *DAP = S.Context.getAsDependentSizedArrayType(P);
1730 assert(DAP);
1731 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1732 S, TemplateParams, DAP->getElementType(), AA->getElementType(),
1733 Info, Deduced, TDF & TDF_IgnoreQualifiers))
1734 return Result;
1735
1736 // Determine the array bound is something we can deduce.
1737 const NonTypeTemplateParmDecl *NTTP =
1738 getDeducedParameterFromExpr(Info, DAP->getSizeExpr());
1739 if (!NTTP)
1740 return Sema::TDK_Success;
1741
1742 // We can perform template argument deduction for the given non-type
1743 // template parameter.
1744 assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1745 "saw non-type template parameter with wrong depth");
1746 if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) {
1747 llvm::APSInt Size(CAA->getSize());
1748 return DeduceNonTypeTemplateArgument(
1749 S, TemplateParams, NTTP, Size, S.Context.getSizeType(),
1750 /*ArrayBound=*/true, Info, Deduced);
1751 }
1752 if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA))
1753 if (DAA->getSizeExpr())
1754 return DeduceNonTypeTemplateArgument(
1755 S, TemplateParams, NTTP, DAA->getSizeExpr(), Info, Deduced);
1756
1757 // Incomplete type does not match a dependently-sized array type
1758 return Sema::TDK_NonDeducedMismatch;
1759 }
1760
1761 // type(*)(T)
1762 // T(*)()
1763 // T(*)(T)
1764 case Type::FunctionProto: {
1765 const auto *FPP = P->castAs<FunctionProtoType>(),
1766 *FPA = A->getAs<FunctionProtoType>();
1767 if (!FPA)
1768 return Sema::TDK_NonDeducedMismatch;
1769
1770 if (FPP->getMethodQuals() != FPA->getMethodQuals() ||
1771 FPP->getRefQualifier() != FPA->getRefQualifier() ||
1772 FPP->isVariadic() != FPA->isVariadic())
1773 return Sema::TDK_NonDeducedMismatch;
1774
1775 // Check return types.
1776 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1777 S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(),
1778 Info, Deduced, 0,
1779 /*PartialOrdering=*/false,
1780 /*DeducedFromArrayBound=*/false))
1781 return Result;
1782
1783 // Check parameter types.
1784 if (auto Result = DeduceTemplateArguments(
1785 S, TemplateParams, FPP->param_type_begin(), FPP->getNumParams(),
1786 FPA->param_type_begin(), FPA->getNumParams(), Info, Deduced,
1787 TDF & TDF_TopLevelParameterTypeList, PartialOrdering))
1788 return Result;
1789
1790 if (TDF & TDF_AllowCompatibleFunctionType)
1791 return Sema::TDK_Success;
1792
1793 // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit
1794 // deducing through the noexcept-specifier if it's part of the canonical
1795 // type. libstdc++ relies on this.
1796 Expr *NoexceptExpr = FPP->getNoexceptExpr();
1797 if (const NonTypeTemplateParmDecl *NTTP =
1798 NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr)
1799 : nullptr) {
1800 assert(NTTP->getDepth() == Info.getDeducedDepth() &&
1801 "saw non-type template parameter with wrong depth");
1802
1803 llvm::APSInt Noexcept(1);
1804 switch (FPA->canThrow()) {
1805 case CT_Cannot:
1806 Noexcept = 1;
1807 [[fallthrough]];
1808
1809 case CT_Can:
1810 // We give E in noexcept(E) the "deduced from array bound" treatment.
1811 // FIXME: Should we?
1812 return DeduceNonTypeTemplateArgument(
1813 S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy,
1814 /*DeducedFromArrayBound=*/true, Info, Deduced);
1815
1816 case CT_Dependent:
1817 if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr())
1818 return DeduceNonTypeTemplateArgument(
1819 S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced);
1820 // Can't deduce anything from throw(T...).
1821 break;
1822 }
1823 }
1824 // FIXME: Detect non-deduced exception specification mismatches?
1825 //
1826 // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow
1827 // top-level differences in noexcept-specifications.
1828
1829 return Sema::TDK_Success;
1830 }
1831
1832 case Type::InjectedClassName:
1833 // Treat a template's injected-class-name as if the template
1834 // specialization type had been used.
1835
1836 // template-name<T> (where template-name refers to a class template)
1837 // template-name<i>
1838 // TT<T>
1839 // TT<i>
1840 // TT<>
1841 case Type::TemplateSpecialization: {
1842 // When Arg cannot be a derived class, we can just try to deduce template
1843 // arguments from the template-id.
1844 if (!(TDF & TDF_DerivedClass) || !A->isRecordType())
1845 return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info,
1846 Deduced);
1847
1848 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
1849 Deduced.end());
1850
1851 auto Result =
1852 DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, Deduced);
1853 if (Result == Sema::TDK_Success)
1854 return Result;
1855
1856 // We cannot inspect base classes as part of deduction when the type
1857 // is incomplete, so either instantiate any templates necessary to
1858 // complete the type, or skip over it if it cannot be completed.
1859 if (!S.isCompleteType(Info.getLocation(), A))
1860 return Result;
1861
1862 // Reset the incorrectly deduced argument from above.
1863 Deduced = DeducedOrig;
1864
1865 // Check bases according to C++14 [temp.deduct.call] p4b3:
1866 auto BaseResult = DeduceTemplateBases(S, getCanonicalRD(A),
1867 TemplateParams, P, Info, Deduced);
1868 return BaseResult != Sema::TDK_Invalid ? BaseResult : Result;
1869 }
1870
1871 // T type::*
1872 // T T::*
1873 // T (type::*)()
1874 // type (T::*)()
1875 // type (type::*)(T)
1876 // type (T::*)(T)
1877 // T (type::*)(T)
1878 // T (T::*)()
1879 // T (T::*)(T)
1880 case Type::MemberPointer: {
1881 const auto *MPP = P->castAs<MemberPointerType>(),
1882 *MPA = A->getAs<MemberPointerType>();
1883 if (!MPA)
1884 return Sema::TDK_NonDeducedMismatch;
1885
1886 QualType PPT = MPP->getPointeeType();
1887 if (PPT->isFunctionType())
1888 S.adjustMemberFunctionCC(PPT, /*IsStatic=*/true,
1889 /*IsCtorOrDtor=*/false, Info.getLocation());
1890 QualType APT = MPA->getPointeeType();
1891 if (APT->isFunctionType())
1892 S.adjustMemberFunctionCC(APT, /*IsStatic=*/true,
1893 /*IsCtorOrDtor=*/false, Info.getLocation());
1894
1895 unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1896 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1897 S, TemplateParams, PPT, APT, Info, Deduced, SubTDF))
1898 return Result;
1899 return DeduceTemplateArgumentsByTypeMatch(
1900 S, TemplateParams, QualType(MPP->getClass(), 0),
1901 QualType(MPA->getClass(), 0), Info, Deduced, SubTDF);
1902 }
1903
1904 // (clang extension)
1905 //
1906 // type(^)(T)
1907 // T(^)()
1908 // T(^)(T)
1909 case Type::BlockPointer: {
1910 const auto *BPP = P->castAs<BlockPointerType>(),
1911 *BPA = A->getAs<BlockPointerType>();
1912 if (!BPA)
1913 return Sema::TDK_NonDeducedMismatch;
1914 return DeduceTemplateArgumentsByTypeMatch(
1915 S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info,
1916 Deduced, 0);
1917 }
1918
1919 // (clang extension)
1920 //
1921 // T __attribute__(((ext_vector_type(<integral constant>))))
1922 case Type::ExtVector: {
1923 const auto *VP = P->castAs<ExtVectorType>();
1924 QualType ElementType;
1925 if (const auto *VA = A->getAs<ExtVectorType>()) {
1926 // Make sure that the vectors have the same number of elements.
1927 if (VP->getNumElements() != VA->getNumElements())
1928 return Sema::TDK_NonDeducedMismatch;
1929 ElementType = VA->getElementType();
1930 } else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
1931 // We can't check the number of elements, since the argument has a
1932 // dependent number of elements. This can only occur during partial
1933 // ordering.
1934 ElementType = VA->getElementType();
1935 } else {
1936 return Sema::TDK_NonDeducedMismatch;
1937 }
1938 // Perform deduction on the element types.
1939 return DeduceTemplateArgumentsByTypeMatch(
1940 S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced,
1941 TDF);
1942 }
1943
1944 case Type::DependentVector: {
1945 const auto *VP = P->castAs<DependentVectorType>();
1946
1947 if (const auto *VA = A->getAs<VectorType>()) {
1948 // Perform deduction on the element types.
1949 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1950 S, TemplateParams, VP->getElementType(), VA->getElementType(),
1951 Info, Deduced, TDF))
1952 return Result;
1953
1954 // Perform deduction on the vector size, if we can.
1955 const NonTypeTemplateParmDecl *NTTP =
1956 getDeducedParameterFromExpr(Info, VP->getSizeExpr());
1957 if (!NTTP)
1958 return Sema::TDK_Success;
1959
1960 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
1961 ArgSize = VA->getNumElements();
1962 // Note that we use the "array bound" rules here; just like in that
1963 // case, we don't have any particular type for the vector size, but
1964 // we can provide one if necessary.
1965 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
1966 S.Context.UnsignedIntTy, true,
1967 Info, Deduced);
1968 }
1969
1970 if (const auto *VA = A->getAs<DependentVectorType>()) {
1971 // Perform deduction on the element types.
1972 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1973 S, TemplateParams, VP->getElementType(), VA->getElementType(),
1974 Info, Deduced, TDF))
1975 return Result;
1976
1977 // Perform deduction on the vector size, if we can.
1978 const NonTypeTemplateParmDecl *NTTP =
1979 getDeducedParameterFromExpr(Info, VP->getSizeExpr());
1980 if (!NTTP)
1981 return Sema::TDK_Success;
1982
1983 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
1984 VA->getSizeExpr(), Info, Deduced);
1985 }
1986
1987 return Sema::TDK_NonDeducedMismatch;
1988 }
1989
1990 // (clang extension)
1991 //
1992 // T __attribute__(((ext_vector_type(N))))
1993 case Type::DependentSizedExtVector: {
1994 const auto *VP = P->castAs<DependentSizedExtVectorType>();
1995
1996 if (const auto *VA = A->getAs<ExtVectorType>()) {
1997 // Perform deduction on the element types.
1998 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
1999 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2000 Info, Deduced, TDF))
2001 return Result;
2002
2003 // Perform deduction on the vector size, if we can.
2004 const NonTypeTemplateParmDecl *NTTP =
2005 getDeducedParameterFromExpr(Info, VP->getSizeExpr());
2006 if (!NTTP)
2007 return Sema::TDK_Success;
2008
2009 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2010 ArgSize = VA->getNumElements();
2011 // Note that we use the "array bound" rules here; just like in that
2012 // case, we don't have any particular type for the vector size, but
2013 // we can provide one if necessary.
2014 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
2015 S.Context.IntTy, true, Info,
2016 Deduced);
2017 }
2018
2019 if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) {
2020 // Perform deduction on the element types.
2021 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2022 S, TemplateParams, VP->getElementType(), VA->getElementType(),
2023 Info, Deduced, TDF))
2024 return Result;
2025
2026 // Perform deduction on the vector size, if we can.
2027 const NonTypeTemplateParmDecl *NTTP =
2028 getDeducedParameterFromExpr(Info, VP->getSizeExpr());
2029 if (!NTTP)
2030 return Sema::TDK_Success;
2031
2032 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2033 VA->getSizeExpr(), Info, Deduced);
2034 }
2035
2036 return Sema::TDK_NonDeducedMismatch;
2037 }
2038
2039 // (clang extension)
2040 //
2041 // T __attribute__((matrix_type(<integral constant>,
2042 // <integral constant>)))
2043 case Type::ConstantMatrix: {
2044 const auto *MP = P->castAs<ConstantMatrixType>(),
2045 *MA = A->getAs<ConstantMatrixType>();
2046 if (!MA)
2047 return Sema::TDK_NonDeducedMismatch;
2048
2049 // Check that the dimensions are the same
2050 if (MP->getNumRows() != MA->getNumRows() ||
2051 MP->getNumColumns() != MA->getNumColumns()) {
2052 return Sema::TDK_NonDeducedMismatch;
2053 }
2054 // Perform deduction on element types.
2055 return DeduceTemplateArgumentsByTypeMatch(
2056 S, TemplateParams, MP->getElementType(), MA->getElementType(), Info,
2057 Deduced, TDF);
2058 }
2059
2060 case Type::DependentSizedMatrix: {
2061 const auto *MP = P->castAs<DependentSizedMatrixType>();
2062 const auto *MA = A->getAs<MatrixType>();
2063 if (!MA)
2064 return Sema::TDK_NonDeducedMismatch;
2065
2066 // Check the element type of the matrixes.
2067 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2068 S, TemplateParams, MP->getElementType(), MA->getElementType(),
2069 Info, Deduced, TDF))
2070 return Result;
2071
2072 // Try to deduce a matrix dimension.
2073 auto DeduceMatrixArg =
2074 [&S, &Info, &Deduced, &TemplateParams](
2075 Expr *ParamExpr, const MatrixType *A,
2076 unsigned (ConstantMatrixType::*GetArgDimension)() const,
2077 Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) {
2078 const auto *ACM = dyn_cast<ConstantMatrixType>(A);
2079 const auto *ADM = dyn_cast<DependentSizedMatrixType>(A);
2080 if (!ParamExpr->isValueDependent()) {
2081 std::optional<llvm::APSInt> ParamConst =
2082 ParamExpr->getIntegerConstantExpr(S.Context);
2083 if (!ParamConst)
2084 return Sema::TDK_NonDeducedMismatch;
2085
2086 if (ACM) {
2087 if ((ACM->*GetArgDimension)() == *ParamConst)
2088 return Sema::TDK_Success;
2089 return Sema::TDK_NonDeducedMismatch;
2090 }
2091
2092 Expr *ArgExpr = (ADM->*GetArgDimensionExpr)();
2093 if (std::optional<llvm::APSInt> ArgConst =
2094 ArgExpr->getIntegerConstantExpr(S.Context))
2095 if (*ArgConst == *ParamConst)
2096 return Sema::TDK_Success;
2097 return Sema::TDK_NonDeducedMismatch;
2098 }
2099
2100 const NonTypeTemplateParmDecl *NTTP =
2101 getDeducedParameterFromExpr(Info, ParamExpr);
2102 if (!NTTP)
2103 return Sema::TDK_Success;
2104
2105 if (ACM) {
2106 llvm::APSInt ArgConst(
2107 S.Context.getTypeSize(S.Context.getSizeType()));
2108 ArgConst = (ACM->*GetArgDimension)();
2109 return DeduceNonTypeTemplateArgument(
2110 S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(),
2111 /*ArrayBound=*/true, Info, Deduced);
2112 }
2113
2114 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2115 (ADM->*GetArgDimensionExpr)(),
2116 Info, Deduced);
2117 };
2118
2119 if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA,
2120 &ConstantMatrixType::getNumRows,
2121 &DependentSizedMatrixType::getRowExpr))
2122 return Result;
2123
2124 return DeduceMatrixArg(MP->getColumnExpr(), MA,
2125 &ConstantMatrixType::getNumColumns,
2126 &DependentSizedMatrixType::getColumnExpr);
2127 }
2128
2129 // (clang extension)
2130 //
2131 // T __attribute__(((address_space(N))))
2132 case Type::DependentAddressSpace: {
2133 const auto *ASP = P->castAs<DependentAddressSpaceType>();
2134
2135 if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) {
2136 // Perform deduction on the pointer type.
2137 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2138 S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(),
2139 Info, Deduced, TDF))
2140 return Result;
2141
2142 // Perform deduction on the address space, if we can.
2143 const NonTypeTemplateParmDecl *NTTP =
2144 getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr());
2145 if (!NTTP)
2146 return Sema::TDK_Success;
2147
2148 return DeduceNonTypeTemplateArgument(
2149 S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info, Deduced);
2150 }
2151
2152 if (isTargetAddressSpace(A.getAddressSpace())) {
2153 llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy),
2154 false);
2155 ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace());
2156
2157 // Perform deduction on the pointer types.
2158 if (auto Result = DeduceTemplateArgumentsByTypeMatch(
2159 S, TemplateParams, ASP->getPointeeType(),
2160 S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF))
2161 return Result;
2162
2163 // Perform deduction on the address space, if we can.
2164 const NonTypeTemplateParmDecl *NTTP =
2165 getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr());
2166 if (!NTTP)
2167 return Sema::TDK_Success;
2168
2169 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2170 ArgAddressSpace, S.Context.IntTy,
2171 true, Info, Deduced);
2172 }
2173
2174 return Sema::TDK_NonDeducedMismatch;
2175 }
2176 case Type::DependentBitInt: {
2177 const auto *IP = P->castAs<DependentBitIntType>();
2178
2179 if (const auto *IA = A->getAs<BitIntType>()) {
2180 if (IP->isUnsigned() != IA->isUnsigned())
2181 return Sema::TDK_NonDeducedMismatch;
2182
2183 const NonTypeTemplateParmDecl *NTTP =
2184 getDeducedParameterFromExpr(Info, IP->getNumBitsExpr());
2185 if (!NTTP)
2186 return Sema::TDK_Success;
2187
2188 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
2189 ArgSize = IA->getNumBits();
2190
2191 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize,
2192 S.Context.IntTy, true, Info,
2193 Deduced);
2194 }
2195
2196 if (const auto *IA = A->getAs<DependentBitIntType>()) {
2197 if (IP->isUnsigned() != IA->isUnsigned())
2198 return Sema::TDK_NonDeducedMismatch;
2199 return Sema::TDK_Success;
2200 }
2201
2202 return Sema::TDK_NonDeducedMismatch;
2203 }
2204
2205 case Type::TypeOfExpr:
2206 case Type::TypeOf:
2207 case Type::DependentName:
2208 case Type::UnresolvedUsing:
2209 case Type::Decltype:
2210 case Type::UnaryTransform:
2211 case Type::DeducedTemplateSpecialization:
2212 case Type::DependentTemplateSpecialization:
2213 case Type::PackExpansion:
2214 case Type::Pipe:
2215 // No template argument deduction for these types
2216 return Sema::TDK_Success;
2217 }
2218
2219 llvm_unreachable("Invalid Type Class!");
2220 }
2221
2222 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgument & P,TemplateArgument A,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)2223 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
2224 const TemplateArgument &P, TemplateArgument A,
2225 TemplateDeductionInfo &Info,
2226 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2227 // If the template argument is a pack expansion, perform template argument
2228 // deduction against the pattern of that expansion. This only occurs during
2229 // partial ordering.
2230 if (A.isPackExpansion())
2231 A = A.getPackExpansionPattern();
2232
2233 switch (P.getKind()) {
2234 case TemplateArgument::Null:
2235 llvm_unreachable("Null template argument in parameter list");
2236
2237 case TemplateArgument::Type:
2238 if (A.getKind() == TemplateArgument::Type)
2239 return DeduceTemplateArgumentsByTypeMatch(
2240 S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0);
2241 Info.FirstArg = P;
2242 Info.SecondArg = A;
2243 return Sema::TDK_NonDeducedMismatch;
2244
2245 case TemplateArgument::Template:
2246 if (A.getKind() == TemplateArgument::Template)
2247 return DeduceTemplateArguments(S, TemplateParams, P.getAsTemplate(),
2248 A.getAsTemplate(), Info, Deduced);
2249 Info.FirstArg = P;
2250 Info.SecondArg = A;
2251 return Sema::TDK_NonDeducedMismatch;
2252
2253 case TemplateArgument::TemplateExpansion:
2254 llvm_unreachable("caller should handle pack expansions");
2255
2256 case TemplateArgument::Declaration:
2257 if (A.getKind() == TemplateArgument::Declaration &&
2258 isSameDeclaration(P.getAsDecl(), A.getAsDecl()))
2259 return Sema::TDK_Success;
2260
2261 Info.FirstArg = P;
2262 Info.SecondArg = A;
2263 return Sema::TDK_NonDeducedMismatch;
2264
2265 case TemplateArgument::NullPtr:
2266 if (A.getKind() == TemplateArgument::NullPtr &&
2267 S.Context.hasSameType(P.getNullPtrType(), A.getNullPtrType()))
2268 return Sema::TDK_Success;
2269
2270 Info.FirstArg = P;
2271 Info.SecondArg = A;
2272 return Sema::TDK_NonDeducedMismatch;
2273
2274 case TemplateArgument::Integral:
2275 if (A.getKind() == TemplateArgument::Integral) {
2276 if (hasSameExtendedValue(P.getAsIntegral(), A.getAsIntegral()))
2277 return Sema::TDK_Success;
2278 }
2279 Info.FirstArg = P;
2280 Info.SecondArg = A;
2281 return Sema::TDK_NonDeducedMismatch;
2282
2283 case TemplateArgument::Expression:
2284 if (const NonTypeTemplateParmDecl *NTTP =
2285 getDeducedParameterFromExpr(Info, P.getAsExpr())) {
2286 if (A.getKind() == TemplateArgument::Integral)
2287 return DeduceNonTypeTemplateArgument(
2288 S, TemplateParams, NTTP, A.getAsIntegral(), A.getIntegralType(),
2289 /*ArrayBound=*/false, Info, Deduced);
2290 if (A.getKind() == TemplateArgument::NullPtr)
2291 return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP,
2292 A.getNullPtrType(), Info, Deduced);
2293 if (A.getKind() == TemplateArgument::Expression)
2294 return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP,
2295 A.getAsExpr(), Info, Deduced);
2296 if (A.getKind() == TemplateArgument::Declaration)
2297 return DeduceNonTypeTemplateArgument(
2298 S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(),
2299 Info, Deduced);
2300
2301 Info.FirstArg = P;
2302 Info.SecondArg = A;
2303 return Sema::TDK_NonDeducedMismatch;
2304 }
2305
2306 // Can't deduce anything, but that's okay.
2307 return Sema::TDK_Success;
2308 case TemplateArgument::Pack:
2309 llvm_unreachable("Argument packs should be expanded by the caller!");
2310 }
2311
2312 llvm_unreachable("Invalid TemplateArgument Kind!");
2313 }
2314
2315 /// Determine whether there is a template argument to be used for
2316 /// deduction.
2317 ///
2318 /// This routine "expands" argument packs in-place, overriding its input
2319 /// parameters so that \c Args[ArgIdx] will be the available template argument.
2320 ///
2321 /// \returns true if there is another template argument (which will be at
2322 /// \c Args[ArgIdx]), false otherwise.
hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> & Args,unsigned & ArgIdx)2323 static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args,
2324 unsigned &ArgIdx) {
2325 if (ArgIdx == Args.size())
2326 return false;
2327
2328 const TemplateArgument &Arg = Args[ArgIdx];
2329 if (Arg.getKind() != TemplateArgument::Pack)
2330 return true;
2331
2332 assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?");
2333 Args = Arg.pack_elements();
2334 ArgIdx = 0;
2335 return ArgIdx < Args.size();
2336 }
2337
2338 /// Determine whether the given set of template arguments has a pack
2339 /// expansion that is not the last template argument.
hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args)2340 static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) {
2341 bool FoundPackExpansion = false;
2342 for (const auto &A : Args) {
2343 if (FoundPackExpansion)
2344 return true;
2345
2346 if (A.getKind() == TemplateArgument::Pack)
2347 return hasPackExpansionBeforeEnd(A.pack_elements());
2348
2349 // FIXME: If this is a fixed-arity pack expansion from an outer level of
2350 // templates, it should not be treated as a pack expansion.
2351 if (A.isPackExpansion())
2352 FoundPackExpansion = true;
2353 }
2354
2355 return false;
2356 }
2357
2358 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,ArrayRef<TemplateArgument> Ps,ArrayRef<TemplateArgument> As,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,bool NumberOfArgumentsMustMatch)2359 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
2360 ArrayRef<TemplateArgument> Ps,
2361 ArrayRef<TemplateArgument> As,
2362 TemplateDeductionInfo &Info,
2363 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2364 bool NumberOfArgumentsMustMatch) {
2365 // C++0x [temp.deduct.type]p9:
2366 // If the template argument list of P contains a pack expansion that is not
2367 // the last template argument, the entire template argument list is a
2368 // non-deduced context.
2369 if (hasPackExpansionBeforeEnd(Ps))
2370 return Sema::TDK_Success;
2371
2372 // C++0x [temp.deduct.type]p9:
2373 // If P has a form that contains <T> or <i>, then each argument Pi of the
2374 // respective template argument list P is compared with the corresponding
2375 // argument Ai of the corresponding template argument list of A.
