1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/BinaryFormat/Dwarf.h"
88 #include "llvm/CodeGen/LexicalScopes.h"
89 #include "llvm/CodeGen/MachineBasicBlock.h"
90 #include "llvm/CodeGen/MachineDominators.h"
91 #include "llvm/CodeGen/MachineFrameInfo.h"
92 #include "llvm/CodeGen/MachineFunction.h"
93 #include "llvm/CodeGen/MachineInstr.h"
94 #include "llvm/CodeGen/MachineInstrBuilder.h"
95 #include "llvm/CodeGen/MachineInstrBundle.h"
96 #include "llvm/CodeGen/MachineMemOperand.h"
97 #include "llvm/CodeGen/MachineOperand.h"
98 #include "llvm/CodeGen/PseudoSourceValue.h"
99 #include "llvm/CodeGen/TargetFrameLowering.h"
100 #include "llvm/CodeGen/TargetInstrInfo.h"
101 #include "llvm/CodeGen/TargetLowering.h"
102 #include "llvm/CodeGen/TargetPassConfig.h"
103 #include "llvm/CodeGen/TargetRegisterInfo.h"
104 #include "llvm/CodeGen/TargetSubtargetInfo.h"
105 #include "llvm/Config/llvm-config.h"
106 #include "llvm/IR/DebugInfoMetadata.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/MCRegisterInfo.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/GenericIteratedDominanceFrontier.h"
114 #include "llvm/Support/TypeSize.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <climits>
121 #include <cstdint>
122 #include <functional>
123 #include <queue>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 #include "InstrRefBasedImpl.h"
129 #include "LiveDebugValues.h"
130 #include <optional>
131 
132 using namespace llvm;
133 using namespace LiveDebugValues;
134 
135 // SSAUpdaterImple sets DEBUG_TYPE, change it.
136 #undef DEBUG_TYPE
137 #define DEBUG_TYPE "livedebugvalues"
138 
139 // Act more like the VarLoc implementation, by propagating some locations too
140 // far and ignoring some transfers.
141 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
142                                    cl::desc("Act like old LiveDebugValues did"),
143                                    cl::init(false));
144 
145 // Limit for the maximum number of stack slots we should track, past which we
146 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all
147 // stack slots which leads to high memory consumption, and in some scenarios
148 // (such as asan with very many locals) the working set of the function can be
149 // very large, causing many spills. In these scenarios, it is very unlikely that
150 // the developer has hundreds of variables live at the same time that they're
151 // carefully thinking about -- instead, they probably autogenerated the code.
152 // When this happens, gracefully stop tracking excess spill slots, rather than
153 // consuming all the developer's memory.
154 static cl::opt<unsigned>
155     StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
156                          cl::desc("livedebugvalues-stack-ws-limit"),
157                          cl::init(250));
158 
159 DbgOpID DbgOpID::UndefID = DbgOpID(0xffffffff);
160 
161 /// Tracker for converting machine value locations and variable values into
162 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
163 /// specifying block live-in locations and transfers within blocks.
164 ///
165 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
166 /// and must be initialized with the set of variable values that are live-in to
167 /// the block. The caller then repeatedly calls process(). TransferTracker picks
168 /// out variable locations for the live-in variable values (if there _is_ a
169 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
170 /// stepped through, transfers of values between machine locations are
171 /// identified and if profitable, a DBG_VALUE created.
172 ///
173 /// This is where debug use-before-defs would be resolved: a variable with an
174 /// unavailable value could materialize in the middle of a block, when the
175 /// value becomes available. Or, we could detect clobbers and re-specify the
176 /// variable in a backup location. (XXX these are unimplemented).
177 class TransferTracker {
178 public:
179   const TargetInstrInfo *TII;
180   const TargetLowering *TLI;
181   /// This machine location tracker is assumed to always contain the up-to-date
182   /// value mapping for all machine locations. TransferTracker only reads
183   /// information from it. (XXX make it const?)
184   MLocTracker *MTracker;
185   MachineFunction &MF;
186   bool ShouldEmitDebugEntryValues;
187 
188   /// Record of all changes in variable locations at a block position. Awkwardly
189   /// we allow inserting either before or after the point: MBB != nullptr
190   /// indicates it's before, otherwise after.
191   struct Transfer {
192     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
193     MachineBasicBlock *MBB; /// non-null if we should insert after.
194     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
195   };
196 
197   /// Stores the resolved operands (machine locations and constants) and
198   /// qualifying meta-information needed to construct a concrete DBG_VALUE-like
199   /// instruction.
200   struct ResolvedDbgValue {
201     SmallVector<ResolvedDbgOp> Ops;
202     DbgValueProperties Properties;
203 
ResolvedDbgValueTransferTracker::ResolvedDbgValue204     ResolvedDbgValue(SmallVectorImpl<ResolvedDbgOp> &Ops,
205                      DbgValueProperties Properties)
206         : Ops(Ops.begin(), Ops.end()), Properties(Properties) {}
207 
208     /// Returns all the LocIdx values used in this struct, in the order in which
209     /// they appear as operands in the debug value; may contain duplicates.
loc_indicesTransferTracker::ResolvedDbgValue210     auto loc_indices() const {
211       return map_range(
212           make_filter_range(
213               Ops, [](const ResolvedDbgOp &Op) { return !Op.IsConst; }),
214           [](const ResolvedDbgOp &Op) { return Op.Loc; });
215     }
216   };
217 
218   /// Collection of transfers (DBG_VALUEs) to be inserted.
219   SmallVector<Transfer, 32> Transfers;
220 
221   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
222   /// between TransferTrackers view of variable locations and MLocTrackers. For
223   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
224   /// does not.
225   SmallVector<ValueIDNum, 32> VarLocs;
226 
227   /// Map from LocIdxes to which DebugVariables are based that location.
228   /// Mantained while stepping through the block. Not accurate if
229   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
230   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
231 
232   /// Map from DebugVariable to it's current location and qualifying meta
233   /// information. To be used in conjunction with ActiveMLocs to construct
234   /// enough information for the DBG_VALUEs for a particular LocIdx.
235   DenseMap<DebugVariable, ResolvedDbgValue> ActiveVLocs;
236 
237   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
238   SmallVector<MachineInstr *, 4> PendingDbgValues;
239 
240   /// Record of a use-before-def: created when a value that's live-in to the
241   /// current block isn't available in any machine location, but it will be
242   /// defined in this block.
243   struct UseBeforeDef {
244     /// Value of this variable, def'd in block.
245     SmallVector<DbgOp> Values;
246     /// Identity of this variable.
247     DebugVariable Var;
248     /// Additional variable properties.
249     DbgValueProperties Properties;
UseBeforeDefTransferTracker::UseBeforeDef250     UseBeforeDef(ArrayRef<DbgOp> Values, const DebugVariable &Var,
251                  const DbgValueProperties &Properties)
252         : Values(Values.begin(), Values.end()), Var(Var),
253           Properties(Properties) {}
254   };
255 
256   /// Map from instruction index (within the block) to the set of UseBeforeDefs
257   /// that become defined at that instruction.
258   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
259 
260   /// The set of variables that are in UseBeforeDefs and can become a location
261   /// once the relevant value is defined. An element being erased from this
262   /// collection prevents the use-before-def materializing.
263   DenseSet<DebugVariable> UseBeforeDefVariables;
264 
265   const TargetRegisterInfo &TRI;
266   const BitVector &CalleeSavedRegs;
267 
TransferTracker(const TargetInstrInfo * TII,MLocTracker * MTracker,MachineFunction & MF,const TargetRegisterInfo & TRI,const BitVector & CalleeSavedRegs,const TargetPassConfig & TPC)268   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
269                   MachineFunction &MF, const TargetRegisterInfo &TRI,
270                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
271       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
272         CalleeSavedRegs(CalleeSavedRegs) {
273     TLI = MF.getSubtarget().getTargetLowering();
274     auto &TM = TPC.getTM<TargetMachine>();
275     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
276   }
277 
isCalleeSaved(LocIdx L) const278   bool isCalleeSaved(LocIdx L) const {
279     unsigned Reg = MTracker->LocIdxToLocID[L];
280     if (Reg >= MTracker->NumRegs)
281       return false;
282     for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
283       if (CalleeSavedRegs.test(*RAI))
284         return true;
285     return false;
286   };
287 
288   // An estimate of the expected lifespan of values at a machine location, with
289   // a greater value corresponding to a longer expected lifespan, i.e. spill
290   // slots generally live longer than callee-saved registers which generally
291   // live longer than non-callee-saved registers. The minimum value of 0
292   // corresponds to an illegal location that cannot have a "lifespan" at all.
293   enum class LocationQuality : unsigned char {
294     Illegal = 0,
295     Register,
296     CalleeSavedRegister,
297     SpillSlot,
298     Best = SpillSlot
299   };
300 
301   class LocationAndQuality {
302     unsigned Location : 24;
303     unsigned Quality : 8;
304 
305   public:
LocationAndQuality()306     LocationAndQuality() : Location(0), Quality(0) {}
LocationAndQuality(LocIdx L,LocationQuality Q)307     LocationAndQuality(LocIdx L, LocationQuality Q)
308         : Location(L.asU64()), Quality(static_cast<unsigned>(Q)) {}
getLoc() const309     LocIdx getLoc() const {
310       if (!Quality)
311         return LocIdx::MakeIllegalLoc();
312       return LocIdx(Location);
313     }
getQuality() const314     LocationQuality getQuality() const { return LocationQuality(Quality); }
isIllegal() const315     bool isIllegal() const { return !Quality; }
isBest() const316     bool isBest() const { return getQuality() == LocationQuality::Best; }
317   };
318 
319   // Returns the LocationQuality for the location L iff the quality of L is
320   // is strictly greater than the provided minimum quality.
321   std::optional<LocationQuality>
getLocQualityIfBetter(LocIdx L,LocationQuality Min) const322   getLocQualityIfBetter(LocIdx L, LocationQuality Min) const {
323     if (L.isIllegal())
324       return std::nullopt;
325     if (Min >= LocationQuality::SpillSlot)
326       return std::nullopt;
327     if (MTracker->isSpill(L))
328       return LocationQuality::SpillSlot;
329     if (Min >= LocationQuality::CalleeSavedRegister)
330       return std::nullopt;
331     if (isCalleeSaved(L))
332       return LocationQuality::CalleeSavedRegister;
333     if (Min >= LocationQuality::Register)
334       return std::nullopt;
335     return LocationQuality::Register;
336   }
337 
338   /// For a variable \p Var with the live-in value \p Value, attempts to resolve
339   /// the DbgValue to a concrete DBG_VALUE, emitting that value and loading the
340   /// tracking information to track Var throughout the block.
341   /// \p ValueToLoc is a map containing the best known location for every
342   ///    ValueIDNum that Value may use.
343   /// \p MBB is the basic block that we are loading the live-in value for.
344   /// \p DbgOpStore is the map containing the DbgOpID->DbgOp mapping needed to
345   ///    determine the values used by Value.
loadVarInloc(MachineBasicBlock & MBB,DbgOpIDMap & DbgOpStore,const DenseMap<ValueIDNum,LocationAndQuality> & ValueToLoc,DebugVariable Var,DbgValue Value)346   void loadVarInloc(MachineBasicBlock &MBB, DbgOpIDMap &DbgOpStore,
347                     const DenseMap<ValueIDNum, LocationAndQuality> &ValueToLoc,
348                     DebugVariable Var, DbgValue Value) {
349     SmallVector<DbgOp> DbgOps;
350     SmallVector<ResolvedDbgOp> ResolvedDbgOps;
351     bool IsValueValid = true;
352     unsigned LastUseBeforeDef = 0;
353 
354     // If every value used by the incoming DbgValue is available at block
355     // entry, ResolvedDbgOps will contain the machine locations/constants for
356     // those values and will be used to emit a debug location.
357     // If one or more values are not yet available, but will all be defined in
358     // this block, then LastUseBeforeDef will track the instruction index in
359     // this BB at which the last of those values is defined, DbgOps will
360     // contain the values that we will emit when we reach that instruction.
361     // If one or more values are undef or not available throughout this block,
362     // and we can't recover as an entry value, we set IsValueValid=false and
363     // skip this variable.
364     for (DbgOpID ID : Value.getDbgOpIDs()) {
365       DbgOp Op = DbgOpStore.find(ID);
366       DbgOps.push_back(Op);
367       if (ID.isUndef()) {
368         IsValueValid = false;
369         break;
370       }
371       if (ID.isConst()) {
372         ResolvedDbgOps.push_back(Op.MO);
373         continue;
374       }
375 
376       // If the value has no location, we can't make a variable location.
377       const ValueIDNum &Num = Op.ID;
378       auto ValuesPreferredLoc = ValueToLoc.find(Num);
379       if (ValuesPreferredLoc->second.isIllegal()) {
380         // If it's a def that occurs in this block, register it as a
381         // use-before-def to be resolved as we step through the block.
382         // Continue processing values so that we add any other UseBeforeDef
383         // entries needed for later.
384         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) {
385           LastUseBeforeDef = std::max(LastUseBeforeDef,
386                                       static_cast<unsigned>(Num.getInst()));
387           continue;
388         }
389         recoverAsEntryValue(Var, Value.Properties, Num);
390         IsValueValid = false;
391         break;
392       }
393 
394       // Defer modifying ActiveVLocs until after we've confirmed we have a
395       // live range.
396       LocIdx M = ValuesPreferredLoc->second.getLoc();
397       ResolvedDbgOps.push_back(M);
398     }
399 
400     // If we cannot produce a valid value for the LiveIn value within this
401     // block, skip this variable.
402     if (!IsValueValid)
403       return;
404 
405     // Add UseBeforeDef entry for the last value to be defined in this block.
406     if (LastUseBeforeDef) {
407       addUseBeforeDef(Var, Value.Properties, DbgOps,
408                       LastUseBeforeDef);
409       return;
410     }
411 
412     // The LiveIn value is available at block entry, begin tracking and record
413     // the transfer.
414     for (const ResolvedDbgOp &Op : ResolvedDbgOps)
415       if (!Op.IsConst)
416         ActiveMLocs[Op.Loc].insert(Var);
417     auto NewValue = ResolvedDbgValue{ResolvedDbgOps, Value.Properties};
418     auto Result = ActiveVLocs.insert(std::make_pair(Var, NewValue));
419     if (!Result.second)
420       Result.first->second = NewValue;
421     PendingDbgValues.push_back(
422         MTracker->emitLoc(ResolvedDbgOps, Var, Value.Properties));
423   }
424 
425   /// Load object with live-in variable values. \p mlocs contains the live-in
426   /// values in each machine location, while \p vlocs the live-in variable
427   /// values. This method picks variable locations for the live-in variables,
428   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
429   /// object fields to track variable locations as we step through the block.
