1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/Attributor.h"
17 
18 #include "llvm/ADT/GraphTraits.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/LazyValueInfo.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/MustExecute.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/NoFolder.h"
31 #include "llvm/IR/Verifier.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/DebugCounter.h"
37 #include "llvm/Support/FileSystem.h"
38 #include "llvm/Support/GraphWriter.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 
44 #include <cassert>
45 #include <string>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "attributor"
50 
51 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
52               "Determine what attributes are manifested in the IR");
53 
54 STATISTIC(NumFnDeleted, "Number of function deleted");
55 STATISTIC(NumFnWithExactDefinition,
56           "Number of functions with exact definitions");
57 STATISTIC(NumFnWithoutExactDefinition,
58           "Number of functions without exact definitions");
59 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
60 STATISTIC(NumAttributesTimedOut,
61           "Number of abstract attributes timed out before fixpoint");
62 STATISTIC(NumAttributesValidFixpoint,
63           "Number of abstract attributes in a valid fixpoint state");
64 STATISTIC(NumAttributesManifested,
65           "Number of abstract attributes manifested in IR");
66 
67 // TODO: Determine a good default value.
68 //
69 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
70 // (when run with the first 5 abstract attributes). The results also indicate
71 // that we never reach 32 iterations but always find a fixpoint sooner.
72 //
73 // This will become more evolved once we perform two interleaved fixpoint
74 // iterations: bottom-up and top-down.
75 static cl::opt<unsigned>
76     MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
77                           cl::desc("Maximal number of fixpoint iterations."),
78                           cl::init(32));
79 
80 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
81     "attributor-max-initialization-chain-length", cl::Hidden,
82     cl::desc(
83         "Maximal number of chained initializations (to avoid stack overflows)"),
84     cl::location(MaxInitializationChainLength), cl::init(1024));
85 unsigned llvm::MaxInitializationChainLength;
86 
87 static cl::opt<bool> VerifyMaxFixpointIterations(
88     "attributor-max-iterations-verify", cl::Hidden,
89     cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
90     cl::init(false));
91 
92 static cl::opt<bool> AnnotateDeclarationCallSites(
93     "attributor-annotate-decl-cs", cl::Hidden,
94     cl::desc("Annotate call sites of function declarations."), cl::init(false));
95 
96 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
97                                        cl::init(true), cl::Hidden);
98 
99 static cl::opt<bool>
100     AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
101                          cl::desc("Allow the Attributor to create shallow "
102                                   "wrappers for non-exact definitions."),
103                          cl::init(false));
104 
105 static cl::opt<bool>
106     AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
107                      cl::desc("Allow the Attributor to use IP information "
108                               "derived from non-exact functions via cloning"),
109                      cl::init(false));
110 
111 // These options can only used for debug builds.
112 #ifndef NDEBUG
113 static cl::list<std::string>
114     SeedAllowList("attributor-seed-allow-list", cl::Hidden,
115                   cl::desc("Comma seperated list of attribute names that are "
116                            "allowed to be seeded."),
117                   cl::ZeroOrMore, cl::CommaSeparated);
118 
119 static cl::list<std::string> FunctionSeedAllowList(
120     "attributor-function-seed-allow-list", cl::Hidden,
121     cl::desc("Comma seperated list of function names that are "
122              "allowed to be seeded."),
123     cl::ZeroOrMore, cl::CommaSeparated);
124 #endif
125 
126 static cl::opt<bool>
127     DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
128                  cl::desc("Dump the dependency graph to dot files."),
129                  cl::init(false));
130 
131 static cl::opt<std::string> DepGraphDotFileNamePrefix(
132     "attributor-depgraph-dot-filename-prefix", cl::Hidden,
133     cl::desc("The prefix used for the CallGraph dot file names."));
134 
135 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
136                                   cl::desc("View the dependency graph."),
137                                   cl::init(false));
138 
139 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
140                                        cl::desc("Print attribute dependencies"),
141                                        cl::init(false));
142 
143 static cl::opt<bool> EnableCallSiteSpecific(
144     "attributor-enable-call-site-specific-deduction", cl::Hidden,
145     cl::desc("Allow the Attributor to do call site specific analysis"),
146     cl::init(false));
147 
148 /// Logic operators for the change status enum class.
149 ///
150 ///{
operator |(ChangeStatus L,ChangeStatus R)151 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
152   return L == ChangeStatus::CHANGED ? L : R;
153 }
operator &(ChangeStatus L,ChangeStatus R)154 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
155   return L == ChangeStatus::UNCHANGED ? L : R;
156 }
157 ///}
158 
159 /// Return true if \p New is equal or worse than \p Old.
isEqualOrWorse(const Attribute & New,const Attribute & Old)160 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
161   if (!Old.isIntAttribute())
162     return true;
163 
164   return Old.getValueAsInt() >= New.getValueAsInt();
165 }
166 
167 /// Return true if the information provided by \p Attr was added to the
168 /// attribute list \p Attrs. This is only the case if it was not already present
169 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
addIfNotExistent(LLVMContext & Ctx,const Attribute & Attr,AttributeList & Attrs,int AttrIdx)170 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
171                              AttributeList &Attrs, int AttrIdx) {
172 
173   if (Attr.isEnumAttribute()) {
174     Attribute::AttrKind Kind = Attr.getKindAsEnum();
175     if (Attrs.hasAttribute(AttrIdx, Kind))
176       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
177         return false;
178     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
179     return true;
180   }
181   if (Attr.isStringAttribute()) {
182     StringRef Kind = Attr.getKindAsString();
183     if (Attrs.hasAttribute(AttrIdx, Kind))
184       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
185         return false;
186     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
187     return true;
188   }
189   if (Attr.isIntAttribute()) {
190     Attribute::AttrKind Kind = Attr.getKindAsEnum();
191     if (Attrs.hasAttribute(AttrIdx, Kind))
192       if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
193         return false;
194     Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
195     Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
196     return true;
197   }
198 
199   llvm_unreachable("Expected enum or string attribute!");
200 }
201 
getAssociatedArgument() const202 Argument *IRPosition::getAssociatedArgument() const {
203   if (getPositionKind() == IRP_ARGUMENT)
204     return cast<Argument>(&getAnchorValue());
205 
206   // Not an Argument and no argument number means this is not a call site
207   // argument, thus we cannot find a callback argument to return.
208   int ArgNo = getCallSiteArgNo();
209   if (ArgNo < 0)
210     return nullptr;
211 
212   // Use abstract call sites to make the connection between the call site
213   // values and the ones in callbacks. If a callback was found that makes use
214   // of the underlying call site operand, we want the corresponding callback
215   // callee argument and not the direct callee argument.
216   Optional<Argument *> CBCandidateArg;
217   SmallVector<const Use *, 4> CallbackUses;
218   const auto &CB = cast<CallBase>(getAnchorValue());
219   AbstractCallSite::getCallbackUses(CB, CallbackUses);
220   for (const Use *U : CallbackUses) {
221     AbstractCallSite ACS(U);
222     assert(ACS && ACS.isCallbackCall());
223     if (!ACS.getCalledFunction())
224       continue;
225 
226     for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
227 
228       // Test if the underlying call site operand is argument number u of the
229       // callback callee.
230       if (ACS.getCallArgOperandNo(u) != ArgNo)
231         continue;
232 
233       assert(ACS.getCalledFunction()->arg_size() > u &&
234              "ACS mapped into var-args arguments!");
235       if (CBCandidateArg.hasValue()) {
236         CBCandidateArg = nullptr;
237         break;
238       }
239       CBCandidateArg = ACS.getCalledFunction()->getArg(u);
240     }
241   }
242 
243   // If we found a unique callback candidate argument, return it.
244   if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
245     return CBCandidateArg.getValue();
246 
247   // If no callbacks were found, or none used the underlying call site operand
248   // exclusively, use the direct callee argument if available.
249   const Function *Callee = CB.getCalledFunction();
250   if (Callee && Callee->arg_size() > unsigned(ArgNo))
251     return Callee->getArg(ArgNo);
252 
253   return nullptr;
254 }
255 
update(Attributor & A)256 ChangeStatus AbstractAttribute::update(Attributor &A) {
257   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
258   if (getState().isAtFixpoint())
259     return HasChanged;
260 
261   LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
262 
263   HasChanged = updateImpl(A);
264 
265   LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
266                     << "\n");
267 
268   return HasChanged;
269 }
270 
271 ChangeStatus
manifestAttrs(Attributor & A,const IRPosition & IRP,const ArrayRef<Attribute> & DeducedAttrs)272 IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
273                                    const ArrayRef<Attribute> &DeducedAttrs) {
274   Function *ScopeFn = IRP.getAnchorScope();
275   IRPosition::Kind PK = IRP.getPositionKind();
276 
277   // In the following some generic code that will manifest attributes in
278   // DeducedAttrs if they improve the current IR. Due to the different
279   // annotation positions we use the underlying AttributeList interface.
280 
281   AttributeList Attrs;
282   switch (PK) {
283   case IRPosition::IRP_INVALID:
284   case IRPosition::IRP_FLOAT:
285     return ChangeStatus::UNCHANGED;
286   case IRPosition::IRP_ARGUMENT:
287   case IRPosition::IRP_FUNCTION:
288   case IRPosition::IRP_RETURNED:
289     Attrs = ScopeFn->getAttributes();
290     break;
291   case IRPosition::IRP_CALL_SITE:
292   case IRPosition::IRP_CALL_SITE_RETURNED:
293   case IRPosition::IRP_CALL_SITE_ARGUMENT:
294     Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
295     break;
296   }
297 
298   ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
299   LLVMContext &Ctx = IRP.getAnchorValue().getContext();
300   for (const Attribute &Attr : DeducedAttrs) {
301     if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
302       continue;
303 
304     HasChanged = ChangeStatus::CHANGED;
305   }
306 
307   if (HasChanged == ChangeStatus::UNCHANGED)
308     return HasChanged;
309 
310   switch (PK) {
311   case IRPosition::IRP_ARGUMENT:
312   case IRPosition::IRP_FUNCTION:
313   case IRPosition::IRP_RETURNED:
314     ScopeFn->setAttributes(Attrs);
315     break;
316   case IRPosition::IRP_CALL_SITE:
317   case IRPosition::IRP_CALL_SITE_RETURNED:
318   case IRPosition::IRP_CALL_SITE_ARGUMENT:
319     cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
320     break;
321   case IRPosition::IRP_INVALID:
322   case IRPosition::IRP_FLOAT:
323     break;
324   }
325 
326   return HasChanged;
327 }
328 
329 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
330 const IRPosition
331     IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
332 
SubsumingPositionIterator(const IRPosition & IRP)333 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
334   IRPositions.emplace_back(IRP);
335 
336   // Helper to determine if operand bundles on a call site are benin or
337   // potentially problematic. We handle only llvm.assume for now.
338   auto CanIgnoreOperandBundles = [](const CallBase &CB) {
339     return (isa<IntrinsicInst>(CB) &&
340             cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
341   };
342 
343   const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
344   switch (IRP.getPositionKind()) {
345   case IRPosition::IRP_INVALID:
346   case IRPosition::IRP_FLOAT:
347   case IRPosition::IRP_FUNCTION:
348     return;
349   case IRPosition::IRP_ARGUMENT:
350   case IRPosition::IRP_RETURNED:
351     IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
352     return;
353   case IRPosition::IRP_CALL_SITE:
354     assert(CB && "Expected call site!");
355     // TODO: We need to look at the operand bundles similar to the redirection
356     //       in CallBase.
357     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
358       if (const Function *Callee = CB->getCalledFunction())
359         IRPositions.emplace_back(IRPosition::function(*Callee));
360     return;
361   case IRPosition::IRP_CALL_SITE_RETURNED:
362     assert(CB && "Expected call site!");
363     // TODO: We need to look at the operand bundles similar to the redirection
364     //       in CallBase.