2376 unsigned ArgIdx = 0, ParamIdx = 0;
2377 for (; hasTemplateArgumentForDeduction(Ps, ParamIdx); ++ParamIdx) {
2378 const TemplateArgument &P = Ps[ParamIdx];
2379 if (!P.isPackExpansion()) {
2380 // The simple case: deduce template arguments by matching Pi and Ai.
2381
2382 // Check whether we have enough arguments.
2383 if (!hasTemplateArgumentForDeduction(As, ArgIdx))
2384 return NumberOfArgumentsMustMatch
2385 ? Sema::TDK_MiscellaneousDeductionFailure
2386 : Sema::TDK_Success;
2387
2388 // C++1z [temp.deduct.type]p9:
2389 // During partial ordering, if Ai was originally a pack expansion [and]
2390 // Pi is not a pack expansion, template argument deduction fails.
2391 if (As[ArgIdx].isPackExpansion())
2392 return Sema::TDK_MiscellaneousDeductionFailure;
2393
2394 // Perform deduction for this Pi/Ai pair.
2395 if (auto Result = DeduceTemplateArguments(S, TemplateParams, P,
2396 As[ArgIdx], Info, Deduced))
2397 return Result;
2398
2399 // Move to the next argument.
2400 ++ArgIdx;
2401 continue;
2402 }
2403
2404 // The parameter is a pack expansion.
2405
2406 // C++0x [temp.deduct.type]p9:
2407 // If Pi is a pack expansion, then the pattern of Pi is compared with
2408 // each remaining argument in the template argument list of A. Each
2409 // comparison deduces template arguments for subsequent positions in the
2410 // template parameter packs expanded by Pi.
2411 TemplateArgument Pattern = P.getPackExpansionPattern();
2412
2413 // Prepare to deduce the packs within the pattern.
2414 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
2415
2416 // Keep track of the deduced template arguments for each parameter pack
2417 // expanded by this pack expansion (the outer index) and for each
2418 // template argument (the inner SmallVectors).
2419 for (; hasTemplateArgumentForDeduction(As, ArgIdx) &&
2420 PackScope.hasNextElement();
2421 ++ArgIdx) {
2422 // Deduce template arguments from the pattern.
2423 if (auto Result = DeduceTemplateArguments(S, TemplateParams, Pattern,
2424 As[ArgIdx], Info, Deduced))
2425 return Result;
2426
2427 PackScope.nextPackElement();
2428 }
2429
2430 // Build argument packs for each of the parameter packs expanded by this
2431 // pack expansion.
2432 if (auto Result = PackScope.finish())
2433 return Result;
2434 }
2435
2436 return Sema::TDK_Success;
2437 }
2438
2439 static Sema::TemplateDeductionResult
DeduceTemplateArguments(Sema & S,TemplateParameterList * TemplateParams,const TemplateArgumentList & ParamList,const TemplateArgumentList & ArgList,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced)2440 DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams,
2441 const TemplateArgumentList &ParamList,
2442 const TemplateArgumentList &ArgList,
2443 TemplateDeductionInfo &Info,
2444 SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
2445 return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(),
2446 ArgList.asArray(), Info, Deduced,
2447 /*NumberOfArgumentsMustMatch=*/false);
2448 }
2449
2450 /// Determine whether two template arguments are the same.
isSameTemplateArg(ASTContext & Context,TemplateArgument X,const TemplateArgument & Y,bool PartialOrdering,bool PackExpansionMatchesPack=false)2451 static bool isSameTemplateArg(ASTContext &Context,
2452 TemplateArgument X,
2453 const TemplateArgument &Y,
2454 bool PartialOrdering,
2455 bool PackExpansionMatchesPack = false) {
2456 // If we're checking deduced arguments (X) against original arguments (Y),
2457 // we will have flattened packs to non-expansions in X.
2458 if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion())
2459 X = X.getPackExpansionPattern();
2460
2461 if (X.getKind() != Y.getKind())
2462 return false;
2463
2464 switch (X.getKind()) {
2465 case TemplateArgument::Null:
2466 llvm_unreachable("Comparing NULL template argument");
2467
2468 case TemplateArgument::Type:
2469 return Context.getCanonicalType(X.getAsType()) ==
2470 Context.getCanonicalType(Y.getAsType());
2471
2472 case TemplateArgument::Declaration:
2473 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
2474
2475 case TemplateArgument::NullPtr:
2476 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
2477
2478 case TemplateArgument::Template:
2479 case TemplateArgument::TemplateExpansion:
2480 return Context.getCanonicalTemplateName(
2481 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
2482 Context.getCanonicalTemplateName(
2483 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
2484
2485 case TemplateArgument::Integral:
2486 return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral());
2487
2488 case TemplateArgument::Expression: {
2489 llvm::FoldingSetNodeID XID, YID;
2490 X.getAsExpr()->Profile(XID, Context, true);
2491 Y.getAsExpr()->Profile(YID, Context, true);
2492 return XID == YID;
2493 }
2494
2495 case TemplateArgument::Pack: {
2496 unsigned PackIterationSize = X.pack_size();
2497 if (X.pack_size() != Y.pack_size()) {
2498 if (!PartialOrdering)
2499 return false;
2500
2501 // C++0x [temp.deduct.type]p9:
2502 // During partial ordering, if Ai was originally a pack expansion:
2503 // - if P does not contain a template argument corresponding to Ai
2504 // then Ai is ignored;
2505 bool XHasMoreArg = X.pack_size() > Y.pack_size();
2506 if (!(XHasMoreArg && X.pack_elements().back().isPackExpansion()) &&
2507 !(!XHasMoreArg && Y.pack_elements().back().isPackExpansion()))
2508 return false;
2509
2510 if (XHasMoreArg)
2511 PackIterationSize = Y.pack_size();
2512 }
2513
2514 ArrayRef<TemplateArgument> XP = X.pack_elements();
2515 ArrayRef<TemplateArgument> YP = Y.pack_elements();
2516 for (unsigned i = 0; i < PackIterationSize; ++i)
2517 if (!isSameTemplateArg(Context, XP[i], YP[i], PartialOrdering,
2518 PackExpansionMatchesPack))
2519 return false;
2520 return true;
2521 }
2522 }
2523
2524 llvm_unreachable("Invalid TemplateArgument Kind!");
2525 }
2526
2527 /// Allocate a TemplateArgumentLoc where all locations have
2528 /// been initialized to the given location.
2529 ///
2530 /// \param Arg The template argument we are producing template argument
2531 /// location information for.
2532 ///
2533 /// \param NTTPType For a declaration template argument, the type of
2534 /// the non-type template parameter that corresponds to this template
2535 /// argument. Can be null if no type sugar is available to add to the
2536 /// type from the template argument.
2537 ///
2538 /// \param Loc The source location to use for the resulting template
2539 /// argument.
2540 TemplateArgumentLoc
getTrivialTemplateArgumentLoc(const TemplateArgument & Arg,QualType NTTPType,SourceLocation Loc)2541 Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
2542 QualType NTTPType, SourceLocation Loc) {
2543 switch (Arg.getKind()) {
2544 case TemplateArgument::Null:
2545 llvm_unreachable("Can't get a NULL template argument here");
2546
2547 case TemplateArgument::Type:
2548 return TemplateArgumentLoc(
2549 Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
2550
2551 case TemplateArgument::Declaration: {
2552 if (NTTPType.isNull())
2553 NTTPType = Arg.getParamTypeForDecl();
2554 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2555 .getAs<Expr>();
2556 return TemplateArgumentLoc(TemplateArgument(E), E);
2557 }
2558
2559 case TemplateArgument::NullPtr: {
2560 if (NTTPType.isNull())
2561 NTTPType = Arg.getNullPtrType();
2562 Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
2563 .getAs<Expr>();
2564 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
2565 E);
2566 }
2567
2568 case TemplateArgument::Integral: {
2569 Expr *E =
2570 BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
2571 return TemplateArgumentLoc(TemplateArgument(E), E);
2572 }
2573
2574 case TemplateArgument::Template:
2575 case TemplateArgument::TemplateExpansion: {
2576 NestedNameSpecifierLocBuilder Builder;
2577 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2578 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
2579 Builder.MakeTrivial(Context, DTN->getQualifier(), Loc);
2580 else if (QualifiedTemplateName *QTN =
2581 Template.getAsQualifiedTemplateName())
2582 Builder.MakeTrivial(Context, QTN->getQualifier(), Loc);
2583
2584 if (Arg.getKind() == TemplateArgument::Template)
2585 return TemplateArgumentLoc(Context, Arg,
2586 Builder.getWithLocInContext(Context), Loc);
2587
2588 return TemplateArgumentLoc(
2589 Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc);
2590 }
2591
2592 case TemplateArgument::Expression:
2593 return TemplateArgumentLoc(Arg, Arg.getAsExpr());
2594
2595 case TemplateArgument::Pack:
2596 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
2597 }
2598
2599 llvm_unreachable("Invalid TemplateArgument Kind!");
2600 }
2601
2602 TemplateArgumentLoc
getIdentityTemplateArgumentLoc(NamedDecl * TemplateParm,SourceLocation Location)2603 Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm,
2604 SourceLocation Location) {
2605 return getTrivialTemplateArgumentLoc(
2606 Context.getInjectedTemplateArg(TemplateParm), QualType(), Location);
2607 }
2608
2609 /// Convert the given deduced template argument and add it to the set of
2610 /// fully-converted template arguments.
ConvertDeducedTemplateArgument(Sema & S,NamedDecl * Param,DeducedTemplateArgument Arg,NamedDecl * Template,TemplateDeductionInfo & Info,bool IsDeduced,SmallVectorImpl<TemplateArgument> & SugaredOutput,SmallVectorImpl<TemplateArgument> & CanonicalOutput)2611 static bool ConvertDeducedTemplateArgument(
2612 Sema &S, NamedDecl *Param, DeducedTemplateArgument Arg, NamedDecl *Template,
2613 TemplateDeductionInfo &Info, bool IsDeduced,
2614 SmallVectorImpl<TemplateArgument> &SugaredOutput,
2615 SmallVectorImpl<TemplateArgument> &CanonicalOutput) {
2616 auto ConvertArg = [&](DeducedTemplateArgument Arg,
2617 unsigned ArgumentPackIndex) {
2618 // Convert the deduced template argument into a template
2619 // argument that we can check, almost as if the user had written
2620 // the template argument explicitly.
2621 TemplateArgumentLoc ArgLoc =
2622 S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation());
2623
2624 // Check the template argument, converting it as necessary.
2625 return S.CheckTemplateArgument(
2626 Param, ArgLoc, Template, Template->getLocation(),
2627 Template->getSourceRange().getEnd(), ArgumentPackIndex, SugaredOutput,
2628 CanonicalOutput,
2629 IsDeduced
2630 ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound
2631 : Sema::CTAK_Deduced)
2632 : Sema::CTAK_Specified);
2633 };
2634
2635 if (Arg.getKind() == TemplateArgument::Pack) {
2636 // This is a template argument pack, so check each of its arguments against
2637 // the template parameter.
2638 SmallVector<TemplateArgument, 2> SugaredPackedArgsBuilder,
2639 CanonicalPackedArgsBuilder;
2640 for (const auto &P : Arg.pack_elements()) {
2641 // When converting the deduced template argument, append it to the
2642 // general output list. We need to do this so that the template argument
2643 // checking logic has all of the prior template arguments available.
2644 DeducedTemplateArgument InnerArg(P);
2645 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
2646 assert(InnerArg.getKind() != TemplateArgument::Pack &&
2647 "deduced nested pack");
2648 if (P.isNull()) {
2649 // We deduced arguments for some elements of this pack, but not for
2650 // all of them. This happens if we get a conditionally-non-deduced
2651 // context in a pack expansion (such as an overload set in one of the
2652 // arguments).
2653 S.Diag(Param->getLocation(),
2654 diag::err_template_arg_deduced_incomplete_pack)
2655 << Arg << Param;
2656 return true;
2657 }
2658 if (ConvertArg(InnerArg, SugaredPackedArgsBuilder.size()))
2659 return true;
2660
2661 // Move the converted template argument into our argument pack.
2662 SugaredPackedArgsBuilder.push_back(SugaredOutput.pop_back_val());
2663 CanonicalPackedArgsBuilder.push_back(CanonicalOutput.pop_back_val());
2664 }
2665
2666 // If the pack is empty, we still need to substitute into the parameter
2667 // itself, in case that substitution fails.
2668 if (SugaredPackedArgsBuilder.empty()) {
2669 LocalInstantiationScope Scope(S);
2670 MultiLevelTemplateArgumentList Args(Template, SugaredOutput,
2671 /*Final=*/true);
2672
2673 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2674 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2675 NTTP, SugaredOutput,
2676 Template->getSourceRange());
2677 if (Inst.isInvalid() ||
2678 S.SubstType(NTTP->getType(), Args, NTTP->getLocation(),
2679 NTTP->getDeclName()).isNull())
2680 return true;
2681 } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) {
2682 Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template,
2683 TTP, SugaredOutput,
2684 Template->getSourceRange());
2685 if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args))
2686 return true;
2687 }
2688 // For type parameters, no substitution is ever required.
2689 }
2690
2691 // Create the resulting argument pack.
2692 SugaredOutput.push_back(
2693 TemplateArgument::CreatePackCopy(S.Context, SugaredPackedArgsBuilder));
2694 CanonicalOutput.push_back(TemplateArgument::CreatePackCopy(
2695 S.Context, CanonicalPackedArgsBuilder));
2696 return false;
2697 }
2698
2699 return ConvertArg(Arg, 0);
2700 }
2701
2702 // FIXME: This should not be a template, but
2703 // ClassTemplatePartialSpecializationDecl sadly does not derive from
2704 // TemplateDecl.
2705 template <typename TemplateDeclT>
ConvertDeducedTemplateArguments(Sema & S,TemplateDeclT * Template,bool IsDeduced,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info,SmallVectorImpl<TemplateArgument> & SugaredBuilder,SmallVectorImpl<TemplateArgument> & CanonicalBuilder,LocalInstantiationScope * CurrentInstantiationScope=nullptr,unsigned NumAlreadyConverted=0,bool PartialOverloading=false)2706 static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments(
2707 Sema &S, TemplateDeclT *Template, bool IsDeduced,
2708 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2709 TemplateDeductionInfo &Info,
2710 SmallVectorImpl<TemplateArgument> &SugaredBuilder,
2711 SmallVectorImpl<TemplateArgument> &CanonicalBuilder,
2712 LocalInstantiationScope *CurrentInstantiationScope = nullptr,
2713 unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) {
2714 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2715
2716 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2717 NamedDecl *Param = TemplateParams->getParam(I);
2718
2719 // C++0x [temp.arg.explicit]p3:
2720 // A trailing template parameter pack (14.5.3) not otherwise deduced will
2721 // be deduced to an empty sequence of template arguments.
2722 // FIXME: Where did the word "trailing" come from?
2723 if (Deduced[I].isNull() && Param->isTemplateParameterPack()) {
2724 if (auto Result =
2725 PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish())
2726 return Result;
2727 }
2728
2729 if (!Deduced[I].isNull()) {
2730 if (I < NumAlreadyConverted) {
2731 // We may have had explicitly-specified template arguments for a
2732 // template parameter pack (that may or may not have been extended
2733 // via additional deduced arguments).
2734 if (Param->isParameterPack() && CurrentInstantiationScope &&
2735 CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) {
2736 // Forget the partially-substituted pack; its substitution is now
2737 // complete.
2738 CurrentInstantiationScope->ResetPartiallySubstitutedPack();
2739 // We still need to check the argument in case it was extended by
2740 // deduction.
2741 } else {
2742 // We have already fully type-checked and converted this
2743 // argument, because it was explicitly-specified. Just record the
2744 // presence of this argument.
2745 SugaredBuilder.push_back(Deduced[I]);
2746 CanonicalBuilder.push_back(
2747 S.Context.getCanonicalTemplateArgument(Deduced[I]));
2748 continue;
2749 }
2750 }
2751
2752 // We may have deduced this argument, so it still needs to be
2753 // checked and converted.
2754 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info,
2755 IsDeduced, SugaredBuilder,
2756 CanonicalBuilder)) {
2757 Info.Param = makeTemplateParameter(Param);
2758 // FIXME: These template arguments are temporary. Free them!
2759 Info.reset(
2760 TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder),
2761 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder));
2762 return Sema::TDK_SubstitutionFailure;
2763 }
2764
2765 continue;
2766 }
2767
2768 // Substitute into the default template argument, if available.
2769 bool HasDefaultArg = false;
2770 TemplateDecl *TD = dyn_cast<TemplateDecl>(Template);
2771 if (!TD) {
2772 assert(isa<ClassTemplatePartialSpecializationDecl>(Template) ||
2773 isa<VarTemplatePartialSpecializationDecl>(Template));
2774 return Sema::TDK_Incomplete;
2775 }
2776
2777 TemplateArgumentLoc DefArg;
2778 {
2779 Qualifiers ThisTypeQuals;
2780 CXXRecordDecl *ThisContext = nullptr;
2781 if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext()))
2782 if (Rec->isLambda())
2783 if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) {
2784 ThisContext = Method->getParent();
2785 ThisTypeQuals = Method->getMethodQualifiers();
2786 }
2787
2788 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals,
2789 S.getLangOpts().CPlusPlus17);
2790
2791 DefArg = S.SubstDefaultTemplateArgumentIfAvailable(
2792 TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param,
2793 SugaredBuilder, CanonicalBuilder, HasDefaultArg);
2794 }
2795
2796 // If there was no default argument, deduction is incomplete.
2797 if (DefArg.getArgument().isNull()) {
2798 Info.Param = makeTemplateParameter(
2799 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2800 Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder),
2801 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder));
2802 if (PartialOverloading) break;
2803
2804 return HasDefaultArg ? Sema::TDK_SubstitutionFailure
2805 : Sema::TDK_Incomplete;
2806 }
2807
2808 // Check whether we can actually use the default argument.
2809 if (S.CheckTemplateArgument(
2810 Param, DefArg, TD, TD->getLocation(), TD->getSourceRange().getEnd(),
2811 0, SugaredBuilder, CanonicalBuilder, Sema::CTAK_Specified)) {
2812 Info.Param = makeTemplateParameter(
2813 const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2814 // FIXME: These template arguments are temporary. Free them!
2815 Info.reset(TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder),
2816 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder));
2817 return Sema::TDK_SubstitutionFailure;
2818 }
2819
2820 // If we get here, we successfully used the default template argument.
2821 }
2822
2823 return Sema::TDK_Success;
2824 }
2825
getAsDeclContextOrEnclosing(Decl * D)2826 static DeclContext *getAsDeclContextOrEnclosing(Decl *D) {
2827 if (auto *DC = dyn_cast<DeclContext>(D))
2828 return DC;
2829 return D->getDeclContext();
2830 }
2831
2832 template<typename T> struct IsPartialSpecialization {
2833 static constexpr bool value = false;
2834 };
2835 template<>
2836 struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> {
2837 static constexpr bool value = true;
2838 };
2839 template<>
2840 struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> {
2841 static constexpr bool value = true;
2842 };
2843 template <typename TemplateDeclT>
DeducedArgsNeedReplacement(TemplateDeclT * Template)2844 static bool DeducedArgsNeedReplacement(TemplateDeclT *Template) {
2845 return false;
2846 }
2847 template <>
DeducedArgsNeedReplacement(VarTemplatePartialSpecializationDecl * Spec)2848 bool DeducedArgsNeedReplacement<VarTemplatePartialSpecializationDecl>(
2849 VarTemplatePartialSpecializationDecl *Spec) {
2850 return !Spec->isClassScopeExplicitSpecialization();
2851 }
2852 template <>
DeducedArgsNeedReplacement(ClassTemplatePartialSpecializationDecl * Spec)2853 bool DeducedArgsNeedReplacement<ClassTemplatePartialSpecializationDecl>(
2854 ClassTemplatePartialSpecializationDecl *Spec) {
2855 return !Spec->isClassScopeExplicitSpecialization();
2856 }
2857
2858 template <typename TemplateDeclT>
2859 static Sema::TemplateDeductionResult
CheckDeducedArgumentConstraints(Sema & S,TemplateDeclT * Template,ArrayRef<TemplateArgument> SugaredDeducedArgs,ArrayRef<TemplateArgument> CanonicalDeducedArgs,TemplateDeductionInfo & Info)2860 CheckDeducedArgumentConstraints(Sema &S, TemplateDeclT *Template,
2861 ArrayRef<TemplateArgument> SugaredDeducedArgs,
2862 ArrayRef<TemplateArgument> CanonicalDeducedArgs,
2863 TemplateDeductionInfo &Info) {
2864 llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
2865 Template->getAssociatedConstraints(AssociatedConstraints);
2866
2867 bool NeedsReplacement = DeducedArgsNeedReplacement(Template);
2868 TemplateArgumentList DeducedTAL{TemplateArgumentList::OnStack,
2869 CanonicalDeducedArgs};
2870
2871 MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
2872 Template, /*Final=*/false,
2873 /*InnerMost=*/NeedsReplacement ? nullptr : &DeducedTAL,
2874 /*RelativeToPrimary=*/true, /*Pattern=*/
2875 nullptr, /*ForConstraintInstantiation=*/true);
2876
2877 // getTemplateInstantiationArgs picks up the non-deduced version of the
2878 // template args when this is a variable template partial specialization and
2879 // not class-scope explicit specialization, so replace with Deduced Args
2880 // instead of adding to inner-most.
2881 if (NeedsReplacement)
2882 MLTAL.replaceInnermostTemplateArguments(CanonicalDeducedArgs);
2883
2884 if (S.CheckConstraintSatisfaction(Template, AssociatedConstraints, MLTAL,
2885 Info.getLocation(),
2886 Info.AssociatedConstraintsSatisfaction) ||
2887 !Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
2888 Info.reset(
2889 TemplateArgumentList::CreateCopy(S.Context, SugaredDeducedArgs),
2890 TemplateArgumentList::CreateCopy(S.Context, CanonicalDeducedArgs));
2891 return Sema::TDK_ConstraintsNotSatisfied;
2892 }
2893 return Sema::TDK_Success;
2894 }
2895
2896 /// Complete template argument deduction for a partial specialization.
2897 template <typename T>
2898 static std::enable_if_t<IsPartialSpecialization<T>::value,
2899 Sema::TemplateDeductionResult>
FinishTemplateArgumentDeduction(Sema & S,T * Partial,bool IsPartialOrdering,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2900 FinishTemplateArgumentDeduction(
2901 Sema &S, T *Partial, bool IsPartialOrdering,
2902 const TemplateArgumentList &TemplateArgs,
2903 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2904 TemplateDeductionInfo &Info) {
2905 // Unevaluated SFINAE context.
2906 EnterExpressionEvaluationContext Unevaluated(
2907 S, Sema::ExpressionEvaluationContext::Unevaluated);
2908 Sema::SFINAETrap Trap(S);
2909
2910 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Partial));
2911
2912 // C++ [temp.deduct.type]p2:
2913 // [...] or if any template argument remains neither deduced nor
2914 // explicitly specified, template argument deduction fails.
2915 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder;
2916 if (auto Result = ConvertDeducedTemplateArguments(
2917 S, Partial, IsPartialOrdering, Deduced, Info, SugaredBuilder,
2918 CanonicalBuilder))
2919 return Result;
2920
2921 // Form the template argument list from the deduced template arguments.
2922 TemplateArgumentList *SugaredDeducedArgumentList =
2923 TemplateArgumentList::CreateCopy(S.Context, SugaredBuilder);
2924 TemplateArgumentList *CanonicalDeducedArgumentList =
2925 TemplateArgumentList::CreateCopy(S.Context, CanonicalBuilder);
2926
2927 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
2928
2929 // Substitute the deduced template arguments into the template
2930 // arguments of the class template partial specialization, and
2931 // verify that the instantiated template arguments are both valid
2932 // and are equivalent to the template arguments originally provided
2933 // to the class template.
