1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/DataRecursiveASTVisitor.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/ExternalSemaSource.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/ScopeInfo.h"
28 #include "llvm/ADT/DenseSet.h"
29
30 using namespace clang;
31
32 /// Check whether the given method, which must be in the 'init'
33 /// family, is a valid member of that family.
34 ///
35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
36 /// if non-null, check this as if making a call to it with the given
37 /// receiver type
38 ///
39 /// \return true to indicate that there was an error and appropriate
40 /// actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
42 QualType receiverTypeIfCall) {
43 if (method->isInvalidDecl()) return true;
44
45 // This castAs is safe: methods that don't return an object
46 // pointer won't be inferred as inits and will reject an explicit
47 // objc_method_family(init).
48
49 // We ignore protocols here. Should we? What about Class?
50
51 const ObjCObjectType *result =
52 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
53
54 if (result->isObjCId()) {
55 return false;
56 } else if (result->isObjCClass()) {
57 // fall through: always an error
58 } else {
59 ObjCInterfaceDecl *resultClass = result->getInterface();
60 assert(resultClass && "unexpected object type!");
61
62 // It's okay for the result type to still be a forward declaration
63 // if we're checking an interface declaration.
64 if (!resultClass->hasDefinition()) {
65 if (receiverTypeIfCall.isNull() &&
66 !isa<ObjCImplementationDecl>(method->getDeclContext()))
67 return false;
68
69 // Otherwise, we try to compare class types.
70 } else {
71 // If this method was declared in a protocol, we can't check
72 // anything unless we have a receiver type that's an interface.
73 const ObjCInterfaceDecl *receiverClass = nullptr;
74 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75 if (receiverTypeIfCall.isNull())
76 return false;
77
78 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79 ->getInterfaceDecl();
80
81 // This can be null for calls to e.g. id<Foo>.
82 if (!receiverClass) return false;
83 } else {
84 receiverClass = method->getClassInterface();
85 assert(receiverClass && "method not associated with a class!");
86 }
87
88 // If either class is a subclass of the other, it's fine.
89 if (receiverClass->isSuperClassOf(resultClass) ||
90 resultClass->isSuperClassOf(receiverClass))
91 return false;
92 }
93 }
94
95 SourceLocation loc = method->getLocation();
96
97 // If we're in a system header, and this is not a call, just make
98 // the method unusable.
99 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100 method->addAttr(UnavailableAttr::CreateImplicit(Context,
101 "init method returns a type unrelated to its receiver type",
102 loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110 }
111
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden)112 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
113 const ObjCMethodDecl *Overridden) {
114 if (Overridden->hasRelatedResultType() &&
115 !NewMethod->hasRelatedResultType()) {
116 // This can only happen when the method follows a naming convention that
117 // implies a related result type, and the original (overridden) method has
118 // a suitable return type, but the new (overriding) method does not have
119 // a suitable return type.
120 QualType ResultType = NewMethod->getReturnType();
121 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
122
123 // Figure out which class this method is part of, if any.
124 ObjCInterfaceDecl *CurrentClass
125 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
126 if (!CurrentClass) {
127 DeclContext *DC = NewMethod->getDeclContext();
128 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
129 CurrentClass = Cat->getClassInterface();
130 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
131 CurrentClass = Impl->getClassInterface();
132 else if (ObjCCategoryImplDecl *CatImpl
133 = dyn_cast<ObjCCategoryImplDecl>(DC))
134 CurrentClass = CatImpl->getClassInterface();
135 }
136
137 if (CurrentClass) {
138 Diag(NewMethod->getLocation(),
139 diag::warn_related_result_type_compatibility_class)
140 << Context.getObjCInterfaceType(CurrentClass)
141 << ResultType
142 << ResultTypeRange;
143 } else {
144 Diag(NewMethod->getLocation(),
145 diag::warn_related_result_type_compatibility_protocol)
146 << ResultType
147 << ResultTypeRange;
148 }
149
150 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
151 Diag(Overridden->getLocation(),
152 diag::note_related_result_type_family)
153 << /*overridden method*/ 0
154 << Family;
155 else
156 Diag(Overridden->getLocation(),
157 diag::note_related_result_type_overridden);
158 }
159 if (getLangOpts().ObjCAutoRefCount) {
160 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
161 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
162 Diag(NewMethod->getLocation(),
163 diag::err_nsreturns_retained_attribute_mismatch) << 1;
164 Diag(Overridden->getLocation(), diag::note_previous_decl)
165 << "method";
166 }
167 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
168 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
169 Diag(NewMethod->getLocation(),
170 diag::err_nsreturns_retained_attribute_mismatch) << 0;
171 Diag(Overridden->getLocation(), diag::note_previous_decl)
172 << "method";
173 }
174 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
175 oe = Overridden->param_end();
176 for (ObjCMethodDecl::param_iterator
177 ni = NewMethod->param_begin(), ne = NewMethod->param_end();
178 ni != ne && oi != oe; ++ni, ++oi) {
179 const ParmVarDecl *oldDecl = (*oi);
180 ParmVarDecl *newDecl = (*ni);
181 if (newDecl->hasAttr<NSConsumedAttr>() !=
182 oldDecl->hasAttr<NSConsumedAttr>()) {
183 Diag(newDecl->getLocation(),
184 diag::err_nsconsumed_attribute_mismatch);
185 Diag(oldDecl->getLocation(), diag::note_previous_decl)
186 << "parameter";
187 }
188 }
189 }
190 }
191
192 /// \brief Check a method declaration for compatibility with the Objective-C
193 /// ARC conventions.
CheckARCMethodDecl(ObjCMethodDecl * method)194 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
195 ObjCMethodFamily family = method->getMethodFamily();
196 switch (family) {
197 case OMF_None:
198 case OMF_finalize:
199 case OMF_retain:
200 case OMF_release:
201 case OMF_autorelease:
202 case OMF_retainCount:
203 case OMF_self:
204 case OMF_initialize:
205 case OMF_performSelector:
206 return false;
207
208 case OMF_dealloc:
209 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
210 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
211 if (ResultTypeRange.isInvalid())
212 Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
213 << method->getReturnType()
214 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
215 else
216 Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217 << method->getReturnType()
218 << FixItHint::CreateReplacement(ResultTypeRange, "void");
219 return true;
220 }
221 return false;
222
223 case OMF_init:
224 // If the method doesn't obey the init rules, don't bother annotating it.
225 if (checkInitMethod(method, QualType()))
226 return true;
227
228 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
229
230 // Don't add a second copy of this attribute, but otherwise don't
231 // let it be suppressed.
232 if (method->hasAttr<NSReturnsRetainedAttr>())
233 return false;
234 break;
235
236 case OMF_alloc:
237 case OMF_copy:
238 case OMF_mutableCopy:
239 case OMF_new:
240 if (method->hasAttr<NSReturnsRetainedAttr>() ||
241 method->hasAttr<NSReturnsNotRetainedAttr>() ||
242 method->hasAttr<NSReturnsAutoreleasedAttr>())
243 return false;
244 break;
245 }
246
247 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
248 return false;
249 }
250
DiagnoseObjCImplementedDeprecations(Sema & S,NamedDecl * ND,SourceLocation ImplLoc,int select)251 static void DiagnoseObjCImplementedDeprecations(Sema &S,
252 NamedDecl *ND,
253 SourceLocation ImplLoc,
254 int select) {
255 if (ND && ND->isDeprecated()) {
256 S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
257 if (select == 0)
258 S.Diag(ND->getLocation(), diag::note_method_declared_at)
259 << ND->getDeclName();
260 else
261 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
262 }
263 }
264
265 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
266 /// pool.
AddAnyMethodToGlobalPool(Decl * D)267 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
268 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
269
270 // If we don't have a valid method decl, simply return.
271 if (!MDecl)
272 return;
273 if (MDecl->isInstanceMethod())
274 AddInstanceMethodToGlobalPool(MDecl, true);
275 else
276 AddFactoryMethodToGlobalPool(MDecl, true);
277 }
278
279 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
280 /// has explicit ownership attribute; false otherwise.
281 static bool
HasExplicitOwnershipAttr(Sema & S,ParmVarDecl * Param)282 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
283 QualType T = Param->getType();
284
285 if (const PointerType *PT = T->getAs<PointerType>()) {
286 T = PT->getPointeeType();
287 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
288 T = RT->getPointeeType();
289 } else {
290 return true;
291 }
292
293 // If we have a lifetime qualifier, but it's local, we must have
294 // inferred it. So, it is implicit.
295 return !T.getLocalQualifiers().hasObjCLifetime();
296 }
297
298 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
299 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)300 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
301 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
302 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
303
304 // If we don't have a valid method decl, simply return.
305 if (!MDecl)
306 return;
307
308 // Allow all of Sema to see that we are entering a method definition.
309 PushDeclContext(FnBodyScope, MDecl);
310 PushFunctionScope();
311
312 // Create Decl objects for each parameter, entrring them in the scope for
313 // binding to their use.
314
315 // Insert the invisible arguments, self and _cmd!
316 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
317
318 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
319 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
320
321 // The ObjC parser requires parameter names so there's no need to check.
322 CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
323 /*CheckParameterNames=*/false);
324
325 // Introduce all of the other parameters into this scope.
326 for (auto *Param : MDecl->params()) {
327 if (!Param->isInvalidDecl() &&
328 getLangOpts().ObjCAutoRefCount &&
329 !HasExplicitOwnershipAttr(*this, Param))
330 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
331 Param->getType();
332
333 if (Param->getIdentifier())
334 PushOnScopeChains(Param, FnBodyScope);
335 }
336
337 // In ARC, disallow definition of retain/release/autorelease/retainCount
338 if (getLangOpts().ObjCAutoRefCount) {
339 switch (MDecl->getMethodFamily()) {
340 case OMF_retain:
341 case OMF_retainCount:
342 case OMF_release:
343 case OMF_autorelease:
344 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
345 << 0 << MDecl->getSelector();
346 break;
347
348 case OMF_None:
349 case OMF_dealloc:
350 case OMF_finalize:
351 case OMF_alloc:
352 case OMF_init:
353 case OMF_mutableCopy:
354 case OMF_copy:
355 case OMF_new:
356 case OMF_self:
357 case OMF_initialize:
358 case OMF_performSelector:
359 break;
360 }
361 }
362
363 // Warn on deprecated methods under -Wdeprecated-implementations,
364 // and prepare for warning on missing super calls.
365 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
366 ObjCMethodDecl *IMD =
367 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
368
369 if (IMD) {
370 ObjCImplDecl *ImplDeclOfMethodDef =
371 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
372 ObjCContainerDecl *ContDeclOfMethodDecl =
373 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
374 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
375 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
376 ImplDeclOfMethodDecl = OID->getImplementation();
377 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
378 if (CD->IsClassExtension()) {
379 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
380 ImplDeclOfMethodDecl = OID->getImplementation();
381 } else
382 ImplDeclOfMethodDecl = CD->getImplementation();
383 }
384 // No need to issue deprecated warning if deprecated mehod in class/category
385 // is being implemented in its own implementation (no overriding is involved).
386 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
387 DiagnoseObjCImplementedDeprecations(*this,
388 dyn_cast<NamedDecl>(IMD),
389 MDecl->getLocation(), 0);
390 }
391
392 if (MDecl->getMethodFamily() == OMF_init) {
393 if (MDecl->isDesignatedInitializerForTheInterface()) {
394 getCurFunction()->ObjCIsDesignatedInit = true;
395 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
396 IC->getSuperClass() != nullptr;
397 } else if (IC->hasDesignatedInitializers()) {
398 getCurFunction()->ObjCIsSecondaryInit = true;
399 getCurFunction()->ObjCWarnForNoInitDelegation = true;
400 }
401 }
402
403 // If this is "dealloc" or "finalize", set some bit here.
404 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
405 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
406 // Only do this if the current class actually has a superclass.
407 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
408 ObjCMethodFamily Family = MDecl->getMethodFamily();
409 if (Family == OMF_dealloc) {
410 if (!(getLangOpts().ObjCAutoRefCount ||
411 getLangOpts().getGC() == LangOptions::GCOnly))
412 getCurFunction()->ObjCShouldCallSuper = true;
413
414 } else if (Family == OMF_finalize) {
415 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
416 getCurFunction()->ObjCShouldCallSuper = true;
417
418 } else {
419 const ObjCMethodDecl *SuperMethod =
420 SuperClass->lookupMethod(MDecl->getSelector(),
421 MDecl->isInstanceMethod());
422 getCurFunction()->ObjCShouldCallSuper =
423 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
424 }
425 }
426 }
427 }
428
429 namespace {
430
431 // Callback to only accept typo corrections that are Objective-C classes.
432 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
433 // function will reject corrections to that class.
434 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
435 public:
ObjCInterfaceValidatorCCC()436 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
ObjCInterfaceValidatorCCC(ObjCInterfaceDecl * IDecl)437 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
438 : CurrentIDecl(IDecl) {}
439
ValidateCandidate(const TypoCorrection & candidate)440 bool ValidateCandidate(const TypoCorrection &candidate) override {
441 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
442 return ID && !declaresSameEntity(ID, CurrentIDecl);
443 }
444
445 private:
446 ObjCInterfaceDecl *CurrentIDecl;
447 };
448
449 }
450
451 Decl *Sema::
ActOnStartClassInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)452 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
453 IdentifierInfo *ClassName, SourceLocation ClassLoc,
454 IdentifierInfo *SuperName, SourceLocation SuperLoc,
455 Decl * const *ProtoRefs, unsigned NumProtoRefs,
456 const SourceLocation *ProtoLocs,
457 SourceLocation EndProtoLoc, AttributeList *AttrList) {
458 assert(ClassName && "Missing class identifier");
459
460 // Check for another declaration kind with the same name.
461 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
462 LookupOrdinaryName, ForRedeclaration);
463
464 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
465 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
466 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
467 }
468
469 // Create a declaration to describe this @interface.
470 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
471
472 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
473 // A previous decl with a different name is because of
474 // @compatibility_alias, for example:
475 // \code
476 // @class NewImage;
477 // @compatibility_alias OldImage NewImage;
478 // \endcode
479 // A lookup for 'OldImage' will return the 'NewImage' decl.
480 //
481 // In such a case use the real declaration name, instead of the alias one,
482 // otherwise we will break IdentifierResolver and redecls-chain invariants.
483 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
484 // has been aliased.
485 ClassName = PrevIDecl->getIdentifier();
486 }
487
488 ObjCInterfaceDecl *IDecl
489 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
490 PrevIDecl, ClassLoc);
491
492 if (PrevIDecl) {
493 // Class already seen. Was it a definition?
494 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
495 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
496 << PrevIDecl->getDeclName();
497 Diag(Def->getLocation(), diag::note_previous_definition);
498 IDecl->setInvalidDecl();
499 }
500 }
501
502 if (AttrList)
503 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
504 PushOnScopeChains(IDecl, TUScope);
505
506 // Start the definition of this class. If we're in a redefinition case, there
507 // may already be a definition, so we'll end up adding to it.
508 if (!IDecl->hasDefinition())
509 IDecl->startDefinition();
510
511 if (SuperName) {
512 // Check if a different kind of symbol declared in this scope.