365     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
366       if (const Function *Callee = CB->getCalledFunction()) {
367         IRPositions.emplace_back(IRPosition::returned(*Callee));
368         IRPositions.emplace_back(IRPosition::function(*Callee));
369         for (const Argument &Arg : Callee->args())
370           if (Arg.hasReturnedAttr()) {
371             IRPositions.emplace_back(
372                 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
373             IRPositions.emplace_back(
374                 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
375             IRPositions.emplace_back(IRPosition::argument(Arg));
376           }
377       }
378     }
379     IRPositions.emplace_back(IRPosition::callsite_function(*CB));
380     return;
381   case IRPosition::IRP_CALL_SITE_ARGUMENT: {
382     assert(CB && "Expected call site!");
383     // TODO: We need to look at the operand bundles similar to the redirection
384     //       in CallBase.
385     if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
386       const Function *Callee = CB->getCalledFunction();
387       if (Callee) {
388         if (Argument *Arg = IRP.getAssociatedArgument())
389           IRPositions.emplace_back(IRPosition::argument(*Arg));
390         IRPositions.emplace_back(IRPosition::function(*Callee));
391       }
392     }
393     IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
394     return;
395   }
396   }
397 }
398 
hasAttr(ArrayRef<Attribute::AttrKind> AKs,bool IgnoreSubsumingPositions,Attributor * A) const399 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
400                          bool IgnoreSubsumingPositions, Attributor *A) const {
401   SmallVector<Attribute, 4> Attrs;
402   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
403     for (Attribute::AttrKind AK : AKs)
404       if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
405         return true;
406     // The first position returned by the SubsumingPositionIterator is
407     // always the position itself. If we ignore subsuming positions we
408     // are done after the first iteration.
409     if (IgnoreSubsumingPositions)
410       break;
411   }
412   if (A)
413     for (Attribute::AttrKind AK : AKs)
414       if (getAttrsFromAssumes(AK, Attrs, *A))
415         return true;
416   return false;
417 }
418 
getAttrs(ArrayRef<Attribute::AttrKind> AKs,SmallVectorImpl<Attribute> & Attrs,bool IgnoreSubsumingPositions,Attributor * A) const419 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
420                           SmallVectorImpl<Attribute> &Attrs,
421                           bool IgnoreSubsumingPositions, Attributor *A) const {
422   for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
423     for (Attribute::AttrKind AK : AKs)
424       EquivIRP.getAttrsFromIRAttr(AK, Attrs);
425     // The first position returned by the SubsumingPositionIterator is
426     // always the position itself. If we ignore subsuming positions we
427     // are done after the first iteration.
428     if (IgnoreSubsumingPositions)
429       break;
430   }
431   if (A)
432     for (Attribute::AttrKind AK : AKs)
433       getAttrsFromAssumes(AK, Attrs, *A);
434 }
435 
getAttrsFromIRAttr(Attribute::AttrKind AK,SmallVectorImpl<Attribute> & Attrs) const436 bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
437                                     SmallVectorImpl<Attribute> &Attrs) const {
438   if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
439     return false;
440 
441   AttributeList AttrList;
442   if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
443     AttrList = CB->getAttributes();
444   else
445     AttrList = getAssociatedFunction()->getAttributes();
446 
447   bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
448   if (HasAttr)
449     Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
450   return HasAttr;
451 }
452 
getAttrsFromAssumes(Attribute::AttrKind AK,SmallVectorImpl<Attribute> & Attrs,Attributor & A) const453 bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
454                                      SmallVectorImpl<Attribute> &Attrs,
455                                      Attributor &A) const {
456   assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
457   Value &AssociatedValue = getAssociatedValue();
458 
459   const Assume2KnowledgeMap &A2K =
460       A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
461 
462   // Check if we found any potential assume use, if not we don't need to create
463   // explorer iterators.
464   if (A2K.empty())
465     return false;
466 
467   LLVMContext &Ctx = AssociatedValue.getContext();
468   unsigned AttrsSize = Attrs.size();
469   MustBeExecutedContextExplorer &Explorer =
470       A.getInfoCache().getMustBeExecutedContextExplorer();
471   auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
472   for (auto &It : A2K)
473     if (Explorer.findInContextOf(It.first, EIt, EEnd))
474       Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
475   return AttrsSize != Attrs.size();
476 }
477 
verify()478 void IRPosition::verify() {
479 #ifdef EXPENSIVE_CHECKS
480   switch (getPositionKind()) {
481   case IRP_INVALID:
482     assert((CBContext == nullptr) &&
483            "Invalid position must not have CallBaseContext!");
484     assert(!Enc.getOpaqueValue() &&
485            "Expected a nullptr for an invalid position!");
486     return;
487   case IRP_FLOAT:
488     assert((!isa<CallBase>(&getAssociatedValue()) &&
489             !isa<Argument>(&getAssociatedValue())) &&
490            "Expected specialized kind for call base and argument values!");
491     return;
492   case IRP_RETURNED:
493     assert(isa<Function>(getAsValuePtr()) &&
494            "Expected function for a 'returned' position!");
495     assert(getAsValuePtr() == &getAssociatedValue() &&
496            "Associated value mismatch!");
497     return;
498   case IRP_CALL_SITE_RETURNED:
499     assert((CBContext == nullptr) &&
500            "'call site returned' position must not have CallBaseContext!");
501     assert((isa<CallBase>(getAsValuePtr())) &&
502            "Expected call base for 'call site returned' position!");
503     assert(getAsValuePtr() == &getAssociatedValue() &&
504            "Associated value mismatch!");
505     return;
506   case IRP_CALL_SITE:
507     assert((CBContext == nullptr) &&
508            "'call site function' position must not have CallBaseContext!");
509     assert((isa<CallBase>(getAsValuePtr())) &&
510            "Expected call base for 'call site function' position!");
511     assert(getAsValuePtr() == &getAssociatedValue() &&
512            "Associated value mismatch!");
513     return;
514   case IRP_FUNCTION:
515     assert(isa<Function>(getAsValuePtr()) &&
516            "Expected function for a 'function' position!");
517     assert(getAsValuePtr() == &getAssociatedValue() &&
518            "Associated value mismatch!");
519     return;
520   case IRP_ARGUMENT:
521     assert(isa<Argument>(getAsValuePtr()) &&
522            "Expected argument for a 'argument' position!");
523     assert(getAsValuePtr() == &getAssociatedValue() &&
524            "Associated value mismatch!");
525     return;
526   case IRP_CALL_SITE_ARGUMENT: {
527     assert((CBContext == nullptr) &&
528            "'call site argument' position must not have CallBaseContext!");
529     Use *U = getAsUsePtr();
530     assert(U && "Expected use for a 'call site argument' position!");
531     assert(isa<CallBase>(U->getUser()) &&
532            "Expected call base user for a 'call site argument' position!");
533     assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
534            "Expected call base argument operand for a 'call site argument' "
535            "position");
536     assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
537                unsigned(getCallSiteArgNo()) &&
538            "Argument number mismatch!");
539     assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
540     return;
541   }
542   }
543 #endif
544 }
545 
546 Optional<Constant *>
getAssumedConstant(const Value & V,const AbstractAttribute & AA,bool & UsedAssumedInformation)547 Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
548                                bool &UsedAssumedInformation) {
549   const auto &ValueSimplifyAA = getAAFor<AAValueSimplify>(
550       AA, IRPosition::value(V, AA.getCallBaseContext()), DepClassTy::NONE);
551   Optional<Value *> SimplifiedV =
552       ValueSimplifyAA.getAssumedSimplifiedValue(*this);
553   bool IsKnown = ValueSimplifyAA.isKnown();
554   UsedAssumedInformation |= !IsKnown;
555   if (!SimplifiedV.hasValue()) {
556     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
557     return llvm::None;
558   }
559   if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
560     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
561     return llvm::None;
562   }
563   Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
564   if (CI && CI->getType() != V.getType()) {
565     // TODO: Check for a save conversion.
566     return nullptr;
567   }
568   if (CI)
569     recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
570   return CI;
571 }
572 
~Attributor()573 Attributor::~Attributor() {
574   // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
575   // thus we cannot delete them. We can, and want to, destruct them though.
576   for (auto &DepAA : DG.SyntheticRoot.Deps) {
577     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
578     AA->~AbstractAttribute();
579   }
580 }
581 
isAssumedDead(const AbstractAttribute & AA,const AAIsDead * FnLivenessAA,bool CheckBBLivenessOnly,DepClassTy DepClass)582 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
583                                const AAIsDead *FnLivenessAA,
584                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
585   const IRPosition &IRP = AA.getIRPosition();
586   if (!Functions.count(IRP.getAnchorScope()))
587     return false;
588   return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
589 }
590 
isAssumedDead(const Use & U,const AbstractAttribute * QueryingAA,const AAIsDead * FnLivenessAA,bool CheckBBLivenessOnly,DepClassTy DepClass)591 bool Attributor::isAssumedDead(const Use &U,
592                                const AbstractAttribute *QueryingAA,
593                                const AAIsDead *FnLivenessAA,
594                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
595   Instruction *UserI = dyn_cast<Instruction>(U.getUser());
596   if (!UserI)
597     return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
598                          CheckBBLivenessOnly, DepClass);
599 
600   if (auto *CB = dyn_cast<CallBase>(UserI)) {
601     // For call site argument uses we can check if the argument is
602     // unused/dead.
603     if (CB->isArgOperand(&U)) {
604       const IRPosition &CSArgPos =
605           IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
606       return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
607                            CheckBBLivenessOnly, DepClass);
608     }
609   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
610     const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
611     return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
612                          DepClass);
613   } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
614     BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
615     return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
616                          CheckBBLivenessOnly, DepClass);
617   }
618 
619   return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
620                        CheckBBLivenessOnly, DepClass);
621 }
622 
isAssumedDead(const Instruction & I,const AbstractAttribute * QueryingAA,const AAIsDead * FnLivenessAA,bool CheckBBLivenessOnly,DepClassTy DepClass)623 bool Attributor::isAssumedDead(const Instruction &I,
624                                const AbstractAttribute *QueryingAA,
625                                const AAIsDead *FnLivenessAA,
626                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
627   const IRPosition::CallBaseContext *CBCtx =
628       QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
629 
630   if (!FnLivenessAA)
631     FnLivenessAA =
632         lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
633                               QueryingAA, DepClassTy::NONE);
634 
635   // If we have a context instruction and a liveness AA we use it.
636   if (FnLivenessAA &&
637       FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
638       FnLivenessAA->isAssumedDead(&I)) {
639     if (QueryingAA)
640       recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
641     return true;
642   }
643 
644   if (CheckBBLivenessOnly)
645     return false;
646 
647   const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
648       IRPosition::value(I, CBCtx), QueryingAA, DepClassTy::NONE);
649   // Don't check liveness for AAIsDead.
650   if (QueryingAA == &IsDeadAA)
651     return false;
652 
653   if (IsDeadAA.isAssumedDead()) {
654     if (QueryingAA)
655       recordDependence(IsDeadAA, *QueryingAA, DepClass);
656     return true;
657   }
658 
659   return false;
660 }
661 
isAssumedDead(const IRPosition & IRP,const AbstractAttribute * QueryingAA,const AAIsDead * FnLivenessAA,bool CheckBBLivenessOnly,DepClassTy DepClass)662 bool Attributor::isAssumedDead(const IRPosition &IRP,
663                                const AbstractAttribute *QueryingAA,
664                                const AAIsDead *FnLivenessAA,
665                                bool CheckBBLivenessOnly, DepClassTy DepClass) {
666   Instruction *CtxI = IRP.getCtxI();
667   if (CtxI &&
668       isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
669                     /* CheckBBLivenessOnly */ true,
670                     CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
671     return true;
672 
673   if (CheckBBLivenessOnly)
674     return false;
675 
676   // If we haven't succeeded we query the specific liveness info for the IRP.
