xref: /openbsd/gnu/usr.bin/gcc/gcc/config/rs6000/rs6000.h (revision 4e43c760)
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 
6 This file is part of GNU CC.
7 
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12 
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING.  If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA.  */
22 
23 
24 /* Note that some other tm.h files include this one and then override
25    many of the definitions.  */
26 
27 /* Definitions for the object file format.  These are set at
28    compile-time.  */
29 
30 #define OBJECT_XCOFF 1
31 #define OBJECT_ELF 2
32 #define OBJECT_PEF 3
33 #define OBJECT_MACHO 4
34 
35 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39 
40 #ifndef TARGET_AIX
41 #define TARGET_AIX 0
42 #endif
43 
44 /* Default string to use for cpu if not specified.  */
45 #ifndef TARGET_CPU_DEFAULT
46 #define TARGET_CPU_DEFAULT ((char *)0)
47 #endif
48 
49 /* Common ASM definitions used by ASM_SPEC among the various targets
50    for handling -mcpu=xxx switches.  */
51 #define ASM_CPU_SPEC \
52 "%{!mcpu*: \
53   %{mpower: %{!mpower2: -mpwr}} \
54   %{mpower2: -mpwrx} \
55   %{mpowerpc*: -mppc} \
56   %{mno-power: %{!mpowerpc*: -mcom}} \
57   %{!mno-power: %{!mpower2: %(asm_default)}}} \
58 %{mcpu=common: -mcom} \
59 %{mcpu=power: -mpwr} \
60 %{mcpu=power2: -mpwrx} \
61 %{mcpu=power3: -m604} \
62 %{mcpu=power4: -mpower4} \
63 %{mcpu=powerpc: -mppc} \
64 %{mcpu=rios: -mpwr} \
65 %{mcpu=rios1: -mpwr} \
66 %{mcpu=rios2: -mpwrx} \
67 %{mcpu=rsc: -mpwr} \
68 %{mcpu=rsc1: -mpwr} \
69 %{mcpu=401: -mppc} \
70 %{mcpu=403: -m403} \
71 %{mcpu=405: -m405} \
72 %{mcpu=505: -mppc} \
73 %{mcpu=601: -m601} \
74 %{mcpu=602: -mppc} \
75 %{mcpu=603: -mppc} \
76 %{mcpu=603e: -mppc} \
77 %{mcpu=ec603e: -mppc} \
78 %{mcpu=604: -mppc} \
79 %{mcpu=604e: -mppc} \
80 %{mcpu=620: -mppc} \
81 %{mcpu=630: -m604} \
82 %{mcpu=740: -mppc} \
83 %{mcpu=7400: -mppc} \
84 %{mcpu=7450: -mppc} \
85 %{mcpu=750: -mppc} \
86 %{mcpu=801: -mppc} \
87 %{mcpu=821: -mppc} \
88 %{mcpu=823: -mppc} \
89 %{mcpu=860: -mppc} \
90 %{mcpu=8540: -me500} \
91 %{maltivec: -maltivec}"
92 
93 #define CPP_DEFAULT_SPEC ""
94 
95 #define ASM_DEFAULT_SPEC ""
96 
97 /* This macro defines names of additional specifications to put in the specs
98    that can be used in various specifications like CC1_SPEC.  Its definition
99    is an initializer with a subgrouping for each command option.
100 
101    Each subgrouping contains a string constant, that defines the
102    specification name, and a string constant that used by the GNU CC driver
103    program.
104 
105    Do not define this macro if it does not need to do anything.  */
106 
107 #define SUBTARGET_EXTRA_SPECS
108 
109 #define EXTRA_SPECS							\
110   { "cpp_default",		CPP_DEFAULT_SPEC },			\
111   { "asm_cpu",			ASM_CPU_SPEC },				\
112   { "asm_default",		ASM_DEFAULT_SPEC },			\
113   SUBTARGET_EXTRA_SPECS
114 
115 /* Architecture type.  */
116 
117 extern int target_flags;
118 
119 /* Use POWER architecture instructions and MQ register.  */
120 #define MASK_POWER		0x00000001
121 
122 /* Use POWER2 extensions to POWER architecture.  */
123 #define MASK_POWER2		0x00000002
124 
125 /* Use PowerPC architecture instructions.  */
126 #define MASK_POWERPC		0x00000004
127 
128 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt.  */
129 #define MASK_PPC_GPOPT		0x00000008
130 
131 /* Use PowerPC Graphics group optional instructions, e.g. fsel.  */
132 #define MASK_PPC_GFXOPT		0x00000010
133 
134 /* Use PowerPC-64 architecture instructions.  */
135 #define MASK_POWERPC64		0x00000020
136 
137 /* Use revised mnemonic names defined for PowerPC architecture.  */
138 #define MASK_NEW_MNEMONICS	0x00000040
139 
140 /* Disable placing fp constants in the TOC; can be turned on when the
141    TOC overflows.  */
142 #define MASK_NO_FP_IN_TOC	0x00000080
143 
144 /* Disable placing symbol+offset constants in the TOC; can be turned on when
145    the TOC overflows.  */
146 #define MASK_NO_SUM_IN_TOC	0x00000100
147 
148 /* Output only one TOC entry per module.  Normally linking fails if
149    there are more than 16K unique variables/constants in an executable.  With
150    this option, linking fails only if there are more than 16K modules, or
151    if there are more than 16K unique variables/constant in a single module.
152 
153    This is at the cost of having 2 extra loads and one extra store per
154    function, and one less allocable register.  */
155 #define MASK_MINIMAL_TOC	0x00000200
156 
157 /* Nonzero for the 64bit model: longs and pointers are 64 bits.  */
158 #define MASK_64BIT		0x00000400
159 
160 /* Disable use of FPRs.  */
161 #define MASK_SOFT_FLOAT		0x00000800
162 
163 /* Enable load/store multiple, even on PowerPC */
164 #define	MASK_MULTIPLE		0x00001000
165 #define	MASK_MULTIPLE_SET	0x00002000
166 
167 /* Use string instructions for block moves */
168 #define MASK_STRING		0x00004000
169 #define MASK_STRING_SET		0x00008000
170 
171 /* Disable update form of load/store */
172 #define MASK_NO_UPDATE		0x00010000
173 
174 /* Disable fused multiply/add operations */
175 #define MASK_NO_FUSED_MADD	0x00020000
176 
177 /* Nonzero if we need to schedule the prolog and epilog.  */
178 #define MASK_SCHED_PROLOG	0x00040000
179 
180 /* Use AltiVec instructions.  */
181 #define MASK_ALTIVEC		0x00080000
182 
183 /* Return small structures in memory (as the AIX ABI requires).  */
184 #define MASK_AIX_STRUCT_RET	0x00100000
185 #define MASK_AIX_STRUCT_RET_SET	0x00200000
186 
187 /* The only remaining free bit is 0x00400000. sysv4.h uses
188    0x00800000 -> 0x40000000, and 0x80000000 is not available
189    because target_flags is signed.  */
190 
191 #define TARGET_POWER		(target_flags & MASK_POWER)
192 #define TARGET_POWER2		(target_flags & MASK_POWER2)
193 #define TARGET_POWERPC		(target_flags & MASK_POWERPC)
194 #define TARGET_PPC_GPOPT	(target_flags & MASK_PPC_GPOPT)
195 #define TARGET_PPC_GFXOPT	(target_flags & MASK_PPC_GFXOPT)
196 #define TARGET_NEW_MNEMONICS	(target_flags & MASK_NEW_MNEMONICS)
197 #define TARGET_NO_FP_IN_TOC	(target_flags & MASK_NO_FP_IN_TOC)
198 #define TARGET_NO_SUM_IN_TOC	(target_flags & MASK_NO_SUM_IN_TOC)
199 #define TARGET_MINIMAL_TOC	(target_flags & MASK_MINIMAL_TOC)
200 #define TARGET_64BIT		(target_flags & MASK_64BIT)
201 #define TARGET_SOFT_FLOAT	(target_flags & MASK_SOFT_FLOAT)
202 #define	TARGET_MULTIPLE		(target_flags & MASK_MULTIPLE)
203 #define	TARGET_MULTIPLE_SET	(target_flags & MASK_MULTIPLE_SET)
204 #define TARGET_STRING		(target_flags & MASK_STRING)
205 #define TARGET_STRING_SET	(target_flags & MASK_STRING_SET)
206 #define TARGET_NO_UPDATE	(target_flags & MASK_NO_UPDATE)
207 #define TARGET_NO_FUSED_MADD	(target_flags & MASK_NO_FUSED_MADD)
208 #define TARGET_SCHED_PROLOG	(target_flags & MASK_SCHED_PROLOG)
209 #define TARGET_ALTIVEC		(target_flags & MASK_ALTIVEC)
210 #define TARGET_AIX_STRUCT_RET	(target_flags & MASK_AIX_STRUCT_RET)
211 
212 #define TARGET_32BIT		(! TARGET_64BIT)
213 #define TARGET_HARD_FLOAT	(! TARGET_SOFT_FLOAT)
214 #define TARGET_UPDATE		(! TARGET_NO_UPDATE)
215 #define TARGET_FUSED_MADD	(! TARGET_NO_FUSED_MADD)
216 
217 #ifdef IN_LIBGCC2
218 /* For libgcc2 we make sure this is a compile time constant */
219 #if defined (__64BIT__) || defined (__powerpc64__)
220 #define TARGET_POWERPC64	1
221 #else
222 #define TARGET_POWERPC64	0
223 #endif
224 #else
225 #define TARGET_POWERPC64	(target_flags & MASK_POWERPC64)
226 #endif
227 
228 #define TARGET_XL_CALL 0
229 
230 /* Run-time compilation parameters selecting different hardware subsets.
231 
232    Macro to define tables used to set the flags.
233    This is a list in braces of pairs in braces,
234    each pair being { "NAME", VALUE }
235    where VALUE is the bits to set or minus the bits to clear.
236    An empty string NAME is used to identify the default VALUE.  */
237 
238 #define TARGET_SWITCHES							\
239  {{"power",		MASK_POWER  | MASK_MULTIPLE | MASK_STRING,	\
240 			N_("Use POWER instruction set")},		\
241   {"power2",		(MASK_POWER | MASK_MULTIPLE | MASK_STRING	\
242 			 | MASK_POWER2),				\
243 			N_("Use POWER2 instruction set")},		\
244   {"no-power2",		- MASK_POWER2,					\
245 			N_("Do not use POWER2 instruction set")},	\
246   {"no-power",		- (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE	\
247 			   | MASK_STRING),				\
248 			N_("Do not use POWER instruction set")},	\
249   {"powerpc",		MASK_POWERPC,					\
250 			N_("Use PowerPC instruction set")},		\
251   {"no-powerpc",	- (MASK_POWERPC | MASK_PPC_GPOPT		\
252 			   | MASK_PPC_GFXOPT | MASK_POWERPC64),		\
253 			N_("Do not use PowerPC instruction set")},	\
254   {"powerpc-gpopt",	MASK_POWERPC | MASK_PPC_GPOPT,			\
255 			N_("Use PowerPC General Purpose group optional instructions")},\
256   {"no-powerpc-gpopt",	- MASK_PPC_GPOPT,				\
257 			N_("Don't use PowerPC General Purpose group optional instructions")},\
258   {"powerpc-gfxopt",	MASK_POWERPC | MASK_PPC_GFXOPT,			\
259 			N_("Use PowerPC Graphics group optional instructions")},\
260   {"no-powerpc-gfxopt",	- MASK_PPC_GFXOPT,				\
261 			N_("Don't use PowerPC Graphics group optional instructions")},\
262   {"powerpc64",		MASK_POWERPC64,					\
263 			N_("Use PowerPC-64 instruction set")},		\
264   {"no-powerpc64",	- MASK_POWERPC64,				\
265 			N_("Don't use PowerPC-64 instruction set")},	\
266   {"altivec",		MASK_ALTIVEC ,					\
267 			N_("Use AltiVec instructions")},		\
268   {"no-altivec",	- MASK_ALTIVEC ,					\
269 			N_("Don't use AltiVec instructions")},	\
270   {"new-mnemonics",	MASK_NEW_MNEMONICS,				\
271 			N_("Use new mnemonics for PowerPC architecture")},\
272   {"old-mnemonics",	-MASK_NEW_MNEMONICS,				\
273 			N_("Use old mnemonics for PowerPC architecture")},\
274   {"full-toc",		- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC	\
275 			   | MASK_MINIMAL_TOC),				\
276 			N_("Put everything in the regular TOC")},	\
277   {"fp-in-toc",		- MASK_NO_FP_IN_TOC,				\
278 			N_("Place floating point constants in TOC")},	\
279   {"no-fp-in-toc",	MASK_NO_FP_IN_TOC,				\
280 			N_("Don't place floating point constants in TOC")},\
281   {"sum-in-toc",	- MASK_NO_SUM_IN_TOC,				\
282 			N_("Place symbol+offset constants in TOC")},	\
283   {"no-sum-in-toc",	MASK_NO_SUM_IN_TOC,				\
284 			N_("Don't place symbol+offset constants in TOC")},\
285   {"minimal-toc",	MASK_MINIMAL_TOC,				\
286 			"Use only one TOC entry per procedure"},	\
287   {"minimal-toc",	- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC),	\
288 			""},						\
289   {"no-minimal-toc",	- MASK_MINIMAL_TOC,				\
290 			N_("Place variable addresses in the regular TOC")},\
291   {"hard-float",	- MASK_SOFT_FLOAT,				\
292 			N_("Use hardware fp")},				\
293   {"soft-float",	MASK_SOFT_FLOAT,				\
294 			N_("Do not use hardware fp")},			\
295   {"multiple",		MASK_MULTIPLE | MASK_MULTIPLE_SET,		\
296 			N_("Generate load/store multiple instructions")},	\
297   {"no-multiple",	- MASK_MULTIPLE,				\
298 			N_("Do not generate load/store multiple instructions")},\
299   {"no-multiple",	MASK_MULTIPLE_SET,				\
300 			""},						\
301   {"string",		MASK_STRING | MASK_STRING_SET,			\
302 			N_("Generate string instructions for block moves")},\
303   {"no-string",		- MASK_STRING,					\
304 			N_("Do not generate string instructions for block moves")},\
305   {"no-string",		MASK_STRING_SET,				\
306 			""},						\
307   {"update",		- MASK_NO_UPDATE,				\
308 			N_("Generate load/store with update instructions")},\
309   {"no-update",		MASK_NO_UPDATE,					\
310 			N_("Do not generate load/store with update instructions")},\
311   {"fused-madd",	- MASK_NO_FUSED_MADD,				\
312 			N_("Generate fused multiply/add instructions")},\
313   {"no-fused-madd",	MASK_NO_FUSED_MADD,				\
314 			N_("Don't generate fused multiply/add instructions")},\
315   {"sched-prolog",      MASK_SCHED_PROLOG,                              \
316 			""},						\
317   {"no-sched-prolog",   -MASK_SCHED_PROLOG,                             \
318 			N_("Don't schedule the start and end of the procedure")},\
319   {"sched-epilog",      MASK_SCHED_PROLOG,                              \
320 			""},						\
321   {"no-sched-epilog",   -MASK_SCHED_PROLOG,                             \
322 			""},						\
323   {"aix-struct-return",	MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,	\
324 			N_("Return all structures in memory (AIX default)")},\
325   {"svr4-struct-return", - MASK_AIX_STRUCT_RET,\
326 			N_("Return small structures in registers (SVR4 default)")},\
327   {"svr4-struct-return",MASK_AIX_STRUCT_RET_SET,\
328 			""},\
329   {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,\
330 			""},\
331   {"no-aix-struct-return", MASK_AIX_STRUCT_RET_SET,\
332 			""},\
333   {"no-svr4-struct-return", MASK_AIX_STRUCT_RET | MASK_AIX_STRUCT_RET_SET,\
334 			""},\
335   SUBTARGET_SWITCHES							\
336   {"",			TARGET_DEFAULT | MASK_SCHED_PROLOG,		\
337 			""}}
338 
339 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
340 
341 /* This is meant to be redefined in the host dependent files */
342 #define SUBTARGET_SWITCHES
343 
344 /* Processor type.  Order must match cpu attribute in MD file.  */
345 enum processor_type
346  {
347    PROCESSOR_RIOS1,
348    PROCESSOR_RIOS2,
349    PROCESSOR_RS64A,
350    PROCESSOR_MPCCORE,
351    PROCESSOR_PPC403,
352    PROCESSOR_PPC405,
353    PROCESSOR_PPC601,
354    PROCESSOR_PPC603,
355    PROCESSOR_PPC604,
356    PROCESSOR_PPC604e,
357    PROCESSOR_PPC620,
358    PROCESSOR_PPC630,
359    PROCESSOR_PPC750,
360    PROCESSOR_PPC7400,
361    PROCESSOR_PPC7450,
362    PROCESSOR_PPC8540,
363    PROCESSOR_POWER4
364 };
365 
366 extern enum processor_type rs6000_cpu;
367 
368 /* Recast the processor type to the cpu attribute.  */
369 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
370 
371 /* Define generic processor types based upon current deployment.  */
372 #define PROCESSOR_COMMON    PROCESSOR_PPC601
373 #define PROCESSOR_POWER     PROCESSOR_RIOS1
374 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
375 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
376 
377 /* Define the default processor.  This is overridden by other tm.h files.  */
378 #define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
379 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
380 
381 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
382    and the old mnemonics are dialect zero.  */
383 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
384 
385 /* This is meant to be overridden in target specific files.  */
386 #define	SUBTARGET_OPTIONS
387 
388 #define TARGET_OPTIONS							\
389 {									\
390    {"cpu=",  &rs6000_select[1].string,					\
391     N_("Use features of and schedule code for given CPU") },		\
392    {"tune=", &rs6000_select[2].string,					\
393     N_("Schedule code for given CPU") },				\
394    {"debug=", &rs6000_debug_name, N_("Enable debug output") },		\
395    {"traceback=", &rs6000_traceback_name,				\
396     N_("Select full, part, or no traceback table") },			\
397    {"abi=", &rs6000_abi_string, N_("Specify ABI to use") },		\
398    {"long-double-", &rs6000_long_double_size_string,			\
399     N_("Specify size of long double (64 or 128 bits)") },		\
400    {"isel=", &rs6000_isel_string,                                       \
401     N_("Specify yes/no if isel instructions should be generated") },    \
402    {"vrsave=", &rs6000_altivec_vrsave_string,                         \
403     N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
404    {"longcall", &rs6000_longcall_switch,				\
405     N_("Avoid all range limits on call instructions") },		\
406    {"no-longcall", &rs6000_longcall_switch, "" },			\
407    SUBTARGET_OPTIONS							\
408 }
409 
410 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
411 struct rs6000_cpu_select
412 {
413   const char *string;
414   const char *name;
415   int set_tune_p;
416   int set_arch_p;
417 };
418 
419 extern struct rs6000_cpu_select rs6000_select[];
420 
421 /* Debug support */
422 extern const char *rs6000_debug_name;	/* Name for -mdebug-xxxx option */
423 extern const char *rs6000_abi_string;	/* for -mabi={sysv,darwin,eabi,aix,altivec} */
424 extern int rs6000_debug_stack;		/* debug stack applications */
425 extern int rs6000_debug_arg;		/* debug argument handling */
426 
427 #define	TARGET_DEBUG_STACK	rs6000_debug_stack
428 #define	TARGET_DEBUG_ARG	rs6000_debug_arg
429 
430 extern const char *rs6000_traceback_name; /* Type of traceback table.  */
431 
432 /* These are separate from target_flags because we've run out of bits
433    there.  */
434 extern const char *rs6000_long_double_size_string;
435 extern int rs6000_long_double_type_size;
436 extern int rs6000_altivec_abi;
437 extern int rs6000_spe_abi;
438 extern int rs6000_isel;
439 extern int rs6000_fprs;
440 extern const char *rs6000_isel_string;
441 extern const char *rs6000_altivec_vrsave_string;
442 extern int rs6000_altivec_vrsave;
443 extern const char *rs6000_longcall_switch;
444 extern int rs6000_default_long_calls;
445 
446 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
447 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
448 #define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
449 
450 #define TARGET_SPE_ABI 0
451 #define TARGET_SPE 0
452 #define TARGET_ISEL 0
453 #define TARGET_FPRS 1
454 
455 /* Sometimes certain combinations of command options do not make sense
456    on a particular target machine.  You can define a macro
457    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
458    defined, is executed once just after all the command options have
459    been parsed.
