1 /*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
3 * The Regents of the University of California. All rights reserved.
4 *
5 * %sccs.include.redist.c%
6 *
7 * @(#)tcp_input.c 8.12 (Berkeley) 05/24/95
8 */
9
10 #ifndef TUBA_INCLUDE
11 #include <sys/param.h>
12 #include <sys/systm.h>
13 #include <sys/malloc.h>
14 #include <sys/mbuf.h>
15 #include <sys/protosw.h>
16 #include <sys/socket.h>
17 #include <sys/socketvar.h>
18 #include <sys/errno.h>
19
20 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
21
22 #include <net/if.h>
23 #include <net/route.h>
24
25 #include <netinet/in.h>
26 #include <netinet/in_systm.h>
27 #include <netinet/ip.h>
28 #include <netinet/in_pcb.h>
29 #include <netinet/ip_var.h>
30 #include <netinet/tcp.h>
31 #include <netinet/tcp_fsm.h>
32 #include <netinet/tcp_seq.h>
33 #include <netinet/tcp_timer.h>
34 #include <netinet/tcp_var.h>
35 #include <netinet/tcpip.h>
36 #include <netinet/tcp_debug.h>
37
38 int tcprexmtthresh = 3;
39 struct tcpiphdr tcp_saveti;
40 struct inpcb *tcp_last_inpcb = &tcb;
41
42 extern u_long sb_max;
43
44 #endif /* TUBA_INCLUDE */
45 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
46
47 /* for modulo comparisons of timestamps */
48 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
49 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
50
51
52 /*
53 * Insert segment ti into reassembly queue of tcp with
54 * control block tp. Return TH_FIN if reassembly now includes
55 * a segment with FIN. The macro form does the common case inline
56 * (segment is the next to be received on an established connection,
57 * and the queue is empty), avoiding linkage into and removal
58 * from the queue and repetition of various conversions.
59 * Set DELACK for segments received in order, but ack immediately
60 * when segments are out of order (so fast retransmit can work).
61 */
62 #define TCP_REASS(tp, ti, m, so, flags) { \
63 if ((ti)->ti_seq == (tp)->rcv_nxt && \
64 (tp)->seg_next == (struct tcpiphdr *)(tp) && \
65 (tp)->t_state == TCPS_ESTABLISHED) { \
66 tp->t_flags |= TF_DELACK; \
67 (tp)->rcv_nxt += (ti)->ti_len; \
68 flags = (ti)->ti_flags & TH_FIN; \
69 tcpstat.tcps_rcvpack++;\
70 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
71 sbappend(&(so)->so_rcv, (m)); \
72 sorwakeup(so); \
73 } else { \
74 (flags) = tcp_reass((tp), (ti), (m)); \
75 tp->t_flags |= TF_ACKNOW; \
76 } \
77 }
78 #ifndef TUBA_INCLUDE
79
80 int
tcp_reass(tp,ti,m)81 tcp_reass(tp, ti, m)
82 register struct tcpcb *tp;
83 register struct tcpiphdr *ti;
84 struct mbuf *m;
85 {
86 register struct tcpiphdr *q;
87 struct socket *so = tp->t_inpcb->inp_socket;
88 int flags;
89
90 /*
91 * Call with ti==0 after become established to
92 * force pre-ESTABLISHED data up to user socket.
93 */
94 if (ti == 0)
95 goto present;
96
97 /*
98 * Find a segment which begins after this one does.
99 */
100 for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
101 q = (struct tcpiphdr *)q->ti_next)
102 if (SEQ_GT(q->ti_seq, ti->ti_seq))
103 break;
104
105 /*
106 * If there is a preceding segment, it may provide some of
107 * our data already. If so, drop the data from the incoming
108 * segment. If it provides all of our data, drop us.
109 */
110 if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
111 register int i;
112 q = (struct tcpiphdr *)q->ti_prev;
113 /* conversion to int (in i) handles seq wraparound */
114 i = q->ti_seq + q->ti_len - ti->ti_seq;
115 if (i > 0) {
116 if (i >= ti->ti_len) {
117 tcpstat.tcps_rcvduppack++;
118 tcpstat.tcps_rcvdupbyte += ti->ti_len;
119 m_freem(m);
120 return (0);
121 }
122 m_adj(m, i);
123 ti->ti_len -= i;
124 ti->ti_seq += i;
125 }
126 q = (struct tcpiphdr *)(q->ti_next);
127 }
128 tcpstat.tcps_rcvoopack++;
129 tcpstat.tcps_rcvoobyte += ti->ti_len;
130 REASS_MBUF(ti) = m; /* XXX */
131
132 /*
133 * While we overlap succeeding segments trim them or,
134 * if they are completely covered, dequeue them.
135 */
136 while (q != (struct tcpiphdr *)tp) {
137 register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
138 if (i <= 0)
139 break;
140 if (i < q->ti_len) {
141 q->ti_seq += i;
142 q->ti_len -= i;
143 m_adj(REASS_MBUF(q), i);
144 break;
145 }
146 q = (struct tcpiphdr *)q->ti_next;
147 m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
148 remque(q->ti_prev);
149 m_freem(m);
150 }
151
152 /*
153 * Stick new segment in its place.
154 */
155 insque(ti, q->ti_prev);
156
157 present:
158 /*
159 * Present data to user, advancing rcv_nxt through
160 * completed sequence space.
161 */
162 if (TCPS_HAVERCVDSYN(tp->t_state) == 0)
163 return (0);
164 ti = tp->seg_next;
165 if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
166 return (0);
167 if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
168 return (0);
169 do {
170 tp->rcv_nxt += ti->ti_len;
171 flags = ti->ti_flags & TH_FIN;
172 remque(ti);
173 m = REASS_MBUF(ti);
174 ti = (struct tcpiphdr *)ti->ti_next;
175 if (so->so_state & SS_CANTRCVMORE)
176 m_freem(m);
177 else
178 sbappend(&so->so_rcv, m);
179 } while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
180 sorwakeup(so);
181 return (flags);
182 }
183
184 /*
185 * TCP input routine, follows pages 65-76 of the
186 * protocol specification dated September, 1981 very closely.
187 */
188 void
tcp_input(m,iphlen)189 tcp_input(m, iphlen)
190 register struct mbuf *m;
191 int iphlen;
192 {
193 register struct tcpiphdr *ti;
194 register struct inpcb *inp;
195 u_char *optp = NULL;
196 int optlen;
197 int len, tlen, off;
198 register struct tcpcb *tp = 0;
199 register int tiflags;
200 struct socket *so;
201 int todrop, acked, ourfinisacked, needoutput = 0;
202 short ostate;
203 struct in_addr laddr;
204 int dropsocket = 0;
205 int iss = 0;
206 u_long tiwin, ts_val, ts_ecr;
207 int ts_present = 0;
208
209 tcpstat.tcps_rcvtotal++;
210 /*
211 * Get IP and TCP header together in first mbuf.