430   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
431   void
loadInlocs(MachineBasicBlock & MBB,ValueTable & MLocs,DbgOpIDMap & DbgOpStore,const SmallVectorImpl<std::pair<DebugVariable,DbgValue>> & VLocs,unsigned NumLocs)432   loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs, DbgOpIDMap &DbgOpStore,
433              const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
434              unsigned NumLocs) {
435     ActiveMLocs.clear();
436     ActiveVLocs.clear();
437     VarLocs.clear();
438     VarLocs.reserve(NumLocs);
439     UseBeforeDefs.clear();
440     UseBeforeDefVariables.clear();
441 
442     // Map of the preferred location for each value.
443     DenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
444 
445     // Initialized the preferred-location map with illegal locations, to be
446     // filled in later.
447     for (const auto &VLoc : VLocs)
448       if (VLoc.second.Kind == DbgValue::Def)
449         for (DbgOpID OpID : VLoc.second.getDbgOpIDs())
450           if (!OpID.ID.IsConst)
451             ValueToLoc.insert({DbgOpStore.find(OpID).ID, LocationAndQuality()});
452 
453     ActiveMLocs.reserve(VLocs.size());
454     ActiveVLocs.reserve(VLocs.size());
455 
456     // Produce a map of value numbers to the current machine locs they live
457     // in. When emulating VarLocBasedImpl, there should only be one
458     // location; when not, we get to pick.
459     for (auto Location : MTracker->locations()) {
460       LocIdx Idx = Location.Idx;
461       ValueIDNum &VNum = MLocs[Idx.asU64()];
462       if (VNum == ValueIDNum::EmptyValue)
463         continue;
464       VarLocs.push_back(VNum);
465 
466       // Is there a variable that wants a location for this value? If not, skip.
467       auto VIt = ValueToLoc.find(VNum);
468       if (VIt == ValueToLoc.end())
469         continue;
470 
471       auto &Previous = VIt->second;
472       // If this is the first location with that value, pick it. Otherwise,
473       // consider whether it's a "longer term" location.
474       std::optional<LocationQuality> ReplacementQuality =
475           getLocQualityIfBetter(Idx, Previous.getQuality());
476       if (ReplacementQuality)
477         Previous = LocationAndQuality(Idx, *ReplacementQuality);
478     }
479 
480     // Now map variables to their picked LocIdxes.
481     for (const auto &Var : VLocs) {
482       loadVarInloc(MBB, DbgOpStore, ValueToLoc, Var.first, Var.second);
483     }
484     flushDbgValues(MBB.begin(), &MBB);
485   }
486 
487   /// Record that \p Var has value \p ID, a value that becomes available
488   /// later in the function.
addUseBeforeDef(const DebugVariable & Var,const DbgValueProperties & Properties,const SmallVectorImpl<DbgOp> & DbgOps,unsigned Inst)489   void addUseBeforeDef(const DebugVariable &Var,
490                        const DbgValueProperties &Properties,
491                        const SmallVectorImpl<DbgOp> &DbgOps, unsigned Inst) {
492     UseBeforeDefs[Inst].emplace_back(DbgOps, Var, Properties);
493     UseBeforeDefVariables.insert(Var);
494   }
495 
496   /// After the instruction at index \p Inst and position \p pos has been
497   /// processed, check whether it defines a variable value in a use-before-def.
498   /// If so, and the variable value hasn't changed since the start of the
499   /// block, create a DBG_VALUE.
checkInstForNewValues(unsigned Inst,MachineBasicBlock::iterator pos)500   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
501     auto MIt = UseBeforeDefs.find(Inst);
502     if (MIt == UseBeforeDefs.end())
503       return;
504 
505     // Map of values to the locations that store them for every value used by
506     // the variables that may have become available.
507     SmallDenseMap<ValueIDNum, LocationAndQuality> ValueToLoc;
508 
509     // Populate ValueToLoc with illegal default mappings for every value used by
510     // any UseBeforeDef variables for this instruction.
511     for (auto &Use : MIt->second) {
512       if (!UseBeforeDefVariables.count(Use.Var))
513         continue;
514 
515       for (DbgOp &Op : Use.Values) {
516         assert(!Op.isUndef() && "UseBeforeDef erroneously created for a "
517                                 "DbgValue with undef values.");
518         if (Op.IsConst)
519           continue;
520 
521         ValueToLoc.insert({Op.ID, LocationAndQuality()});
522       }
523     }
524 
525     // Exit early if we have no DbgValues to produce.
526     if (ValueToLoc.empty())
527       return;
528 
529     // Determine the best location for each desired value.
530     for (auto Location : MTracker->locations()) {
531       LocIdx Idx = Location.Idx;
532       ValueIDNum &LocValueID = Location.Value;
533 
534       // Is there a variable that wants a location for this value? If not, skip.
535       auto VIt = ValueToLoc.find(LocValueID);
536       if (VIt == ValueToLoc.end())
537         continue;
538 
539       auto &Previous = VIt->second;
540       // If this is the first location with that value, pick it. Otherwise,
541       // consider whether it's a "longer term" location.
542       std::optional<LocationQuality> ReplacementQuality =
543           getLocQualityIfBetter(Idx, Previous.getQuality());
544       if (ReplacementQuality)
545         Previous = LocationAndQuality(Idx, *ReplacementQuality);
546     }
547 
548     // Using the map of values to locations, produce a final set of values for
549     // this variable.
550     for (auto &Use : MIt->second) {
551       if (!UseBeforeDefVariables.count(Use.Var))
552         continue;
553 
554       SmallVector<ResolvedDbgOp> DbgOps;
555 
556       for (DbgOp &Op : Use.Values) {
557         if (Op.IsConst) {
558           DbgOps.push_back(Op.MO);
559           continue;
560         }
561         LocIdx NewLoc = ValueToLoc.find(Op.ID)->second.getLoc();
562         if (NewLoc.isIllegal())
563           break;
564         DbgOps.push_back(NewLoc);
565       }
566 
567       // If at least one value used by this debug value is no longer available,
568       // i.e. one of the values was killed before we finished defining all of
569       // the values used by this variable, discard.
570       if (DbgOps.size() != Use.Values.size())
571         continue;
572 
573       // Otherwise, we're good to go.
574       PendingDbgValues.push_back(
575           MTracker->emitLoc(DbgOps, Use.Var, Use.Properties));
576     }
577     flushDbgValues(pos, nullptr);
578   }
579 
580   /// Helper to move created DBG_VALUEs into Transfers collection.
flushDbgValues(MachineBasicBlock::iterator Pos,MachineBasicBlock * MBB)581   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
582     if (PendingDbgValues.size() == 0)
583       return;
584 
585     // Pick out the instruction start position.
586     MachineBasicBlock::instr_iterator BundleStart;
587     if (MBB && Pos == MBB->begin())
588       BundleStart = MBB->instr_begin();
589     else
590       BundleStart = getBundleStart(Pos->getIterator());
591 
592     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
593     PendingDbgValues.clear();
594   }
595 
isEntryValueVariable(const DebugVariable & Var,const DIExpression * Expr) const596   bool isEntryValueVariable(const DebugVariable &Var,
597                             const DIExpression *Expr) const {
598     if (!Var.getVariable()->isParameter())
599       return false;
600 
601     if (Var.getInlinedAt())
602       return false;
603 
604     if (Expr->getNumElements() > 0)
605       return false;
606 
607     return true;
608   }
609 
isEntryValueValue(const ValueIDNum & Val) const610   bool isEntryValueValue(const ValueIDNum &Val) const {
611     // Must be in entry block (block number zero), and be a PHI / live-in value.
612     if (Val.getBlock() || !Val.isPHI())
613       return false;
614 
615     // Entry values must enter in a register.
616     if (MTracker->isSpill(Val.getLoc()))
617       return false;
618 
619     Register SP = TLI->getStackPointerRegisterToSaveRestore();
620     Register FP = TRI.getFrameRegister(MF);
621     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
622     return Reg != SP && Reg != FP;
623   }
624 
recoverAsEntryValue(const DebugVariable & Var,const DbgValueProperties & Prop,const ValueIDNum & Num)625   bool recoverAsEntryValue(const DebugVariable &Var,
626                            const DbgValueProperties &Prop,
627                            const ValueIDNum &Num) {
628     // Is this variable location a candidate to be an entry value. First,
629     // should we be trying this at all?
630     if (!ShouldEmitDebugEntryValues)
631       return false;
632 
633     const DIExpression *DIExpr = Prop.DIExpr;
634 
635     // We don't currently emit entry values for DBG_VALUE_LISTs.
636     if (Prop.IsVariadic) {
637       // If this debug value can be converted to be non-variadic, then do so;
638       // otherwise give up.
639       auto NonVariadicExpression =
640           DIExpression::convertToNonVariadicExpression(DIExpr);
641       if (!NonVariadicExpression)
642         return false;
643       DIExpr = *NonVariadicExpression;
644     }
645 
646     // Is the variable appropriate for entry values (i.e., is a parameter).
647     if (!isEntryValueVariable(Var, DIExpr))
648       return false;
649 
650     // Is the value assigned to this variable still the entry value?
651     if (!isEntryValueValue(Num))
652       return false;
653 
654     // Emit a variable location using an entry value expression.
655     DIExpression *NewExpr =
656         DIExpression::prepend(DIExpr, DIExpression::EntryValue);
657     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
658     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
659 
660     PendingDbgValues.push_back(
661         emitMOLoc(MO, Var, {NewExpr, Prop.Indirect, false}));
662     return true;
663   }
664 
665   /// Change a variable value after encountering a DBG_VALUE inside a block.
redefVar(const MachineInstr & MI)666   void redefVar(const MachineInstr &MI) {
667     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
668                       MI.getDebugLoc()->getInlinedAt());
669     DbgValueProperties Properties(MI);
670 
671     // Ignore non-register locations, we don't transfer those.
672     if (MI.isUndefDebugValue() ||
673         all_of(MI.debug_operands(),
674                [](const MachineOperand &MO) { return !MO.isReg(); })) {
675       auto It = ActiveVLocs.find(Var);
676       if (It != ActiveVLocs.end()) {
677         for (LocIdx Loc : It->second.loc_indices())
678           ActiveMLocs[Loc].erase(Var);
679         ActiveVLocs.erase(It);
680       }
681       // Any use-before-defs no longer apply.
682       UseBeforeDefVariables.erase(Var);
683       return;
684     }
685 
686     SmallVector<ResolvedDbgOp> NewLocs;
687     for (const MachineOperand &MO : MI.debug_operands()) {
688       if (MO.isReg()) {
689         // Any undef regs have already been filtered out above.
690         Register Reg = MO.getReg();
691         LocIdx NewLoc = MTracker->getRegMLoc(Reg);
692         NewLocs.push_back(NewLoc);
693       } else {
694         NewLocs.push_back(MO);
695       }
696     }
697 
698     redefVar(MI, Properties, NewLocs);
699   }
700 
701   /// Handle a change in variable location within a block. Terminate the
702   /// variables current location, and record the value it now refers to, so
703   /// that we can detect location transfers later on.
redefVar(const MachineInstr & MI,const DbgValueProperties & Properties,SmallVectorImpl<ResolvedDbgOp> & NewLocs)704   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
705                 SmallVectorImpl<ResolvedDbgOp> &NewLocs) {
706     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
707                       MI.getDebugLoc()->getInlinedAt());
708     // Any use-before-defs no longer apply.
709     UseBeforeDefVariables.erase(Var);
710 
711     // Erase any previous location.
712     auto It = ActiveVLocs.find(Var);
713     if (It != ActiveVLocs.end()) {
714       for (LocIdx Loc : It->second.loc_indices())
715         ActiveMLocs[Loc].erase(Var);
716     }
717 
718     // If there _is_ no new location, all we had to do was erase.
719     if (NewLocs.empty()) {
720       if (It != ActiveVLocs.end())
721         ActiveVLocs.erase(It);
722       return;
723     }
724 
725     SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
726     for (ResolvedDbgOp &Op : NewLocs) {
727       if (Op.IsConst)
728         continue;
729 
730       LocIdx NewLoc = Op.Loc;
731 
732       // Check whether our local copy of values-by-location in #VarLocs is out
733       // of date. Wipe old tracking data for the location if it's been clobbered
734       // in the meantime.
735       if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
736         for (const auto &P : ActiveMLocs[NewLoc]) {
737           auto LostVLocIt = ActiveVLocs.find(P);
738           if (LostVLocIt != ActiveVLocs.end()) {
739             for (LocIdx Loc : LostVLocIt->second.loc_indices()) {
740               // Every active variable mapping for NewLoc will be cleared, no
741               // need to track individual variables.
742               if (Loc == NewLoc)
743                 continue;
744               LostMLocs.emplace_back(Loc, P);
745             }
746           }
747           ActiveVLocs.erase(P);
748         }
749         for (const auto &LostMLoc : LostMLocs)
750           ActiveMLocs[LostMLoc.first].erase(LostMLoc.second);
751         LostMLocs.clear();
752         It = ActiveVLocs.find(Var);
753         ActiveMLocs[NewLoc.asU64()].clear();
754         VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
755       }
756 
757       ActiveMLocs[NewLoc].insert(Var);
758     }
759 
760     if (It == ActiveVLocs.end()) {
761       ActiveVLocs.insert(
762           std::make_pair(Var, ResolvedDbgValue(NewLocs, Properties)));
763     } else {
764       It->second.Ops.assign(NewLocs);
765       It->second.Properties = Properties;
766     }
767   }
768 
769   /// Account for a location \p mloc being clobbered. Examine the variable
770   /// locations that will be terminated: and try to recover them by using
771   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
772   /// explicitly terminate a location if it can't be recovered.
clobberMloc(LocIdx MLoc,MachineBasicBlock::iterator Pos,bool MakeUndef=true)773   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
774                    bool MakeUndef = true) {
775     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
776     if (ActiveMLocIt == ActiveMLocs.end())
777       return;
778 
779     // What was the old variable value?
780     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
781     clobberMloc(MLoc, OldValue, Pos, MakeUndef);
782   }
783   /// Overload that takes an explicit value \p OldValue for when the value in
784   /// \p MLoc has changed and the TransferTracker's locations have not been
785   /// updated yet.
clobberMloc(LocIdx MLoc,ValueIDNum OldValue,MachineBasicBlock::iterator Pos,bool MakeUndef=true)786   void clobberMloc(LocIdx MLoc, ValueIDNum OldValue,
787                    MachineBasicBlock::iterator Pos, bool MakeUndef = true) {
788     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
789     if (ActiveMLocIt == ActiveMLocs.end())
790       return;
791 
792     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
793 
794     // Examine the remaining variable locations: if we can find the same value
795     // again, we can recover the location.
796     std::optional<LocIdx> NewLoc;
797     for (auto Loc : MTracker->locations())
798       if (Loc.Value == OldValue)
799         NewLoc = Loc.Idx;
800 
801     // If there is no location, and we weren't asked to make the variable
802     // explicitly undef, then stop here.
803     if (!NewLoc && !MakeUndef) {
804       // Try and recover a few more locations with entry values.
805       for (const auto &Var : ActiveMLocIt->second) {
806         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
807         recoverAsEntryValue(Var, Prop, OldValue);
808       }
809       flushDbgValues(Pos, nullptr);
810       return;
811     }
812 
813     // Examine all the variables based on this location.