2934 LocalInstantiationScope InstScope(S);
2935 auto *Template = Partial->getSpecializedTemplate();
2936 const ASTTemplateArgumentListInfo *PartialTemplArgInfo =
2937 Partial->getTemplateArgsAsWritten();
2938
2939 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
2940 PartialTemplArgInfo->RAngleLoc);
2941
2942 if (S.SubstTemplateArguments(PartialTemplArgInfo->arguments(),
2943 MultiLevelTemplateArgumentList(Partial,
2944 SugaredBuilder,
2945 /*Final=*/true),
2946 InstArgs)) {
2947 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
2948 if (ParamIdx >= Partial->getTemplateParameters()->size())
2949 ParamIdx = Partial->getTemplateParameters()->size() - 1;
2950
2951 Decl *Param = const_cast<NamedDecl *>(
2952 Partial->getTemplateParameters()->getParam(ParamIdx));
2953 Info.Param = makeTemplateParameter(Param);
2954 Info.FirstArg = (*PartialTemplArgInfo)[ArgIdx].getArgument();
2955 return Sema::TDK_SubstitutionFailure;
2956 }
2957
2958 bool ConstraintsNotSatisfied;
2959 SmallVector<TemplateArgument, 4> SugaredConvertedInstArgs,
2960 CanonicalConvertedInstArgs;
2961 if (S.CheckTemplateArgumentList(
2962 Template, Partial->getLocation(), InstArgs, false,
2963 SugaredConvertedInstArgs, CanonicalConvertedInstArgs,
2964 /*UpdateArgsWithConversions=*/true, &ConstraintsNotSatisfied))
2965 return ConstraintsNotSatisfied ? Sema::TDK_ConstraintsNotSatisfied
2966 : Sema::TDK_SubstitutionFailure;
2967
2968 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
2969 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
2970 TemplateArgument InstArg = SugaredConvertedInstArgs.data()[I];
2971 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg,
2972 IsPartialOrdering)) {
2973 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
2974 Info.FirstArg = TemplateArgs[I];
2975 Info.SecondArg = InstArg;
2976 return Sema::TDK_NonDeducedMismatch;
2977 }
2978 }
2979
2980 if (Trap.hasErrorOccurred())
2981 return Sema::TDK_SubstitutionFailure;
2982
2983 if (auto Result = CheckDeducedArgumentConstraints(S, Partial, SugaredBuilder,
2984 CanonicalBuilder, Info))
2985 return Result;
2986
2987 return Sema::TDK_Success;
2988 }
2989
2990 /// Complete template argument deduction for a class or variable template,
2991 /// when partial ordering against a partial specialization.
2992 // FIXME: Factor out duplication with partial specialization version above.
FinishTemplateArgumentDeduction(Sema & S,TemplateDecl * Template,bool PartialOrdering,const TemplateArgumentList & TemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,TemplateDeductionInfo & Info)2993 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
2994 Sema &S, TemplateDecl *Template, bool PartialOrdering,
2995 const TemplateArgumentList &TemplateArgs,
2996 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2997 TemplateDeductionInfo &Info) {
2998 // Unevaluated SFINAE context.
2999 EnterExpressionEvaluationContext Unevaluated(
3000 S, Sema::ExpressionEvaluationContext::Unevaluated);
3001 Sema::SFINAETrap Trap(S);
3002
3003 Sema::ContextRAII SavedContext(S, getAsDeclContextOrEnclosing(Template));
3004
3005 // C++ [temp.deduct.type]p2:
3006 // [...] or if any template argument remains neither deduced nor
3007 // explicitly specified, template argument deduction fails.
3008 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder;
3009 if (auto Result = ConvertDeducedTemplateArguments(
3010 S, Template, /*IsDeduced*/ PartialOrdering, Deduced, Info,
3011 SugaredBuilder, CanonicalBuilder,
3012 /*CurrentInstantiationScope=*/nullptr,
3013 /*NumAlreadyConverted=*/0U, /*PartialOverloading=*/false))
3014 return Result;
3015
3016 // Check that we produced the correct argument list.
3017 TemplateParameterList *TemplateParams = Template->getTemplateParameters();
3018 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
3019 TemplateArgument InstArg = CanonicalBuilder[I];
3020 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg, PartialOrdering,
3021 /*PackExpansionMatchesPack=*/true)) {
3022 Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
3023 Info.FirstArg = TemplateArgs[I];
3024 Info.SecondArg = InstArg;
3025 return Sema::TDK_NonDeducedMismatch;
3026 }
3027 }
3028
3029 if (Trap.hasErrorOccurred())
3030 return Sema::TDK_SubstitutionFailure;
3031
3032 if (auto Result = CheckDeducedArgumentConstraints(S, Template, SugaredBuilder,
3033 CanonicalBuilder, Info))
3034 return Result;
3035
3036 return Sema::TDK_Success;
3037 }
3038
3039 /// Perform template argument deduction to determine whether
3040 /// the given template arguments match the given class template
3041 /// partial specialization per C++ [temp.class.spec.match].
3042 Sema::TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)3043 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
3044 const TemplateArgumentList &TemplateArgs,
3045 TemplateDeductionInfo &Info) {
3046 if (Partial->isInvalidDecl())
3047 return TDK_Invalid;
3048
3049 // C++ [temp.class.spec.match]p2:
3050 // A partial specialization matches a given actual template
3051 // argument list if the template arguments of the partial
3052 // specialization can be deduced from the actual template argument
3053 // list (14.8.2).
3054
3055 // Unevaluated SFINAE context.
3056 EnterExpressionEvaluationContext Unevaluated(
3057 *this, Sema::ExpressionEvaluationContext::Unevaluated);
3058 SFINAETrap Trap(*this);
3059
3060 // This deduction has no relation to any outer instantiation we might be
3061 // performing.
3062 LocalInstantiationScope InstantiationScope(*this);
3063
3064 SmallVector<DeducedTemplateArgument, 4> Deduced;
3065 Deduced.resize(Partial->getTemplateParameters()->size());
3066 if (TemplateDeductionResult Result
3067 = ::DeduceTemplateArguments(*this,
3068 Partial->getTemplateParameters(),
3069 Partial->getTemplateArgs(),
3070 TemplateArgs, Info, Deduced))
3071 return Result;
3072
3073 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3074 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
3075 Info);
3076 if (Inst.isInvalid())
3077 return TDK_InstantiationDepth;
3078
3079 if (Trap.hasErrorOccurred())
3080 return Sema::TDK_SubstitutionFailure;
3081
3082 TemplateDeductionResult Result;
3083 runWithSufficientStackSpace(Info.getLocation(), [&] {
3084 Result = ::FinishTemplateArgumentDeduction(*this, Partial,
3085 /*IsPartialOrdering=*/false,
3086 TemplateArgs, Deduced, Info);
3087 });
3088 return Result;
3089 }
3090
3091 /// Perform template argument deduction to determine whether
3092 /// the given template arguments match the given variable template
3093 /// partial specialization per C++ [temp.class.spec.match].
3094 Sema::TemplateDeductionResult
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl * Partial,const TemplateArgumentList & TemplateArgs,TemplateDeductionInfo & Info)3095 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
3096 const TemplateArgumentList &TemplateArgs,
3097 TemplateDeductionInfo &Info) {
3098 if (Partial->isInvalidDecl())
3099 return TDK_Invalid;
3100
3101 // C++ [temp.class.spec.match]p2:
3102 // A partial specialization matches a given actual template
3103 // argument list if the template arguments of the partial
3104 // specialization can be deduced from the actual template argument
3105 // list (14.8.2).
3106
3107 // Unevaluated SFINAE context.
3108 EnterExpressionEvaluationContext Unevaluated(
3109 *this, Sema::ExpressionEvaluationContext::Unevaluated);
3110 SFINAETrap Trap(*this);
3111
3112 // This deduction has no relation to any outer instantiation we might be
3113 // performing.
3114 LocalInstantiationScope InstantiationScope(*this);
3115
3116 SmallVector<DeducedTemplateArgument, 4> Deduced;
3117 Deduced.resize(Partial->getTemplateParameters()->size());
3118 if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
3119 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
3120 TemplateArgs, Info, Deduced))
3121 return Result;
3122
3123 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3124 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
3125 Info);
3126 if (Inst.isInvalid())
3127 return TDK_InstantiationDepth;
3128
3129 if (Trap.hasErrorOccurred())
3130 return Sema::TDK_SubstitutionFailure;
3131
3132 TemplateDeductionResult Result;
3133 runWithSufficientStackSpace(Info.getLocation(), [&] {
3134 Result = ::FinishTemplateArgumentDeduction(*this, Partial,
3135 /*IsPartialOrdering=*/false,
3136 TemplateArgs, Deduced, Info);
3137 });
3138 return Result;
3139 }
3140
3141 /// Determine whether the given type T is a simple-template-id type.
isSimpleTemplateIdType(QualType T)3142 static bool isSimpleTemplateIdType(QualType T) {
3143 if (const TemplateSpecializationType *Spec
3144 = T->getAs<TemplateSpecializationType>())
3145 return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
3146
3147 // C++17 [temp.local]p2:
3148 // the injected-class-name [...] is equivalent to the template-name followed
3149 // by the template-arguments of the class template specialization or partial
3150 // specialization enclosed in <>
3151 // ... which means it's equivalent to a simple-template-id.
3152 //
3153 // This only arises during class template argument deduction for a copy
3154 // deduction candidate, where it permits slicing.
3155 if (T->getAs<InjectedClassNameType>())
3156 return true;
3157
3158 return false;
3159 }
3160
3161 /// Substitute the explicitly-provided template arguments into the
3162 /// given function template according to C++ [temp.arg.explicit].
3163 ///
3164 /// \param FunctionTemplate the function template into which the explicit
3165 /// template arguments will be substituted.
3166 ///
3167 /// \param ExplicitTemplateArgs the explicitly-specified template
3168 /// arguments.
3169 ///
3170 /// \param Deduced the deduced template arguments, which will be populated
3171 /// with the converted and checked explicit template arguments.
3172 ///
3173 /// \param ParamTypes will be populated with the instantiated function
3174 /// parameters.
3175 ///
3176 /// \param FunctionType if non-NULL, the result type of the function template
3177 /// will also be instantiated and the pointed-to value will be updated with
3178 /// the instantiated function type.
3179 ///
3180 /// \param Info if substitution fails for any reason, this object will be
3181 /// populated with more information about the failure.
3182 ///
3183 /// \returns TDK_Success if substitution was successful, or some failure
3184 /// condition.
SubstituteExplicitTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo & ExplicitTemplateArgs,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<QualType> & ParamTypes,QualType * FunctionType,TemplateDeductionInfo & Info)3185 Sema::TemplateDeductionResult Sema::SubstituteExplicitTemplateArguments(
3186 FunctionTemplateDecl *FunctionTemplate,
3187 TemplateArgumentListInfo &ExplicitTemplateArgs,
3188 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3189 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
3190 TemplateDeductionInfo &Info) {
3191 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3192 TemplateParameterList *TemplateParams
3193 = FunctionTemplate->getTemplateParameters();
3194
3195 if (ExplicitTemplateArgs.size() == 0) {
3196 // No arguments to substitute; just copy over the parameter types and
3197 // fill in the function type.
3198 for (auto *P : Function->parameters())
3199 ParamTypes.push_back(P->getType());
3200
3201 if (FunctionType)
3202 *FunctionType = Function->getType();
3203 return TDK_Success;
3204 }
3205
3206 // Unevaluated SFINAE context.
3207 EnterExpressionEvaluationContext Unevaluated(
3208 *this, Sema::ExpressionEvaluationContext::Unevaluated);
3209 SFINAETrap Trap(*this);
3210
3211 // C++ [temp.arg.explicit]p3:
3212 // Template arguments that are present shall be specified in the
3213 // declaration order of their corresponding template-parameters. The
3214 // template argument list shall not specify more template-arguments than
3215 // there are corresponding template-parameters.
3216 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder;
3217
3218 // Enter a new template instantiation context where we check the
3219 // explicitly-specified template arguments against this function template,
3220 // and then substitute them into the function parameter types.
3221 SmallVector<TemplateArgument, 4> DeducedArgs;
3222 InstantiatingTemplate Inst(
3223 *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3224 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
3225 if (Inst.isInvalid())
3226 return TDK_InstantiationDepth;
3227
3228 if (CheckTemplateArgumentList(FunctionTemplate, SourceLocation(),
3229 ExplicitTemplateArgs, true, SugaredBuilder,
3230 CanonicalBuilder,
3231 /*UpdateArgsWithConversions=*/false) ||
3232 Trap.hasErrorOccurred()) {
3233 unsigned Index = SugaredBuilder.size();
3234 if (Index >= TemplateParams->size())
3235 return TDK_SubstitutionFailure;
3236 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
3237 return TDK_InvalidExplicitArguments;
3238 }
3239
3240 // Form the template argument list from the explicitly-specified
3241 // template arguments.
3242 TemplateArgumentList *SugaredExplicitArgumentList =
3243 TemplateArgumentList::CreateCopy(Context, SugaredBuilder);
3244 TemplateArgumentList *CanonicalExplicitArgumentList =
3245 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder);
3246 Info.setExplicitArgs(SugaredExplicitArgumentList,
3247 CanonicalExplicitArgumentList);
3248
3249 // Template argument deduction and the final substitution should be
3250 // done in the context of the templated declaration. Explicit
3251 // argument substitution, on the other hand, needs to happen in the
3252 // calling context.
3253 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3254
3255 // If we deduced template arguments for a template parameter pack,
3256 // note that the template argument pack is partially substituted and record
3257 // the explicit template arguments. They'll be used as part of deduction
3258 // for this template parameter pack.
3259 unsigned PartiallySubstitutedPackIndex = -1u;
3260 if (!CanonicalBuilder.empty()) {
3261 const TemplateArgument &Arg = CanonicalBuilder.back();
3262 if (Arg.getKind() == TemplateArgument::Pack) {
3263 auto *Param = TemplateParams->getParam(CanonicalBuilder.size() - 1);
3264 // If this is a fully-saturated fixed-size pack, it should be
3265 // fully-substituted, not partially-substituted.
3266 std::optional<unsigned> Expansions = getExpandedPackSize(Param);
3267 if (!Expansions || Arg.pack_size() < *Expansions) {
3268 PartiallySubstitutedPackIndex = CanonicalBuilder.size() - 1;
3269 CurrentInstantiationScope->SetPartiallySubstitutedPack(
3270 Param, Arg.pack_begin(), Arg.pack_size());
3271 }
3272 }
3273 }
3274
3275 const FunctionProtoType *Proto
3276 = Function->getType()->getAs<FunctionProtoType>();
3277 assert(Proto && "Function template does not have a prototype?");
3278
3279 // Isolate our substituted parameters from our caller.
3280 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
3281
3282 ExtParameterInfoBuilder ExtParamInfos;
3283
3284 MultiLevelTemplateArgumentList MLTAL(FunctionTemplate,
3285 SugaredExplicitArgumentList->asArray(),
3286 /*Final=*/true);
3287
3288 // Instantiate the types of each of the function parameters given the
3289 // explicitly-specified template arguments. If the function has a trailing
3290 // return type, substitute it after the arguments to ensure we substitute
3291 // in lexical order.
3292 if (Proto->hasTrailingReturn()) {
3293 if (SubstParmTypes(Function->getLocation(), Function->parameters(),
3294 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
3295 /*params=*/nullptr, ExtParamInfos))
3296 return TDK_SubstitutionFailure;
3297 }
3298
3299 // Instantiate the return type.
3300 QualType ResultType;
3301 {
3302 // C++11 [expr.prim.general]p3:
3303 // If a declaration declares a member function or member function
3304 // template of a class X, the expression this is a prvalue of type
3305 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
3306 // and the end of the function-definition, member-declarator, or
3307 // declarator.
3308 Qualifiers ThisTypeQuals;
3309 CXXRecordDecl *ThisContext = nullptr;
3310 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3311 ThisContext = Method->getParent();
3312 ThisTypeQuals = Method->getMethodQualifiers();
3313 }
3314
3315 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
3316 getLangOpts().CPlusPlus11);
3317
3318 ResultType =
3319 SubstType(Proto->getReturnType(), MLTAL,
3320 Function->getTypeSpecStartLoc(), Function->getDeclName());
3321 if (ResultType.isNull() || Trap.hasErrorOccurred())
3322 return TDK_SubstitutionFailure;
3323 // CUDA: Kernel function must have 'void' return type.
3324 if (getLangOpts().CUDA)
3325 if (Function->hasAttr<CUDAGlobalAttr>() && !ResultType->isVoidType()) {
3326 Diag(Function->getLocation(), diag::err_kern_type_not_void_return)
3327 << Function->getType() << Function->getSourceRange();
3328 return TDK_SubstitutionFailure;
3329 }
3330 }
3331
3332 // Instantiate the types of each of the function parameters given the
3333 // explicitly-specified template arguments if we didn't do so earlier.
3334 if (!Proto->hasTrailingReturn() &&
3335 SubstParmTypes(Function->getLocation(), Function->parameters(),
3336 Proto->getExtParameterInfosOrNull(), MLTAL, ParamTypes,
3337 /*params*/ nullptr, ExtParamInfos))
3338 return TDK_SubstitutionFailure;
3339
3340 if (FunctionType) {
3341 auto EPI = Proto->getExtProtoInfo();
3342 EPI.ExtParameterInfos = ExtParamInfos.getPointerOrNull(ParamTypes.size());
3343
3344 // In C++1z onwards, exception specifications are part of the function type,
3345 // so substitution into the type must also substitute into the exception
3346 // specification.
3347 SmallVector<QualType, 4> ExceptionStorage;
3348 if (getLangOpts().CPlusPlus17 &&
3349 SubstExceptionSpec(Function->getLocation(), EPI.ExceptionSpec,
3350 ExceptionStorage, MLTAL))
3351 return TDK_SubstitutionFailure;
3352
3353 *FunctionType = BuildFunctionType(ResultType, ParamTypes,
3354 Function->getLocation(),
3355 Function->getDeclName(),
3356 EPI);
3357 if (FunctionType->isNull() || Trap.hasErrorOccurred())
3358 return TDK_SubstitutionFailure;
3359 }
3360
3361 // C++ [temp.arg.explicit]p2:
3362 // Trailing template arguments that can be deduced (14.8.2) may be
3363 // omitted from the list of explicit template-arguments. If all of the
3364 // template arguments can be deduced, they may all be omitted; in this
3365 // case, the empty template argument list <> itself may also be omitted.
3366 //
3367 // Take all of the explicitly-specified arguments and put them into
3368 // the set of deduced template arguments. The partially-substituted
3369 // parameter pack, however, will be set to NULL since the deduction
3370 // mechanism handles the partially-substituted argument pack directly.
3371 Deduced.reserve(TemplateParams->size());
3372 for (unsigned I = 0, N = SugaredExplicitArgumentList->size(); I != N; ++I) {
3373 const TemplateArgument &Arg = SugaredExplicitArgumentList->get(I);
3374 if (I == PartiallySubstitutedPackIndex)
3375 Deduced.push_back(DeducedTemplateArgument());
3376 else
3377 Deduced.push_back(Arg);
3378 }
3379
3380 return TDK_Success;
3381 }
3382
3383 /// Check whether the deduced argument type for a call to a function
3384 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
3385 static Sema::TemplateDeductionResult
CheckOriginalCallArgDeduction(Sema & S,TemplateDeductionInfo & Info,Sema::OriginalCallArg OriginalArg,QualType DeducedA)3386 CheckOriginalCallArgDeduction(Sema &S, TemplateDeductionInfo &Info,
3387 Sema::OriginalCallArg OriginalArg,
3388 QualType DeducedA) {
3389 ASTContext &Context = S.Context;
3390
3391 auto Failed = [&]() -> Sema::TemplateDeductionResult {
3392 Info.FirstArg = TemplateArgument(DeducedA);
3393 Info.SecondArg = TemplateArgument(OriginalArg.OriginalArgType);
3394 Info.CallArgIndex = OriginalArg.ArgIdx;
3395 return OriginalArg.DecomposedParam ? Sema::TDK_DeducedMismatchNested
3396 : Sema::TDK_DeducedMismatch;
3397 };
3398
3399 QualType A = OriginalArg.OriginalArgType;
3400 QualType OriginalParamType = OriginalArg.OriginalParamType;
3401
3402 // Check for type equality (top-level cv-qualifiers are ignored).
3403 if (Context.hasSameUnqualifiedType(A, DeducedA))
3404 return Sema::TDK_Success;
3405
3406 // Strip off references on the argument types; they aren't needed for
3407 // the following checks.
3408 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
3409 DeducedA = DeducedARef->getPointeeType();
3410 if (const ReferenceType *ARef = A->getAs<ReferenceType>())
3411 A = ARef->getPointeeType();
3412
3413 // C++ [temp.deduct.call]p4:
3414 // [...] However, there are three cases that allow a difference:
3415 // - If the original P is a reference type, the deduced A (i.e., the
3416 // type referred to by the reference) can be more cv-qualified than
3417 // the transformed A.
3418 if (const ReferenceType *OriginalParamRef
3419 = OriginalParamType->getAs<ReferenceType>()) {
3420 // We don't want to keep the reference around any more.
3421 OriginalParamType = OriginalParamRef->getPointeeType();
3422
3423 // FIXME: Resolve core issue (no number yet): if the original P is a
3424 // reference type and the transformed A is function type "noexcept F",
3425 // the deduced A can be F.
3426 QualType Tmp;
3427 if (A->isFunctionType() && S.IsFunctionConversion(A, DeducedA, Tmp))
3428 return Sema::TDK_Success;
3429
3430 Qualifiers AQuals = A.getQualifiers();
3431 Qualifiers DeducedAQuals = DeducedA.getQualifiers();
3432
3433 // Under Objective-C++ ARC, the deduced type may have implicitly
3434 // been given strong or (when dealing with a const reference)
3435 // unsafe_unretained lifetime. If so, update the original
3436 // qualifiers to include this lifetime.
3437 if (S.getLangOpts().ObjCAutoRefCount &&
3438 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
3439 AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
3440 (DeducedAQuals.hasConst() &&
3441 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
3442 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
3443 }
3444
3445 if (AQuals == DeducedAQuals) {
3446 // Qualifiers match; there's nothing to do.
3447 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
3448 return Failed();
3449 } else {
3450 // Qualifiers are compatible, so have the argument type adopt the
3451 // deduced argument type's qualifiers as if we had performed the
3452 // qualification conversion.
3453 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
3454 }
3455 }
3456
3457 // - The transformed A can be another pointer or pointer to member
3458 // type that can be converted to the deduced A via a function pointer
3459 // conversion and/or a qualification conversion.
3460 //
3461 // Also allow conversions which merely strip __attribute__((noreturn)) from
3462 // function types (recursively).
3463 bool ObjCLifetimeConversion = false;
3464 QualType ResultTy;
3465 if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
3466 (S.IsQualificationConversion(A, DeducedA, false,
3467 ObjCLifetimeConversion) ||
3468 S.IsFunctionConversion(A, DeducedA, ResultTy)))
3469 return Sema::TDK_Success;
3470
3471 // - If P is a class and P has the form simple-template-id, then the
3472 // transformed A can be a derived class of the deduced A. [...]
3473 // [...] Likewise, if P is a pointer to a class of the form
3474 // simple-template-id, the transformed A can be a pointer to a
3475 // derived class pointed to by the deduced A.
3476 if (const PointerType *OriginalParamPtr
3477 = OriginalParamType->getAs<PointerType>()) {
3478 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
3479 if (const PointerType *APtr = A->getAs<PointerType>()) {
3480 if (A->getPointeeType()->isRecordType()) {
3481 OriginalParamType = OriginalParamPtr->getPointeeType();
3482 DeducedA = DeducedAPtr->getPointeeType();
3483 A = APtr->getPointeeType();
3484 }
3485 }
3486 }
3487 }
3488
3489 if (Context.hasSameUnqualifiedType(A, DeducedA))
3490 return Sema::TDK_Success;
3491
3492 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
3493 S.IsDerivedFrom(Info.getLocation(), A, DeducedA))
3494 return Sema::TDK_Success;
3495
3496 return Failed();
3497 }
3498
3499 /// Find the pack index for a particular parameter index in an instantiation of
3500 /// a function template with specific arguments.
3501 ///
3502 /// \return The pack index for whichever pack produced this parameter, or -1
3503 /// if this was not produced by a parameter. Intended to be used as the
3504 /// ArgumentPackSubstitutionIndex for further substitutions.