212 * Note: IP leaves IP header in first mbuf.
213 */
214 ti = mtod(m, struct tcpiphdr *);
215 if (iphlen > sizeof (struct ip))
216 ip_stripoptions(m, (struct mbuf *)0);
217 if (m->m_len < sizeof (struct tcpiphdr)) {
218 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
219 tcpstat.tcps_rcvshort++;
220 return;
221 }
222 ti = mtod(m, struct tcpiphdr *);
223 }
224
225 /*
226 * Checksum extended TCP header and data.
227 */
228 tlen = ((struct ip *)ti)->ip_len;
229 len = sizeof (struct ip) + tlen;
230 ti->ti_next = ti->ti_prev = 0;
231 ti->ti_x1 = 0;
232 ti->ti_len = (u_short)tlen;
233 HTONS(ti->ti_len);
234 if (ti->ti_sum = in_cksum(m, len)) {
235 tcpstat.tcps_rcvbadsum++;
236 goto drop;
237 }
238 #endif /* TUBA_INCLUDE */
239
240 /*
241 * Check that TCP offset makes sense,
242 * pull out TCP options and adjust length. XXX
243 */
244 off = ti->ti_off << 2;
245 if (off < sizeof (struct tcphdr) || off > tlen) {
246 tcpstat.tcps_rcvbadoff++;
247 goto drop;
248 }
249 tlen -= off;
250 ti->ti_len = tlen;
251 if (off > sizeof (struct tcphdr)) {
252 if (m->m_len < sizeof(struct ip) + off) {
253 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
254 tcpstat.tcps_rcvshort++;
255 return;
256 }
257 ti = mtod(m, struct tcpiphdr *);
258 }
259 optlen = off - sizeof (struct tcphdr);
260 optp = mtod(m, u_char *) + sizeof (struct tcpiphdr);
261 /*
262 * Do quick retrieval of timestamp options ("options
263 * prediction?"). If timestamp is the only option and it's
264 * formatted as recommended in RFC 1323 appendix A, we
265 * quickly get the values now and not bother calling
266 * tcp_dooptions(), etc.
267 */
268 if ((optlen == TCPOLEN_TSTAMP_APPA ||
269 (optlen > TCPOLEN_TSTAMP_APPA &&
270 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
271 *(u_long *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
272 (ti->ti_flags & TH_SYN) == 0) {
273 ts_present = 1;
274 ts_val = ntohl(*(u_long *)(optp + 4));
275 ts_ecr = ntohl(*(u_long *)(optp + 8));
276 optp = NULL; /* we've parsed the options */
277 }
278 }
279 tiflags = ti->ti_flags;
280
281 /*
282 * Convert TCP protocol specific fields to host format.
283 */
284 NTOHL(ti->ti_seq);
285 NTOHL(ti->ti_ack);
286 NTOHS(ti->ti_win);
287 NTOHS(ti->ti_urp);
288
289 /*
290 * Locate pcb for segment.
291 */
292 findpcb:
293 inp = tcp_last_inpcb;
294 if (inp->inp_lport != ti->ti_dport ||
295 inp->inp_fport != ti->ti_sport ||
296 inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
297 inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
298 inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
299 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
300 if (inp)
301 tcp_last_inpcb = inp;
302 ++tcpstat.tcps_pcbcachemiss;
303 }
304
305 /*
306 * If the state is CLOSED (i.e., TCB does not exist) then
307 * all data in the incoming segment is discarded.
308 * If the TCB exists but is in CLOSED state, it is embryonic,
309 * but should either do a listen or a connect soon.
310 */
311 if (inp == 0)
312 goto dropwithreset;
313 tp = intotcpcb(inp);
314 if (tp == 0)
315 goto dropwithreset;
316 if (tp->t_state == TCPS_CLOSED)
317 goto drop;
318
319 /* Unscale the window into a 32-bit value. */
320 if ((tiflags & TH_SYN) == 0)
321 tiwin = ti->ti_win << tp->snd_scale;
322 else
323 tiwin = ti->ti_win;
324
325 so = inp->inp_socket;
326 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
327 if (so->so_options & SO_DEBUG) {
328 ostate = tp->t_state;
329 tcp_saveti = *ti;
330 }
331 if (so->so_options & SO_ACCEPTCONN) {
332 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
333 /*
334 * Note: dropwithreset makes sure we don't
335 * send a reset in response to a RST.
336 */
337 if (tiflags & TH_ACK) {
338 tcpstat.tcps_badsyn++;
339 goto dropwithreset;
340 }
341 goto drop;
342 }
343 so = sonewconn(so, 0);
344 if (so == 0)
345 goto drop;
346 /*
347 * This is ugly, but ....
348 *
349 * Mark socket as temporary until we're
350 * committed to keeping it. The code at
351 * ``drop'' and ``dropwithreset'' check the
352 * flag dropsocket to see if the temporary
353 * socket created here should be discarded.
354 * We mark the socket as discardable until
355 * we're committed to it below in TCPS_LISTEN.
356 */
357 dropsocket++;
358 inp = (struct inpcb *)so->so_pcb;
359 inp->inp_laddr = ti->ti_dst;
360 inp->inp_lport = ti->ti_dport;
361 #if BSD>=43
362 inp->inp_options = ip_srcroute();
363 #endif
364 tp = intotcpcb(inp);
365 tp->t_state = TCPS_LISTEN;
366
367 /* Compute proper scaling value from buffer space
368 */
369 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
370 TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
371 tp->request_r_scale++;
372 }
373 }
374
375 /*
376 * Segment received on connection.
377 * Reset idle time and keep-alive timer.
378 */
379 tp->t_idle = 0;
380 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
381
382 /*
383 * Process options if not in LISTEN state,
384 * else do it below (after getting remote address).
385 */
386 if (optp && tp->t_state != TCPS_LISTEN)
387 tcp_dooptions(tp, optp, optlen, ti,
388 &ts_present, &ts_val, &ts_ecr);
389
390 /*
391 * Header prediction: check for the two common cases
392 * of a uni-directional data xfer. If the packet has
393 * no control flags, is in-sequence, the window didn't
394 * change and we're not retransmitting, it's a
395 * candidate. If the length is zero and the ack moved
396 * forward, we're the sender side of the xfer. Just
397 * free the data acked & wake any higher level process
398 * that was blocked waiting for space. If the length
399 * is non-zero and the ack didn't move, we're the
400 * receiver side. If we're getting packets in-order
401 * (the reassembly queue is empty), add the data to
402 * the socket buffer and note that we need a delayed ack.
403 */
404 if (tp->t_state == TCPS_ESTABLISHED &&
405 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
406 (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
407 ti->ti_seq == tp->rcv_nxt &&
408 tiwin && tiwin == tp->snd_wnd &&
409 tp->snd_nxt == tp->snd_max) {
410
411 /*
412 * If last ACK falls within this segment's sequence numbers,
413 * record the timestamp.