460 
461    Don't use this macro to turn on various extra optimizations for
462    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
463 
464    On the RS/6000 this is used to define the target cpu type.  */
465 
466 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
467 
468 /* Define this to change the optimizations performed by default.  */
469 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
470 
471 /* Show we can debug even without a frame pointer.  */
472 #define CAN_DEBUG_WITHOUT_FP
473 
474 /* Target pragma.  */
475 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
476   cpp_register_pragma (PFILE, 0, "longcall", rs6000_pragma_longcall); \
477 } while (0)
478 
479 /* Target #defines.  */
480 #define TARGET_CPU_CPP_BUILTINS() \
481   rs6000_cpu_cpp_builtins (pfile)
482 
483 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
484    we're compiling for.  Some configurations may need to override it.  */
485 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
486   do						\
487     {						\
488       if (BYTES_BIG_ENDIAN)			\
489 	{					\
490 	  builtin_define ("__BIG_ENDIAN__");	\
491 	  builtin_define ("_BIG_ENDIAN");	\
492 	  builtin_assert ("machine=bigendian");	\
493 	}					\
494       else					\
495 	{					\
496 	  builtin_define ("__LITTLE_ENDIAN__");	\
497 	  builtin_define ("_LITTLE_ENDIAN");	\
498 	  builtin_assert ("machine=littleendian"); \
499 	}					\
500     }						\
501   while (0)
502 
503 /* Target machine storage layout.  */
504 
505 /* Define this macro if it is advisable to hold scalars in registers
506    in a wider mode than that declared by the program.  In such cases,
507    the value is constrained to be within the bounds of the declared
508    type, but kept valid in the wider mode.  The signedness of the
509    extension may differ from that of the type.  */
510 
511 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
512   if (GET_MODE_CLASS (MODE) == MODE_INT		\
513       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
514     (MODE) = word_mode;
515 
516 /* Define this if function arguments should also be promoted using the above
517    procedure.  */
518 
519 #define PROMOTE_FUNCTION_ARGS
520 
521 /* Likewise, if the function return value is promoted.  */
522 
523 #define PROMOTE_FUNCTION_RETURN
524 
525 /* Define this if most significant bit is lowest numbered
526    in instructions that operate on numbered bit-fields.  */
527 /* That is true on RS/6000.  */
528 #define BITS_BIG_ENDIAN 1
529 
530 /* Define this if most significant byte of a word is the lowest numbered.  */
531 /* That is true on RS/6000.  */
532 #define BYTES_BIG_ENDIAN 1
533 
534 /* Define this if most significant word of a multiword number is lowest
535    numbered.
536 
537    For RS/6000 we can decide arbitrarily since there are no machine
538    instructions for them.  Might as well be consistent with bits and bytes.  */
539 #define WORDS_BIG_ENDIAN 1
540 
541 #define MAX_BITS_PER_WORD 64
542 
543 /* Width of a word, in units (bytes).  */
544 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
545 #ifdef IN_LIBGCC2
546 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
547 #else
548 #define MIN_UNITS_PER_WORD 4
549 #endif
550 #define UNITS_PER_FP_WORD 8
551 #define UNITS_PER_ALTIVEC_WORD 16
552 #define UNITS_PER_SPE_WORD 8
553 
554 /* Type used for ptrdiff_t, as a string used in a declaration.  */
555 #define PTRDIFF_TYPE "int"
556 
557 /* Type used for size_t, as a string used in a declaration.  */
558 #define SIZE_TYPE "long unsigned int"
559 
560 /* Type used for wchar_t, as a string used in a declaration.  */
561 #define WCHAR_TYPE "short unsigned int"
562 
563 /* Width of wchar_t in bits.  */
564 #define WCHAR_TYPE_SIZE 16
565 
566 /* A C expression for the size in bits of the type `short' on the
567    target machine.  If you don't define this, the default is half a
568    word.  (If this would be less than one storage unit, it is
569    rounded up to one unit.)  */
570 #define SHORT_TYPE_SIZE 16
571 
572 /* A C expression for the size in bits of the type `int' on the
573    target machine.  If you don't define this, the default is one
574    word.  */
575 #define INT_TYPE_SIZE 32
576 
577 /* A C expression for the size in bits of the type `long' on the
578    target machine.  If you don't define this, the default is one
579    word.  */
580 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
581 #define MAX_LONG_TYPE_SIZE 64
582 
583 /* A C expression for the size in bits of the type `long long' on the
584    target machine.  If you don't define this, the default is two
585    words.  */
586 #define LONG_LONG_TYPE_SIZE 64
587 
588 /* A C expression for the size in bits of the type `float' on the
589    target machine.  If you don't define this, the default is one
590    word.  */
591 #define FLOAT_TYPE_SIZE 32
592 
593 /* A C expression for the size in bits of the type `double' on the
594    target machine.  If you don't define this, the default is two
595    words.  */
596 #define DOUBLE_TYPE_SIZE 64
597 
598 /* A C expression for the size in bits of the type `long double' on
599    the target machine.  If you don't define this, the default is two
600    words.  */
601 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
602 
603 /* Constant which presents upper bound of the above value.  */
604 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
605 
606 /* Define this to set long double type size to use in libgcc2.c, which can
607    not depend on target_flags.  */
608 #ifdef __LONG_DOUBLE_128__
609 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
610 #else
611 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
612 #endif
613 
614 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
615 #define WIDEST_HARDWARE_FP_SIZE 64
616 
617 /* Width in bits of a pointer.
618    See also the macro `Pmode' defined below.  */
619 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
620 
621 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
622 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
623 
624 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
625 #define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
626 
627 /* Allocation boundary (in *bits*) for the code of a function.  */
628 #define FUNCTION_BOUNDARY 32
629 
630 /* No data type wants to be aligned rounder than this.  */
631 #define BIGGEST_ALIGNMENT 128
632 
633 /* A C expression to compute the alignment for a variables in the
634    local store.  TYPE is the data type, and ALIGN is the alignment
635    that the object would ordinarily have.  */
636 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
637   ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 :	\
638     (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
639 
640 /* Alignment of field after `int : 0' in a structure.  */
641 #define EMPTY_FIELD_BOUNDARY 32
642 
643 /* Every structure's size must be a multiple of this.  */
644 #define STRUCTURE_SIZE_BOUNDARY 8
645 
646 /* Return 1 if a structure or array containing FIELD should be
647    accessed using `BLKMODE'.
648 
649    For the SPE, simd types are V2SI, and gcc can be tempted to put the
650    entire thing in a DI and use subregs to access the internals.
651    store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
652    back-end.  Because a single GPR can hold a V2SI, but not a DI, the
653    best thing to do is set structs to BLKmode and avoid Severe Tire
654    Damage.  */
655 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
656   (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
657 
658 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
659 #define PCC_BITFIELD_TYPE_MATTERS 1
660 
661 /* Make strings word-aligned so strcpy from constants will be faster.
662    Make vector constants quadword aligned.  */
663 #define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
664   (TREE_CODE (EXP) == STRING_CST	                         \
665    && (ALIGN) < BITS_PER_WORD                                    \
666    ? BITS_PER_WORD                                               \
667    : (ALIGN))
668 
669 /* Make arrays of chars word-aligned for the same reasons.
670    Align vectors to 128 bits.  */
671 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
672   (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128)	\
673    : TREE_CODE (TYPE) == ARRAY_TYPE		\
674    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
675    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
676 
677 /* Nonzero if move instructions will actually fail to work
678    when given unaligned data.  */
679 #define STRICT_ALIGNMENT 0
680 
681 /* Define this macro to be the value 1 if unaligned accesses have a cost
682    many times greater than aligned accesses, for example if they are
683    emulated in a trap handler.  */
684 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)				\
685   (STRICT_ALIGNMENT							\
686    || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode	\
687 	|| (MODE) == DImode)						\
688        && (ALIGN) < 32))
689 
690 /* Standard register usage.  */
691 
692 /* Number of actual hardware registers.
693    The hardware registers are assigned numbers for the compiler
694    from 0 to just below FIRST_PSEUDO_REGISTER.
695    All registers that the compiler knows about must be given numbers,
696    even those that are not normally considered general registers.
697 
698    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
699    an MQ register, a count register, a link register, and 8 condition
700    register fields, which we view here as separate registers.
701 
702    In addition, the difference between the frame and argument pointers is
703    a function of the number of registers saved, so we need to have a
704    register for AP that will later be eliminated in favor of SP or FP.
705    This is a normal register, but it is fixed.
706 
707    We also create a pseudo register for float/int conversions, that will
708    really represent the memory location used.  It is represented here as
709    a register, in order to work around problems in allocating stack storage
710    in inline functions.  */
711 
712 #define FIRST_PSEUDO_REGISTER 113
713 
714 /* This must be included for pre gcc 3.0 glibc compatibility.  */
715 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
716 
717 /* 1 for registers that have pervasive standard uses
718    and are not available for the register allocator.
719 
720    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
721    as a local register; for all other OS's r2 is the TOC pointer.
722 
723    cr5 is not supposed to be used.
724 
725    On System V implementations, r13 is fixed and not available for use.  */
726 
727 #define FIXED_REGISTERS  \
728   {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
729    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
730    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
731    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
732    0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,	   \
733    /* AltiVec registers.  */			   \
734    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
735    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
736    1, 1						   \
737    , 1, 1                                          \
738 }
739 
740 /* 1 for registers not available across function calls.
741    These must include the FIXED_REGISTERS and also any
742    registers that can be used without being saved.
743    The latter must include the registers where values are returned
744    and the register where structure-value addresses are passed.
745    Aside from that, you can include as many other registers as you like.  */
746 
747 #define CALL_USED_REGISTERS  \
748   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
749    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
750    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
751    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
752    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
753    /* AltiVec registers.  */			   \
754    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
755    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
756    1, 1						   \
757    , 1, 1                                          \
758 }
759 
760 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
761    the entire set of `FIXED_REGISTERS' be included.
762    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
763    This macro is optional.  If not specified, it defaults to the value
764    of `CALL_USED_REGISTERS'.  */
765 
766 #define CALL_REALLY_USED_REGISTERS  \
767   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
768    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
769    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
770    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
771    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
772    /* AltiVec registers.  */			   \
773    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
774    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
775    0, 0						   \
776    , 0, 0                                          \
777 }
778 
779 #define MQ_REGNO     64
780 #define CR0_REGNO    68
781 #define CR1_REGNO    69
782 #define CR2_REGNO    70
783 #define CR3_REGNO    71
784 #define CR4_REGNO    72
785 #define MAX_CR_REGNO 75
786 #define XER_REGNO    76
787 #define FIRST_ALTIVEC_REGNO	77
788 #define LAST_ALTIVEC_REGNO	108
789 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
790 #define VRSAVE_REGNO		109
791 #define VSCR_REGNO		110
792 #define SPE_ACC_REGNO		111
793 #define SPEFSCR_REGNO		112
794 
795 /* List the order in which to allocate registers.  Each register must be
796    listed once, even those in FIXED_REGISTERS.
797 
798    We allocate in the following order:
799 	fp0		(not saved or used for anything)
800 	fp13 - fp2	(not saved; incoming fp arg registers)
801 	fp1		(not saved; return value)
802  	fp31 - fp14	(saved; order given to save least number)
803 	cr7, cr6	(not saved or special)
804 	cr1		(not saved, but used for FP operations)
805 	cr0		(not saved, but used for arithmetic operations)
806 	cr4, cr3, cr2	(saved)
807         r0		(not saved; cannot be base reg)
808 	r9		(not saved; best for TImode)
809 	r11, r10, r8-r4	(not saved; highest used first to make less conflict)
810 	r3     		(not saved; return value register)
811 	r31 - r13	(saved; order given to save least number)
812 	r12		(not saved; if used for DImode or DFmode would use r13)
813 	mq		(not saved; best to use it if we can)
814 	ctr		(not saved; when we have the choice ctr is better)
815 	lr		(saved)
816         cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
817 	spe_acc, spefscr (fixed)
818 
819 	AltiVec registers:
820 	v0 - v1         (not saved or used for anything)
821 	v13 - v3        (not saved; incoming vector arg registers)
822 	v2              (not saved; incoming vector arg reg; return value)
823 	v19 - v14       (not saved or used for anything)
824 	v31 - v20       (saved; order given to save least number)
825 */
826 
827 
828 #define REG_ALLOC_ORDER					\
829   {32, 							\
830    45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,	\
831    33,							\
832    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,	\
833    50, 49, 48, 47, 46, 					\
834    75, 74, 69, 68, 72, 71, 70,				\
835    0,							\
836    9, 11, 10, 8, 7, 6, 5, 4,				\
837    3,							\
838    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,	\
839    18, 17, 16, 15, 14, 13, 12,				\
840    64, 66, 65, 						\
841    73, 1, 2, 67, 76,					\
842    /* AltiVec registers.  */				\
843    77, 78,						\
844    90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,		\
845    79,							\
846    96, 95, 94, 93, 92, 91,				\
847    108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98,	\
848    97, 109, 110						\
849    , 111, 112                                              \
850 }
851 
852 /* True if register is floating-point.  */
853 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
854 
855 /* True if register is a condition register.  */
856 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
857 
858 /* True if register is a condition register, but not cr0.  */
859 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
860 
861 /* True if register is an integer register.  */
862 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
863 
864 /* SPE SIMD registers are just the GPRs.  */
865 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
866 
867 /* True if register is the XER register.  */
868 #define XER_REGNO_P(N) ((N) == XER_REGNO)
869 
870 /* True if register is an AltiVec register.  */
871 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
872 
873 /* Return number of consecutive hard regs needed starting at reg REGNO
874    to hold something of mode MODE.
875    This is ordinarily the length in words of a value of mode MODE
876    but can be less for certain modes in special long registers.
877 
878    For the SPE, GPRs are 64 bits but only 32 bits are visible in
879    scalar instructions.  The upper 32 bits are only available to the
880    SIMD instructions.
881 
882    POWER and PowerPC GPRs hold 32 bits worth;
883    PowerPC64 GPRs and FPRs point register holds 64 bits worth.  */
884 
885 #define HARD_REGNO_NREGS(REGNO, MODE)					\
886   (FP_REGNO_P (REGNO)							\
887    ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
888    : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE))   \
889    ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
890    : ALTIVEC_REGNO_P (REGNO)						\
891    ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
892    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
893 
894 #define ALTIVEC_VECTOR_MODE(MODE)	\
895 	 ((MODE) == V16QImode		\
896 	  || (MODE) == V8HImode		\
897 	  || (MODE) == V4SFmode		\
898 	  || (MODE) == V4SImode)
899 
900 #define SPE_VECTOR_MODE(MODE)		\
901 	((MODE) == V4HImode          	\
902          || (MODE) == V2SFmode          \
903          || (MODE) == V1DImode          \
904          || (MODE) == V2SImode)
905 
906 /* Define this macro to be nonzero if the port is prepared to handle
907    insns involving vector mode MODE.  At the very least, it must have
908    move patterns for this mode.  */
909 
910 #define VECTOR_MODE_SUPPORTED_P(MODE)			\
911         ((TARGET_SPE && SPE_VECTOR_MODE (MODE))		\
912 	 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
913 
914 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
915    For POWER and PowerPC, the GPRs can hold any mode, but the float
916    registers only can hold floating modes and DImode, and CR register only
917    can hold CC modes.  We cannot put TImode anywhere except general
918    register and it must be able to fit within the register set.  */
919 
920 #define HARD_REGNO_MODE_OK(REGNO, MODE)					\
921   (FP_REGNO_P (REGNO) ?							\
922    (GET_MODE_CLASS (MODE) == MODE_FLOAT					\
923     || (GET_MODE_CLASS (MODE) == MODE_INT				\
924 	&& GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD))			\
925    : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE)		\
926    : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
927    : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC		\
928    : XER_REGNO_P (REGNO) ? (MODE) == PSImode				\
929    : ! INT_REGNO_P (REGNO) ? GET_MODE_SIZE (MODE) <= UNITS_PER_WORD	\
930    : 1)
931 
932 /* Value is 1 if it is a good idea to tie two pseudo registers
933    when one has mode MODE1 and one has mode MODE2.