814     DenseSet<DebugVariable> NewMLocs;
815     // If no new location has been found, every variable that depends on this
816     // MLoc is dead, so end their existing MLoc->Var mappings as well.
817     SmallVector<std::pair<LocIdx, DebugVariable>> LostMLocs;
818     for (const auto &Var : ActiveMLocIt->second) {
819       auto ActiveVLocIt = ActiveVLocs.find(Var);
820       // Re-state the variable location: if there's no replacement then NewLoc
821       // is std::nullopt and a $noreg DBG_VALUE will be created. Otherwise, a
822       // DBG_VALUE identifying the alternative location will be emitted.
823       const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
824 
825       // Produce the new list of debug ops - an empty list if no new location
826       // was found, or the existing list with the substitution MLoc -> NewLoc
827       // otherwise.
828       SmallVector<ResolvedDbgOp> DbgOps;
829       if (NewLoc) {
830         ResolvedDbgOp OldOp(MLoc);
831         ResolvedDbgOp NewOp(*NewLoc);
832         // Insert illegal ops to overwrite afterwards.
833         DbgOps.insert(DbgOps.begin(), ActiveVLocIt->second.Ops.size(),
834                       ResolvedDbgOp(LocIdx::MakeIllegalLoc()));
835         replace_copy(ActiveVLocIt->second.Ops, DbgOps.begin(), OldOp, NewOp);
836       }
837 
838       PendingDbgValues.push_back(MTracker->emitLoc(DbgOps, Var, Properties));
839 
840       // Update machine locations <=> variable locations maps. Defer updating
841       // ActiveMLocs to avoid invalidating the ActiveMLocIt iterator.
842       if (!NewLoc) {
843         for (LocIdx Loc : ActiveVLocIt->second.loc_indices()) {
844           if (Loc != MLoc)
845             LostMLocs.emplace_back(Loc, Var);
846         }
847         ActiveVLocs.erase(ActiveVLocIt);
848       } else {
849         ActiveVLocIt->second.Ops = DbgOps;
850         NewMLocs.insert(Var);
851       }
852     }
853 
854     // Remove variables from ActiveMLocs if they no longer use any other MLocs
855     // due to being killed by this clobber.
856     for (auto &LocVarIt : LostMLocs) {
857       auto LostMLocIt = ActiveMLocs.find(LocVarIt.first);
858       assert(LostMLocIt != ActiveMLocs.end() &&
859              "Variable was using this MLoc, but ActiveMLocs[MLoc] has no "
860              "entries?");
861       LostMLocIt->second.erase(LocVarIt.second);
862     }
863 
864     // We lazily track what locations have which values; if we've found a new
865     // location for the clobbered value, remember it.
866     if (NewLoc)
867       VarLocs[NewLoc->asU64()] = OldValue;
868 
869     flushDbgValues(Pos, nullptr);
870 
871     // Commit ActiveMLoc changes.
872     ActiveMLocIt->second.clear();
873     if (!NewMLocs.empty())
874       for (auto &Var : NewMLocs)
875         ActiveMLocs[*NewLoc].insert(Var);
876   }
877 
878   /// Transfer variables based on \p Src to be based on \p Dst. This handles
879   /// both register copies as well as spills and restores. Creates DBG_VALUEs
880   /// describing the movement.
transferMlocs(LocIdx Src,LocIdx Dst,MachineBasicBlock::iterator Pos)881   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
882     // Does Src still contain the value num we expect? If not, it's been
883     // clobbered in the meantime, and our variable locations are stale.
884     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
885       return;
886 
887     // assert(ActiveMLocs[Dst].size() == 0);
888     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
889 
890     // Move set of active variables from one location to another.
891     auto MovingVars = ActiveMLocs[Src];
892     ActiveMLocs[Dst].insert(MovingVars.begin(), MovingVars.end());
893     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
894 
895     // For each variable based on Src; create a location at Dst.
896     ResolvedDbgOp SrcOp(Src);
897     ResolvedDbgOp DstOp(Dst);
898     for (const auto &Var : MovingVars) {
899       auto ActiveVLocIt = ActiveVLocs.find(Var);
900       assert(ActiveVLocIt != ActiveVLocs.end());
901 
902       // Update all instances of Src in the variable's tracked values to Dst.
903       std::replace(ActiveVLocIt->second.Ops.begin(),
904                    ActiveVLocIt->second.Ops.end(), SrcOp, DstOp);
905 
906       MachineInstr *MI = MTracker->emitLoc(ActiveVLocIt->second.Ops, Var,
907                                            ActiveVLocIt->second.Properties);
908       PendingDbgValues.push_back(MI);
909     }
910     ActiveMLocs[Src].clear();
911     flushDbgValues(Pos, nullptr);
912 
913     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
914     // about the old location.
915     if (EmulateOldLDV)
916       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
917   }
918 
emitMOLoc(const MachineOperand & MO,const DebugVariable & Var,const DbgValueProperties & Properties)919   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
920                                 const DebugVariable &Var,
921                                 const DbgValueProperties &Properties) {
922     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
923                                   Var.getVariable()->getScope(),
924                                   const_cast<DILocation *>(Var.getInlinedAt()));
925     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
926     MIB.add(MO);
927     if (Properties.Indirect)
928       MIB.addImm(0);
929     else
930       MIB.addReg(0);
931     MIB.addMetadata(Var.getVariable());
932     MIB.addMetadata(Properties.DIExpr);
933     return MIB;
934   }
935 };
936 
937 //===----------------------------------------------------------------------===//
938 //            Implementation
939 //===----------------------------------------------------------------------===//
940 
941 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
942 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
943 
944 #ifndef NDEBUG
dump(const MLocTracker * MTrack) const945 void ResolvedDbgOp::dump(const MLocTracker *MTrack) const {
946   if (IsConst) {
947     dbgs() << MO;
948   } else {
949     dbgs() << MTrack->LocIdxToName(Loc);
950   }
951 }
dump(const MLocTracker * MTrack) const952 void DbgOp::dump(const MLocTracker *MTrack) const {
953   if (IsConst) {
954     dbgs() << MO;
955   } else if (!isUndef()) {
956     dbgs() << MTrack->IDAsString(ID);
957   }
958 }
dump(const MLocTracker * MTrack,const DbgOpIDMap * OpStore) const959 void DbgOpID::dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const {
960   if (!OpStore) {
961     dbgs() << "ID(" << asU32() << ")";
962   } else {
963     OpStore->find(*this).dump(MTrack);
964   }
965 }
dump(const MLocTracker * MTrack,const DbgOpIDMap * OpStore) const966 void DbgValue::dump(const MLocTracker *MTrack,
967                     const DbgOpIDMap *OpStore) const {
968   if (Kind == NoVal) {
969     dbgs() << "NoVal(" << BlockNo << ")";
970   } else if (Kind == VPHI || Kind == Def) {
971     if (Kind == VPHI)
972       dbgs() << "VPHI(" << BlockNo << ",";
973     else
974       dbgs() << "Def(";
975     for (unsigned Idx = 0; Idx < getDbgOpIDs().size(); ++Idx) {
976       getDbgOpID(Idx).dump(MTrack, OpStore);
977       if (Idx != 0)
978         dbgs() << ",";
979     }
980     dbgs() << ")";
981   }
982   if (Properties.Indirect)
983     dbgs() << " indir";
984   if (Properties.DIExpr)
985     dbgs() << " " << *Properties.DIExpr;
986 }
987 #endif
988 
MLocTracker(MachineFunction & MF,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,const TargetLowering & TLI)989 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
990                          const TargetRegisterInfo &TRI,
991                          const TargetLowering &TLI)
992     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
993       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
994   NumRegs = TRI.getNumRegs();
995   reset();
996   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
997   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
998 
999   // Always track SP. This avoids the implicit clobbering caused by regmasks
1000   // from affectings its values. (LiveDebugValues disbelieves calls and
1001   // regmasks that claim to clobber SP).
1002   Register SP = TLI.getStackPointerRegisterToSaveRestore();
1003   if (SP) {
1004     unsigned ID = getLocID(SP);
1005     (void)lookupOrTrackRegister(ID);
1006 
1007     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
1008       SPAliases.insert(*RAI);
1009   }
1010 
1011   // Build some common stack positions -- full registers being spilt to the
1012   // stack.
1013   StackSlotIdxes.insert({{8, 0}, 0});
1014   StackSlotIdxes.insert({{16, 0}, 1});
1015   StackSlotIdxes.insert({{32, 0}, 2});
1016   StackSlotIdxes.insert({{64, 0}, 3});
1017   StackSlotIdxes.insert({{128, 0}, 4});
1018   StackSlotIdxes.insert({{256, 0}, 5});
1019   StackSlotIdxes.insert({{512, 0}, 6});
1020 
1021   // Traverse all the subregister idxes, and ensure there's an index for them.
1022   // Duplicates are no problem: we're interested in their position in the
1023   // stack slot, we don't want to type the slot.
1024   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
1025     unsigned Size = TRI.getSubRegIdxSize(I);
1026     unsigned Offs = TRI.getSubRegIdxOffset(I);
1027     unsigned Idx = StackSlotIdxes.size();
1028 
1029     // Some subregs have -1, -2 and so forth fed into their fields, to mean
1030     // special backend things. Ignore those.
1031     if (Size > 60000 || Offs > 60000)
1032       continue;
1033 
1034     StackSlotIdxes.insert({{Size, Offs}, Idx});
1035   }
1036 
1037   // There may also be strange register class sizes (think x86 fp80s).
1038   for (const TargetRegisterClass *RC : TRI.regclasses()) {
1039     unsigned Size = TRI.getRegSizeInBits(*RC);
1040 
1041     // We might see special reserved values as sizes, and classes for other
1042     // stuff the machine tries to model. If it's more than 512 bits, then it
1043     // is very unlikely to be a register than can be spilt.
1044     if (Size > 512)
1045       continue;
1046 
1047     unsigned Idx = StackSlotIdxes.size();
1048     StackSlotIdxes.insert({{Size, 0}, Idx});
1049   }
1050 
1051   for (auto &Idx : StackSlotIdxes)
1052     StackIdxesToPos[Idx.second] = Idx.first;
1053 
1054   NumSlotIdxes = StackSlotIdxes.size();
1055 }
1056 
trackRegister(unsigned ID)1057 LocIdx MLocTracker::trackRegister(unsigned ID) {
1058   assert(ID != 0);
1059   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
1060   LocIdxToIDNum.grow(NewIdx);
1061   LocIdxToLocID.grow(NewIdx);
1062 
1063   // Default: it's an mphi.
1064   ValueIDNum ValNum = {CurBB, 0, NewIdx};
1065   // Was this reg ever touched by a regmask?
1066   for (const auto &MaskPair : reverse(Masks)) {
1067     if (MaskPair.first->clobbersPhysReg(ID)) {
1068       // There was an earlier def we skipped.
1069       ValNum = {CurBB, MaskPair.second, NewIdx};
1070       break;
1071     }
1072   }
1073 
1074   LocIdxToIDNum[NewIdx] = ValNum;
1075   LocIdxToLocID[NewIdx] = ID;
1076   return NewIdx;
1077 }
1078 
writeRegMask(const MachineOperand * MO,unsigned CurBB,unsigned InstID)1079 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
1080                                unsigned InstID) {
1081   // Def any register we track have that isn't preserved. The regmask
1082   // terminates the liveness of a register, meaning its value can't be
1083   // relied upon -- we represent this by giving it a new value.
1084   for (auto Location : locations()) {
1085     unsigned ID = LocIdxToLocID[Location.Idx];
1086     // Don't clobber SP, even if the mask says it's clobbered.
1087     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
1088       defReg(ID, CurBB, InstID);
1089   }
1090   Masks.push_back(std::make_pair(MO, InstID));
1091 }
1092 
getOrTrackSpillLoc(SpillLoc L)1093 std::optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
1094   SpillLocationNo SpillID(SpillLocs.idFor(L));
1095 
1096   if (SpillID.id() == 0) {
1097     // If there is no location, and we have reached the limit of how many stack
1098     // slots to track, then don't track this one.
1099     if (SpillLocs.size() >= StackWorkingSetLimit)
1100       return std::nullopt;
1101 
1102     // Spill location is untracked: create record for this one, and all
1103     // subregister slots too.
1104     SpillID = SpillLocationNo(SpillLocs.insert(L));
1105     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
1106       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
1107       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
1108       LocIdxToIDNum.grow(Idx);
1109       LocIdxToLocID.grow(Idx);
1110       LocIDToLocIdx.push_back(Idx);
1111       LocIdxToLocID[Idx] = L;
1112       // Initialize to PHI value; corresponds to the location's live-in value
1113       // during transfer function construction.
1114       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
1115     }
1116   }
1117   return SpillID;
1118 }
1119 
LocIdxToName(LocIdx Idx) const1120 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
1121   unsigned ID = LocIdxToLocID[Idx];
1122   if (ID >= NumRegs) {
1123     StackSlotPos Pos = locIDToSpillIdx(ID);
1124     ID -= NumRegs;
1125     unsigned Slot = ID / NumSlotIdxes;
1126     return Twine("slot ")
1127         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
1128         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
1129         .str();
1130   } else {
1131     return TRI.getRegAsmName(ID).str();
1132   }
1133 }
1134 
IDAsString(const ValueIDNum & Num) const1135 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
1136   std::string DefName = LocIdxToName(Num.getLoc());
1137   return Num.asString(DefName);
1138 }
1139 
1140 #ifndef NDEBUG
dump()1141 LLVM_DUMP_METHOD void MLocTracker::dump() {
1142   for (auto Location : locations()) {
1143     std::string MLocName = LocIdxToName(Location.Value.getLoc());
1144     std::string DefName = Location.Value.asString(MLocName);
1145     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
1146   }
1147 }
1148 
dump_mloc_map()1149 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
1150   for (auto Location : locations()) {
1151     std::string foo = LocIdxToName(Location.Idx);
1152     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
1153   }
1154 }
1155 #endif
1156 
1157 MachineInstrBuilder
emitLoc(const SmallVectorImpl<ResolvedDbgOp> & DbgOps,const DebugVariable & Var,const DbgValueProperties & Properties)1158 MLocTracker::emitLoc(const SmallVectorImpl<ResolvedDbgOp> &DbgOps,
1159                      const DebugVariable &Var,
1160                      const DbgValueProperties &Properties) {
1161   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
1162                                 Var.getVariable()->getScope(),
1163                                 const_cast<DILocation *>(Var.getInlinedAt()));
1164 
1165   const MCInstrDesc &Desc = Properties.IsVariadic
1166                                 ? TII.get(TargetOpcode::DBG_VALUE_LIST)
1167                                 : TII.get(TargetOpcode::DBG_VALUE);
1168 
1169 #ifdef EXPENSIVE_CHECKS
1170   assert(all_of(DbgOps,
1171                 [](const ResolvedDbgOp &Op) {
1172                   return Op.IsConst || !Op.Loc.isIllegal();
1173                 }) &&
1174          "Did not expect illegal ops in DbgOps.");
1175   assert((DbgOps.size() == 0 ||
1176           DbgOps.size() == Properties.getLocationOpCount()) &&
1177          "Expected to have either one DbgOp per MI LocationOp, or none.");
1178 #endif
1179 
1180   auto GetRegOp = [](unsigned Reg) -> MachineOperand {
1181     return MachineOperand::CreateReg(
1182         /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1183         /* isKill */ false, /* isDead */ false,
1184         /* isUndef */ false, /* isEarlyClobber */ false,
1185         /* SubReg */ 0, /* isDebug */ true);
1186   };
1187 
1188   SmallVector<MachineOperand> MOs;
1189 
1190   auto EmitUndef = [&]() {
1191     MOs.clear();
1192     MOs.assign(Properties.getLocationOpCount(), GetRegOp(0));
1193     return BuildMI(MF, DL, Desc, false, MOs, Var.getVariable(),
1194                    Properties.DIExpr);
1195   };
1196 
1197   // Don't bother passing any real operands to BuildMI if any of them would be
1198   // $noreg.