513 PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
514 LookupOrdinaryName);
515
516 if (!PrevDecl) {
517 // Try to correct for a typo in the superclass name without correcting
518 // to the class we're defining.
519 if (TypoCorrection Corrected =
520 CorrectTypo(DeclarationNameInfo(SuperName, SuperLoc),
521 LookupOrdinaryName, TUScope, nullptr,
522 llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
523 CTK_ErrorRecovery)) {
524 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
525 << SuperName << ClassName);
526 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
527 }
528 }
529
530 if (declaresSameEntity(PrevDecl, IDecl)) {
531 Diag(SuperLoc, diag::err_recursive_superclass)
532 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
533 IDecl->setEndOfDefinitionLoc(ClassLoc);
534 } else {
535 ObjCInterfaceDecl *SuperClassDecl =
536 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
537
538 // Diagnose classes that inherit from deprecated classes.
539 if (SuperClassDecl)
540 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
541
542 if (PrevDecl && !SuperClassDecl) {
543 // The previous declaration was not a class decl. Check if we have a
544 // typedef. If we do, get the underlying class type.
545 if (const TypedefNameDecl *TDecl =
546 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
547 QualType T = TDecl->getUnderlyingType();
548 if (T->isObjCObjectType()) {
549 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
550 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
551 // This handles the following case:
552 // @interface NewI @end
553 // typedef NewI DeprI __attribute__((deprecated("blah")))
554 // @interface SI : DeprI /* warn here */ @end
555 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
556 }
557 }
558 }
559
560 // This handles the following case:
561 //
562 // typedef int SuperClass;
563 // @interface MyClass : SuperClass {} @end
564 //
565 if (!SuperClassDecl) {
566 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
567 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
568 }
569 }
570
571 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
572 if (!SuperClassDecl)
573 Diag(SuperLoc, diag::err_undef_superclass)
574 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
575 else if (RequireCompleteType(SuperLoc,
576 Context.getObjCInterfaceType(SuperClassDecl),
577 diag::err_forward_superclass,
578 SuperClassDecl->getDeclName(),
579 ClassName,
580 SourceRange(AtInterfaceLoc, ClassLoc))) {
581 SuperClassDecl = nullptr;
582 }
583 }
584 IDecl->setSuperClass(SuperClassDecl);
585 IDecl->setSuperClassLoc(SuperLoc);
586 IDecl->setEndOfDefinitionLoc(SuperLoc);
587 }
588 } else { // we have a root class.
589 IDecl->setEndOfDefinitionLoc(ClassLoc);
590 }
591
592 // Check then save referenced protocols.
593 if (NumProtoRefs) {
594 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
595 ProtoLocs, Context);
596 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
597 }
598
599 CheckObjCDeclScope(IDecl);
600 return ActOnObjCContainerStartDefinition(IDecl);
601 }
602
603 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
604 /// typedef'ed use for a qualified super class and adds them to the list
605 /// of the protocols.
ActOnTypedefedProtocols(SmallVectorImpl<Decl * > & ProtocolRefs,IdentifierInfo * SuperName,SourceLocation SuperLoc)606 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
607 IdentifierInfo *SuperName,
608 SourceLocation SuperLoc) {
609 if (!SuperName)
610 return;
611 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
612 LookupOrdinaryName);
613 if (!IDecl)
614 return;
615
616 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
617 QualType T = TDecl->getUnderlyingType();
618 if (T->isObjCObjectType())
619 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
620 for (auto *I : OPT->quals())
621 ProtocolRefs.push_back(I);
622 }
623 }
624
625 /// ActOnCompatibilityAlias - this action is called after complete parsing of
626 /// a \@compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatibilityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)627 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
628 IdentifierInfo *AliasName,
629 SourceLocation AliasLocation,
630 IdentifierInfo *ClassName,
631 SourceLocation ClassLocation) {
632 // Look for previous declaration of alias name
633 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
634 LookupOrdinaryName, ForRedeclaration);
635 if (ADecl) {
636 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
637 Diag(ADecl->getLocation(), diag::note_previous_declaration);
638 return nullptr;
639 }
640 // Check for class declaration
641 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
642 LookupOrdinaryName, ForRedeclaration);
643 if (const TypedefNameDecl *TDecl =
644 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
645 QualType T = TDecl->getUnderlyingType();
646 if (T->isObjCObjectType()) {
647 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
648 ClassName = IDecl->getIdentifier();
649 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
650 LookupOrdinaryName, ForRedeclaration);
651 }
652 }
653 }
654 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
655 if (!CDecl) {
656 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
657 if (CDeclU)
658 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
659 return nullptr;
660 }
661
662 // Everything checked out, instantiate a new alias declaration AST.
663 ObjCCompatibleAliasDecl *AliasDecl =
664 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
665
666 if (!CheckObjCDeclScope(AliasDecl))
667 PushOnScopeChains(AliasDecl, TUScope);
668
669 return AliasDecl;
670 }
671
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)672 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
673 IdentifierInfo *PName,
674 SourceLocation &Ploc, SourceLocation PrevLoc,
675 const ObjCList<ObjCProtocolDecl> &PList) {
676
677 bool res = false;
678 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
679 E = PList.end(); I != E; ++I) {
680 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
681 Ploc)) {
682 if (PDecl->getIdentifier() == PName) {
683 Diag(Ploc, diag::err_protocol_has_circular_dependency);
684 Diag(PrevLoc, diag::note_previous_definition);
685 res = true;
686 }
687
688 if (!PDecl->hasDefinition())
689 continue;
690
691 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
692 PDecl->getLocation(), PDecl->getReferencedProtocols()))
693 res = true;
694 }
695 }
696 return res;
697 }
698
699 Decl *
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)700 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
701 IdentifierInfo *ProtocolName,
702 SourceLocation ProtocolLoc,
703 Decl * const *ProtoRefs,
704 unsigned NumProtoRefs,
705 const SourceLocation *ProtoLocs,
706 SourceLocation EndProtoLoc,
707 AttributeList *AttrList) {
708 bool err = false;
709 // FIXME: Deal with AttrList.
710 assert(ProtocolName && "Missing protocol identifier");
711 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
712 ForRedeclaration);
713 ObjCProtocolDecl *PDecl = nullptr;
714 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
715 // If we already have a definition, complain.
716 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
717 Diag(Def->getLocation(), diag::note_previous_definition);
718
719 // Create a new protocol that is completely distinct from previous
720 // declarations, and do not make this protocol available for name lookup.
721 // That way, we'll end up completely ignoring the duplicate.
722 // FIXME: Can we turn this into an error?
723 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
724 ProtocolLoc, AtProtoInterfaceLoc,
725 /*PrevDecl=*/nullptr);
726 PDecl->startDefinition();
727 } else {
728 if (PrevDecl) {
729 // Check for circular dependencies among protocol declarations. This can
730 // only happen if this protocol was forward-declared.
731 ObjCList<ObjCProtocolDecl> PList;
732 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
733 err = CheckForwardProtocolDeclarationForCircularDependency(
734 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
735 }
736
737 // Create the new declaration.
738 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
739 ProtocolLoc, AtProtoInterfaceLoc,
740 /*PrevDecl=*/PrevDecl);
741
742 PushOnScopeChains(PDecl, TUScope);
743 PDecl->startDefinition();
744 }
745
746 if (AttrList)
747 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
748
749 // Merge attributes from previous declarations.
750 if (PrevDecl)
751 mergeDeclAttributes(PDecl, PrevDecl);
752
753 if (!err && NumProtoRefs ) {
754 /// Check then save referenced protocols.
755 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
756 ProtoLocs, Context);
757 }
758
759 CheckObjCDeclScope(PDecl);
760 return ActOnObjCContainerStartDefinition(PDecl);
761 }
762
NestedProtocolHasNoDefinition(ObjCProtocolDecl * PDecl,ObjCProtocolDecl * & UndefinedProtocol)763 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
764 ObjCProtocolDecl *&UndefinedProtocol) {
765 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
766 UndefinedProtocol = PDecl;
767 return true;
768 }
769
770 for (auto *PI : PDecl->protocols())
771 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
772 UndefinedProtocol = PI;
773 return true;
774 }
775 return false;
776 }
777
778 /// FindProtocolDeclaration - This routine looks up protocols and
779 /// issues an error if they are not declared. It returns list of
780 /// protocol declarations in its 'Protocols' argument.
781 void
FindProtocolDeclaration(bool WarnOnDeclarations,const IdentifierLocPair * ProtocolId,unsigned NumProtocols,SmallVectorImpl<Decl * > & Protocols)782 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
783 const IdentifierLocPair *ProtocolId,
784 unsigned NumProtocols,
785 SmallVectorImpl<Decl *> &Protocols) {
786 for (unsigned i = 0; i != NumProtocols; ++i) {
787 ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
788 ProtocolId[i].second);
789 if (!PDecl) {
790 TypoCorrection Corrected = CorrectTypo(
791 DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
792 LookupObjCProtocolName, TUScope, nullptr,
793 llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
794 CTK_ErrorRecovery);
795 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
796 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
797 << ProtocolId[i].first);
798 }
799
800 if (!PDecl) {
801 Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
802 << ProtocolId[i].first;
803 continue;
804 }
805 // If this is a forward protocol declaration, get its definition.
806 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
807 PDecl = PDecl->getDefinition();
808
809 (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
810
811 // If this is a forward declaration and we are supposed to warn in this
812 // case, do it.
813 // FIXME: Recover nicely in the hidden case.
814 ObjCProtocolDecl *UndefinedProtocol;
815
816 if (WarnOnDeclarations &&
817 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
818 Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
819 << ProtocolId[i].first;
820 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
821 << UndefinedProtocol;
822 }
823 Protocols.push_back(PDecl);
824 }
825 }
826
827 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
828 /// a class method in its extension.
829 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)830 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
831 ObjCInterfaceDecl *ID) {
832 if (!ID)
833 return; // Possibly due to previous error
834
835 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
836 for (auto *MD : ID->methods())
837 MethodMap[MD->getSelector()] = MD;
838
839 if (MethodMap.empty())
840 return;
841 for (const auto *Method : CAT->methods()) {
842 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
843 if (PrevMethod &&
844 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
845 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
846 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
847 << Method->getDeclName();
848 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
849 }
850 }
851 }
852
853 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
854 Sema::DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,const IdentifierLocPair * IdentList,unsigned NumElts,AttributeList * attrList)855 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
856 const IdentifierLocPair *IdentList,
857 unsigned NumElts,
858 AttributeList *attrList) {
859 SmallVector<Decl *, 8> DeclsInGroup;
860 for (unsigned i = 0; i != NumElts; ++i) {
861 IdentifierInfo *Ident = IdentList[i].first;
862 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
863 ForRedeclaration);
864 ObjCProtocolDecl *PDecl
865 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
866 IdentList[i].second, AtProtocolLoc,
867 PrevDecl);
868
869 PushOnScopeChains(PDecl, TUScope);
870 CheckObjCDeclScope(PDecl);
871
872 if (attrList)
873 ProcessDeclAttributeList(TUScope, PDecl, attrList);
874
875 if (PrevDecl)
876 mergeDeclAttributes(PDecl, PrevDecl);
877
878 DeclsInGroup.push_back(PDecl);
879 }
880
881 return BuildDeclaratorGroup(DeclsInGroup, false);
882 }
883
884 Decl *Sema::
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc)885 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
886 IdentifierInfo *ClassName, SourceLocation ClassLoc,
887 IdentifierInfo *CategoryName,
888 SourceLocation CategoryLoc,
889 Decl * const *ProtoRefs,
890 unsigned NumProtoRefs,
891 const SourceLocation *ProtoLocs,
892 SourceLocation EndProtoLoc) {
893 ObjCCategoryDecl *CDecl;
894 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
895
896 /// Check that class of this category is already completely declared.
897
898 if (!IDecl
899 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
900 diag::err_category_forward_interface,
901 CategoryName == nullptr)) {
902 // Create an invalid ObjCCategoryDecl to serve as context for
903 // the enclosing method declarations. We mark the decl invalid
904 // to make it clear that this isn't a valid AST.
905 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
906 ClassLoc, CategoryLoc, CategoryName,IDecl);
907 CDecl->setInvalidDecl();
908 CurContext->addDecl(CDecl);
909
910 if (!IDecl)
911 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
912 return ActOnObjCContainerStartDefinition(CDecl);
913 }
914
915 if (!CategoryName && IDecl->getImplementation()) {
916 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
917 Diag(IDecl->getImplementation()->getLocation(),
918 diag::note_implementation_declared);
919 }
920
921 if (CategoryName) {
922 /// Check for duplicate interface declaration for this category
923 if (ObjCCategoryDecl *Previous
924 = IDecl->FindCategoryDeclaration(CategoryName)) {
925 // Class extensions can be declared multiple times, categories cannot.
926 Diag(CategoryLoc, diag::warn_dup_category_def)
927 << ClassName << CategoryName;
928 Diag(Previous->getLocation(), diag::note_previous_definition);
929 }
930 }
931
932 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
933 ClassLoc, CategoryLoc, CategoryName, IDecl);
934 // FIXME: PushOnScopeChains?
935 CurContext->addDecl(CDecl);
936
937 if (NumProtoRefs) {
938 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
939 ProtoLocs, Context);
940 // Protocols in the class extension belong to the class.
941 if (CDecl->IsClassExtension())
942 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
943 NumProtoRefs, Context);
944 }
945
946 CheckObjCDeclScope(CDecl);
947 return ActOnObjCContainerStartDefinition(CDecl);
948 }
949
950 /// ActOnStartCategoryImplementation - Perform semantic checks on the
951 /// category implementation declaration and build an ObjCCategoryImplDecl
952 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc)953 Decl *Sema::ActOnStartCategoryImplementation(
954 SourceLocation AtCatImplLoc,
955 IdentifierInfo *ClassName, SourceLocation ClassLoc,
956 IdentifierInfo *CatName, SourceLocation CatLoc) {
957 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
958 ObjCCategoryDecl *CatIDecl = nullptr;
959 if (IDecl && IDecl->hasDefinition()) {
960 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
961 if (!CatIDecl) {
962 // Category @implementation with no corresponding @interface.
963 // Create and install one.
964 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
965 ClassLoc, CatLoc,
966 CatName, IDecl);
967 CatIDecl->setImplicit();
968 }
969 }
970
971 ObjCCategoryImplDecl *CDecl =
972 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
973 ClassLoc, AtCatImplLoc, CatLoc);
974 /// Check that class of this category is already completely declared.
975 if (!IDecl) {
976 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
977 CDecl->setInvalidDecl();
978 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
979 diag::err_undef_interface)) {
980 CDecl->setInvalidDecl();
981 }
982
983 // FIXME: PushOnScopeChains?
984 CurContext->addDecl(CDecl);
985
986 // If the interface is deprecated/unavailable, warn/error about it.
987 if (IDecl)
988 DiagnoseUseOfDecl(IDecl, ClassLoc);
989
990 /// Check that CatName, category name, is not used in another implementation.