934    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
935    for any hard reg, then this must be 0 for correct output.  */
936 #define MODES_TIEABLE_P(MODE1, MODE2) \
937   (GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
938    ? GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
939    : GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
940    ? GET_MODE_CLASS (MODE1) == MODE_FLOAT	\
941    : GET_MODE_CLASS (MODE1) == MODE_CC		\
942    ? GET_MODE_CLASS (MODE2) == MODE_CC		\
943    : GET_MODE_CLASS (MODE2) == MODE_CC		\
944    ? GET_MODE_CLASS (MODE1) == MODE_CC		\
945    : ALTIVEC_VECTOR_MODE (MODE1)		\
946    ? ALTIVEC_VECTOR_MODE (MODE2)		\
947    : ALTIVEC_VECTOR_MODE (MODE2)		\
948    ? ALTIVEC_VECTOR_MODE (MODE1)		\
949    : 1)
950 
951 /* A C expression returning the cost of moving data from a register of class
952    CLASS1 to one of CLASS2.  */
953 
954 #define REGISTER_MOVE_COST rs6000_register_move_cost
955 
956 /* A C expressions returning the cost of moving data of MODE from a register to
957    or from memory.  */
958 
959 #define MEMORY_MOVE_COST rs6000_memory_move_cost
960 
961 /* Specify the cost of a branch insn; roughly the number of extra insns that
962    should be added to avoid a branch.
963 
964    Set this to 3 on the RS/6000 since that is roughly the average cost of an
965    unscheduled conditional branch.  */
966 
967 #define BRANCH_COST 3
968 
969 
970 /* A fixed register used at prologue and epilogue generation to fix
971    addressing modes.  The SPE needs heavy addressing fixes at the last
972    minute, and it's best to save a register for it.
973 
974    AltiVec also needs fixes, but we've gotten around using r11, which
975    is actually wrong because when use_backchain_to_restore_sp is true,
976    we end up clobbering r11.
977 
978    The AltiVec case needs to be fixed.  Dunno if we should break ABI
979    compatability and reserve a register for it as well..  */
980 
981 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
982 
983 /* Define this macro to change register usage conditional on target flags.
984    Set MQ register fixed (already call_used) if not POWER architecture
985    (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
986    64-bit AIX reserves GPR13 for thread-private data.
987    Conditionally disable FPRs.  */
988 
989 #define CONDITIONAL_REGISTER_USAGE					\
990 {									\
991   int i;								\
992   if (! TARGET_POWER)							\
993     fixed_regs[64] = 1;							\
994   if (TARGET_64BIT)							\
995     fixed_regs[13] = call_used_regs[13]					\
996       = call_really_used_regs[13] = 1; 					\
997   if (TARGET_SOFT_FLOAT || !TARGET_FPRS)				\
998     for (i = 32; i < 64; i++)						\
999       fixed_regs[i] = call_used_regs[i]					\
1000         = call_really_used_regs[i] = 1;					\
1001   if (DEFAULT_ABI == ABI_V4						\
1002       && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM			\
1003       && flag_pic == 2)							\
1004     fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;			\
1005   if (DEFAULT_ABI == ABI_V4						\
1006       && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM			\
1007       && flag_pic == 1)							\
1008     fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1009       = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1010       = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;	\
1011   if (DEFAULT_ABI == ABI_DARWIN						\
1012       && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
1013     global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1014       = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1015       = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1016       = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;	\
1017   if (TARGET_ALTIVEC)                                                   \
1018     global_regs[VSCR_REGNO] = 1;                                        \
1019   if (TARGET_SPE)							\
1020     {                                                                   \
1021       global_regs[SPEFSCR_REGNO] = 1;					\
1022       fixed_regs[FIXED_SCRATCH]						\
1023         = call_used_regs[FIXED_SCRATCH]					\
1024 	= call_really_used_regs[FIXED_SCRATCH] = 1; 			\
1025     }                                                                   \
1026   if (! TARGET_ALTIVEC)							\
1027     {									\
1028       for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)	\
1029 	fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1030       call_really_used_regs[VRSAVE_REGNO] = 1;				\
1031     }									\
1032   if (TARGET_ALTIVEC_ABI)						\
1033     for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)	\
1034       call_used_regs[i] = call_really_used_regs[i] = 1;			\
1035 }
1036 
1037 /* Specify the registers used for certain standard purposes.
1038    The values of these macros are register numbers.  */
1039 
1040 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1041 /* #define PC_REGNUM  */
1042 
1043 /* Register to use for pushing function arguments.  */
1044 #define STACK_POINTER_REGNUM 1
1045 
1046 /* Base register for access to local variables of the function.  */
1047 #define FRAME_POINTER_REGNUM 31
1048 
1049 /* Value should be nonzero if functions must have frame pointers.
1050    Zero means the frame pointer need not be set up (and parms
1051    may be accessed via the stack pointer) in functions that seem suitable.
1052    This is computed in `reload', in reload1.c.  */
1053 #define FRAME_POINTER_REQUIRED 0
1054 
1055 /* Base register for access to arguments of the function.  */
1056 #define ARG_POINTER_REGNUM 67
1057 
1058 /* Place to put static chain when calling a function that requires it.  */
1059 #define STATIC_CHAIN_REGNUM 11
1060 
1061 /* Link register number.  */
1062 #define LINK_REGISTER_REGNUM 65
1063 
1064 /* Count register number.  */
1065 #define COUNT_REGISTER_REGNUM 66
1066 
1067 /* Place that structure value return address is placed.
1068 
1069    On the RS/6000, it is passed as an extra parameter.  */
1070 #define STRUCT_VALUE 0
1071 
1072 /* Define the classes of registers for register constraints in the
1073    machine description.  Also define ranges of constants.
1074 
1075    One of the classes must always be named ALL_REGS and include all hard regs.
1076    If there is more than one class, another class must be named NO_REGS
1077    and contain no registers.
1078 
1079    The name GENERAL_REGS must be the name of a class (or an alias for
1080    another name such as ALL_REGS).  This is the class of registers
1081    that is allowed by "g" or "r" in a register constraint.
1082    Also, registers outside this class are allocated only when
1083    instructions express preferences for them.
1084 
1085    The classes must be numbered in nondecreasing order; that is,
1086    a larger-numbered class must never be contained completely
1087    in a smaller-numbered class.
1088 
1089    For any two classes, it is very desirable that there be another
1090    class that represents their union.  */
1091 
1092 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1093    and condition registers, plus three special registers, MQ, CTR, and the
1094    link register.
1095 
1096    However, r0 is special in that it cannot be used as a base register.
1097    So make a class for registers valid as base registers.
1098 
1099    Also, cr0 is the only condition code register that can be used in
1100    arithmetic insns, so make a separate class for it.  */
1101 
1102 enum reg_class
1103 {
1104   NO_REGS,
1105   BASE_REGS,
1106   GENERAL_REGS,
1107   FLOAT_REGS,
1108   ALTIVEC_REGS,
1109   VRSAVE_REGS,
1110   VSCR_REGS,
1111   SPE_ACC_REGS,
1112   SPEFSCR_REGS,
1113   NON_SPECIAL_REGS,
1114   MQ_REGS,
1115   LINK_REGS,
1116   CTR_REGS,
1117   LINK_OR_CTR_REGS,
1118   SPECIAL_REGS,
1119   SPEC_OR_GEN_REGS,
1120   CR0_REGS,
1121   CR_REGS,
1122   NON_FLOAT_REGS,
1123   XER_REGS,
1124   ALL_REGS,
1125   LIM_REG_CLASSES
1126 };
1127 
1128 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1129 
1130 /* Give names of register classes as strings for dump file.  */
1131 
1132 #define REG_CLASS_NAMES							\
1133 {									\
1134   "NO_REGS",								\
1135   "BASE_REGS",								\
1136   "GENERAL_REGS",							\
1137   "FLOAT_REGS",								\
1138   "ALTIVEC_REGS",							\
1139   "VRSAVE_REGS",							\
1140   "VSCR_REGS",								\
1141   "SPE_ACC_REGS",                                                       \
1142   "SPEFSCR_REGS",                                                       \
1143   "NON_SPECIAL_REGS",							\
1144   "MQ_REGS",								\
1145   "LINK_REGS",								\
1146   "CTR_REGS",								\
1147   "LINK_OR_CTR_REGS",							\
1148   "SPECIAL_REGS",							\
1149   "SPEC_OR_GEN_REGS",							\
1150   "CR0_REGS",								\
1151   "CR_REGS",								\
1152   "NON_FLOAT_REGS",							\
1153   "XER_REGS",								\
1154   "ALL_REGS"								\
1155 }
1156 
1157 /* Define which registers fit in which classes.
1158    This is an initializer for a vector of HARD_REG_SET
1159    of length N_REG_CLASSES.  */
1160 
1161 #define REG_CLASS_CONTENTS						     \
1162 {									     \
1163   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */	     \
1164   { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */	     \
1165   { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */     \
1166   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1167   { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1168   { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */	     \
1169   { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */	     \
1170   { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1171   { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1172   { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1173   { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */	     \
1174   { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */	     \
1175   { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */	     \
1176   { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1177   { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1178   { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1179   { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */	     \
1180   { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */	     \
1181   { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */   \
1182   { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */	     \
1183   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff }  /* ALL_REGS */	     \
1184 }
1185 
1186 /* The same information, inverted:
1187    Return the class number of the smallest class containing
1188    reg number REGNO.  This could be a conditional expression
1189    or could index an array.  */
1190 
1191 #define REGNO_REG_CLASS(REGNO)			\
1192  ((REGNO) == 0 ? GENERAL_REGS			\
1193   : (REGNO) < 32 ? BASE_REGS			\
1194   : FP_REGNO_P (REGNO) ? FLOAT_REGS		\
1195   : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS	\
1196   : (REGNO) == CR0_REGNO ? CR0_REGS		\
1197   : CR_REGNO_P (REGNO) ? CR_REGS		\
1198   : (REGNO) == MQ_REGNO ? MQ_REGS		\
1199   : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS	\
1200   : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS	\
1201   : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS	\
1202   : (REGNO) == XER_REGNO ? XER_REGS		\
1203   : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS	\
1204   : (REGNO) == VSCR_REGNO ? VRSAVE_REGS	\
1205   : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS	\
1206   : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS	\
1207   : NO_REGS)
1208 
1209 /* The class value for index registers, and the one for base regs.  */
1210 #define INDEX_REG_CLASS GENERAL_REGS
1211 #define BASE_REG_CLASS BASE_REGS
1212 
1213 /* Get reg_class from a letter such as appears in the machine description.  */
1214 
1215 #define REG_CLASS_FROM_LETTER(C) \
1216   ((C) == 'f' ? FLOAT_REGS	\
1217    : (C) == 'b' ? BASE_REGS	\
1218    : (C) == 'h' ? SPECIAL_REGS	\
1219    : (C) == 'q' ? MQ_REGS	\
1220    : (C) == 'c' ? CTR_REGS	\
1221    : (C) == 'l' ? LINK_REGS	\
1222    : (C) == 'v' ? ALTIVEC_REGS	\
1223    : (C) == 'x' ? CR0_REGS	\
1224    : (C) == 'y' ? CR_REGS	\
1225    : (C) == 'z' ? XER_REGS	\
1226    : NO_REGS)
1227 
1228 /* The letters I, J, K, L, M, N, and P in a register constraint string
1229    can be used to stand for particular ranges of immediate operands.
1230    This macro defines what the ranges are.
1231    C is the letter, and VALUE is a constant value.
1232    Return 1 if VALUE is in the range specified by C.
1233 
1234    `I' is a signed 16-bit constant
1235    `J' is a constant with only the high-order 16 bits nonzero
1236    `K' is a constant with only the low-order 16 bits nonzero
1237    `L' is a signed 16-bit constant shifted left 16 bits
1238    `M' is a constant that is greater than 31
1239    `N' is a positive constant that is an exact power of two
1240    `O' is the constant zero
1241    `P' is a constant whose negation is a signed 16-bit constant */
1242 
1243 #define CONST_OK_FOR_LETTER_P(VALUE, C)					\
1244    ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000	\
1245    : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1246    : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0		\
1247    : (C) == 'L' ? (((VALUE) & 0xffff) == 0				\
1248 		   && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0))	\
1249    : (C) == 'M' ? (VALUE) > 31						\
1250    : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0		\
1251    : (C) == 'O' ? (VALUE) == 0						\
1252    : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1253    : 0)
1254 
1255 /* Similar, but for floating constants, and defining letters G and H.
1256    Here VALUE is the CONST_DOUBLE rtx itself.
1257 
1258    We flag for special constants when we can copy the constant into
1259    a general register in two insns for DF/DI and one insn for SF.
1260 
1261    'H' is used for DI/DF constants that take 3 insns.  */
1262 
1263 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1264   (  (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE))		\
1265 		   == ((GET_MODE (VALUE) == SFmode) ? 1 : 2))		\
1266    : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3)	\
1267    : 0)
1268 
1269 /* Optional extra constraints for this machine.
1270 
1271    'Q' means that is a memory operand that is just an offset from a reg.
1272    'R' is for AIX TOC entries.
1273    'S' is a constant that can be placed into a 64-bit mask operand
1274    'T' is a constant that can be placed into a 32-bit mask operand
1275    'U' is for V.4 small data references.
1276    't' is for AND masks that can be performed by two rldic{l,r} insns.  */
1277 
1278 #define EXTRA_CONSTRAINT(OP, C)						\
1279   ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG	\
1280    : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP)		\
1281    : (C) == 'S' ? mask64_operand (OP, DImode)				\
1282    : (C) == 'T' ? mask_operand (OP, SImode)				\
1283    : (C) == 'U' ? (DEFAULT_ABI == ABI_V4				\
1284 		   && small_data_operand (OP, GET_MODE (OP)))		\
1285    : (C) == 't' ? (mask64_2_operand (OP, DImode)			\
1286 		   && (fixed_regs[CR0_REGNO]				\
1287 		       || !logical_operand (OP, DImode))		\
1288 		   && !mask64_operand (OP, DImode))			\
1289    : 0)
1290 
1291 /* Given an rtx X being reloaded into a reg required to be
1292    in class CLASS, return the class of reg to actually use.
1293    In general this is just CLASS; but on some machines
1294    in some cases it is preferable to use a more restrictive class.
1295 
1296    On the RS/6000, we have to return NO_REGS when we want to reload a
1297    floating-point CONST_DOUBLE to force it to be copied to memory.
1298 
1299    We also don't want to reload integer values into floating-point
1300    registers if we can at all help it.  In fact, this can
1301    cause reload to abort, if it tries to generate a reload of CTR
1302    into a FP register and discovers it doesn't have the memory location
1303    required.
1304 
1305    ??? Would it be a good idea to have reload do the converse, that is
1306    try to reload floating modes into FP registers if possible?
1307  */
1308 
1309 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1310   (((GET_CODE (X) == CONST_DOUBLE			\
1311      && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)	\
1312     ? NO_REGS 						\
1313     : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT 	\
1314        && (CLASS) == NON_SPECIAL_REGS)			\
1315     ? GENERAL_REGS					\
1316     : (CLASS)))
1317 
1318 /* Return the register class of a scratch register needed to copy IN into
1319    or out of a register in CLASS in MODE.  If it can be done directly,
1320    NO_REGS is returned.  */
1321 
1322 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1323   secondary_reload_class (CLASS, MODE, IN)
1324 
1325 /* If we are copying between FP or AltiVec registers and anything
1326    else, we need a memory location.  */
1327 
1328 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) 		\
1329  ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS		\
1330 			   || (CLASS2) == FLOAT_REGS		\
1331 			   || (CLASS1) == ALTIVEC_REGS		\
1332 			   || (CLASS2) == ALTIVEC_REGS))
1333 
1334 /* Return the maximum number of consecutive registers
1335    needed to represent mode MODE in a register of class CLASS.
1336 
1337    On RS/6000, this is the size of MODE in words,
1338    except in the FP regs, where a single reg is enough for two words.  */
1339 #define CLASS_MAX_NREGS(CLASS, MODE)					\
1340  (((CLASS) == FLOAT_REGS) 						\
1341   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1342   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1343 
1344 
1345 /* Return a class of registers that cannot change FROM mode to TO mode.  */
1346 
1347 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)			\
1348   (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)				\
1349    ? reg_classes_intersect_p (FLOAT_REGS, CLASS)			\
1350    : (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1		\
1351    ? reg_classes_intersect_p (GENERAL_REGS, CLASS) 			\
1352    : 0)
1353 
1354 /* Stack layout; function entry, exit and calling.  */
1355 
1356 /* Enumeration to give which calling sequence to use.  */
1357 enum rs6000_abi {
1358   ABI_NONE,
1359   ABI_AIX,			/* IBM's AIX */
1360   ABI_AIX_NODESC,		/* AIX calling sequence minus
1361 				   function descriptors */
1362   ABI_V4,			/* System V.4/eabi */
1363   ABI_DARWIN			/* Apple's Darwin (OS X kernel) */
1364 };
1365 
1366 extern enum rs6000_abi rs6000_current_abi;	/* available for use by subtarget */
1367 
1368 /* Structure used to define the rs6000 stack */
1369 typedef struct rs6000_stack {
1370   int first_gp_reg_save;	/* first callee saved GP register used */
1371   int first_fp_reg_save;	/* first callee saved FP register used */
1372   int first_altivec_reg_save;	/* first callee saved AltiVec register used */
1373   int lr_save_p;		/* true if the link reg needs to be saved */
1374   int cr_save_p;		/* true if the CR reg needs to be saved */
1375   unsigned int vrsave_mask;	/* mask of vec registers to save */
1376   int toc_save_p;		/* true if the TOC needs to be saved */
1377   int push_p;			/* true if we need to allocate stack space */
1378   int calls_p;			/* true if the function makes any calls */
1379   enum rs6000_abi abi;		/* which ABI to use */
1380   int gp_save_offset;		/* offset to save GP regs from initial SP */
1381   int fp_save_offset;		/* offset to save FP regs from initial SP */
1382   int altivec_save_offset;	/* offset to save AltiVec regs from inital SP */
1383   int lr_save_offset;		/* offset to save LR from initial SP */
1384   int cr_save_offset;		/* offset to save CR from initial SP */
1385   int vrsave_save_offset;	/* offset to save VRSAVE from initial SP */
1386   int spe_gp_save_offset;	/* offset to save spe 64-bit gprs  */
1387   int toc_save_offset;		/* offset to save the TOC pointer */
1388   int varargs_save_offset;	/* offset to save the varargs registers */
1389   int ehrd_offset;		/* offset to EH return data */
1390   int reg_size;			/* register size (4 or 8) */
1391   int varargs_size;		/* size to hold V.4 args passed in regs */
1392   int vars_size;		/* variable save area size */
1393   int parm_size;		/* outgoing parameter size */
1394   int save_size;		/* save area size */
1395   int fixed_size;		/* fixed size of stack frame */
1396   int gp_size;			/* size of saved GP registers */
1397   int fp_size;			/* size of saved FP registers */
1398   int altivec_size;		/* size of saved AltiVec registers */
1399   int cr_size;			/* size to hold CR if not in save_size */
1400   int lr_size;			/* size to hold LR if not in save_size */
1401   int vrsave_size;		/* size to hold VRSAVE if not in save_size */
1402   int altivec_padding_size;	/* size of altivec alignment padding if
1403 				   not in save_size */
1404   int spe_gp_size;		/* size of 64-bit GPR save size for SPE */
1405   int spe_padding_size;
1406   int toc_size;			/* size to hold TOC if not in save_size */
1407   int total_size;		/* total bytes allocated for stack */
1408 } rs6000_stack_t;
1409 
1410 /* Define this if pushing a word on the stack
1411    makes the stack pointer a smaller address.  */
1412 #define STACK_GROWS_DOWNWARD
1413 
1414 /* Define this if the nominal address of the stack frame
1415    is at the high-address end of the local variables;
1416    that is, each additional local variable allocated
1417    goes at a more negative offset in the frame.