1199   if (DbgOps.empty())
1200     return EmitUndef();
1201 
1202   bool Indirect = Properties.Indirect;
1203 
1204   const DIExpression *Expr = Properties.DIExpr;
1205 
1206   assert(DbgOps.size() == Properties.getLocationOpCount());
1207 
1208   // If all locations are valid, accumulate them into our list of
1209   // MachineOperands. For any spilled locations, either update the indirectness
1210   // register or apply the appropriate transformations in the DIExpression.
1211   for (size_t Idx = 0; Idx < Properties.getLocationOpCount(); ++Idx) {
1212     const ResolvedDbgOp &Op = DbgOps[Idx];
1213 
1214     if (Op.IsConst) {
1215       MOs.push_back(Op.MO);
1216       continue;
1217     }
1218 
1219     LocIdx MLoc = Op.Loc;
1220     unsigned LocID = LocIdxToLocID[MLoc];
1221     if (LocID >= NumRegs) {
1222       SpillLocationNo SpillID = locIDToSpill(LocID);
1223       StackSlotPos StackIdx = locIDToSpillIdx(LocID);
1224       unsigned short Offset = StackIdx.second;
1225 
1226       // TODO: support variables that are located in spill slots, with non-zero
1227       // offsets from the start of the spill slot. It would require some more
1228       // complex DIExpression calculations. This doesn't seem to be produced by
1229       // LLVM right now, so don't try and support it.
1230       // Accept no-subregister slots and subregisters where the offset is zero.
1231       // The consumer should already have type information to work out how large
1232       // the variable is.
1233       if (Offset == 0) {
1234         const SpillLoc &Spill = SpillLocs[SpillID.id()];
1235         unsigned Base = Spill.SpillBase;
1236 
1237         // There are several ways we can dereference things, and several inputs
1238         // to consider:
1239         // * NRVO variables will appear with IsIndirect set, but should have
1240         //   nothing else in their DIExpressions,
1241         // * Variables with DW_OP_stack_value in their expr already need an
1242         //   explicit dereference of the stack location,
1243         // * Values that don't match the variable size need DW_OP_deref_size,
1244         // * Everything else can just become a simple location expression.
1245 
1246         // We need to use deref_size whenever there's a mismatch between the
1247         // size of value and the size of variable portion being read.
1248         // Additionally, we should use it whenever dealing with stack_value
1249         // fragments, to avoid the consumer having to determine the deref size
1250         // from DW_OP_piece.
1251         bool UseDerefSize = false;
1252         unsigned ValueSizeInBits = getLocSizeInBits(MLoc);
1253         unsigned DerefSizeInBytes = ValueSizeInBits / 8;
1254         if (auto Fragment = Var.getFragment()) {
1255           unsigned VariableSizeInBits = Fragment->SizeInBits;
1256           if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
1257             UseDerefSize = true;
1258         } else if (auto Size = Var.getVariable()->getSizeInBits()) {
1259           if (*Size != ValueSizeInBits) {
1260             UseDerefSize = true;
1261           }
1262         }
1263 
1264         SmallVector<uint64_t, 5> OffsetOps;
1265         TRI.getOffsetOpcodes(Spill.SpillOffset, OffsetOps);
1266         bool StackValue = false;
1267 
1268         if (Properties.Indirect) {
1269           // This is something like an NRVO variable, where the pointer has been
1270           // spilt to the stack. It should end up being a memory location, with
1271           // the pointer to the variable loaded off the stack with a deref:
1272           assert(!Expr->isImplicit());
1273           OffsetOps.push_back(dwarf::DW_OP_deref);
1274         } else if (UseDerefSize && Expr->isSingleLocationExpression()) {
1275           // TODO: Figure out how to handle deref size issues for variadic
1276           // values.
1277           // We're loading a value off the stack that's not the same size as the
1278           // variable. Add / subtract stack offset, explicitly deref with a
1279           // size, and add DW_OP_stack_value if not already present.
1280           OffsetOps.push_back(dwarf::DW_OP_deref_size);
1281           OffsetOps.push_back(DerefSizeInBytes);
1282           StackValue = true;
1283         } else if (Expr->isComplex() || Properties.IsVariadic) {
1284           // A variable with no size ambiguity, but with extra elements in it's
1285           // expression. Manually dereference the stack location.
1286           OffsetOps.push_back(dwarf::DW_OP_deref);
1287         } else {
1288           // A plain value that has been spilt to the stack, with no further
1289           // context. Request a location expression, marking the DBG_VALUE as
1290           // IsIndirect.
1291           Indirect = true;
1292         }
1293 
1294         Expr = DIExpression::appendOpsToArg(Expr, OffsetOps, Idx, StackValue);
1295         MOs.push_back(GetRegOp(Base));
1296       } else {
1297         // This is a stack location with a weird subregister offset: emit an
1298         // undef DBG_VALUE instead.
1299         return EmitUndef();
1300       }
1301     } else {
1302       // Non-empty, non-stack slot, must be a plain register.
1303       MOs.push_back(GetRegOp(LocID));
1304     }
1305   }
1306 
1307   return BuildMI(MF, DL, Desc, Indirect, MOs, Var.getVariable(), Expr);
1308 }
1309 
1310 /// Default construct and initialize the pass.
1311 InstrRefBasedLDV::InstrRefBasedLDV() = default;
1312 
isCalleeSaved(LocIdx L) const1313 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
1314   unsigned Reg = MTracker->LocIdxToLocID[L];
1315   return isCalleeSavedReg(Reg);
1316 }
isCalleeSavedReg(Register R) const1317 bool InstrRefBasedLDV::isCalleeSavedReg(Register R) const {
1318   for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI)
1319     if (CalleeSavedRegs.test(*RAI))
1320       return true;
1321   return false;
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 //            Debug Range Extension Implementation
1326 //===----------------------------------------------------------------------===//
1327 
1328 #ifndef NDEBUG
1329 // Something to restore in the future.
1330 // void InstrRefBasedLDV::printVarLocInMBB(..)
1331 #endif
1332 
1333 std::optional<SpillLocationNo>
extractSpillBaseRegAndOffset(const MachineInstr & MI)1334 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1335   assert(MI.hasOneMemOperand() &&
1336          "Spill instruction does not have exactly one memory operand?");
1337   auto MMOI = MI.memoperands_begin();
1338   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1339   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1340          "Inconsistent memory operand in spill instruction");
1341   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1342   const MachineBasicBlock *MBB = MI.getParent();
1343   Register Reg;
1344   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1345   return MTracker->getOrTrackSpillLoc({Reg, Offset});
1346 }
1347 
1348 std::optional<LocIdx>
findLocationForMemOperand(const MachineInstr & MI)1349 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
1350   std::optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
1351   if (!SpillLoc)
1352     return std::nullopt;
1353 
1354   // Where in the stack slot is this value defined -- i.e., what size of value
1355   // is this? An important question, because it could be loaded into a register
1356   // from the stack at some point. Happily the memory operand will tell us
1357   // the size written to the stack.
1358   auto *MemOperand = *MI.memoperands_begin();
1359   unsigned SizeInBits = MemOperand->getSizeInBits();
1360 
1361   // Find that position in the stack indexes we're tracking.
1362   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
1363   if (IdxIt == MTracker->StackSlotIdxes.end())
1364     // That index is not tracked. This is suprising, and unlikely to ever
1365     // occur, but the safe action is to indicate the variable is optimised out.
1366     return std::nullopt;
1367 
1368   unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
1369   return MTracker->getSpillMLoc(SpillID);
1370 }
1371 
1372 /// End all previous ranges related to @MI and start a new range from @MI
1373 /// if it is a DBG_VALUE instr.
transferDebugValue(const MachineInstr & MI)1374 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1375   if (!MI.isDebugValue())
1376     return false;
1377 
1378   const DILocalVariable *Var = MI.getDebugVariable();
1379   const DIExpression *Expr = MI.getDebugExpression();
1380   const DILocation *DebugLoc = MI.getDebugLoc();
1381   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1382   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1383          "Expected inlined-at fields to agree");
1384 
1385   DebugVariable V(Var, Expr, InlinedAt);
1386   DbgValueProperties Properties(MI);
1387 
1388   // If there are no instructions in this lexical scope, do no location tracking
1389   // at all, this variable shouldn't get a legitimate location range.
1390   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1391   if (Scope == nullptr)
1392     return true; // handled it; by doing nothing
1393 
1394   // MLocTracker needs to know that this register is read, even if it's only
1395   // read by a debug inst.
1396   for (const MachineOperand &MO : MI.debug_operands())
1397     if (MO.isReg() && MO.getReg() != 0)
1398       (void)MTracker->readReg(MO.getReg());
1399 
1400   // If we're preparing for the second analysis (variables), the machine value
1401   // locations are already solved, and we report this DBG_VALUE and the value
1402   // it refers to to VLocTracker.
1403   if (VTracker) {
1404     SmallVector<DbgOpID> DebugOps;
1405     // Feed defVar the new variable location, or if this is a DBG_VALUE $noreg,
1406     // feed defVar None.
1407     if (!MI.isUndefDebugValue()) {
1408       for (const MachineOperand &MO : MI.debug_operands()) {
1409         // There should be no undef registers here, as we've screened for undef
1410         // debug values.
1411         if (MO.isReg()) {
1412           DebugOps.push_back(DbgOpStore.insert(MTracker->readReg(MO.getReg())));
1413         } else if (MO.isImm() || MO.isFPImm() || MO.isCImm()) {
1414           DebugOps.push_back(DbgOpStore.insert(MO));
1415         } else {
1416           llvm_unreachable("Unexpected debug operand type.");
1417         }
1418       }
1419     }
1420     VTracker->defVar(MI, Properties, DebugOps);
1421   }
1422 
1423   // If performing final tracking of transfers, report this variable definition
1424   // to the TransferTracker too.
1425   if (TTracker)
1426     TTracker->redefVar(MI);
1427   return true;
1428 }
1429 
getValueForInstrRef(unsigned InstNo,unsigned OpNo,MachineInstr & MI,const ValueTable * MLiveOuts,const ValueTable * MLiveIns)1430 std::optional<ValueIDNum> InstrRefBasedLDV::getValueForInstrRef(
1431     unsigned InstNo, unsigned OpNo, MachineInstr &MI,
1432     const ValueTable *MLiveOuts, const ValueTable *MLiveIns) {
1433   // Various optimizations may have happened to the value during codegen,
1434   // recorded in the value substitution table. Apply any substitutions to
1435   // the instruction / operand number in this DBG_INSTR_REF, and collect
1436   // any subregister extractions performed during optimization.
1437   const MachineFunction &MF = *MI.getParent()->getParent();
1438 
1439   // Create dummy substitution with Src set, for lookup.
1440   auto SoughtSub =
1441       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1442 
1443   SmallVector<unsigned, 4> SeenSubregs;
1444   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1445   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1446          LowerBoundIt->Src == SoughtSub.Src) {
1447     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1448     SoughtSub.Src = LowerBoundIt->Dest;
1449     if (unsigned Subreg = LowerBoundIt->Subreg)
1450       SeenSubregs.push_back(Subreg);
1451     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1452   }
1453 
1454   // Default machine value number is <None> -- if no instruction defines
1455   // the corresponding value, it must have been optimized out.
1456   std::optional<ValueIDNum> NewID;
1457 
1458   // Try to lookup the instruction number, and find the machine value number
1459   // that it defines. It could be an instruction, or a PHI.
1460   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1461   auto PHIIt = llvm::lower_bound(DebugPHINumToValue, InstNo);
1462   if (InstrIt != DebugInstrNumToInstr.end()) {
1463     const MachineInstr &TargetInstr = *InstrIt->second.first;
1464     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1465 
1466     // Pick out the designated operand. It might be a memory reference, if
1467     // a register def was folded into a stack store.
1468     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1469         TargetInstr.hasOneMemOperand()) {
1470       std::optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1471       if (L)
1472         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1473     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1474       // Permit the debug-info to be completely wrong: identifying a nonexistant
1475       // operand, or one that is not a register definition, means something
1476       // unexpected happened during optimisation. Broken debug-info, however,
1477       // shouldn't crash the compiler -- instead leave the variable value as
1478       // None, which will make it appear "optimised out".
1479       if (OpNo < TargetInstr.getNumOperands()) {
1480         const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1481 
1482         if (MO.isReg() && MO.isDef() && MO.getReg()) {
1483           unsigned LocID = MTracker->getLocID(MO.getReg());
1484           LocIdx L = MTracker->LocIDToLocIdx[LocID];
1485           NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1486         }
1487       }
1488 
1489       if (!NewID) {
1490         LLVM_DEBUG(
1491             { dbgs() << "Seen instruction reference to illegal operand\n"; });
1492       }
1493     }
1494     // else: NewID is left as None.
1495   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1496     // It's actually a PHI value. Which value it is might not be obvious, use
1497     // the resolver helper to find out.
1498     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1499                            MI, InstNo);
1500   }
1501 
1502   // Apply any subregister extractions, in reverse. We might have seen code
1503   // like this:
1504   //    CALL64 @foo, implicit-def $rax
1505   //    %0:gr64 = COPY $rax
1506   //    %1:gr32 = COPY %0.sub_32bit
1507   //    %2:gr16 = COPY %1.sub_16bit
1508   //    %3:gr8  = COPY %2.sub_8bit
1509   // In which case each copy would have been recorded as a substitution with
1510   // a subregister qualifier. Apply those qualifiers now.
1511   if (NewID && !SeenSubregs.empty()) {
1512     unsigned Offset = 0;
1513     unsigned Size = 0;
1514 
1515     // Look at each subregister that we passed through, and progressively
1516     // narrow in, accumulating any offsets that occur. Substitutions should
1517     // only ever be the same or narrower width than what they read from;
1518     // iterate in reverse order so that we go from wide to small.