991 if (CatIDecl) {
992 if (CatIDecl->getImplementation()) {
993 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
994 << CatName;
995 Diag(CatIDecl->getImplementation()->getLocation(),
996 diag::note_previous_definition);
997 CDecl->setInvalidDecl();
998 } else {
999 CatIDecl->setImplementation(CDecl);
1000 // Warn on implementating category of deprecated class under
1001 // -Wdeprecated-implementations flag.
1002 DiagnoseObjCImplementedDeprecations(*this,
1003 dyn_cast<NamedDecl>(IDecl),
1004 CDecl->getLocation(), 2);
1005 }
1006 }
1007
1008 CheckObjCDeclScope(CDecl);
1009 return ActOnObjCContainerStartDefinition(CDecl);
1010 }
1011
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc)1012 Decl *Sema::ActOnStartClassImplementation(
1013 SourceLocation AtClassImplLoc,
1014 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1015 IdentifierInfo *SuperClassname,
1016 SourceLocation SuperClassLoc) {
1017 ObjCInterfaceDecl *IDecl = nullptr;
1018 // Check for another declaration kind with the same name.
1019 NamedDecl *PrevDecl
1020 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1021 ForRedeclaration);
1022 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1023 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1024 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1025 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1026 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1027 diag::warn_undef_interface);
1028 } else {
1029 // We did not find anything with the name ClassName; try to correct for
1030 // typos in the class name.
1031 TypoCorrection Corrected = CorrectTypo(
1032 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1033 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1034 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1035 // Suggest the (potentially) correct interface name. Don't provide a
1036 // code-modification hint or use the typo name for recovery, because
1037 // this is just a warning. The program may actually be correct.
1038 diagnoseTypo(Corrected,
1039 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1040 /*ErrorRecovery*/false);
1041 } else {
1042 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1043 }
1044 }
1045
1046 // Check that super class name is valid class name
1047 ObjCInterfaceDecl *SDecl = nullptr;
1048 if (SuperClassname) {
1049 // Check if a different kind of symbol declared in this scope.
1050 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1051 LookupOrdinaryName);
1052 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1053 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1054 << SuperClassname;
1055 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1056 } else {
1057 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1058 if (SDecl && !SDecl->hasDefinition())
1059 SDecl = nullptr;
1060 if (!SDecl)
1061 Diag(SuperClassLoc, diag::err_undef_superclass)
1062 << SuperClassname << ClassName;
1063 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1064 // This implementation and its interface do not have the same
1065 // super class.
1066 Diag(SuperClassLoc, diag::err_conflicting_super_class)
1067 << SDecl->getDeclName();
1068 Diag(SDecl->getLocation(), diag::note_previous_definition);
1069 }
1070 }
1071 }
1072
1073 if (!IDecl) {
1074 // Legacy case of @implementation with no corresponding @interface.
1075 // Build, chain & install the interface decl into the identifier.
1076
1077 // FIXME: Do we support attributes on the @implementation? If so we should
1078 // copy them over.
1079 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1080 ClassName, /*PrevDecl=*/nullptr, ClassLoc,
1081 true);
1082 IDecl->startDefinition();
1083 if (SDecl) {
1084 IDecl->setSuperClass(SDecl);
1085 IDecl->setSuperClassLoc(SuperClassLoc);
1086 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1087 } else {
1088 IDecl->setEndOfDefinitionLoc(ClassLoc);
1089 }
1090
1091 PushOnScopeChains(IDecl, TUScope);
1092 } else {
1093 // Mark the interface as being completed, even if it was just as
1094 // @class ....;
1095 // declaration; the user cannot reopen it.
1096 if (!IDecl->hasDefinition())
1097 IDecl->startDefinition();
1098 }
1099
1100 ObjCImplementationDecl* IMPDecl =
1101 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1102 ClassLoc, AtClassImplLoc, SuperClassLoc);
1103
1104 if (CheckObjCDeclScope(IMPDecl))
1105 return ActOnObjCContainerStartDefinition(IMPDecl);
1106
1107 // Check that there is no duplicate implementation of this class.
1108 if (IDecl->getImplementation()) {
1109 // FIXME: Don't leak everything!
1110 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1111 Diag(IDecl->getImplementation()->getLocation(),
1112 diag::note_previous_definition);
1113 IMPDecl->setInvalidDecl();
1114 } else { // add it to the list.
1115 IDecl->setImplementation(IMPDecl);
1116 PushOnScopeChains(IMPDecl, TUScope);
1117 // Warn on implementating deprecated class under
1118 // -Wdeprecated-implementations flag.
1119 DiagnoseObjCImplementedDeprecations(*this,
1120 dyn_cast<NamedDecl>(IDecl),
1121 IMPDecl->getLocation(), 1);
1122 }
1123 return ActOnObjCContainerStartDefinition(IMPDecl);
1124 }
1125
1126 Sema::DeclGroupPtrTy
ActOnFinishObjCImplementation(Decl * ObjCImpDecl,ArrayRef<Decl * > Decls)1127 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1128 SmallVector<Decl *, 64> DeclsInGroup;
1129 DeclsInGroup.reserve(Decls.size() + 1);
1130
1131 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1132 Decl *Dcl = Decls[i];
1133 if (!Dcl)
1134 continue;
1135 if (Dcl->getDeclContext()->isFileContext())
1136 Dcl->setTopLevelDeclInObjCContainer();
1137 DeclsInGroup.push_back(Dcl);
1138 }
1139
1140 DeclsInGroup.push_back(ObjCImpDecl);
1141
1142 return BuildDeclaratorGroup(DeclsInGroup, false);
1143 }
1144
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)1145 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1146 ObjCIvarDecl **ivars, unsigned numIvars,
1147 SourceLocation RBrace) {
1148 assert(ImpDecl && "missing implementation decl");
1149 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1150 if (!IDecl)
1151 return;
1152 /// Check case of non-existing \@interface decl.
1153 /// (legacy objective-c \@implementation decl without an \@interface decl).
1154 /// Add implementations's ivar to the synthesize class's ivar list.
1155 if (IDecl->isImplicitInterfaceDecl()) {
1156 IDecl->setEndOfDefinitionLoc(RBrace);
1157 // Add ivar's to class's DeclContext.
1158 for (unsigned i = 0, e = numIvars; i != e; ++i) {
1159 ivars[i]->setLexicalDeclContext(ImpDecl);
1160 IDecl->makeDeclVisibleInContext(ivars[i]);
1161 ImpDecl->addDecl(ivars[i]);
1162 }
1163
1164 return;
1165 }
1166 // If implementation has empty ivar list, just return.
1167 if (numIvars == 0)
1168 return;
1169
1170 assert(ivars && "missing @implementation ivars");
1171 if (LangOpts.ObjCRuntime.isNonFragile()) {
1172 if (ImpDecl->getSuperClass())
1173 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1174 for (unsigned i = 0; i < numIvars; i++) {
1175 ObjCIvarDecl* ImplIvar = ivars[i];
1176 if (const ObjCIvarDecl *ClsIvar =
1177 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1178 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1179 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1180 continue;
1181 }
1182 // Check class extensions (unnamed categories) for duplicate ivars.
1183 for (const auto *CDecl : IDecl->visible_extensions()) {
1184 if (const ObjCIvarDecl *ClsExtIvar =
1185 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1186 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1187 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
1188 continue;
1189 }
1190 }
1191 // Instance ivar to Implementation's DeclContext.
1192 ImplIvar->setLexicalDeclContext(ImpDecl);
1193 IDecl->makeDeclVisibleInContext(ImplIvar);
1194 ImpDecl->addDecl(ImplIvar);
1195 }
1196 return;
1197 }
1198 // Check interface's Ivar list against those in the implementation.
1199 // names and types must match.
1200 //
1201 unsigned j = 0;
1202 ObjCInterfaceDecl::ivar_iterator
1203 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1204 for (; numIvars > 0 && IVI != IVE; ++IVI) {
1205 ObjCIvarDecl* ImplIvar = ivars[j++];
1206 ObjCIvarDecl* ClsIvar = *IVI;
1207 assert (ImplIvar && "missing implementation ivar");
1208 assert (ClsIvar && "missing class ivar");
1209
1210 // First, make sure the types match.
1211 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1212 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1213 << ImplIvar->getIdentifier()
1214 << ImplIvar->getType() << ClsIvar->getType();
1215 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1216 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1217 ImplIvar->getBitWidthValue(Context) !=
1218 ClsIvar->getBitWidthValue(Context)) {
1219 Diag(ImplIvar->getBitWidth()->getLocStart(),
1220 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1221 Diag(ClsIvar->getBitWidth()->getLocStart(),
1222 diag::note_previous_definition);
1223 }
1224 // Make sure the names are identical.
1225 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1226 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1227 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1228 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1229 }
1230 --numIvars;
1231 }
1232
1233 if (numIvars > 0)
1234 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
1235 else if (IVI != IVE)
1236 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
1237 }
1238
WarnUndefinedMethod(Sema & S,SourceLocation ImpLoc,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID,NamedDecl * NeededFor=nullptr)1239 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
1240 ObjCMethodDecl *method,
1241 bool &IncompleteImpl,
1242 unsigned DiagID,
1243 NamedDecl *NeededFor = nullptr) {
1244 // No point warning no definition of method which is 'unavailable'.
1245 switch (method->getAvailability()) {
1246 case AR_Available:
1247 case AR_Deprecated:
1248 break;
1249
1250 // Don't warn about unavailable or not-yet-introduced methods.
1251 case AR_NotYetIntroduced:
1252 case AR_Unavailable:
1253 return;
1254 }
1255
1256 // FIXME: For now ignore 'IncompleteImpl'.
1257 // Previously we grouped all unimplemented methods under a single
1258 // warning, but some users strongly voiced that they would prefer
1259 // separate warnings. We will give that approach a try, as that
1260 // matches what we do with protocols.
1261 {
1262 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
1263 B << method;
1264 if (NeededFor)
1265 B << NeededFor;
1266 }
1267
1268 // Issue a note to the original declaration.
1269 SourceLocation MethodLoc = method->getLocStart();
1270 if (MethodLoc.isValid())
1271 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
1272 }
1273
1274 /// Determines if type B can be substituted for type A. Returns true if we can
1275 /// guarantee that anything that the user will do to an object of type A can
1276 /// also be done to an object of type B. This is trivially true if the two
1277 /// types are the same, or if B is a subclass of A. It becomes more complex
1278 /// in cases where protocols are involved.
1279 ///
1280 /// Object types in Objective-C describe the minimum requirements for an
1281 /// object, rather than providing a complete description of a type. For
1282 /// example, if A is a subclass of B, then B* may refer to an instance of A.
1283 /// The principle of substitutability means that we may use an instance of A
1284 /// anywhere that we may use an instance of B - it will implement all of the
1285 /// ivars of B and all of the methods of B.
1286 ///
1287 /// This substitutability is important when type checking methods, because
1288 /// the implementation may have stricter type definitions than the interface.
1289 /// The interface specifies minimum requirements, but the implementation may
1290 /// have more accurate ones. For example, a method may privately accept
1291 /// instances of B, but only publish that it accepts instances of A. Any
1292 /// object passed to it will be type checked against B, and so will implicitly
1293 /// by a valid A*. Similarly, a method may return a subclass of the class that
1294 /// it is declared as returning.
1295 ///
1296 /// This is most important when considering subclassing. A method in a
1297 /// subclass must accept any object as an argument that its superclass's
1298 /// implementation accepts. It may, however, accept a more general type
1299 /// without breaking substitutability (i.e. you can still use the subclass
1300 /// anywhere that you can use the superclass, but not vice versa). The
1301 /// converse requirement applies to return types: the return type for a
1302 /// subclass method must be a valid object of the kind that the superclass
1303 /// advertises, but it may be specified more accurately. This avoids the need
1304 /// for explicit down-casting by callers.
1305 ///
1306 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)1307 static bool isObjCTypeSubstitutable(ASTContext &Context,
1308 const ObjCObjectPointerType *A,
1309 const ObjCObjectPointerType *B,
1310 bool rejectId) {
1311 // Reject a protocol-unqualified id.
1312 if (rejectId && B->isObjCIdType()) return false;
1313
1314 // If B is a qualified id, then A must also be a qualified id and it must
1315 // implement all of the protocols in B. It may not be a qualified class.
1316 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1317 // stricter definition so it is not substitutable for id<A>.
1318 if (B->isObjCQualifiedIdType()) {
1319 return A->isObjCQualifiedIdType() &&
1320 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1321 QualType(B,0),
1322 false);
1323 }
1324
1325 /*
1326 // id is a special type that bypasses type checking completely. We want a
1327 // warning when it is used in one place but not another.
1328 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1329
1330
1331 // If B is a qualified id, then A must also be a qualified id (which it isn't
1332 // if we've got this far)
1333 if (B->isObjCQualifiedIdType()) return false;
1334 */
1335
1336 // Now we know that A and B are (potentially-qualified) class types. The
1337 // normal rules for assignment apply.
1338 return Context.canAssignObjCInterfaces(A, B);
1339 }
1340
getTypeRange(TypeSourceInfo * TSI)1341 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1342 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1343 }
1344
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)1345 static bool CheckMethodOverrideReturn(Sema &S,
1346 ObjCMethodDecl *MethodImpl,
1347 ObjCMethodDecl *MethodDecl,
1348 bool IsProtocolMethodDecl,
1349 bool IsOverridingMode,
1350 bool Warn) {
1351 if (IsProtocolMethodDecl &&
1352 (MethodDecl->getObjCDeclQualifier() !=
1353 MethodImpl->getObjCDeclQualifier())) {
1354 if (Warn) {
1355 S.Diag(MethodImpl->getLocation(),
1356 (IsOverridingMode
1357 ? diag::warn_conflicting_overriding_ret_type_modifiers
1358 : diag::warn_conflicting_ret_type_modifiers))
1359 << MethodImpl->getDeclName()
1360 << MethodImpl->getReturnTypeSourceRange();
1361 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1362 << MethodDecl->getReturnTypeSourceRange();
1363 }
1364 else
1365 return false;
1366 }
1367
1368 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
1369 MethodDecl->getReturnType()))
1370 return true;
1371 if (!Warn)
1372 return false;
1373
1374 unsigned DiagID =
1375 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1376 : diag::warn_conflicting_ret_types;
1377
1378 // Mismatches between ObjC pointers go into a different warning
1379 // category, and sometimes they're even completely whitelisted.
1380 if (const ObjCObjectPointerType *ImplPtrTy =
1381 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
1382 if (const ObjCObjectPointerType *IfacePtrTy =
1383 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
1384 // Allow non-matching return types as long as they don't violate
1385 // the principle of substitutability. Specifically, we permit
1386 // return types that are subclasses of the declared return type,
1387 // or that are more-qualified versions of the declared type.