414 */
415 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
416 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
417 tp->ts_recent_age = tcp_now;
418 tp->ts_recent = ts_val;
419 }
420
421 if (ti->ti_len == 0) {
422 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
423 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
424 tp->snd_cwnd >= tp->snd_wnd) {
425 /*
426 * this is a pure ack for outstanding data.
427 */
428 ++tcpstat.tcps_predack;
429 if (ts_present)
430 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
431 else if (tp->t_rtt &&
432 SEQ_GT(ti->ti_ack, tp->t_rtseq))
433 tcp_xmit_timer(tp, tp->t_rtt);
434 acked = ti->ti_ack - tp->snd_una;
435 tcpstat.tcps_rcvackpack++;
436 tcpstat.tcps_rcvackbyte += acked;
437 sbdrop(&so->so_snd, acked);
438 tp->snd_una = ti->ti_ack;
439 m_freem(m);
440
441 /*
442 * If all outstanding data are acked, stop
443 * retransmit timer, otherwise restart timer
444 * using current (possibly backed-off) value.
445 * If process is waiting for space,
446 * wakeup/selwakeup/signal. If data
447 * are ready to send, let tcp_output
448 * decide between more output or persist.
449 */
450 if (tp->snd_una == tp->snd_max)
451 tp->t_timer[TCPT_REXMT] = 0;
452 else if (tp->t_timer[TCPT_PERSIST] == 0)
453 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
454
455 if (so->so_snd.sb_flags & SB_NOTIFY)
456 sowwakeup(so);
457 if (so->so_snd.sb_cc)
458 (void) tcp_output(tp);
459 return;
460 }
461 } else if (ti->ti_ack == tp->snd_una &&
462 tp->seg_next == (struct tcpiphdr *)tp &&
463 ti->ti_len <= sbspace(&so->so_rcv)) {
464 /*
465 * this is a pure, in-sequence data packet
466 * with nothing on the reassembly queue and
467 * we have enough buffer space to take it.
468 */
469 ++tcpstat.tcps_preddat;
470 tp->rcv_nxt += ti->ti_len;
471 tcpstat.tcps_rcvpack++;
472 tcpstat.tcps_rcvbyte += ti->ti_len;
473 /*
474 * Drop TCP, IP headers and TCP options then add data
475 * to socket buffer.
476 */
477 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
478 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
479 sbappend(&so->so_rcv, m);
480 sorwakeup(so);
481 tp->t_flags |= TF_DELACK;
482 return;
483 }
484 }
485
486 /*
487 * Drop TCP, IP headers and TCP options.
488 */
489 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
490 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
491
492 /*
493 * Calculate amount of space in receive window,
494 * and then do TCP input processing.
495 * Receive window is amount of space in rcv queue,
496 * but not less than advertised window.
497 */
498 { int win;
499
500 win = sbspace(&so->so_rcv);
501 if (win < 0)
502 win = 0;
503 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
504 }
505
506 switch (tp->t_state) {
507
508 /*
509 * If the state is LISTEN then ignore segment if it contains an RST.
510 * If the segment contains an ACK then it is bad and send a RST.
511 * If it does not contain a SYN then it is not interesting; drop it.
512 * Don't bother responding if the destination was a broadcast.
513 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
514 * tp->iss, and send a segment:
515 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
516 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
517 * Fill in remote peer address fields if not previously specified.
518 * Enter SYN_RECEIVED state, and process any other fields of this
519 * segment in this state.
520 */
521 case TCPS_LISTEN: {
522 struct mbuf *am;
523 register struct sockaddr_in *sin;
524
525 #ifdef already_done
526 if (tiflags & TH_RST)
527 goto drop;
528 if (tiflags & TH_ACK)
529 goto dropwithreset;
530 if ((tiflags & TH_SYN) == 0)
531 goto drop;
532 #endif
533 /*
534 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
535 * in_broadcast() should never return true on a received
536 * packet with M_BCAST not set.
537 */
538 if (m->m_flags & (M_BCAST|M_MCAST) ||
539 IN_MULTICAST(ntohl(ti->ti_dst.s_addr)))
540 goto drop;
541 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
542 if (am == NULL)
543 goto drop;
544 am->m_len = sizeof (struct sockaddr_in);
545 sin = mtod(am, struct sockaddr_in *);
546 sin->sin_family = AF_INET;
547 sin->sin_len = sizeof(*sin);
548 sin->sin_addr = ti->ti_src;
549 sin->sin_port = ti->ti_sport;
550 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
551 laddr = inp->inp_laddr;
552 if (inp->inp_laddr.s_addr == INADDR_ANY)
553 inp->inp_laddr = ti->ti_dst;
554 if (in_pcbconnect(inp, am)) {
555 inp->inp_laddr = laddr;
556 (void) m_free(am);
557 goto drop;
558 }
559 (void) m_free(am);
560 tp->t_template = tcp_template(tp);
561 if (tp->t_template == 0) {
562 tp = tcp_drop(tp, ENOBUFS);
563 dropsocket = 0; /* socket is already gone */
564 goto drop;
565 }
566 if (optp)
567 tcp_dooptions(tp, optp, optlen, ti,
568 &ts_present, &ts_val, &ts_ecr);
569 if (iss)
570 tp->iss = iss;
571 else
572 tp->iss = tcp_iss;
573 tcp_iss += TCP_ISSINCR/4;
574 tp->irs = ti->ti_seq;
575 tcp_sendseqinit(tp);
576 tcp_rcvseqinit(tp);
577 tp->t_flags |= TF_ACKNOW;
578 tp->t_state = TCPS_SYN_RECEIVED;
579 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
580 dropsocket = 0; /* committed to socket */
581 tcpstat.tcps_accepts++;
582 goto trimthenstep6;
583 }
584
585 /*
586 * If the state is SYN_SENT:
587 * if seg contains an ACK, but not for our SYN, drop the input.
588 * if seg contains a RST, then drop the connection.
589 * if seg does not contain SYN, then drop it.
590 * Otherwise this is an acceptable SYN segment
591 * initialize tp->rcv_nxt and tp->irs
592 * if seg contains ack then advance tp->snd_una
593 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
594 * arrange for segment to be acked (eventually)
595 * continue processing rest of data/controls, beginning with URG
596 */
597 case TCPS_SYN_SENT:
598 if ((tiflags & TH_ACK) &&
599 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
600 SEQ_GT(ti->ti_ack, tp->snd_max)))
601 goto dropwithreset;
602 if (tiflags & TH_RST) {
603 if (tiflags & TH_ACK)
604 tp = tcp_drop(tp, ECONNREFUSED);
605 goto drop;
606 }
607 if ((tiflags & TH_SYN) == 0)
608 goto drop;
609 if (tiflags & TH_ACK) {
610 tp->snd_una = ti->ti_ack;
611 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
612 tp->snd_nxt = tp->snd_una;
613 }
614 tp->t_timer[TCPT_REXMT] = 0;
615 tp->irs = ti->ti_seq;
616 tcp_rcvseqinit(tp);
617 tp->t_flags |= TF_ACKNOW;
618 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
619 tcpstat.tcps_connects++;
620 soisconnected(so);
621 tp->t_state = TCPS_ESTABLISHED;
622 /* Do window scaling on this connection? */
623 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
624 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
625 tp->snd_scale = tp->requested_s_scale;
626 tp->rcv_scale = tp->request_r_scale;
627 }
628 (void) tcp_reass(tp, (struct tcpiphdr *)0,
629 (struct mbuf *)0);
630 /*
631 * if we didn't have to retransmit the SYN,
632 * use its rtt as our initial srtt & rtt var.