677   const AAIsDead *IsDeadAA;
678   if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
679     IsDeadAA = &getOrCreateAAFor<AAIsDead>(
680         IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
681         QueryingAA, DepClassTy::NONE);
682   else
683     IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
684   // Don't check liveness for AAIsDead.
685   if (QueryingAA == IsDeadAA)
686     return false;
687 
688   if (IsDeadAA->isAssumedDead()) {
689     if (QueryingAA)
690       recordDependence(*IsDeadAA, *QueryingAA, DepClass);
691     return true;
692   }
693 
694   return false;
695 }
696 
checkForAllUses(function_ref<bool (const Use &,bool &)> Pred,const AbstractAttribute & QueryingAA,const Value & V,DepClassTy LivenessDepClass)697 bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
698                                  const AbstractAttribute &QueryingAA,
699                                  const Value &V, DepClassTy LivenessDepClass) {
700 
701   // Check the trivial case first as it catches void values.
702   if (V.use_empty())
703     return true;
704 
705   // If the value is replaced by another one, for now a constant, we do not have
706   // uses. Note that this requires users of `checkForAllUses` to not recurse but
707   // instead use the `follow` callback argument to look at transitive users,
708   // however, that should be clear from the presence of the argument.
709   bool UsedAssumedInformation = false;
710   Optional<Constant *> C =
711       getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
712   if (C.hasValue() && C.getValue()) {
713     LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
714                       << " -> " << *C.getValue() << "\n");
715     return true;
716   }
717 
718   const IRPosition &IRP = QueryingAA.getIRPosition();
719   SmallVector<const Use *, 16> Worklist;
720   SmallPtrSet<const Use *, 16> Visited;
721 
722   for (const Use &U : V.uses())
723     Worklist.push_back(&U);
724 
725   LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
726                     << " initial uses to check\n");
727 
728   const Function *ScopeFn = IRP.getAnchorScope();
729   const auto *LivenessAA =
730       ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
731                                     DepClassTy::NONE)
732               : nullptr;
733 
734   while (!Worklist.empty()) {
735     const Use *U = Worklist.pop_back_val();
736     if (!Visited.insert(U).second)
737       continue;
738     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
739                       << *U->getUser() << "\n");
740     if (isAssumedDead(*U, &QueryingAA, LivenessAA,
741                       /* CheckBBLivenessOnly */ false, LivenessDepClass)) {
742       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
743       continue;
744     }
745     if (U->getUser()->isDroppable()) {
746       LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
747       continue;
748     }
749 
750     bool Follow = false;
751     if (!Pred(*U, Follow))
752       return false;
753     if (!Follow)
754       continue;
755     for (const Use &UU : U->getUser()->uses())
756       Worklist.push_back(&UU);
757   }
758 
759   return true;
760 }
761 
checkForAllCallSites(function_ref<bool (AbstractCallSite)> Pred,const AbstractAttribute & QueryingAA,bool RequireAllCallSites,bool & AllCallSitesKnown)762 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
763                                       const AbstractAttribute &QueryingAA,
764                                       bool RequireAllCallSites,
765                                       bool &AllCallSitesKnown) {
766   // We can try to determine information from
767   // the call sites. However, this is only possible all call sites are known,
768   // hence the function has internal linkage.
769   const IRPosition &IRP = QueryingAA.getIRPosition();
770   const Function *AssociatedFunction = IRP.getAssociatedFunction();
771   if (!AssociatedFunction) {
772     LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
773                       << "\n");
774     AllCallSitesKnown = false;
775     return false;
776   }
777 
778   return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
779                               &QueryingAA, AllCallSitesKnown);
780 }
781 
checkForAllCallSites(function_ref<bool (AbstractCallSite)> Pred,const Function & Fn,bool RequireAllCallSites,const AbstractAttribute * QueryingAA,bool & AllCallSitesKnown)782 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
783                                       const Function &Fn,
784                                       bool RequireAllCallSites,
785                                       const AbstractAttribute *QueryingAA,
786                                       bool &AllCallSitesKnown) {
787   if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
788     LLVM_DEBUG(
789         dbgs()
790         << "[Attributor] Function " << Fn.getName()
791         << " has no internal linkage, hence not all call sites are known\n");
792     AllCallSitesKnown = false;
793     return false;
794   }
795 
796   // If we do not require all call sites we might not see all.
797   AllCallSitesKnown = RequireAllCallSites;
798 
799   SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
800   for (unsigned u = 0; u < Uses.size(); ++u) {
801     const Use &U = *Uses[u];
802     LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
803                       << *U.getUser() << "\n");
804     if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
805       LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
806       continue;
807     }
808     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
809       if (CE->isCast() && CE->getType()->isPointerTy() &&
810           CE->getType()->getPointerElementType()->isFunctionTy()) {
811         for (const Use &CEU : CE->uses())
812           Uses.push_back(&CEU);
813         continue;
814       }
815     }
816 
817     AbstractCallSite ACS(&U);
818     if (!ACS) {
819       LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
820                         << " has non call site use " << *U.get() << " in "
821                         << *U.getUser() << "\n");
822       // BlockAddress users are allowed.
823       if (isa<BlockAddress>(U.getUser()))
824         continue;
825       return false;
826     }
827 
828     const Use *EffectiveUse =
829         ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
830     if (!ACS.isCallee(EffectiveUse)) {
831       if (!RequireAllCallSites)
832         continue;
833       LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
834                         << " is an invalid use of " << Fn.getName() << "\n");
835       return false;
836     }
837 
838     // Make sure the arguments that can be matched between the call site and the
839     // callee argee on their type. It is unlikely they do not and it doesn't
840     // make sense for all attributes to know/care about this.
841     assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
842     unsigned MinArgsParams =
843         std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
844     for (unsigned u = 0; u < MinArgsParams; ++u) {
845       Value *CSArgOp = ACS.getCallArgOperand(u);
846       if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
847         LLVM_DEBUG(
848             dbgs() << "[Attributor] Call site / callee argument type mismatch ["
849                    << u << "@" << Fn.getName() << ": "
850                    << *Fn.getArg(u)->getType() << " vs. "
851                    << *ACS.getCallArgOperand(u)->getType() << "\n");
852         return false;
853       }
854     }
855 
856     if (Pred(ACS))
857       continue;
858 
859     LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
860                       << *ACS.getInstruction() << "\n");
861     return false;
862   }
863 
864   return true;
865 }
866 
shouldPropagateCallBaseContext(const IRPosition & IRP)867 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
868   // TODO: Maintain a cache of Values that are
869   // on the pathway from a Argument to a Instruction that would effect the
870   // liveness/return state etc.
871   return EnableCallSiteSpecific;
872 }
873 
checkForAllReturnedValuesAndReturnInsts(function_ref<bool (Value &,const SmallSetVector<ReturnInst *,4> &)> Pred,const AbstractAttribute & QueryingAA)874 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
875     function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
876     const AbstractAttribute &QueryingAA) {
877 
878   const IRPosition &IRP = QueryingAA.getIRPosition();
879   // Since we need to provide return instructions we have to have an exact
880   // definition.
881   const Function *AssociatedFunction = IRP.getAssociatedFunction();
882   if (!AssociatedFunction)
883     return false;
884 
885   // If this is a call site query we use the call site specific return values
886   // and liveness information.
887   // TODO: use the function scope once we have call site AAReturnedValues.
888   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
889   const auto &AARetVal =
890       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
891   if (!AARetVal.getState().isValidState())
892     return false;
893 
894   return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
895 }
896 
checkForAllReturnedValues(function_ref<bool (Value &)> Pred,const AbstractAttribute & QueryingAA)897 bool Attributor::checkForAllReturnedValues(
898     function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
899 
900   const IRPosition &IRP = QueryingAA.getIRPosition();
901   const Function *AssociatedFunction = IRP.getAssociatedFunction();
902   if (!AssociatedFunction)
903     return false;
904 
905   // TODO: use the function scope once we have call site AAReturnedValues.
906   const IRPosition &QueryIRP = IRPosition::function(
907       *AssociatedFunction, QueryingAA.getCallBaseContext());
908   const auto &AARetVal =
909       getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
910   if (!AARetVal.getState().isValidState())
911     return false;
912 
913   return AARetVal.checkForAllReturnedValuesAndReturnInsts(
914       [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
915         return Pred(RV);
916       });
917 }
918 
checkForAllInstructionsImpl(Attributor * A,InformationCache::OpcodeInstMapTy & OpcodeInstMap,function_ref<bool (Instruction &)> Pred,const AbstractAttribute * QueryingAA,const AAIsDead * LivenessAA,const ArrayRef<unsigned> & Opcodes,bool CheckBBLivenessOnly=false)919 static bool checkForAllInstructionsImpl(
920     Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
921     function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
922     const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
923     bool CheckBBLivenessOnly = false) {
924   for (unsigned Opcode : Opcodes) {
925     // Check if we have instructions with this opcode at all first.
926     auto *Insts = OpcodeInstMap.lookup(Opcode);
927     if (!Insts)
928       continue;
929 
930     for (Instruction *I : *Insts) {
931       // Skip dead instructions.
932       if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
933                                 CheckBBLivenessOnly))
934         continue;
935 
936       if (!Pred(*I))
937         return false;
938     }
939   }
940   return true;
941 }
942 
checkForAllInstructions(function_ref<bool (Instruction &)> Pred,const AbstractAttribute & QueryingAA,const ArrayRef<unsigned> & Opcodes,bool CheckBBLivenessOnly)943 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
944                                          const AbstractAttribute &QueryingAA,
945                                          const ArrayRef<unsigned> &Opcodes,
946                                          bool CheckBBLivenessOnly) {
947 
948   const IRPosition &IRP = QueryingAA.getIRPosition();
949   // Since we need to provide instructions we have to have an exact definition.
950   const Function *AssociatedFunction = IRP.getAssociatedFunction();
951   if (!AssociatedFunction)
952     return false;
953 
954   // TODO: use the function scope once we have call site AAReturnedValues.
955   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
956   const auto *LivenessAA =
957       CheckBBLivenessOnly
958           ? nullptr
959           : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
960 
961   auto &OpcodeInstMap =
962       InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
963   if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
964                                    LivenessAA, Opcodes, CheckBBLivenessOnly))
965     return false;
966 
967   return true;
968 }
969 
checkForAllReadWriteInstructions(function_ref<bool (Instruction &)> Pred,AbstractAttribute & QueryingAA)970 bool Attributor::checkForAllReadWriteInstructions(
971     function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) {
972 
973   const Function *AssociatedFunction =
974       QueryingAA.getIRPosition().getAssociatedFunction();
975   if (!AssociatedFunction)
976     return false;
977 
978   // TODO: use the function scope once we have call site AAReturnedValues.
979   const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
980   const auto &LivenessAA =
981       getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
982 
983   for (Instruction *I :
984        InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
985     // Skip dead instructions.
986     if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
987       continue;
988 
989     if (!Pred(*I))
990       return false;
991   }
992 
993   return true;
994 }
995 
runTillFixpoint()996 void Attributor::runTillFixpoint() {
997   TimeTraceScope TimeScope("Attributor::runTillFixpoint");
998   LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
999                     << DG.SyntheticRoot.Deps.size()
1000                     << " abstract attributes.\n");
1001 
1002   // Now that all abstract attributes are collected and initialized we start
1003   // the abstract analysis.