3505 // FIXME: We should track this in OriginalCallArgs so we don't need to
3506 // reconstruct it here.
getPackIndexForParam(Sema & S,FunctionTemplateDecl * FunctionTemplate,const MultiLevelTemplateArgumentList & Args,unsigned ParamIdx)3507 static unsigned getPackIndexForParam(Sema &S,
3508 FunctionTemplateDecl *FunctionTemplate,
3509 const MultiLevelTemplateArgumentList &Args,
3510 unsigned ParamIdx) {
3511 unsigned Idx = 0;
3512 for (auto *PD : FunctionTemplate->getTemplatedDecl()->parameters()) {
3513 if (PD->isParameterPack()) {
3514 unsigned NumExpansions =
3515 S.getNumArgumentsInExpansion(PD->getType(), Args).value_or(1);
3516 if (Idx + NumExpansions > ParamIdx)
3517 return ParamIdx - Idx;
3518 Idx += NumExpansions;
3519 } else {
3520 if (Idx == ParamIdx)
3521 return -1; // Not a pack expansion
3522 ++Idx;
3523 }
3524 }
3525
3526 llvm_unreachable("parameter index would not be produced from template");
3527 }
3528
3529 /// Finish template argument deduction for a function template,
3530 /// checking the deduced template arguments for completeness and forming
3531 /// the function template specialization.
3532 ///
3533 /// \param OriginalCallArgs If non-NULL, the original call arguments against
3534 /// which the deduced argument types should be compared.
FinishTemplateArgumentDeduction(FunctionTemplateDecl * FunctionTemplate,SmallVectorImpl<DeducedTemplateArgument> & Deduced,unsigned NumExplicitlySpecified,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,SmallVectorImpl<OriginalCallArg> const * OriginalCallArgs,bool PartialOverloading,llvm::function_ref<bool ()> CheckNonDependent)3535 Sema::TemplateDeductionResult Sema::FinishTemplateArgumentDeduction(
3536 FunctionTemplateDecl *FunctionTemplate,
3537 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3538 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
3539 TemplateDeductionInfo &Info,
3540 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
3541 bool PartialOverloading, llvm::function_ref<bool()> CheckNonDependent) {
3542 // Unevaluated SFINAE context.
3543 EnterExpressionEvaluationContext Unevaluated(
3544 *this, Sema::ExpressionEvaluationContext::Unevaluated);
3545 SFINAETrap Trap(*this);
3546
3547 // Enter a new template instantiation context while we instantiate the
3548 // actual function declaration.
3549 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
3550 InstantiatingTemplate Inst(
3551 *this, Info.getLocation(), FunctionTemplate, DeducedArgs,
3552 CodeSynthesisContext::DeducedTemplateArgumentSubstitution, Info);
3553 if (Inst.isInvalid())
3554 return TDK_InstantiationDepth;
3555
3556 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
3557
3558 // C++ [temp.deduct.type]p2:
3559 // [...] or if any template argument remains neither deduced nor
3560 // explicitly specified, template argument deduction fails.
3561 SmallVector<TemplateArgument, 4> SugaredBuilder, CanonicalBuilder;
3562 if (auto Result = ConvertDeducedTemplateArguments(
3563 *this, FunctionTemplate, /*IsDeduced*/ true, Deduced, Info,
3564 SugaredBuilder, CanonicalBuilder, CurrentInstantiationScope,
3565 NumExplicitlySpecified, PartialOverloading))
3566 return Result;
3567
3568 // C++ [temp.deduct.call]p10: [DR1391]
3569 // If deduction succeeds for all parameters that contain
3570 // template-parameters that participate in template argument deduction,
3571 // and all template arguments are explicitly specified, deduced, or
3572 // obtained from default template arguments, remaining parameters are then
3573 // compared with the corresponding arguments. For each remaining parameter
3574 // P with a type that was non-dependent before substitution of any
3575 // explicitly-specified template arguments, if the corresponding argument
3576 // A cannot be implicitly converted to P, deduction fails.
3577 if (CheckNonDependent())
3578 return TDK_NonDependentConversionFailure;
3579
3580 // Form the template argument list from the deduced template arguments.
3581 TemplateArgumentList *SugaredDeducedArgumentList =
3582 TemplateArgumentList::CreateCopy(Context, SugaredBuilder);
3583 TemplateArgumentList *CanonicalDeducedArgumentList =
3584 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder);
3585 Info.reset(SugaredDeducedArgumentList, CanonicalDeducedArgumentList);
3586
3587 // Substitute the deduced template arguments into the function template
3588 // declaration to produce the function template specialization.
3589 DeclContext *Owner = FunctionTemplate->getDeclContext();
3590 if (FunctionTemplate->getFriendObjectKind())
3591 Owner = FunctionTemplate->getLexicalDeclContext();
3592 MultiLevelTemplateArgumentList SubstArgs(
3593 FunctionTemplate, CanonicalDeducedArgumentList->asArray(),
3594 /*Final=*/false);
3595 Specialization = cast_or_null<FunctionDecl>(
3596 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, SubstArgs));
3597 if (!Specialization || Specialization->isInvalidDecl())
3598 return TDK_SubstitutionFailure;
3599
3600 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
3601 FunctionTemplate->getCanonicalDecl());
3602
3603 // If the template argument list is owned by the function template
3604 // specialization, release it.
3605 if (Specialization->getTemplateSpecializationArgs() ==
3606 CanonicalDeducedArgumentList &&
3607 !Trap.hasErrorOccurred())
3608 Info.takeCanonical();
3609
3610 // There may have been an error that did not prevent us from constructing a
3611 // declaration. Mark the declaration invalid and return with a substitution
3612 // failure.
3613 if (Trap.hasErrorOccurred()) {
3614 Specialization->setInvalidDecl(true);
3615 return TDK_SubstitutionFailure;
3616 }
3617
3618 // C++2a [temp.deduct]p5
3619 // [...] When all template arguments have been deduced [...] all uses of
3620 // template parameters [...] are replaced with the corresponding deduced
3621 // or default argument values.
3622 // [...] If the function template has associated constraints
3623 // ([temp.constr.decl]), those constraints are checked for satisfaction
3624 // ([temp.constr.constr]). If the constraints are not satisfied, type
3625 // deduction fails.
3626 if (!PartialOverloading ||
3627 (CanonicalBuilder.size() ==
3628 FunctionTemplate->getTemplateParameters()->size())) {
3629 if (CheckInstantiatedFunctionTemplateConstraints(
3630 Info.getLocation(), Specialization, CanonicalBuilder,
3631 Info.AssociatedConstraintsSatisfaction))
3632 return TDK_MiscellaneousDeductionFailure;
3633
3634 if (!Info.AssociatedConstraintsSatisfaction.IsSatisfied) {
3635 Info.reset(Info.takeSugared(),
3636 TemplateArgumentList::CreateCopy(Context, CanonicalBuilder));
3637 return TDK_ConstraintsNotSatisfied;
3638 }
3639 }
3640
3641 if (OriginalCallArgs) {
3642 // C++ [temp.deduct.call]p4:
3643 // In general, the deduction process attempts to find template argument
3644 // values that will make the deduced A identical to A (after the type A
3645 // is transformed as described above). [...]
3646 llvm::SmallDenseMap<std::pair<unsigned, QualType>, QualType> DeducedATypes;
3647 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
3648 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
3649
3650 auto ParamIdx = OriginalArg.ArgIdx;
3651 if (ParamIdx >= Specialization->getNumParams())
3652 // FIXME: This presumably means a pack ended up smaller than we
3653 // expected while deducing. Should this not result in deduction
3654 // failure? Can it even happen?
3655 continue;
3656
3657 QualType DeducedA;
3658 if (!OriginalArg.DecomposedParam) {
3659 // P is one of the function parameters, just look up its substituted
3660 // type.
3661 DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
3662 } else {
3663 // P is a decomposed element of a parameter corresponding to a
3664 // braced-init-list argument. Substitute back into P to find the
3665 // deduced A.
3666 QualType &CacheEntry =
3667 DeducedATypes[{ParamIdx, OriginalArg.OriginalParamType}];
3668 if (CacheEntry.isNull()) {
3669 ArgumentPackSubstitutionIndexRAII PackIndex(
3670 *this, getPackIndexForParam(*this, FunctionTemplate, SubstArgs,
3671 ParamIdx));
3672 CacheEntry =
3673 SubstType(OriginalArg.OriginalParamType, SubstArgs,
3674 Specialization->getTypeSpecStartLoc(),
3675 Specialization->getDeclName());
3676 }
3677 DeducedA = CacheEntry;
3678 }
3679
3680 if (auto TDK =
3681 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA))
3682 return TDK;
3683 }
3684 }
3685
3686 // If we suppressed any diagnostics while performing template argument
3687 // deduction, and if we haven't already instantiated this declaration,
3688 // keep track of these diagnostics. They'll be emitted if this specialization
3689 // is actually used.
3690 if (Info.diag_begin() != Info.diag_end()) {
3691 SuppressedDiagnosticsMap::iterator
3692 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
3693 if (Pos == SuppressedDiagnostics.end())
3694 SuppressedDiagnostics[Specialization->getCanonicalDecl()]
3695 .append(Info.diag_begin(), Info.diag_end());
3696 }
3697
3698 return TDK_Success;
3699 }
3700
3701 /// Gets the type of a function for template-argument-deducton
3702 /// purposes when it's considered as part of an overload set.
GetTypeOfFunction(Sema & S,const OverloadExpr::FindResult & R,FunctionDecl * Fn)3703 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
3704 FunctionDecl *Fn) {
3705 // We may need to deduce the return type of the function now.
3706 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
3707 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
3708 return {};
3709
3710 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
3711 if (Method->isInstance()) {
3712 // An instance method that's referenced in a form that doesn't
3713 // look like a member pointer is just invalid.
3714 if (!R.HasFormOfMemberPointer)
3715 return {};
3716
3717 return S.Context.getMemberPointerType(Fn->getType(),
3718 S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
3719 }
3720
3721 if (!R.IsAddressOfOperand) return Fn->getType();
3722 return S.Context.getPointerType(Fn->getType());
3723 }
3724
3725 /// Apply the deduction rules for overload sets.
3726 ///
3727 /// \return the null type if this argument should be treated as an
3728 /// undeduced context
3729 static QualType
ResolveOverloadForDeduction(Sema & S,TemplateParameterList * TemplateParams,Expr * Arg,QualType ParamType,bool ParamWasReference)3730 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
3731 Expr *Arg, QualType ParamType,
3732 bool ParamWasReference) {
3733
3734 OverloadExpr::FindResult R = OverloadExpr::find(Arg);
3735
3736 OverloadExpr *Ovl = R.Expression;
3737
3738 // C++0x [temp.deduct.call]p4
3739 unsigned TDF = 0;
3740 if (ParamWasReference)
3741 TDF |= TDF_ParamWithReferenceType;
3742 if (R.IsAddressOfOperand)
3743 TDF |= TDF_IgnoreQualifiers;
3744
3745 // C++0x [temp.deduct.call]p6:
3746 // When P is a function type, pointer to function type, or pointer
3747 // to member function type:
3748
3749 if (!ParamType->isFunctionType() &&
3750 !ParamType->isFunctionPointerType() &&
3751 !ParamType->isMemberFunctionPointerType()) {
3752 if (Ovl->hasExplicitTemplateArgs()) {
3753 // But we can still look for an explicit specialization.
3754 if (FunctionDecl *ExplicitSpec
3755 = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
3756 return GetTypeOfFunction(S, R, ExplicitSpec);
3757 }
3758
3759 DeclAccessPair DAP;
3760 if (FunctionDecl *Viable =
3761 S.resolveAddressOfSingleOverloadCandidate(Arg, DAP))
3762 return GetTypeOfFunction(S, R, Viable);
3763
3764 return {};
3765 }
3766
3767 // Gather the explicit template arguments, if any.
3768 TemplateArgumentListInfo ExplicitTemplateArgs;
3769 if (Ovl->hasExplicitTemplateArgs())
3770 Ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
3771 QualType Match;
3772 for (UnresolvedSetIterator I = Ovl->decls_begin(),
3773 E = Ovl->decls_end(); I != E; ++I) {
3774 NamedDecl *D = (*I)->getUnderlyingDecl();
3775
3776 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
3777 // - If the argument is an overload set containing one or more
3778 // function templates, the parameter is treated as a
3779 // non-deduced context.
3780 if (!Ovl->hasExplicitTemplateArgs())
3781 return {};
3782
3783 // Otherwise, see if we can resolve a function type
3784 FunctionDecl *Specialization = nullptr;
3785 TemplateDeductionInfo Info(Ovl->getNameLoc());
3786 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
3787 Specialization, Info))
3788 continue;
3789
3790 D = Specialization;
3791 }
3792
3793 FunctionDecl *Fn = cast<FunctionDecl>(D);
3794 QualType ArgType = GetTypeOfFunction(S, R, Fn);
3795 if (ArgType.isNull()) continue;
3796
3797 // Function-to-pointer conversion.
3798 if (!ParamWasReference && ParamType->isPointerType() &&
3799 ArgType->isFunctionType())
3800 ArgType = S.Context.getPointerType(ArgType);
3801
3802 // - If the argument is an overload set (not containing function
3803 // templates), trial argument deduction is attempted using each
3804 // of the members of the set. If deduction succeeds for only one
3805 // of the overload set members, that member is used as the
3806 // argument value for the deduction. If deduction succeeds for
3807 // more than one member of the overload set the parameter is
3808 // treated as a non-deduced context.
3809
3810 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
3811 // Type deduction is done independently for each P/A pair, and
3812 // the deduced template argument values are then combined.
3813 // So we do not reject deductions which were made elsewhere.
3814 SmallVector<DeducedTemplateArgument, 8>
3815 Deduced(TemplateParams->size());
3816 TemplateDeductionInfo Info(Ovl->getNameLoc());
3817 Sema::TemplateDeductionResult Result
3818 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
3819 ArgType, Info, Deduced, TDF);
3820 if (Result) continue;
3821 if (!Match.isNull())
3822 return {};
3823 Match = ArgType;
3824 }
3825
3826 return Match;
3827 }
3828
3829 /// Perform the adjustments to the parameter and argument types
3830 /// described in C++ [temp.deduct.call].
3831 ///
3832 /// \returns true if the caller should not attempt to perform any template
3833 /// argument deduction based on this P/A pair because the argument is an
3834 /// overloaded function set that could not be resolved.
AdjustFunctionParmAndArgTypesForDeduction(Sema & S,TemplateParameterList * TemplateParams,unsigned FirstInnerIndex,QualType & ParamType,QualType & ArgType,Expr * Arg,unsigned & TDF)3835 static bool AdjustFunctionParmAndArgTypesForDeduction(
3836 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3837 QualType &ParamType, QualType &ArgType, Expr *Arg, unsigned &TDF) {
3838 // C++0x [temp.deduct.call]p3:
3839 // If P is a cv-qualified type, the top level cv-qualifiers of P's type
3840 // are ignored for type deduction.
3841 if (ParamType.hasQualifiers())
3842 ParamType = ParamType.getUnqualifiedType();
3843
3844 // [...] If P is a reference type, the type referred to by P is
3845 // used for type deduction.
3846 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
3847 if (ParamRefType)
3848 ParamType = ParamRefType->getPointeeType();
3849
3850 // Overload sets usually make this parameter an undeduced context,
3851 // but there are sometimes special circumstances. Typically
3852 // involving a template-id-expr.
3853 if (ArgType == S.Context.OverloadTy) {
3854 ArgType = ResolveOverloadForDeduction(S, TemplateParams,
3855 Arg, ParamType,
3856 ParamRefType != nullptr);
3857 if (ArgType.isNull())
3858 return true;
3859 }
3860
3861 if (ParamRefType) {
3862 // If the argument has incomplete array type, try to complete its type.
3863 if (ArgType->isIncompleteArrayType())
3864 ArgType = S.getCompletedType(Arg);
3865
3866 // C++1z [temp.deduct.call]p3:
3867 // If P is a forwarding reference and the argument is an lvalue, the type
3868 // "lvalue reference to A" is used in place of A for type deduction.
3869 if (isForwardingReference(QualType(ParamRefType, 0), FirstInnerIndex) &&
3870 Arg->isLValue()) {
3871 if (S.getLangOpts().OpenCL && !ArgType.hasAddressSpace())
3872 ArgType = S.Context.getAddrSpaceQualType(
3873 ArgType, S.Context.getDefaultOpenCLPointeeAddrSpace());
3874 ArgType = S.Context.getLValueReferenceType(ArgType);
3875 }
3876 } else {
3877 // C++ [temp.deduct.call]p2:
3878 // If P is not a reference type:
3879 // - If A is an array type, the pointer type produced by the
3880 // array-to-pointer standard conversion (4.2) is used in place of
3881 // A for type deduction; otherwise,
3882 // - If A is a function type, the pointer type produced by the
3883 // function-to-pointer standard conversion (4.3) is used in place
3884 // of A for type deduction; otherwise,
3885 if (ArgType->canDecayToPointerType())
3886 ArgType = S.Context.getDecayedType(ArgType);
3887 else {
3888 // - If A is a cv-qualified type, the top level cv-qualifiers of A's
3889 // type are ignored for type deduction.
3890 ArgType = ArgType.getUnqualifiedType();
3891 }
3892 }
3893
3894 // C++0x [temp.deduct.call]p4:
3895 // In general, the deduction process attempts to find template argument
3896 // values that will make the deduced A identical to A (after the type A
3897 // is transformed as described above). [...]
3898 TDF = TDF_SkipNonDependent;
3899
3900 // - If the original P is a reference type, the deduced A (i.e., the
3901 // type referred to by the reference) can be more cv-qualified than
3902 // the transformed A.
3903 if (ParamRefType)
3904 TDF |= TDF_ParamWithReferenceType;
3905 // - The transformed A can be another pointer or pointer to member
3906 // type that can be converted to the deduced A via a qualification
3907 // conversion (4.4).
3908 if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
3909 ArgType->isObjCObjectPointerType())
3910 TDF |= TDF_IgnoreQualifiers;
3911 // - If P is a class and P has the form simple-template-id, then the
3912 // transformed A can be a derived class of the deduced A. Likewise,
3913 // if P is a pointer to a class of the form simple-template-id, the
3914 // transformed A can be a pointer to a derived class pointed to by
3915 // the deduced A.
3916 if (isSimpleTemplateIdType(ParamType) ||
3917 (isa<PointerType>(ParamType) &&
3918 isSimpleTemplateIdType(
3919 ParamType->castAs<PointerType>()->getPointeeType())))
3920 TDF |= TDF_DerivedClass;
3921
3922 return false;
3923 }
3924
3925 static bool
3926 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
3927 QualType T);
3928
3929 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
3930 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
3931 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
3932 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3933 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
3934 bool DecomposedParam, unsigned ArgIdx, unsigned TDF);
3935
3936 /// Attempt template argument deduction from an initializer list
3937 /// deemed to be an argument in a function call.
DeduceFromInitializerList(Sema & S,TemplateParameterList * TemplateParams,QualType AdjustedParamType,InitListExpr * ILE,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<Sema::OriginalCallArg> & OriginalCallArgs,unsigned ArgIdx,unsigned TDF)3938 static Sema::TemplateDeductionResult DeduceFromInitializerList(
3939 Sema &S, TemplateParameterList *TemplateParams, QualType AdjustedParamType,
3940 InitListExpr *ILE, TemplateDeductionInfo &Info,
3941 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
3942 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs, unsigned ArgIdx,
3943 unsigned TDF) {
3944 // C++ [temp.deduct.call]p1: (CWG 1591)
3945 // If removing references and cv-qualifiers from P gives
3946 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is
3947 // a non-empty initializer list, then deduction is performed instead for
3948 // each element of the initializer list, taking P0 as a function template
3949 // parameter type and the initializer element as its argument
3950 //
3951 // We've already removed references and cv-qualifiers here.
3952 if (!ILE->getNumInits())
3953 return Sema::TDK_Success;
3954
3955 QualType ElTy;
3956 auto *ArrTy = S.Context.getAsArrayType(AdjustedParamType);
3957 if (ArrTy)
3958 ElTy = ArrTy->getElementType();
3959 else if (!S.isStdInitializerList(AdjustedParamType, &ElTy)) {
3960 // Otherwise, an initializer list argument causes the parameter to be
3961 // considered a non-deduced context
3962 return Sema::TDK_Success;
3963 }
3964
3965 // Resolving a core issue: a braced-init-list containing any designators is
3966 // a non-deduced context.
3967 for (Expr *E : ILE->inits())
3968 if (isa<DesignatedInitExpr>(E))
3969 return Sema::TDK_Success;
3970
3971 // Deduction only needs to be done for dependent types.
3972 if (ElTy->isDependentType()) {
3973 for (Expr *E : ILE->inits()) {
3974 if (auto Result = DeduceTemplateArgumentsFromCallArgument(
3975 S, TemplateParams, 0, ElTy, E, Info, Deduced, OriginalCallArgs, true,
3976 ArgIdx, TDF))
3977 return Result;
3978 }
3979 }
3980
3981 // in the P0[N] case, if N is a non-type template parameter, N is deduced
3982 // from the length of the initializer list.
3983 if (auto *DependentArrTy = dyn_cast_or_null<DependentSizedArrayType>(ArrTy)) {
3984 // Determine the array bound is something we can deduce.
3985 if (const NonTypeTemplateParmDecl *NTTP =
3986 getDeducedParameterFromExpr(Info, DependentArrTy->getSizeExpr())) {
3987 // We can perform template argument deduction for the given non-type
3988 // template parameter.
3989 // C++ [temp.deduct.type]p13:
3990 // The type of N in the type T[N] is std::size_t.
3991 QualType T = S.Context.getSizeType();
3992 llvm::APInt Size(S.Context.getIntWidth(T), ILE->getNumInits());
3993 if (auto Result = DeduceNonTypeTemplateArgument(
3994 S, TemplateParams, NTTP, llvm::APSInt(Size), T,
3995 /*ArrayBound=*/true, Info, Deduced))
3996 return Result;
3997 }
3998 }
3999
4000 return Sema::TDK_Success;
4001 }
4002
4003 /// Perform template argument deduction per [temp.deduct.call] for a
4004 /// single parameter / argument pair.
DeduceTemplateArgumentsFromCallArgument(Sema & S,TemplateParameterList * TemplateParams,unsigned FirstInnerIndex,QualType ParamType,Expr * Arg,TemplateDeductionInfo & Info,SmallVectorImpl<DeducedTemplateArgument> & Deduced,SmallVectorImpl<Sema::OriginalCallArg> & OriginalCallArgs,bool DecomposedParam,unsigned ArgIdx,unsigned TDF)4005 static Sema::TemplateDeductionResult DeduceTemplateArgumentsFromCallArgument(
4006 Sema &S, TemplateParameterList *TemplateParams, unsigned FirstInnerIndex,
4007 QualType ParamType, Expr *Arg, TemplateDeductionInfo &Info,
4008 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
4009 SmallVectorImpl<Sema::OriginalCallArg> &OriginalCallArgs,
4010 bool DecomposedParam, unsigned ArgIdx, unsigned TDF) {
4011 QualType ArgType = Arg->getType();
4012 QualType OrigParamType = ParamType;
4013
4014 // If P is a reference type [...]
4015 // If P is a cv-qualified type [...]
4016 if (AdjustFunctionParmAndArgTypesForDeduction(
4017 S, TemplateParams, FirstInnerIndex, ParamType, ArgType, Arg, TDF))
4018 return Sema::TDK_Success;
4019
4020 // If [...] the argument is a non-empty initializer list [...]
4021 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg))
4022 return DeduceFromInitializerList(S, TemplateParams, ParamType, ILE, Info,
4023 Deduced, OriginalCallArgs, ArgIdx, TDF);
4024
4025 // [...] the deduction process attempts to find template argument values
4026 // that will make the deduced A identical to A
4027 //
4028 // Keep track of the argument type and corresponding parameter index,
4029 // so we can check for compatibility between the deduced A and A.
4030 OriginalCallArgs.push_back(
4031 Sema::OriginalCallArg(OrigParamType, DecomposedParam, ArgIdx, ArgType));
4032 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
4033 ArgType, Info, Deduced, TDF);
4034 }
4035
4036 /// Perform template argument deduction from a function call
4037 /// (C++ [temp.deduct.call]).
4038 ///
4039 /// \param FunctionTemplate the function template for which we are performing
4040 /// template argument deduction.
4041 ///
4042 /// \param ExplicitTemplateArgs the explicit template arguments provided
4043 /// for this call.
4044 ///
4045 /// \param Args the function call arguments
4046 ///
4047 /// \param Specialization if template argument deduction was successful,
4048 /// this will be set to the function template specialization produced by
4049 /// template argument deduction.
4050 ///
4051 /// \param Info the argument will be updated to provide additional information
4052 /// about template argument deduction.
4053 ///
4054 /// \param CheckNonDependent A callback to invoke to check conversions for
4055 /// non-dependent parameters, between deduction and substitution, per DR1391.