1418 
1419    On the RS/6000, we grow upwards, from the area after the outgoing
1420    arguments.  */
1421 /* #define FRAME_GROWS_DOWNWARD */
1422 
1423 /* Size of the outgoing register save area */
1424 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX			\
1425 			  || DEFAULT_ABI == ABI_AIX_NODESC		\
1426 			  || DEFAULT_ABI == ABI_DARWIN)			\
1427 			 ? (TARGET_64BIT ? 64 : 32)			\
1428 			 : 0)
1429 
1430 /* Size of the fixed area on the stack */
1431 #define RS6000_SAVE_AREA \
1432   (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_AIX_NODESC || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)	\
1433    << (TARGET_64BIT ? 1 : 0))
1434 
1435 /* MEM representing address to save the TOC register */
1436 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1437 				     plus_constant (stack_pointer_rtx, \
1438 						    (TARGET_32BIT ? 20 : 40)))
1439 
1440 /* Size of the V.4 varargs area if needed */
1441 #define RS6000_VARARGS_AREA 0
1442 
1443 /* Align an address */
1444 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1445 
1446 /* Size of V.4 varargs area in bytes */
1447 #define RS6000_VARARGS_SIZE \
1448   ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1449 
1450 /* Offset within stack frame to start allocating local variables at.
1451    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1452    first local allocated.  Otherwise, it is the offset to the BEGINNING
1453    of the first local allocated.
1454 
1455    On the RS/6000, the frame pointer is the same as the stack pointer,
1456    except for dynamic allocations.  So we start after the fixed area and
1457    outgoing parameter area.  */
1458 
1459 #define STARTING_FRAME_OFFSET						\
1460   (RS6000_ALIGN (current_function_outgoing_args_size,			\
1461 		 TARGET_ALTIVEC ? 16 : 8)				\
1462    + RS6000_VARARGS_AREA						\
1463    + RS6000_SAVE_AREA)
1464 
1465 /* Offset from the stack pointer register to an item dynamically
1466    allocated on the stack, e.g., by `alloca'.
1467 
1468    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1469    length of the outgoing arguments.  The default is correct for most
1470    machines.  See `function.c' for details.  */
1471 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1472   (RS6000_ALIGN (current_function_outgoing_args_size,			\
1473 		 TARGET_ALTIVEC ? 16 : 8)				\
1474    + (STACK_POINTER_OFFSET))
1475 
1476 /* If we generate an insn to push BYTES bytes,
1477    this says how many the stack pointer really advances by.
1478    On RS/6000, don't define this because there are no push insns.  */
1479 /*  #define PUSH_ROUNDING(BYTES) */
1480 
1481 /* Offset of first parameter from the argument pointer register value.
1482    On the RS/6000, we define the argument pointer to the start of the fixed
1483    area.  */
1484 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1485 
1486 /* Offset from the argument pointer register value to the top of
1487    stack.  This is different from FIRST_PARM_OFFSET because of the
1488    register save area.  */
1489 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1490 
1491 /* Define this if stack space is still allocated for a parameter passed
1492    in a register.  The value is the number of bytes allocated to this
1493    area.  */
1494 #define REG_PARM_STACK_SPACE(FNDECL)	RS6000_REG_SAVE
1495 
1496 /* Define this if the above stack space is to be considered part of the
1497    space allocated by the caller.  */
1498 #define OUTGOING_REG_PARM_STACK_SPACE
1499 
1500 /* This is the difference between the logical top of stack and the actual sp.
1501 
1502    For the RS/6000, sp points past the fixed area.  */
1503 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1504 
1505 /* Define this if the maximum size of all the outgoing args is to be
1506    accumulated and pushed during the prologue.  The amount can be
1507    found in the variable current_function_outgoing_args_size.  */
1508 #define ACCUMULATE_OUTGOING_ARGS 1
1509 
1510 /* Value is the number of bytes of arguments automatically
1511    popped when returning from a subroutine call.
1512    FUNDECL is the declaration node of the function (as a tree),
1513    FUNTYPE is the data type of the function (as a tree),
1514    or for a library call it is an identifier node for the subroutine name.
1515    SIZE is the number of bytes of arguments passed on the stack.  */
1516 
1517 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1518 
1519 /* Define how to find the value returned by a function.
1520    VALTYPE is the data type of the value (as a tree).
1521    If the precise function being called is known, FUNC is its FUNCTION_DECL;
1522    otherwise, FUNC is 0.
1523 
1524    On the SPE, both FPs and vectors are returned in r3.
1525 
1526    On RS/6000 an integer value is in r3 and a floating-point value is in
1527    fp1, unless -msoft-float.  */
1528 
1529 #define FUNCTION_VALUE(VALTYPE, FUNC)				\
1530   gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE)			\
1531 		&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD)	\
1532 	       || POINTER_TYPE_P (VALTYPE)			\
1533 	       ? word_mode : TYPE_MODE (VALTYPE),		\
1534 	       TREE_CODE (VALTYPE) == VECTOR_TYPE		\
1535 	       && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN		\
1536 	       : TREE_CODE (VALTYPE) == REAL_TYPE		\
1537 	         && TARGET_SPE_ABI && !TARGET_FPRS		\
1538 	       ? GP_ARG_RETURN					\
1539 	       : TREE_CODE (VALTYPE) == REAL_TYPE		\
1540 		 && TARGET_HARD_FLOAT && TARGET_FPRS	        \
1541                ? FP_ARG_RETURN : GP_ARG_RETURN)
1542 
1543 /* Define how to find the value returned by a library function
1544    assuming the value has mode MODE.  */
1545 
1546 #define LIBCALL_VALUE(MODE)						\
1547   gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN	\
1548 		     : GET_MODE_CLASS (MODE) == MODE_FLOAT		\
1549 		     && TARGET_HARD_FLOAT && TARGET_FPRS		\
1550 		     ? FP_ARG_RETURN : GP_ARG_RETURN)
1551 
1552 /* The AIX ABI for the RS/6000 specifies that all structures are
1553    returned in memory.  The Darwin ABI does the same.  The SVR4 ABI
1554    specifies that structures <= 8 bytes are returned in r3/r4, but a
1555    draft put them in memory, and GCC used to implement the draft
1556    instead of the final standard.  Therefore, TARGET_AIX_STRUCT_RET
1557    controls this instead of DEFAULT_ABI; V.4 targets needing backward
1558    compatibility can change DRAFT_V4_STRUCT_RET to override the
1559    default, and -m switches get the final word.  See
1560    rs6000_override_options for more details.
1561 
1562    The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
1563    long double support is enabled.  These values are returned in memory.
1564 
1565    int_size_in_bytes returns -1 for variable size objects, which go in
1566    memory always.  The cast to unsigned makes -1 > 8.  */
1567 
1568 #define RETURN_IN_MEMORY(TYPE) \
1569   ((AGGREGATE_TYPE_P (TYPE)						\
1570     && (TARGET_AIX_STRUCT_RET						\
1571 	|| (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8))	\
1572    || (DEFAULT_ABI == ABI_V4 && TYPE_MODE (TYPE) == TFmode))
1573 
1574 /* DRAFT_V4_STRUCT_RET defaults off.  */
1575 #define DRAFT_V4_STRUCT_RET 0
1576 
1577 /* Let RETURN_IN_MEMORY control what happens.  */
1578 #define DEFAULT_PCC_STRUCT_RETURN 0
1579 
1580 /* Mode of stack savearea.
1581    FUNCTION is VOIDmode because calling convention maintains SP.
1582    BLOCK needs Pmode for SP.
1583    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1584 #define STACK_SAVEAREA_MODE(LEVEL)	\
1585   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1586   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1587 
1588 /* Minimum and maximum general purpose registers used to hold arguments.  */
1589 #define GP_ARG_MIN_REG 3
1590 #define GP_ARG_MAX_REG 10
1591 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1592 
1593 /* Minimum and maximum floating point registers used to hold arguments.  */
1594 #define FP_ARG_MIN_REG 33
1595 #define	FP_ARG_AIX_MAX_REG 45
1596 #define	FP_ARG_V4_MAX_REG  40
1597 #define	FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX				\
1598 			 || DEFAULT_ABI == ABI_AIX_NODESC		\
1599 			 || DEFAULT_ABI == ABI_DARWIN)			\
1600 			? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1601 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1602 
1603 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1604 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1605 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1606 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1607 
1608 /* Return registers */
1609 #define GP_ARG_RETURN GP_ARG_MIN_REG
1610 #define FP_ARG_RETURN FP_ARG_MIN_REG
1611 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1612 
1613 /* Flags for the call/call_value rtl operations set up by function_arg */
1614 #define CALL_NORMAL		0x00000000	/* no special processing */
1615 /* Bits in 0x00000001 are unused.  */
1616 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1617 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1618 #define CALL_LONG		0x00000008	/* always call indirect */
1619 #define CALL_LIBCALL		0x00000010	/* libcall */
1620 
1621 /* 1 if N is a possible register number for a function value
1622    as seen by the caller.
1623 
1624    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1625 #define FUNCTION_VALUE_REGNO_P(N)					\
1626   ((N) == GP_ARG_RETURN							\
1627    || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT)			\
1628    || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC))
1629 
1630 /* 1 if N is a possible register number for function argument passing.
1631    On RS/6000, these are r3-r10 and fp1-fp13.
1632    On AltiVec, v2 - v13 are used for passing vectors.  */
1633 #define FUNCTION_ARG_REGNO_P(N)						\
1634   ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG			\
1635    || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG	\
1636        && TARGET_ALTIVEC)						\
1637    || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG			\
1638        && TARGET_HARD_FLOAT))
1639 
1640 /* A C structure for machine-specific, per-function data.
1641    This is added to the cfun structure.  */
1642 typedef struct machine_function GTY(())
1643 {
1644   /* Whether a System V.4 varargs area was created.  */
1645   int sysv_varargs_p;
1646   /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
1647   int ra_needs_full_frame;
1648 } machine_function;
1649 
1650 /* Define a data type for recording info about an argument list
1651    during the scan of that argument list.  This data type should
1652    hold all necessary information about the function itself
1653    and about the args processed so far, enough to enable macros
1654    such as FUNCTION_ARG to determine where the next arg should go.
1655 
1656    On the RS/6000, this is a structure.  The first element is the number of
1657    total argument words, the second is used to store the next
1658    floating-point register number, and the third says how many more args we
1659    have prototype types for.
1660 
1661    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1662    the next availible GP register, `fregno' is the next available FP
1663    register, and `words' is the number of words used on the stack.
1664 
1665    The varargs/stdarg support requires that this structure's size
1666    be a multiple of sizeof(int).  */
1667 
1668 typedef struct rs6000_args
1669 {
1670   int words;			/* # words used for passing GP registers */
1671   int fregno;			/* next available FP register */
1672   int vregno;			/* next available AltiVec register */
1673   int nargs_prototype;		/* # args left in the current prototype */
1674   int orig_nargs;		/* Original value of nargs_prototype */
1675   int prototype;		/* Whether a prototype was defined */
1676   int call_cookie;		/* Do special things for this call */
1677   int sysv_gregno;		/* next available GP register */
1678 } CUMULATIVE_ARGS;
1679 
1680 /* Define intermediate macro to compute the size (in registers) of an argument
1681    for the RS/6000.  */
1682 
1683 #define RS6000_ARG_SIZE(MODE, TYPE)					\
1684 ((MODE) != BLKmode							\
1685  ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD	\
1686  : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1687 
1688 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1689    for a call to a function whose data type is FNTYPE.
1690    For a library call, FNTYPE is 0.  */
1691 
1692 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1693   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE)
1694 
1695 /* Similar, but when scanning the definition of a procedure.  We always
1696    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1697 
1698 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1699   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE)
1700 
1701 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1702 
1703 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1704   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE)
1705 
1706 /* Update the data in CUM to advance over an argument
1707    of mode MODE and data type TYPE.
1708    (TYPE is null for libcalls where that information may not be available.)  */
1709 
1710 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1711   function_arg_advance (&CUM, MODE, TYPE, NAMED)
1712 
1713 /* Nonzero if we can use a floating-point register to pass this arg.  */
1714 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1715   (GET_MODE_CLASS (MODE) == MODE_FLOAT  \
1716    && (CUM).fregno <= FP_ARG_MAX_REG    \
1717    && TARGET_HARD_FLOAT && TARGET_FPRS)
1718 
1719 /* Nonzero if we can use an AltiVec register to pass this arg.  */
1720 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE)	\
1721   (ALTIVEC_VECTOR_MODE (MODE)			\
1722    && (CUM).vregno <= ALTIVEC_ARG_MAX_REG	\
1723    && TARGET_ALTIVEC_ABI)
1724 
1725 /* Determine where to put an argument to a function.
1726    Value is zero to push the argument on the stack,
1727    or a hard register in which to store the argument.
1728 
1729    MODE is the argument's machine mode.
1730    TYPE is the data type of the argument (as a tree).
1731     This is null for libcalls where that information may
1732     not be available.
1733    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1734     the preceding args and about the function being called.
1735    NAMED is nonzero if this argument is a named parameter
1736     (otherwise it is an extra parameter matching an ellipsis).
1737 
1738    On RS/6000 the first eight words of non-FP are normally in registers
1739    and the rest are pushed.  The first 13 FP args are in registers.
1740 
1741    If this is floating-point and no prototype is specified, we use
1742    both an FP and integer register (or possibly FP reg and stack).  Library
1743    functions (when TYPE is zero) always have the proper types for args,
1744    so we can pass the FP value just in one register.  emit_library_function
1745    doesn't support EXPR_LIST anyway.  */
1746 
1747 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1748   function_arg (&CUM, MODE, TYPE, NAMED)
1749 
1750 /* For an arg passed partly in registers and partly in memory,
1751    this is the number of registers used.
1752    For args passed entirely in registers or entirely in memory, zero.  */
1753 
1754 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1755   function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1756 
1757 /* A C expression that indicates when an argument must be passed by
1758    reference.  If nonzero for an argument, a copy of that argument is
1759    made in memory and a pointer to the argument is passed instead of
1760    the argument itself.  The pointer is passed in whatever way is
1761    appropriate for passing a pointer to that type.  */
1762 
1763 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1764   function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1765 
1766 /* If defined, a C expression which determines whether, and in which
1767    direction, to pad out an argument with extra space.  The value
1768    should be of type `enum direction': either `upward' to pad above
1769    the argument, `downward' to pad below, or `none' to inhibit
1770    padding.  */
1771 
1772 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1773 
1774 /* If defined, a C expression that gives the alignment boundary, in bits,
1775    of an argument with the specified mode and type.  If it is not defined,
1776    PARM_BOUNDARY is used for all arguments.  */
1777 
1778 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1779   function_arg_boundary (MODE, TYPE)
1780 
1781 /* Perform any needed actions needed for a function that is receiving a
1782    variable number of arguments.
1783 
1784    CUM is as above.
1785 
1786    MODE and TYPE are the mode and type of the current parameter.
1787 
1788    PRETEND_SIZE is a variable that should be set to the amount of stack
1789    that must be pushed by the prolog to pretend that our caller pushed
1790    it.
1791 
1792    Normally, this macro will push all remaining incoming registers on the
1793    stack and set PRETEND_SIZE to the length of the registers pushed.  */
1794 
1795 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1796   setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1797 
1798 /* Define the `__builtin_va_list' type for the ABI.  */
1799 #define BUILD_VA_LIST_TYPE(VALIST) \
1800   (VALIST) = rs6000_build_va_list ()
1801 
1802 /* Implement `va_start' for varargs and stdarg.  */
1803 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1804   rs6000_va_start (valist, nextarg)
1805 
1806 /* Implement `va_arg'.  */
1807 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1808   rs6000_va_arg (valist, type)
1809 
1810 /* For AIX, the rule is that structures are passed left-aligned in
1811    their stack slot.  However, GCC does not presently do this:
1812    structures which are the same size as integer types are passed
1813    right-aligned, as if they were in fact integers.  This only
1814    matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1815    ABI_V4 does not use std_expand_builtin_va_arg.  */
1816 #define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1817 
1818 /* Define this macro to be a nonzero value if the location where a function
1819    argument is passed depends on whether or not it is a named argument.  */
1820 #define STRICT_ARGUMENT_NAMING 1
1821 
1822 /* We do not allow indirect calls to be optimized into sibling calls, nor
1823    do we allow calls with vector parameters.  */
1824 #define FUNCTION_OK_FOR_SIBCALL(DECL) function_ok_for_sibcall ((DECL))
1825 
1826 /* Output assembler code to FILE to increment profiler label # LABELNO
1827    for profiling a function entry.  */
1828 
1829 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1830   output_function_profiler ((FILE), (LABELNO));
1831 
1832 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1833    the stack pointer does not matter. No definition is equivalent to
1834    always zero.