1388 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1389 return false;
1390
1391 DiagID =
1392 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1393 : diag::warn_non_covariant_ret_types;
1394 }
1395 }
1396
1397 S.Diag(MethodImpl->getLocation(), DiagID)
1398 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
1399 << MethodImpl->getReturnType()
1400 << MethodImpl->getReturnTypeSourceRange();
1401 S.Diag(MethodDecl->getLocation(), IsOverridingMode
1402 ? diag::note_previous_declaration
1403 : diag::note_previous_definition)
1404 << MethodDecl->getReturnTypeSourceRange();
1405 return false;
1406 }
1407
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)1408 static bool CheckMethodOverrideParam(Sema &S,
1409 ObjCMethodDecl *MethodImpl,
1410 ObjCMethodDecl *MethodDecl,
1411 ParmVarDecl *ImplVar,
1412 ParmVarDecl *IfaceVar,
1413 bool IsProtocolMethodDecl,
1414 bool IsOverridingMode,
1415 bool Warn) {
1416 if (IsProtocolMethodDecl &&
1417 (ImplVar->getObjCDeclQualifier() !=
1418 IfaceVar->getObjCDeclQualifier())) {
1419 if (Warn) {
1420 if (IsOverridingMode)
1421 S.Diag(ImplVar->getLocation(),
1422 diag::warn_conflicting_overriding_param_modifiers)
1423 << getTypeRange(ImplVar->getTypeSourceInfo())
1424 << MethodImpl->getDeclName();
1425 else S.Diag(ImplVar->getLocation(),
1426 diag::warn_conflicting_param_modifiers)
1427 << getTypeRange(ImplVar->getTypeSourceInfo())
1428 << MethodImpl->getDeclName();
1429 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1430 << getTypeRange(IfaceVar->getTypeSourceInfo());
1431 }
1432 else
1433 return false;
1434 }
1435
1436 QualType ImplTy = ImplVar->getType();
1437 QualType IfaceTy = IfaceVar->getType();
1438
1439 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1440 return true;
1441
1442 if (!Warn)
1443 return false;
1444 unsigned DiagID =
1445 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1446 : diag::warn_conflicting_param_types;
1447
1448 // Mismatches between ObjC pointers go into a different warning
1449 // category, and sometimes they're even completely whitelisted.
1450 if (const ObjCObjectPointerType *ImplPtrTy =
1451 ImplTy->getAs<ObjCObjectPointerType>()) {
1452 if (const ObjCObjectPointerType *IfacePtrTy =
1453 IfaceTy->getAs<ObjCObjectPointerType>()) {
1454 // Allow non-matching argument types as long as they don't
1455 // violate the principle of substitutability. Specifically, the
1456 // implementation must accept any objects that the superclass
1457 // accepts, however it may also accept others.
1458 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1459 return false;
1460
1461 DiagID =
1462 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1463 : diag::warn_non_contravariant_param_types;
1464 }
1465 }
1466
1467 S.Diag(ImplVar->getLocation(), DiagID)
1468 << getTypeRange(ImplVar->getTypeSourceInfo())
1469 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1470 S.Diag(IfaceVar->getLocation(),
1471 (IsOverridingMode ? diag::note_previous_declaration
1472 : diag::note_previous_definition))
1473 << getTypeRange(IfaceVar->getTypeSourceInfo());
1474 return false;
1475 }
1476
1477 /// In ARC, check whether the conventional meanings of the two methods
1478 /// match. If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)1479 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1480 ObjCMethodDecl *decl) {
1481 ObjCMethodFamily implFamily = impl->getMethodFamily();
1482 ObjCMethodFamily declFamily = decl->getMethodFamily();
1483 if (implFamily == declFamily) return false;
1484
1485 // Since conventions are sorted by selector, the only possibility is
1486 // that the types differ enough to cause one selector or the other
1487 // to fall out of the family.
1488 assert(implFamily == OMF_None || declFamily == OMF_None);
1489
1490 // No further diagnostics required on invalid declarations.
1491 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1492
1493 const ObjCMethodDecl *unmatched = impl;
1494 ObjCMethodFamily family = declFamily;
1495 unsigned errorID = diag::err_arc_lost_method_convention;
1496 unsigned noteID = diag::note_arc_lost_method_convention;
1497 if (declFamily == OMF_None) {
1498 unmatched = decl;
1499 family = implFamily;
1500 errorID = diag::err_arc_gained_method_convention;
1501 noteID = diag::note_arc_gained_method_convention;
1502 }
1503
1504 // Indexes into a %select clause in the diagnostic.
1505 enum FamilySelector {
1506 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1507 };
1508 FamilySelector familySelector = FamilySelector();
1509
1510 switch (family) {
1511 case OMF_None: llvm_unreachable("logic error, no method convention");
1512 case OMF_retain:
1513 case OMF_release:
1514 case OMF_autorelease:
1515 case OMF_dealloc:
1516 case OMF_finalize:
1517 case OMF_retainCount:
1518 case OMF_self:
1519 case OMF_initialize:
1520 case OMF_performSelector:
1521 // Mismatches for these methods don't change ownership
1522 // conventions, so we don't care.
1523 return false;
1524
1525 case OMF_init: familySelector = F_init; break;
1526 case OMF_alloc: familySelector = F_alloc; break;
1527 case OMF_copy: familySelector = F_copy; break;
1528 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1529 case OMF_new: familySelector = F_new; break;
1530 }
1531
1532 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1533 ReasonSelector reasonSelector;
1534
1535 // The only reason these methods don't fall within their families is
1536 // due to unusual result types.
1537 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
1538 reasonSelector = R_UnrelatedReturn;
1539 } else {
1540 reasonSelector = R_NonObjectReturn;
1541 }
1542
1543 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
1544 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
1545
1546 return true;
1547 }
1548
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1549 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1550 ObjCMethodDecl *MethodDecl,
1551 bool IsProtocolMethodDecl) {
1552 if (getLangOpts().ObjCAutoRefCount &&
1553 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1554 return;
1555
1556 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1557 IsProtocolMethodDecl, false,
1558 true);
1559
1560 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1561 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1562 EF = MethodDecl->param_end();
1563 IM != EM && IF != EF; ++IM, ++IF) {
1564 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1565 IsProtocolMethodDecl, false, true);
1566 }
1567
1568 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1569 Diag(ImpMethodDecl->getLocation(),
1570 diag::warn_conflicting_variadic);
1571 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1572 }
1573 }
1574
CheckConflictingOverridingMethod(ObjCMethodDecl * Method,ObjCMethodDecl * Overridden,bool IsProtocolMethodDecl)1575 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1576 ObjCMethodDecl *Overridden,
1577 bool IsProtocolMethodDecl) {
1578
1579 CheckMethodOverrideReturn(*this, Method, Overridden,
1580 IsProtocolMethodDecl, true,
1581 true);
1582
1583 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1584 IF = Overridden->param_begin(), EM = Method->param_end(),
1585 EF = Overridden->param_end();
1586 IM != EM && IF != EF; ++IM, ++IF) {
1587 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1588 IsProtocolMethodDecl, true, true);
1589 }
1590
1591 if (Method->isVariadic() != Overridden->isVariadic()) {
1592 Diag(Method->getLocation(),
1593 diag::warn_conflicting_overriding_variadic);
1594 Diag(Overridden->getLocation(), diag::note_previous_declaration);
1595 }
1596 }
1597
1598 /// WarnExactTypedMethods - This routine issues a warning if method
1599 /// implementation declaration matches exactly that of its declaration.
WarnExactTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)1600 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1601 ObjCMethodDecl *MethodDecl,
1602 bool IsProtocolMethodDecl) {
1603 // don't issue warning when protocol method is optional because primary
1604 // class is not required to implement it and it is safe for protocol
1605 // to implement it.
1606 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1607 return;
1608 // don't issue warning when primary class's method is
1609 // depecated/unavailable.
1610 if (MethodDecl->hasAttr<UnavailableAttr>() ||
1611 MethodDecl->hasAttr<DeprecatedAttr>())
1612 return;
1613
1614 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1615 IsProtocolMethodDecl, false, false);
1616 if (match)
1617 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1618 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1619 EF = MethodDecl->param_end();
1620 IM != EM && IF != EF; ++IM, ++IF) {
1621 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1622 *IM, *IF,
1623 IsProtocolMethodDecl, false, false);
1624 if (!match)
1625 break;
1626 }
1627 if (match)
1628 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1629 if (match)
1630 match = !(MethodDecl->isClassMethod() &&
1631 MethodDecl->getSelector() == GetNullarySelector("load", Context));
1632
1633 if (match) {
1634 Diag(ImpMethodDecl->getLocation(),
1635 diag::warn_category_method_impl_match);
1636 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1637 << MethodDecl->getDeclName();
1638 }
1639 }
1640
1641 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1642 /// improve the efficiency of selector lookups and type checking by associating
1643 /// with each protocol / interface / category the flattened instance tables. If
1644 /// we used an immutable set to keep the table then it wouldn't add significant
1645 /// memory cost and it would be handy for lookups.
1646
1647 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
1648 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
1649
findProtocolsWithExplicitImpls(const ObjCProtocolDecl * PDecl,ProtocolNameSet & PNS)1650 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
1651 ProtocolNameSet &PNS) {
1652 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
1653 PNS.insert(PDecl->getIdentifier());
1654 for (const auto *PI : PDecl->protocols())
1655 findProtocolsWithExplicitImpls(PI, PNS);
1656 }
1657
1658 /// Recursively populates a set with all conformed protocols in a class
1659 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
1660 /// attribute.
findProtocolsWithExplicitImpls(const ObjCInterfaceDecl * Super,ProtocolNameSet & PNS)1661 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
1662 ProtocolNameSet &PNS) {
1663 if (!Super)
1664 return;
1665
1666 for (const auto *I : Super->all_referenced_protocols())
1667 findProtocolsWithExplicitImpls(I, PNS);
1668
1669 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
1670 }
1671
1672 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
1673 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(Sema & S,SourceLocation ImpLoc,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const Sema::SelectorSet & InsMap,const Sema::SelectorSet & ClsMap,ObjCContainerDecl * CDecl,LazyProtocolNameSet & ProtocolsExplictImpl)1674 static void CheckProtocolMethodDefs(Sema &S,
1675 SourceLocation ImpLoc,
1676 ObjCProtocolDecl *PDecl,
1677 bool& IncompleteImpl,
1678 const Sema::SelectorSet &InsMap,
1679 const Sema::SelectorSet &ClsMap,
1680 ObjCContainerDecl *CDecl,
1681 LazyProtocolNameSet &ProtocolsExplictImpl) {
1682 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1683 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1684 : dyn_cast<ObjCInterfaceDecl>(CDecl);
1685 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1686
1687 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1688 ObjCInterfaceDecl *NSIDecl = nullptr;
1689
1690 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
1691 // then we should check if any class in the super class hierarchy also
1692 // conforms to this protocol, either directly or via protocol inheritance.
1693 // If so, we can skip checking this protocol completely because we
1694 // know that a parent class already satisfies this protocol.
1695 //
1696 // Note: we could generalize this logic for all protocols, and merely
1697 // add the limit on looking at the super class chain for just
1698 // specially marked protocols. This may be a good optimization. This
1699 // change is restricted to 'objc_protocol_requires_explicit_implementation'
1700 // protocols for now for controlled evaluation.
1701 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
1702 if (!ProtocolsExplictImpl) {
1703 ProtocolsExplictImpl.reset(new ProtocolNameSet);
1704 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
1705 }
1706 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
1707 ProtocolsExplictImpl->end())
1708 return;
1709
1710 // If no super class conforms to the protocol, we should not search
1711 // for methods in the super class to implicitly satisfy the protocol.
1712 Super = nullptr;
1713 }
1714
1715 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
1716 // check to see if class implements forwardInvocation method and objects
1717 // of this class are derived from 'NSProxy' so that to forward requests
1718 // from one object to another.
1719 // Under such conditions, which means that every method possible is
1720 // implemented in the class, we should not issue "Method definition not
1721 // found" warnings.
1722 // FIXME: Use a general GetUnarySelector method for this.
1723 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
1724 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
1725 if (InsMap.count(fISelector))
1726 // Is IDecl derived from 'NSProxy'? If so, no instance methods
1727 // need be implemented in the implementation.
1728 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
1729 }
1730
1731 // If this is a forward protocol declaration, get its definition.
1732 if (!PDecl->isThisDeclarationADefinition() &&
1733 PDecl->getDefinition())
1734 PDecl = PDecl->getDefinition();
1735
1736 // If a method lookup fails locally we still need to look and see if
1737 // the method was implemented by a base class or an inherited
1738 // protocol. This lookup is slow, but occurs rarely in correct code
1739 // and otherwise would terminate in a warning.
1740
1741 // check unimplemented instance methods.
1742 if (!NSIDecl)
1743 for (auto *method : PDecl->instance_methods()) {
1744 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1745 !method->isPropertyAccessor() &&
1746 !InsMap.count(method->getSelector()) &&
1747 (!Super || !Super->lookupMethod(method->getSelector(),
1748 true /* instance */,
1749 false /* shallowCategory */,
1750 true /* followsSuper */,
1751 nullptr /* category */))) {
1752 // If a method is not implemented in the category implementation but
1753 // has been declared in its primary class, superclass,
1754 // or in one of their protocols, no need to issue the warning.
1755 // This is because method will be implemented in the primary class
1756 // or one of its super class implementation.
1757
1758 // Ugly, but necessary. Method declared in protcol might have
1759 // have been synthesized due to a property declared in the class which
1760 // uses the protocol.
1761 if (ObjCMethodDecl *MethodInClass =
1762 IDecl->lookupMethod(method->getSelector(),
1763 true /* instance */,
1764 true /* shallowCategoryLookup */,
1765 false /* followSuper */))
1766 if (C || MethodInClass->isPropertyAccessor())
1767 continue;
1768 unsigned DIAG = diag::warn_unimplemented_protocol_method;
1769 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
1770 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
1771 PDecl);
1772 }
1773 }
1774 }
1775 // check unimplemented class methods
1776 for (auto *method : PDecl->class_methods()) {
1777 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1778 !ClsMap.count(method->getSelector()) &&
1779 (!Super || !Super->lookupMethod(method->getSelector(),
1780 false /* class method */,
1781 false /* shallowCategoryLookup */,
1782 true /* followSuper */,
1783 nullptr /* category */))) {
1784 // See above comment for instance method lookups.
1785 if (C && IDecl->lookupMethod(method->getSelector(),
1786 false /* class */,
1787 true /* shallowCategoryLookup */,
1788 false /* followSuper */))
1789 continue;
1790
1791 unsigned DIAG = diag::warn_unimplemented_protocol_method;
1792 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
1793 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
1794 }
1795 }
1796 }
1797 // Check on this protocols's referenced protocols, recursively.
1798 for (auto *PI : PDecl->protocols())
1799 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
1800 CDecl, ProtocolsExplictImpl);
1801 }
1802
1803 /// MatchAllMethodDeclarations - Check methods declared in interface
1804 /// or protocol against those declared in their implementations.
1805 ///
MatchAllMethodDeclarations(const SelectorSet & InsMap,const SelectorSet & ClsMap,SelectorSet & InsMapSeen,SelectorSet & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass,bool WarnCategoryMethodImpl)1806 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1807 const SelectorSet &ClsMap,
1808 SelectorSet &InsMapSeen,
1809 SelectorSet &ClsMapSeen,
1810 ObjCImplDecl* IMPDecl,
1811 ObjCContainerDecl* CDecl,
1812 bool &IncompleteImpl,
1813 bool ImmediateClass,
1814 bool WarnCategoryMethodImpl) {
1815 // Check and see if instance methods in class interface have been
1816 // implemented in the implementation class. If so, their types match.