1004 
1005   unsigned IterationCounter = 1;
1006 
1007   SmallVector<AbstractAttribute *, 32> ChangedAAs;
1008   SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1009   Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1010 
1011   do {
1012     // Remember the size to determine new attributes.
1013     size_t NumAAs = DG.SyntheticRoot.Deps.size();
1014     LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
1015                       << ", Worklist size: " << Worklist.size() << "\n");
1016 
1017     // For invalid AAs we can fix dependent AAs that have a required dependence,
1018     // thereby folding long dependence chains in a single step without the need
1019     // to run updates.
1020     for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1021       AbstractAttribute *InvalidAA = InvalidAAs[u];
1022 
1023       // Check the dependences to fast track invalidation.
1024       LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
1025                         << InvalidAA->Deps.size()
1026                         << " required & optional dependences\n");
1027       while (!InvalidAA->Deps.empty()) {
1028         const auto &Dep = InvalidAA->Deps.back();
1029         InvalidAA->Deps.pop_back();
1030         AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1031         if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1032           Worklist.insert(DepAA);
1033           continue;
1034         }
1035         DepAA->getState().indicatePessimisticFixpoint();
1036         assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
1037         if (!DepAA->getState().isValidState())
1038           InvalidAAs.insert(DepAA);
1039         else
1040           ChangedAAs.push_back(DepAA);
1041       }
1042     }
1043 
1044     // Add all abstract attributes that are potentially dependent on one that
1045     // changed to the work list.
1046     for (AbstractAttribute *ChangedAA : ChangedAAs)
1047       while (!ChangedAA->Deps.empty()) {
1048         Worklist.insert(
1049             cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1050         ChangedAA->Deps.pop_back();
1051       }
1052 
1053     LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
1054                       << ", Worklist+Dependent size: " << Worklist.size()
1055                       << "\n");
1056 
1057     // Reset the changed and invalid set.
1058     ChangedAAs.clear();
1059     InvalidAAs.clear();
1060 
1061     // Update all abstract attribute in the work list and record the ones that
1062     // changed.
1063     for (AbstractAttribute *AA : Worklist) {
1064       const auto &AAState = AA->getState();
1065       if (!AAState.isAtFixpoint())
1066         if (updateAA(*AA) == ChangeStatus::CHANGED)
1067           ChangedAAs.push_back(AA);
1068 
1069       // Use the InvalidAAs vector to propagate invalid states fast transitively
1070       // without requiring updates.
1071       if (!AAState.isValidState())
1072         InvalidAAs.insert(AA);
1073     }
1074 
1075     // Add attributes to the changed set if they have been created in the last
1076     // iteration.
1077     ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1078                       DG.SyntheticRoot.end());
1079 
1080     // Reset the work list and repopulate with the changed abstract attributes.
1081     // Note that dependent ones are added above.
1082     Worklist.clear();
1083     Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1084 
1085   } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
1086                                  VerifyMaxFixpointIterations));
1087 
1088   LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
1089                     << IterationCounter << "/" << MaxFixpointIterations
1090                     << " iterations\n");
1091 
1092   // Reset abstract arguments not settled in a sound fixpoint by now. This
1093   // happens when we stopped the fixpoint iteration early. Note that only the
1094   // ones marked as "changed" *and* the ones transitively depending on them
1095   // need to be reverted to a pessimistic state. Others might not be in a
1096   // fixpoint state but we can use the optimistic results for them anyway.
1097   SmallPtrSet<AbstractAttribute *, 32> Visited;
1098   for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1099     AbstractAttribute *ChangedAA = ChangedAAs[u];
1100     if (!Visited.insert(ChangedAA).second)
1101       continue;
1102 
1103     AbstractState &State = ChangedAA->getState();
1104     if (!State.isAtFixpoint()) {
1105       State.indicatePessimisticFixpoint();
1106 
1107       NumAttributesTimedOut++;
1108     }
1109 
1110     while (!ChangedAA->Deps.empty()) {
1111       ChangedAAs.push_back(
1112           cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1113       ChangedAA->Deps.pop_back();
1114     }
1115   }
1116 
1117   LLVM_DEBUG({
1118     if (!Visited.empty())
1119       dbgs() << "\n[Attributor] Finalized " << Visited.size()
1120              << " abstract attributes.\n";
1121   });
1122 
1123   if (VerifyMaxFixpointIterations &&
1124       IterationCounter != MaxFixpointIterations) {
1125     errs() << "\n[Attributor] Fixpoint iteration done after: "
1126            << IterationCounter << "/" << MaxFixpointIterations
1127            << " iterations\n";
1128     llvm_unreachable("The fixpoint was not reached with exactly the number of "
1129                      "specified iterations!");
1130   }
1131 }
1132 
manifestAttributes()1133 ChangeStatus Attributor::manifestAttributes() {
1134   TimeTraceScope TimeScope("Attributor::manifestAttributes");
1135   size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1136 
1137   unsigned NumManifested = 0;
1138   unsigned NumAtFixpoint = 0;
1139   ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1140   for (auto &DepAA : DG.SyntheticRoot.Deps) {
1141     AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1142     AbstractState &State = AA->getState();
1143 
1144     // If there is not already a fixpoint reached, we can now take the
1145     // optimistic state. This is correct because we enforced a pessimistic one
1146     // on abstract attributes that were transitively dependent on a changed one
1147     // already above.
1148     if (!State.isAtFixpoint())
1149       State.indicateOptimisticFixpoint();
1150 
1151     // We must not manifest Attributes that use Callbase info.
1152     if (AA->hasCallBaseContext())
1153       continue;
1154     // If the state is invalid, we do not try to manifest it.
1155     if (!State.isValidState())
1156       continue;
1157 
1158     // Skip dead code.
1159     if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
1160       continue;
1161     // Check if the manifest debug counter that allows skipping manifestation of
1162     // AAs
1163     if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1164       continue;
1165     // Manifest the state and record if we changed the IR.
1166     ChangeStatus LocalChange = AA->manifest(*this);
1167     if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1168       AA->trackStatistics();
1169     LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
1170                       << "\n");
1171 
1172     ManifestChange = ManifestChange | LocalChange;
1173 
1174     NumAtFixpoint++;
1175     NumManifested += (LocalChange == ChangeStatus::CHANGED);
1176   }
1177 
1178   (void)NumManifested;
1179   (void)NumAtFixpoint;
1180   LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
1181                     << " arguments while " << NumAtFixpoint
1182                     << " were in a valid fixpoint state\n");
1183 
1184   NumAttributesManifested += NumManifested;
1185   NumAttributesValidFixpoint += NumAtFixpoint;
1186 
1187   (void)NumFinalAAs;
1188   if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1189     for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1190       errs() << "Unexpected abstract attribute: "
1191              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1192              << " :: "
1193              << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1194                     ->getIRPosition()
1195                     .getAssociatedValue()
1196              << "\n";
1197     llvm_unreachable("Expected the final number of abstract attributes to "
1198                      "remain unchanged!");
1199   }
1200   return ManifestChange;
1201 }
1202 
identifyDeadInternalFunctions()1203 void Attributor::identifyDeadInternalFunctions() {
1204   // Early exit if we don't intend to delete functions.
1205   if (!DeleteFns)
1206     return;
1207 
1208   // Identify dead internal functions and delete them. This happens outside
1209   // the other fixpoint analysis as we might treat potentially dead functions
1210   // as live to lower the number of iterations. If they happen to be dead, the
1211   // below fixpoint loop will identify and eliminate them.
1212   SmallVector<Function *, 8> InternalFns;
1213   for (Function *F : Functions)
1214     if (F->hasLocalLinkage())
1215       InternalFns.push_back(F);
1216 
1217   SmallPtrSet<Function *, 8> LiveInternalFns;
1218   bool FoundLiveInternal = true;
1219   while (FoundLiveInternal) {
1220     FoundLiveInternal = false;
1221     for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1222       Function *F = InternalFns[u];
1223       if (!F)
1224         continue;
1225 
1226       bool AllCallSitesKnown;
1227       if (checkForAllCallSites(
1228               [&](AbstractCallSite ACS) {
1229                 Function *Callee = ACS.getInstruction()->getFunction();
1230                 return ToBeDeletedFunctions.count(Callee) ||
1231                        (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1232                         !LiveInternalFns.count(Callee));
1233               },
1234               *F, true, nullptr, AllCallSitesKnown)) {
1235         continue;
1236       }
1237 
1238       LiveInternalFns.insert(F);
1239       InternalFns[u] = nullptr;
1240       FoundLiveInternal = true;
1241     }
1242   }
1243 
1244   for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1245     if (Function *F = InternalFns[u])
1246       ToBeDeletedFunctions.insert(F);
1247 }
1248 
cleanupIR()1249 ChangeStatus Attributor::cleanupIR() {
1250   TimeTraceScope TimeScope("Attributor::cleanupIR");
1251   // Delete stuff at the end to avoid invalid references and a nice order.
1252   LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
1253                     << ToBeDeletedFunctions.size() << " functions and "
1254                     << ToBeDeletedBlocks.size() << " blocks and "
1255                     << ToBeDeletedInsts.size() << " instructions and "
1256                     << ToBeChangedUses.size() << " uses\n");
1257 
1258   SmallVector<WeakTrackingVH, 32> DeadInsts;
1259   SmallVector<Instruction *, 32> TerminatorsToFold;
1260 
1261   for (auto &It : ToBeChangedUses) {
1262     Use *U = It.first;
1263     Value *NewV = It.second;
1264     Value *OldV = U->get();
1265 
1266     // Do not replace uses in returns if the value is a must-tail call we will
1267     // not delete.
1268     if (isa<ReturnInst>(U->getUser()))
1269       if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1270         if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
1271           continue;
1272 
1273     LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
1274                       << " instead of " << *OldV << "\n");
1275     U->set(NewV);
1276     // Do not modify call instructions outside the SCC.
1277     if (auto *CB = dyn_cast<CallBase>(OldV))
1278       if (!Functions.count(CB->getCaller()))
1279         continue;
1280     if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1281       CGModifiedFunctions.insert(I->getFunction());
1282       if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1283           isInstructionTriviallyDead(I))
1284         DeadInsts.push_back(I);
1285     }
1286     if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1287       auto *CB = cast<CallBase>(U->getUser());
1288       if (CB->isArgOperand(U)) {
1289         unsigned Idx = CB->getArgOperandNo(U);
1290         CB->removeParamAttr(Idx, Attribute::NoUndef);
1291         Function *Fn = CB->getCalledFunction();
1292         assert(Fn && "Expected callee when call argument is replaced!");
1293         if (Fn->arg_size() > Idx)
1294           Fn->removeParamAttr(Idx, Attribute::NoUndef);
1295       }
1296     }
1297     if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1298       Instruction *UserI = cast<Instruction>(U->getUser());
1299       if (isa<UndefValue>(NewV)) {
1300         ToBeChangedToUnreachableInsts.insert(UserI);
1301       } else {
1302         TerminatorsToFold.push_back(UserI);
1303       }
1304     }
1305   }
1306   for (auto &V : InvokeWithDeadSuccessor)
1307     if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1308       bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1309       bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1310       bool Invoke2CallAllowed =
1311           !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1312       assert((UnwindBBIsDead || NormalBBIsDead) &&
1313              "Invoke does not have dead successors!");
1314       BasicBlock *BB = II->getParent();
1315       BasicBlock *NormalDestBB = II->getNormalDest();
1316       if (UnwindBBIsDead) {
1317         Instruction *NormalNextIP = &NormalDestBB->front();
1318         if (Invoke2CallAllowed) {
1319           changeToCall(II);
1320           NormalNextIP = BB->getTerminator();
1321         }
1322         if (NormalBBIsDead)
1323           ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1324       } else {
1325         assert(NormalBBIsDead && "Broken invariant!");
1326         if (!NormalDestBB->getUniquePredecessor())
1327           NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1328         ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1329       }
1330     }
1331   for (Instruction *I : TerminatorsToFold) {
1332     CGModifiedFunctions.insert(I->getFunction());
1333     ConstantFoldTerminator(I->getParent());
1334   }
1335   for (auto &V : ToBeChangedToUnreachableInsts)
1336     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1337       CGModifiedFunctions.insert(I->getFunction());
1338       changeToUnreachable(I, /* UseLLVMTrap */ false);
1339     }
1340 
1341   for (auto &V : ToBeDeletedInsts) {
1342     if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1343       I->dropDroppableUses();
1344       CGModifiedFunctions.insert(I->getFunction());
1345       if (!I->getType()->isVoidTy())
1346         I->replaceAllUsesWith(UndefValue::get(I->getType()));
1347       if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1348         DeadInsts.push_back(I);
1349       else
1350         I->eraseFromParent();
1351     }
1352   }
1353 
1354   LLVM_DEBUG(dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size()
1355                     << "\n");
1356 
1357   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1358 
1359   if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1360     SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1361     ToBeDeletedBBs.reserve(NumDeadBlocks);
1362     for (BasicBlock *BB : ToBeDeletedBlocks) {
1363       CGModifiedFunctions.insert(BB->getParent());
1364       ToBeDeletedBBs.push_back(BB);
1365     }
1366     // Actually we do not delete the blocks but squash them into a single
1367     // unreachable but untangling branches that jump here is something we need
1368     // to do in a more generic way.