1835 
1836    On the RS/6000, this is nonzero because we can restore the stack from
1837    its backpointer, which we maintain.  */
1838 #define EXIT_IGNORE_STACK	1
1839 
1840 /* Define this macro as a C expression that is nonzero for registers
1841    that are used by the epilogue or the return' pattern.  The stack
1842    and frame pointer registers are already be assumed to be used as
1843    needed.  */
1844 
1845 #define	EPILOGUE_USES(REGNO)					\
1846   ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM)	\
1847    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1848    || (current_function_calls_eh_return				\
1849        && TARGET_AIX						\
1850        && (REGNO) == 2))
1851 
1852 
1853 /* TRAMPOLINE_TEMPLATE deleted */
1854 
1855 /* Length in units of the trampoline for entering a nested function.  */
1856 
1857 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1858 
1859 /* Emit RTL insns to initialize the variable parts of a trampoline.
1860    FNADDR is an RTX for the address of the function's pure code.
1861    CXT is an RTX for the static chain value for the function.  */
1862 
1863 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)		\
1864   rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1865 
1866 /* Definitions for __builtin_return_address and __builtin_frame_address.
1867    __builtin_return_address (0) should give link register (65), enable
1868    this.  */
1869 /* This should be uncommented, so that the link register is used, but
1870    currently this would result in unmatched insns and spilling fixed
1871    registers so we'll leave it for another day.  When these problems are
1872    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1873    (mrs) */
1874 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1875 
1876 /* Number of bytes into the frame return addresses can be found.  See
1877    rs6000_stack_info in rs6000.c for more information on how the different
1878    abi's store the return address.  */
1879 #define RETURN_ADDRESS_OFFSET						\
1880  ((DEFAULT_ABI == ABI_AIX						\
1881    || DEFAULT_ABI == ABI_DARWIN						\
1882    || DEFAULT_ABI == ABI_AIX_NODESC)	? (TARGET_32BIT ? 8 : 16) :	\
1883   (DEFAULT_ABI == ABI_V4)		? 4 :				\
1884   (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1885 
1886 /* The current return address is in link register (65).  The return address
1887    of anything farther back is accessed normally at an offset of 8 from the
1888    frame pointer.  */
1889 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1890   (rs6000_return_addr (COUNT, FRAME))
1891 
1892 
1893 /* Definitions for register eliminations.
1894 
1895    We have two registers that can be eliminated on the RS/6000.  First, the
1896    frame pointer register can often be eliminated in favor of the stack
1897    pointer register.  Secondly, the argument pointer register can always be
1898    eliminated; it is replaced with either the stack or frame pointer.
1899 
1900    In addition, we use the elimination mechanism to see if r30 is needed
1901    Initially we assume that it isn't.  If it is, we spill it.  This is done
1902    by making it an eliminable register.  We replace it with itself so that
1903    if it isn't needed, then existing uses won't be modified.  */
1904 
1905 /* This is an array of structures.  Each structure initializes one pair
1906    of eliminable registers.  The "from" register number is given first,
1907    followed by "to".  Eliminations of the same "from" register are listed
1908    in order of preference.  */
1909 #define ELIMINABLE_REGS				\
1910 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1911  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1912  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
1913  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1914 
1915 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1916    Frame pointer elimination is automatically handled.
1917 
1918    For the RS/6000, if frame pointer elimination is being done, we would like
1919    to convert ap into fp, not sp.
1920 
1921    We need r30 if -mminimal-toc was specified, and there are constant pool
1922    references.  */
1923 
1924 #define CAN_ELIMINATE(FROM, TO)						\
1925  ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM		\
1926   ? ! frame_pointer_needed						\
1927   : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM 				\
1928   ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0	\
1929   : 1)
1930 
1931 /* Define the offset between two registers, one to be eliminated, and the other
1932    its replacement, at the start of a routine.  */
1933 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1934 {									\
1935   rs6000_stack_t *info = rs6000_stack_info ();				\
1936 									\
1937  if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	\
1938    (OFFSET) = (info->push_p) ? 0 : - info->total_size;			\
1939  else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)	\
1940    (OFFSET) = info->total_size;						\
1941  else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	\
1942    (OFFSET) = (info->push_p) ? info->total_size : 0;			\
1943   else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM)			\
1944     (OFFSET) = 0;							\
1945   else									\
1946     abort ();								\
1947 }
1948 
1949 /* Addressing modes, and classification of registers for them.  */
1950 
1951 /* #define HAVE_POST_INCREMENT 0 */
1952 /* #define HAVE_POST_DECREMENT 0 */
1953 
1954 #define HAVE_PRE_DECREMENT 1
1955 #define HAVE_PRE_INCREMENT 1
1956 
1957 /* Macros to check register numbers against specific register classes.  */
1958 
1959 /* These assume that REGNO is a hard or pseudo reg number.
1960    They give nonzero only if REGNO is a hard reg of the suitable class
1961    or a pseudo reg currently allocated to a suitable hard reg.
1962    Since they use reg_renumber, they are safe only once reg_renumber
1963    has been allocated, which happens in local-alloc.c.  */
1964 
1965 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1966 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1967  ? (REGNO) <= 31 || (REGNO) == 67				\
1968  : (reg_renumber[REGNO] >= 0					\
1969     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1970 
1971 #define REGNO_OK_FOR_BASE_P(REGNO)				\
1972 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1973  ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
1974  : (reg_renumber[REGNO] > 0					\
1975     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1976 
1977 /* Maximum number of registers that can appear in a valid memory address.  */
1978 
1979 #define MAX_REGS_PER_ADDRESS 2
1980 
1981 /* Recognize any constant value that is a valid address.  */
1982 
1983 #define CONSTANT_ADDRESS_P(X)   \
1984   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1985    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1986    || GET_CODE (X) == HIGH)
1987 
1988 /* Nonzero if the constant value X is a legitimate general operand.
1989    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1990 
1991    On the RS/6000, all integer constants are acceptable, most won't be valid
1992    for particular insns, though.  Only easy FP constants are
1993    acceptable.  */
1994 
1995 #define LEGITIMATE_CONSTANT_P(X)				\
1996   ((GET_CODE (X) != CONST_VECTOR				\
1997     || zero_constant (X, GET_MODE (X)))				\
1998    && (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode	\
1999        || (TARGET_POWERPC64 && GET_MODE (X) == DImode)		\
2000        || easy_fp_constant (X, GET_MODE (X))))
2001 
2002 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2003    and check its validity for a certain class.
2004    We have two alternate definitions for each of them.
2005    The usual definition accepts all pseudo regs; the other rejects
2006    them unless they have been allocated suitable hard regs.
2007    The symbol REG_OK_STRICT causes the latter definition to be used.
2008 
2009    Most source files want to accept pseudo regs in the hope that
2010    they will get allocated to the class that the insn wants them to be in.
2011    Source files for reload pass need to be strict.
2012    After reload, it makes no difference, since pseudo regs have
2013    been eliminated by then.  */
2014 
2015 #ifdef REG_OK_STRICT
2016 # define REG_OK_STRICT_FLAG 1
2017 #else
2018 # define REG_OK_STRICT_FLAG 0
2019 #endif
2020 
2021 /* Nonzero if X is a hard reg that can be used as an index
2022    or if it is a pseudo reg in the non-strict case.  */
2023 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
2024   ((! (STRICT)							\
2025     && (REGNO (X) <= 31						\
2026 	|| REGNO (X) == ARG_POINTER_REGNUM			\
2027 	|| REGNO (X) >= FIRST_PSEUDO_REGISTER))			\
2028    || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
2029 
2030 /* Nonzero if X is a hard reg that can be used as a base reg
2031    or if it is a pseudo reg in the non-strict case.  */
2032 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
2033   (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2034 
2035 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2036 #define REG_OK_FOR_BASE_P(X)  INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2037 
2038 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2039    that is a valid memory address for an instruction.
2040    The MODE argument is the machine mode for the MEM expression
2041    that wants to use this address.
2042 
2043    On the RS/6000, there are four valid address: a SYMBOL_REF that
2044    refers to a constant pool entry of an address (or the sum of it
2045    plus a constant), a short (16-bit signed) constant plus a register,
2046    the sum of two registers, or a register indirect, possibly with an
2047    auto-increment.  For DFmode and DImode with an constant plus register,
2048    we must ensure that both words are addressable or PowerPC64 with offset
2049    word aligned.
2050 
2051    For modes spanning multiple registers (DFmode in 32-bit GPRs,
2052    32-bit DImode, TImode), indexed addressing cannot be used because
2053    adjacent memory cells are accessed by adding word-sized offsets
2054    during assembly output.  */
2055 
2056 #define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2057 
2058 #define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
2059 
2060 /* SPE offset addressing is limited to 5-bits worth of double words.  */
2061 #define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
2062 
2063 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X)				\
2064   (TARGET_TOC								\
2065   && GET_CODE (X) == PLUS						\
2066   && GET_CODE (XEXP (X, 0)) == REG					\
2067   && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER)	\
2068   && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
2069 
2070 #define LEGITIMATE_SMALL_DATA_P(MODE, X)				\
2071   (DEFAULT_ABI == ABI_V4						\
2072    && !flag_pic && !TARGET_TOC						\
2073    && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST)		\
2074    && small_data_operand (X, MODE))
2075 
2076 #define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET)				\
2077  (GET_CODE (X) == CONST_INT						\
2078   && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
2079 
2080 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT)		\
2081  (GET_CODE (X) == PLUS						\
2082   && GET_CODE (XEXP (X, 0)) == REG				\
2083   && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT))		\
2084   && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0)		\
2085   && (! ALTIVEC_VECTOR_MODE (MODE)                            \
2086       || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
2087   && (! SPE_VECTOR_MODE (MODE)					\
2088       || (GET_CODE (XEXP (X, 1)) == CONST_INT			\
2089 	  && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1)))))	\
2090   && (((MODE) != DFmode && (MODE) != DImode)			\
2091       || (TARGET_32BIT						\
2092 	  ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) 	\
2093 	  : ! (INTVAL (XEXP (X, 1)) & 3)))			\
2094   && (((MODE) != TFmode && (MODE) != TImode)			\
2095       || (TARGET_32BIT						\
2096 	  ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) 	\
2097 	  : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) 	\
2098 	     && ! (INTVAL (XEXP (X, 1)) & 3)))))
2099 
2100 #define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT)			\
2101  (GET_CODE (X) == PLUS						\
2102   && GET_CODE (XEXP (X, 0)) == REG				\
2103   && GET_CODE (XEXP (X, 1)) == REG				\
2104   && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT))		\
2105        && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT)))	\
2106       || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT))		\
2107 	  && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2108 
2109 #define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT)		\
2110   (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2111 
2112 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT)	\
2113   (((TARGET_ELF && ! flag_pic) || TARGET_MACHO)		\
2114    && ! TARGET_TOC					\
2115    && GET_MODE_NUNITS (MODE) == 1			\
2116    && (GET_MODE_BITSIZE (MODE) <= 32 			\
2117        || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode))	\
2118    && GET_CODE (X) == LO_SUM				\
2119    && GET_CODE (XEXP (X, 0)) == REG			\
2120    && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT))	\
2121    && CONSTANT_P (XEXP (X, 1)))
2122 
2123 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)			\
2124 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG))	\
2125     goto ADDR;							\
2126 }
2127 
2128 /* Try machine-dependent ways of modifying an illegitimate address
2129    to be legitimate.  If we find one, return the new, valid address.
2130    This macro is used in only one place: `memory_address' in explow.c.
2131 
2132    OLDX is the address as it was before break_out_memory_refs was called.
2133    In some cases it is useful to look at this to decide what needs to be done.
2134 
2135    MODE and WIN are passed so that this macro can use
2136    GO_IF_LEGITIMATE_ADDRESS.
2137 
2138    It is always safe for this macro to do nothing.  It exists to recognize
2139    opportunities to optimize the output.
2140 
2141    On RS/6000, first check for the sum of a register with a constant
2142    integer that is out of range.  If so, generate code to add the
2143    constant with the low-order 16 bits masked to the register and force
2144    this result into another register (this can be done with `cau').
2145    Then generate an address of REG+(CONST&0xffff), allowing for the
2146    possibility of bit 16 being a one.
2147 
2148    Then check for the sum of a register and something not constant, try to
2149    load the other things into a register and return the sum.  */
2150 
2151 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2152 {  rtx result = rs6000_legitimize_address (X, OLDX, MODE);	\
2153    if (result != NULL_RTX)					\
2154      {								\
2155        (X) = result;						\
2156        goto WIN;						\
2157      }								\
2158 }
2159 
2160 /* Try a machine-dependent way of reloading an illegitimate address
2161    operand.  If we find one, push the reload and jump to WIN.  This
2162    macro is used in only one place: `find_reloads_address' in reload.c.
2163 
2164    Implemented on rs6000 by rs6000_legitimize_reload_address.
2165    Note that (X) is evaluated twice; this is safe in current usage.  */
2166 
2167 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
2168 do {									     \
2169   int win;								     \
2170   (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM),		     \
2171 			(int)(TYPE), (IND_LEVELS), &win);		     \
2172   if ( win )								     \
2173     goto WIN;								     \
2174 } while (0)
2175 
2176 /* Go to LABEL if ADDR (a legitimate address expression)
2177    has an effect that depends on the machine mode it is used for.
2178 
2179    On the RS/6000 this is true if the address is valid with a zero offset
2180    but not with an offset of four (this means it cannot be used as an
2181    address for DImode or DFmode) or is a pre-increment or decrement.  Since
2182    we know it is valid, we just check for an address that is not valid with
2183    an offset of four.  */
2184 
2185 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
2186 { if (GET_CODE (ADDR) == PLUS					\
2187       && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0)	\
2188       && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1),	\
2189 					 (TARGET_32BIT ? 4 : 8))) \
2190     goto LABEL;							\
2191   if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC)		\
2192     goto LABEL;							\
2193   if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC)		\
2194     goto LABEL;							\
2195   if (GET_CODE (ADDR) == LO_SUM)				\
2196     goto LABEL;							\
2197 }
2198 
2199 /* The register number of the register used to address a table of
2200    static data addresses in memory.  In some cases this register is
2201    defined by a processor's "application binary interface" (ABI).
2202    When this macro is defined, RTL is generated for this register
2203    once, as with the stack pointer and frame pointer registers.  If
2204    this macro is not defined, it is up to the machine-dependent files
2205    to allocate such a register (if necessary).  */
2206 
2207 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2208 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2209 
2210 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2211 
2212 /* Define this macro if the register defined by
2213    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
2214    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
2215 
2216 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2217 
2218 /* By generating position-independent code, when two different
2219    programs (A and B) share a common library (libC.a), the text of
2220    the library can be shared whether or not the library is linked at
2221    the same address for both programs.  In some of these
2222    environments, position-independent code requires not only the use
2223    of different addressing modes, but also special code to enable the
2224    use of these addressing modes.
2225 
2226    The `FINALIZE_PIC' macro serves as a hook to emit these special
2227    codes once the function is being compiled into assembly code, but
2228    not before.  (It is not done before, because in the case of
2229    compiling an inline function, it would lead to multiple PIC
2230    prologues being included in functions which used inline functions
2231    and were compiled to assembly language.)  */
2232 
2233 /* #define FINALIZE_PIC */
2234 
2235 /* A C expression that is nonzero if X is a legitimate immediate
2236    operand on the target machine when generating position independent
2237    code.  You can assume that X satisfies `CONSTANT_P', so you need
2238    not check this.  You can also assume FLAG_PIC is true, so you need
2239    not check it either.  You need not define this macro if all
2240    constants (including `SYMBOL_REF') can be immediate operands when
2241    generating position independent code.  */
2242 
2243 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2244 
2245 /* In rare cases, correct code generation requires extra machine
2246    dependent processing between the second jump optimization pass and
2247    delayed branch scheduling.  On those machines, define this macro
2248    as a C statement to act on the code starting at INSN.  */
2249 
2250 /* #define MACHINE_DEPENDENT_REORG(INSN) */
2251 
2252 
2253 /* Define this if some processing needs to be done immediately before
2254    emitting code for an insn.  */
2255 
2256 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2257 
2258 /* Specify the machine mode that this machine uses
2259    for the index in the tablejump instruction.  */
2260 #define CASE_VECTOR_MODE SImode
2261 
2262 /* Define as C expression which evaluates to nonzero if the tablejump
2263    instruction expects the table to contain offsets from the address of the
2264    table.
2265    Do not define this if the table should contain absolute addresses.  */
2266 #define CASE_VECTOR_PC_RELATIVE 1
2267 
2268 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2269 #define DEFAULT_SIGNED_CHAR 0
2270 
2271 /* This flag, if defined, says the same insns that convert to a signed fixnum
2272    also convert validly to an unsigned one.  */
2273 
2274 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2275 
2276 /* Max number of bytes we can move from memory to memory
2277    in one reasonably fast instruction.  */
2278 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2279 #define MAX_MOVE_MAX 8
2280 
2281 /* Nonzero if access to memory by bytes is no faster than for words.
2282    Also nonzero if doing byte operations (specifically shifts) in registers
2283    is undesirable.  */
2284 #define SLOW_BYTE_ACCESS 1
2285 
2286 /* Define if operations between registers always perform the operation
2287    on the full register even if a narrower mode is specified.  */
2288 #define WORD_REGISTER_OPERATIONS
2289 
2290 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2291    will either zero-extend or sign-extend.  The value of this macro should
2292    be the code that says which one of the two operations is implicitly
2293    done, NIL if none.  */
2294 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2295 
2296 /* Define if loading short immediate values into registers sign extends.  */
2297 #define SHORT_IMMEDIATES_SIGN_EXTEND
2298 
2299 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2300    is done just by pretending it is already truncated.  */
2301 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2302 
2303 /* Specify the machine mode that pointers have.