1817 for (auto *I : CDecl->instance_methods()) {
1818 if (!InsMapSeen.insert(I->getSelector()).second)
1819 continue;
1820 if (!I->isPropertyAccessor() &&
1821 !InsMap.count(I->getSelector())) {
1822 if (ImmediateClass)
1823 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
1824 diag::warn_undef_method_impl);
1825 continue;
1826 } else {
1827 ObjCMethodDecl *ImpMethodDecl =
1828 IMPDecl->getInstanceMethod(I->getSelector());
1829 assert(CDecl->getInstanceMethod(I->getSelector()) &&
1830 "Expected to find the method through lookup as well");
1831 // ImpMethodDecl may be null as in a @dynamic property.
1832 if (ImpMethodDecl) {
1833 if (!WarnCategoryMethodImpl)
1834 WarnConflictingTypedMethods(ImpMethodDecl, I,
1835 isa<ObjCProtocolDecl>(CDecl));
1836 else if (!I->isPropertyAccessor())
1837 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
1838 }
1839 }
1840 }
1841
1842 // Check and see if class methods in class interface have been
1843 // implemented in the implementation class. If so, their types match.
1844 for (auto *I : CDecl->class_methods()) {
1845 if (!ClsMapSeen.insert(I->getSelector()).second)
1846 continue;
1847 if (!ClsMap.count(I->getSelector())) {
1848 if (ImmediateClass)
1849 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
1850 diag::warn_undef_method_impl);
1851 } else {
1852 ObjCMethodDecl *ImpMethodDecl =
1853 IMPDecl->getClassMethod(I->getSelector());
1854 assert(CDecl->getClassMethod(I->getSelector()) &&
1855 "Expected to find the method through lookup as well");
1856 if (!WarnCategoryMethodImpl)
1857 WarnConflictingTypedMethods(ImpMethodDecl, I,
1858 isa<ObjCProtocolDecl>(CDecl));
1859 else
1860 WarnExactTypedMethods(ImpMethodDecl, I,
1861 isa<ObjCProtocolDecl>(CDecl));
1862 }
1863 }
1864
1865 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
1866 // Also, check for methods declared in protocols inherited by
1867 // this protocol.
1868 for (auto *PI : PD->protocols())
1869 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1870 IMPDecl, PI, IncompleteImpl, false,
1871 WarnCategoryMethodImpl);
1872 }
1873
1874 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1875 // when checking that methods in implementation match their declaration,
1876 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1877 // extension; as well as those in categories.
1878 if (!WarnCategoryMethodImpl) {
1879 for (auto *Cat : I->visible_categories())
1880 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1881 IMPDecl, Cat, IncompleteImpl, false,
1882 WarnCategoryMethodImpl);
1883 } else {
1884 // Also methods in class extensions need be looked at next.
1885 for (auto *Ext : I->visible_extensions())
1886 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1887 IMPDecl, Ext, IncompleteImpl, false,
1888 WarnCategoryMethodImpl);
1889 }
1890
1891 // Check for any implementation of a methods declared in protocol.
1892 for (auto *PI : I->all_referenced_protocols())
1893 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1894 IMPDecl, PI, IncompleteImpl, false,
1895 WarnCategoryMethodImpl);
1896
1897 // FIXME. For now, we are not checking for extact match of methods
1898 // in category implementation and its primary class's super class.
1899 if (!WarnCategoryMethodImpl && I->getSuperClass())
1900 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1901 IMPDecl,
1902 I->getSuperClass(), IncompleteImpl, false);
1903 }
1904 }
1905
1906 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1907 /// category matches with those implemented in its primary class and
1908 /// warns each time an exact match is found.
CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl * CatIMPDecl)1909 void Sema::CheckCategoryVsClassMethodMatches(
1910 ObjCCategoryImplDecl *CatIMPDecl) {
1911 // Get category's primary class.
1912 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1913 if (!CatDecl)
1914 return;
1915 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1916 if (!IDecl)
1917 return;
1918 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
1919 SelectorSet InsMap, ClsMap;
1920
1921 for (const auto *I : CatIMPDecl->instance_methods()) {
1922 Selector Sel = I->getSelector();
1923 // When checking for methods implemented in the category, skip over
1924 // those declared in category class's super class. This is because
1925 // the super class must implement the method.
1926 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
1927 continue;
1928 InsMap.insert(Sel);
1929 }
1930
1931 for (const auto *I : CatIMPDecl->class_methods()) {
1932 Selector Sel = I->getSelector();
1933 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
1934 continue;
1935 ClsMap.insert(Sel);
1936 }
1937 if (InsMap.empty() && ClsMap.empty())
1938 return;
1939
1940 SelectorSet InsMapSeen, ClsMapSeen;
1941 bool IncompleteImpl = false;
1942 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1943 CatIMPDecl, IDecl,
1944 IncompleteImpl, false,
1945 true /*WarnCategoryMethodImpl*/);
1946 }
1947
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)1948 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1949 ObjCContainerDecl* CDecl,
1950 bool IncompleteImpl) {
1951 SelectorSet InsMap;
1952 // Check and see if instance methods in class interface have been
1953 // implemented in the implementation class.
1954 for (const auto *I : IMPDecl->instance_methods())
1955 InsMap.insert(I->getSelector());
1956
1957 // Check and see if properties declared in the interface have either 1)
1958 // an implementation or 2) there is a @synthesize/@dynamic implementation
1959 // of the property in the @implementation.
1960 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1961 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
1962 LangOpts.ObjCRuntime.isNonFragile() &&
1963 !IDecl->isObjCRequiresPropertyDefs();
1964 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
1965 }
1966
1967 SelectorSet ClsMap;
1968 for (const auto *I : IMPDecl->class_methods())
1969 ClsMap.insert(I->getSelector());
1970
1971 // Check for type conflict of methods declared in a class/protocol and
1972 // its implementation; if any.
1973 SelectorSet InsMapSeen, ClsMapSeen;
1974 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1975 IMPDecl, CDecl,
1976 IncompleteImpl, true);
1977
1978 // check all methods implemented in category against those declared
1979 // in its primary class.
1980 if (ObjCCategoryImplDecl *CatDecl =
1981 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1982 CheckCategoryVsClassMethodMatches(CatDecl);
1983
1984 // Check the protocol list for unimplemented methods in the @implementation
1985 // class.
1986 // Check and see if class methods in class interface have been
1987 // implemented in the implementation class.
1988
1989 LazyProtocolNameSet ExplicitImplProtocols;
1990
1991 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1992 for (auto *PI : I->all_referenced_protocols())
1993 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
1994 InsMap, ClsMap, I, ExplicitImplProtocols);
1995 // Check class extensions (unnamed categories)
1996 for (auto *Ext : I->visible_extensions())
1997 ImplMethodsVsClassMethods(S, IMPDecl, Ext, IncompleteImpl);
1998 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1999 // For extended class, unimplemented methods in its protocols will
2000 // be reported in the primary class.
2001 if (!C->IsClassExtension()) {
2002 for (auto *P : C->protocols())
2003 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2004 IncompleteImpl, InsMap, ClsMap, CDecl,
2005 ExplicitImplProtocols);
2006 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2007 /*SynthesizeProperties=*/false);
2008 }
2009 } else
2010 llvm_unreachable("invalid ObjCContainerDecl type.");
2011 }
2012
2013 Sema::DeclGroupPtrTy
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,unsigned NumElts)2014 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
2015 IdentifierInfo **IdentList,
2016 SourceLocation *IdentLocs,
2017 unsigned NumElts) {
2018 SmallVector<Decl *, 8> DeclsInGroup;
2019 for (unsigned i = 0; i != NumElts; ++i) {
2020 // Check for another declaration kind with the same name.
2021 NamedDecl *PrevDecl
2022 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
2023 LookupOrdinaryName, ForRedeclaration);
2024 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2025 // GCC apparently allows the following idiom:
2026 //
2027 // typedef NSObject < XCElementTogglerP > XCElementToggler;
2028 // @class XCElementToggler;
2029 //
2030 // Here we have chosen to ignore the forward class declaration
2031 // with a warning. Since this is the implied behavior.
2032 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
2033 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
2034 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
2035 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2036 } else {
2037 // a forward class declaration matching a typedef name of a class refers
2038 // to the underlying class. Just ignore the forward class with a warning
2039 // as this will force the intended behavior which is to lookup the
2040 // typedef name.
2041 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
2042 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
2043 << IdentList[i];
2044 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2045 continue;
2046 }
2047 }
2048 }
2049
2050 // Create a declaration to describe this forward declaration.
2051 ObjCInterfaceDecl *PrevIDecl
2052 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2053
2054 IdentifierInfo *ClassName = IdentList[i];
2055 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
2056 // A previous decl with a different name is because of
2057 // @compatibility_alias, for example:
2058 // \code
2059 // @class NewImage;
2060 // @compatibility_alias OldImage NewImage;
2061 // \endcode
2062 // A lookup for 'OldImage' will return the 'NewImage' decl.
2063 //
2064 // In such a case use the real declaration name, instead of the alias one,
2065 // otherwise we will break IdentifierResolver and redecls-chain invariants.
2066 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
2067 // has been aliased.
2068 ClassName = PrevIDecl->getIdentifier();
2069 }
2070
2071 ObjCInterfaceDecl *IDecl
2072 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
2073 ClassName, PrevIDecl, IdentLocs[i]);
2074 IDecl->setAtEndRange(IdentLocs[i]);
2075
2076 PushOnScopeChains(IDecl, TUScope);
2077 CheckObjCDeclScope(IDecl);
2078 DeclsInGroup.push_back(IDecl);
2079 }
2080
2081 return BuildDeclaratorGroup(DeclsInGroup, false);
2082 }
2083
2084 static bool tryMatchRecordTypes(ASTContext &Context,
2085 Sema::MethodMatchStrategy strategy,
2086 const Type *left, const Type *right);
2087
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)2088 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
2089 QualType leftQT, QualType rightQT) {
2090 const Type *left =
2091 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
2092 const Type *right =
2093 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
2094
2095 if (left == right) return true;
2096
2097 // If we're doing a strict match, the types have to match exactly.
2098 if (strategy == Sema::MMS_strict) return false;
2099
2100 if (left->isIncompleteType() || right->isIncompleteType()) return false;
2101
2102 // Otherwise, use this absurdly complicated algorithm to try to
2103 // validate the basic, low-level compatibility of the two types.
2104
2105 // As a minimum, require the sizes and alignments to match.
2106 TypeInfo LeftTI = Context.getTypeInfo(left);
2107 TypeInfo RightTI = Context.getTypeInfo(right);
2108 if (LeftTI.Width != RightTI.Width)
2109 return false;
2110
2111 if (LeftTI.Align != RightTI.Align)
2112 return false;
2113
2114 // Consider all the kinds of non-dependent canonical types:
2115 // - functions and arrays aren't possible as return and parameter types
2116
2117 // - vector types of equal size can be arbitrarily mixed
2118 if (isa<VectorType>(left)) return isa<VectorType>(right);
2119 if (isa<VectorType>(right)) return false;
2120
2121 // - references should only match references of identical type
2122 // - structs, unions, and Objective-C objects must match more-or-less
2123 // exactly
2124 // - everything else should be a scalar
2125 if (!left->isScalarType() || !right->isScalarType())
2126 return tryMatchRecordTypes(Context, strategy, left, right);
2127
2128 // Make scalars agree in kind, except count bools as chars, and group
2129 // all non-member pointers together.
2130 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
2131 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
2132 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
2133 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
2134 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
2135 leftSK = Type::STK_ObjCObjectPointer;
2136 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2137 rightSK = Type::STK_ObjCObjectPointer;
2138
2139 // Note that data member pointers and function member pointers don't
2140 // intermix because of the size differences.
2141
2142 return (leftSK == rightSK);
2143 }
2144
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)2145 static bool tryMatchRecordTypes(ASTContext &Context,
2146 Sema::MethodMatchStrategy strategy,
2147 const Type *lt, const Type *rt) {
2148 assert(lt && rt && lt != rt);
2149
2150 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2151 RecordDecl *left = cast<RecordType>(lt)->getDecl();
2152 RecordDecl *right = cast<RecordType>(rt)->getDecl();
2153
2154 // Require union-hood to match.
2155 if (left->isUnion() != right->isUnion()) return false;
2156
2157 // Require an exact match if either is non-POD.
2158 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2159 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2160 return false;
2161
2162 // Require size and alignment to match.
2163 TypeInfo LeftTI = Context.getTypeInfo(lt);
2164 TypeInfo RightTI = Context.getTypeInfo(rt);
2165 if (LeftTI.Width != RightTI.Width)
2166 return false;
2167
2168 if (LeftTI.Align != RightTI.Align)
2169 return false;
2170
2171 // Require fields to match.
2172 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2173 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2174 for (; li != le && ri != re; ++li, ++ri) {
2175 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2176 return false;
2177 }
2178 return (li == le && ri == re);
2179 }
2180
2181 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2182 /// returns true, or false, accordingly.
2183 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)2184 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2185 const ObjCMethodDecl *right,
2186 MethodMatchStrategy strategy) {
2187 if (!matchTypes(Context, strategy, left->getReturnType(),
2188 right->getReturnType()))
2189 return false;
2190
2191 // If either is hidden, it is not considered to match.
2192 if (left->isHidden() || right->isHidden())
2193 return false;
2194
2195 if (getLangOpts().ObjCAutoRefCount &&
2196 (left->hasAttr<NSReturnsRetainedAttr>()
2197 != right->hasAttr<NSReturnsRetainedAttr>() ||
2198 left->hasAttr<NSConsumesSelfAttr>()
2199 != right->hasAttr<NSConsumesSelfAttr>()))
2200 return false;
2201
2202 ObjCMethodDecl::param_const_iterator
2203 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2204 re = right->param_end();
2205
2206 for (; li != le && ri != re; ++li, ++ri) {
2207 assert(ri != right->param_end() && "Param mismatch");
2208 const ParmVarDecl *lparm = *li, *rparm = *ri;
2209
2210 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2211 return false;
2212
2213 if (getLangOpts().ObjCAutoRefCount &&
2214 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2215 return false;
2216 }
2217 return true;
2218 }
2219
addMethodToGlobalList(ObjCMethodList * List,ObjCMethodDecl * Method)2220 void Sema::addMethodToGlobalList(ObjCMethodList *List,
2221 ObjCMethodDecl *Method) {
2222 // Record at the head of the list whether there were 0, 1, or >= 2 methods
2223 // inside categories.
2224 if (ObjCCategoryDecl *CD =
2225 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
2226 if (!CD->IsClassExtension() && List->getBits() < 2)
2227 List->setBits(List->getBits() + 1);
2228
2229 // If the list is empty, make it a singleton list.
2230 if (List->getMethod() == nullptr) {
2231 List->setMethod(Method);
2232 List->setNext(nullptr);
2233 return;
2234 }
2235
2236 // We've seen a method with this name, see if we have already seen this type
2237 // signature.