1519     for (unsigned Subreg : reverse(SeenSubregs)) {
1520       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1521       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1522       Offset += ThisOffset;
1523       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1524     }
1525 
1526     // If that worked, look for an appropriate subregister with the register
1527     // where the define happens. Don't look at values that were defined during
1528     // a stack write: we can't currently express register locations within
1529     // spills.
1530     LocIdx L = NewID->getLoc();
1531     if (NewID && !MTracker->isSpill(L)) {
1532       // Find the register class for the register where this def happened.
1533       // FIXME: no index for this?
1534       Register Reg = MTracker->LocIdxToLocID[L];
1535       const TargetRegisterClass *TRC = nullptr;
1536       for (const auto *TRCI : TRI->regclasses())
1537         if (TRCI->contains(Reg))
1538           TRC = TRCI;
1539       assert(TRC && "Couldn't find target register class?");
1540 
1541       // If the register we have isn't the right size or in the right place,
1542       // Try to find a subregister inside it.
1543       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1544       if (Size != MainRegSize || Offset) {
1545         // Enumerate all subregisters, searching.
1546         Register NewReg = 0;
1547         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1548           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1549           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1550           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1551           if (SubregSize == Size && SubregOffset == Offset) {
1552             NewReg = *SRI;
1553             break;
1554           }
1555         }
1556 
1557         // If we didn't find anything: there's no way to express our value.
1558         if (!NewReg) {
1559           NewID = std::nullopt;
1560         } else {
1561           // Re-state the value as being defined within the subregister
1562           // that we found.
1563           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1564           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1565         }
1566       }
1567     } else {
1568       // If we can't handle subregisters, unset the new value.
1569       NewID = std::nullopt;
1570     }
1571   }
1572 
1573   return NewID;
1574 }
1575 
transferDebugInstrRef(MachineInstr & MI,const ValueTable * MLiveOuts,const ValueTable * MLiveIns)1576 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1577                                              const ValueTable *MLiveOuts,
1578                                              const ValueTable *MLiveIns) {
1579   if (!MI.isDebugRef())
1580     return false;
1581 
1582   // Only handle this instruction when we are building the variable value
1583   // transfer function.
1584   if (!VTracker && !TTracker)
1585     return false;
1586 
1587   const DILocalVariable *Var = MI.getDebugVariable();
1588   const DIExpression *Expr = MI.getDebugExpression();
1589   const DILocation *DebugLoc = MI.getDebugLoc();
1590   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1591   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1592          "Expected inlined-at fields to agree");
1593 
1594   DebugVariable V(Var, Expr, InlinedAt);
1595 
1596   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1597   if (Scope == nullptr)
1598     return true; // Handled by doing nothing. This variable is never in scope.
1599 
1600   SmallVector<DbgOpID> DbgOpIDs;
1601   for (const MachineOperand &MO : MI.debug_operands()) {
1602     if (!MO.isDbgInstrRef()) {
1603       assert(!MO.isReg() && "DBG_INSTR_REF should not contain registers");
1604       DbgOpID ConstOpID = DbgOpStore.insert(DbgOp(MO));
1605       DbgOpIDs.push_back(ConstOpID);
1606       continue;
1607     }
1608 
1609     unsigned InstNo = MO.getInstrRefInstrIndex();
1610     unsigned OpNo = MO.getInstrRefOpIndex();
1611 
1612     // Default machine value number is <None> -- if no instruction defines
1613     // the corresponding value, it must have been optimized out.
1614     std::optional<ValueIDNum> NewID =
1615         getValueForInstrRef(InstNo, OpNo, MI, MLiveOuts, MLiveIns);
1616     // We have a value number or std::nullopt. If the latter, then kill the
1617     // entire debug value.
1618     if (NewID) {
1619       DbgOpIDs.push_back(DbgOpStore.insert(*NewID));
1620     } else {
1621       DbgOpIDs.clear();
1622       break;
1623     }
1624   }
1625 
1626   // We have a DbgOpID for every value or for none. Tell the variable value
1627   // tracker about it. The rest of this LiveDebugValues implementation acts
1628   // exactly the same for DBG_INSTR_REFs as DBG_VALUEs (just, the former can
1629   // refer to values that aren't immediately available).
1630   DbgValueProperties Properties(Expr, false, true);
1631   if (VTracker)
1632     VTracker->defVar(MI, Properties, DbgOpIDs);
1633 
1634   // If we're on the final pass through the function, decompose this INSTR_REF
1635   // into a plain DBG_VALUE.
1636   if (!TTracker)
1637     return true;
1638 
1639   // Fetch the concrete DbgOps now, as we will need them later.
1640   SmallVector<DbgOp> DbgOps;
1641   for (DbgOpID OpID : DbgOpIDs) {
1642     DbgOps.push_back(DbgOpStore.find(OpID));
1643   }
1644 
1645   // Pick a location for the machine value number, if such a location exists.
1646   // (This information could be stored in TransferTracker to make it faster).
1647   SmallDenseMap<ValueIDNum, TransferTracker::LocationAndQuality> FoundLocs;
1648   SmallVector<ValueIDNum> ValuesToFind;
1649   // Initialized the preferred-location map with illegal locations, to be
1650   // filled in later.
1651   for (const DbgOp &Op : DbgOps) {
1652     if (!Op.IsConst)
1653       if (FoundLocs.insert({Op.ID, TransferTracker::LocationAndQuality()})
1654               .second)
1655         ValuesToFind.push_back(Op.ID);
1656   }
1657 
1658   for (auto Location : MTracker->locations()) {
1659     LocIdx CurL = Location.Idx;
1660     ValueIDNum ID = MTracker->readMLoc(CurL);
1661     auto ValueToFindIt = find(ValuesToFind, ID);
1662     if (ValueToFindIt == ValuesToFind.end())
1663       continue;
1664     auto &Previous = FoundLocs.find(ID)->second;
1665     // If this is the first location with that value, pick it. Otherwise,
1666     // consider whether it's a "longer term" location.
1667     std::optional<TransferTracker::LocationQuality> ReplacementQuality =
1668         TTracker->getLocQualityIfBetter(CurL, Previous.getQuality());
1669     if (ReplacementQuality) {
1670       Previous = TransferTracker::LocationAndQuality(CurL, *ReplacementQuality);
1671       if (Previous.isBest()) {
1672         ValuesToFind.erase(ValueToFindIt);
1673         if (ValuesToFind.empty())
1674           break;
1675       }
1676     }
1677   }
1678 
1679   SmallVector<ResolvedDbgOp> NewLocs;
1680   for (const DbgOp &DbgOp : DbgOps) {
1681     if (DbgOp.IsConst) {
1682       NewLocs.push_back(DbgOp.MO);
1683       continue;
1684     }
1685     LocIdx FoundLoc = FoundLocs.find(DbgOp.ID)->second.getLoc();
1686     if (FoundLoc.isIllegal()) {
1687       NewLocs.clear();
1688       break;
1689     }
1690     NewLocs.push_back(FoundLoc);
1691   }
1692   // Tell transfer tracker that the variable value has changed.
1693   TTracker->redefVar(MI, Properties, NewLocs);
1694 
1695   // If there were values with no location, but all such values are defined in
1696   // later instructions in this block, this is a block-local use-before-def.
1697   if (!DbgOps.empty() && NewLocs.empty()) {
1698     bool IsValidUseBeforeDef = true;
1699     uint64_t LastUseBeforeDef = 0;
1700     for (auto ValueLoc : FoundLocs) {
1701       ValueIDNum NewID = ValueLoc.first;
1702       LocIdx FoundLoc = ValueLoc.second.getLoc();
1703       if (!FoundLoc.isIllegal())
1704         continue;
1705       // If we have an value with no location that is not defined in this block,
1706       // then it has no location in this block, leaving this value undefined.
1707       if (NewID.getBlock() != CurBB || NewID.getInst() <= CurInst) {
1708         IsValidUseBeforeDef = false;
1709         break;
1710       }
1711       LastUseBeforeDef = std::max(LastUseBeforeDef, NewID.getInst());
1712     }
1713     if (IsValidUseBeforeDef) {
1714       TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false, true},
1715                                 DbgOps, LastUseBeforeDef);
1716     }
1717   }
1718 
1719   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1720   // This DBG_VALUE is potentially a $noreg / undefined location, if
1721   // FoundLoc is illegal.
1722   // (XXX -- could morph the DBG_INSTR_REF in the future).
1723   MachineInstr *DbgMI = MTracker->emitLoc(NewLocs, V, Properties);
1724 
1725   TTracker->PendingDbgValues.push_back(DbgMI);
1726   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1727   return true;
1728 }
1729 
transferDebugPHI(MachineInstr & MI)1730 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1731   if (!MI.isDebugPHI())
1732     return false;
1733 
1734   // Analyse these only when solving the machine value location problem.
1735   if (VTracker || TTracker)
1736     return true;
1737 
1738   // First operand is the value location, either a stack slot or register.
1739   // Second is the debug instruction number of the original PHI.
1740   const MachineOperand &MO = MI.getOperand(0);
1741   unsigned InstrNum = MI.getOperand(1).getImm();
1742 
1743   auto EmitBadPHI = [this, &MI, InstrNum]() -> bool {
1744     // Helper lambda to do any accounting when we fail to find a location for
1745     // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
1746     // dead stack slot, for example.
1747     // Record a DebugPHIRecord with an empty value + location.
1748     DebugPHINumToValue.push_back(
1749         {InstrNum, MI.getParent(), std::nullopt, std::nullopt});
1750     return true;
1751   };
1752 
1753   if (MO.isReg() && MO.getReg()) {
1754     // The value is whatever's currently in the register. Read and record it,
1755     // to be analysed later.
1756     Register Reg = MO.getReg();
1757     ValueIDNum Num = MTracker->readReg(Reg);
1758     auto PHIRec = DebugPHIRecord(
1759         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1760     DebugPHINumToValue.push_back(PHIRec);
1761 
1762     // Ensure this register is tracked.
1763     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1764       MTracker->lookupOrTrackRegister(*RAI);
1765   } else if (MO.isFI()) {
1766     // The value is whatever's in this stack slot.
1767     unsigned FI = MO.getIndex();
1768 
1769     // If the stack slot is dead, then this was optimized away.
1770     // FIXME: stack slot colouring should account for slots that get merged.
1771     if (MFI->isDeadObjectIndex(FI))
1772       return EmitBadPHI();
1773 
1774     // Identify this spill slot, ensure it's tracked.
1775     Register Base;
1776     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1777     SpillLoc SL = {Base, Offs};
1778     std::optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
1779 
1780     // We might be able to find a value, but have chosen not to, to avoid
1781     // tracking too much stack information.
1782     if (!SpillNo)
1783       return EmitBadPHI();
1784 
1785     // Any stack location DBG_PHI should have an associate bit-size.
1786     assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
1787     unsigned slotBitSize = MI.getOperand(2).getImm();
1788 
1789     unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
1790     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
1791     ValueIDNum Result = MTracker->readMLoc(SpillLoc);
1792 
1793     // Record this DBG_PHI for later analysis.
1794     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
1795     DebugPHINumToValue.push_back(DbgPHI);
1796   } else {
1797     // Else: if the operand is neither a legal register or a stack slot, then
1798     // we're being fed illegal debug-info. Record an empty PHI, so that any
1799     // debug users trying to read this number will be put off trying to
1800     // interpret the value.
1801     LLVM_DEBUG(
1802         { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
1803     return EmitBadPHI();
1804   }
1805 
1806   return true;
1807 }
1808 
transferRegisterDef(MachineInstr & MI)1809 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1810   // Meta Instructions do not affect the debug liveness of any register they
1811   // define.
1812   if (MI.isImplicitDef()) {
1813     // Except when there's an implicit def, and the location it's defining has
1814     // no value number. The whole point of an implicit def is to announce that
1815     // the register is live, without be specific about it's value. So define
1816     // a value if there isn't one already.
1817     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1818     // Has a legitimate value -> ignore the implicit def.
1819     if (Num.getLoc() != 0)
1820       return;
1821     // Otherwise, def it here.
1822   } else if (MI.isMetaInstruction())
1823     return;
1824 
1825   // We always ignore SP defines on call instructions, they don't actually
1826   // change the value of the stack pointer... except for win32's _chkstk. This
1827   // is rare: filter quickly for the common case (no stack adjustments, not a
1828   // call, etc). If it is a call that modifies SP, recognise the SP register
1829   // defs.
1830   bool CallChangesSP = false;
1831   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1832       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1833     CallChangesSP = true;
1834 
1835   // Test whether we should ignore a def of this register due to it being part
1836   // of the stack pointer.
1837   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1838     if (CallChangesSP)
1839       return false;
1840     return MI.isCall() && MTracker->SPAliases.count(R);
1841   };
1842 
1843   // Find the regs killed by MI, and find regmasks of preserved regs.
1844   // Max out the number of statically allocated elements in `DeadRegs`, as this
1845   // prevents fallback to std::set::count() operations.
1846   SmallSet<uint32_t, 32> DeadRegs;
1847   SmallVector<const uint32_t *, 4> RegMasks;
1848   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1849   for (const MachineOperand &MO : MI.operands()) {
1850     // Determine whether the operand is a register def.
1851     if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() &&
1852         !IgnoreSPAlias(MO.getReg())) {
1853       // Remove ranges of all aliased registers.
1854       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1855         // FIXME: Can we break out of this loop early if no insertion occurs?
1856         DeadRegs.insert(*RAI);
1857     } else if (MO.isRegMask()) {
1858       RegMasks.push_back(MO.getRegMask());
1859       RegMaskPtrs.push_back(&MO);
1860     }
1861   }
1862 
1863   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1864   for (uint32_t DeadReg : DeadRegs)
1865     MTracker->defReg(DeadReg, CurBB, CurInst);
1866 
1867   for (const auto *MO : RegMaskPtrs)
1868     MTracker->writeRegMask(MO, CurBB, CurInst);
1869 
1870   // If this instruction writes to a spill slot, def that slot.
1871   if (hasFoldedStackStore(MI)) {
1872     if (std::optional<SpillLocationNo> SpillNo =
1873             extractSpillBaseRegAndOffset(MI)) {
1874       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1875         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1876         LocIdx L = MTracker->getSpillMLoc(SpillID);
1877         MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1878       }
1879     }
1880   }
1881 
1882   if (!TTracker)
1883     return;
1884 
1885   // When committing variable values to locations: tell transfer tracker that
1886   // we've clobbered things. It may be able to recover the variable from a
1887   // different location.
1888 
1889   // Inform TTracker about any direct clobbers.
1890   for (uint32_t DeadReg : DeadRegs) {
1891     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1892     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1893   }
1894 
1895   // Look for any clobbers performed by a register mask. Only test locations
1896   // that are actually being tracked.
1897   if (!RegMaskPtrs.empty()) {
1898     for (auto L : MTracker->locations()) {
1899       // Stack locations can't be clobbered by regmasks.