2304    After generation of rtl, the compiler makes no further distinction
2305    between pointers and any other objects of this machine mode.  */
2306 #define Pmode (TARGET_32BIT ? SImode : DImode)
2307 
2308 /* Mode of a function address in a call instruction (for indexing purposes).
2309    Doesn't matter on RS/6000.  */
2310 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2311 
2312 /* Define this if addresses of constant functions
2313    shouldn't be put through pseudo regs where they can be cse'd.
2314    Desirable on machines where ordinary constants are expensive
2315    but a CALL with constant address is cheap.  */
2316 #define NO_FUNCTION_CSE
2317 
2318 /* Define this to be nonzero if shift instructions ignore all but the low-order
2319    few bits.
2320 
2321    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2322    have been dropped from the PowerPC architecture.  */
2323 
2324 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2325 
2326 /* Compute the cost of computing a constant rtl expression RTX
2327    whose rtx-code is CODE.  The body of this macro is a portion
2328    of a switch statement.  If the code is computed here,
2329    return it with a return statement.  Otherwise, break from the switch.
2330 
2331    On the RS/6000, if it is valid in the insn, it is free.  So this
2332    always returns 0.  */
2333 
2334 #define CONST_COSTS(RTX,CODE,OUTER_CODE)			\
2335   case CONST_INT:						\
2336   case CONST:							\
2337   case LABEL_REF:						\
2338   case SYMBOL_REF:						\
2339   case CONST_DOUBLE:						\
2340   case HIGH:							\
2341     return 0;
2342 
2343 /* Provide the costs of a rtl expression.  This is in the body of a
2344    switch on CODE.  */
2345 
2346 #define RTX_COSTS(X,CODE,OUTER_CODE)					\
2347   case PLUS:								\
2348     return ((GET_CODE (XEXP (X, 1)) == CONST_INT			\
2349 	     && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1))		\
2350 					   + 0x8000) >= 0x10000)	\
2351 	     && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0))			\
2352 	    ? COSTS_N_INSNS (2)						\
2353 	    : COSTS_N_INSNS (1));					\
2354   case AND:								\
2355   case IOR:								\
2356   case XOR:								\
2357     return ((GET_CODE (XEXP (X, 1)) == CONST_INT			\
2358 	     && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
2359 	     && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0))			\
2360 	    ? COSTS_N_INSNS (2)						\
2361 	    : COSTS_N_INSNS (1));					\
2362   case MULT:								\
2363     if (optimize_size)							\
2364       return COSTS_N_INSNS (2);						\
2365     switch (rs6000_cpu)							\
2366       {									\
2367       case PROCESSOR_RIOS1:						\
2368       case PROCESSOR_PPC405:						\
2369         return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2370 		? COSTS_N_INSNS (5)					\
2371 		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2372 		? COSTS_N_INSNS (3) : COSTS_N_INSNS (4));		\
2373       case PROCESSOR_RS64A:						\
2374         return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2375 		? GET_MODE (XEXP (X, 1)) != DImode			\
2376 		? COSTS_N_INSNS (20) : COSTS_N_INSNS (34)		\
2377 		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2378 		? COSTS_N_INSNS (8) : COSTS_N_INSNS (12));		\
2379       case PROCESSOR_RIOS2:						\
2380       case PROCESSOR_MPCCORE:						\
2381       case PROCESSOR_PPC604e:						\
2382         return COSTS_N_INSNS (2);					\
2383       case PROCESSOR_PPC601:						\
2384         return COSTS_N_INSNS (5);					\
2385       case PROCESSOR_PPC603:						\
2386       case PROCESSOR_PPC7400:						\
2387       case PROCESSOR_PPC750:						\
2388         return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2389 		? COSTS_N_INSNS (5)					\
2390 		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2391 		? COSTS_N_INSNS (2) : COSTS_N_INSNS (3));		\
2392       case PROCESSOR_PPC7450:						\
2393         return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2394 		? COSTS_N_INSNS (4)					\
2395 		: COSTS_N_INSNS (3));			    		\
2396       case PROCESSOR_PPC403:						\
2397       case PROCESSOR_PPC604:						\
2398       case PROCESSOR_PPC8540:						\
2399         return COSTS_N_INSNS (4);					\
2400       case PROCESSOR_PPC620:						\
2401       case PROCESSOR_PPC630:						\
2402         return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2403 		? GET_MODE (XEXP (X, 1)) != DImode			\
2404 		? COSTS_N_INSNS (5) : COSTS_N_INSNS (7)			\
2405 		: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2406 		? COSTS_N_INSNS (3) : COSTS_N_INSNS (4));		\
2407       case PROCESSOR_POWER4:						\
2408         return (GET_CODE (XEXP (X, 1)) != CONST_INT			\
2409 		? GET_MODE (XEXP (X, 1)) != DImode			\
2410 		? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)			\
2411 		: COSTS_N_INSNS (2));					\
2412       }									\
2413   case DIV:								\
2414   case MOD:								\
2415     if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
2416 	&& exact_log2 (INTVAL (XEXP (X, 1))) >= 0)			\
2417       return COSTS_N_INSNS (2);						\
2418     /* otherwise fall through to normal divide.  */			\
2419   case UDIV:								\
2420   case UMOD:								\
2421     switch (rs6000_cpu)							\
2422       {									\
2423       case PROCESSOR_RIOS1:						\
2424 	return COSTS_N_INSNS (19);					\
2425       case PROCESSOR_RIOS2:						\
2426 	return COSTS_N_INSNS (13);					\
2427       case PROCESSOR_RS64A:						\
2428         return (GET_MODE (XEXP (X, 1)) != DImode			\
2429 		? COSTS_N_INSNS (65)					\
2430 		: COSTS_N_INSNS (67));					\
2431       case PROCESSOR_MPCCORE:						\
2432 	return COSTS_N_INSNS (6);					\
2433       case PROCESSOR_PPC403:						\
2434 	return COSTS_N_INSNS (33);					\
2435       case PROCESSOR_PPC405:						\
2436 	return COSTS_N_INSNS (35);					\
2437       case PROCESSOR_PPC601:						\
2438 	return COSTS_N_INSNS (36);					\
2439       case PROCESSOR_PPC603:						\
2440 	return COSTS_N_INSNS (37);					\
2441       case PROCESSOR_PPC604:						\
2442       case PROCESSOR_PPC604e:						\
2443 	return COSTS_N_INSNS (20);					\
2444       case PROCESSOR_PPC620:						\
2445       case PROCESSOR_PPC630:						\
2446       case PROCESSOR_POWER4:						\
2447         return (GET_MODE (XEXP (X, 1)) != DImode			\
2448 		? COSTS_N_INSNS (21)					\
2449 		: COSTS_N_INSNS (37));					\
2450       case PROCESSOR_PPC750:						\
2451       case PROCESSOR_PPC8540:						\
2452       case PROCESSOR_PPC7400:						\
2453         return COSTS_N_INSNS (19);					\
2454       case PROCESSOR_PPC7450:						\
2455         return COSTS_N_INSNS (23);					\
2456       }									\
2457   case FFS:								\
2458     return COSTS_N_INSNS (4);						\
2459   case MEM:								\
2460     /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2461     return 5;
2462 
2463 /* Compute the cost of an address.  This is meant to approximate the size
2464    and/or execution delay of an insn using that address.  If the cost is
2465    approximated by the RTL complexity, including CONST_COSTS above, as
2466    is usually the case for CISC machines, this macro should not be defined.
2467    For aggressively RISCy machines, only one insn format is allowed, so
2468    this macro should be a constant.  The value of this macro only matters
2469    for valid addresses.
2470 
2471    For the RS/6000, everything is cost 0.  */
2472 
2473 #define ADDRESS_COST(RTX) 0
2474 
2475 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
2476    should be adjusted to reflect any required changes.  This macro is used when
2477    there is some systematic length adjustment required that would be difficult
2478    to express in the length attribute.  */
2479 
2480 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2481 
2482 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2483    COMPARE, return the mode to be used for the comparison.  For
2484    floating-point, CCFPmode should be used.  CCUNSmode should be used
2485    for unsigned comparisons.  CCEQmode should be used when we are
2486    doing an inequality comparison on the result of a
2487    comparison.  CCmode should be used in all other cases.  */
2488 
2489 #define SELECT_CC_MODE(OP,X,Y) \
2490   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode	\
2491    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2492    : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<'   \
2493       ? CCEQmode : CCmode))
2494 
2495 /* Define the information needed to generate branch and scc insns.  This is
2496    stored from the compare operation.  Note that we can't use "rtx" here
2497    since it hasn't been defined!  */
2498 
2499 extern GTY(()) rtx rs6000_compare_op0;
2500 extern GTY(()) rtx rs6000_compare_op1;
2501 extern int rs6000_compare_fp_p;
2502 
2503 /* Control the assembler format that we output.  */
2504 
2505 /* A C string constant describing how to begin a comment in the target
2506    assembler language.  The compiler assumes that the comment will end at
2507    the end of the line.  */
2508 #define ASM_COMMENT_START " #"
2509 
2510 /* Implicit library calls should use memcpy, not bcopy, etc.  */
2511 
2512 #define TARGET_MEM_FUNCTIONS
2513 
2514 /* Flag to say the TOC is initialized */
2515 extern int toc_initialized;
2516 
2517 /* Macro to output a special constant pool entry.  Go to WIN if we output
2518    it.  Otherwise, it is written the usual way.
2519 
2520    On the RS/6000, toc entries are handled this way.  */
2521 
2522 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2523 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
2524     {									  \
2525       output_toc (FILE, X, LABELNO, MODE);				  \
2526       goto WIN;								  \
2527     }									  \
2528 }
2529 
2530 #ifdef HAVE_GAS_WEAK
2531 #define RS6000_WEAK 1
2532 #else
2533 #define RS6000_WEAK 0
2534 #endif
2535 
2536 #if RS6000_WEAK
2537 /* Used in lieu of ASM_WEAKEN_LABEL.  */
2538 #define	ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)			 	\
2539   do									\
2540     {									\
2541       fputs ("\t.weak\t", (FILE));					\
2542       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2543       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2544 	  && DEFAULT_ABI == ABI_AIX)					\
2545 	{								\
2546 	  if (TARGET_XCOFF)						\
2547 	    fputs ("[DS]", (FILE));					\
2548 	  fputs ("\n\t.weak\t.", (FILE));				\
2549 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2550 	}								\
2551       fputc ('\n', (FILE));						\
2552       if (VAL)								\
2553 	{								\
2554 	  ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));			\
2555 	  if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL		\
2556 	      && DEFAULT_ABI == ABI_AIX)				\
2557 	    {								\
2558 	      fputs ("\t.set\t.", (FILE));				\
2559 	      RS6000_OUTPUT_BASENAME ((FILE), (NAME));			\
2560 	      fputs (",.", (FILE));					\
2561 	      RS6000_OUTPUT_BASENAME ((FILE), (VAL));			\
2562 	      fputc ('\n', (FILE));					\
2563 	    }								\
2564 	}								\
2565     }									\
2566   while (0)
2567 #endif
2568 
2569 /* This implements the `alias' attribute.  */
2570 #undef	ASM_OUTPUT_DEF_FROM_DECLS
2571 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
2572   do									\
2573     {									\
2574       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
2575       const char *name = IDENTIFIER_POINTER (TARGET);			\
2576       if (TREE_CODE (DECL) == FUNCTION_DECL				\
2577 	  && DEFAULT_ABI == ABI_AIX)					\
2578 	{								\
2579 	  if (TREE_PUBLIC (DECL))					\
2580 	    {								\
2581 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2582 		{							\
2583 		  fputs ("\t.globl\t.", FILE);				\
2584 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2585 		  putc ('\n', FILE);					\
2586 		}							\
2587 	    }								\
2588 	  else if (TARGET_XCOFF)					\
2589 	    {								\
2590 	      fputs ("\t.lglobl\t.", FILE);				\
2591 	      RS6000_OUTPUT_BASENAME (FILE, alias);			\
2592 	      putc ('\n', FILE);					\
2593 	    }								\
2594 	  fputs ("\t.set\t.", FILE);					\
2595 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
2596 	  fputs (",.", FILE);						\
2597 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
2598 	  fputc ('\n', FILE);						\
2599 	}								\
2600       ASM_OUTPUT_DEF (FILE, alias, name);				\
2601     }									\
2602    while (0)
2603 
2604 /* Output to assembler file text saying following lines
2605    may contain character constants, extra white space, comments, etc.  */
2606 
2607 #define ASM_APP_ON ""
2608 
2609 /* Output to assembler file text saying following lines
2610    no longer contain unusual constructs.  */
2611 
2612 #define ASM_APP_OFF ""
2613 
2614 /* How to refer to registers in assembler output.
2615    This sequence is indexed by compiler's hard-register-number (see above).  */
2616 
2617 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2618 
2619 #define REGISTER_NAMES							\
2620 {									\
2621   &rs6000_reg_names[ 0][0],	/* r0   */				\
2622   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2623   &rs6000_reg_names[ 2][0],     /* r2	*/				\
2624   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2625   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2626   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2627   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2628   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2629   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2630   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2631   &rs6000_reg_names[10][0],	/* r10  */				\
2632   &rs6000_reg_names[11][0],	/* r11  */				\
2633   &rs6000_reg_names[12][0],	/* r12  */				\
2634   &rs6000_reg_names[13][0],	/* r13  */				\
2635   &rs6000_reg_names[14][0],	/* r14  */				\
2636   &rs6000_reg_names[15][0],	/* r15  */				\
2637   &rs6000_reg_names[16][0],	/* r16  */				\
2638   &rs6000_reg_names[17][0],	/* r17  */				\
2639   &rs6000_reg_names[18][0],	/* r18  */				\
2640   &rs6000_reg_names[19][0],	/* r19  */				\
2641   &rs6000_reg_names[20][0],	/* r20  */				\
2642   &rs6000_reg_names[21][0],	/* r21  */				\
2643   &rs6000_reg_names[22][0],	/* r22  */				\
2644   &rs6000_reg_names[23][0],	/* r23  */				\
2645   &rs6000_reg_names[24][0],	/* r24  */				\
2646   &rs6000_reg_names[25][0],	/* r25  */				\
2647   &rs6000_reg_names[26][0],	/* r26  */				\
2648   &rs6000_reg_names[27][0],	/* r27  */				\
2649   &rs6000_reg_names[28][0],	/* r28  */				\
2650   &rs6000_reg_names[29][0],	/* r29  */				\
2651   &rs6000_reg_names[30][0],	/* r30  */				\
2652   &rs6000_reg_names[31][0],	/* r31  */				\
2653 									\
2654   &rs6000_reg_names[32][0],     /* fr0  */				\
2655   &rs6000_reg_names[33][0],	/* fr1  */				\
2656   &rs6000_reg_names[34][0],	/* fr2  */				\
2657   &rs6000_reg_names[35][0],	/* fr3  */				\
2658   &rs6000_reg_names[36][0],	/* fr4  */				\
2659   &rs6000_reg_names[37][0],	/* fr5  */				\
2660   &rs6000_reg_names[38][0],	/* fr6  */				\
2661   &rs6000_reg_names[39][0],	/* fr7  */				\
2662   &rs6000_reg_names[40][0],	/* fr8  */				\
2663   &rs6000_reg_names[41][0],	/* fr9  */				\
2664   &rs6000_reg_names[42][0],	/* fr10 */				\
2665   &rs6000_reg_names[43][0],	/* fr11 */				\
2666   &rs6000_reg_names[44][0],	/* fr12 */				\
2667   &rs6000_reg_names[45][0],	/* fr13 */				\
2668   &rs6000_reg_names[46][0],	/* fr14 */				\
2669   &rs6000_reg_names[47][0],	/* fr15 */				\
2670   &rs6000_reg_names[48][0],	/* fr16 */				\
2671   &rs6000_reg_names[49][0],	/* fr17 */				\
2672   &rs6000_reg_names[50][0],	/* fr18 */				\
2673   &rs6000_reg_names[51][0],	/* fr19 */				\
2674   &rs6000_reg_names[52][0],	/* fr20 */				\
2675   &rs6000_reg_names[53][0],	/* fr21 */				\
2676   &rs6000_reg_names[54][0],	/* fr22 */				\
2677   &rs6000_reg_names[55][0],	/* fr23 */				\
2678   &rs6000_reg_names[56][0],	/* fr24 */				\
2679   &rs6000_reg_names[57][0],	/* fr25 */				\
2680   &rs6000_reg_names[58][0],	/* fr26 */				\
2681   &rs6000_reg_names[59][0],	/* fr27 */				\
2682   &rs6000_reg_names[60][0],	/* fr28 */				\
2683   &rs6000_reg_names[61][0],	/* fr29 */				\
2684   &rs6000_reg_names[62][0],	/* fr30 */				\
2685   &rs6000_reg_names[63][0],	/* fr31 */				\
2686 									\
2687   &rs6000_reg_names[64][0],     /* mq   */				\
2688   &rs6000_reg_names[65][0],	/* lr   */				\
2689   &rs6000_reg_names[66][0],	/* ctr  */				\
2690   &rs6000_reg_names[67][0],	/* ap   */				\
2691 									\
2692   &rs6000_reg_names[68][0],	/* cr0  */				\
2693   &rs6000_reg_names[69][0],	/* cr1  */				\
2694   &rs6000_reg_names[70][0],	/* cr2  */				\
2695   &rs6000_reg_names[71][0],	/* cr3  */				\
2696   &rs6000_reg_names[72][0],	/* cr4  */				\
2697   &rs6000_reg_names[73][0],	/* cr5  */				\
2698   &rs6000_reg_names[74][0],	/* cr6  */				\
2699   &rs6000_reg_names[75][0],	/* cr7  */				\
2700 									\
2701   &rs6000_reg_names[76][0],	/* xer  */				\
2702 									\
2703   &rs6000_reg_names[77][0],	/* v0  */				\
2704   &rs6000_reg_names[78][0],	/* v1  */				\
2705   &rs6000_reg_names[79][0],	/* v2  */				\
2706   &rs6000_reg_names[80][0],	/* v3  */				\
2707   &rs6000_reg_names[81][0],	/* v4  */				\
2708   &rs6000_reg_names[82][0],	/* v5  */				\
2709   &rs6000_reg_names[83][0],	/* v6  */				\
2710   &rs6000_reg_names[84][0],	/* v7  */				\
2711   &rs6000_reg_names[85][0],	/* v8  */				\
2712   &rs6000_reg_names[86][0],	/* v9  */				\
2713   &rs6000_reg_names[87][0],	/* v10  */				\
2714   &rs6000_reg_names[88][0],	/* v11  */				\
2715   &rs6000_reg_names[89][0],	/* v12  */				\
2716   &rs6000_reg_names[90][0],	/* v13  */				\
2717   &rs6000_reg_names[91][0],	/* v14  */				\
2718   &rs6000_reg_names[92][0],	/* v15  */				\
2719   &rs6000_reg_names[93][0],	/* v16  */				\
2720   &rs6000_reg_names[94][0],	/* v17  */				\
2721   &rs6000_reg_names[95][0],	/* v18  */				\
2722   &rs6000_reg_names[96][0],	/* v19  */				\
2723   &rs6000_reg_names[97][0],	/* v20  */				\
2724   &rs6000_reg_names[98][0],	/* v21  */				\
2725   &rs6000_reg_names[99][0],	/* v22  */				\
2726   &rs6000_reg_names[100][0],	/* v23  */				\
2727   &rs6000_reg_names[101][0],	/* v24  */				\
2728   &rs6000_reg_names[102][0],	/* v25  */				\
2729   &rs6000_reg_names[103][0],	/* v26  */				\
2730   &rs6000_reg_names[104][0],	/* v27  */				\
2731   &rs6000_reg_names[105][0],	/* v28  */				\
2732   &rs6000_reg_names[106][0],	/* v29  */				\
2733   &rs6000_reg_names[107][0],	/* v30  */				\
2734   &rs6000_reg_names[108][0],	/* v31  */				\
2735   &rs6000_reg_names[109][0],	/* vrsave  */				\
2736   &rs6000_reg_names[110][0],	/* vscr  */				\
2737   &rs6000_reg_names[111][0],	/* spe_acc */				\
2738   &rs6000_reg_names[112][0],	/* spefscr */				\
2739 }
2740 
2741 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2742    following for it.  Switch to use the alternate names since
2743    they are more mnemonic.  */
2744 
2745 #define DEBUG_REGISTER_NAMES						\
2746 {									\
2747      "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",		\
2748      "r8",  "r9", "r10", "r11", "r12", "r13", "r14", "r15",		\
2749     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",		\
2750     "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",		\
2751      "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",		\
2752      "f8",  "f9", "f10", "f11", "f12", "f13", "f14", "f15",		\
2753     "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",		\
2754     "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",		\
2755      "mq",  "lr", "ctr",  "ap",						\
2756     "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",		\
2757     "xer",								\
2758      "v0",  "v1",  "v2",  "v3",  "v4",  "v5",  "v6",  "v7",             \
2759      "v8",  "v9", "v10", "v11", "v12", "v13", "v14", "v15",             \
2760     "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",             \
2761     "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",             \
2762     "vrsave", "vscr",							\
2763     "spe_acc", "spefscr"                                                \
2764 }
2765 
2766 /* Table of additional register names to use in user input.  */
2767 
2768 #define ADDITIONAL_REGISTER_NAMES \
2769  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2770   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2771   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2772   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2773   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2774   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2775   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2776   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2777   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2778   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2779   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2780   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2781   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2782   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2783   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2784   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2785   {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2786   {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2787   {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2788   {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2789   {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2790   {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2791   {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2792   {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2793   {"vrsave", 109}, {"vscr", 110},				\
2794   {"spe_acc", 111}, {"spefscr", 112},				\
2795   /* no additional names for: mq, lr, ctr, ap */		\
2796   {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2797   {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2798   {"cc",   68}, {"sp",    1}, {"toc",   2} }
2799 
2800 /* Text to write out after a CALL that may be replaced by glue code by
2801    the loader.  This depends on the AIX version.  */
2802 #define RS6000_CALL_GLUE "cror 31,31,31"
2803 
2804 /* This is how to output an element of a case-vector that is relative.  */
2805 
2806 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2807   do { char buf[100];					\
2808        fputs ("\t.long ", FILE);			\
2809        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2810        assemble_name (FILE, buf);			\
2811        putc ('-', FILE);				\
2812        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2813        assemble_name (FILE, buf);			\
2814        putc ('\n', FILE);				\
2815      } while (0)
2816 
2817 /* This is how to output an assembler line
2818    that says to advance the location counter
2819    to a multiple of 2**LOG bytes.  */
2820 
2821 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2822   if ((LOG) != 0)			\
2823     fprintf (FILE, "\t.align %d\n", (LOG))
2824 
2825 /* Store in OUTPUT a string (made with alloca) containing
2826    an assembler-name for a local static variable named NAME.