2238 ObjCMethodList *Previous = List;
2239 for (; List; Previous = List, List = List->getNext()) {
2240 // If we are building a module, keep all of the methods.
2241 if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
2242 continue;
2243
2244 if (!MatchTwoMethodDeclarations(Method, List->getMethod()))
2245 continue;
2246
2247 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
2248
2249 // Propagate the 'defined' bit.
2250 if (Method->isDefined())
2251 PrevObjCMethod->setDefined(true);
2252 else {
2253 // Objective-C doesn't allow an @interface for a class after its
2254 // @implementation. So if Method is not defined and there already is
2255 // an entry for this type signature, Method has to be for a different
2256 // class than PrevObjCMethod.
2257 List->setHasMoreThanOneDecl(true);
2258 }
2259
2260 // If a method is deprecated, push it in the global pool.
2261 // This is used for better diagnostics.
2262 if (Method->isDeprecated()) {
2263 if (!PrevObjCMethod->isDeprecated())
2264 List->setMethod(Method);
2265 }
2266 // If the new method is unavailable, push it into global pool
2267 // unless previous one is deprecated.
2268 if (Method->isUnavailable()) {
2269 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2270 List->setMethod(Method);
2271 }
2272
2273 return;
2274 }
2275
2276 // We have a new signature for an existing method - add it.
2277 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2278 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2279 Previous->setNext(new (Mem) ObjCMethodList(Method));
2280 }
2281
2282 /// \brief Read the contents of the method pool for a given selector from
2283 /// external storage.
ReadMethodPool(Selector Sel)2284 void Sema::ReadMethodPool(Selector Sel) {
2285 assert(ExternalSource && "We need an external AST source");
2286 ExternalSource->ReadMethodPool(Sel);
2287 }
2288
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)2289 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2290 bool instance) {
2291 // Ignore methods of invalid containers.
2292 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2293 return;
2294
2295 if (ExternalSource)
2296 ReadMethodPool(Method->getSelector());
2297
2298 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2299 if (Pos == MethodPool.end())
2300 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2301 GlobalMethods())).first;
2302
2303 Method->setDefined(impl);
2304
2305 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2306 addMethodToGlobalList(&Entry, Method);
2307 }
2308
2309 /// Determines if this is an "acceptable" loose mismatch in the global
2310 /// method pool. This exists mostly as a hack to get around certain
2311 /// global mismatches which we can't afford to make warnings / errors.
2312 /// Really, what we want is a way to take a method out of the global
2313 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)2314 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2315 ObjCMethodDecl *other) {
2316 if (!chosen->isInstanceMethod())
2317 return false;
2318
2319 Selector sel = chosen->getSelector();
2320 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2321 return false;
2322
2323 // Don't complain about mismatches for -length if the method we
2324 // chose has an integral result type.
2325 return (chosen->getReturnType()->isIntegerType());
2326 }
2327
CollectMultipleMethodsInGlobalPool(Selector Sel,SmallVectorImpl<ObjCMethodDecl * > & Methods,bool instance)2328 bool Sema::CollectMultipleMethodsInGlobalPool(
2329 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, bool instance) {
2330 if (ExternalSource)
2331 ReadMethodPool(Sel);
2332
2333 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2334 if (Pos == MethodPool.end())
2335 return false;
2336 // Gather the non-hidden methods.
2337 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2338 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
2339 if (M->getMethod() && !M->getMethod()->isHidden())
2340 Methods.push_back(M->getMethod());
2341 return Methods.size() > 1;
2342 }
2343
AreMultipleMethodsInGlobalPool(Selector Sel,bool instance)2344 bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, bool instance) {
2345 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2346 // Test for no method in the pool which should not trigger any warning by
2347 // caller.
2348 if (Pos == MethodPool.end())
2349 return true;
2350 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2351 return MethList.hasMoreThanOneDecl();
2352 }
2353
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool warn,bool instance)2354 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2355 bool receiverIdOrClass,
2356 bool warn, bool instance) {
2357 if (ExternalSource)
2358 ReadMethodPool(Sel);
2359
2360 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2361 if (Pos == MethodPool.end())
2362 return nullptr;
2363
2364 // Gather the non-hidden methods.
2365 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2366 SmallVector<ObjCMethodDecl *, 4> Methods;
2367 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
2368 if (M->getMethod() && !M->getMethod()->isHidden()) {
2369 // If we're not supposed to warn about mismatches, we're done.
2370 if (!warn)
2371 return M->getMethod();
2372
2373 Methods.push_back(M->getMethod());
2374 }
2375 }
2376
2377 // If there aren't any visible methods, we're done.
2378 // FIXME: Recover if there are any known-but-hidden methods?
2379 if (Methods.empty())
2380 return nullptr;
2381
2382 if (Methods.size() == 1)
2383 return Methods[0];
2384
2385 // We found multiple methods, so we may have to complain.
2386 bool issueDiagnostic = false, issueError = false;
2387
2388 // We support a warning which complains about *any* difference in
2389 // method signature.
2390 bool strictSelectorMatch =
2391 receiverIdOrClass && warn &&
2392 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
2393 if (strictSelectorMatch) {
2394 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2395 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2396 issueDiagnostic = true;
2397 break;
2398 }
2399 }
2400 }
2401
2402 // If we didn't see any strict differences, we won't see any loose
2403 // differences. In ARC, however, we also need to check for loose
2404 // mismatches, because most of them are errors.
2405 if (!strictSelectorMatch ||
2406 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2407 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2408 // This checks if the methods differ in type mismatch.
2409 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2410 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2411 issueDiagnostic = true;
2412 if (getLangOpts().ObjCAutoRefCount)
2413 issueError = true;
2414 break;
2415 }
2416 }
2417
2418 if (issueDiagnostic) {
2419 if (issueError)
2420 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2421 else if (strictSelectorMatch)
2422 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2423 else
2424 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2425
2426 Diag(Methods[0]->getLocStart(),
2427 issueError ? diag::note_possibility : diag::note_using)
2428 << Methods[0]->getSourceRange();
2429 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2430 Diag(Methods[I]->getLocStart(), diag::note_also_found)
2431 << Methods[I]->getSourceRange();
2432 }
2433 }
2434 return Methods[0];
2435 }
2436
LookupImplementedMethodInGlobalPool(Selector Sel)2437 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2438 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2439 if (Pos == MethodPool.end())
2440 return nullptr;
2441
2442 GlobalMethods &Methods = Pos->second;
2443 for (const ObjCMethodList *Method = &Methods.first; Method;
2444 Method = Method->getNext())
2445 if (Method->getMethod() && Method->getMethod()->isDefined())
2446 return Method->getMethod();
2447
2448 for (const ObjCMethodList *Method = &Methods.second; Method;
2449 Method = Method->getNext())
2450 if (Method->getMethod() && Method->getMethod()->isDefined())
2451 return Method->getMethod();
2452 return nullptr;
2453 }
2454
2455 static void
HelperSelectorsForTypoCorrection(SmallVectorImpl<const ObjCMethodDecl * > & BestMethod,StringRef Typo,const ObjCMethodDecl * Method)2456 HelperSelectorsForTypoCorrection(
2457 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
2458 StringRef Typo, const ObjCMethodDecl * Method) {
2459 const unsigned MaxEditDistance = 1;
2460 unsigned BestEditDistance = MaxEditDistance + 1;
2461 std::string MethodName = Method->getSelector().getAsString();
2462
2463 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
2464 if (MinPossibleEditDistance > 0 &&
2465 Typo.size() / MinPossibleEditDistance < 1)
2466 return;
2467 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
2468 if (EditDistance > MaxEditDistance)
2469 return;
2470 if (EditDistance == BestEditDistance)
2471 BestMethod.push_back(Method);
2472 else if (EditDistance < BestEditDistance) {
2473 BestMethod.clear();
2474 BestMethod.push_back(Method);
2475 }
2476 }
2477
HelperIsMethodInObjCType(Sema & S,Selector Sel,QualType ObjectType)2478 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
2479 QualType ObjectType) {
2480 if (ObjectType.isNull())
2481 return true;
2482 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
2483 return true;
2484 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
2485 nullptr;
2486 }
2487
2488 const ObjCMethodDecl *
SelectorsForTypoCorrection(Selector Sel,QualType ObjectType)2489 Sema::SelectorsForTypoCorrection(Selector Sel,
2490 QualType ObjectType) {
2491 unsigned NumArgs = Sel.getNumArgs();
2492 SmallVector<const ObjCMethodDecl *, 8> Methods;
2493 bool ObjectIsId = true, ObjectIsClass = true;
2494 if (ObjectType.isNull())
2495 ObjectIsId = ObjectIsClass = false;
2496 else if (!ObjectType->isObjCObjectPointerType())
2497 return nullptr;
2498 else if (const ObjCObjectPointerType *ObjCPtr =
2499 ObjectType->getAsObjCInterfacePointerType()) {
2500 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
2501 ObjectIsId = ObjectIsClass = false;
2502 }
2503 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
2504 ObjectIsClass = false;
2505 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
2506 ObjectIsId = false;
2507 else
2508 return nullptr;
2509
2510 for (GlobalMethodPool::iterator b = MethodPool.begin(),
2511 e = MethodPool.end(); b != e; b++) {
2512 // instance methods
2513 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
2514 if (M->getMethod() &&
2515 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
2516 (M->getMethod()->getSelector() != Sel)) {
2517 if (ObjectIsId)
2518 Methods.push_back(M->getMethod());
2519 else if (!ObjectIsClass &&
2520 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
2521 ObjectType))
2522 Methods.push_back(M->getMethod());
2523 }
2524 // class methods
2525 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
2526 if (M->getMethod() &&
2527 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
2528 (M->getMethod()->getSelector() != Sel)) {
2529 if (ObjectIsClass)
2530 Methods.push_back(M->getMethod());
2531 else if (!ObjectIsId &&
2532 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
2533 ObjectType))
2534 Methods.push_back(M->getMethod());
2535 }
2536 }
2537
2538 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
2539 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
2540 HelperSelectorsForTypoCorrection(SelectedMethods,
2541 Sel.getAsString(), Methods[i]);
2542 }
2543 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
2544 }
2545
2546 /// DiagnoseDuplicateIvars -
2547 /// Check for duplicate ivars in the entire class at the start of
2548 /// \@implementation. This becomes necesssary because class extension can
2549 /// add ivars to a class in random order which will not be known until
2550 /// class's \@implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)2551 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2552 ObjCInterfaceDecl *SID) {
2553 for (auto *Ivar : ID->ivars()) {
2554 if (Ivar->isInvalidDecl())
2555 continue;
2556 if (IdentifierInfo *II = Ivar->getIdentifier()) {
2557 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2558 if (prevIvar) {
2559 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2560 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2561 Ivar->setInvalidDecl();
2562 }
2563 }
2564 }
2565 }
2566
getObjCContainerKind() const2567 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2568 switch (CurContext->getDeclKind()) {
2569 case Decl::ObjCInterface:
2570 return Sema::OCK_Interface;
2571 case Decl::ObjCProtocol:
2572 return Sema::OCK_Protocol;
2573 case Decl::ObjCCategory:
2574 if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2575 return Sema::OCK_ClassExtension;
2576 else
2577 return Sema::OCK_Category;
2578 case Decl::ObjCImplementation:
2579 return Sema::OCK_Implementation;
2580 case Decl::ObjCCategoryImpl:
2581 return Sema::OCK_CategoryImplementation;
2582
2583 default:
2584 return Sema::OCK_None;
2585 }
2586 }
2587
2588 // Note: For class/category implementations, allMethods is always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,ArrayRef<Decl * > allMethods,ArrayRef<DeclGroupPtrTy> allTUVars)2589 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
2590 ArrayRef<DeclGroupPtrTy> allTUVars) {
2591 if (getObjCContainerKind() == Sema::OCK_None)
2592 return nullptr;
2593
2594 assert(AtEnd.isValid() && "Invalid location for '@end'");
2595
2596 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2597 Decl *ClassDecl = cast<Decl>(OCD);
2598
2599 bool isInterfaceDeclKind =
2600 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2601 || isa<ObjCProtocolDecl>(ClassDecl);
2602 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2603
2604 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2605 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2606 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2607
2608 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
2609 ObjCMethodDecl *Method =
2610 cast_or_null<ObjCMethodDecl>(allMethods[i]);
2611
2612 if (!Method) continue; // Already issued a diagnostic.
2613 if (Method->isInstanceMethod()) {
2614 /// Check for instance method of the same name with incompatible types
2615 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2616 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2617 : false;
2618 if ((isInterfaceDeclKind && PrevMethod && !match)
2619 || (checkIdenticalMethods && match)) {
2620 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2621 << Method->getDeclName();
2622 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2623 Method->setInvalidDecl();
2624 } else {
2625 if (PrevMethod) {
2626 Method->setAsRedeclaration(PrevMethod);
2627 if (!Context.getSourceManager().isInSystemHeader(
2628 Method->getLocation()))
2629 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2630 << Method->getDeclName();
2631 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2632 }
2633 InsMap[Method->getSelector()] = Method;
2634 /// The following allows us to typecheck messages to "id".
2635 AddInstanceMethodToGlobalPool(Method);
2636 }
2637 } else {
2638 /// Check for class method of the same name with incompatible types
2639 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2640 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2641 : false;
2642 if ((isInterfaceDeclKind && PrevMethod && !match)
2643 || (checkIdenticalMethods && match)) {
2644 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2645 << Method->getDeclName();
2646 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2647 Method->setInvalidDecl();
2648 } else {
2649 if (PrevMethod) {
2650 Method->setAsRedeclaration(PrevMethod);
2651 if (!Context.getSourceManager().isInSystemHeader(
2652 Method->getLocation()))
2653 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2654 << Method->getDeclName();
2655 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2656 }
2657 ClsMap[Method->getSelector()] = Method;
2658 AddFactoryMethodToGlobalPool(Method);
2659 }
2660 }
2661 }
2662 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2663 // Nothing to do here.
2664 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2665 // Categories are used to extend the class by declaring new methods.
2666 // By the same token, they are also used to add new properties. No
2667 // need to compare the added property to those in the class.
2668
2669 if (C->IsClassExtension()) {
2670 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2671 DiagnoseClassExtensionDupMethods(C, CCPrimary);
2672 }
2673 }
2674 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2675 if (CDecl->getIdentifier())
2676 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2677 // user-defined setter/getter. It also synthesizes setter/getter methods
2678 // and adds them to the DeclContext and global method pools.
2679 for (auto *I : CDecl->properties())
2680 ProcessPropertyDecl(I, CDecl);
2681 CDecl->setAtEndRange(AtEnd);
2682 }
2683 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2684 IC->setAtEndRange(AtEnd);
2685 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2686 // Any property declared in a class extension might have user
2687 // declared setter or getter in current class extension or one
2688 // of the other class extensions. Mark them as synthesized as
2689 // property will be synthesized when property with same name is
2690 // seen in the @implementation.