1900       if (MTracker->isSpill(L.Idx))
1901         continue;
1902 
1903       Register Reg = MTracker->LocIdxToLocID[L.Idx];
1904       if (IgnoreSPAlias(Reg))
1905         continue;
1906 
1907       for (const auto *MO : RegMaskPtrs)
1908         if (MO->clobbersPhysReg(Reg))
1909           TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1910     }
1911   }
1912 
1913   // Tell TTracker about any folded stack store.
1914   if (hasFoldedStackStore(MI)) {
1915     if (std::optional<SpillLocationNo> SpillNo =
1916             extractSpillBaseRegAndOffset(MI)) {
1917       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1918         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1919         LocIdx L = MTracker->getSpillMLoc(SpillID);
1920         TTracker->clobberMloc(L, MI.getIterator(), true);
1921       }
1922     }
1923   }
1924 }
1925 
performCopy(Register SrcRegNum,Register DstRegNum)1926 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1927   // In all circumstances, re-def all aliases. It's definitely a new value now.
1928   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1929     MTracker->defReg(*RAI, CurBB, CurInst);
1930 
1931   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1932   MTracker->setReg(DstRegNum, SrcValue);
1933 
1934   // Copy subregisters from one location to another.
1935   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1936     unsigned SrcSubReg = SRI.getSubReg();
1937     unsigned SubRegIdx = SRI.getSubRegIndex();
1938     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1939     if (!DstSubReg)
1940       continue;
1941 
1942     // Do copy. There are two matching subregisters, the source value should
1943     // have been def'd when the super-reg was, the latter might not be tracked
1944     // yet.
1945     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1946     // mphi values if it wasn't tracked.
1947     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1948     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1949     (void)SrcL;
1950     (void)DstL;
1951     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1952 
1953     MTracker->setReg(DstSubReg, CpyValue);
1954   }
1955 }
1956 
1957 std::optional<SpillLocationNo>
isSpillInstruction(const MachineInstr & MI,MachineFunction * MF)1958 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1959                                      MachineFunction *MF) {
1960   // TODO: Handle multiple stores folded into one.
1961   if (!MI.hasOneMemOperand())
1962     return std::nullopt;
1963 
1964   // Reject any memory operand that's aliased -- we can't guarantee its value.
1965   auto MMOI = MI.memoperands_begin();
1966   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1967   if (PVal->isAliased(MFI))
1968     return std::nullopt;
1969 
1970   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1971     return std::nullopt; // This is not a spill instruction, since no valid size
1972                          // was returned from either function.
1973 
1974   return extractSpillBaseRegAndOffset(MI);
1975 }
1976 
isLocationSpill(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1977 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1978                                        MachineFunction *MF, unsigned &Reg) {
1979   if (!isSpillInstruction(MI, MF))
1980     return false;
1981 
1982   int FI;
1983   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1984   return Reg != 0;
1985 }
1986 
1987 std::optional<SpillLocationNo>
isRestoreInstruction(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1988 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1989                                        MachineFunction *MF, unsigned &Reg) {
1990   if (!MI.hasOneMemOperand())
1991     return std::nullopt;
1992 
1993   // FIXME: Handle folded restore instructions with more than one memory
1994   // operand.
1995   if (MI.getRestoreSize(TII)) {
1996     Reg = MI.getOperand(0).getReg();
1997     return extractSpillBaseRegAndOffset(MI);
1998   }
1999   return std::nullopt;
2000 }
2001 
transferSpillOrRestoreInst(MachineInstr & MI)2002 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
2003   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
2004   // limitations under the new model. Therefore, when comparing them, compare
2005   // versions that don't attempt spills or restores at all.
2006   if (EmulateOldLDV)
2007     return false;
2008 
2009   // Strictly limit ourselves to plain loads and stores, not all instructions
2010   // that can access the stack.
2011   int DummyFI = -1;
2012   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
2013       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
2014     return false;
2015 
2016   MachineFunction *MF = MI.getMF();
2017   unsigned Reg;
2018 
2019   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
2020 
2021   // Strictly limit ourselves to plain loads and stores, not all instructions
2022   // that can access the stack.
2023   int FIDummy;
2024   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
2025       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
2026     return false;
2027 
2028   // First, if there are any DBG_VALUEs pointing at a spill slot that is
2029   // written to, terminate that variable location. The value in memory
2030   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
2031   if (std::optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
2032     // Un-set this location and clobber, so that earlier locations don't
2033     // continue past this store.
2034     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
2035       unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
2036       std::optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
2037       if (!MLoc)
2038         continue;
2039 
2040       // We need to over-write the stack slot with something (here, a def at
2041       // this instruction) to ensure no values are preserved in this stack slot
2042       // after the spill. It also prevents TTracker from trying to recover the
2043       // location and re-installing it in the same place.
2044       ValueIDNum Def(CurBB, CurInst, *MLoc);
2045       MTracker->setMLoc(*MLoc, Def);
2046       if (TTracker)
2047         TTracker->clobberMloc(*MLoc, MI.getIterator());
2048     }
2049   }
2050 
2051   // Try to recognise spill and restore instructions that may transfer a value.
2052   if (isLocationSpill(MI, MF, Reg)) {
2053     // isLocationSpill returning true should guarantee we can extract a
2054     // location.
2055     SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
2056 
2057     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
2058       auto ReadValue = MTracker->readReg(SrcReg);
2059       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
2060       MTracker->setMLoc(DstLoc, ReadValue);
2061 
2062       if (TTracker) {
2063         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
2064         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
2065       }
2066     };
2067 
2068     // Then, transfer subreg bits.
2069     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
2070       // Ensure this reg is tracked,
2071       (void)MTracker->lookupOrTrackRegister(*SRI);
2072       unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
2073       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
2074       DoTransfer(*SRI, SpillID);
2075     }
2076 
2077     // Directly lookup size of main source reg, and transfer.
2078     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2079     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
2080     DoTransfer(Reg, SpillID);
2081   } else {
2082     std::optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
2083     if (!Loc)
2084       return false;
2085 
2086     // Assumption: we're reading from the base of the stack slot, not some
2087     // offset into it. It seems very unlikely LLVM would ever generate
2088     // restores where this wasn't true. This then becomes a question of what
2089     // subregisters in the destination register line up with positions in the
2090     // stack slot.
2091 
2092     // Def all registers that alias the destination.
2093     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2094       MTracker->defReg(*RAI, CurBB, CurInst);
2095 
2096     // Now find subregisters within the destination register, and load values
2097     // from stack slot positions.
2098     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
2099       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
2100       auto ReadValue = MTracker->readMLoc(SrcIdx);
2101       MTracker->setReg(DestReg, ReadValue);
2102     };
2103 
2104     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
2105       unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
2106       unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
2107       DoTransfer(*SRI, SpillID);
2108     }
2109 
2110     // Directly look up this registers slot idx by size, and transfer.
2111     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
2112     unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
2113     DoTransfer(Reg, SpillID);
2114   }
2115   return true;
2116 }
2117 
transferRegisterCopy(MachineInstr & MI)2118 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2119   auto DestSrc = TII->isCopyInstr(MI);
2120   if (!DestSrc)
2121     return false;
2122 
2123   const MachineOperand *DestRegOp = DestSrc->Destination;
2124   const MachineOperand *SrcRegOp = DestSrc->Source;
2125 
2126   Register SrcReg = SrcRegOp->getReg();
2127   Register DestReg = DestRegOp->getReg();
2128 
2129   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2130   if (SrcReg == DestReg)
2131     return true;
2132 
2133   // For emulating VarLocBasedImpl:
2134   // We want to recognize instructions where destination register is callee
2135   // saved register. If register that could be clobbered by the call is
2136   // included, there would be a great chance that it is going to be clobbered
2137   // soon. It is more likely that previous register, which is callee saved, is
2138   // going to stay unclobbered longer, even if it is killed.
2139   //
2140   // For InstrRefBasedImpl, we can track multiple locations per value, so
2141   // ignore this condition.
2142   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2143     return false;
2144 
2145   // InstrRefBasedImpl only followed killing copies.
2146   if (EmulateOldLDV && !SrcRegOp->isKill())
2147     return false;
2148 
2149   // Before we update MTracker, remember which values were present in each of
2150   // the locations about to be overwritten, so that we can recover any
2151   // potentially clobbered variables.
2152   DenseMap<LocIdx, ValueIDNum> ClobberedLocs;
2153   if (TTracker) {
2154     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
2155       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
2156       auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc);
2157       // If ActiveMLocs isn't tracking this location or there are no variables
2158       // using it, don't bother remembering.
2159       if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty())
2160         continue;
2161       ValueIDNum Value = MTracker->readReg(*RAI);
2162       ClobberedLocs[ClobberedLoc] = Value;
2163     }
2164   }
2165 
2166   // Copy MTracker info, including subregs if available.
2167   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2168 
2169   // The copy might have clobbered variables based on the destination register.
2170   // Tell TTracker about it, passing the old ValueIDNum to search for
2171   // alternative locations (or else terminating those variables).
2172   if (TTracker) {
2173     for (auto LocVal : ClobberedLocs) {
2174       TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false);
2175     }
2176   }
2177 
2178   // Only produce a transfer of DBG_VALUE within a block where old LDV
2179   // would have. We might make use of the additional value tracking in some
2180   // other way, later.
2181   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2182     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2183                             MTracker->getRegMLoc(DestReg), MI.getIterator());
2184 
2185   // VarLocBasedImpl would quit tracking the old location after copying.
2186   if (EmulateOldLDV && SrcReg != DestReg)
2187     MTracker->defReg(SrcReg, CurBB, CurInst);
2188 
2189   return true;
2190 }
2191 
2192 /// Accumulate a mapping between each DILocalVariable fragment and other
2193 /// fragments of that DILocalVariable which overlap. This reduces work during
2194 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2195 /// known-to-overlap fragments are present".
2196 /// \param MI A previously unprocessed debug instruction to analyze for
2197 ///           fragment usage.
accumulateFragmentMap(MachineInstr & MI)2198 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2199   assert(MI.isDebugValueLike());
2200   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2201                       MI.getDebugLoc()->getInlinedAt());
2202   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2203 
2204   // If this is the first sighting of this variable, then we are guaranteed
2205   // there are currently no overlapping fragments either. Initialize the set
2206   // of seen fragments, record no overlaps for the current one, and return.
2207   auto SeenIt = SeenFragments.find(MIVar.getVariable());
2208   if (SeenIt == SeenFragments.end()) {
2209     SmallSet<FragmentInfo, 4> OneFragment;
2210     OneFragment.insert(ThisFragment);
2211     SeenFragments.insert({MIVar.getVariable(), OneFragment});
2212 
2213     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2214     return;
2215   }
2216 
2217   // If this particular Variable/Fragment pair already exists in the overlap
2218   // map, it has already been accounted for.
2219   auto IsInOLapMap =
2220       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2221   if (!IsInOLapMap.second)
2222     return;
2223 
2224   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2225   auto &AllSeenFragments = SeenIt->second;
2226 
2227   // Otherwise, examine all other seen fragments for this variable, with "this"
2228   // fragment being a previously unseen fragment. Record any pair of
2229   // overlapping fragments.
2230   for (const auto &ASeenFragment : AllSeenFragments) {
2231     // Does this previously seen fragment overlap?
2232     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2233       // Yes: Mark the current fragment as being overlapped.
2234       ThisFragmentsOverlaps.push_back(ASeenFragment);
2235       // Mark the previously seen fragment as being overlapped by the current
2236       // one.
2237       auto ASeenFragmentsOverlaps =
2238           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2239       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2240              "Previously seen var fragment has no vector of overlaps");
2241       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2242     }
2243   }
2244 
2245   AllSeenFragments.insert(ThisFragment);
2246 }
2247 
process(MachineInstr & MI,const ValueTable * MLiveOuts,const ValueTable * MLiveIns)2248 void InstrRefBasedLDV::process(MachineInstr &MI, const ValueTable *MLiveOuts,
2249                                const ValueTable *MLiveIns) {
2250   // Try to interpret an MI as a debug or transfer instruction. Only if it's
2251   // none of these should we interpret it's register defs as new value
2252   // definitions.
2253   if (transferDebugValue(MI))
2254     return;
2255   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
2256     return;
2257   if (transferDebugPHI(MI))
2258     return;
2259   if (transferRegisterCopy(MI))
2260     return;
2261   if (transferSpillOrRestoreInst(MI))
2262     return;
2263   transferRegisterDef(MI);
2264 }
2265 
produceMLocTransferFunction(MachineFunction & MF,SmallVectorImpl<MLocTransferMap> & MLocTransfer,unsigned MaxNumBlocks)2266 void InstrRefBasedLDV::produceMLocTransferFunction(
2267     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2268     unsigned MaxNumBlocks) {
2269   // Because we try to optimize around register mask operands by ignoring regs
2270   // that aren't currently tracked, we set up something ugly for later: RegMask
2271   // operands that are seen earlier than the first use of a register, still need
2272   // to clobber that register in the transfer function. But this information
2273   // isn't actively recorded. Instead, we track each RegMask used in each block,
2274   // and accumulated the clobbered but untracked registers in each block into
2275   // the following bitvector. Later, if new values are tracked, we can add
2276   // appropriate clobbers.
2277   SmallVector<BitVector, 32> BlockMasks;
2278   BlockMasks.resize(MaxNumBlocks);
2279 
2280   // Reserve one bit per register for the masks described above.
2281   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2282   for (auto &BV : BlockMasks)
2283     BV.resize(TRI->getNumRegs(), true);
2284 
2285   // Step through all instructions and inhale the transfer function.
2286   for (auto &MBB : MF) {
2287     // Object fields that are read by trackers to know where we are in the
2288     // function.
2289     CurBB = MBB.getNumber();
2290     CurInst = 1;
2291 
2292     // Set all machine locations to a PHI value. For transfer function
2293     // production only, this signifies the live-in value to the block.
2294     MTracker->reset();
2295     MTracker->setMPhis(CurBB);
2296 
2297     // Step through each instruction in this block.
2298     for (auto &MI : MBB) {
2299       // Pass in an empty unique_ptr for the value tables when accumulating the
2300       // machine transfer function.
2301       process(MI, nullptr, nullptr);
2302 
2303       // Also accumulate fragment map.
2304       if (MI.isDebugValueLike())
2305         accumulateFragmentMap(MI);
2306 
2307       // Create a map from the instruction number (if present) to the
2308       // MachineInstr and its position.
2309       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2310         auto InstrAndPos = std::make_pair(&MI, CurInst);
2311         auto InsertResult =
2312             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2313 
2314         // There should never be duplicate instruction numbers.
2315         assert(InsertResult.second);
2316         (void)InsertResult;
2317       }
2318 
2319       ++CurInst;
2320     }
2321 
2322     // Produce the transfer function, a map of machine location to new value. If
2323     // any machine location has the live-in phi value from the start of the
2324     // block, it's live-through and doesn't need recording in the transfer
2325     // function.
2326     for (auto Location : MTracker->locations()) {
2327       LocIdx Idx = Location.Idx;
2328       ValueIDNum &P = Location.Value;
2329       if (P.isPHI() && P.getLoc() == Idx.asU64())
2330         continue;
2331 
2332       // Insert-or-update.