4056 /// If this returns true, substitution will be skipped and we return
4057 /// TDK_NonDependentConversionFailure. The callback is passed the parameter
4058 /// types (after substituting explicit template arguments).
4059 ///
4060 /// \returns the result of template argument deduction.
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool PartialOverloading,llvm::function_ref<bool (ArrayRef<QualType>)> CheckNonDependent)4061 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4062 FunctionTemplateDecl *FunctionTemplate,
4063 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
4064 FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4065 bool PartialOverloading,
4066 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent) {
4067 if (FunctionTemplate->isInvalidDecl())
4068 return TDK_Invalid;
4069
4070 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4071 unsigned NumParams = Function->getNumParams();
4072
4073 unsigned FirstInnerIndex = getFirstInnerIndex(FunctionTemplate);
4074
4075 // C++ [temp.deduct.call]p1:
4076 // Template argument deduction is done by comparing each function template
4077 // parameter type (call it P) with the type of the corresponding argument
4078 // of the call (call it A) as described below.
4079 if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
4080 return TDK_TooFewArguments;
4081 else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
4082 const auto *Proto = Function->getType()->castAs<FunctionProtoType>();
4083 if (Proto->isTemplateVariadic())
4084 /* Do nothing */;
4085 else if (!Proto->isVariadic())
4086 return TDK_TooManyArguments;
4087 }
4088
4089 // The types of the parameters from which we will perform template argument
4090 // deduction.
4091 LocalInstantiationScope InstScope(*this);
4092 TemplateParameterList *TemplateParams
4093 = FunctionTemplate->getTemplateParameters();
4094 SmallVector<DeducedTemplateArgument, 4> Deduced;
4095 SmallVector<QualType, 8> ParamTypes;
4096 unsigned NumExplicitlySpecified = 0;
4097 if (ExplicitTemplateArgs) {
4098 TemplateDeductionResult Result;
4099 runWithSufficientStackSpace(Info.getLocation(), [&] {
4100 Result = SubstituteExplicitTemplateArguments(
4101 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes, nullptr,
4102 Info);
4103 });
4104 if (Result)
4105 return Result;
4106
4107 NumExplicitlySpecified = Deduced.size();
4108 } else {
4109 // Just fill in the parameter types from the function declaration.
4110 for (unsigned I = 0; I != NumParams; ++I)
4111 ParamTypes.push_back(Function->getParamDecl(I)->getType());
4112 }
4113
4114 SmallVector<OriginalCallArg, 8> OriginalCallArgs;
4115
4116 // Deduce an argument of type ParamType from an expression with index ArgIdx.
4117 auto DeduceCallArgument = [&](QualType ParamType, unsigned ArgIdx) {
4118 // C++ [demp.deduct.call]p1: (DR1391)
4119 // Template argument deduction is done by comparing each function template
4120 // parameter that contains template-parameters that participate in
4121 // template argument deduction ...
4122 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
4123 return Sema::TDK_Success;
4124
4125 // ... with the type of the corresponding argument
4126 return DeduceTemplateArgumentsFromCallArgument(
4127 *this, TemplateParams, FirstInnerIndex, ParamType, Args[ArgIdx], Info, Deduced,
4128 OriginalCallArgs, /*Decomposed*/false, ArgIdx, /*TDF*/ 0);
4129 };
4130
4131 // Deduce template arguments from the function parameters.
4132 Deduced.resize(TemplateParams->size());
4133 SmallVector<QualType, 8> ParamTypesForArgChecking;
4134 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(), ArgIdx = 0;
4135 ParamIdx != NumParamTypes; ++ParamIdx) {
4136 QualType ParamType = ParamTypes[ParamIdx];
4137
4138 const PackExpansionType *ParamExpansion =
4139 dyn_cast<PackExpansionType>(ParamType);
4140 if (!ParamExpansion) {
4141 // Simple case: matching a function parameter to a function argument.
4142 if (ArgIdx >= Args.size())
4143 break;
4144
4145 ParamTypesForArgChecking.push_back(ParamType);
4146 if (auto Result = DeduceCallArgument(ParamType, ArgIdx++))
4147 return Result;
4148
4149 continue;
4150 }
4151
4152 QualType ParamPattern = ParamExpansion->getPattern();
4153 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
4154 ParamPattern);
4155
4156 // C++0x [temp.deduct.call]p1:
4157 // For a function parameter pack that occurs at the end of the
4158 // parameter-declaration-list, the type A of each remaining argument of
4159 // the call is compared with the type P of the declarator-id of the
4160 // function parameter pack. Each comparison deduces template arguments
4161 // for subsequent positions in the template parameter packs expanded by
4162 // the function parameter pack. When a function parameter pack appears
4163 // in a non-deduced context [not at the end of the list], the type of
4164 // that parameter pack is never deduced.
4165 //
4166 // FIXME: The above rule allows the size of the parameter pack to change
4167 // after we skip it (in the non-deduced case). That makes no sense, so
4168 // we instead notionally deduce the pack against N arguments, where N is
4169 // the length of the explicitly-specified pack if it's expanded by the
4170 // parameter pack and 0 otherwise, and we treat each deduction as a
4171 // non-deduced context.
4172 if (ParamIdx + 1 == NumParamTypes || PackScope.hasFixedArity()) {
4173 for (; ArgIdx < Args.size() && PackScope.hasNextElement();
4174 PackScope.nextPackElement(), ++ArgIdx) {
4175 ParamTypesForArgChecking.push_back(ParamPattern);
4176 if (auto Result = DeduceCallArgument(ParamPattern, ArgIdx))
4177 return Result;
4178 }
4179 } else {
4180 // If the parameter type contains an explicitly-specified pack that we
4181 // could not expand, skip the number of parameters notionally created
4182 // by the expansion.
4183 std::optional<unsigned> NumExpansions =
4184 ParamExpansion->getNumExpansions();
4185 if (NumExpansions && !PackScope.isPartiallyExpanded()) {
4186 for (unsigned I = 0; I != *NumExpansions && ArgIdx < Args.size();
4187 ++I, ++ArgIdx) {
4188 ParamTypesForArgChecking.push_back(ParamPattern);
4189 // FIXME: Should we add OriginalCallArgs for these? What if the
4190 // corresponding argument is a list?
4191 PackScope.nextPackElement();
4192 }
4193 }
4194 }
4195
4196 // Build argument packs for each of the parameter packs expanded by this
4197 // pack expansion.
4198 if (auto Result = PackScope.finish())
4199 return Result;
4200 }
4201
4202 // Capture the context in which the function call is made. This is the context
4203 // that is needed when the accessibility of template arguments is checked.
4204 DeclContext *CallingCtx = CurContext;
4205
4206 TemplateDeductionResult Result;
4207 runWithSufficientStackSpace(Info.getLocation(), [&] {
4208 Result = FinishTemplateArgumentDeduction(
4209 FunctionTemplate, Deduced, NumExplicitlySpecified, Specialization, Info,
4210 &OriginalCallArgs, PartialOverloading, [&, CallingCtx]() {
4211 ContextRAII SavedContext(*this, CallingCtx);
4212 return CheckNonDependent(ParamTypesForArgChecking);
4213 });
4214 });
4215 return Result;
4216 }
4217
adjustCCAndNoReturn(QualType ArgFunctionType,QualType FunctionType,bool AdjustExceptionSpec)4218 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
4219 QualType FunctionType,
4220 bool AdjustExceptionSpec) {
4221 if (ArgFunctionType.isNull())
4222 return ArgFunctionType;
4223
4224 const auto *FunctionTypeP = FunctionType->castAs<FunctionProtoType>();
4225 const auto *ArgFunctionTypeP = ArgFunctionType->castAs<FunctionProtoType>();
4226 FunctionProtoType::ExtProtoInfo EPI = ArgFunctionTypeP->getExtProtoInfo();
4227 bool Rebuild = false;
4228
4229 CallingConv CC = FunctionTypeP->getCallConv();
4230 if (EPI.ExtInfo.getCC() != CC) {
4231 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC);
4232 Rebuild = true;
4233 }
4234
4235 bool NoReturn = FunctionTypeP->getNoReturnAttr();
4236 if (EPI.ExtInfo.getNoReturn() != NoReturn) {
4237 EPI.ExtInfo = EPI.ExtInfo.withNoReturn(NoReturn);
4238 Rebuild = true;
4239 }
4240
4241 if (AdjustExceptionSpec && (FunctionTypeP->hasExceptionSpec() ||
4242 ArgFunctionTypeP->hasExceptionSpec())) {
4243 EPI.ExceptionSpec = FunctionTypeP->getExtProtoInfo().ExceptionSpec;
4244 Rebuild = true;
4245 }
4246
4247 if (!Rebuild)
4248 return ArgFunctionType;
4249
4250 return Context.getFunctionType(ArgFunctionTypeP->getReturnType(),
4251 ArgFunctionTypeP->getParamTypes(), EPI);
4252 }
4253
4254 /// Deduce template arguments when taking the address of a function
4255 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
4256 /// a template.
4257 ///
4258 /// \param FunctionTemplate the function template for which we are performing
4259 /// template argument deduction.
4260 ///
4261 /// \param ExplicitTemplateArgs the explicitly-specified template
4262 /// arguments.
4263 ///
4264 /// \param ArgFunctionType the function type that will be used as the
4265 /// "argument" type (A) when performing template argument deduction from the
4266 /// function template's function type. This type may be NULL, if there is no
4267 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
4268 ///
4269 /// \param Specialization if template argument deduction was successful,
4270 /// this will be set to the function template specialization produced by
4271 /// template argument deduction.
4272 ///
4273 /// \param Info the argument will be updated to provide additional information
4274 /// about template argument deduction.
4275 ///
4276 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4277 /// the address of a function template per [temp.deduct.funcaddr] and
4278 /// [over.over]. If \c false, we are looking up a function template
4279 /// specialization based on its signature, per [temp.deduct.decl].
4280 ///
4281 /// \returns the result of template argument deduction.
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ArgFunctionType,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool IsAddressOfFunction)4282 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4283 FunctionTemplateDecl *FunctionTemplate,
4284 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ArgFunctionType,
4285 FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4286 bool IsAddressOfFunction) {
4287 if (FunctionTemplate->isInvalidDecl())
4288 return TDK_Invalid;
4289
4290 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
4291 TemplateParameterList *TemplateParams
4292 = FunctionTemplate->getTemplateParameters();
4293 QualType FunctionType = Function->getType();
4294
4295 // Substitute any explicit template arguments.
4296 LocalInstantiationScope InstScope(*this);
4297 SmallVector<DeducedTemplateArgument, 4> Deduced;
4298 unsigned NumExplicitlySpecified = 0;
4299 SmallVector<QualType, 4> ParamTypes;
4300 if (ExplicitTemplateArgs) {
4301 TemplateDeductionResult Result;
4302 runWithSufficientStackSpace(Info.getLocation(), [&] {
4303 Result = SubstituteExplicitTemplateArguments(
4304 FunctionTemplate, *ExplicitTemplateArgs, Deduced, ParamTypes,
4305 &FunctionType, Info);
4306 });
4307 if (Result)
4308 return Result;
4309
4310 NumExplicitlySpecified = Deduced.size();
4311 }
4312
4313 // When taking the address of a function, we require convertibility of
4314 // the resulting function type. Otherwise, we allow arbitrary mismatches
4315 // of calling convention and noreturn.
4316 if (!IsAddressOfFunction)
4317 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType,
4318 /*AdjustExceptionSpec*/false);
4319
4320 // Unevaluated SFINAE context.
4321 EnterExpressionEvaluationContext Unevaluated(
4322 *this, Sema::ExpressionEvaluationContext::Unevaluated);
4323 SFINAETrap Trap(*this);
4324
4325 Deduced.resize(TemplateParams->size());
4326
4327 // If the function has a deduced return type, substitute it for a dependent
4328 // type so that we treat it as a non-deduced context in what follows. If we
4329 // are looking up by signature, the signature type should also have a deduced
4330 // return type, which we instead expect to exactly match.
4331 bool HasDeducedReturnType = false;
4332 if (getLangOpts().CPlusPlus14 && IsAddressOfFunction &&
4333 Function->getReturnType()->getContainedAutoType()) {
4334 FunctionType = SubstAutoTypeDependent(FunctionType);
4335 HasDeducedReturnType = true;
4336 }
4337
4338 if (!ArgFunctionType.isNull() && !FunctionType.isNull()) {
4339 unsigned TDF =
4340 TDF_TopLevelParameterTypeList | TDF_AllowCompatibleFunctionType;
4341 // Deduce template arguments from the function type.
4342 if (TemplateDeductionResult Result
4343 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4344 FunctionType, ArgFunctionType,
4345 Info, Deduced, TDF))
4346 return Result;
4347 }
4348
4349 TemplateDeductionResult Result;
4350 runWithSufficientStackSpace(Info.getLocation(), [&] {
4351 Result = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
4352 NumExplicitlySpecified,
4353 Specialization, Info);
4354 });
4355 if (Result)
4356 return Result;
4357
4358 // If the function has a deduced return type, deduce it now, so we can check
4359 // that the deduced function type matches the requested type.
4360 if (HasDeducedReturnType &&
4361 Specialization->getReturnType()->isUndeducedType() &&
4362 DeduceReturnType(Specialization, Info.getLocation(), false))
4363 return TDK_MiscellaneousDeductionFailure;
4364
4365 // If the function has a dependent exception specification, resolve it now,
4366 // so we can check that the exception specification matches.
4367 auto *SpecializationFPT =
4368 Specialization->getType()->castAs<FunctionProtoType>();
4369 if (getLangOpts().CPlusPlus17 &&
4370 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) &&
4371 !ResolveExceptionSpec(Info.getLocation(), SpecializationFPT))
4372 return TDK_MiscellaneousDeductionFailure;
4373
4374 // Adjust the exception specification of the argument to match the
4375 // substituted and resolved type we just formed. (Calling convention and
4376 // noreturn can't be dependent, so we don't actually need this for them
4377 // right now.)
4378 QualType SpecializationType = Specialization->getType();
4379 if (!IsAddressOfFunction)
4380 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, SpecializationType,
4381 /*AdjustExceptionSpec*/true);
4382
4383 // If the requested function type does not match the actual type of the
4384 // specialization with respect to arguments of compatible pointer to function
4385 // types, template argument deduction fails.
4386 if (!ArgFunctionType.isNull()) {
4387 if (IsAddressOfFunction &&
4388 !isSameOrCompatibleFunctionType(
4389 Context.getCanonicalType(SpecializationType),
4390 Context.getCanonicalType(ArgFunctionType)))
4391 return TDK_MiscellaneousDeductionFailure;
4392
4393 if (!IsAddressOfFunction &&
4394 !Context.hasSameType(SpecializationType, ArgFunctionType))
4395 return TDK_MiscellaneousDeductionFailure;
4396 }
4397
4398 return TDK_Success;
4399 }
4400
4401 /// Deduce template arguments for a templated conversion
4402 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
4403 /// conversion function template specialization.
4404 Sema::TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl * ConversionTemplate,QualType ToType,CXXConversionDecl * & Specialization,TemplateDeductionInfo & Info)4405 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
4406 QualType ToType,
4407 CXXConversionDecl *&Specialization,
4408 TemplateDeductionInfo &Info) {
4409 if (ConversionTemplate->isInvalidDecl())
4410 return TDK_Invalid;
4411
4412 CXXConversionDecl *ConversionGeneric
4413 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
4414
4415 QualType FromType = ConversionGeneric->getConversionType();
4416
4417 // Canonicalize the types for deduction.
4418 QualType P = Context.getCanonicalType(FromType);
4419 QualType A = Context.getCanonicalType(ToType);
4420
4421 // C++0x [temp.deduct.conv]p2:
4422 // If P is a reference type, the type referred to by P is used for
4423 // type deduction.
4424 if (const ReferenceType *PRef = P->getAs<ReferenceType>())
4425 P = PRef->getPointeeType();
4426
4427 // C++0x [temp.deduct.conv]p4:
4428 // [...] If A is a reference type, the type referred to by A is used
4429 // for type deduction.
4430 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) {
4431 A = ARef->getPointeeType();
4432 // We work around a defect in the standard here: cv-qualifiers are also
4433 // removed from P and A in this case, unless P was a reference type. This
4434 // seems to mostly match what other compilers are doing.
4435 if (!FromType->getAs<ReferenceType>()) {
4436 A = A.getUnqualifiedType();
4437 P = P.getUnqualifiedType();
4438 }
4439
4440 // C++ [temp.deduct.conv]p3:
4441 //
4442 // If A is not a reference type:
4443 } else {
4444 assert(!A->isReferenceType() && "Reference types were handled above");
4445
4446 // - If P is an array type, the pointer type produced by the
4447 // array-to-pointer standard conversion (4.2) is used in place
4448 // of P for type deduction; otherwise,
4449 if (P->isArrayType())
4450 P = Context.getArrayDecayedType(P);
4451 // - If P is a function type, the pointer type produced by the
4452 // function-to-pointer standard conversion (4.3) is used in
4453 // place of P for type deduction; otherwise,
4454 else if (P->isFunctionType())
4455 P = Context.getPointerType(P);
4456 // - If P is a cv-qualified type, the top level cv-qualifiers of
4457 // P's type are ignored for type deduction.
4458 else
4459 P = P.getUnqualifiedType();
4460
4461 // C++0x [temp.deduct.conv]p4:
4462 // If A is a cv-qualified type, the top level cv-qualifiers of A's
4463 // type are ignored for type deduction. If A is a reference type, the type
4464 // referred to by A is used for type deduction.
4465 A = A.getUnqualifiedType();
4466 }
4467
4468 // Unevaluated SFINAE context.
4469 EnterExpressionEvaluationContext Unevaluated(
4470 *this, Sema::ExpressionEvaluationContext::Unevaluated);
4471 SFINAETrap Trap(*this);
4472
4473 // C++ [temp.deduct.conv]p1:
4474 // Template argument deduction is done by comparing the return
4475 // type of the template conversion function (call it P) with the
4476 // type that is required as the result of the conversion (call it
4477 // A) as described in 14.8.2.4.
4478 TemplateParameterList *TemplateParams
4479 = ConversionTemplate->getTemplateParameters();
4480 SmallVector<DeducedTemplateArgument, 4> Deduced;
4481 Deduced.resize(TemplateParams->size());
4482
4483 // C++0x [temp.deduct.conv]p4:
4484 // In general, the deduction process attempts to find template
4485 // argument values that will make the deduced A identical to
4486 // A. However, there are two cases that allow a difference:
4487 unsigned TDF = 0;
4488 // - If the original A is a reference type, A can be more
4489 // cv-qualified than the deduced A (i.e., the type referred to
4490 // by the reference)
4491 if (ToType->isReferenceType())
4492 TDF |= TDF_ArgWithReferenceType;
4493 // - The deduced A can be another pointer or pointer to member
4494 // type that can be converted to A via a qualification
4495 // conversion.
4496 //
4497 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
4498 // both P and A are pointers or member pointers. In this case, we
4499 // just ignore cv-qualifiers completely).
4500 if ((P->isPointerType() && A->isPointerType()) ||
4501 (P->isMemberPointerType() && A->isMemberPointerType()))
4502 TDF |= TDF_IgnoreQualifiers;
4503 if (TemplateDeductionResult Result
4504 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
4505 P, A, Info, Deduced, TDF))
4506 return Result;
4507
4508 // Create an Instantiation Scope for finalizing the operator.
4509 LocalInstantiationScope InstScope(*this);
4510 // Finish template argument deduction.
4511 FunctionDecl *ConversionSpecialized = nullptr;
4512 TemplateDeductionResult Result;
4513 runWithSufficientStackSpace(Info.getLocation(), [&] {
4514 Result = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
4515 ConversionSpecialized, Info);
4516 });
4517 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
4518 return Result;
4519 }
4520
4521 /// Deduce template arguments for a function template when there is
4522 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
4523 ///
4524 /// \param FunctionTemplate the function template for which we are performing
4525 /// template argument deduction.
4526 ///
4527 /// \param ExplicitTemplateArgs the explicitly-specified template
4528 /// arguments.
4529 ///
4530 /// \param Specialization if template argument deduction was successful,
4531 /// this will be set to the function template specialization produced by
4532 /// template argument deduction.
4533 ///
4534 /// \param Info the argument will be updated to provide additional information
4535 /// about template argument deduction.
4536 ///
4537 /// \param IsAddressOfFunction If \c true, we are deducing as part of taking
4538 /// the address of a function template in a context where we do not have a
4539 /// target type, per [over.over]. If \c false, we are looking up a function
4540 /// template specialization based on its signature, which only happens when
4541 /// deducing a function parameter type from an argument that is a template-id
4542 /// naming a function template specialization.
4543 ///
4544 /// \returns the result of template argument deduction.
DeduceTemplateArguments(FunctionTemplateDecl * FunctionTemplate,TemplateArgumentListInfo * ExplicitTemplateArgs,FunctionDecl * & Specialization,TemplateDeductionInfo & Info,bool IsAddressOfFunction)4545 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
4546 FunctionTemplateDecl *FunctionTemplate,
4547 TemplateArgumentListInfo *ExplicitTemplateArgs,
4548 FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
4549 bool IsAddressOfFunction) {
4550 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4551 QualType(), Specialization, Info,
4552 IsAddressOfFunction);
4553 }
4554
4555 namespace {
4556 struct DependentAuto { bool IsPack; };
4557
4558 /// Substitute the 'auto' specifier or deduced template specialization type
4559 /// specifier within a type for a given replacement type.
4560 class SubstituteDeducedTypeTransform :
4561 public TreeTransform<SubstituteDeducedTypeTransform> {
4562 QualType Replacement;
4563 bool ReplacementIsPack;
4564 bool UseTypeSugar;
4565
4566 public:
SubstituteDeducedTypeTransform(Sema & SemaRef,DependentAuto DA)4567 SubstituteDeducedTypeTransform(Sema &SemaRef, DependentAuto DA)
4568 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
4569 ReplacementIsPack(DA.IsPack), UseTypeSugar(true) {}
4570
SubstituteDeducedTypeTransform(Sema & SemaRef,QualType Replacement,bool UseTypeSugar=true)4571 SubstituteDeducedTypeTransform(Sema &SemaRef, QualType Replacement,
4572 bool UseTypeSugar = true)
4573 : TreeTransform<SubstituteDeducedTypeTransform>(SemaRef),
4574 Replacement(Replacement), ReplacementIsPack(false),
4575 UseTypeSugar(UseTypeSugar) {}
4576
TransformDesugared(TypeLocBuilder & TLB,DeducedTypeLoc TL)4577 QualType TransformDesugared(TypeLocBuilder &TLB, DeducedTypeLoc TL) {
4578 assert(isa<TemplateTypeParmType>(Replacement) &&
4579 "unexpected unsugared replacement kind");
4580 QualType Result = Replacement;
4581 TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
4582 NewTL.setNameLoc(TL.getNameLoc());
4583 return Result;
4584 }
4585
TransformAutoType(TypeLocBuilder & TLB,AutoTypeLoc TL)4586 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
4587 // If we're building the type pattern to deduce against, don't wrap the
4588 // substituted type in an AutoType. Certain template deduction rules
4589 // apply only when a template type parameter appears directly (and not if
4590 // the parameter is found through desugaring). For instance:
4591 // auto &&lref = lvalue;
4592 // must transform into "rvalue reference to T" not "rvalue reference to
4593 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
4594 //
4595 // FIXME: Is this still necessary?
4596 if (!UseTypeSugar)
4597 return TransformDesugared(TLB, TL);
4598
4599 QualType Result = SemaRef.Context.getAutoType(
4600 Replacement, TL.getTypePtr()->getKeyword(), Replacement.isNull(),
4601 ReplacementIsPack, TL.getTypePtr()->getTypeConstraintConcept(),
4602 TL.getTypePtr()->getTypeConstraintArguments());
4603 auto NewTL = TLB.push<AutoTypeLoc>(Result);
4604 NewTL.copy(TL);
4605 return Result;
4606 }
4607
TransformDeducedTemplateSpecializationType(TypeLocBuilder & TLB,DeducedTemplateSpecializationTypeLoc TL)4608 QualType TransformDeducedTemplateSpecializationType(
4609 TypeLocBuilder &TLB, DeducedTemplateSpecializationTypeLoc TL) {
4610 if (!UseTypeSugar)
4611 return TransformDesugared(TLB, TL);
4612
4613 QualType Result = SemaRef.Context.getDeducedTemplateSpecializationType(
4614 TL.getTypePtr()->getTemplateName(),
4615 Replacement, Replacement.isNull());
4616 auto NewTL = TLB.push<DeducedTemplateSpecializationTypeLoc>(Result);
4617 NewTL.setNameLoc(TL.getNameLoc());
4618 return Result;
4619 }
4620
TransformLambdaExpr(LambdaExpr * E)4621 ExprResult TransformLambdaExpr(LambdaExpr *E) {
4622 // Lambdas never need to be transformed.