2691 for (const auto *Ext : IDecl->visible_extensions()) {
2692 for (const auto *Property : Ext->properties()) {
2693 // Skip over properties declared @dynamic
2694 if (const ObjCPropertyImplDecl *PIDecl
2695 = IC->FindPropertyImplDecl(Property->getIdentifier()))
2696 if (PIDecl->getPropertyImplementation()
2697 == ObjCPropertyImplDecl::Dynamic)
2698 continue;
2699
2700 for (const auto *Ext : IDecl->visible_extensions()) {
2701 if (ObjCMethodDecl *GetterMethod
2702 = Ext->getInstanceMethod(Property->getGetterName()))
2703 GetterMethod->setPropertyAccessor(true);
2704 if (!Property->isReadOnly())
2705 if (ObjCMethodDecl *SetterMethod
2706 = Ext->getInstanceMethod(Property->getSetterName()))
2707 SetterMethod->setPropertyAccessor(true);
2708 }
2709 }
2710 }
2711 ImplMethodsVsClassMethods(S, IC, IDecl);
2712 AtomicPropertySetterGetterRules(IC, IDecl);
2713 DiagnoseOwningPropertyGetterSynthesis(IC);
2714 DiagnoseUnusedBackingIvarInAccessor(S, IC);
2715 if (IDecl->hasDesignatedInitializers())
2716 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
2717
2718 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2719 if (IDecl->getSuperClass() == nullptr) {
2720 // This class has no superclass, so check that it has been marked with
2721 // __attribute((objc_root_class)).
2722 if (!HasRootClassAttr) {
2723 SourceLocation DeclLoc(IDecl->getLocation());
2724 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
2725 Diag(DeclLoc, diag::warn_objc_root_class_missing)
2726 << IDecl->getIdentifier();
2727 // See if NSObject is in the current scope, and if it is, suggest
2728 // adding " : NSObject " to the class declaration.
2729 NamedDecl *IF = LookupSingleName(TUScope,
2730 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2731 DeclLoc, LookupOrdinaryName);
2732 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2733 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2734 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2735 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2736 } else {
2737 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2738 }
2739 }
2740 } else if (HasRootClassAttr) {
2741 // Complain that only root classes may have this attribute.
2742 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2743 }
2744
2745 if (LangOpts.ObjCRuntime.isNonFragile()) {
2746 while (IDecl->getSuperClass()) {
2747 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2748 IDecl = IDecl->getSuperClass();
2749 }
2750 }
2751 }
2752 SetIvarInitializers(IC);
2753 } else if (ObjCCategoryImplDecl* CatImplClass =
2754 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2755 CatImplClass->setAtEndRange(AtEnd);
2756
2757 // Find category interface decl and then check that all methods declared
2758 // in this interface are implemented in the category @implementation.
2759 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2760 if (ObjCCategoryDecl *Cat
2761 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2762 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2763 }
2764 }
2765 }
2766 if (isInterfaceDeclKind) {
2767 // Reject invalid vardecls.
2768 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2769 DeclGroupRef DG = allTUVars[i].get();
2770 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2771 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2772 if (!VDecl->hasExternalStorage())
2773 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2774 }
2775 }
2776 }
2777 ActOnObjCContainerFinishDefinition();
2778
2779 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2780 DeclGroupRef DG = allTUVars[i].get();
2781 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2782 (*I)->setTopLevelDeclInObjCContainer();
2783 Consumer.HandleTopLevelDeclInObjCContainer(DG);
2784 }
2785
2786 ActOnDocumentableDecl(ClassDecl);
2787 return ClassDecl;
2788 }
2789
2790
2791 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2792 /// objective-c's type qualifier from the parser version of the same info.
2793 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)2794 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2795 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2796 }
2797
2798 /// \brief Check whether the declared result type of the given Objective-C
2799 /// method declaration is compatible with the method's class.
2800 ///
2801 static Sema::ResultTypeCompatibilityKind
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)2802 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2803 ObjCInterfaceDecl *CurrentClass) {
2804 QualType ResultType = Method->getReturnType();
2805
2806 // If an Objective-C method inherits its related result type, then its
2807 // declared result type must be compatible with its own class type. The
2808 // declared result type is compatible if:
2809 if (const ObjCObjectPointerType *ResultObjectType
2810 = ResultType->getAs<ObjCObjectPointerType>()) {
2811 // - it is id or qualified id, or
2812 if (ResultObjectType->isObjCIdType() ||
2813 ResultObjectType->isObjCQualifiedIdType())
2814 return Sema::RTC_Compatible;
2815
2816 if (CurrentClass) {
2817 if (ObjCInterfaceDecl *ResultClass
2818 = ResultObjectType->getInterfaceDecl()) {
2819 // - it is the same as the method's class type, or
2820 if (declaresSameEntity(CurrentClass, ResultClass))
2821 return Sema::RTC_Compatible;
2822
2823 // - it is a superclass of the method's class type
2824 if (ResultClass->isSuperClassOf(CurrentClass))
2825 return Sema::RTC_Compatible;
2826 }
2827 } else {
2828 // Any Objective-C pointer type might be acceptable for a protocol
2829 // method; we just don't know.
2830 return Sema::RTC_Unknown;
2831 }
2832 }
2833
2834 return Sema::RTC_Incompatible;
2835 }
2836
2837 namespace {
2838 /// A helper class for searching for methods which a particular method
2839 /// overrides.
2840 class OverrideSearch {
2841 public:
2842 Sema &S;
2843 ObjCMethodDecl *Method;
2844 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2845 bool Recursive;
2846
2847 public:
OverrideSearch(Sema & S,ObjCMethodDecl * method)2848 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2849 Selector selector = method->getSelector();
2850
2851 // Bypass this search if we've never seen an instance/class method
2852 // with this selector before.
2853 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2854 if (it == S.MethodPool.end()) {
2855 if (!S.getExternalSource()) return;
2856 S.ReadMethodPool(selector);
2857
2858 it = S.MethodPool.find(selector);
2859 if (it == S.MethodPool.end())
2860 return;
2861 }
2862 ObjCMethodList &list =
2863 method->isInstanceMethod() ? it->second.first : it->second.second;
2864 if (!list.getMethod()) return;
2865
2866 ObjCContainerDecl *container
2867 = cast<ObjCContainerDecl>(method->getDeclContext());
2868
2869 // Prevent the search from reaching this container again. This is
2870 // important with categories, which override methods from the
2871 // interface and each other.
2872 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2873 searchFromContainer(container);
2874 if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2875 searchFromContainer(Interface);
2876 } else {
2877 searchFromContainer(container);
2878 }
2879 }
2880
2881 typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
begin() const2882 iterator begin() const { return Overridden.begin(); }
end() const2883 iterator end() const { return Overridden.end(); }
2884
2885 private:
searchFromContainer(ObjCContainerDecl * container)2886 void searchFromContainer(ObjCContainerDecl *container) {
2887 if (container->isInvalidDecl()) return;
2888
2889 switch (container->getDeclKind()) {
2890 #define OBJCCONTAINER(type, base) \
2891 case Decl::type: \
2892 searchFrom(cast<type##Decl>(container)); \
2893 break;
2894 #define ABSTRACT_DECL(expansion)
2895 #define DECL(type, base) \
2896 case Decl::type:
2897 #include "clang/AST/DeclNodes.inc"
2898 llvm_unreachable("not an ObjC container!");
2899 }
2900 }
2901
searchFrom(ObjCProtocolDecl * protocol)2902 void searchFrom(ObjCProtocolDecl *protocol) {
2903 if (!protocol->hasDefinition())
2904 return;
2905
2906 // A method in a protocol declaration overrides declarations from
2907 // referenced ("parent") protocols.
2908 search(protocol->getReferencedProtocols());
2909 }
2910
searchFrom(ObjCCategoryDecl * category)2911 void searchFrom(ObjCCategoryDecl *category) {
2912 // A method in a category declaration overrides declarations from
2913 // the main class and from protocols the category references.
2914 // The main class is handled in the constructor.
2915 search(category->getReferencedProtocols());
2916 }
2917
searchFrom(ObjCCategoryImplDecl * impl)2918 void searchFrom(ObjCCategoryImplDecl *impl) {
2919 // A method in a category definition that has a category
2920 // declaration overrides declarations from the category
2921 // declaration.
2922 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2923 search(category);
2924 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2925 search(Interface);
2926
2927 // Otherwise it overrides declarations from the class.
2928 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2929 search(Interface);
2930 }
2931 }
2932
searchFrom(ObjCInterfaceDecl * iface)2933 void searchFrom(ObjCInterfaceDecl *iface) {
2934 // A method in a class declaration overrides declarations from
2935 if (!iface->hasDefinition())
2936 return;
2937
2938 // - categories,
2939 for (auto *Cat : iface->known_categories())
2940 search(Cat);
2941
2942 // - the super class, and
2943 if (ObjCInterfaceDecl *super = iface->getSuperClass())
2944 search(super);
2945
2946 // - any referenced protocols.
2947 search(iface->getReferencedProtocols());
2948 }
2949
searchFrom(ObjCImplementationDecl * impl)2950 void searchFrom(ObjCImplementationDecl *impl) {
2951 // A method in a class implementation overrides declarations from
2952 // the class interface.
2953 if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2954 search(Interface);
2955 }
2956
2957
search(const ObjCProtocolList & protocols)2958 void search(const ObjCProtocolList &protocols) {
2959 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2960 i != e; ++i)
2961 search(*i);
2962 }
2963
search(ObjCContainerDecl * container)2964 void search(ObjCContainerDecl *container) {
2965 // Check for a method in this container which matches this selector.
2966 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2967 Method->isInstanceMethod(),
2968 /*AllowHidden=*/true);
2969
2970 // If we find one, record it and bail out.
2971 if (meth) {
2972 Overridden.insert(meth);
2973 return;
2974 }
2975
2976 // Otherwise, search for methods that a hypothetical method here
2977 // would have overridden.
2978
2979 // Note that we're now in a recursive case.
2980 Recursive = true;
2981
2982 searchFromContainer(container);
2983 }
2984 };
2985 }
2986
CheckObjCMethodOverrides(ObjCMethodDecl * ObjCMethod,ObjCInterfaceDecl * CurrentClass,ResultTypeCompatibilityKind RTC)2987 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2988 ObjCInterfaceDecl *CurrentClass,
2989 ResultTypeCompatibilityKind RTC) {
2990 // Search for overridden methods and merge information down from them.
2991 OverrideSearch overrides(*this, ObjCMethod);
2992 // Keep track if the method overrides any method in the class's base classes,
2993 // its protocols, or its categories' protocols; we will keep that info
2994 // in the ObjCMethodDecl.
2995 // For this info, a method in an implementation is not considered as
2996 // overriding the same method in the interface or its categories.
2997 bool hasOverriddenMethodsInBaseOrProtocol = false;
2998 for (OverrideSearch::iterator
2999 i = overrides.begin(), e = overrides.end(); i != e; ++i) {
3000 ObjCMethodDecl *overridden = *i;
3001
3002 if (!hasOverriddenMethodsInBaseOrProtocol) {
3003 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
3004 CurrentClass != overridden->getClassInterface() ||
3005 overridden->isOverriding()) {
3006 hasOverriddenMethodsInBaseOrProtocol = true;
3007
3008 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
3009 // OverrideSearch will return as "overridden" the same method in the
3010 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
3011 // check whether a category of a base class introduced a method with the
3012 // same selector, after the interface method declaration.
3013 // To avoid unnecessary lookups in the majority of cases, we use the
3014 // extra info bits in GlobalMethodPool to check whether there were any
3015 // category methods with this selector.
3016 GlobalMethodPool::iterator It =
3017 MethodPool.find(ObjCMethod->getSelector());
3018 if (It != MethodPool.end()) {
3019 ObjCMethodList &List =
3020 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
3021 unsigned CategCount = List.getBits();
3022 if (CategCount > 0) {
3023 // If the method is in a category we'll do lookup if there were at
3024 // least 2 category methods recorded, otherwise only one will do.
3025 if (CategCount > 1 ||
3026 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
3027 OverrideSearch overrides(*this, overridden);
3028 for (OverrideSearch::iterator
3029 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
3030 ObjCMethodDecl *SuperOverridden = *OI;
3031 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
3032 CurrentClass != SuperOverridden->getClassInterface()) {
3033 hasOverriddenMethodsInBaseOrProtocol = true;
3034 overridden->setOverriding(true);
3035 break;
3036 }
3037 }
3038 }
3039 }
3040 }
3041 }
3042 }
3043
3044 // Propagate down the 'related result type' bit from overridden methods.
3045 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
3046 ObjCMethod->SetRelatedResultType();
3047
3048 // Then merge the declarations.
3049 mergeObjCMethodDecls(ObjCMethod, overridden);
3050
3051 if (ObjCMethod->isImplicit() && overridden->isImplicit())
3052 continue; // Conflicting properties are detected elsewhere.
3053
3054 // Check for overriding methods
3055 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
3056 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
3057 CheckConflictingOverridingMethod(ObjCMethod, overridden,
3058 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
3059
3060 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
3061 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
3062 !overridden->isImplicit() /* not meant for properties */) {
3063 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
3064 E = ObjCMethod->param_end();
3065 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
3066 PrevE = overridden->param_end();
3067 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
3068 assert(PrevI != overridden->param_end() && "Param mismatch");
3069 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
3070 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
3071 // If type of argument of method in this class does not match its
3072 // respective argument type in the super class method, issue warning;
3073 if (!Context.typesAreCompatible(T1, T2)) {
3074 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
3075 << T1 << T2;
3076 Diag(overridden->getLocation(), diag::note_previous_declaration);
3077 break;
3078 }
3079 }
3080 }
3081 }
3082
3083 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
3084 }
3085
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,ArrayRef<SourceLocation> SelectorLocs,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,AttributeList * AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)3086 Decl *Sema::ActOnMethodDeclaration(
3087 Scope *S,
3088 SourceLocation MethodLoc, SourceLocation EndLoc,
3089 tok::TokenKind MethodType,
3090 ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
3091 ArrayRef<SourceLocation> SelectorLocs,
3092 Selector Sel,
3093 // optional arguments. The number of types/arguments is obtained
3094 // from the Sel.getNumArgs().
3095 ObjCArgInfo *ArgInfo,
3096 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
3097 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
3098 bool isVariadic, bool MethodDefinition) {
3099 // Make sure we can establish a context for the method.
3100 if (!CurContext->isObjCContainer()) {
3101 Diag(MethodLoc, diag::error_missing_method_context);
3102 return nullptr;
3103 }
3104 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3105 Decl *ClassDecl = cast<Decl>(OCD);
3106 QualType resultDeclType;
3107
3108 bool HasRelatedResultType = false;
3109 TypeSourceInfo *ReturnTInfo = nullptr;
3110 if (ReturnType) {
3111 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
3112
3113 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3114 return nullptr;
3115
3116 HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
3117 } else { // get the type for "id".