2333       auto &TransferMap = MLocTransfer[CurBB];
2334       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2335       if (!Result.second)
2336         Result.first->second = P;
2337     }
2338 
2339     // Accumulate any bitmask operands into the clobbered reg mask for this
2340     // block.
2341     for (auto &P : MTracker->Masks) {
2342       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2343     }
2344   }
2345 
2346   // Compute a bitvector of all the registers that are tracked in this block.
2347   BitVector UsedRegs(TRI->getNumRegs());
2348   for (auto Location : MTracker->locations()) {
2349     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2350     // Ignore stack slots, and aliases of the stack pointer.
2351     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
2352       continue;
2353     UsedRegs.set(ID);
2354   }
2355 
2356   // Check that any regmask-clobber of a register that gets tracked, is not
2357   // live-through in the transfer function. It needs to be clobbered at the
2358   // very least.
2359   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2360     BitVector &BV = BlockMasks[I];
2361     BV.flip();
2362     BV &= UsedRegs;
2363     // This produces all the bits that we clobber, but also use. Check that
2364     // they're all clobbered or at least set in the designated transfer
2365     // elem.
2366     for (unsigned Bit : BV.set_bits()) {
2367       unsigned ID = MTracker->getLocID(Bit);
2368       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2369       auto &TransferMap = MLocTransfer[I];
2370 
2371       // Install a value representing the fact that this location is effectively
2372       // written to in this block. As there's no reserved value, instead use
2373       // a value number that is never generated. Pick the value number for the
2374       // first instruction in the block, def'ing this location, which we know
2375       // this block never used anyway.
2376       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2377       auto Result =
2378         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2379       if (!Result.second) {
2380         ValueIDNum &ValueID = Result.first->second;
2381         if (ValueID.getBlock() == I && ValueID.isPHI())
2382           // It was left as live-through. Set it to clobbered.
2383           ValueID = NotGeneratedNum;
2384       }
2385     }
2386   }
2387 }
2388 
mlocJoin(MachineBasicBlock & MBB,SmallPtrSet<const MachineBasicBlock *,16> & Visited,FuncValueTable & OutLocs,ValueTable & InLocs)2389 bool InstrRefBasedLDV::mlocJoin(
2390     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2391     FuncValueTable &OutLocs, ValueTable &InLocs) {
2392   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2393   bool Changed = false;
2394 
2395   // Handle value-propagation when control flow merges on entry to a block. For
2396   // any location without a PHI already placed, the location has the same value
2397   // as its predecessors. If a PHI is placed, test to see whether it's now a
2398   // redundant PHI that we can eliminate.
2399 
2400   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2401   for (auto *Pred : MBB.predecessors())
2402     BlockOrders.push_back(Pred);
2403 
2404   // Visit predecessors in RPOT order.
2405   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2406     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2407   };
2408   llvm::sort(BlockOrders, Cmp);
2409 
2410   // Skip entry block.
2411   if (BlockOrders.size() == 0)
2412     return false;
2413 
2414   // Step through all machine locations, look at each predecessor and test
2415   // whether we can eliminate redundant PHIs.
2416   for (auto Location : MTracker->locations()) {
2417     LocIdx Idx = Location.Idx;
2418 
2419     // Pick out the first predecessors live-out value for this location. It's
2420     // guaranteed to not be a backedge, as we order by RPO.
2421     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2422 
2423     // If we've already eliminated a PHI here, do no further checking, just
2424     // propagate the first live-in value into this block.
2425     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
2426       if (InLocs[Idx.asU64()] != FirstVal) {
2427         InLocs[Idx.asU64()] = FirstVal;
2428         Changed |= true;
2429       }
2430       continue;
2431     }
2432 
2433     // We're now examining a PHI to see whether it's un-necessary. Loop around
2434     // the other live-in values and test whether they're all the same.
2435     bool Disagree = false;
2436     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2437       const MachineBasicBlock *PredMBB = BlockOrders[I];
2438       const ValueIDNum &PredLiveOut =
2439           OutLocs[PredMBB->getNumber()][Idx.asU64()];
2440 
2441       // Incoming values agree, continue trying to eliminate this PHI.
2442       if (FirstVal == PredLiveOut)
2443         continue;
2444 
2445       // We can also accept a PHI value that feeds back into itself.
2446       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
2447         continue;
2448 
2449       // Live-out of a predecessor disagrees with the first predecessor.
2450       Disagree = true;
2451     }
2452 
2453     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
2454     if (!Disagree) {
2455       InLocs[Idx.asU64()] = FirstVal;
2456       Changed |= true;
2457     }
2458   }
2459 
2460   // TODO: Reimplement NumInserted and NumRemoved.
2461   return Changed;
2462 }
2463 
findStackIndexInterference(SmallVectorImpl<unsigned> & Slots)2464 void InstrRefBasedLDV::findStackIndexInterference(
2465     SmallVectorImpl<unsigned> &Slots) {
2466   // We could spend a bit of time finding the exact, minimal, set of stack
2467   // indexes that interfere with each other, much like reg units. Or, we can
2468   // rely on the fact that:
2469   //  * The smallest / lowest index will interfere with everything at zero
2470   //    offset, which will be the largest set of registers,
2471   //  * Most indexes with non-zero offset will end up being interference units
2472   //    anyway.
2473   // So just pick those out and return them.
2474 
2475   // We can rely on a single-byte stack index existing already, because we
2476   // initialize them in MLocTracker.
2477   auto It = MTracker->StackSlotIdxes.find({8, 0});
2478   assert(It != MTracker->StackSlotIdxes.end());
2479   Slots.push_back(It->second);
2480 
2481   // Find anything that has a non-zero offset and add that too.
2482   for (auto &Pair : MTracker->StackSlotIdxes) {
2483     // Is offset zero? If so, ignore.
2484     if (!Pair.first.second)
2485       continue;
2486     Slots.push_back(Pair.second);
2487   }
2488 }
2489 
placeMLocPHIs(MachineFunction & MF,SmallPtrSetImpl<MachineBasicBlock * > & AllBlocks,FuncValueTable & MInLocs,SmallVectorImpl<MLocTransferMap> & MLocTransfer)2490 void InstrRefBasedLDV::placeMLocPHIs(
2491     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2492     FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2493   SmallVector<unsigned, 4> StackUnits;
2494   findStackIndexInterference(StackUnits);
2495 
2496   // To avoid repeatedly running the PHI placement algorithm, leverage the
2497   // fact that a def of register MUST also def its register units. Find the
2498   // units for registers, place PHIs for them, and then replicate them for
2499   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
2500   // arguments) don't lead to register units being tracked, just place PHIs for
2501   // those registers directly. Stack slots have their own form of "unit",
2502   // store them to one side.
2503   SmallSet<Register, 32> RegUnitsToPHIUp;
2504   SmallSet<LocIdx, 32> NormalLocsToPHI;
2505   SmallSet<SpillLocationNo, 32> StackSlots;
2506   for (auto Location : MTracker->locations()) {
2507     LocIdx L = Location.Idx;
2508     if (MTracker->isSpill(L)) {
2509       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
2510       continue;
2511     }
2512 
2513     Register R = MTracker->LocIdxToLocID[L];
2514     SmallSet<Register, 8> FoundRegUnits;
2515     bool AnyIllegal = false;
2516     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
2517       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
2518         if (!MTracker->isRegisterTracked(*URoot)) {
2519           // Not all roots were loaded into the tracking map: this register
2520           // isn't actually def'd anywhere, we only read from it. Generate PHIs
2521           // for this reg, but don't iterate units.
2522           AnyIllegal = true;
2523         } else {
2524           FoundRegUnits.insert(*URoot);
2525         }
2526       }
2527     }
2528 
2529     if (AnyIllegal) {
2530       NormalLocsToPHI.insert(L);
2531       continue;
2532     }
2533 
2534     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2535   }
2536 
2537   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2538   // collection.
2539   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2540   auto CollectPHIsForLoc = [&](LocIdx L) {
2541     // Collect the set of defs.
2542     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2543     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2544       MachineBasicBlock *MBB = OrderToBB[I];
2545       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2546       if (TransferFunc.find(L) != TransferFunc.end())
2547         DefBlocks.insert(MBB);
2548     }
2549 
2550     // The entry block defs the location too: it's the live-in / argument value.
2551     // Only insert if there are other defs though; everything is trivially live
2552     // through otherwise.
2553     if (!DefBlocks.empty())
2554       DefBlocks.insert(&*MF.begin());
2555 
2556     // Ask the SSA construction algorithm where we should put PHIs. Clear
2557     // anything that might have been hanging around from earlier.
2558     PHIBlocks.clear();
2559     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2560   };
2561 
2562   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2563     for (const MachineBasicBlock *MBB : PHIBlocks)
2564       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2565   };
2566 
2567   // For locations with no reg units, just place PHIs.
2568   for (LocIdx L : NormalLocsToPHI) {
2569     CollectPHIsForLoc(L);
2570     // Install those PHI values into the live-in value array.
2571     InstallPHIsAtLoc(L);
2572   }
2573 
2574   // For stack slots, calculate PHIs for the equivalent of the units, then
2575   // install for each index.
2576   for (SpillLocationNo Slot : StackSlots) {
2577     for (unsigned Idx : StackUnits) {
2578       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2579       LocIdx L = MTracker->getSpillMLoc(SpillID);
2580       CollectPHIsForLoc(L);
2581       InstallPHIsAtLoc(L);
2582 
2583       // Find anything that aliases this stack index, install PHIs for it too.
2584       unsigned Size, Offset;
2585       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2586       for (auto &Pair : MTracker->StackSlotIdxes) {
2587         unsigned ThisSize, ThisOffset;
2588         std::tie(ThisSize, ThisOffset) = Pair.first;
2589         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2590           continue;
2591 
2592         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2593         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2594         InstallPHIsAtLoc(ThisL);
2595       }
2596     }
2597   }
2598 
2599   // For reg units, place PHIs, and then place them for any aliasing registers.
2600   for (Register R : RegUnitsToPHIUp) {
2601     LocIdx L = MTracker->lookupOrTrackRegister(R);
2602     CollectPHIsForLoc(L);
2603 
2604     // Install those PHI values into the live-in value array.
2605     InstallPHIsAtLoc(L);
2606 
2607     // Now find aliases and install PHIs for those.
2608     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2609       // Super-registers that are "above" the largest register read/written by
2610       // the function will alias, but will not be tracked.
2611       if (!MTracker->isRegisterTracked(*RAI))
2612         continue;
2613 
2614       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2615       InstallPHIsAtLoc(AliasLoc);
2616     }
2617   }
2618 }
2619 
buildMLocValueMap(MachineFunction & MF,FuncValueTable & MInLocs,FuncValueTable & MOutLocs,SmallVectorImpl<MLocTransferMap> & MLocTransfer)2620 void InstrRefBasedLDV::buildMLocValueMap(
2621     MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
2622     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2623   std::priority_queue<unsigned int, std::vector<unsigned int>,
2624                       std::greater<unsigned int>>
2625       Worklist, Pending;
2626 
2627   // We track what is on the current and pending worklist to avoid inserting
2628   // the same thing twice. We could avoid this with a custom priority queue,
2629   // but this is probably not worth it.
2630   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2631 
2632   // Initialize worklist with every block to be visited. Also produce list of
2633   // all blocks.
2634   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2635   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2636     Worklist.push(I);
2637     OnWorklist.insert(OrderToBB[I]);
2638     AllBlocks.insert(OrderToBB[I]);
2639   }
2640 
2641   // Initialize entry block to PHIs. These represent arguments.
2642   for (auto Location : MTracker->locations())
2643     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2644 
2645   MTracker->reset();
2646 
2647   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2648   // any machine-location that isn't live-through a block to be def'd in that
2649   // block.
2650   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2651 
2652   // Propagate values to eliminate redundant PHIs. At the same time, this
2653   // produces the table of Block x Location => Value for the entry to each
2654   // block.
2655   // The kind of PHIs we can eliminate are, for example, where one path in a
2656   // conditional spills and restores a register, and the register still has
2657   // the same value once control flow joins, unbeknowns to the PHI placement
2658   // code. Propagating values allows us to identify such un-necessary PHIs and
2659   // remove them.
2660   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2661   while (!Worklist.empty() || !Pending.empty()) {
2662     // Vector for storing the evaluated block transfer function.
2663     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2664 
2665     while (!Worklist.empty()) {
2666       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2667       CurBB = MBB->getNumber();
2668       Worklist.pop();
2669 
2670       // Join the values in all predecessor blocks.
2671       bool InLocsChanged;
2672       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2673       InLocsChanged |= Visited.insert(MBB).second;
2674 
2675       // Don't examine transfer function if we've visited this loc at least
2676       // once, and inlocs haven't changed.
2677       if (!InLocsChanged)
2678         continue;
2679 
2680       // Load the current set of live-ins into MLocTracker.
2681       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2682 
2683       // Each element of the transfer function can be a new def, or a read of
2684       // a live-in value. Evaluate each element, and store to "ToRemap".
2685       ToRemap.clear();
2686       for (auto &P : MLocTransfer[CurBB]) {
2687         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2688           // This is a movement of whatever was live in. Read it.
2689           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2690           ToRemap.push_back(std::make_pair(P.first, NewID));
2691         } else {
2692           // It's a def. Just set it.
2693           assert(P.second.getBlock() == CurBB);
2694           ToRemap.push_back(std::make_pair(P.first, P.second));
2695         }
2696       }
2697 
2698       // Commit the transfer function changes into mloc tracker, which
2699       // transforms the contents of the MLocTracker into the live-outs.
2700       for (auto &P : ToRemap)
2701         MTracker->setMLoc(P.first, P.second);
2702 
2703       // Now copy out-locs from mloc tracker into out-loc vector, checking
2704       // whether changes have occurred. These changes can have come from both
2705       // the transfer function, and mlocJoin.
2706       bool OLChanged = false;
2707       for (auto Location : MTracker->locations()) {
2708         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2709         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2710       }
2711 
2712       MTracker->reset();
2713 
2714       // No need to examine successors again if out-locs didn't change.
2715       if (!OLChanged)
2716         continue;
2717 
2718       // All successors should be visited: put any back-edges on the pending
2719       // list for the next pass-through, and any other successors to be
2720       // visited this pass, if they're not going to be already.
2721       for (auto *s : MBB->successors()) {
2722         // Does branching to this successor represent a back-edge?
2723         if (BBToOrder[s] > BBToOrder[MBB]) {
2724           // No: visit it during this dataflow iteration.
2725           if (OnWorklist.insert(s).second)
2726             Worklist.push(BBToOrder[s]);
2727         } else {
2728           // Yes: visit it on the next iteration.
2729           if (OnPending.insert(s).second)
2730             Pending.push(BBToOrder[s]);
2731         }
2732       }
2733     }
2734 
2735     Worklist.swap(Pending);
2736     std::swap(OnPending, OnWorklist);
2737     OnPending.clear();
2738     // At this point, pending must be empty, since it was just the empty
2739     // worklist
2740     assert(Pending.empty() && "Pending should be empty");
2741   }
2742 
2743   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2744   // redundant PHIs.