2827    LABELNO is an integer which is different for each call.  */
2828 
2829 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2830 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2831   sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2832 
2833 /* Pick up the return address upon entry to a procedure. Used for
2834    dwarf2 unwind information.  This also enables the table driven
2835    mechanism.  */
2836 
2837 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2838 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2839 
2840 /* Describe how we implement __builtin_eh_return.  */
2841 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2842 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2843 
2844 /* Print operand X (an rtx) in assembler syntax to file FILE.
2845    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2846    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2847 
2848 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2849 
2850 /* Define which CODE values are valid.  */
2851 
2852 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2853   ((CODE) == '.')
2854 
2855 /* Print a memory address as an operand to reference that memory location.  */
2856 
2857 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2858 
2859 /* Define the codes that are matched by predicates in rs6000.c.  */
2860 
2861 #define PREDICATE_CODES							   \
2862   {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,		   \
2863 		   LABEL_REF, SUBREG, REG, MEM, PARALLEL}},		   \
2864   {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	   \
2865 		    LABEL_REF, SUBREG, REG, MEM}},			   \
2866   {"short_cint_operand", {CONST_INT}},					   \
2867   {"u_short_cint_operand", {CONST_INT}},				   \
2868   {"non_short_cint_operand", {CONST_INT}},				   \
2869   {"exact_log2_cint_operand", {CONST_INT}},				   \
2870   {"gpc_reg_operand", {SUBREG, REG}},					   \
2871   {"cc_reg_operand", {SUBREG, REG}},					   \
2872   {"cc_reg_not_cr0_operand", {SUBREG, REG}},				   \
2873   {"reg_or_short_operand", {SUBREG, REG, CONST_INT}},			   \
2874   {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}},		   \
2875   {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}},		   \
2876   {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}},			   \
2877   {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}},			   \
2878   {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}},		   \
2879   {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2880   {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2881   {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2882   {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}},			   \
2883   {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}},			   \
2884   {"easy_fp_constant", {CONST_DOUBLE}},					   \
2885   {"zero_fp_constant", {CONST_DOUBLE}},					   \
2886   {"reg_or_mem_operand", {SUBREG, MEM, REG}},				   \
2887   {"lwa_operand", {SUBREG, MEM, REG}},					   \
2888   {"volatile_mem_operand", {MEM}},					   \
2889   {"offsettable_mem_operand", {MEM}},					   \
2890   {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}},		   \
2891   {"add_operand", {SUBREG, REG, CONST_INT}},				   \
2892   {"non_add_cint_operand", {CONST_INT}},				   \
2893   {"and_operand", {SUBREG, REG, CONST_INT}},				   \
2894   {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2895   {"and64_2_operand", {SUBREG, REG, CONST_INT}},			   \
2896   {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2897   {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}},		   \
2898   {"mask_operand", {CONST_INT}},					   \
2899   {"mask_operand_wrap", {CONST_INT}},					   \
2900   {"mask64_operand", {CONST_INT}},					   \
2901   {"mask64_2_operand", {CONST_INT}},					   \
2902   {"count_register_operand", {REG}},					   \
2903   {"xer_operand", {REG}},						   \
2904   {"symbol_ref_operand", {SYMBOL_REF}},					   \
2905   {"call_operand", {SYMBOL_REF, REG}},					   \
2906   {"current_file_function_operand", {SYMBOL_REF}},			   \
2907   {"input_operand", {SUBREG, MEM, REG, CONST_INT,			   \
2908 		     CONST_DOUBLE, SYMBOL_REF}},			   \
2909   {"load_multiple_operation", {PARALLEL}},				   \
2910   {"store_multiple_operation", {PARALLEL}},				   \
2911   {"vrsave_operation", {PARALLEL}},					   \
2912   {"branch_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2913 				  GT, LEU, LTU, GEU, GTU,		   \
2914 				  UNORDERED, ORDERED,			   \
2915 				  UNGE, UNLE }},			   \
2916   {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU,	   \
2917 					   UNORDERED }},		   \
2918   {"scc_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2919 			       GT, LEU, LTU, GEU, GTU,			   \
2920 			       UNORDERED, ORDERED,			   \
2921 			       UNGE, UNLE }},				   \
2922   {"trap_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2923 				GT, LEU, LTU, GEU, GTU}},		   \
2924   {"boolean_operator", {AND, IOR, XOR}},				   \
2925   {"boolean_or_operator", {IOR, XOR}},					   \
2926   {"altivec_register_operand", {REG}},	                                   \
2927   {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2928 
2929 /* uncomment for disabling the corresponding default options */
2930 /* #define  MACHINE_no_sched_interblock */
2931 /* #define  MACHINE_no_sched_speculative */
2932 /* #define  MACHINE_no_sched_speculative_load */
2933 
2934 /* General flags.  */
2935 extern int flag_pic;
2936 extern int optimize;
2937 extern int flag_expensive_optimizations;
2938 extern int frame_pointer_needed;
2939 
2940 enum rs6000_builtins
2941 {
2942   /* AltiVec builtins.  */
2943   ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2944   ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2945   ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2946   ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2947   ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2948   ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2949   ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2950   ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2951   ALTIVEC_BUILTIN_VADDUBM,
2952   ALTIVEC_BUILTIN_VADDUHM,
2953   ALTIVEC_BUILTIN_VADDUWM,
2954   ALTIVEC_BUILTIN_VADDFP,
2955   ALTIVEC_BUILTIN_VADDCUW,
2956   ALTIVEC_BUILTIN_VADDUBS,
2957   ALTIVEC_BUILTIN_VADDSBS,
2958   ALTIVEC_BUILTIN_VADDUHS,
2959   ALTIVEC_BUILTIN_VADDSHS,
2960   ALTIVEC_BUILTIN_VADDUWS,
2961   ALTIVEC_BUILTIN_VADDSWS,
2962   ALTIVEC_BUILTIN_VAND,
2963   ALTIVEC_BUILTIN_VANDC,
2964   ALTIVEC_BUILTIN_VAVGUB,
2965   ALTIVEC_BUILTIN_VAVGSB,
2966   ALTIVEC_BUILTIN_VAVGUH,
2967   ALTIVEC_BUILTIN_VAVGSH,
2968   ALTIVEC_BUILTIN_VAVGUW,
2969   ALTIVEC_BUILTIN_VAVGSW,
2970   ALTIVEC_BUILTIN_VCFUX,
2971   ALTIVEC_BUILTIN_VCFSX,
2972   ALTIVEC_BUILTIN_VCTSXS,
2973   ALTIVEC_BUILTIN_VCTUXS,
2974   ALTIVEC_BUILTIN_VCMPBFP,
2975   ALTIVEC_BUILTIN_VCMPEQUB,
2976   ALTIVEC_BUILTIN_VCMPEQUH,
2977   ALTIVEC_BUILTIN_VCMPEQUW,
2978   ALTIVEC_BUILTIN_VCMPEQFP,
2979   ALTIVEC_BUILTIN_VCMPGEFP,
2980   ALTIVEC_BUILTIN_VCMPGTUB,
2981   ALTIVEC_BUILTIN_VCMPGTSB,
2982   ALTIVEC_BUILTIN_VCMPGTUH,
2983   ALTIVEC_BUILTIN_VCMPGTSH,
2984   ALTIVEC_BUILTIN_VCMPGTUW,
2985   ALTIVEC_BUILTIN_VCMPGTSW,
2986   ALTIVEC_BUILTIN_VCMPGTFP,
2987   ALTIVEC_BUILTIN_VEXPTEFP,
2988   ALTIVEC_BUILTIN_VLOGEFP,
2989   ALTIVEC_BUILTIN_VMADDFP,
2990   ALTIVEC_BUILTIN_VMAXUB,
2991   ALTIVEC_BUILTIN_VMAXSB,
2992   ALTIVEC_BUILTIN_VMAXUH,
2993   ALTIVEC_BUILTIN_VMAXSH,
2994   ALTIVEC_BUILTIN_VMAXUW,
2995   ALTIVEC_BUILTIN_VMAXSW,
2996   ALTIVEC_BUILTIN_VMAXFP,
2997   ALTIVEC_BUILTIN_VMHADDSHS,
2998   ALTIVEC_BUILTIN_VMHRADDSHS,
2999   ALTIVEC_BUILTIN_VMLADDUHM,
3000   ALTIVEC_BUILTIN_VMRGHB,
3001   ALTIVEC_BUILTIN_VMRGHH,
3002   ALTIVEC_BUILTIN_VMRGHW,
3003   ALTIVEC_BUILTIN_VMRGLB,
3004   ALTIVEC_BUILTIN_VMRGLH,
3005   ALTIVEC_BUILTIN_VMRGLW,
3006   ALTIVEC_BUILTIN_VMSUMUBM,
3007   ALTIVEC_BUILTIN_VMSUMMBM,
3008   ALTIVEC_BUILTIN_VMSUMUHM,
3009   ALTIVEC_BUILTIN_VMSUMSHM,
3010   ALTIVEC_BUILTIN_VMSUMUHS,
3011   ALTIVEC_BUILTIN_VMSUMSHS,
3012   ALTIVEC_BUILTIN_VMINUB,
3013   ALTIVEC_BUILTIN_VMINSB,
3014   ALTIVEC_BUILTIN_VMINUH,
3015   ALTIVEC_BUILTIN_VMINSH,
3016   ALTIVEC_BUILTIN_VMINUW,
3017   ALTIVEC_BUILTIN_VMINSW,
3018   ALTIVEC_BUILTIN_VMINFP,
3019   ALTIVEC_BUILTIN_VMULEUB,
3020   ALTIVEC_BUILTIN_VMULESB,
3021   ALTIVEC_BUILTIN_VMULEUH,
3022   ALTIVEC_BUILTIN_VMULESH,
3023   ALTIVEC_BUILTIN_VMULOUB,
3024   ALTIVEC_BUILTIN_VMULOSB,
3025   ALTIVEC_BUILTIN_VMULOUH,
3026   ALTIVEC_BUILTIN_VMULOSH,
3027   ALTIVEC_BUILTIN_VNMSUBFP,
3028   ALTIVEC_BUILTIN_VNOR,
3029   ALTIVEC_BUILTIN_VOR,
3030   ALTIVEC_BUILTIN_VSEL_4SI,
3031   ALTIVEC_BUILTIN_VSEL_4SF,
3032   ALTIVEC_BUILTIN_VSEL_8HI,
3033   ALTIVEC_BUILTIN_VSEL_16QI,
3034   ALTIVEC_BUILTIN_VPERM_4SI,
3035   ALTIVEC_BUILTIN_VPERM_4SF,
3036   ALTIVEC_BUILTIN_VPERM_8HI,
3037   ALTIVEC_BUILTIN_VPERM_16QI,
3038   ALTIVEC_BUILTIN_VPKUHUM,
3039   ALTIVEC_BUILTIN_VPKUWUM,
3040   ALTIVEC_BUILTIN_VPKPX,
3041   ALTIVEC_BUILTIN_VPKUHSS,
3042   ALTIVEC_BUILTIN_VPKSHSS,
3043   ALTIVEC_BUILTIN_VPKUWSS,
3044   ALTIVEC_BUILTIN_VPKSWSS,
3045   ALTIVEC_BUILTIN_VPKUHUS,
3046   ALTIVEC_BUILTIN_VPKSHUS,
3047   ALTIVEC_BUILTIN_VPKUWUS,
3048   ALTIVEC_BUILTIN_VPKSWUS,
3049   ALTIVEC_BUILTIN_VREFP,
3050   ALTIVEC_BUILTIN_VRFIM,
3051   ALTIVEC_BUILTIN_VRFIN,
3052   ALTIVEC_BUILTIN_VRFIP,
3053   ALTIVEC_BUILTIN_VRFIZ,
3054   ALTIVEC_BUILTIN_VRLB,
3055   ALTIVEC_BUILTIN_VRLH,
3056   ALTIVEC_BUILTIN_VRLW,
3057   ALTIVEC_BUILTIN_VRSQRTEFP,
3058   ALTIVEC_BUILTIN_VSLB,
3059   ALTIVEC_BUILTIN_VSLH,
3060   ALTIVEC_BUILTIN_VSLW,