1369     DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1370   }
1371 
1372   identifyDeadInternalFunctions();
1373 
1374   // Rewrite the functions as requested during manifest.
1375   ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1376 
1377   for (Function *Fn : CGModifiedFunctions)
1378     if (!ToBeDeletedFunctions.count(Fn))
1379       CGUpdater.reanalyzeFunction(*Fn);
1380 
1381   for (Function *Fn : ToBeDeletedFunctions) {
1382     if (!Functions.count(Fn))
1383       continue;
1384     CGUpdater.removeFunction(*Fn);
1385   }
1386 
1387   if (!ToBeChangedUses.empty())
1388     ManifestChange = ChangeStatus::CHANGED;
1389 
1390   if (!ToBeChangedToUnreachableInsts.empty())
1391     ManifestChange = ChangeStatus::CHANGED;
1392 
1393   if (!ToBeDeletedFunctions.empty())
1394     ManifestChange = ChangeStatus::CHANGED;
1395 
1396   if (!ToBeDeletedBlocks.empty())
1397     ManifestChange = ChangeStatus::CHANGED;
1398 
1399   if (!ToBeDeletedInsts.empty())
1400     ManifestChange = ChangeStatus::CHANGED;
1401 
1402   if (!InvokeWithDeadSuccessor.empty())
1403     ManifestChange = ChangeStatus::CHANGED;
1404 
1405   if (!DeadInsts.empty())
1406     ManifestChange = ChangeStatus::CHANGED;
1407 
1408   NumFnDeleted += ToBeDeletedFunctions.size();
1409 
1410   LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
1411                     << " functions after manifest.\n");
1412 
1413 #ifdef EXPENSIVE_CHECKS
1414   for (Function *F : Functions) {
1415     if (ToBeDeletedFunctions.count(F))
1416       continue;
1417     assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
1418   }
1419 #endif
1420 
1421   return ManifestChange;
1422 }
1423 
run()1424 ChangeStatus Attributor::run() {
1425   TimeTraceScope TimeScope("Attributor::run");
1426 
1427   Phase = AttributorPhase::UPDATE;
1428   runTillFixpoint();
1429 
1430   // dump graphs on demand
1431   if (DumpDepGraph)
1432     DG.dumpGraph();
1433 
1434   if (ViewDepGraph)
1435     DG.viewGraph();
1436 
1437   if (PrintDependencies)
1438     DG.print();
1439 
1440   Phase = AttributorPhase::MANIFEST;
1441   ChangeStatus ManifestChange = manifestAttributes();
1442 
1443   Phase = AttributorPhase::CLEANUP;
1444   ChangeStatus CleanupChange = cleanupIR();
1445 
1446   return ManifestChange | CleanupChange;
1447 }
1448 
updateAA(AbstractAttribute & AA)1449 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1450   TimeTraceScope TimeScope(
1451       AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1452       "::updateAA");
1453   assert(Phase == AttributorPhase::UPDATE &&
1454          "We can update AA only in the update stage!");
1455 
1456   // Use a new dependence vector for this update.
1457   DependenceVector DV;
1458   DependenceStack.push_back(&DV);
1459 
1460   auto &AAState = AA.getState();
1461   ChangeStatus CS = ChangeStatus::UNCHANGED;
1462   if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true))
1463     CS = AA.update(*this);
1464 
1465   if (DV.empty()) {
1466     // If the attribute did not query any non-fix information, the state
1467     // will not change and we can indicate that right away.
1468     AAState.indicateOptimisticFixpoint();
1469   }
1470 
1471   if (!AAState.isAtFixpoint())
1472     rememberDependences();
1473 
1474   // Verify the stack was used properly, that is we pop the dependence vector we
1475   // put there earlier.
1476   DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1477   (void)PoppedDV;
1478   assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
1479 
1480   return CS;
1481 }
1482 
createShallowWrapper(Function & F)1483 void Attributor::createShallowWrapper(Function &F) {
1484   assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
1485 
1486   Module &M = *F.getParent();
1487   LLVMContext &Ctx = M.getContext();
1488   FunctionType *FnTy = F.getFunctionType();
1489 
1490   Function *Wrapper =
1491       Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1492   F.setName(""); // set the inside function anonymous
1493   M.getFunctionList().insert(F.getIterator(), Wrapper);
1494 
1495   F.setLinkage(GlobalValue::InternalLinkage);
1496 
1497   F.replaceAllUsesWith(Wrapper);
1498   assert(F.use_empty() && "Uses remained after wrapper was created!");
1499 
1500   // Move the COMDAT section to the wrapper.
1501   // TODO: Check if we need to keep it for F as well.
1502   Wrapper->setComdat(F.getComdat());
1503   F.setComdat(nullptr);
1504 
1505   // Copy all metadata and attributes but keep them on F as well.
1506   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1507   F.getAllMetadata(MDs);
1508   for (auto MDIt : MDs)
1509     Wrapper->addMetadata(MDIt.first, *MDIt.second);
1510   Wrapper->setAttributes(F.getAttributes());
1511 
1512   // Create the call in the wrapper.
1513   BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1514 
1515   SmallVector<Value *, 8> Args;
1516   Argument *FArgIt = F.arg_begin();
1517   for (Argument &Arg : Wrapper->args()) {
1518     Args.push_back(&Arg);
1519     Arg.setName((FArgIt++)->getName());
1520   }
1521 
1522   CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1523   CI->setTailCall(true);
1524   CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1525   ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1526 
1527   NumFnShallowWrappersCreated++;
1528 }
1529 
1530 /// Make another copy of the function \p F such that the copied version has
1531 /// internal linkage afterwards and can be analysed. Then we replace all uses
1532 /// of the original function to the copied one
1533 ///
1534 /// Only non-exactly defined functions that have `linkonce_odr` or `weak_odr`
1535 /// linkage can be internalized because these linkages guarantee that other
1536 /// definitions with the same name have the same semantics as this one
1537 ///
internalizeFunction(Function & F)1538 static Function *internalizeFunction(Function &F) {
1539   assert(AllowDeepWrapper && "Cannot create a copy if not allowed.");
1540   assert(!F.isDeclaration() && !F.hasExactDefinition() &&
1541          !GlobalValue::isInterposableLinkage(F.getLinkage()) &&
1542          "Trying to internalize function which cannot be internalized.");
1543 
1544   Module &M = *F.getParent();
1545   FunctionType *FnTy = F.getFunctionType();
1546 
1547   // create a copy of the current function
1548   Function *Copied = Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(),
1549                                       F.getName() + ".internalized");
1550   ValueToValueMapTy VMap;
1551   auto *NewFArgIt = Copied->arg_begin();
1552   for (auto &Arg : F.args()) {
1553     auto ArgName = Arg.getName();
1554     NewFArgIt->setName(ArgName);
1555     VMap[&Arg] = &(*NewFArgIt++);
1556   }
1557   SmallVector<ReturnInst *, 8> Returns;
1558 
1559   // Copy the body of the original function to the new one
1560   CloneFunctionInto(Copied, &F, VMap, CloneFunctionChangeType::LocalChangesOnly,
1561                     Returns);
1562 
1563   // Set the linakage and visibility late as CloneFunctionInto has some implicit
1564   // requirements.
1565   Copied->setVisibility(GlobalValue::DefaultVisibility);
1566   Copied->setLinkage(GlobalValue::PrivateLinkage);
1567 
1568   // Copy metadata
1569   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1570   F.getAllMetadata(MDs);
1571   for (auto MDIt : MDs)
1572     Copied->addMetadata(MDIt.first, *MDIt.second);
1573 
1574   M.getFunctionList().insert(F.getIterator(), Copied);
1575   F.replaceAllUsesWith(Copied);
1576   Copied->setDSOLocal(true);
1577 
1578   return Copied;
1579 }
1580 
isValidFunctionSignatureRewrite(Argument & Arg,ArrayRef<Type * > ReplacementTypes)1581 bool Attributor::isValidFunctionSignatureRewrite(
1582     Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
1583 
1584   auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
1585     // Forbid the call site to cast the function return type. If we need to
1586     // rewrite these functions we need to re-create a cast for the new call site
1587     // (if the old had uses).
1588     if (!ACS.getCalledFunction() ||
1589         ACS.getInstruction()->getType() !=
1590             ACS.getCalledFunction()->getReturnType())
1591       return false;
1592     // Forbid must-tail calls for now.
1593     return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
1594   };
1595 
1596   Function *Fn = Arg.getParent();
1597   // Avoid var-arg functions for now.
1598   if (Fn->isVarArg()) {
1599     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
1600     return false;
1601   }
1602 
1603   // Avoid functions with complicated argument passing semantics.
1604   AttributeList FnAttributeList = Fn->getAttributes();
1605   if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
1606       FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
1607       FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
1608       FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
1609     LLVM_DEBUG(
1610         dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
1611     return false;
1612   }
1613 
1614   // Avoid callbacks for now.
1615   bool AllCallSitesKnown;
1616   if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
1617                             AllCallSitesKnown)) {
1618     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
1619     return false;
1620   }
1621 
1622   auto InstPred = [](Instruction &I) {
1623     if (auto *CI = dyn_cast<CallInst>(&I))
1624       return !CI->isMustTailCall();
1625     return true;
1626   };
1627 
1628   // Forbid must-tail calls for now.
1629   // TODO:
1630   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
1631   if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
1632                                    nullptr, {Instruction::Call})) {
1633     LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
1634     return false;
1635   }
1636 
1637   return true;
1638 }
1639 
registerFunctionSignatureRewrite(Argument & Arg,ArrayRef<Type * > ReplacementTypes,ArgumentReplacementInfo::CalleeRepairCBTy && CalleeRepairCB,ArgumentReplacementInfo::ACSRepairCBTy && ACSRepairCB)1640 bool Attributor::registerFunctionSignatureRewrite(
1641     Argument &Arg, ArrayRef<Type *> ReplacementTypes,
1642     ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
1643     ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
1644   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1645                     << Arg.getParent()->getName() << " with "
1646                     << ReplacementTypes.size() << " replacements\n");
1647   assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
1648          "Cannot register an invalid rewrite");
1649 
1650   Function *Fn = Arg.getParent();
1651   SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1652       ArgumentReplacementMap[Fn];
1653   if (ARIs.empty())
1654     ARIs.resize(Fn->arg_size());
1655 
1656   // If we have a replacement already with less than or equal new arguments,
1657   // ignore this request.