3118 resultDeclType = Context.getObjCIdType();
3119 Diag(MethodLoc, diag::warn_missing_method_return_type)
3120 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
3121 }
3122
3123 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
3124 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
3125 MethodType == tok::minus, isVariadic,
3126 /*isPropertyAccessor=*/false,
3127 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
3128 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
3129 : ObjCMethodDecl::Required,
3130 HasRelatedResultType);
3131
3132 SmallVector<ParmVarDecl*, 16> Params;
3133
3134 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
3135 QualType ArgType;
3136 TypeSourceInfo *DI;
3137
3138 if (!ArgInfo[i].Type) {
3139 ArgType = Context.getObjCIdType();
3140 DI = nullptr;
3141 } else {
3142 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
3143 }
3144
3145 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
3146 LookupOrdinaryName, ForRedeclaration);
3147 LookupName(R, S);
3148 if (R.isSingleResult()) {
3149 NamedDecl *PrevDecl = R.getFoundDecl();
3150 if (S->isDeclScope(PrevDecl)) {
3151 Diag(ArgInfo[i].NameLoc,
3152 (MethodDefinition ? diag::warn_method_param_redefinition
3153 : diag::warn_method_param_declaration))
3154 << ArgInfo[i].Name;
3155 Diag(PrevDecl->getLocation(),
3156 diag::note_previous_declaration);
3157 }
3158 }
3159
3160 SourceLocation StartLoc = DI
3161 ? DI->getTypeLoc().getBeginLoc()
3162 : ArgInfo[i].NameLoc;
3163
3164 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
3165 ArgInfo[i].NameLoc, ArgInfo[i].Name,
3166 ArgType, DI, SC_None);
3167
3168 Param->setObjCMethodScopeInfo(i);
3169
3170 Param->setObjCDeclQualifier(
3171 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
3172
3173 // Apply the attributes to the parameter.
3174 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
3175
3176 if (Param->hasAttr<BlocksAttr>()) {
3177 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
3178 Param->setInvalidDecl();
3179 }
3180 S->AddDecl(Param);
3181 IdResolver.AddDecl(Param);
3182
3183 Params.push_back(Param);
3184 }
3185
3186 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
3187 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
3188 QualType ArgType = Param->getType();
3189 if (ArgType.isNull())
3190 ArgType = Context.getObjCIdType();
3191 else
3192 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
3193 ArgType = Context.getAdjustedParameterType(ArgType);
3194
3195 Param->setDeclContext(ObjCMethod);
3196 Params.push_back(Param);
3197 }
3198
3199 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
3200 ObjCMethod->setObjCDeclQualifier(
3201 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
3202
3203 if (AttrList)
3204 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
3205
3206 // Add the method now.
3207 const ObjCMethodDecl *PrevMethod = nullptr;
3208 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
3209 if (MethodType == tok::minus) {
3210 PrevMethod = ImpDecl->getInstanceMethod(Sel);
3211 ImpDecl->addInstanceMethod(ObjCMethod);
3212 } else {
3213 PrevMethod = ImpDecl->getClassMethod(Sel);
3214 ImpDecl->addClassMethod(ObjCMethod);
3215 }
3216
3217 ObjCMethodDecl *IMD = nullptr;
3218 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
3219 IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
3220 ObjCMethod->isInstanceMethod());
3221 if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
3222 !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
3223 // merge the attribute into implementation.
3224 ObjCMethod->addAttr(ObjCRequiresSuperAttr::CreateImplicit(Context,
3225 ObjCMethod->getLocation()));
3226 }
3227 if (isa<ObjCCategoryImplDecl>(ImpDecl)) {
3228 ObjCMethodFamily family =
3229 ObjCMethod->getSelector().getMethodFamily();
3230 if (family == OMF_dealloc && IMD && IMD->isOverriding())
3231 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
3232 << ObjCMethod->getDeclName();
3233 }
3234 } else {
3235 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3236 }
3237
3238 if (PrevMethod) {
3239 // You can never have two method definitions with the same name.
3240 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3241 << ObjCMethod->getDeclName();
3242 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3243 ObjCMethod->setInvalidDecl();
3244 return ObjCMethod;
3245 }
3246
3247 // If this Objective-C method does not have a related result type, but we
3248 // are allowed to infer related result types, try to do so based on the
3249 // method family.
3250 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3251 if (!CurrentClass) {
3252 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3253 CurrentClass = Cat->getClassInterface();
3254 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3255 CurrentClass = Impl->getClassInterface();
3256 else if (ObjCCategoryImplDecl *CatImpl
3257 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3258 CurrentClass = CatImpl->getClassInterface();
3259 }
3260
3261 ResultTypeCompatibilityKind RTC
3262 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3263
3264 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3265
3266 bool ARCError = false;
3267 if (getLangOpts().ObjCAutoRefCount)
3268 ARCError = CheckARCMethodDecl(ObjCMethod);
3269
3270 // Infer the related result type when possible.
3271 if (!ARCError && RTC == Sema::RTC_Compatible &&
3272 !ObjCMethod->hasRelatedResultType() &&
3273 LangOpts.ObjCInferRelatedResultType) {
3274 bool InferRelatedResultType = false;
3275 switch (ObjCMethod->getMethodFamily()) {
3276 case OMF_None:
3277 case OMF_copy:
3278 case OMF_dealloc:
3279 case OMF_finalize:
3280 case OMF_mutableCopy:
3281 case OMF_release:
3282 case OMF_retainCount:
3283 case OMF_initialize:
3284 case OMF_performSelector:
3285 break;
3286
3287 case OMF_alloc:
3288 case OMF_new:
3289 InferRelatedResultType = ObjCMethod->isClassMethod();
3290 break;
3291
3292 case OMF_init:
3293 case OMF_autorelease:
3294 case OMF_retain:
3295 case OMF_self:
3296 InferRelatedResultType = ObjCMethod->isInstanceMethod();
3297 break;
3298 }
3299
3300 if (InferRelatedResultType)
3301 ObjCMethod->SetRelatedResultType();
3302 }
3303
3304 ActOnDocumentableDecl(ObjCMethod);
3305
3306 return ObjCMethod;
3307 }
3308
CheckObjCDeclScope(Decl * D)3309 bool Sema::CheckObjCDeclScope(Decl *D) {
3310 // Following is also an error. But it is caused by a missing @end
3311 // and diagnostic is issued elsewhere.
3312 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3313 return false;
3314
3315 // If we switched context to translation unit while we are still lexically in
3316 // an objc container, it means the parser missed emitting an error.
3317 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3318 return false;
3319
3320 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3321 D->setInvalidDecl();
3322
3323 return true;
3324 }
3325
3326 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
3327 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,SmallVectorImpl<Decl * > & Decls)3328 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3329 IdentifierInfo *ClassName,
3330 SmallVectorImpl<Decl*> &Decls) {
3331 // Check that ClassName is a valid class
3332 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3333 if (!Class) {
3334 Diag(DeclStart, diag::err_undef_interface) << ClassName;
3335 return;
3336 }
3337 if (LangOpts.ObjCRuntime.isNonFragile()) {
3338 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3339 return;
3340 }
3341
3342 // Collect the instance variables
3343 SmallVector<const ObjCIvarDecl*, 32> Ivars;
3344 Context.DeepCollectObjCIvars(Class, true, Ivars);
3345 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3346 for (unsigned i = 0; i < Ivars.size(); i++) {
3347 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3348 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3349 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3350 /*FIXME: StartL=*/ID->getLocation(),
3351 ID->getLocation(),
3352 ID->getIdentifier(), ID->getType(),
3353 ID->getBitWidth());
3354 Decls.push_back(FD);
3355 }
3356
3357 // Introduce all of these fields into the appropriate scope.
3358 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3359 D != Decls.end(); ++D) {
3360 FieldDecl *FD = cast<FieldDecl>(*D);
3361 if (getLangOpts().CPlusPlus)
3362 PushOnScopeChains(cast<FieldDecl>(FD), S);
3363 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3364 Record->addDecl(FD);
3365 }
3366 }
3367
3368 /// \brief Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)3369 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3370 SourceLocation StartLoc,
3371 SourceLocation IdLoc,
3372 IdentifierInfo *Id,
3373 bool Invalid) {
3374 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3375 // duration shall not be qualified by an address-space qualifier."
3376 // Since all parameters have automatic store duration, they can not have
3377 // an address space.
3378 if (T.getAddressSpace() != 0) {
3379 Diag(IdLoc, diag::err_arg_with_address_space);
3380 Invalid = true;
3381 }
3382
3383 // An @catch parameter must be an unqualified object pointer type;
3384 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3385 if (Invalid) {
3386 // Don't do any further checking.
3387 } else if (T->isDependentType()) {
3388 // Okay: we don't know what this type will instantiate to.
3389 } else if (!T->isObjCObjectPointerType()) {
3390 Invalid = true;
3391 Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3392 } else if (T->isObjCQualifiedIdType()) {
3393 Invalid = true;
3394 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3395 }
3396
3397 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3398 T, TInfo, SC_None);
3399 New->setExceptionVariable(true);
3400
3401 // In ARC, infer 'retaining' for variables of retainable type.
3402 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3403 Invalid = true;
3404
3405 if (Invalid)
3406 New->setInvalidDecl();
3407 return New;
3408 }
3409
ActOnObjCExceptionDecl(Scope * S,Declarator & D)3410 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3411 const DeclSpec &DS = D.getDeclSpec();
3412
3413 // We allow the "register" storage class on exception variables because
3414 // GCC did, but we drop it completely. Any other storage class is an error.
3415 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3416 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3417 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3418 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3419 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3420 << DeclSpec::getSpecifierName(SCS);
3421 }
3422 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
3423 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
3424 diag::err_invalid_thread)
3425 << DeclSpec::getSpecifierName(TSCS);
3426 D.getMutableDeclSpec().ClearStorageClassSpecs();
3427
3428 DiagnoseFunctionSpecifiers(D.getDeclSpec());
3429
3430 // Check that there are no default arguments inside the type of this
3431 // exception object (C++ only).
3432 if (getLangOpts().CPlusPlus)
3433 CheckExtraCXXDefaultArguments(D);
3434
3435 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3436 QualType ExceptionType = TInfo->getType();
3437
3438 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3439 D.getSourceRange().getBegin(),
3440 D.getIdentifierLoc(),
3441 D.getIdentifier(),
3442 D.isInvalidType());
3443
3444 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3445 if (D.getCXXScopeSpec().isSet()) {
3446 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3447 << D.getCXXScopeSpec().getRange();
3448 New->setInvalidDecl();
3449 }
3450
3451 // Add the parameter declaration into this scope.
3452 S->AddDecl(New);
3453 if (D.getIdentifier())
3454 IdResolver.AddDecl(New);
3455
3456 ProcessDeclAttributes(S, New, D);
3457
3458 if (New->hasAttr<BlocksAttr>())
3459 Diag(New->getLocation(), diag::err_block_on_nonlocal);
3460 return New;
3461 }
3462
3463 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3464 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,SmallVectorImpl<ObjCIvarDecl * > & Ivars)3465 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3466 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3467 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3468 Iv= Iv->getNextIvar()) {
3469 QualType QT = Context.getBaseElementType(Iv->getType());
3470 if (QT->isRecordType())
3471 Ivars.push_back(Iv);
3472 }
3473 }
3474
DiagnoseUseOfUnimplementedSelectors()3475 void Sema::DiagnoseUseOfUnimplementedSelectors() {
3476 // Load referenced selectors from the external source.
3477 if (ExternalSource) {
3478 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3479 ExternalSource->ReadReferencedSelectors(Sels);
3480 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3481 ReferencedSelectors[Sels[I].first] = Sels[I].second;
3482 }
3483
3484 // Warning will be issued only when selector table is
3485 // generated (which means there is at lease one implementation
3486 // in the TU). This is to match gcc's behavior.
3487 if (ReferencedSelectors.empty() ||
3488 !Context.AnyObjCImplementation())
3489 return;
3490 for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3491 ReferencedSelectors.begin(),
3492 E = ReferencedSelectors.end(); S != E; ++S) {
3493 Selector Sel = (*S).first;
3494 if (!LookupImplementedMethodInGlobalPool(Sel))
3495 Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3496 }
3497 return;
3498 }
3499
3500 ObjCIvarDecl *
GetIvarBackingPropertyAccessor(const ObjCMethodDecl * Method,const ObjCPropertyDecl * & PDecl) const3501 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
3502 const ObjCPropertyDecl *&PDecl) const {
3503 if (Method->isClassMethod())
3504 return nullptr;
3505 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
3506 if (!IDecl)
3507 return nullptr;
3508 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
3509 /*shallowCategoryLookup=*/false,
3510 /*followSuper=*/false);
3511 if (!Method || !Method->isPropertyAccessor())
3512 return nullptr;
3513 if ((PDecl = Method->findPropertyDecl()))
3514 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
3515 // property backing ivar must belong to property's class
3516 // or be a private ivar in class's implementation.
3517 // FIXME. fix the const-ness issue.
3518 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
3519 IV->getIdentifier());
3520 return IV;
3521 }
3522 return nullptr;
3523 }
3524
3525 namespace {
3526 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
3527 /// accessor references the backing ivar.
3528 class UnusedBackingIvarChecker :
3529 public DataRecursiveASTVisitor<UnusedBackingIvarChecker> {
3530 public:
3531 Sema &S;
3532 const ObjCMethodDecl *Method;
3533 const ObjCIvarDecl *IvarD;
3534 bool AccessedIvar;
3535 bool InvokedSelfMethod;
3536
UnusedBackingIvarChecker(Sema & S,const ObjCMethodDecl * Method,const ObjCIvarDecl * IvarD)3537 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
3538 const ObjCIvarDecl *IvarD)
3539 : S(S), Method(Method), IvarD(IvarD),
3540 AccessedIvar(false), InvokedSelfMethod(false) {
3541 assert(IvarD);
3542 }
3543
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)3544 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
3545 if (E->getDecl() == IvarD) {
3546 AccessedIvar = true;
3547 return false;
3548 }
3549 return true;
3550 }
3551
VisitObjCMessageExpr(ObjCMessageExpr * E)3552 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
3553 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
3554 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
3555 InvokedSelfMethod = true;
3556 }
3557 return true;
3558 }
3559 };
3560 }
3561
DiagnoseUnusedBackingIvarInAccessor(Scope * S,const ObjCImplementationDecl * ImplD)3562 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
3563 const ObjCImplementationDecl *ImplD) {
3564 if (S->hasUnrecoverableErrorOccurred())
3565 return;
3566
3567 for (const auto *CurMethod : ImplD->instance_methods()) {
3568 unsigned DIAG = diag::warn_unused_property_backing_ivar;
3569 SourceLocation Loc = CurMethod->getLocation();
3570 if (Diags.isIgnored(DIAG, Loc))
3571 continue;
3572
3573 const ObjCPropertyDecl *PDecl;
3574 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
3575 if (!IV)
3576 continue;
3577
3578 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
3579 Checker.TraverseStmt(CurMethod->getBody());
3580 if (Checker.AccessedIvar)
3581 continue;
3582
3583 // Do not issue this warning if backing ivar is used somewhere and accessor
3584 // implementation makes a self call. This is to prevent false positive in
3585 // cases where the ivar is accessed by another method that the accessor
3586 // delegates to.
3587 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
3588 Diag(Loc, DIAG) << IV;
3589 Diag(PDecl->getLocation(), diag::note_property_declare);
3590 }
3591 }
3592 }
3593