633 */
634 if (tp->t_rtt)
635 tcp_xmit_timer(tp, tp->t_rtt);
636 } else
637 tp->t_state = TCPS_SYN_RECEIVED;
638
639 trimthenstep6:
640 /*
641 * Advance ti->ti_seq to correspond to first data byte.
642 * If data, trim to stay within window,
643 * dropping FIN if necessary.
644 */
645 ti->ti_seq++;
646 if (ti->ti_len > tp->rcv_wnd) {
647 todrop = ti->ti_len - tp->rcv_wnd;
648 m_adj(m, -todrop);
649 ti->ti_len = tp->rcv_wnd;
650 tiflags &= ~TH_FIN;
651 tcpstat.tcps_rcvpackafterwin++;
652 tcpstat.tcps_rcvbyteafterwin += todrop;
653 }
654 tp->snd_wl1 = ti->ti_seq - 1;
655 tp->rcv_up = ti->ti_seq;
656 goto step6;
657 }
658
659 /*
660 * States other than LISTEN or SYN_SENT.
661 * First check timestamp, if present.
662 * Then check that at least some bytes of segment are within
663 * receive window. If segment begins before rcv_nxt,
664 * drop leading data (and SYN); if nothing left, just ack.
665 *
666 * RFC 1323 PAWS: If we have a timestamp reply on this segment
667 * and it's less than ts_recent, drop it.
668 */
669 if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
670 TSTMP_LT(ts_val, tp->ts_recent)) {
671
672 /* Check to see if ts_recent is over 24 days old. */
673 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
674 /*
675 * Invalidate ts_recent. If this segment updates
676 * ts_recent, the age will be reset later and ts_recent
677 * will get a valid value. If it does not, setting
678 * ts_recent to zero will at least satisfy the
679 * requirement that zero be placed in the timestamp
680 * echo reply when ts_recent isn't valid. The
681 * age isn't reset until we get a valid ts_recent
682 * because we don't want out-of-order segments to be
683 * dropped when ts_recent is old.
684 */
685 tp->ts_recent = 0;
686 } else {
687 tcpstat.tcps_rcvduppack++;
688 tcpstat.tcps_rcvdupbyte += ti->ti_len;
689 tcpstat.tcps_pawsdrop++;
690 goto dropafterack;
691 }
692 }
693
694 todrop = tp->rcv_nxt - ti->ti_seq;
695 if (todrop > 0) {
696 if (tiflags & TH_SYN) {
697 tiflags &= ~TH_SYN;
698 ti->ti_seq++;
699 if (ti->ti_urp > 1)
700 ti->ti_urp--;
701 else
702 tiflags &= ~TH_URG;
703 todrop--;
704 }
705 if (todrop >= ti->ti_len) {
706 tcpstat.tcps_rcvduppack++;
707 tcpstat.tcps_rcvdupbyte += ti->ti_len;
708 /*
709 * If segment is just one to the left of the window,
710 * check two special cases:
711 * 1. Don't toss RST in response to 4.2-style keepalive.
712 * 2. If the only thing to drop is a FIN, we can drop
713 * it, but check the ACK or we will get into FIN
714 * wars if our FINs crossed (both CLOSING).
715 * In either case, send ACK to resynchronize,
716 * but keep on processing for RST or ACK.
717 */
718 if ((tiflags & TH_FIN && todrop == ti->ti_len + 1)
719 #ifdef TCP_COMPAT_42
720 || (tiflags & TH_RST && ti->ti_seq == tp->rcv_nxt - 1)
721 #endif
722 ) {
723 todrop = ti->ti_len;
724 tiflags &= ~TH_FIN;
725 } else {
726 /*
727 * Handle the case when a bound socket connects
728 * to itself. Allow packets with a SYN and
729 * an ACK to continue with the processing.
730 */
731 if (todrop != 0 || (tiflags & TH_ACK) == 0)
732 goto dropafterack;
733 }
734 tp->t_flags |= TF_ACKNOW;
735 } else {
736 tcpstat.tcps_rcvpartduppack++;
737 tcpstat.tcps_rcvpartdupbyte += todrop;
738 }
739 m_adj(m, todrop);
740 ti->ti_seq += todrop;
741 ti->ti_len -= todrop;
742 if (ti->ti_urp > todrop)
743 ti->ti_urp -= todrop;
744 else {
745 tiflags &= ~TH_URG;
746 ti->ti_urp = 0;
747 }
748 }
749
750 /*
751 * If new data are received on a connection after the
752 * user processes are gone, then RST the other end.
753 */
754 if ((so->so_state & SS_NOFDREF) &&
755 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
756 tp = tcp_close(tp);
757 tcpstat.tcps_rcvafterclose++;
758 goto dropwithreset;
759 }
760
761 /*
762 * If segment ends after window, drop trailing data
763 * (and PUSH and FIN); if nothing left, just ACK.
764 */
765 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
766 if (todrop > 0) {
767 tcpstat.tcps_rcvpackafterwin++;
768 if (todrop >= ti->ti_len) {
769 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
770 /*
771 * If a new connection request is received
772 * while in TIME_WAIT, drop the old connection
773 * and start over if the sequence numbers
774 * are above the previous ones.
775 */
776 if (tiflags & TH_SYN &&
777 tp->t_state == TCPS_TIME_WAIT &&
778 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
779 iss = tp->snd_nxt + TCP_ISSINCR;
780 tp = tcp_close(tp);
781 goto findpcb;
782 }
783 /*
784 * If window is closed can only take segments at
785 * window edge, and have to drop data and PUSH from
786 * incoming segments. Continue processing, but
787 * remember to ack. Otherwise, drop segment
788 * and ack.
789 */
790 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
791 tp->t_flags |= TF_ACKNOW;
792 tcpstat.tcps_rcvwinprobe++;
793 } else
794 goto dropafterack;
795 } else
796 tcpstat.tcps_rcvbyteafterwin += todrop;
797 m_adj(m, -todrop);
798 ti->ti_len -= todrop;
799 tiflags &= ~(TH_PUSH|TH_FIN);
800 }
801
802 /*
803 * If last ACK falls within this segment's sequence numbers,
804 * record its timestamp.