4623 return E;
4624 }
4625
Apply(TypeLoc TL)4626 QualType Apply(TypeLoc TL) {
4627 // Create some scratch storage for the transformed type locations.
4628 // FIXME: We're just going to throw this information away. Don't build it.
4629 TypeLocBuilder TLB;
4630 TLB.reserve(TL.getFullDataSize());
4631 return TransformType(TLB, TL);
4632 }
4633 };
4634
4635 } // namespace
4636
CheckDeducedPlaceholderConstraints(Sema & S,const AutoType & Type,AutoTypeLoc TypeLoc,QualType Deduced)4637 static bool CheckDeducedPlaceholderConstraints(Sema &S, const AutoType &Type,
4638 AutoTypeLoc TypeLoc,
4639 QualType Deduced) {
4640 ConstraintSatisfaction Satisfaction;
4641 ConceptDecl *Concept = Type.getTypeConstraintConcept();
4642 TemplateArgumentListInfo TemplateArgs(TypeLoc.getLAngleLoc(),
4643 TypeLoc.getRAngleLoc());
4644 TemplateArgs.addArgument(
4645 TemplateArgumentLoc(TemplateArgument(Deduced),
4646 S.Context.getTrivialTypeSourceInfo(
4647 Deduced, TypeLoc.getNameLoc())));
4648 for (unsigned I = 0, C = TypeLoc.getNumArgs(); I != C; ++I)
4649 TemplateArgs.addArgument(TypeLoc.getArgLoc(I));
4650
4651 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4652 if (S.CheckTemplateArgumentList(Concept, SourceLocation(), TemplateArgs,
4653 /*PartialTemplateArgs=*/false,
4654 SugaredConverted, CanonicalConverted))
4655 return true;
4656 MultiLevelTemplateArgumentList MLTAL(Concept, CanonicalConverted,
4657 /*Final=*/false);
4658 if (S.CheckConstraintSatisfaction(Concept, {Concept->getConstraintExpr()},
4659 MLTAL, TypeLoc.getLocalSourceRange(),
4660 Satisfaction))
4661 return true;
4662 if (!Satisfaction.IsSatisfied) {
4663 std::string Buf;
4664 llvm::raw_string_ostream OS(Buf);
4665 OS << "'" << Concept->getName();
4666 if (TypeLoc.hasExplicitTemplateArgs()) {
4667 printTemplateArgumentList(
4668 OS, Type.getTypeConstraintArguments(), S.getPrintingPolicy(),
4669 Type.getTypeConstraintConcept()->getTemplateParameters());
4670 }
4671 OS << "'";
4672 OS.flush();
4673 S.Diag(TypeLoc.getConceptNameLoc(),
4674 diag::err_placeholder_constraints_not_satisfied)
4675 << Deduced << Buf << TypeLoc.getLocalSourceRange();
4676 S.DiagnoseUnsatisfiedConstraint(Satisfaction);
4677 return true;
4678 }
4679 return false;
4680 }
4681
4682 /// Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
4683 ///
4684 /// Note that this is done even if the initializer is dependent. (This is
4685 /// necessary to support partial ordering of templates using 'auto'.)
4686 /// A dependent type will be produced when deducing from a dependent type.
4687 ///
4688 /// \param Type the type pattern using the auto type-specifier.
4689 /// \param Init the initializer for the variable whose type is to be deduced.
4690 /// \param Result if type deduction was successful, this will be set to the
4691 /// deduced type.
4692 /// \param Info the argument will be updated to provide additional information
4693 /// about template argument deduction.
4694 /// \param DependentDeduction Set if we should permit deduction in
4695 /// dependent cases. This is necessary for template partial ordering with
4696 /// 'auto' template parameters. The template parameter depth to be used
4697 /// should be specified in the 'Info' parameter.
4698 /// \param IgnoreConstraints Set if we should not fail if the deduced type does
4699 /// not satisfy the type-constraint in the auto type.
DeduceAutoType(TypeLoc Type,Expr * Init,QualType & Result,TemplateDeductionInfo & Info,bool DependentDeduction,bool IgnoreConstraints)4700 Sema::TemplateDeductionResult Sema::DeduceAutoType(TypeLoc Type, Expr *Init,
4701 QualType &Result,
4702 TemplateDeductionInfo &Info,
4703 bool DependentDeduction,
4704 bool IgnoreConstraints) {
4705 assert(DependentDeduction || Info.getDeducedDepth() == 0);
4706 if (Init->containsErrors())
4707 return TDK_AlreadyDiagnosed;
4708
4709 const AutoType *AT = Type.getType()->getContainedAutoType();
4710 assert(AT);
4711
4712 if (Init->getType()->isNonOverloadPlaceholderType() || AT->isDecltypeAuto()) {
4713 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
4714 if (NonPlaceholder.isInvalid())
4715 return TDK_AlreadyDiagnosed;
4716 Init = NonPlaceholder.get();
4717 }
4718
4719 DependentAuto DependentResult = {
4720 /*.IsPack = */ (bool)Type.getAs<PackExpansionTypeLoc>()};
4721
4722 if (!DependentDeduction &&
4723 (Type.getType()->isDependentType() || Init->isTypeDependent() ||
4724 Init->containsUnexpandedParameterPack())) {
4725 Result = SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4726 assert(!Result.isNull() && "substituting DependentTy can't fail");
4727 return TDK_Success;
4728 }
4729
4730 auto *InitList = dyn_cast<InitListExpr>(Init);
4731 if (!getLangOpts().CPlusPlus && InitList) {
4732 Diag(Init->getBeginLoc(), diag::err_auto_init_list_from_c);
4733 return TDK_AlreadyDiagnosed;
4734 }
4735
4736 // Deduce type of TemplParam in Func(Init)
4737 SmallVector<DeducedTemplateArgument, 1> Deduced;
4738 Deduced.resize(1);
4739
4740 // If deduction failed, don't diagnose if the initializer is dependent; it
4741 // might acquire a matching type in the instantiation.
4742 auto DeductionFailed = [&](TemplateDeductionResult TDK) {
4743 if (Init->isTypeDependent()) {
4744 Result =
4745 SubstituteDeducedTypeTransform(*this, DependentResult).Apply(Type);
4746 assert(!Result.isNull() && "substituting DependentTy can't fail");
4747 return TDK_Success;
4748 }
4749 return TDK;
4750 };
4751
4752 SmallVector<OriginalCallArg, 4> OriginalCallArgs;
4753
4754 QualType DeducedType;
4755 // If this is a 'decltype(auto)' specifier, do the decltype dance.
4756 if (AT->isDecltypeAuto()) {
4757 if (InitList) {
4758 Diag(Init->getBeginLoc(), diag::err_decltype_auto_initializer_list);
4759 return TDK_AlreadyDiagnosed;
4760 }
4761
4762 DeducedType = getDecltypeForExpr(Init);
4763 assert(!DeducedType.isNull());
4764 } else {
4765 LocalInstantiationScope InstScope(*this);
4766
4767 // Build template<class TemplParam> void Func(FuncParam);
4768 SourceLocation Loc = Init->getExprLoc();
4769 TemplateTypeParmDecl *TemplParam = TemplateTypeParmDecl::Create(
4770 Context, nullptr, SourceLocation(), Loc, Info.getDeducedDepth(), 0,
4771 nullptr, false, false, false);
4772 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
4773 NamedDecl *TemplParamPtr = TemplParam;
4774 FixedSizeTemplateParameterListStorage<1, false> TemplateParamsSt(
4775 Context, Loc, Loc, TemplParamPtr, Loc, nullptr);
4776
4777 if (InitList) {
4778 // Notionally, we substitute std::initializer_list<T> for 'auto' and
4779 // deduce against that. Such deduction only succeeds if removing
4780 // cv-qualifiers and references results in std::initializer_list<T>.
4781 if (!Type.getType().getNonReferenceType()->getAs<AutoType>())
4782 return TDK_Invalid;
4783
4784 SourceRange DeducedFromInitRange;
4785 for (Expr *Init : InitList->inits()) {
4786 // Resolving a core issue: a braced-init-list containing any designators
4787 // is a non-deduced context.
4788 if (isa<DesignatedInitExpr>(Init))
4789 return TDK_Invalid;
4790 if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4791 *this, TemplateParamsSt.get(), 0, TemplArg, Init, Info, Deduced,
4792 OriginalCallArgs, /*Decomposed=*/true,
4793 /*ArgIdx=*/0, /*TDF=*/0)) {
4794 if (TDK == TDK_Inconsistent) {
4795 Diag(Info.getLocation(), diag::err_auto_inconsistent_deduction)
4796 << Info.FirstArg << Info.SecondArg << DeducedFromInitRange
4797 << Init->getSourceRange();
4798 return DeductionFailed(TDK_AlreadyDiagnosed);
4799 }
4800 return DeductionFailed(TDK);
4801 }
4802
4803 if (DeducedFromInitRange.isInvalid() &&
4804 Deduced[0].getKind() != TemplateArgument::Null)
4805 DeducedFromInitRange = Init->getSourceRange();
4806 }
4807 } else {
4808 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
4809 Diag(Loc, diag::err_auto_bitfield);
4810 return TDK_AlreadyDiagnosed;
4811 }
4812 QualType FuncParam =
4813 SubstituteDeducedTypeTransform(*this, TemplArg).Apply(Type);
4814 assert(!FuncParam.isNull() &&
4815 "substituting template parameter for 'auto' failed");
4816 if (auto TDK = DeduceTemplateArgumentsFromCallArgument(
4817 *this, TemplateParamsSt.get(), 0, FuncParam, Init, Info, Deduced,
4818 OriginalCallArgs, /*Decomposed=*/false, /*ArgIdx=*/0, /*TDF=*/0))
4819 return DeductionFailed(TDK);
4820 }
4821
4822 // Could be null if somehow 'auto' appears in a non-deduced context.
4823 if (Deduced[0].getKind() != TemplateArgument::Type)
4824 return DeductionFailed(TDK_Incomplete);
4825 DeducedType = Deduced[0].getAsType();
4826
4827 if (InitList) {
4828 DeducedType = BuildStdInitializerList(DeducedType, Loc);
4829 if (DeducedType.isNull())
4830 return TDK_AlreadyDiagnosed;
4831 }
4832 }
4833
4834 if (!Result.isNull()) {
4835 if (!Context.hasSameType(DeducedType, Result)) {
4836 Info.FirstArg = Result;
4837 Info.SecondArg = DeducedType;
4838 return DeductionFailed(TDK_Inconsistent);
4839 }
4840 DeducedType = Context.getCommonSugaredType(Result, DeducedType);
4841 }
4842
4843 if (AT->isConstrained() && !IgnoreConstraints &&
4844 CheckDeducedPlaceholderConstraints(
4845 *this, *AT, Type.getContainedAutoTypeLoc(), DeducedType))
4846 return TDK_AlreadyDiagnosed;
4847
4848 Result = SubstituteDeducedTypeTransform(*this, DeducedType).Apply(Type);
4849 if (Result.isNull())
4850 return TDK_AlreadyDiagnosed;
4851
4852 // Check that the deduced argument type is compatible with the original
4853 // argument type per C++ [temp.deduct.call]p4.
4854 QualType DeducedA = InitList ? Deduced[0].getAsType() : Result;
4855 for (const OriginalCallArg &OriginalArg : OriginalCallArgs) {
4856 assert((bool)InitList == OriginalArg.DecomposedParam &&
4857 "decomposed non-init-list in auto deduction?");
4858 if (auto TDK =
4859 CheckOriginalCallArgDeduction(*this, Info, OriginalArg, DeducedA)) {
4860 Result = QualType();
4861 return DeductionFailed(TDK);
4862 }
4863 }
4864
4865 return TDK_Success;
4866 }
4867
SubstAutoType(QualType TypeWithAuto,QualType TypeToReplaceAuto)4868 QualType Sema::SubstAutoType(QualType TypeWithAuto,
4869 QualType TypeToReplaceAuto) {
4870 assert(TypeToReplaceAuto != Context.DependentTy);
4871 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4872 .TransformType(TypeWithAuto);
4873 }
4874
SubstAutoTypeSourceInfo(TypeSourceInfo * TypeWithAuto,QualType TypeToReplaceAuto)4875 TypeSourceInfo *Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4876 QualType TypeToReplaceAuto) {
4877 assert(TypeToReplaceAuto != Context.DependentTy);
4878 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto)
4879 .TransformType(TypeWithAuto);
4880 }
4881
SubstAutoTypeDependent(QualType TypeWithAuto)4882 QualType Sema::SubstAutoTypeDependent(QualType TypeWithAuto) {
4883 return SubstituteDeducedTypeTransform(*this, DependentAuto{false})
4884 .TransformType(TypeWithAuto);
4885 }
4886
4887 TypeSourceInfo *
SubstAutoTypeSourceInfoDependent(TypeSourceInfo * TypeWithAuto)4888 Sema::SubstAutoTypeSourceInfoDependent(TypeSourceInfo *TypeWithAuto) {
4889 return SubstituteDeducedTypeTransform(*this, DependentAuto{false})
4890 .TransformType(TypeWithAuto);
4891 }
4892
ReplaceAutoType(QualType TypeWithAuto,QualType TypeToReplaceAuto)4893 QualType Sema::ReplaceAutoType(QualType TypeWithAuto,
4894 QualType TypeToReplaceAuto) {
4895 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
4896 /*UseTypeSugar*/ false)
4897 .TransformType(TypeWithAuto);
4898 }
4899
ReplaceAutoTypeSourceInfo(TypeSourceInfo * TypeWithAuto,QualType TypeToReplaceAuto)4900 TypeSourceInfo *Sema::ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
4901 QualType TypeToReplaceAuto) {
4902 return SubstituteDeducedTypeTransform(*this, TypeToReplaceAuto,
4903 /*UseTypeSugar*/ false)
4904 .TransformType(TypeWithAuto);
4905 }
4906
DiagnoseAutoDeductionFailure(VarDecl * VDecl,Expr * Init)4907 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
4908 if (isa<InitListExpr>(Init))
4909 Diag(VDecl->getLocation(),
4910 VDecl->isInitCapture()
4911 ? diag::err_init_capture_deduction_failure_from_init_list
4912 : diag::err_auto_var_deduction_failure_from_init_list)
4913 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
4914 else
4915 Diag(VDecl->getLocation(),
4916 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
4917 : diag::err_auto_var_deduction_failure)
4918 << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4919 << Init->getSourceRange();
4920 }
4921
DeduceReturnType(FunctionDecl * FD,SourceLocation Loc,bool Diagnose)4922 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
4923 bool Diagnose) {
4924 assert(FD->getReturnType()->isUndeducedType());
4925
4926 // For a lambda's conversion operator, deduce any 'auto' or 'decltype(auto)'
4927 // within the return type from the call operator's type.
4928 if (isLambdaConversionOperator(FD)) {
4929 CXXRecordDecl *Lambda = cast<CXXMethodDecl>(FD)->getParent();
4930 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
4931
4932 // For a generic lambda, instantiate the call operator if needed.
4933 if (auto *Args = FD->getTemplateSpecializationArgs()) {
4934 CallOp = InstantiateFunctionDeclaration(
4935 CallOp->getDescribedFunctionTemplate(), Args, Loc);
4936 if (!CallOp || CallOp->isInvalidDecl())
4937 return true;
4938
4939 // We might need to deduce the return type by instantiating the definition
4940 // of the operator() function.
4941 if (CallOp->getReturnType()->isUndeducedType()) {
4942 runWithSufficientStackSpace(Loc, [&] {
4943 InstantiateFunctionDefinition(Loc, CallOp);
4944 });
4945 }
4946 }
4947
4948 if (CallOp->isInvalidDecl())
4949 return true;
4950 assert(!CallOp->getReturnType()->isUndeducedType() &&
4951 "failed to deduce lambda return type");
4952
4953 // Build the new return type from scratch.
4954 CallingConv RetTyCC = FD->getReturnType()
4955 ->getPointeeType()
4956 ->castAs<FunctionType>()
4957 ->getCallConv();
4958 QualType RetType = getLambdaConversionFunctionResultType(
4959 CallOp->getType()->castAs<FunctionProtoType>(), RetTyCC);
4960 if (FD->getReturnType()->getAs<PointerType>())
4961 RetType = Context.getPointerType(RetType);
4962 else {
4963 assert(FD->getReturnType()->getAs<BlockPointerType>());
4964 RetType = Context.getBlockPointerType(RetType);
4965 }
4966 Context.adjustDeducedFunctionResultType(FD, RetType);
4967 return false;
4968 }
4969
4970 if (FD->getTemplateInstantiationPattern()) {
4971 runWithSufficientStackSpace(Loc, [&] {
4972 InstantiateFunctionDefinition(Loc, FD);
4973 });
4974 }
4975
4976 bool StillUndeduced = FD->getReturnType()->isUndeducedType();
4977 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
4978 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
4979 Diag(FD->getLocation(), diag::note_callee_decl) << FD;
4980 }
4981
4982 return StillUndeduced;
4983 }
4984
4985 /// If this is a non-static member function,
4986 static void
AddImplicitObjectParameterType(ASTContext & Context,CXXMethodDecl * Method,SmallVectorImpl<QualType> & ArgTypes)4987 AddImplicitObjectParameterType(ASTContext &Context,
4988 CXXMethodDecl *Method,
4989 SmallVectorImpl<QualType> &ArgTypes) {
4990 // C++11 [temp.func.order]p3:
4991 // [...] The new parameter is of type "reference to cv A," where cv are
4992 // the cv-qualifiers of the function template (if any) and A is
4993 // the class of which the function template is a member.
4994 //
4995 // The standard doesn't say explicitly, but we pick the appropriate kind of
4996 // reference type based on [over.match.funcs]p4.
4997 QualType ArgTy = Context.getTypeDeclType(Method->getParent());
4998 ArgTy = Context.getQualifiedType(ArgTy, Method->getMethodQualifiers());
4999 if (Method->getRefQualifier() == RQ_RValue)
5000 ArgTy = Context.getRValueReferenceType(ArgTy);
5001 else
5002 ArgTy = Context.getLValueReferenceType(ArgTy);
5003 ArgTypes.push_back(ArgTy);
5004 }
5005
5006 /// Determine whether the function template \p FT1 is at least as
5007 /// specialized as \p FT2.
isAtLeastAsSpecializedAs(Sema & S,SourceLocation Loc,FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments1,bool Reversed)5008 static bool isAtLeastAsSpecializedAs(Sema &S,
5009 SourceLocation Loc,
5010 FunctionTemplateDecl *FT1,
5011 FunctionTemplateDecl *FT2,
5012 TemplatePartialOrderingContext TPOC,
5013 unsigned NumCallArguments1,
5014 bool Reversed) {
5015 assert(!Reversed || TPOC == TPOC_Call);
5016
5017 FunctionDecl *FD1 = FT1->getTemplatedDecl();
5018 FunctionDecl *FD2 = FT2->getTemplatedDecl();
5019 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
5020 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
5021
5022 assert(Proto1 && Proto2 && "Function templates must have prototypes");
5023 TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
5024 SmallVector<DeducedTemplateArgument, 4> Deduced;
5025 Deduced.resize(TemplateParams->size());
5026
5027 // C++0x [temp.deduct.partial]p3:
5028 // The types used to determine the ordering depend on the context in which
5029 // the partial ordering is done:
5030 TemplateDeductionInfo Info(Loc);
5031 SmallVector<QualType, 4> Args2;
5032 switch (TPOC) {
5033 case TPOC_Call: {
5034 // - In the context of a function call, the function parameter types are
5035 // used.
5036 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
5037 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
5038
5039 // C++11 [temp.func.order]p3:
5040 // [...] If only one of the function templates is a non-static
5041 // member, that function template is considered to have a new
5042 // first parameter inserted in its function parameter list. The
5043 // new parameter is of type "reference to cv A," where cv are
5044 // the cv-qualifiers of the function template (if any) and A is
5045 // the class of which the function template is a member.
5046 //
5047 // Note that we interpret this to mean "if one of the function
5048 // templates is a non-static member and the other is a non-member";
5049 // otherwise, the ordering rules for static functions against non-static
5050 // functions don't make any sense.
5051 //
5052 // C++98/03 doesn't have this provision but we've extended DR532 to cover
5053 // it as wording was broken prior to it.
5054 SmallVector<QualType, 4> Args1;
5055
5056 unsigned NumComparedArguments = NumCallArguments1;
5057
5058 if (!Method2 && Method1 && !Method1->isStatic()) {
5059 // Compare 'this' from Method1 against first parameter from Method2.
5060 AddImplicitObjectParameterType(S.Context, Method1, Args1);
5061 ++NumComparedArguments;
5062 } else if (!Method1 && Method2 && !Method2->isStatic()) {
5063 // Compare 'this' from Method2 against first parameter from Method1.
5064 AddImplicitObjectParameterType(S.Context, Method2, Args2);
5065 } else if (Method1 && Method2 && Reversed) {
5066 // Compare 'this' from Method1 against second parameter from Method2
5067 // and 'this' from Method2 against second parameter from Method1.
5068 AddImplicitObjectParameterType(S.Context, Method1, Args1);
5069 AddImplicitObjectParameterType(S.Context, Method2, Args2);
5070 ++NumComparedArguments;
5071 }
5072
5073 Args1.insert(Args1.end(), Proto1->param_type_begin(),
5074 Proto1->param_type_end());
5075 Args2.insert(Args2.end(), Proto2->param_type_begin(),
5076 Proto2->param_type_end());
5077
5078 // C++ [temp.func.order]p5:
5079 // The presence of unused ellipsis and default arguments has no effect on
5080 // the partial ordering of function templates.
5081 if (Args1.size() > NumComparedArguments)
5082 Args1.resize(NumComparedArguments);
5083 if (Args2.size() > NumComparedArguments)
5084 Args2.resize(NumComparedArguments);
5085 if (Reversed)
5086 std::reverse(Args2.begin(), Args2.end());
5087
5088 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
5089 Args1.data(), Args1.size(), Info, Deduced,
5090 TDF_None, /*PartialOrdering=*/true))
5091 return false;
5092
5093 break;
5094 }
5095
5096 case TPOC_Conversion:
5097 // - In the context of a call to a conversion operator, the return types
5098 // of the conversion function templates are used.
5099 if (DeduceTemplateArgumentsByTypeMatch(
5100 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
5101 Info, Deduced, TDF_None,
5102 /*PartialOrdering=*/true))
5103 return false;
5104 break;
5105
5106 case TPOC_Other:
5107 // - In other contexts (14.6.6.2) the function template's function type
5108 // is used.
5109 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
5110 FD2->getType(), FD1->getType(),
5111 Info, Deduced, TDF_None,
5112 /*PartialOrdering=*/true))
5113 return false;
5114 break;
5115 }
5116
5117 // C++0x [temp.deduct.partial]p11:
5118 // In most cases, all template parameters must have values in order for
5119 // deduction to succeed, but for partial ordering purposes a template
5120 // parameter may remain without a value provided it is not used in the
5121 // types being used for partial ordering. [ Note: a template parameter used
5122 // in a non-deduced context is considered used. -end note]
5123 unsigned ArgIdx = 0, NumArgs = Deduced.size();
5124 for (; ArgIdx != NumArgs; ++ArgIdx)
5125 if (Deduced[ArgIdx].isNull())
5126 break;
5127
5128 // FIXME: We fail to implement [temp.deduct.type]p1 along this path. We need
5129 // to substitute the deduced arguments back into the template and check that
5130 // we get the right type.
5131
5132 if (ArgIdx == NumArgs) {
5133 // All template arguments were deduced. FT1 is at least as specialized
5134 // as FT2.
5135 return true;
5136 }
5137
5138 // Figure out which template parameters were used.