1658   std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
1659   if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
1660     LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
1661     return false;
1662   }
1663 
1664   // If we have a replacement already but we like the new one better, delete
1665   // the old.
1666   ARI.reset();
1667 
1668   LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
1669                     << Arg.getParent()->getName() << " with "
1670                     << ReplacementTypes.size() << " replacements\n");
1671 
1672   // Remember the replacement.
1673   ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
1674                                         std::move(CalleeRepairCB),
1675                                         std::move(ACSRepairCB)));
1676 
1677   return true;
1678 }
1679 
shouldSeedAttribute(AbstractAttribute & AA)1680 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
1681   bool Result = true;
1682 #ifndef NDEBUG
1683   if (SeedAllowList.size() != 0)
1684     Result =
1685         std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
1686   Function *Fn = AA.getAnchorScope();
1687   if (FunctionSeedAllowList.size() != 0 && Fn)
1688     Result &= std::count(FunctionSeedAllowList.begin(),
1689                          FunctionSeedAllowList.end(), Fn->getName());
1690 #endif
1691   return Result;
1692 }
1693 
rewriteFunctionSignatures(SmallPtrSetImpl<Function * > & ModifiedFns)1694 ChangeStatus Attributor::rewriteFunctionSignatures(
1695     SmallPtrSetImpl<Function *> &ModifiedFns) {
1696   ChangeStatus Changed = ChangeStatus::UNCHANGED;
1697 
1698   for (auto &It : ArgumentReplacementMap) {
1699     Function *OldFn = It.getFirst();
1700 
1701     // Deleted functions do not require rewrites.
1702     if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
1703       continue;
1704 
1705     const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
1706         It.getSecond();
1707     assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
1708 
1709     SmallVector<Type *, 16> NewArgumentTypes;
1710     SmallVector<AttributeSet, 16> NewArgumentAttributes;
1711 
1712     // Collect replacement argument types and copy over existing attributes.
1713     AttributeList OldFnAttributeList = OldFn->getAttributes();
1714     for (Argument &Arg : OldFn->args()) {
1715       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1716               ARIs[Arg.getArgNo()]) {
1717         NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
1718                                 ARI->ReplacementTypes.end());
1719         NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
1720                                      AttributeSet());
1721       } else {
1722         NewArgumentTypes.push_back(Arg.getType());
1723         NewArgumentAttributes.push_back(
1724             OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
1725       }
1726     }
1727 
1728     FunctionType *OldFnTy = OldFn->getFunctionType();
1729     Type *RetTy = OldFnTy->getReturnType();
1730 
1731     // Construct the new function type using the new arguments types.
1732     FunctionType *NewFnTy =
1733         FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
1734 
1735     LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
1736                       << "' from " << *OldFn->getFunctionType() << " to "
1737                       << *NewFnTy << "\n");
1738 
1739     // Create the new function body and insert it into the module.
1740     Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
1741                                        OldFn->getAddressSpace(), "");
1742     OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
1743     NewFn->takeName(OldFn);
1744     NewFn->copyAttributesFrom(OldFn);
1745 
1746     // Patch the pointer to LLVM function in debug info descriptor.
1747     NewFn->setSubprogram(OldFn->getSubprogram());
1748     OldFn->setSubprogram(nullptr);
1749 
1750     // Recompute the parameter attributes list based on the new arguments for
1751     // the function.
1752     LLVMContext &Ctx = OldFn->getContext();
1753     NewFn->setAttributes(AttributeList::get(
1754         Ctx, OldFnAttributeList.getFnAttributes(),
1755         OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
1756 
1757     // Since we have now created the new function, splice the body of the old
1758     // function right into the new function, leaving the old rotting hulk of the
1759     // function empty.
1760     NewFn->getBasicBlockList().splice(NewFn->begin(),
1761                                       OldFn->getBasicBlockList());
1762 
1763     // Fixup block addresses to reference new function.
1764     SmallVector<BlockAddress *, 8u> BlockAddresses;
1765     for (User *U : OldFn->users())
1766       if (auto *BA = dyn_cast<BlockAddress>(U))
1767         BlockAddresses.push_back(BA);
1768     for (auto *BA : BlockAddresses)
1769       BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
1770 
1771     // Set of all "call-like" instructions that invoke the old function mapped
1772     // to their new replacements.
1773     SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
1774 
1775     // Callback to create a new "call-like" instruction for a given one.
1776     auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
1777       CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
1778       const AttributeList &OldCallAttributeList = OldCB->getAttributes();
1779 
1780       // Collect the new argument operands for the replacement call site.
1781       SmallVector<Value *, 16> NewArgOperands;
1782       SmallVector<AttributeSet, 16> NewArgOperandAttributes;
1783       for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
1784         unsigned NewFirstArgNum = NewArgOperands.size();
1785         (void)NewFirstArgNum; // only used inside assert.
1786         if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1787                 ARIs[OldArgNum]) {
1788           if (ARI->ACSRepairCB)
1789             ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
1790           assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
1791                      NewArgOperands.size() &&
1792                  "ACS repair callback did not provide as many operand as new "
1793                  "types were registered!");
1794           // TODO: Exose the attribute set to the ACS repair callback
1795           NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
1796                                          AttributeSet());
1797         } else {
1798           NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
1799           NewArgOperandAttributes.push_back(
1800               OldCallAttributeList.getParamAttributes(OldArgNum));
1801         }
1802       }
1803 
1804       assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
1805              "Mismatch # argument operands vs. # argument operand attributes!");
1806       assert(NewArgOperands.size() == NewFn->arg_size() &&
1807              "Mismatch # argument operands vs. # function arguments!");
1808 
1809       SmallVector<OperandBundleDef, 4> OperandBundleDefs;
1810       OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
1811 
1812       // Create a new call or invoke instruction to replace the old one.
1813       CallBase *NewCB;
1814       if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
1815         NewCB =
1816             InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
1817                                NewArgOperands, OperandBundleDefs, "", OldCB);
1818       } else {
1819         auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
1820                                        "", OldCB);
1821         NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
1822         NewCB = NewCI;
1823       }
1824 
1825       // Copy over various properties and the new attributes.
1826       NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
1827       NewCB->setCallingConv(OldCB->getCallingConv());
1828       NewCB->takeName(OldCB);
1829       NewCB->setAttributes(AttributeList::get(
1830           Ctx, OldCallAttributeList.getFnAttributes(),
1831           OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
1832 
1833       CallSitePairs.push_back({OldCB, NewCB});
1834       return true;
1835     };
1836 
1837     // Use the CallSiteReplacementCreator to create replacement call sites.
1838     bool AllCallSitesKnown;
1839     bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
1840                                         true, nullptr, AllCallSitesKnown);
1841     (void)Success;
1842     assert(Success && "Assumed call site replacement to succeed!");
1843 
1844     // Rewire the arguments.
1845     Argument *OldFnArgIt = OldFn->arg_begin();
1846     Argument *NewFnArgIt = NewFn->arg_begin();
1847     for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
1848          ++OldArgNum, ++OldFnArgIt) {
1849       if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
1850               ARIs[OldArgNum]) {
1851         if (ARI->CalleeRepairCB)
1852           ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
1853         NewFnArgIt += ARI->ReplacementTypes.size();
1854       } else {
1855         NewFnArgIt->takeName(&*OldFnArgIt);
1856         OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
1857         ++NewFnArgIt;
1858       }
1859     }
1860 
1861     // Eliminate the instructions *after* we visited all of them.
1862     for (auto &CallSitePair : CallSitePairs) {
1863       CallBase &OldCB = *CallSitePair.first;
1864       CallBase &NewCB = *CallSitePair.second;
1865       assert(OldCB.getType() == NewCB.getType() &&
1866              "Cannot handle call sites with different types!");
1867       ModifiedFns.insert(OldCB.getFunction());
1868       CGUpdater.replaceCallSite(OldCB, NewCB);
1869       OldCB.replaceAllUsesWith(&NewCB);
1870       OldCB.eraseFromParent();
1871     }
1872 
1873     // Replace the function in the call graph (if any).
1874     CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
1875 
1876     // If the old function was modified and needed to be reanalyzed, the new one
1877     // does now.
1878     if (ModifiedFns.erase(OldFn))
1879       ModifiedFns.insert(NewFn);
1880 
1881     Changed = ChangeStatus::CHANGED;
1882   }
1883 
1884   return Changed;
1885 }
1886 
initializeInformationCache(const Function & CF,FunctionInfo & FI)1887 void InformationCache::initializeInformationCache(const Function &CF,
1888                                                   FunctionInfo &FI) {
1889   // As we do not modify the function here we can remove the const
1890   // withouth breaking implicit assumptions. At the end of the day, we could
1891   // initialize the cache eagerly which would look the same to the users.
1892   Function &F = const_cast<Function &>(CF);
1893 
1894   // Walk all instructions to find interesting instructions that might be
1895   // queried by abstract attributes during their initialization or update.
1896   // This has to happen before we create attributes.
1897 
1898   for (Instruction &I : instructions(&F)) {
1899     bool IsInterestingOpcode = false;
1900 
1901     // To allow easy access to all instructions in a function with a given
1902     // opcode we store them in the InfoCache. As not all opcodes are interesting
1903     // to concrete attributes we only cache the ones that are as identified in
1904     // the following switch.
1905     // Note: There are no concrete attributes now so this is initially empty.
1906     switch (I.getOpcode()) {
1907     default:
1908       assert(!isa<CallBase>(&I) &&
1909              "New call base instruction type needs to be known in the "
1910              "Attributor.");
1911       break;
1912     case Instruction::Call:
1913       // Calls are interesting on their own, additionally:
1914       // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
1915       // For `must-tail` calls we remember the caller and callee.
1916       if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
1917         fillMapFromAssume(*Assume, KnowledgeMap);
1918       } else if (cast<CallInst>(I).isMustTailCall()) {
1919         FI.ContainsMustTailCall = true;
1920         if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
1921           getFunctionInfo(*Callee).CalledViaMustTail = true;
1922       }
1923       LLVM_FALLTHROUGH;
1924     case Instruction::CallBr:
1925     case Instruction::Invoke:
1926     case Instruction::CleanupRet:
1927     case Instruction::CatchSwitch:
1928     case Instruction::AtomicRMW:
1929     case Instruction::AtomicCmpXchg:
1930     case Instruction::Br:
1931     case Instruction::Resume:
1932     case Instruction::Ret:
1933     case Instruction::Load:
1934       // The alignment of a pointer is interesting for loads.
1935     case Instruction::Store:
1936       // The alignment of a pointer is interesting for stores.
1937       IsInterestingOpcode = true;
1938     }
1939     if (IsInterestingOpcode) {
1940       auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
1941       if (!Insts)
1942         Insts = new (Allocator) InstructionVectorTy();
1943       Insts->push_back(&I);
1944     }
1945     if (I.mayReadOrWriteMemory())
1946       FI.RWInsts.push_back(&I);
1947   }
1948 
1949   if (F.hasFnAttribute(Attribute::AlwaysInline) &&
1950       isInlineViable(F).isSuccess())
1951     InlineableFunctions.insert(&F);
1952 }
1953 
getAAResultsForFunction(const Function & F)1954 AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
1955   return AG.getAnalysis<AAManager>(F);
1956 }
1957 
~FunctionInfo()1958 InformationCache::FunctionInfo::~FunctionInfo() {
1959   // The instruction vectors are allocated using a BumpPtrAllocator, we need to
1960   // manually destroy them.