805 */
806 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
807 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
808 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
809 tp->ts_recent_age = tcp_now;
810 tp->ts_recent = ts_val;
811 }
812
813 /*
814 * If the RST bit is set examine the state:
815 * SYN_RECEIVED STATE:
816 * If passive open, return to LISTEN state.
817 * If active open, inform user that connection was refused.
818 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
819 * Inform user that connection was reset, and close tcb.
820 * CLOSING, LAST_ACK, TIME_WAIT STATES
821 * Close the tcb.
822 */
823 if (tiflags&TH_RST) switch (tp->t_state) {
824
825 case TCPS_SYN_RECEIVED:
826 so->so_error = ECONNREFUSED;
827 goto close;
828
829 case TCPS_ESTABLISHED:
830 case TCPS_FIN_WAIT_1:
831 case TCPS_FIN_WAIT_2:
832 case TCPS_CLOSE_WAIT:
833 so->so_error = ECONNRESET;
834 close:
835 tp->t_state = TCPS_CLOSED;
836 tcpstat.tcps_drops++;
837 tp = tcp_close(tp);
838 goto drop;
839
840 case TCPS_CLOSING:
841 case TCPS_LAST_ACK:
842 case TCPS_TIME_WAIT:
843 tp = tcp_close(tp);
844 goto drop;
845 }
846
847 /*
848 * If a SYN is in the window, then this is an
849 * error and we send an RST and drop the connection.
850 */
851 if (tiflags & TH_SYN) {
852 tp = tcp_drop(tp, ECONNRESET);
853 goto dropwithreset;
854 }
855
856 /*
857 * If the ACK bit is off we drop the segment and return.
858 */
859 if ((tiflags & TH_ACK) == 0)
860 goto drop;
861
862 /*
863 * Ack processing.
864 */
865 switch (tp->t_state) {
866
867 /*
868 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
869 * ESTABLISHED state and continue processing, otherwise
870 * send an RST.
871 */
872 case TCPS_SYN_RECEIVED:
873 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
874 SEQ_GT(ti->ti_ack, tp->snd_max))
875 goto dropwithreset;
876 tcpstat.tcps_connects++;
877 soisconnected(so);
878 tp->t_state = TCPS_ESTABLISHED;
879 /* Do window scaling? */
880 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
881 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
882 tp->snd_scale = tp->requested_s_scale;
883 tp->rcv_scale = tp->request_r_scale;
884 }
885 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
886 tp->snd_wl1 = ti->ti_seq - 1;
887 /* fall into ... */
888
889 /*
890 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
891 * ACKs. If the ack is in the range
892 * tp->snd_una < ti->ti_ack <= tp->snd_max
893 * then advance tp->snd_una to ti->ti_ack and drop
894 * data from the retransmission queue. If this ACK reflects
895 * more up to date window information we update our window information.
896 */
897 case TCPS_ESTABLISHED:
898 case TCPS_FIN_WAIT_1:
899 case TCPS_FIN_WAIT_2:
900 case TCPS_CLOSE_WAIT:
901 case TCPS_CLOSING:
902 case TCPS_LAST_ACK:
903 case TCPS_TIME_WAIT:
904
905 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
906 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
907 tcpstat.tcps_rcvdupack++;
908 /*
909 * If we have outstanding data (other than
910 * a window probe), this is a completely
911 * duplicate ack (ie, window info didn't
912 * change), the ack is the biggest we've
913 * seen and we've seen exactly our rexmt
914 * threshhold of them, assume a packet
915 * has been dropped and retransmit it.
916 * Kludge snd_nxt & the congestion
917 * window so we send only this one
918 * packet.
919 *
920 * We know we're losing at the current
921 * window size so do congestion avoidance
922 * (set ssthresh to half the current window
923 * and pull our congestion window back to
924 * the new ssthresh).
925 *
926 * Dup acks mean that packets have left the
927 * network (they're now cached at the receiver)
928 * so bump cwnd by the amount in the receiver
929 * to keep a constant cwnd packets in the
930 * network.
931 */
932 if (tp->t_timer[TCPT_REXMT] == 0 ||
933 ti->ti_ack != tp->snd_una)
934 tp->t_dupacks = 0;
935 else if (++tp->t_dupacks == tcprexmtthresh) {
936 tcp_seq onxt = tp->snd_nxt;
937 u_int win =
938 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
939 tp->t_maxseg;
940
941 if (win < 2)
942 win = 2;
943 tp->snd_ssthresh = win * tp->t_maxseg;
944 tp->t_timer[TCPT_REXMT] = 0;
945 tp->t_rtt = 0;
946 tp->snd_nxt = ti->ti_ack;
947 tp->snd_cwnd = tp->t_maxseg;
948 (void) tcp_output(tp);
949 tp->snd_cwnd = tp->snd_ssthresh +
950 tp->t_maxseg * tp->t_dupacks;
951 if (SEQ_GT(onxt, tp->snd_nxt))
952 tp->snd_nxt = onxt;
953 goto drop;
954 } else if (tp->t_dupacks > tcprexmtthresh) {
955 tp->snd_cwnd += tp->t_maxseg;
956 (void) tcp_output(tp);
957 goto drop;
958 }
959 } else
960 tp->t_dupacks = 0;
961 break;
962 }
963 /*
964 * If the congestion window was inflated to account
965 * for the other side's cached packets, retract it.
966 */
967 if (tp->t_dupacks > tcprexmtthresh &&
968 tp->snd_cwnd > tp->snd_ssthresh)
969 tp->snd_cwnd = tp->snd_ssthresh;
970 tp->t_dupacks = 0;
971 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
972 tcpstat.tcps_rcvacktoomuch++;
973 goto dropafterack;
974 }
975 acked = ti->ti_ack - tp->snd_una;
976 tcpstat.tcps_rcvackpack++;
977 tcpstat.tcps_rcvackbyte += acked;
978
979 /*
980 * If we have a timestamp reply, update smoothed
981 * round trip time. If no timestamp is present but
982 * transmit timer is running and timed sequence
983 * number was acked, update smoothed round trip time.
984 * Since we now have an rtt measurement, cancel the
985 * timer backoff (cf., Phil Karn's retransmit alg.).
986 * Recompute the initial retransmit timer.
987 */
988 if (ts_present)
989 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
990 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
991 tcp_xmit_timer(tp,tp->t_rtt);
992
993 /*
994 * If all outstanding data is acked, stop retransmit
995 * timer and remember to restart (more output or persist).
996 * If there is more data to be acked, restart retransmit
997 * timer, using current (possibly backed-off) value.
998 */
999 if (ti->ti_ack == tp->snd_max) {
1000 tp->t_timer[TCPT_REXMT] = 0;
1001 needoutput = 1;
1002 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1003 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1004 /*
1005 * When new data is acked, open the congestion window.
1006 * If the window gives us less than ssthresh packets
1007 * in flight, open exponentially (maxseg per packet).
1008 * Otherwise open linearly: maxseg per window
1009 * (maxseg * (maxseg / cwnd) per packet).