5139 llvm::SmallBitVector UsedParameters(TemplateParams->size());
5140 switch (TPOC) {
5141 case TPOC_Call:
5142 for (unsigned I = 0, N = Args2.size(); I != N; ++I)
5143 ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
5144 TemplateParams->getDepth(),
5145 UsedParameters);
5146 break;
5147
5148 case TPOC_Conversion:
5149 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
5150 TemplateParams->getDepth(), UsedParameters);
5151 break;
5152
5153 case TPOC_Other:
5154 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
5155 TemplateParams->getDepth(),
5156 UsedParameters);
5157 break;
5158 }
5159
5160 for (; ArgIdx != NumArgs; ++ArgIdx)
5161 // If this argument had no value deduced but was used in one of the types
5162 // used for partial ordering, then deduction fails.
5163 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
5164 return false;
5165
5166 return true;
5167 }
5168
5169 /// Returns the more specialized function template according
5170 /// to the rules of function template partial ordering (C++ [temp.func.order]).
5171 ///
5172 /// \param FT1 the first function template
5173 ///
5174 /// \param FT2 the second function template
5175 ///
5176 /// \param TPOC the context in which we are performing partial ordering of
5177 /// function templates.
5178 ///
5179 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
5180 /// only when \c TPOC is \c TPOC_Call.
5181 ///
5182 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
5183 /// only when \c TPOC is \c TPOC_Call.
5184 ///
5185 /// \param Reversed If \c true, exactly one of FT1 and FT2 is an overload
5186 /// candidate with a reversed parameter order. In this case, the corresponding
5187 /// P/A pairs between FT1 and FT2 are reversed.
5188 ///
5189 /// \returns the more specialized function template. If neither
5190 /// template is more specialized, returns NULL.
getMoreSpecializedTemplate(FunctionTemplateDecl * FT1,FunctionTemplateDecl * FT2,SourceLocation Loc,TemplatePartialOrderingContext TPOC,unsigned NumCallArguments1,unsigned NumCallArguments2,bool Reversed)5191 FunctionTemplateDecl *Sema::getMoreSpecializedTemplate(
5192 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
5193 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
5194 unsigned NumCallArguments2, bool Reversed) {
5195
5196 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
5197 NumCallArguments1, Reversed);
5198 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
5199 NumCallArguments2, Reversed);
5200
5201 // C++ [temp.deduct.partial]p10:
5202 // F is more specialized than G if F is at least as specialized as G and G
5203 // is not at least as specialized as F.
5204 if (Better1 != Better2) // We have a clear winner
5205 return Better1 ? FT1 : FT2;
5206
5207 if (!Better1 && !Better2) // Neither is better than the other
5208 return nullptr;
5209
5210 // C++ [temp.deduct.partial]p11:
5211 // ... and if G has a trailing function parameter pack for which F does not
5212 // have a corresponding parameter, and if F does not have a trailing
5213 // function parameter pack, then F is more specialized than G.
5214 FunctionDecl *FD1 = FT1->getTemplatedDecl();
5215 FunctionDecl *FD2 = FT2->getTemplatedDecl();
5216 unsigned NumParams1 = FD1->getNumParams();
5217 unsigned NumParams2 = FD2->getNumParams();
5218 bool Variadic1 = NumParams1 && FD1->parameters().back()->isParameterPack();
5219 bool Variadic2 = NumParams2 && FD2->parameters().back()->isParameterPack();
5220 if (Variadic1 != Variadic2) {
5221 if (Variadic1 && NumParams1 > NumParams2)
5222 return FT2;
5223 if (Variadic2 && NumParams2 > NumParams1)
5224 return FT1;
5225 }
5226
5227 // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that
5228 // there is no wording or even resolution for this issue.
5229 for (int i = 0, e = std::min(NumParams1, NumParams2); i < e; ++i) {
5230 QualType T1 = FD1->getParamDecl(i)->getType().getCanonicalType();
5231 QualType T2 = FD2->getParamDecl(i)->getType().getCanonicalType();
5232 auto *TST1 = dyn_cast<TemplateSpecializationType>(T1);
5233 auto *TST2 = dyn_cast<TemplateSpecializationType>(T2);
5234 if (!TST1 || !TST2)
5235 continue;
5236 const TemplateArgument &TA1 = TST1->template_arguments().back();
5237 if (TA1.getKind() == TemplateArgument::Pack) {
5238 assert(TST1->template_arguments().size() ==
5239 TST2->template_arguments().size());
5240 const TemplateArgument &TA2 = TST2->template_arguments().back();
5241 assert(TA2.getKind() == TemplateArgument::Pack);
5242 unsigned PackSize1 = TA1.pack_size();
5243 unsigned PackSize2 = TA2.pack_size();
5244 bool IsPackExpansion1 =
5245 PackSize1 && TA1.pack_elements().back().isPackExpansion();
5246 bool IsPackExpansion2 =
5247 PackSize2 && TA2.pack_elements().back().isPackExpansion();
5248 if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) {
5249 if (PackSize1 > PackSize2 && IsPackExpansion1)
5250 return FT2;
5251 if (PackSize1 < PackSize2 && IsPackExpansion2)
5252 return FT1;
5253 }
5254 }
5255 }
5256
5257 if (!Context.getLangOpts().CPlusPlus20)
5258 return nullptr;
5259
5260 // Match GCC on not implementing [temp.func.order]p6.2.1.
5261
5262 // C++20 [temp.func.order]p6:
5263 // If deduction against the other template succeeds for both transformed
5264 // templates, constraints can be considered as follows:
5265
5266 // C++20 [temp.func.order]p6.1:
5267 // If their template-parameter-lists (possibly including template-parameters
5268 // invented for an abbreviated function template ([dcl.fct])) or function
5269 // parameter lists differ in length, neither template is more specialized
5270 // than the other.
5271 TemplateParameterList *TPL1 = FT1->getTemplateParameters();
5272 TemplateParameterList *TPL2 = FT2->getTemplateParameters();
5273 if (TPL1->size() != TPL2->size() || NumParams1 != NumParams2)
5274 return nullptr;
5275
5276 // C++20 [temp.func.order]p6.2.2:
5277 // Otherwise, if the corresponding template-parameters of the
5278 // template-parameter-lists are not equivalent ([temp.over.link]) or if the
5279 // function parameters that positionally correspond between the two
5280 // templates are not of the same type, neither template is more specialized
5281 // than the other.
5282 if (!TemplateParameterListsAreEqual(
5283 TPL1, TPL2, false, Sema::TPL_TemplateMatch, SourceLocation(), true))
5284 return nullptr;
5285
5286 for (unsigned i = 0; i < NumParams1; ++i)
5287 if (!Context.hasSameType(FD1->getParamDecl(i)->getType(),
5288 FD2->getParamDecl(i)->getType()))
5289 return nullptr;
5290
5291 // C++20 [temp.func.order]p6.3:
5292 // Otherwise, if the context in which the partial ordering is done is
5293 // that of a call to a conversion function and the return types of the
5294 // templates are not the same, then neither template is more specialized
5295 // than the other.
5296 if (TPOC == TPOC_Conversion &&
5297 !Context.hasSameType(FD1->getReturnType(), FD2->getReturnType()))
5298 return nullptr;
5299
5300 llvm::SmallVector<const Expr *, 3> AC1, AC2;
5301 FT1->getAssociatedConstraints(AC1);
5302 FT2->getAssociatedConstraints(AC2);
5303 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5304 if (IsAtLeastAsConstrained(FT1, AC1, FT2, AC2, AtLeastAsConstrained1))
5305 return nullptr;
5306 if (IsAtLeastAsConstrained(FT2, AC2, FT1, AC1, AtLeastAsConstrained2))
5307 return nullptr;
5308 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5309 return nullptr;
5310 return AtLeastAsConstrained1 ? FT1 : FT2;
5311 }
5312
5313 /// Determine if the two templates are equivalent.
isSameTemplate(TemplateDecl * T1,TemplateDecl * T2)5314 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
5315 if (T1 == T2)
5316 return true;
5317
5318 if (!T1 || !T2)
5319 return false;
5320
5321 return T1->getCanonicalDecl() == T2->getCanonicalDecl();
5322 }
5323
5324 /// Retrieve the most specialized of the given function template
5325 /// specializations.
5326 ///
5327 /// \param SpecBegin the start iterator of the function template
5328 /// specializations that we will be comparing.
5329 ///
5330 /// \param SpecEnd the end iterator of the function template
5331 /// specializations, paired with \p SpecBegin.
5332 ///
5333 /// \param Loc the location where the ambiguity or no-specializations
5334 /// diagnostic should occur.
5335 ///
5336 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
5337 /// no matching candidates.
5338 ///
5339 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
5340 /// occurs.
5341 ///
5342 /// \param CandidateDiag partial diagnostic used for each function template
5343 /// specialization that is a candidate in the ambiguous ordering. One parameter
5344 /// in this diagnostic should be unbound, which will correspond to the string
5345 /// describing the template arguments for the function template specialization.
5346 ///
5347 /// \returns the most specialized function template specialization, if
5348 /// found. Otherwise, returns SpecEnd.
getMostSpecialized(UnresolvedSetIterator SpecBegin,UnresolvedSetIterator SpecEnd,TemplateSpecCandidateSet & FailedCandidates,SourceLocation Loc,const PartialDiagnostic & NoneDiag,const PartialDiagnostic & AmbigDiag,const PartialDiagnostic & CandidateDiag,bool Complain,QualType TargetType)5349 UnresolvedSetIterator Sema::getMostSpecialized(
5350 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
5351 TemplateSpecCandidateSet &FailedCandidates,
5352 SourceLocation Loc, const PartialDiagnostic &NoneDiag,
5353 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
5354 bool Complain, QualType TargetType) {
5355 if (SpecBegin == SpecEnd) {
5356 if (Complain) {
5357 Diag(Loc, NoneDiag);
5358 FailedCandidates.NoteCandidates(*this, Loc);
5359 }
5360 return SpecEnd;
5361 }
5362
5363 if (SpecBegin + 1 == SpecEnd)
5364 return SpecBegin;
5365
5366 // Find the function template that is better than all of the templates it
5367 // has been compared to.
5368 UnresolvedSetIterator Best = SpecBegin;
5369 FunctionTemplateDecl *BestTemplate
5370 = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
5371 assert(BestTemplate && "Not a function template specialization?");
5372 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
5373 FunctionTemplateDecl *Challenger
5374 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5375 assert(Challenger && "Not a function template specialization?");
5376 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5377 Loc, TPOC_Other, 0, 0),
5378 Challenger)) {
5379 Best = I;
5380 BestTemplate = Challenger;
5381 }
5382 }
5383
5384 // Make sure that the "best" function template is more specialized than all
5385 // of the others.
5386 bool Ambiguous = false;
5387 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5388 FunctionTemplateDecl *Challenger
5389 = cast<FunctionDecl>(*I)->getPrimaryTemplate();
5390 if (I != Best &&
5391 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
5392 Loc, TPOC_Other, 0, 0),
5393 BestTemplate)) {
5394 Ambiguous = true;
5395 break;
5396 }
5397 }
5398
5399 if (!Ambiguous) {
5400 // We found an answer. Return it.
5401 return Best;
5402 }
5403
5404 // Diagnose the ambiguity.
5405 if (Complain) {
5406 Diag(Loc, AmbigDiag);
5407
5408 // FIXME: Can we order the candidates in some sane way?
5409 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
5410 PartialDiagnostic PD = CandidateDiag;
5411 const auto *FD = cast<FunctionDecl>(*I);
5412 PD << FD << getTemplateArgumentBindingsText(
5413 FD->getPrimaryTemplate()->getTemplateParameters(),
5414 *FD->getTemplateSpecializationArgs());
5415 if (!TargetType.isNull())
5416 HandleFunctionTypeMismatch(PD, FD->getType(), TargetType);
5417 Diag((*I)->getLocation(), PD);
5418 }
5419 }
5420
5421 return SpecEnd;
5422 }
5423
5424 /// Determine whether one partial specialization, P1, is at least as
5425 /// specialized than another, P2.
5426 ///
5427 /// \tparam TemplateLikeDecl The kind of P2, which must be a
5428 /// TemplateDecl or {Class,Var}TemplatePartialSpecializationDecl.
5429 /// \param T1 The injected-class-name of P1 (faked for a variable template).
5430 /// \param T2 The injected-class-name of P2 (faked for a variable template).
5431 template<typename TemplateLikeDecl>
isAtLeastAsSpecializedAs(Sema & S,QualType T1,QualType T2,TemplateLikeDecl * P2,TemplateDeductionInfo & Info)5432 static bool isAtLeastAsSpecializedAs(Sema &S, QualType T1, QualType T2,
5433 TemplateLikeDecl *P2,
5434 TemplateDeductionInfo &Info) {
5435 // C++ [temp.class.order]p1:
5436 // For two class template partial specializations, the first is at least as
5437 // specialized as the second if, given the following rewrite to two
5438 // function templates, the first function template is at least as
5439 // specialized as the second according to the ordering rules for function
5440 // templates (14.6.6.2):
5441 // - the first function template has the same template parameters as the
5442 // first partial specialization and has a single function parameter
5443 // whose type is a class template specialization with the template
5444 // arguments of the first partial specialization, and
5445 // - the second function template has the same template parameters as the
5446 // second partial specialization and has a single function parameter
5447 // whose type is a class template specialization with the template
5448 // arguments of the second partial specialization.
5449 //
5450 // Rather than synthesize function templates, we merely perform the
5451 // equivalent partial ordering by performing deduction directly on
5452 // the template arguments of the class template partial
5453 // specializations. This computation is slightly simpler than the
5454 // general problem of function template partial ordering, because
5455 // class template partial specializations are more constrained. We
5456 // know that every template parameter is deducible from the class
5457 // template partial specialization's template arguments, for
5458 // example.
5459 SmallVector<DeducedTemplateArgument, 4> Deduced;
5460
5461 // Determine whether P1 is at least as specialized as P2.
5462 Deduced.resize(P2->getTemplateParameters()->size());
5463 if (DeduceTemplateArgumentsByTypeMatch(S, P2->getTemplateParameters(),
5464 T2, T1, Info, Deduced, TDF_None,
5465 /*PartialOrdering=*/true))
5466 return false;
5467
5468 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
5469 Deduced.end());
5470 Sema::InstantiatingTemplate Inst(S, Info.getLocation(), P2, DeducedArgs,
5471 Info);
5472 if (Inst.isInvalid())
5473 return false;
5474
5475 const auto *TST1 = cast<TemplateSpecializationType>(T1);
5476 bool AtLeastAsSpecialized;
5477 S.runWithSufficientStackSpace(Info.getLocation(), [&] {
5478 AtLeastAsSpecialized = !FinishTemplateArgumentDeduction(
5479 S, P2, /*IsPartialOrdering=*/true,
5480 TemplateArgumentList(TemplateArgumentList::OnStack,
5481 TST1->template_arguments()),
5482 Deduced, Info);
5483 });
5484 return AtLeastAsSpecialized;
5485 }
5486
5487 namespace {
5488 // A dummy class to return nullptr instead of P2 when performing "more
5489 // specialized than primary" check.
5490 struct GetP2 {
5491 template <typename T1, typename T2,
5492 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
5493 T2 *operator()(T1 *, T2 *P2) {
5494 return P2;
5495 }
5496 template <typename T1, typename T2,
5497 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
5498 T1 *operator()(T1 *, T2 *) {
5499 return nullptr;
5500 }
5501 };
5502
5503 // The assumption is that two template argument lists have the same size.
5504 struct TemplateArgumentListAreEqual {
5505 ASTContext &Ctx;
TemplateArgumentListAreEqual__anon20d79abd1611::TemplateArgumentListAreEqual5506 TemplateArgumentListAreEqual(ASTContext &Ctx) : Ctx(Ctx) {}
5507
5508 template <typename T1, typename T2,
5509 std::enable_if_t<std::is_same_v<T1, T2>, bool> = true>
operator ()__anon20d79abd1611::TemplateArgumentListAreEqual5510 bool operator()(T1 *PS1, T2 *PS2) {
5511 ArrayRef<TemplateArgument> Args1 = PS1->getTemplateArgs().asArray(),
5512 Args2 = PS2->getTemplateArgs().asArray();
5513
5514 for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
5515 // We use profile, instead of structural comparison of the arguments,
5516 // because canonicalization can't do the right thing for dependent
5517 // expressions.
5518 llvm::FoldingSetNodeID IDA, IDB;
5519 Args1[I].Profile(IDA, Ctx);
5520 Args2[I].Profile(IDB, Ctx);
5521 if (IDA != IDB)
5522 return false;
5523 }
5524 return true;
5525 }
5526
5527 template <typename T1, typename T2,
5528 std::enable_if_t<!std::is_same_v<T1, T2>, bool> = true>
operator ()__anon20d79abd1611::TemplateArgumentListAreEqual5529 bool operator()(T1 *Spec, T2 *Primary) {
5530 ArrayRef<TemplateArgument> Args1 = Spec->getTemplateArgs().asArray(),
5531 Args2 = Primary->getInjectedTemplateArgs();
5532
5533 for (unsigned I = 0, E = Args1.size(); I < E; ++I) {
5534 // We use profile, instead of structural comparison of the arguments,
5535 // because canonicalization can't do the right thing for dependent
5536 // expressions.
5537 llvm::FoldingSetNodeID IDA, IDB;
5538 Args1[I].Profile(IDA, Ctx);
5539 // Unlike the specialization arguments, the injected arguments are not
5540 // always canonical.
5541 Ctx.getCanonicalTemplateArgument(Args2[I]).Profile(IDB, Ctx);
5542 if (IDA != IDB)
5543 return false;
5544 }
5545 return true;
5546 }
5547 };
5548 } // namespace
5549
5550 /// Returns the more specialized template specialization between T1/P1 and
5551 /// T2/P2.
5552 /// - If IsMoreSpecialThanPrimaryCheck is true, T1/P1 is the partial
5553 /// specialization and T2/P2 is the primary template.
5554 /// - otherwise, both T1/P1 and T2/P2 are the partial specialization.
5555 ///
5556 /// \param T1 the type of the first template partial specialization
5557 ///
5558 /// \param T2 if IsMoreSpecialThanPrimaryCheck is true, the type of the second
5559 /// template partial specialization; otherwise, the type of the
5560 /// primary template.
5561 ///
5562 /// \param P1 the first template partial specialization
5563 ///
5564 /// \param P2 if IsMoreSpecialThanPrimaryCheck is true, the second template
5565 /// partial specialization; otherwise, the primary template.
5566 ///
5567 /// \returns - If IsMoreSpecialThanPrimaryCheck is true, returns P1 if P1 is
5568 /// more specialized, returns nullptr if P1 is not more specialized.
5569 /// - otherwise, returns the more specialized template partial
5570 /// specialization. If neither partial specialization is more
5571 /// specialized, returns NULL.
5572 template <typename TemplateLikeDecl, typename PrimaryDel>
5573 static TemplateLikeDecl *
getMoreSpecialized(Sema & S,QualType T1,QualType T2,TemplateLikeDecl * P1,PrimaryDel * P2,TemplateDeductionInfo & Info)5574 getMoreSpecialized(Sema &S, QualType T1, QualType T2, TemplateLikeDecl *P1,
5575 PrimaryDel *P2, TemplateDeductionInfo &Info) {
5576 constexpr bool IsMoreSpecialThanPrimaryCheck =
5577 !std::is_same_v<TemplateLikeDecl, PrimaryDel>;
5578
5579 bool Better1 = isAtLeastAsSpecializedAs(S, T1, T2, P2, Info);
5580 if (IsMoreSpecialThanPrimaryCheck && !Better1)
5581 return nullptr;
5582
5583 bool Better2 = isAtLeastAsSpecializedAs(S, T2, T1, P1, Info);
5584 if (IsMoreSpecialThanPrimaryCheck && !Better2)
5585 return P1;
5586
5587 // C++ [temp.deduct.partial]p10:
5588 // F is more specialized than G if F is at least as specialized as G and G
5589 // is not at least as specialized as F.
5590 if (Better1 != Better2) // We have a clear winner
5591 return Better1 ? P1 : GetP2()(P1, P2);
5592
5593 if (!Better1 && !Better2)
5594 return nullptr;
5595
5596 // This a speculative fix for CWG1432 (Similar to the fix for CWG1395) that
5597 // there is no wording or even resolution for this issue.
5598 auto *TST1 = cast<TemplateSpecializationType>(T1);
5599 auto *TST2 = cast<TemplateSpecializationType>(T2);
5600 const TemplateArgument &TA1 = TST1->template_arguments().back();
5601 if (TA1.getKind() == TemplateArgument::Pack) {
5602 assert(TST1->template_arguments().size() ==
5603 TST2->template_arguments().size());
5604 const TemplateArgument &TA2 = TST2->template_arguments().back();
5605 assert(TA2.getKind() == TemplateArgument::Pack);
5606 unsigned PackSize1 = TA1.pack_size();
5607 unsigned PackSize2 = TA2.pack_size();
5608 bool IsPackExpansion1 =
5609 PackSize1 && TA1.pack_elements().back().isPackExpansion();
5610 bool IsPackExpansion2 =
5611 PackSize2 && TA2.pack_elements().back().isPackExpansion();
5612 if (PackSize1 != PackSize2 && IsPackExpansion1 != IsPackExpansion2) {
5613 if (PackSize1 > PackSize2 && IsPackExpansion1)
5614 return GetP2()(P1, P2);
5615 if (PackSize1 < PackSize2 && IsPackExpansion2)
5616 return P1;
5617 }
5618 }
5619
5620 if (!S.Context.getLangOpts().CPlusPlus20)
5621 return nullptr;
5622
5623 // Match GCC on not implementing [temp.func.order]p6.2.1.
5624
5625 // C++20 [temp.func.order]p6:
5626 // If deduction against the other template succeeds for both transformed
5627 // templates, constraints can be considered as follows:
5628
5629 TemplateParameterList *TPL1 = P1->getTemplateParameters();
5630 TemplateParameterList *TPL2 = P2->getTemplateParameters();
5631 if (TPL1->size() != TPL2->size())
5632 return nullptr;
5633
5634 // C++20 [temp.func.order]p6.2.2:
5635 // Otherwise, if the corresponding template-parameters of the
5636 // template-parameter-lists are not equivalent ([temp.over.link]) or if the
5637 // function parameters that positionally correspond between the two
5638 // templates are not of the same type, neither template is more specialized
5639 // than the other.
5640 if (!S.TemplateParameterListsAreEqual(
5641 TPL1, TPL2, false, Sema::TPL_TemplateMatch, SourceLocation(), true))
5642 return nullptr;
5643
5644 if (!TemplateArgumentListAreEqual(S.getASTContext())(P1, P2))
5645 return nullptr;
5646
5647 llvm::SmallVector<const Expr *, 3> AC1, AC2;
5648 P1->getAssociatedConstraints(AC1);
5649 P2->getAssociatedConstraints(AC2);
5650 bool AtLeastAsConstrained1, AtLeastAsConstrained2;
5651 if (S.IsAtLeastAsConstrained(P1, AC1, P2, AC2, AtLeastAsConstrained1) ||
5652 (IsMoreSpecialThanPrimaryCheck && !AtLeastAsConstrained1))
5653 return nullptr;
5654 if (S.IsAtLeastAsConstrained(P2, AC2, P1, AC1, AtLeastAsConstrained2))
5655 return nullptr;
5656 if (AtLeastAsConstrained1 == AtLeastAsConstrained2)
5657 return nullptr;
5658 return AtLeastAsConstrained1 ? P1 : GetP2()(P1, P2);
5659 }
5660
5661 /// Returns the more specialized class template partial specialization
5662 /// according to the rules of partial ordering of class template partial
5663 /// specializations (C++ [temp.class.order]).
5664 ///
5665 /// \param PS1 the first class template partial specialization
5666 ///
5667 /// \param PS2 the second class template partial specialization
5668 ///
5669 /// \returns the more specialized class template partial specialization. If
5670 /// neither partial specialization is more specialized, returns NULL.
5671 ClassTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(ClassTemplatePartialSpecializationDecl * PS1,ClassTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)5672 Sema::getMoreSpecializedPartialSpecialization(
5673 ClassTemplatePartialSpecializationDecl *PS1,
5674 ClassTemplatePartialSpecializationDecl *PS2,
5675 SourceLocation Loc) {
5676 QualType PT1 = PS1->getInjectedSpecializationType();
5677 QualType PT2 = PS2->getInjectedSpecializationType();
5678
5679 TemplateDeductionInfo Info(Loc);
5680 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info);
5681 }
5682
isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl * Spec,TemplateDeductionInfo & Info)5683 bool Sema::isMoreSpecializedThanPrimary(
5684 ClassTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5685 ClassTemplateDecl *Primary = Spec->getSpecializedTemplate();
5686 QualType PrimaryT = Primary->getInjectedClassNameSpecialization();
5687 QualType PartialT = Spec->getInjectedSpecializationType();
5688
5689 ClassTemplatePartialSpecializationDecl *MaybeSpec =
5690 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
5691 if (MaybeSpec)
5692 Info.clearSFINAEDiagnostic();
5693 return MaybeSpec;
5694 }
5695
5696 VarTemplatePartialSpecializationDecl *
getMoreSpecializedPartialSpecialization(VarTemplatePartialSpecializationDecl * PS1,VarTemplatePartialSpecializationDecl * PS2,SourceLocation Loc)5697 Sema::getMoreSpecializedPartialSpecialization(
5698 VarTemplatePartialSpecializationDecl *PS1,
5699 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
5700 // Pretend the variable template specializations are class template
5701 // specializations and form a fake injected class name type for comparison.