1961   for (auto &It : OpcodeInstMap)
1962     It.getSecond()->~InstructionVectorTy();
1963 }
1964 
recordDependence(const AbstractAttribute & FromAA,const AbstractAttribute & ToAA,DepClassTy DepClass)1965 void Attributor::recordDependence(const AbstractAttribute &FromAA,
1966                                   const AbstractAttribute &ToAA,
1967                                   DepClassTy DepClass) {
1968   if (DepClass == DepClassTy::NONE)
1969     return;
1970   // If we are outside of an update, thus before the actual fixpoint iteration
1971   // started (= when we create AAs), we do not track dependences because we will
1972   // put all AAs into the initial worklist anyway.
1973   if (DependenceStack.empty())
1974     return;
1975   if (FromAA.getState().isAtFixpoint())
1976     return;
1977   DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
1978 }
1979 
rememberDependences()1980 void Attributor::rememberDependences() {
1981   assert(!DependenceStack.empty() && "No dependences to remember!");
1982 
1983   for (DepInfo &DI : *DependenceStack.back()) {
1984     assert((DI.DepClass == DepClassTy::REQUIRED ||
1985             DI.DepClass == DepClassTy::OPTIONAL) &&
1986            "Expected required or optional dependence (1 bit)!");
1987     auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
1988     DepAAs.push_back(AbstractAttribute::DepTy(
1989         const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
1990   }
1991 }
1992 
identifyDefaultAbstractAttributes(Function & F)1993 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
1994   if (!VisitedFunctions.insert(&F).second)
1995     return;
1996   if (F.isDeclaration())
1997     return;
1998 
1999   // In non-module runs we need to look at the call sites of a function to
2000   // determine if it is part of a must-tail call edge. This will influence what
2001   // attributes we can derive.
2002   InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2003   if (!isModulePass() && !FI.CalledViaMustTail) {
2004     for (const Use &U : F.uses())
2005       if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2006         if (CB->isCallee(&U) && CB->isMustTailCall())
2007           FI.CalledViaMustTail = true;
2008   }
2009 
2010   IRPosition FPos = IRPosition::function(F);
2011 
2012   // Check for dead BasicBlocks in every function.
2013   // We need dead instruction detection because we do not want to deal with
2014   // broken IR in which SSA rules do not apply.
2015   getOrCreateAAFor<AAIsDead>(FPos);
2016 
2017   // Every function might be "will-return".
2018   getOrCreateAAFor<AAWillReturn>(FPos);
2019 
2020   // Every function might contain instructions that cause "undefined behavior".
2021   getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2022 
2023   // Every function can be nounwind.
2024   getOrCreateAAFor<AANoUnwind>(FPos);
2025 
2026   // Every function might be marked "nosync"
2027   getOrCreateAAFor<AANoSync>(FPos);
2028 
2029   // Every function might be "no-free".
2030   getOrCreateAAFor<AANoFree>(FPos);
2031 
2032   // Every function might be "no-return".
2033   getOrCreateAAFor<AANoReturn>(FPos);
2034 
2035   // Every function might be "no-recurse".
2036   getOrCreateAAFor<AANoRecurse>(FPos);
2037 
2038   // Every function might be "readnone/readonly/writeonly/...".
2039   getOrCreateAAFor<AAMemoryBehavior>(FPos);
2040 
2041   // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2042   getOrCreateAAFor<AAMemoryLocation>(FPos);
2043 
2044   // Every function might be applicable for Heap-To-Stack conversion.
2045   if (EnableHeapToStack)
2046     getOrCreateAAFor<AAHeapToStack>(FPos);
2047 
2048   // Return attributes are only appropriate if the return type is non void.
2049   Type *ReturnType = F.getReturnType();
2050   if (!ReturnType->isVoidTy()) {
2051     // Argument attribute "returned" --- Create only one per function even
2052     // though it is an argument attribute.
2053     getOrCreateAAFor<AAReturnedValues>(FPos);
2054 
2055     IRPosition RetPos = IRPosition::returned(F);
2056 
2057     // Every returned value might be dead.
2058     getOrCreateAAFor<AAIsDead>(RetPos);
2059 
2060     // Every function might be simplified.
2061     getOrCreateAAFor<AAValueSimplify>(RetPos);
2062 
2063     // Every returned value might be marked noundef.
2064     getOrCreateAAFor<AANoUndef>(RetPos);
2065 
2066     if (ReturnType->isPointerTy()) {
2067 
2068       // Every function with pointer return type might be marked align.
2069       getOrCreateAAFor<AAAlign>(RetPos);
2070 
2071       // Every function with pointer return type might be marked nonnull.
2072       getOrCreateAAFor<AANonNull>(RetPos);
2073 
2074       // Every function with pointer return type might be marked noalias.
2075       getOrCreateAAFor<AANoAlias>(RetPos);
2076 
2077       // Every function with pointer return type might be marked
2078       // dereferenceable.
2079       getOrCreateAAFor<AADereferenceable>(RetPos);
2080     }
2081   }
2082 
2083   for (Argument &Arg : F.args()) {
2084     IRPosition ArgPos = IRPosition::argument(Arg);
2085 
2086     // Every argument might be simplified.
2087     getOrCreateAAFor<AAValueSimplify>(ArgPos);
2088 
2089     // Every argument might be dead.
2090     getOrCreateAAFor<AAIsDead>(ArgPos);
2091 
2092     // Every argument might be marked noundef.
2093     getOrCreateAAFor<AANoUndef>(ArgPos);
2094 
2095     if (Arg.getType()->isPointerTy()) {
2096       // Every argument with pointer type might be marked nonnull.
2097       getOrCreateAAFor<AANonNull>(ArgPos);
2098 
2099       // Every argument with pointer type might be marked noalias.
2100       getOrCreateAAFor<AANoAlias>(ArgPos);
2101 
2102       // Every argument with pointer type might be marked dereferenceable.
2103       getOrCreateAAFor<AADereferenceable>(ArgPos);
2104 
2105       // Every argument with pointer type might be marked align.
2106       getOrCreateAAFor<AAAlign>(ArgPos);
2107 
2108       // Every argument with pointer type might be marked nocapture.
2109       getOrCreateAAFor<AANoCapture>(ArgPos);
2110 
2111       // Every argument with pointer type might be marked
2112       // "readnone/readonly/writeonly/..."
2113       getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2114 
2115       // Every argument with pointer type might be marked nofree.
2116       getOrCreateAAFor<AANoFree>(ArgPos);
2117 
2118       // Every argument with pointer type might be privatizable (or promotable)
2119       getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2120     }
2121   }
2122 
2123   auto CallSitePred = [&](Instruction &I) -> bool {
2124     auto &CB = cast<CallBase>(I);
2125     IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2126 
2127     // Call sites might be dead if they do not have side effects and no live
2128     // users. The return value might be dead if there are no live users.
2129     getOrCreateAAFor<AAIsDead>(CBRetPos);
2130 
2131     Function *Callee = CB.getCalledFunction();
2132     // TODO: Even if the callee is not known now we might be able to simplify
2133     //       the call/callee.
2134     if (!Callee)
2135       return true;
2136 
2137     // Skip declarations except if annotations on their call sites were
2138     // explicitly requested.
2139     if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2140         !Callee->hasMetadata(LLVMContext::MD_callback))
2141       return true;
2142 
2143     if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2144 
2145       IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2146 
2147       // Call site return integer values might be limited by a constant range.
2148       if (Callee->getReturnType()->isIntegerTy())
2149         getOrCreateAAFor<AAValueConstantRange>(CBRetPos);
2150     }
2151 
2152     for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2153 
2154       IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2155 
2156       // Every call site argument might be dead.
2157       getOrCreateAAFor<AAIsDead>(CBArgPos);
2158 
2159       // Call site argument might be simplified.
2160       getOrCreateAAFor<AAValueSimplify>(CBArgPos);
2161 
2162       // Every call site argument might be marked "noundef".
2163       getOrCreateAAFor<AANoUndef>(CBArgPos);
2164 
2165       if (!CB.getArgOperand(I)->getType()->isPointerTy())
2166         continue;
2167 
2168       // Call site argument attribute "non-null".
2169       getOrCreateAAFor<AANonNull>(CBArgPos);
2170 
2171       // Call site argument attribute "nocapture".
2172       getOrCreateAAFor<AANoCapture>(CBArgPos);
2173 
2174       // Call site argument attribute "no-alias".
2175       getOrCreateAAFor<AANoAlias>(CBArgPos);
2176 
2177       // Call site argument attribute "dereferenceable".
2178       getOrCreateAAFor<AADereferenceable>(CBArgPos);
2179 
2180       // Call site argument attribute "align".
2181       getOrCreateAAFor<AAAlign>(CBArgPos);
2182 
2183       // Call site argument attribute
2184       // "readnone/readonly/writeonly/..."
2185       getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2186 
2187       // Call site argument attribute "nofree".
2188       getOrCreateAAFor<AANoFree>(CBArgPos);
2189     }
2190     return true;
2191   };
2192 
2193   auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2194   bool Success;
2195   Success = checkForAllInstructionsImpl(
2196       nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2197       {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2198        (unsigned)Instruction::Call});
2199   (void)Success;
2200   assert(Success && "Expected the check call to be successful!");
2201 
2202   auto LoadStorePred = [&](Instruction &I) -> bool {
2203     if (isa<LoadInst>(I))
2204       getOrCreateAAFor<AAAlign>(
2205           IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2206     else
2207       getOrCreateAAFor<AAAlign>(
2208           IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2209     return true;
2210   };
2211   Success = checkForAllInstructionsImpl(
2212       nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2213       {(unsigned)Instruction::Load, (unsigned)Instruction::Store});
2214   (void)Success;
2215   assert(Success && "Expected the check call to be successful!");
2216 }
2217 
2218 /// Helpers to ease debugging through output streams and print calls.