1010 */
1011 {
1012 register u_int cw = tp->snd_cwnd;
1013 register u_int incr = tp->t_maxseg;
1014
1015 if (cw > tp->snd_ssthresh)
1016 incr = incr * incr / cw;
1017 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1018 }
1019 if (acked > so->so_snd.sb_cc) {
1020 tp->snd_wnd -= so->so_snd.sb_cc;
1021 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1022 ourfinisacked = 1;
1023 } else {
1024 sbdrop(&so->so_snd, acked);
1025 tp->snd_wnd -= acked;
1026 ourfinisacked = 0;
1027 }
1028 if (so->so_snd.sb_flags & SB_NOTIFY)
1029 sowwakeup(so);
1030 tp->snd_una = ti->ti_ack;
1031 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1032 tp->snd_nxt = tp->snd_una;
1033
1034 switch (tp->t_state) {
1035
1036 /*
1037 * In FIN_WAIT_1 STATE in addition to the processing
1038 * for the ESTABLISHED state if our FIN is now acknowledged
1039 * then enter FIN_WAIT_2.
1040 */
1041 case TCPS_FIN_WAIT_1:
1042 if (ourfinisacked) {
1043 /*
1044 * If we can't receive any more
1045 * data, then closing user can proceed.
1046 * Starting the timer is contrary to the
1047 * specification, but if we don't get a FIN
1048 * we'll hang forever.
1049 */
1050 if (so->so_state & SS_CANTRCVMORE) {
1051 soisdisconnected(so);
1052 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1053 }
1054 tp->t_state = TCPS_FIN_WAIT_2;
1055 }
1056 break;
1057
1058 /*
1059 * In CLOSING STATE in addition to the processing for
1060 * the ESTABLISHED state if the ACK acknowledges our FIN
1061 * then enter the TIME-WAIT state, otherwise ignore
1062 * the segment.
1063 */
1064 case TCPS_CLOSING:
1065 if (ourfinisacked) {
1066 tp->t_state = TCPS_TIME_WAIT;
1067 tcp_canceltimers(tp);
1068 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1069 soisdisconnected(so);
1070 }
1071 break;
1072
1073 /*
1074 * In LAST_ACK, we may still be waiting for data to drain
1075 * and/or to be acked, as well as for the ack of our FIN.
1076 * If our FIN is now acknowledged, delete the TCB,
1077 * enter the closed state and return.
1078 */
1079 case TCPS_LAST_ACK:
1080 if (ourfinisacked) {
1081 tp = tcp_close(tp);
1082 goto drop;
1083 }
1084 break;
1085
1086 /*
1087 * In TIME_WAIT state the only thing that should arrive
1088 * is a retransmission of the remote FIN. Acknowledge
1089 * it and restart the finack timer.
1090 */
1091 case TCPS_TIME_WAIT:
1092 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1093 goto dropafterack;
1094 }
1095 }
1096
1097 step6:
1098 /*
1099 * Update window information.
1100 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1101 */
1102 if ((tiflags & TH_ACK) &&
1103 (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
1104 (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
1105 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) {
1106 /* keep track of pure window updates */
1107 if (ti->ti_len == 0 &&
1108 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1109 tcpstat.tcps_rcvwinupd++;
1110 tp->snd_wnd = tiwin;
1111 tp->snd_wl1 = ti->ti_seq;
1112 tp->snd_wl2 = ti->ti_ack;
1113 if (tp->snd_wnd > tp->max_sndwnd)
1114 tp->max_sndwnd = tp->snd_wnd;
1115 needoutput = 1;
1116 }
1117
1118 /*
1119 * Process segments with URG.
1120 */
1121 if ((tiflags & TH_URG) && ti->ti_urp &&
1122 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1123 /*
1124 * This is a kludge, but if we receive and accept
1125 * random urgent pointers, we'll crash in
1126 * soreceive. It's hard to imagine someone
1127 * actually wanting to send this much urgent data.
1128 */
1129 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1130 ti->ti_urp = 0; /* XXX */
1131 tiflags &= ~TH_URG; /* XXX */
1132 goto dodata; /* XXX */
1133 }
1134 /*
1135 * If this segment advances the known urgent pointer,
1136 * then mark the data stream. This should not happen
1137 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1138 * a FIN has been received from the remote side.
1139 * In these states we ignore the URG.
1140 *
1141 * According to RFC961 (Assigned Protocols),
1142 * the urgent pointer points to the last octet
1143 * of urgent data. We continue, however,
1144 * to consider it to indicate the first octet
1145 * of data past the urgent section as the original
1146 * spec states (in one of two places).
1147 */
1148 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1149 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1150 so->so_oobmark = so->so_rcv.sb_cc +
1151 (tp->rcv_up - tp->rcv_nxt) - 1;
1152 if (so->so_oobmark == 0)
1153 so->so_state |= SS_RCVATMARK;
1154 sohasoutofband(so);
1155 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1156 }
1157 /*
1158 * Remove out of band data so doesn't get presented to user.
1159 * This can happen independent of advancing the URG pointer,
1160 * but if two URG's are pending at once, some out-of-band
1161 * data may creep in... ick.
1162 */
1163 if (ti->ti_urp <= ti->ti_len
1164 #ifdef SO_OOBINLINE
1165 && (so->so_options & SO_OOBINLINE) == 0
1166 #endif
1167 )
1168 tcp_pulloutofband(so, ti, m);
1169 } else
1170 /*
1171 * If no out of band data is expected,
1172 * pull receive urgent pointer along
1173 * with the receive window.
1174 */
1175 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1176 tp->rcv_up = tp->rcv_nxt;
1177 dodata: /* XXX */
1178
1179 /*
1180 * Process the segment text, merging it into the TCP sequencing queue,
1181 * and arranging for acknowledgment of receipt if necessary.
1182 * This process logically involves adjusting tp->rcv_wnd as data
1183 * is presented to the user (this happens in tcp_usrreq.c,
1184 * case PRU_RCVD). If a FIN has already been received on this
1185 * connection then we just ignore the text.
1186 */
1187 if ((ti->ti_len || (tiflags&TH_FIN)) &&
1188 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1189 TCP_REASS(tp, ti, m, so, tiflags);
1190 /*
1191 * Note the amount of data that peer has sent into
1192 * our window, in order to estimate the sender's
1193 * buffer size.
1194 */
1195 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1196 } else {
1197 m_freem(m);
1198 tiflags &= ~TH_FIN;
1199 }
1200
1201 /*
1202 * If FIN is received ACK the FIN and let the user know
1203 * that the connection is closing.
1204 */
1205 if (tiflags & TH_FIN) {
1206 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1207 socantrcvmore(so);
1208 tp->t_flags |= TF_ACKNOW;
1209 tp->rcv_nxt++;
1210 }
1211 switch (tp->t_state) {
1212
1213 /*
1214 * In SYN_RECEIVED and ESTABLISHED STATES
1215 * enter the CLOSE_WAIT state.