5702 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
5703 "the partial specializations being compared should specialize"
5704 " the same template.");
5705 TemplateName Name(PS1->getSpecializedTemplate());
5706 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5707 QualType PT1 = Context.getTemplateSpecializationType(
5708 CanonTemplate, PS1->getTemplateArgs().asArray());
5709 QualType PT2 = Context.getTemplateSpecializationType(
5710 CanonTemplate, PS2->getTemplateArgs().asArray());
5711
5712 TemplateDeductionInfo Info(Loc);
5713 return getMoreSpecialized(*this, PT1, PT2, PS1, PS2, Info);
5714 }
5715
isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl * Spec,TemplateDeductionInfo & Info)5716 bool Sema::isMoreSpecializedThanPrimary(
5717 VarTemplatePartialSpecializationDecl *Spec, TemplateDeductionInfo &Info) {
5718 VarTemplateDecl *Primary = Spec->getSpecializedTemplate();
5719 TemplateName CanonTemplate =
5720 Context.getCanonicalTemplateName(TemplateName(Primary));
5721 QualType PrimaryT = Context.getTemplateSpecializationType(
5722 CanonTemplate, Primary->getInjectedTemplateArgs());
5723 QualType PartialT = Context.getTemplateSpecializationType(
5724 CanonTemplate, Spec->getTemplateArgs().asArray());
5725
5726 VarTemplatePartialSpecializationDecl *MaybeSpec =
5727 getMoreSpecialized(*this, PartialT, PrimaryT, Spec, Primary, Info);
5728 if (MaybeSpec)
5729 Info.clearSFINAEDiagnostic();
5730 return MaybeSpec;
5731 }
5732
isTemplateTemplateParameterAtLeastAsSpecializedAs(TemplateParameterList * P,TemplateDecl * AArg,SourceLocation Loc)5733 bool Sema::isTemplateTemplateParameterAtLeastAsSpecializedAs(
5734 TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc) {
5735 // C++1z [temp.arg.template]p4: (DR 150)
5736 // A template template-parameter P is at least as specialized as a
5737 // template template-argument A if, given the following rewrite to two
5738 // function templates...
5739
5740 // Rather than synthesize function templates, we merely perform the
5741 // equivalent partial ordering by performing deduction directly on
5742 // the template parameter lists of the template template parameters.
5743 //
5744 // Given an invented class template X with the template parameter list of
5745 // A (including default arguments):
5746 TemplateName X = Context.getCanonicalTemplateName(TemplateName(AArg));
5747 TemplateParameterList *A = AArg->getTemplateParameters();
5748
5749 // - Each function template has a single function parameter whose type is
5750 // a specialization of X with template arguments corresponding to the
5751 // template parameters from the respective function template
5752 SmallVector<TemplateArgument, 8> AArgs;
5753 Context.getInjectedTemplateArgs(A, AArgs);
5754
5755 // Check P's arguments against A's parameter list. This will fill in default
5756 // template arguments as needed. AArgs are already correct by construction.
5757 // We can't just use CheckTemplateIdType because that will expand alias
5758 // templates.
5759 SmallVector<TemplateArgument, 4> PArgs;
5760 {
5761 SFINAETrap Trap(*this);
5762
5763 Context.getInjectedTemplateArgs(P, PArgs);
5764 TemplateArgumentListInfo PArgList(P->getLAngleLoc(),
5765 P->getRAngleLoc());
5766 for (unsigned I = 0, N = P->size(); I != N; ++I) {
5767 // Unwrap packs that getInjectedTemplateArgs wrapped around pack
5768 // expansions, to form an "as written" argument list.
5769 TemplateArgument Arg = PArgs[I];
5770 if (Arg.getKind() == TemplateArgument::Pack) {
5771 assert(Arg.pack_size() == 1 && Arg.pack_begin()->isPackExpansion());
5772 Arg = *Arg.pack_begin();
5773 }
5774 PArgList.addArgument(getTrivialTemplateArgumentLoc(
5775 Arg, QualType(), P->getParam(I)->getLocation()));
5776 }
5777 PArgs.clear();
5778
5779 // C++1z [temp.arg.template]p3:
5780 // If the rewrite produces an invalid type, then P is not at least as
5781 // specialized as A.
5782 SmallVector<TemplateArgument, 4> SugaredPArgs;
5783 if (CheckTemplateArgumentList(AArg, Loc, PArgList, false, SugaredPArgs,
5784 PArgs) ||
5785 Trap.hasErrorOccurred())
5786 return false;
5787 }
5788
5789 QualType AType = Context.getCanonicalTemplateSpecializationType(X, AArgs);
5790 QualType PType = Context.getCanonicalTemplateSpecializationType(X, PArgs);
5791
5792 // ... the function template corresponding to P is at least as specialized
5793 // as the function template corresponding to A according to the partial
5794 // ordering rules for function templates.
5795 TemplateDeductionInfo Info(Loc, A->getDepth());
5796 return isAtLeastAsSpecializedAs(*this, PType, AType, AArg, Info);
5797 }
5798
5799 namespace {
5800 struct MarkUsedTemplateParameterVisitor :
5801 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor> {
5802 llvm::SmallBitVector &Used;
5803 unsigned Depth;
5804
MarkUsedTemplateParameterVisitor__anon20d79abd1711::MarkUsedTemplateParameterVisitor5805 MarkUsedTemplateParameterVisitor(llvm::SmallBitVector &Used,
5806 unsigned Depth)
5807 : Used(Used), Depth(Depth) { }
5808
VisitTemplateTypeParmType__anon20d79abd1711::MarkUsedTemplateParameterVisitor5809 bool VisitTemplateTypeParmType(TemplateTypeParmType *T) {
5810 if (T->getDepth() == Depth)
5811 Used[T->getIndex()] = true;
5812 return true;
5813 }
5814
TraverseTemplateName__anon20d79abd1711::MarkUsedTemplateParameterVisitor5815 bool TraverseTemplateName(TemplateName Template) {
5816 if (auto *TTP = llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
5817 Template.getAsTemplateDecl()))
5818 if (TTP->getDepth() == Depth)
5819 Used[TTP->getIndex()] = true;
5820 RecursiveASTVisitor<MarkUsedTemplateParameterVisitor>::
5821 TraverseTemplateName(Template);
5822 return true;
5823 }
5824
VisitDeclRefExpr__anon20d79abd1711::MarkUsedTemplateParameterVisitor5825 bool VisitDeclRefExpr(DeclRefExpr *E) {
5826 if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
5827 if (NTTP->getDepth() == Depth)
5828 Used[NTTP->getIndex()] = true;
5829 return true;
5830 }
5831 };
5832 }
5833
5834 /// Mark the template parameters that are used by the given
5835 /// expression.
5836 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5837 MarkUsedTemplateParameters(ASTContext &Ctx,
5838 const Expr *E,
5839 bool OnlyDeduced,
5840 unsigned Depth,
5841 llvm::SmallBitVector &Used) {
5842 if (!OnlyDeduced) {
5843 MarkUsedTemplateParameterVisitor(Used, Depth)
5844 .TraverseStmt(const_cast<Expr *>(E));
5845 return;
5846 }
5847
5848 // We can deduce from a pack expansion.
5849 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
5850 E = Expansion->getPattern();
5851
5852 const NonTypeTemplateParmDecl *NTTP = getDeducedParameterFromExpr(E, Depth);
5853 if (!NTTP)
5854 return;
5855
5856 if (NTTP->getDepth() == Depth)
5857 Used[NTTP->getIndex()] = true;
5858
5859 // In C++17 mode, additional arguments may be deduced from the type of a
5860 // non-type argument.
5861 if (Ctx.getLangOpts().CPlusPlus17)
5862 MarkUsedTemplateParameters(Ctx, NTTP->getType(), OnlyDeduced, Depth, Used);
5863 }
5864
5865 /// Mark the template parameters that are used by the given
5866 /// nested name specifier.
5867 static void
MarkUsedTemplateParameters(ASTContext & Ctx,NestedNameSpecifier * NNS,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5868 MarkUsedTemplateParameters(ASTContext &Ctx,
5869 NestedNameSpecifier *NNS,
5870 bool OnlyDeduced,
5871 unsigned Depth,
5872 llvm::SmallBitVector &Used) {
5873 if (!NNS)
5874 return;
5875
5876 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
5877 Used);
5878 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
5879 OnlyDeduced, Depth, Used);
5880 }
5881
5882 /// Mark the template parameters that are used by the given
5883 /// template name.
5884 static void
MarkUsedTemplateParameters(ASTContext & Ctx,TemplateName Name,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5885 MarkUsedTemplateParameters(ASTContext &Ctx,
5886 TemplateName Name,
5887 bool OnlyDeduced,
5888 unsigned Depth,
5889 llvm::SmallBitVector &Used) {
5890 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
5891 if (TemplateTemplateParmDecl *TTP
5892 = dyn_cast<TemplateTemplateParmDecl>(Template)) {
5893 if (TTP->getDepth() == Depth)
5894 Used[TTP->getIndex()] = true;
5895 }
5896 return;
5897 }
5898
5899 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
5900 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
5901 Depth, Used);
5902 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
5903 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
5904 Depth, Used);
5905 }
5906
5907 /// Mark the template parameters that are used by the given
5908 /// type.
5909 static void
MarkUsedTemplateParameters(ASTContext & Ctx,QualType T,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)5910 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
5911 bool OnlyDeduced,
5912 unsigned Depth,
5913 llvm::SmallBitVector &Used) {
5914 if (T.isNull())
5915 return;
5916
5917 // Non-dependent types have nothing deducible
5918 if (!T->isDependentType())
5919 return;
5920
5921 T = Ctx.getCanonicalType(T);
5922 switch (T->getTypeClass()) {
5923 case Type::Pointer:
5924 MarkUsedTemplateParameters(Ctx,
5925 cast<PointerType>(T)->getPointeeType(),
5926 OnlyDeduced,
5927 Depth,
5928 Used);
5929 break;
5930
5931 case Type::BlockPointer:
5932 MarkUsedTemplateParameters(Ctx,
5933 cast<BlockPointerType>(T)->getPointeeType(),
5934 OnlyDeduced,
5935 Depth,
5936 Used);
5937 break;
5938
5939 case Type::LValueReference:
5940 case Type::RValueReference:
5941 MarkUsedTemplateParameters(Ctx,
5942 cast<ReferenceType>(T)->getPointeeType(),
5943 OnlyDeduced,
5944 Depth,
5945 Used);
5946 break;
5947
5948 case Type::MemberPointer: {
5949 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
5950 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
5951 Depth, Used);
5952 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
5953 OnlyDeduced, Depth, Used);
5954 break;
5955 }
5956
5957 case Type::DependentSizedArray:
5958 MarkUsedTemplateParameters(Ctx,
5959 cast<DependentSizedArrayType>(T)->getSizeExpr(),
5960 OnlyDeduced, Depth, Used);
5961 // Fall through to check the element type
5962 [[fallthrough]];
5963
5964 case Type::ConstantArray:
5965 case Type::IncompleteArray:
5966 MarkUsedTemplateParameters(Ctx,
5967 cast<ArrayType>(T)->getElementType(),
5968 OnlyDeduced, Depth, Used);
5969 break;
5970
5971 case Type::Vector:
5972 case Type::ExtVector:
5973 MarkUsedTemplateParameters(Ctx,
5974 cast<VectorType>(T)->getElementType(),
5975 OnlyDeduced, Depth, Used);
5976 break;
5977
5978 case Type::DependentVector: {
5979 const auto *VecType = cast<DependentVectorType>(T);
5980 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5981 Depth, Used);
5982 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, Depth,
5983 Used);
5984 break;
5985 }
5986 case Type::DependentSizedExtVector: {
5987 const DependentSizedExtVectorType *VecType
5988 = cast<DependentSizedExtVectorType>(T);
5989 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
5990 Depth, Used);
5991 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
5992 Depth, Used);
5993 break;
5994 }
5995
5996 case Type::DependentAddressSpace: {
5997 const DependentAddressSpaceType *DependentASType =
5998 cast<DependentAddressSpaceType>(T);
5999 MarkUsedTemplateParameters(Ctx, DependentASType->getPointeeType(),
6000 OnlyDeduced, Depth, Used);
6001 MarkUsedTemplateParameters(Ctx,
6002 DependentASType->getAddrSpaceExpr(),
6003 OnlyDeduced, Depth, Used);
6004 break;
6005 }
6006
6007 case Type::ConstantMatrix: {
6008 const ConstantMatrixType *MatType = cast<ConstantMatrixType>(T);
6009 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
6010 Depth, Used);
6011 break;
6012 }
6013
6014 case Type::DependentSizedMatrix: {
6015 const DependentSizedMatrixType *MatType = cast<DependentSizedMatrixType>(T);
6016 MarkUsedTemplateParameters(Ctx, MatType->getElementType(), OnlyDeduced,
6017 Depth, Used);
6018 MarkUsedTemplateParameters(Ctx, MatType->getRowExpr(), OnlyDeduced, Depth,
6019 Used);
6020 MarkUsedTemplateParameters(Ctx, MatType->getColumnExpr(), OnlyDeduced,
6021 Depth, Used);
6022 break;
6023 }
6024
6025 case Type::FunctionProto: {
6026 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
6027 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
6028 Used);
6029 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) {
6030 // C++17 [temp.deduct.type]p5:
6031 // The non-deduced contexts are: [...]
6032 // -- A function parameter pack that does not occur at the end of the
6033 // parameter-declaration-list.
6034 if (!OnlyDeduced || I + 1 == N ||
6035 !Proto->getParamType(I)->getAs<PackExpansionType>()) {
6036 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
6037 Depth, Used);
6038 } else {
6039 // FIXME: C++17 [temp.deduct.call]p1:
6040 // When a function parameter pack appears in a non-deduced context,
6041 // the type of that pack is never deduced.
6042 //
6043 // We should also track a set of "never deduced" parameters, and
6044 // subtract that from the list of deduced parameters after marking.
6045 }
6046 }
6047 if (auto *E = Proto->getNoexceptExpr())
6048 MarkUsedTemplateParameters(Ctx, E, OnlyDeduced, Depth, Used);
6049 break;
6050 }
6051
6052 case Type::TemplateTypeParm: {
6053 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
6054 if (TTP->getDepth() == Depth)
6055 Used[TTP->getIndex()] = true;
6056 break;
6057 }
6058
6059 case Type::SubstTemplateTypeParmPack: {
6060 const SubstTemplateTypeParmPackType *Subst
6061 = cast<SubstTemplateTypeParmPackType>(T);
6062 if (Subst->getReplacedParameter()->getDepth() == Depth)
6063 Used[Subst->getIndex()] = true;
6064 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
6065 OnlyDeduced, Depth, Used);
6066 break;
6067 }
6068
6069 case Type::InjectedClassName:
6070 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
6071 [[fallthrough]];
6072
6073 case Type::TemplateSpecialization: {
6074 const TemplateSpecializationType *Spec
6075 = cast<TemplateSpecializationType>(T);
6076 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
6077 Depth, Used);
6078
6079 // C++0x [temp.deduct.type]p9:
6080 // If the template argument list of P contains a pack expansion that is
6081 // not the last template argument, the entire template argument list is a
6082 // non-deduced context.
6083 if (OnlyDeduced &&
6084 hasPackExpansionBeforeEnd(Spec->template_arguments()))
6085 break;
6086
6087 for (const auto &Arg : Spec->template_arguments())
6088 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used);
6089 break;
6090 }
6091
6092 case Type::Complex:
6093 if (!OnlyDeduced)
6094 MarkUsedTemplateParameters(Ctx,
6095 cast<ComplexType>(T)->getElementType(),
6096 OnlyDeduced, Depth, Used);
6097 break;
6098
6099 case Type::Atomic:
6100 if (!OnlyDeduced)
6101 MarkUsedTemplateParameters(Ctx,
6102 cast<AtomicType>(T)->getValueType(),
6103 OnlyDeduced, Depth, Used);
6104 break;
6105
6106 case Type::DependentName:
6107 if (!OnlyDeduced)
6108 MarkUsedTemplateParameters(Ctx,
6109 cast<DependentNameType>(T)->getQualifier(),
6110 OnlyDeduced, Depth, Used);
6111 break;
6112
6113 case Type::DependentTemplateSpecialization: {
6114 // C++14 [temp.deduct.type]p5:
6115 // The non-deduced contexts are:
6116 // -- The nested-name-specifier of a type that was specified using a
6117 // qualified-id
6118 //
6119 // C++14 [temp.deduct.type]p6:
6120 // When a type name is specified in a way that includes a non-deduced
6121 // context, all of the types that comprise that type name are also
6122 // non-deduced.
6123 if (OnlyDeduced)
6124 break;
6125
6126 const DependentTemplateSpecializationType *Spec
6127 = cast<DependentTemplateSpecializationType>(T);
6128
6129 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
6130 OnlyDeduced, Depth, Used);
6131
6132 for (const auto &Arg : Spec->template_arguments())
6133 MarkUsedTemplateParameters(Ctx, Arg, OnlyDeduced, Depth, Used);
6134 break;
6135 }
6136
6137 case Type::TypeOf:
6138 if (!OnlyDeduced)
6139 MarkUsedTemplateParameters(Ctx, cast<TypeOfType>(T)->getUnmodifiedType(),
6140 OnlyDeduced, Depth, Used);
6141 break;
6142
6143 case Type::TypeOfExpr:
6144 if (!OnlyDeduced)
6145 MarkUsedTemplateParameters(Ctx,
6146 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
6147 OnlyDeduced, Depth, Used);
6148 break;
6149
6150 case Type::Decltype:
6151 if (!OnlyDeduced)
6152 MarkUsedTemplateParameters(Ctx,
6153 cast<DecltypeType>(T)->getUnderlyingExpr(),
6154 OnlyDeduced, Depth, Used);
6155 break;
6156
6157 case Type::UnaryTransform:
6158 if (!OnlyDeduced)
6159 MarkUsedTemplateParameters(Ctx,
6160 cast<UnaryTransformType>(T)->getUnderlyingType(),
6161 OnlyDeduced, Depth, Used);
6162 break;
6163
6164 case Type::PackExpansion:
6165 MarkUsedTemplateParameters(Ctx,
6166 cast<PackExpansionType>(T)->getPattern(),
6167 OnlyDeduced, Depth, Used);
6168 break;
6169
6170 case Type::Auto:
6171 case Type::DeducedTemplateSpecialization:
6172 MarkUsedTemplateParameters(Ctx,
6173 cast<DeducedType>(T)->getDeducedType(),
6174 OnlyDeduced, Depth, Used);
6175 break;
6176 case Type::DependentBitInt:
6177 MarkUsedTemplateParameters(Ctx,
6178 cast<DependentBitIntType>(T)->getNumBitsExpr(),
6179 OnlyDeduced, Depth, Used);
6180 break;
6181
6182 // None of these types have any template parameters in them.
6183 case Type::Builtin:
6184 case Type::VariableArray:
6185 case Type::FunctionNoProto:
6186 case Type::Record:
6187 case Type::Enum:
6188 case Type::ObjCInterface:
6189 case Type::ObjCObject:
6190 case Type::ObjCObjectPointer:
6191 case Type::UnresolvedUsing:
6192 case Type::Pipe:
6193 case Type::BitInt:
6194 #define TYPE(Class, Base)
6195 #define ABSTRACT_TYPE(Class, Base)
6196 #define DEPENDENT_TYPE(Class, Base)
6197 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6198 #include "clang/AST/TypeNodes.inc"
6199 break;
6200 }
6201 }
6202
6203 /// Mark the template parameters that are used by this
6204 /// template argument.
6205 static void
MarkUsedTemplateParameters(ASTContext & Ctx,const TemplateArgument & TemplateArg,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)6206 MarkUsedTemplateParameters(ASTContext &Ctx,
6207 const TemplateArgument &TemplateArg,
6208 bool OnlyDeduced,
6209 unsigned Depth,
6210 llvm::SmallBitVector &Used) {
6211 switch (TemplateArg.getKind()) {
6212 case TemplateArgument::Null:
6213 case TemplateArgument::Integral:
6214 case TemplateArgument::Declaration:
6215 break;
6216
6217 case TemplateArgument::NullPtr:
6218 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
6219 Depth, Used);
6220 break;
6221
6222 case TemplateArgument::Type:
6223 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
6224 Depth, Used);
6225 break;
6226
6227 case TemplateArgument::Template:
6228 case TemplateArgument::TemplateExpansion:
6229 MarkUsedTemplateParameters(Ctx,
6230 TemplateArg.getAsTemplateOrTemplatePattern(),
6231 OnlyDeduced, Depth, Used);
6232 break;
6233
6234 case TemplateArgument::Expression:
6235 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
6236 Depth, Used);
6237 break;
6238
6239 case TemplateArgument::Pack:
6240 for (const auto &P : TemplateArg.pack_elements())
6241 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
6242 break;
6243 }
6244 }
6245
6246 /// Mark which template parameters are used in a given expression.
6247 ///
6248 /// \param E the expression from which template parameters will be deduced.
6249 ///
6250 /// \param Used a bit vector whose elements will be set to \c true
6251 /// to indicate when the corresponding template parameter will be
6252 /// deduced.
6253 void
MarkUsedTemplateParameters(const Expr * E,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)6254 Sema::MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
6255 unsigned Depth,
6256 llvm::SmallBitVector &Used) {
6257 ::MarkUsedTemplateParameters(Context, E, OnlyDeduced, Depth, Used);
6258 }
6259
6260 /// Mark which template parameters can be deduced from a given
6261 /// template argument list.
6262 ///
6263 /// \param TemplateArgs the template argument list from which template
6264 /// parameters will be deduced.
6265 ///
6266 /// \param Used a bit vector whose elements will be set to \c true
6267 /// to indicate when the corresponding template parameter will be
6268 /// deduced.
6269 void
MarkUsedTemplateParameters(const TemplateArgumentList & TemplateArgs,bool OnlyDeduced,unsigned Depth,llvm::SmallBitVector & Used)6270 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
6271 bool OnlyDeduced, unsigned Depth,
6272 llvm::SmallBitVector &Used) {
6273 // C++0x [temp.deduct.type]p9:
6274 // If the template argument list of P contains a pack expansion that is not
6275 // the last template argument, the entire template argument list is a
6276 // non-deduced context.
6277 if (OnlyDeduced &&
6278 hasPackExpansionBeforeEnd(TemplateArgs.asArray()))
6279 return;
6280
6281 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6282 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
6283 Depth, Used);
6284 }
6285
6286 /// Marks all of the template parameters that will be deduced by a
6287 /// call to the given function template.
MarkDeducedTemplateParameters(ASTContext & Ctx,const FunctionTemplateDecl * FunctionTemplate,llvm::SmallBitVector & Deduced)6288 void Sema::MarkDeducedTemplateParameters(
6289 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
6290 llvm::SmallBitVector &Deduced) {
6291 TemplateParameterList *TemplateParams
6292 = FunctionTemplate->getTemplateParameters();
6293 Deduced.clear();
6294 Deduced.resize(TemplateParams->size());
6295
6296 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
6297 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
6298 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
6299 true, TemplateParams->getDepth(), Deduced);
6300 }
6301
hasDeducibleTemplateParameters(Sema & S,FunctionTemplateDecl * FunctionTemplate,QualType T)6302 bool hasDeducibleTemplateParameters(Sema &S,
6303 FunctionTemplateDecl *FunctionTemplate,
6304 QualType T) {
6305 if (!T->isDependentType())
6306 return false;
6307
6308 TemplateParameterList *TemplateParams
6309 = FunctionTemplate->getTemplateParameters();
6310 llvm::SmallBitVector Deduced(TemplateParams->size());
6311 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
6312 Deduced);
6313
6314 return Deduced.any();
6315 }
6316