3061   ALTIVEC_BUILTIN_VSL,
3062   ALTIVEC_BUILTIN_VSLO,
3063   ALTIVEC_BUILTIN_VSPLTB,
3064   ALTIVEC_BUILTIN_VSPLTH,
3065   ALTIVEC_BUILTIN_VSPLTW,
3066   ALTIVEC_BUILTIN_VSPLTISB,
3067   ALTIVEC_BUILTIN_VSPLTISH,
3068   ALTIVEC_BUILTIN_VSPLTISW,
3069   ALTIVEC_BUILTIN_VSRB,
3070   ALTIVEC_BUILTIN_VSRH,
3071   ALTIVEC_BUILTIN_VSRW,
3072   ALTIVEC_BUILTIN_VSRAB,
3073   ALTIVEC_BUILTIN_VSRAH,
3074   ALTIVEC_BUILTIN_VSRAW,
3075   ALTIVEC_BUILTIN_VSR,
3076   ALTIVEC_BUILTIN_VSRO,
3077   ALTIVEC_BUILTIN_VSUBUBM,
3078   ALTIVEC_BUILTIN_VSUBUHM,
3079   ALTIVEC_BUILTIN_VSUBUWM,
3080   ALTIVEC_BUILTIN_VSUBFP,
3081   ALTIVEC_BUILTIN_VSUBCUW,
3082   ALTIVEC_BUILTIN_VSUBUBS,
3083   ALTIVEC_BUILTIN_VSUBSBS,
3084   ALTIVEC_BUILTIN_VSUBUHS,
3085   ALTIVEC_BUILTIN_VSUBSHS,
3086   ALTIVEC_BUILTIN_VSUBUWS,
3087   ALTIVEC_BUILTIN_VSUBSWS,
3088   ALTIVEC_BUILTIN_VSUM4UBS,
3089   ALTIVEC_BUILTIN_VSUM4SBS,
3090   ALTIVEC_BUILTIN_VSUM4SHS,
3091   ALTIVEC_BUILTIN_VSUM2SWS,
3092   ALTIVEC_BUILTIN_VSUMSWS,
3093   ALTIVEC_BUILTIN_VXOR,
3094   ALTIVEC_BUILTIN_VSLDOI_16QI,
3095   ALTIVEC_BUILTIN_VSLDOI_8HI,
3096   ALTIVEC_BUILTIN_VSLDOI_4SI,
3097   ALTIVEC_BUILTIN_VSLDOI_4SF,
3098   ALTIVEC_BUILTIN_VUPKHSB,
3099   ALTIVEC_BUILTIN_VUPKHPX,
3100   ALTIVEC_BUILTIN_VUPKHSH,
3101   ALTIVEC_BUILTIN_VUPKLSB,
3102   ALTIVEC_BUILTIN_VUPKLPX,
3103   ALTIVEC_BUILTIN_VUPKLSH,
3104   ALTIVEC_BUILTIN_MTVSCR,
3105   ALTIVEC_BUILTIN_MFVSCR,
3106   ALTIVEC_BUILTIN_DSSALL,
3107   ALTIVEC_BUILTIN_DSS,
3108   ALTIVEC_BUILTIN_LVSL,
3109   ALTIVEC_BUILTIN_LVSR,
3110   ALTIVEC_BUILTIN_DSTT,
3111   ALTIVEC_BUILTIN_DSTST,
3112   ALTIVEC_BUILTIN_DSTSTT,
3113   ALTIVEC_BUILTIN_DST,
3114   ALTIVEC_BUILTIN_LVEBX,
3115   ALTIVEC_BUILTIN_LVEHX,
3116   ALTIVEC_BUILTIN_LVEWX,
3117   ALTIVEC_BUILTIN_LVXL,
3118   ALTIVEC_BUILTIN_LVX,
3119   ALTIVEC_BUILTIN_STVX,
3120   ALTIVEC_BUILTIN_STVEBX,
3121   ALTIVEC_BUILTIN_STVEHX,
3122   ALTIVEC_BUILTIN_STVEWX,
3123   ALTIVEC_BUILTIN_STVXL,
3124   ALTIVEC_BUILTIN_VCMPBFP_P,
3125   ALTIVEC_BUILTIN_VCMPEQFP_P,
3126   ALTIVEC_BUILTIN_VCMPEQUB_P,
3127   ALTIVEC_BUILTIN_VCMPEQUH_P,
3128   ALTIVEC_BUILTIN_VCMPEQUW_P,
3129   ALTIVEC_BUILTIN_VCMPGEFP_P,
3130   ALTIVEC_BUILTIN_VCMPGTFP_P,
3131   ALTIVEC_BUILTIN_VCMPGTSB_P,
3132   ALTIVEC_BUILTIN_VCMPGTSH_P,
3133   ALTIVEC_BUILTIN_VCMPGTSW_P,
3134   ALTIVEC_BUILTIN_VCMPGTUB_P,
3135   ALTIVEC_BUILTIN_VCMPGTUH_P,
3136   ALTIVEC_BUILTIN_VCMPGTUW_P,
3137   ALTIVEC_BUILTIN_ABSS_V4SI,
3138   ALTIVEC_BUILTIN_ABSS_V8HI,
3139   ALTIVEC_BUILTIN_ABSS_V16QI,
3140   ALTIVEC_BUILTIN_ABS_V4SI,
3141   ALTIVEC_BUILTIN_ABS_V4SF,
3142   ALTIVEC_BUILTIN_ABS_V8HI,
3143   ALTIVEC_BUILTIN_ABS_V16QI
3144   /* SPE builtins.  */
3145   , SPE_BUILTIN_EVADDW,
3146   SPE_BUILTIN_EVAND,
3147   SPE_BUILTIN_EVANDC,
3148   SPE_BUILTIN_EVDIVWS,
3149   SPE_BUILTIN_EVDIVWU,
3150   SPE_BUILTIN_EVEQV,
3151   SPE_BUILTIN_EVFSADD,
3152   SPE_BUILTIN_EVFSDIV,
3153   SPE_BUILTIN_EVFSMUL,
3154   SPE_BUILTIN_EVFSSUB,
3155   SPE_BUILTIN_EVLDDX,
3156   SPE_BUILTIN_EVLDHX,
3157   SPE_BUILTIN_EVLDWX,
3158   SPE_BUILTIN_EVLHHESPLATX,
3159   SPE_BUILTIN_EVLHHOSSPLATX,
3160   SPE_BUILTIN_EVLHHOUSPLATX,
3161   SPE_BUILTIN_EVLWHEX,
3162   SPE_BUILTIN_EVLWHOSX,
3163   SPE_BUILTIN_EVLWHOUX,
3164   SPE_BUILTIN_EVLWHSPLATX,
3165   SPE_BUILTIN_EVLWWSPLATX,
3166   SPE_BUILTIN_EVMERGEHI,
3167   SPE_BUILTIN_EVMERGEHILO,
3168   SPE_BUILTIN_EVMERGELO,
3169   SPE_BUILTIN_EVMERGELOHI,
3170   SPE_BUILTIN_EVMHEGSMFAA,
3171   SPE_BUILTIN_EVMHEGSMFAN,
3172   SPE_BUILTIN_EVMHEGSMIAA,
3173   SPE_BUILTIN_EVMHEGSMIAN,
3174   SPE_BUILTIN_EVMHEGUMIAA,
3175   SPE_BUILTIN_EVMHEGUMIAN,
3176   SPE_BUILTIN_EVMHESMF,
3177   SPE_BUILTIN_EVMHESMFA,
3178   SPE_BUILTIN_EVMHESMFAAW,
3179   SPE_BUILTIN_EVMHESMFANW,
3180   SPE_BUILTIN_EVMHESMI,
3181   SPE_BUILTIN_EVMHESMIA,
3182   SPE_BUILTIN_EVMHESMIAAW,
3183   SPE_BUILTIN_EVMHESMIANW,
3184   SPE_BUILTIN_EVMHESSF,
3185   SPE_BUILTIN_EVMHESSFA,
3186   SPE_BUILTIN_EVMHESSFAAW,
3187   SPE_BUILTIN_EVMHESSFANW,
3188   SPE_BUILTIN_EVMHESSIAAW,
3189   SPE_BUILTIN_EVMHESSIANW,
3190   SPE_BUILTIN_EVMHEUMI,
3191   SPE_BUILTIN_EVMHEUMIA,
3192   SPE_BUILTIN_EVMHEUMIAAW,
3193   SPE_BUILTIN_EVMHEUMIANW,
3194   SPE_BUILTIN_EVMHEUSIAAW,
3195   SPE_BUILTIN_EVMHEUSIANW,
3196   SPE_BUILTIN_EVMHOGSMFAA,
3197   SPE_BUILTIN_EVMHOGSMFAN,
3198   SPE_BUILTIN_EVMHOGSMIAA,
3199   SPE_BUILTIN_EVMHOGSMIAN,
3200   SPE_BUILTIN_EVMHOGUMIAA,
3201   SPE_BUILTIN_EVMHOGUMIAN,
3202   SPE_BUILTIN_EVMHOSMF,
3203   SPE_BUILTIN_EVMHOSMFA,
3204   SPE_BUILTIN_EVMHOSMFAAW,
3205   SPE_BUILTIN_EVMHOSMFANW,
3206   SPE_BUILTIN_EVMHOSMI,
3207   SPE_BUILTIN_EVMHOSMIA,
3208   SPE_BUILTIN_EVMHOSMIAAW,
3209   SPE_BUILTIN_EVMHOSMIANW,
3210   SPE_BUILTIN_EVMHOSSF,
3211   SPE_BUILTIN_EVMHOSSFA,
3212   SPE_BUILTIN_EVMHOSSFAAW,
3213   SPE_BUILTIN_EVMHOSSFANW,
3214   SPE_BUILTIN_EVMHOSSIAAW,
3215   SPE_BUILTIN_EVMHOSSIANW,
3216   SPE_BUILTIN_EVMHOUMI,
3217   SPE_BUILTIN_EVMHOUMIA,
3218   SPE_BUILTIN_EVMHOUMIAAW,
3219   SPE_BUILTIN_EVMHOUMIANW,
3220   SPE_BUILTIN_EVMHOUSIAAW,
3221   SPE_BUILTIN_EVMHOUSIANW,
3222   SPE_BUILTIN_EVMWHSMF,
3223   SPE_BUILTIN_EVMWHSMFA,
3224   SPE_BUILTIN_EVMWHSMI,
3225   SPE_BUILTIN_EVMWHSMIA,
3226   SPE_BUILTIN_EVMWHSSF,
3227   SPE_BUILTIN_EVMWHSSFA,
3228   SPE_BUILTIN_EVMWHUMI,
3229   SPE_BUILTIN_EVMWHUMIA,
3230   SPE_BUILTIN_EVMWLSMIAAW,
3231   SPE_BUILTIN_EVMWLSMIANW,
3232   SPE_BUILTIN_EVMWLSSIAAW,
3233   SPE_BUILTIN_EVMWLSSIANW,
3234   SPE_BUILTIN_EVMWLUMI,
3235   SPE_BUILTIN_EVMWLUMIA,
3236   SPE_BUILTIN_EVMWLUMIAAW,
3237   SPE_BUILTIN_EVMWLUMIANW,
3238   SPE_BUILTIN_EVMWLUSIAAW,
3239   SPE_BUILTIN_EVMWLUSIANW,
3240   SPE_BUILTIN_EVMWSMF,
3241   SPE_BUILTIN_EVMWSMFA,
3242   SPE_BUILTIN_EVMWSMFAA,
3243   SPE_BUILTIN_EVMWSMFAN,
3244   SPE_BUILTIN_EVMWSMI,
3245   SPE_BUILTIN_EVMWSMIA,
3246   SPE_BUILTIN_EVMWSMIAA,
3247   SPE_BUILTIN_EVMWSMIAN,
3248   SPE_BUILTIN_EVMWHSSFAA,
3249   SPE_BUILTIN_EVMWSSF,
3250   SPE_BUILTIN_EVMWSSFA,
3251   SPE_BUILTIN_EVMWSSFAA,
3252   SPE_BUILTIN_EVMWSSFAN,
3253   SPE_BUILTIN_EVMWUMI,
3254   SPE_BUILTIN_EVMWUMIA,
3255   SPE_BUILTIN_EVMWUMIAA,
3256   SPE_BUILTIN_EVMWUMIAN,
3257   SPE_BUILTIN_EVNAND,
3258   SPE_BUILTIN_EVNOR,
3259   SPE_BUILTIN_EVOR,
3260   SPE_BUILTIN_EVORC,
3261   SPE_BUILTIN_EVRLW,
3262   SPE_BUILTIN_EVSLW,
3263   SPE_BUILTIN_EVSRWS,
3264   SPE_BUILTIN_EVSRWU,
3265   SPE_BUILTIN_EVSTDDX,
3266   SPE_BUILTIN_EVSTDHX,
3267   SPE_BUILTIN_EVSTDWX,
3268   SPE_BUILTIN_EVSTWHEX,
3269   SPE_BUILTIN_EVSTWHOX,
3270   SPE_BUILTIN_EVSTWWEX,
3271   SPE_BUILTIN_EVSTWWOX,
3272   SPE_BUILTIN_EVSUBFW,
3273   SPE_BUILTIN_EVXOR,
3274   SPE_BUILTIN_EVABS,
3275   SPE_BUILTIN_EVADDSMIAAW,
3276   SPE_BUILTIN_EVADDSSIAAW,
3277   SPE_BUILTIN_EVADDUMIAAW,
3278   SPE_BUILTIN_EVADDUSIAAW,
3279   SPE_BUILTIN_EVCNTLSW,
3280   SPE_BUILTIN_EVCNTLZW,
3281   SPE_BUILTIN_EVEXTSB,
3282   SPE_BUILTIN_EVEXTSH,
3283   SPE_BUILTIN_EVFSABS,
3284   SPE_BUILTIN_EVFSCFSF,
3285   SPE_BUILTIN_EVFSCFSI,
3286   SPE_BUILTIN_EVFSCFUF,
3287   SPE_BUILTIN_EVFSCFUI,
3288   SPE_BUILTIN_EVFSCTSF,
3289   SPE_BUILTIN_EVFSCTSI,
3290   SPE_BUILTIN_EVFSCTSIZ,
3291   SPE_BUILTIN_EVFSCTUF,
3292   SPE_BUILTIN_EVFSCTUI,
3293   SPE_BUILTIN_EVFSCTUIZ,
3294   SPE_BUILTIN_EVFSNABS,
3295   SPE_BUILTIN_EVFSNEG,
3296   SPE_BUILTIN_EVMRA,
3297   SPE_BUILTIN_EVNEG,
3298   SPE_BUILTIN_EVRNDW,
3299   SPE_BUILTIN_EVSUBFSMIAAW,
3300   SPE_BUILTIN_EVSUBFSSIAAW,
3301   SPE_BUILTIN_EVSUBFUMIAAW,
3302   SPE_BUILTIN_EVSUBFUSIAAW,
3303   SPE_BUILTIN_EVADDIW,
3304   SPE_BUILTIN_EVLDD,
3305   SPE_BUILTIN_EVLDH,
3306   SPE_BUILTIN_EVLDW,
3307   SPE_BUILTIN_EVLHHESPLAT,
3308   SPE_BUILTIN_EVLHHOSSPLAT,
3309   SPE_BUILTIN_EVLHHOUSPLAT,
3310   SPE_BUILTIN_EVLWHE,
3311   SPE_BUILTIN_EVLWHOS,
3312   SPE_BUILTIN_EVLWHOU,
3313   SPE_BUILTIN_EVLWHSPLAT,
3314   SPE_BUILTIN_EVLWWSPLAT,
3315   SPE_BUILTIN_EVRLWI,
3316   SPE_BUILTIN_EVSLWI,
3317   SPE_BUILTIN_EVSRWIS,
3318   SPE_BUILTIN_EVSRWIU,
3319   SPE_BUILTIN_EVSTDD,
3320   SPE_BUILTIN_EVSTDH,
3321   SPE_BUILTIN_EVSTDW,
3322   SPE_BUILTIN_EVSTWHE,
3323   SPE_BUILTIN_EVSTWHO,
3324   SPE_BUILTIN_EVSTWWE,
3325   SPE_BUILTIN_EVSTWWO,
3326   SPE_BUILTIN_EVSUBIFW,
3327 
3328   /* Compares.  */
3329   SPE_BUILTIN_EVCMPEQ,
3330   SPE_BUILTIN_EVCMPGTS,
3331   SPE_BUILTIN_EVCMPGTU,
3332   SPE_BUILTIN_EVCMPLTS,
3333   SPE_BUILTIN_EVCMPLTU,
3334   SPE_BUILTIN_EVFSCMPEQ,
3335   SPE_BUILTIN_EVFSCMPGT,
3336   SPE_BUILTIN_EVFSCMPLT,
3337   SPE_BUILTIN_EVFSTSTEQ,
3338   SPE_BUILTIN_EVFSTSTGT,
3339   SPE_BUILTIN_EVFSTSTLT,
3340 
3341   /* EVSEL compares.  */
3342   SPE_BUILTIN_EVSEL_CMPEQ,
3343   SPE_BUILTIN_EVSEL_CMPGTS,
3344   SPE_BUILTIN_EVSEL_CMPGTU,
3345   SPE_BUILTIN_EVSEL_CMPLTS,
3346   SPE_BUILTIN_EVSEL_CMPLTU,
3347   SPE_BUILTIN_EVSEL_FSCMPEQ,
3348   SPE_BUILTIN_EVSEL_FSCMPGT,
3349   SPE_BUILTIN_EVSEL_FSCMPLT,
3350   SPE_BUILTIN_EVSEL_FSTSTEQ,
3351   SPE_BUILTIN_EVSEL_FSTSTGT,
3352   SPE_BUILTIN_EVSEL_FSTSTLT,
3353 
3354   SPE_BUILTIN_EVSPLATFI,
3355   SPE_BUILTIN_EVSPLATI,
3356   SPE_BUILTIN_EVMWHSSMAA,
3357   SPE_BUILTIN_EVMWHSMFAA,
3358   SPE_BUILTIN_EVMWHSMIAA,
3359   SPE_BUILTIN_EVMWHUSIAA,
3360   SPE_BUILTIN_EVMWHUMIAA,
3361   SPE_BUILTIN_EVMWHSSFAN,
3362   SPE_BUILTIN_EVMWHSSIAN,
3363   SPE_BUILTIN_EVMWHSMFAN,
3364   SPE_BUILTIN_EVMWHSMIAN,
3365   SPE_BUILTIN_EVMWHUSIAN,
3366   SPE_BUILTIN_EVMWHUMIAN,
3367   SPE_BUILTIN_EVMWHGSSFAA,
3368   SPE_BUILTIN_EVMWHGSMFAA,
3369   SPE_BUILTIN_EVMWHGSMIAA,
3370   SPE_BUILTIN_EVMWHGUMIAA,
3371   SPE_BUILTIN_EVMWHGSSFAN,
3372   SPE_BUILTIN_EVMWHGSMFAN,
3373   SPE_BUILTIN_EVMWHGSMIAN,
3374   SPE_BUILTIN_EVMWHGUMIAN,
3375   SPE_BUILTIN_MTSPEFSCR,
3376   SPE_BUILTIN_MFSPEFSCR,
3377   SPE_BUILTIN_BRINC
3378 };
3379