1216 */
1217 case TCPS_SYN_RECEIVED:
1218 case TCPS_ESTABLISHED:
1219 tp->t_state = TCPS_CLOSE_WAIT;
1220 break;
1221
1222 /*
1223 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1224 * enter the CLOSING state.
1225 */
1226 case TCPS_FIN_WAIT_1:
1227 tp->t_state = TCPS_CLOSING;
1228 break;
1229
1230 /*
1231 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1232 * starting the time-wait timer, turning off the other
1233 * standard timers.
1234 */
1235 case TCPS_FIN_WAIT_2:
1236 tp->t_state = TCPS_TIME_WAIT;
1237 tcp_canceltimers(tp);
1238 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1239 soisdisconnected(so);
1240 break;
1241
1242 /*
1243 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1244 */
1245 case TCPS_TIME_WAIT:
1246 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1247 break;
1248 }
1249 }
1250 if (so->so_options & SO_DEBUG)
1251 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1252
1253 /*
1254 * Return any desired output.
1255 */
1256 if (needoutput || (tp->t_flags & TF_ACKNOW))
1257 (void) tcp_output(tp);
1258 return;
1259
1260 dropafterack:
1261 /*
1262 * Generate an ACK dropping incoming segment if it occupies
1263 * sequence space, where the ACK reflects our state.
1264 */
1265 if (tiflags & TH_RST)
1266 goto drop;
1267 m_freem(m);
1268 tp->t_flags |= TF_ACKNOW;
1269 (void) tcp_output(tp);
1270 return;
1271
1272 dropwithreset:
1273 /*
1274 * Generate a RST, dropping incoming segment.
1275 * Make ACK acceptable to originator of segment.
1276 * Don't bother to respond if destination was broadcast/multicast.
1277 */
1278 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1279 IN_MULTICAST(ntohl(ti->ti_dst.s_addr)))
1280 goto drop;
1281 if (tiflags & TH_ACK)
1282 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1283 else {
1284 if (tiflags & TH_SYN)
1285 ti->ti_len++;
1286 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1287 TH_RST|TH_ACK);
1288 }
1289 /* destroy temporarily created socket */
1290 if (dropsocket)
1291 (void) soabort(so);
1292 return;
1293
1294 drop:
1295 /*
1296 * Drop space held by incoming segment and return.
1297 */
1298 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1299 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1300 m_freem(m);
1301 /* destroy temporarily created socket */
1302 if (dropsocket)
1303 (void) soabort(so);
1304 return;
1305 #ifndef TUBA_INCLUDE
1306 }
1307
1308 void
tcp_dooptions(tp,cp,cnt,ti,ts_present,ts_val,ts_ecr)1309 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
1310 struct tcpcb *tp;
1311 u_char *cp;
1312 int cnt;
1313 struct tcpiphdr *ti;
1314 int *ts_present;
1315 u_long *ts_val, *ts_ecr;
1316 {
1317 u_short mss;
1318 int opt, optlen;
1319
1320 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1321 opt = cp[0];
1322 if (opt == TCPOPT_EOL)
1323 break;
1324 if (opt == TCPOPT_NOP)
1325 optlen = 1;
1326 else {
1327 optlen = cp[1];
1328 if (optlen <= 0)
1329 break;
1330 }
1331 switch (opt) {
1332
1333 default:
1334 continue;
1335
1336 case TCPOPT_MAXSEG:
1337 if (optlen != TCPOLEN_MAXSEG)
1338 continue;
1339 if (!(ti->ti_flags & TH_SYN))
1340 continue;
1341 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1342 NTOHS(mss);
1343 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1344 break;
1345
1346 case TCPOPT_WINDOW:
1347 if (optlen != TCPOLEN_WINDOW)
1348 continue;
1349 if (!(ti->ti_flags & TH_SYN))
1350 continue;
1351 tp->t_flags |= TF_RCVD_SCALE;
1352 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1353 break;
1354
1355 case TCPOPT_TIMESTAMP:
1356 if (optlen != TCPOLEN_TIMESTAMP)
1357 continue;
1358 *ts_present = 1;
1359 bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
1360 NTOHL(*ts_val);
1361 bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
1362 NTOHL(*ts_ecr);
1363
1364 /*
1365 * A timestamp received in a SYN makes
1366 * it ok to send timestamp requests and replies.
1367 */
1368 if (ti->ti_flags & TH_SYN) {
1369 tp->t_flags |= TF_RCVD_TSTMP;
1370 tp->ts_recent = *ts_val;
1371 tp->ts_recent_age = tcp_now;
1372 }
1373 break;
1374 }
1375 }
1376 }
1377
1378 /*
1379 * Pull out of band byte out of a segment so
1380 * it doesn't appear in the user's data queue.
1381 * It is still reflected in the segment length for
1382 * sequencing purposes.
1383 */
1384 void
tcp_pulloutofband(so,ti,m)1385 tcp_pulloutofband(so, ti, m)
1386 struct socket *so;
1387 struct tcpiphdr *ti;
1388 register struct mbuf *m;
1389 {
1390 int cnt = ti->ti_urp - 1;
1391
1392 while (cnt >= 0) {
1393 if (m->m_len > cnt) {
1394 char *cp = mtod(m, caddr_t) + cnt;
1395 struct tcpcb *tp = sototcpcb(so);
1396
1397 tp->t_iobc = *cp;
1398 tp->t_oobflags |= TCPOOB_HAVEDATA;
1399 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1400 m->m_len--;
1401 return;
1402 }
1403 cnt -= m->m_len;
1404 m = m->m_next;
1405 if (m == 0)
1406 break;
1407 }
1408 panic("tcp_pulloutofband");
1409 }
1410
1411 /*
1412 * Collect new round-trip time estimate
1413 * and update averages and current timeout.
1414 */
1415 void
tcp_xmit_timer(tp,rtt)1416 tcp_xmit_timer(tp, rtt)
1417 register struct tcpcb *tp;
1418 short rtt;
1419 {
1420 register short delta;
1421
1422 tcpstat.tcps_rttupdated++;
1423 if (tp->t_srtt != 0) {
1424 /*
1425 * srtt is stored as fixed point with 3 bits after the
1426 * binary point (i.e., scaled by 8). The following magic
1427 * is equivalent to the smoothing algorithm in rfc793 with
1428 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1429 * point). Adjust rtt to origin 0.
1430 */
1431 delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
1432 if ((tp->t_srtt += delta) <= 0)
1433 tp->t_srtt = 1;
1434 /*
1435 * We accumulate a smoothed rtt variance (actually, a
1436 * smoothed mean difference), then set the retransmit
1437 * timer to smoothed rtt + 4 times the smoothed variance.
1438 * rttvar is stored as fixed point with 2 bits after the
1439 * binary point (scaled by 4). The following is
1440 * equivalent to rfc793 smoothing with an alpha of .75
1441 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1442 * rfc793's wired-in beta.