2219 ///
2220 ///{
operator <<(raw_ostream & OS,ChangeStatus S)2221 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2222   return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2223 }
2224 
operator <<(raw_ostream & OS,IRPosition::Kind AP)2225 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2226   switch (AP) {
2227   case IRPosition::IRP_INVALID:
2228     return OS << "inv";
2229   case IRPosition::IRP_FLOAT:
2230     return OS << "flt";
2231   case IRPosition::IRP_RETURNED:
2232     return OS << "fn_ret";
2233   case IRPosition::IRP_CALL_SITE_RETURNED:
2234     return OS << "cs_ret";
2235   case IRPosition::IRP_FUNCTION:
2236     return OS << "fn";
2237   case IRPosition::IRP_CALL_SITE:
2238     return OS << "cs";
2239   case IRPosition::IRP_ARGUMENT:
2240     return OS << "arg";
2241   case IRPosition::IRP_CALL_SITE_ARGUMENT:
2242     return OS << "cs_arg";
2243   }
2244   llvm_unreachable("Unknown attribute position!");
2245 }
2246 
operator <<(raw_ostream & OS,const IRPosition & Pos)2247 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2248   const Value &AV = Pos.getAssociatedValue();
2249   OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2250      << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2251 
2252   if (Pos.hasCallBaseContext())
2253     OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2254   return OS << "}";
2255 }
2256 
operator <<(raw_ostream & OS,const IntegerRangeState & S)2257 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2258   OS << "range-state(" << S.getBitWidth() << ")<";
2259   S.getKnown().print(OS);
2260   OS << " / ";
2261   S.getAssumed().print(OS);
2262   OS << ">";
2263 
2264   return OS << static_cast<const AbstractState &>(S);
2265 }
2266 
operator <<(raw_ostream & OS,const AbstractState & S)2267 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2268   return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2269 }
2270 
operator <<(raw_ostream & OS,const AbstractAttribute & AA)2271 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2272   AA.print(OS);
2273   return OS;
2274 }
2275 
operator <<(raw_ostream & OS,const PotentialConstantIntValuesState & S)2276 raw_ostream &llvm::operator<<(raw_ostream &OS,
2277                               const PotentialConstantIntValuesState &S) {
2278   OS << "set-state(< {";
2279   if (!S.isValidState())
2280     OS << "full-set";
2281   else {
2282     for (auto &it : S.getAssumedSet())
2283       OS << it << ", ";
2284     if (S.undefIsContained())
2285       OS << "undef ";
2286   }
2287   OS << "} >)";
2288 
2289   return OS;
2290 }
2291 
print(raw_ostream & OS) const2292 void AbstractAttribute::print(raw_ostream &OS) const {
2293   OS << "[";
2294   OS << getName();
2295   OS << "] for CtxI ";
2296 
2297   if (auto *I = getCtxI()) {
2298     OS << "'";
2299     I->print(OS);
2300     OS << "'";
2301   } else
2302     OS << "<<null inst>>";
2303 
2304   OS << " at position " << getIRPosition() << " with state " << getAsStr()
2305      << '\n';
2306 }
2307 
printWithDeps(raw_ostream & OS) const2308 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2309   print(OS);
2310 
2311   for (const auto &DepAA : Deps) {
2312     auto *AA = DepAA.getPointer();
2313     OS << "  updates ";
2314     AA->print(OS);
2315   }
2316 
2317   OS << '\n';
2318 }
2319 ///}
2320 
2321 /// ----------------------------------------------------------------------------
2322 ///                       Pass (Manager) Boilerplate
2323 /// ----------------------------------------------------------------------------
2324 
runAttributorOnFunctions(InformationCache & InfoCache,SetVector<Function * > & Functions,AnalysisGetter & AG,CallGraphUpdater & CGUpdater,bool DeleteFns)2325 static bool runAttributorOnFunctions(InformationCache &InfoCache,
2326                                      SetVector<Function *> &Functions,
2327                                      AnalysisGetter &AG,
2328                                      CallGraphUpdater &CGUpdater,
2329                                      bool DeleteFns) {
2330   if (Functions.empty())
2331     return false;
2332 
2333   LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size()
2334                     << " functions.\n");
2335 
2336   // Create an Attributor and initially empty information cache that is filled
2337   // while we identify default attribute opportunities.
2338   Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
2339                DeleteFns);
2340 
2341   // Create shallow wrappers for all functions that are not IPO amendable
2342   if (AllowShallowWrappers)
2343     for (Function *F : Functions)
2344       if (!A.isFunctionIPOAmendable(*F))
2345         Attributor::createShallowWrapper(*F);
2346 
2347   // Internalize non-exact functions
2348   // TODO: for now we eagerly internalize functions without calculating the
2349   //       cost, we need a cost interface to determine whether internalizing
2350   //       a function is "benefitial"
2351   if (AllowDeepWrapper) {
2352     unsigned FunSize = Functions.size();
2353     for (unsigned u = 0; u < FunSize; u++) {
2354       Function *F = Functions[u];
2355       if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2356           !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2357         Function *NewF = internalizeFunction(*F);
2358         Functions.insert(NewF);
2359 
2360         // Update call graph
2361         CGUpdater.replaceFunctionWith(*F, *NewF);
2362         for (const Use &U : NewF->uses())
2363           if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2364             auto *CallerF = CB->getCaller();
2365             CGUpdater.reanalyzeFunction(*CallerF);
2366           }
2367       }
2368     }
2369   }
2370 
2371   for (Function *F : Functions) {
2372     if (F->hasExactDefinition())
2373       NumFnWithExactDefinition++;
2374     else
2375       NumFnWithoutExactDefinition++;
2376 
2377     // We look at internal functions only on-demand but if any use is not a
2378     // direct call or outside the current set of analyzed functions, we have
2379     // to do it eagerly.
2380     if (F->hasLocalLinkage()) {
2381       if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2382             const auto *CB = dyn_cast<CallBase>(U.getUser());
2383             return CB && CB->isCallee(&U) &&
2384                    Functions.count(const_cast<Function *>(CB->getCaller()));
2385           }))
2386         continue;
2387     }
2388 
2389     // Populate the Attributor with abstract attribute opportunities in the
2390     // function and the information cache with IR information.
2391     A.identifyDefaultAbstractAttributes(*F);
2392   }
2393 
2394   ChangeStatus Changed = A.run();
2395 
2396   LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
2397                     << " functions, result: " << Changed << ".\n");
2398   return Changed == ChangeStatus::CHANGED;
2399 }
2400 
viewGraph()2401 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2402 
dumpGraph()2403 void AADepGraph::dumpGraph() {
2404   static std::atomic<int> CallTimes;
2405   std::string Prefix;
2406 
2407   if (!DepGraphDotFileNamePrefix.empty())
2408     Prefix = DepGraphDotFileNamePrefix;
2409   else
2410     Prefix = "dep_graph";
2411   std::string Filename =
2412       Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2413 
2414   outs() << "Dependency graph dump to " << Filename << ".\n";
2415 
2416   std::error_code EC;
2417 
2418   raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
2419   if (!EC)
2420     llvm::WriteGraph(File, this);
2421 
2422   CallTimes++;
2423 }
2424 
print()2425 void AADepGraph::print() {
2426   for (auto DepAA : SyntheticRoot.Deps)
2427     cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2428 }
2429 
run(Module & M,ModuleAnalysisManager & AM)2430 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2431   FunctionAnalysisManager &FAM =
2432       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2433   AnalysisGetter AG(FAM);
2434 
2435   SetVector<Function *> Functions;
2436   for (Function &F : M)
2437     Functions.insert(&F);
2438 
2439   CallGraphUpdater CGUpdater;
2440   BumpPtrAllocator Allocator;
2441   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2442   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2443                                /* DeleteFns */ true)) {
2444     // FIXME: Think about passes we will preserve and add them here.
2445     return PreservedAnalyses::none();
2446   }
2447   return PreservedAnalyses::all();
2448 }
2449 
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)2450 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2451                                            CGSCCAnalysisManager &AM,
2452                                            LazyCallGraph &CG,
2453                                            CGSCCUpdateResult &UR) {
2454   FunctionAnalysisManager &FAM =
2455       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2456   AnalysisGetter AG(FAM);
2457 
2458   SetVector<Function *> Functions;
2459   for (LazyCallGraph::Node &N : C)
2460     Functions.insert(&N.getFunction());
2461 
2462   if (Functions.empty())
2463     return PreservedAnalyses::all();
2464 
2465   Module &M = *Functions.back()->getParent();
2466   CallGraphUpdater CGUpdater;
2467   CGUpdater.initialize(CG, C, AM, UR);
2468   BumpPtrAllocator Allocator;
2469   InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2470   if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2471                                /* DeleteFns */ false)) {
2472     // FIXME: Think about passes we will preserve and add them here.
2473     PreservedAnalyses PA;
2474     PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2475     return PA;
2476   }
2477   return PreservedAnalyses::all();
2478 }
2479 
2480 namespace llvm {
2481 
2482 template <> struct GraphTraits<AADepGraphNode *> {
2483   using NodeRef = AADepGraphNode *;
2484   using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2485   using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2486 
getEntryNodellvm::GraphTraits2487   static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
DepGetValllvm::GraphTraits2488   static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2489 
2490   using ChildIteratorType =
2491       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2492   using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2493 
child_beginllvm::GraphTraits2494   static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2495 
child_endllvm::GraphTraits2496   static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2497 };
2498 
2499 template <>
2500 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
getEntryNodellvm::GraphTraits2501   static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2502 
2503   using nodes_iterator =
2504       mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2505 
nodes_beginllvm::GraphTraits2506   static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2507 
nodes_endllvm::GraphTraits2508   static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2509 };
2510 
2511 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
DOTGraphTraitsllvm::DOTGraphTraits2512   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2513 
getNodeLabelllvm::DOTGraphTraits2514   static std::string getNodeLabel(const AADepGraphNode *Node,
2515                                   const AADepGraph *DG) {
2516     std::string AAString;
2517     raw_string_ostream O(AAString);
2518     Node->print(O);
2519     return AAString;
2520   }
2521 };
2522 
2523 } // end namespace llvm
2524 
2525 namespace {
2526 
2527 struct AttributorLegacyPass : public ModulePass {
2528   static char ID;
2529 
AttributorLegacyPass__anonfe0f36560a11::AttributorLegacyPass2530   AttributorLegacyPass() : ModulePass(ID) {
2531     initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2532   }
2533 
runOnModule__anonfe0f36560a11::AttributorLegacyPass2534   bool runOnModule(Module &M) override {
2535     if (skipModule(M))
2536       return false;
2537 
2538     AnalysisGetter AG;
2539     SetVector<Function *> Functions;
2540     for (Function &F : M)
2541       Functions.insert(&F);
2542 
2543     CallGraphUpdater CGUpdater;
2544     BumpPtrAllocator Allocator;
2545     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2546     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2547                                     /* DeleteFns*/ true);
2548   }
2549 
getAnalysisUsage__anonfe0f36560a11::AttributorLegacyPass2550   void getAnalysisUsage(AnalysisUsage &AU) const override {
2551     // FIXME: Think about passes we will preserve and add them here.
2552     AU.addRequired<TargetLibraryInfoWrapperPass>();
2553   }
2554 };
2555 
2556 struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
2557   static char ID;
2558 
AttributorCGSCCLegacyPass__anonfe0f36560a11::AttributorCGSCCLegacyPass2559   AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
2560     initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
2561   }
2562 
runOnSCC__anonfe0f36560a11::AttributorCGSCCLegacyPass2563   bool runOnSCC(CallGraphSCC &SCC) override {
2564     if (skipSCC(SCC))
2565       return false;
2566 
2567     SetVector<Function *> Functions;
2568     for (CallGraphNode *CGN : SCC)
2569       if (Function *Fn = CGN->getFunction())
2570         if (!Fn->isDeclaration())
2571           Functions.insert(Fn);
2572 
2573     if (Functions.empty())
2574       return false;
2575 
2576     AnalysisGetter AG;
2577     CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
2578     CallGraphUpdater CGUpdater;
2579     CGUpdater.initialize(CG, SCC);
2580     Module &M = *Functions.back()->getParent();
2581     BumpPtrAllocator Allocator;
2582     InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2583     return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2584                                     /* DeleteFns */ false);
2585   }
2586 
getAnalysisUsage__anonfe0f36560a11::AttributorCGSCCLegacyPass2587   void getAnalysisUsage(AnalysisUsage &AU) const override {
2588     // FIXME: Think about passes we will preserve and add them here.
2589     AU.addRequired<TargetLibraryInfoWrapperPass>();
2590     CallGraphSCCPass::getAnalysisUsage(AU);
2591   }
2592 };
2593 
2594 } // end anonymous namespace
2595 
createAttributorLegacyPass()2596 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
createAttributorCGSCCLegacyPass()2597 Pass *llvm::createAttributorCGSCCLegacyPass() {
2598   return new AttributorCGSCCLegacyPass();
2599 }
2600 
2601 char AttributorLegacyPass::ID = 0;
2602 char AttributorCGSCCLegacyPass::ID = 0;
2603 
2604 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
2605                       "Deduce and propagate attributes", false, false)
2606 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2607 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
2608                     "Deduce and propagate attributes", false, false)
2609 INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
2610                       "Deduce and propagate attributes (CGSCC pass)", false,
2611                       false)
2612 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2613 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
2614 INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
2615                     "Deduce and propagate attributes (CGSCC pass)", false,
2616                     false)
2617