1443 */
1444 if (delta < 0)
1445 delta = -delta;
1446 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1447 if ((tp->t_rttvar += delta) <= 0)
1448 tp->t_rttvar = 1;
1449 } else {
1450 /*
1451 * No rtt measurement yet - use the unsmoothed rtt.
1452 * Set the variance to half the rtt (so our first
1453 * retransmit happens at 3*rtt).
1454 */
1455 tp->t_srtt = rtt << TCP_RTT_SHIFT;
1456 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
1457 }
1458 tp->t_rtt = 0;
1459 tp->t_rxtshift = 0;
1460
1461 /*
1462 * the retransmit should happen at rtt + 4 * rttvar.
1463 * Because of the way we do the smoothing, srtt and rttvar
1464 * will each average +1/2 tick of bias. When we compute
1465 * the retransmit timer, we want 1/2 tick of rounding and
1466 * 1 extra tick because of +-1/2 tick uncertainty in the
1467 * firing of the timer. The bias will give us exactly the
1468 * 1.5 tick we need. But, because the bias is
1469 * statistical, we have to test that we don't drop below
1470 * the minimum feasible timer (which is 2 ticks).
1471 */
1472 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1473 tp->t_rttmin, TCPTV_REXMTMAX);
1474
1475 /*
1476 * We received an ack for a packet that wasn't retransmitted;
1477 * it is probably safe to discard any error indications we've
1478 * received recently. This isn't quite right, but close enough
1479 * for now (a route might have failed after we sent a segment,
1480 * and the return path might not be symmetrical).
1481 */
1482 tp->t_softerror = 0;
1483 }
1484
1485 /*
1486 * Determine a reasonable value for maxseg size.
1487 * If the route is known, check route for mtu.
1488 * If none, use an mss that can be handled on the outgoing
1489 * interface without forcing IP to fragment; if bigger than
1490 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1491 * to utilize large mbufs. If no route is found, route has no mtu,
1492 * or the destination isn't local, use a default, hopefully conservative
1493 * size (usually 512 or the default IP max size, but no more than the mtu
1494 * of the interface), as we can't discover anything about intervening
1495 * gateways or networks. We also initialize the congestion/slow start
1496 * window to be a single segment if the destination isn't local.
1497 * While looking at the routing entry, we also initialize other path-dependent
1498 * parameters from pre-set or cached values in the routing entry.
1499 */
1500 int
tcp_mss(tp,offer)1501 tcp_mss(tp, offer)
1502 register struct tcpcb *tp;
1503 u_int offer;
1504 {
1505 struct route *ro;
1506 register struct rtentry *rt;
1507 struct ifnet *ifp;
1508 register int rtt, mss;
1509 u_long bufsize;
1510 struct inpcb *inp;
1511 struct socket *so;
1512 extern int tcp_mssdflt;
1513
1514 inp = tp->t_inpcb;
1515 ro = &inp->inp_route;
1516
1517 if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1518 /* No route yet, so try to acquire one */
1519 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1520 ro->ro_dst.sa_family = AF_INET;
1521 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1522 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1523 inp->inp_faddr;
1524 rtalloc(ro);
1525 }
1526 if ((rt = ro->ro_rt) == (struct rtentry *)0)
1527 return (tcp_mssdflt);
1528 }
1529 ifp = rt->rt_ifp;
1530 so = inp->inp_socket;
1531
1532 #ifdef RTV_MTU /* if route characteristics exist ... */
1533 /*
1534 * While we're here, check if there's an initial rtt
1535 * or rttvar. Convert from the route-table units
1536 * to scaled multiples of the slow timeout timer.
1537 */
1538 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1539 /*
1540 * XXX the lock bit for MTU indicates that the value
1541 * is also a minimum value; this is subject to time.
1542 */
1543 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1544 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1545 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1546 if (rt->rt_rmx.rmx_rttvar)
1547 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1548 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1549 else
1550 /* default variation is +- 1 rtt */
1551 tp->t_rttvar =
1552 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1553 TCPT_RANGESET(tp->t_rxtcur,
1554 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1555 tp->t_rttmin, TCPTV_REXMTMAX);
1556 }
1557 /*
1558 * if there's an mtu associated with the route, use it
1559 */
1560 if (rt->rt_rmx.rmx_mtu)
1561 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1562 else
1563 #endif /* RTV_MTU */
1564 {
1565 mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1566 #if (MCLBYTES & (MCLBYTES - 1)) == 0
1567 if (mss > MCLBYTES)
1568 mss &= ~(MCLBYTES-1);
1569 #else
1570 if (mss > MCLBYTES)
1571 mss = mss / MCLBYTES * MCLBYTES;
1572 #endif
1573 if (!in_localaddr(inp->inp_faddr))
1574 mss = min(mss, tcp_mssdflt);
1575 }
1576 /*
1577 * The current mss, t_maxseg, is initialized to the default value.
1578 * If we compute a smaller value, reduce the current mss.
1579 * If we compute a larger value, return it for use in sending
1580 * a max seg size option, but don't store it for use
1581 * unless we received an offer at least that large from peer.
1582 * However, do not accept offers under 32 bytes.
1583 */
1584 if (offer)
1585 mss = min(mss, offer);
1586 mss = max(mss, 32); /* sanity */
1587 if (mss < tp->t_maxseg || offer != 0) {
1588 /*
1589 * If there's a pipesize, change the socket buffer
1590 * to that size. Make the socket buffers an integral
1591 * number of mss units; if the mss is larger than
1592 * the socket buffer, decrease the mss.
1593 */
1594 #ifdef RTV_SPIPE
1595 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1596 #endif
1597 bufsize = so->so_snd.sb_hiwat;
1598 if (bufsize < mss)
1599 mss = bufsize;
1600 else {
1601 bufsize = roundup(bufsize, mss);
1602 if (bufsize > sb_max)
1603 bufsize = sb_max;
1604 (void)sbreserve(&so->so_snd, bufsize);
1605 }
1606 tp->t_maxseg = mss;
1607
1608 #ifdef RTV_RPIPE
1609 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1610 #endif
1611 bufsize = so->so_rcv.sb_hiwat;
1612 if (bufsize > mss) {
1613 bufsize = roundup(bufsize, mss);
1614 if (bufsize > sb_max)
1615 bufsize = sb_max;
1616 (void)sbreserve(&so->so_rcv, bufsize);
1617 }
1618 }
1619 tp->snd_cwnd = mss;
1620
1621 #ifdef RTV_SSTHRESH
1622 if (rt->rt_rmx.rmx_ssthresh) {
1623 /*
1624 * There's some sort of gateway or interface
1625 * buffer limit on the path. Use this to set
1626 * the slow start threshhold, but set the
1627 * threshold to no less than 2*mss.
1628 */
1629 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1630 }
1631 #endif /* RTV_MTU */
1632 return (mss);
1633 }
1634 #endif /* TUBA_INCLUDE */
1635