2745 }
2746 
BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock * > & AllBlocks,const SmallPtrSetImpl<MachineBasicBlock * > & DefBlocks,SmallVectorImpl<MachineBasicBlock * > & PHIBlocks)2747 void InstrRefBasedLDV::BlockPHIPlacement(
2748     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2749     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2750     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2751   // Apply IDF calculator to the designated set of location defs, storing
2752   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2753   // InstrRefBasedLDV object.
2754   IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
2755 
2756   IDF.setLiveInBlocks(AllBlocks);
2757   IDF.setDefiningBlocks(DefBlocks);
2758   IDF.calculate(PHIBlocks);
2759 }
2760 
pickVPHILoc(SmallVectorImpl<DbgOpID> & OutValues,const MachineBasicBlock & MBB,const LiveIdxT & LiveOuts,FuncValueTable & MOutLocs,const SmallVectorImpl<const MachineBasicBlock * > & BlockOrders)2761 bool InstrRefBasedLDV::pickVPHILoc(
2762     SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
2763     const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
2764     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2765 
2766   // No predecessors means no PHIs.
2767   if (BlockOrders.empty())
2768     return false;
2769 
2770   // All the location operands that do not already agree need to be joined,
2771   // track the indices of each such location operand here.
2772   SmallDenseSet<unsigned> LocOpsToJoin;
2773 
2774   auto FirstValueIt = LiveOuts.find(BlockOrders[0]);
2775   if (FirstValueIt == LiveOuts.end())
2776     return false;
2777   const DbgValue &FirstValue = *FirstValueIt->second;
2778 
2779   for (const auto p : BlockOrders) {
2780     auto OutValIt = LiveOuts.find(p);
2781     if (OutValIt == LiveOuts.end())
2782       // If we have a predecessor not in scope, we'll never find a PHI position.
2783       return false;
2784     const DbgValue &OutVal = *OutValIt->second;
2785 
2786     // No-values cannot have locations we can join on.
2787     if (OutVal.Kind == DbgValue::NoVal)
2788       return false;
2789 
2790     // For unjoined VPHIs where we don't know the location, we definitely
2791     // can't find a join loc unless the VPHI is a backedge.
2792     if (OutVal.isUnjoinedPHI() && OutVal.BlockNo != MBB.getNumber())
2793       return false;
2794 
2795     if (!FirstValue.Properties.isJoinable(OutVal.Properties))
2796       return false;
2797 
2798     for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2799       // An unjoined PHI has no defined locations, and so a shared location must
2800       // be found for every operand.
2801       if (OutVal.isUnjoinedPHI()) {
2802         LocOpsToJoin.insert(Idx);
2803         continue;
2804       }
2805       DbgOpID FirstValOp = FirstValue.getDbgOpID(Idx);
2806       DbgOpID OutValOp = OutVal.getDbgOpID(Idx);
2807       if (FirstValOp != OutValOp) {
2808         // We can never join constant ops - the ops must either both be equal
2809         // constant ops or non-const ops.
2810         if (FirstValOp.isConst() || OutValOp.isConst())
2811           return false;
2812         else
2813           LocOpsToJoin.insert(Idx);
2814       }
2815     }
2816   }
2817 
2818   SmallVector<DbgOpID> NewDbgOps;
2819 
2820   for (unsigned Idx = 0; Idx < FirstValue.getLocationOpCount(); ++Idx) {
2821     // If this op doesn't need to be joined because the values agree, use that
2822     // already-agreed value.
2823     if (!LocOpsToJoin.contains(Idx)) {
2824       NewDbgOps.push_back(FirstValue.getDbgOpID(Idx));
2825       continue;
2826     }
2827 
2828     std::optional<ValueIDNum> JoinedOpLoc =
2829         pickOperandPHILoc(Idx, MBB, LiveOuts, MOutLocs, BlockOrders);
2830 
2831     if (!JoinedOpLoc)
2832       return false;
2833 
2834     NewDbgOps.push_back(DbgOpStore.insert(*JoinedOpLoc));
2835   }
2836 
2837   OutValues.append(NewDbgOps);
2838   return true;
2839 }
2840 
pickOperandPHILoc(unsigned DbgOpIdx,const MachineBasicBlock & MBB,const LiveIdxT & LiveOuts,FuncValueTable & MOutLocs,const SmallVectorImpl<const MachineBasicBlock * > & BlockOrders)2841 std::optional<ValueIDNum> InstrRefBasedLDV::pickOperandPHILoc(
2842     unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
2843     FuncValueTable &MOutLocs,
2844     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2845 
2846   // Collect a set of locations from predecessor where its live-out value can
2847   // be found.
2848   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2849   unsigned NumLocs = MTracker->getNumLocs();
2850 
2851   for (const auto p : BlockOrders) {
2852     unsigned ThisBBNum = p->getNumber();
2853     auto OutValIt = LiveOuts.find(p);
2854     assert(OutValIt != LiveOuts.end());
2855     const DbgValue &OutVal = *OutValIt->second;
2856     DbgOpID OutValOpID = OutVal.getDbgOpID(DbgOpIdx);
2857     DbgOp OutValOp = DbgOpStore.find(OutValOpID);
2858     assert(!OutValOp.IsConst);
2859 
2860     // Create new empty vector of locations.
2861     Locs.resize(Locs.size() + 1);
2862 
2863     // If the live-in value is a def, find the locations where that value is
2864     // present. Do the same for VPHIs where we know the VPHI value.
2865     if (OutVal.Kind == DbgValue::Def ||
2866         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2867          !OutValOp.isUndef())) {
2868       ValueIDNum ValToLookFor = OutValOp.ID;
2869       // Search the live-outs of the predecessor for the specified value.
2870       for (unsigned int I = 0; I < NumLocs; ++I) {
2871         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2872           Locs.back().push_back(LocIdx(I));
2873       }
2874     } else {
2875       assert(OutVal.Kind == DbgValue::VPHI);
2876       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2877       // a value that's live-through the whole loop. (It has to be a backedge,
2878       // because a block can't dominate itself). We can accept as a PHI location
2879       // any location where the other predecessors agree, _and_ the machine
2880       // locations feed back into themselves. Therefore, add all self-looping
2881       // machine-value PHI locations.
2882       for (unsigned int I = 0; I < NumLocs; ++I) {
2883         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2884         if (MOutLocs[ThisBBNum][I] == MPHI)
2885           Locs.back().push_back(LocIdx(I));
2886       }
2887     }
2888   }
2889   // We should have found locations for all predecessors, or returned.
2890   assert(Locs.size() == BlockOrders.size());
2891 
2892   // Starting with the first set of locations, take the intersection with
2893   // subsequent sets.
2894   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2895   for (unsigned int I = 1; I < Locs.size(); ++I) {
2896     auto &LocVec = Locs[I];
2897     SmallVector<LocIdx, 4> NewCandidates;
2898     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2899                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2900     CandidateLocs = NewCandidates;
2901   }
2902   if (CandidateLocs.empty())
2903     return std::nullopt;
2904 
2905   // We now have a set of LocIdxes that contain the right output value in
2906   // each of the predecessors. Pick the lowest; if there's a register loc,
2907   // that'll be it.
2908   LocIdx L = *CandidateLocs.begin();
2909 
2910   // Return a PHI-value-number for the found location.
2911   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2912   return PHIVal;
2913 }
2914 
vlocJoin(MachineBasicBlock & MBB,LiveIdxT & VLOCOutLocs,SmallPtrSet<const MachineBasicBlock *,8> & BlocksToExplore,DbgValue & LiveIn)2915 bool InstrRefBasedLDV::vlocJoin(
2916     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2917     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2918     DbgValue &LiveIn) {
2919   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2920   bool Changed = false;
2921 
2922   // Order predecessors by RPOT order, for exploring them in that order.
2923   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2924 
2925   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2926     return BBToOrder[A] < BBToOrder[B];
2927   };
2928 
2929   llvm::sort(BlockOrders, Cmp);
2930 
2931   unsigned CurBlockRPONum = BBToOrder[&MBB];
2932 
2933   // Collect all the incoming DbgValues for this variable, from predecessor
2934   // live-out values.
2935   SmallVector<InValueT, 8> Values;
2936   bool Bail = false;
2937   int BackEdgesStart = 0;
2938   for (auto *p : BlockOrders) {
2939     // If the predecessor isn't in scope / to be explored, we'll never be
2940     // able to join any locations.
2941     if (!BlocksToExplore.contains(p)) {
2942       Bail = true;
2943       break;
2944     }
2945 
2946     // All Live-outs will have been initialized.
2947     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2948 
2949     // Keep track of where back-edges begin in the Values vector. Relies on
2950     // BlockOrders being sorted by RPO.
2951     unsigned ThisBBRPONum = BBToOrder[p];
2952     if (ThisBBRPONum < CurBlockRPONum)
2953       ++BackEdgesStart;
2954 
2955     Values.push_back(std::make_pair(p, &OutLoc));
2956   }
2957 
2958   // If there were no values, or one of the predecessors couldn't have a
2959   // value, then give up immediately. It's not safe to produce a live-in
2960   // value. Leave as whatever it was before.
2961   if (Bail || Values.size() == 0)
2962     return false;
2963 
2964   // All (non-entry) blocks have at least one non-backedge predecessor.
2965   // Pick the variable value from the first of these, to compare against
2966   // all others.
2967   const DbgValue &FirstVal = *Values[0].second;
2968 
2969   // If the old live-in value is not a PHI then either a) no PHI is needed
2970   // here, or b) we eliminated the PHI that was here. If so, we can just
2971   // propagate in the first parent's incoming value.
2972   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2973     Changed = LiveIn != FirstVal;
2974     if (Changed)
2975       LiveIn = FirstVal;
2976     return Changed;
2977   }
2978 
2979   // Scan for variable values that can never be resolved: if they have
2980   // different DIExpressions, different indirectness, or are mixed constants /
2981   // non-constants.
2982   for (const auto &V : Values) {
2983     if (!V.second->Properties.isJoinable(FirstVal.Properties))
2984       return false;
2985     if (V.second->Kind == DbgValue::NoVal)
2986       return false;
2987     if (!V.second->hasJoinableLocOps(FirstVal))
2988       return false;
2989   }
2990 
2991   // Try to eliminate this PHI. Do the incoming values all agree?
2992   bool Disagree = false;
2993   for (auto &V : Values) {
2994     if (*V.second == FirstVal)
2995       continue; // No disagreement.
2996 
2997     // If both values are not equal but have equal non-empty IDs then they refer
2998     // to the same value from different sources (e.g. one is VPHI and the other
2999     // is Def), which does not cause disagreement.
3000     if (V.second->hasIdenticalValidLocOps(FirstVal))
3001       continue;
3002 
3003     // Eliminate if a backedge feeds a VPHI back into itself.
3004     if (V.second->Kind == DbgValue::VPHI &&
3005         V.second->BlockNo == MBB.getNumber() &&
3006         // Is this a backedge?
3007         std::distance(Values.begin(), &V) >= BackEdgesStart)
3008       continue;
3009 
3010     Disagree = true;
3011   }
3012 
3013   // No disagreement -> live-through value.
3014   if (!Disagree) {
3015     Changed = LiveIn != FirstVal;
3016     if (Changed)
3017       LiveIn = FirstVal;
3018     return Changed;
3019   } else {
3020     // Otherwise use a VPHI.
3021     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
3022     Changed = LiveIn != VPHI;
3023     if (Changed)
3024       LiveIn = VPHI;
3025     return Changed;
3026   }
3027 }
3028 
getBlocksForScope(const DILocation * DILoc,SmallPtrSetImpl<const MachineBasicBlock * > & BlocksToExplore,const SmallPtrSetImpl<MachineBasicBlock * > & AssignBlocks)3029 void InstrRefBasedLDV::getBlocksForScope(
3030     const DILocation *DILoc,
3031     SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
3032     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
3033   // Get the set of "normal" in-lexical-scope blocks.
3034   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
3035 
3036   // VarLoc LiveDebugValues tracks variable locations that are defined in
3037   // blocks not in scope. This is something we could legitimately ignore, but
3038   // lets allow it for now for the sake of coverage.
3039   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
3040 
3041   // Storage for artificial blocks we intend to add to BlocksToExplore.
3042   DenseSet<const MachineBasicBlock *> ToAdd;
3043 
3044   // To avoid needlessly dropping large volumes of variable locations, propagate
3045   // variables through aritifical blocks, i.e. those that don't have any
3046   // instructions in scope at all. To accurately replicate VarLoc
3047   // LiveDebugValues, this means exploring all artificial successors too.
3048   // Perform a depth-first-search to enumerate those blocks.
3049   for (const auto *MBB : BlocksToExplore) {
3050     // Depth-first-search state: each node is a block and which successor
3051     // we're currently exploring.
3052     SmallVector<std::pair<const MachineBasicBlock *,
3053                           MachineBasicBlock::const_succ_iterator>,
3054                 8>
3055         DFS;
3056 
3057     // Find any artificial successors not already tracked.
3058     for (auto *succ : MBB->successors()) {
3059       if (BlocksToExplore.count(succ))
3060         continue;
3061       if (!ArtificialBlocks.count(succ))
3062         continue;
3063       ToAdd.insert(succ);
3064       DFS.push_back({succ, succ->succ_begin()});
3065     }
3066 
3067     // Search all those blocks, depth first.
3068     while (!DFS.empty()) {
3069       const MachineBasicBlock *CurBB = DFS.back().first;
3070       MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
3071       // Walk back if we've explored this blocks successors to the end.
3072       if (CurSucc == CurBB->succ_end()) {
3073         DFS.pop_back();
3074         continue;
3075       }
3076 
3077       // If the current successor is artificial and unexplored, descend into
3078       // it.
3079       if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
3080         ToAdd.insert(*CurSucc);
3081         DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
3082         continue;
3083       }
3084 
3085       ++CurSucc;
3086     }
3087   };
3088 
3089   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
3090 }
3091 
buildVLocValueMap(const DILocation * DILoc,const SmallSet<DebugVariable,4> & VarsWeCareAbout,SmallPtrSetImpl<MachineBasicBlock * > & AssignBlocks,LiveInsT & Output,FuncValueTable & MOutLocs,FuncValueTable & MInLocs,SmallVectorImpl<VLocTracker> & AllTheVLocs)3092 void InstrRefBasedLDV::buildVLocValueMap(
3093     const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
3094     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
3095     FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3096     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
3097   // This method is much like buildMLocValueMap: but focuses on a single
3098   // LexicalScope at a time. Pick out a set of blocks and variables that are
3099   // to have their value assignments solved, then run our dataflow algorithm
3100   // until a fixedpoint is reached.
3101   std::priority_queue<unsigned int, std::vector<unsigned int>,
3102                       std::greater<unsigned int>>
3103       Worklist, Pending;
3104   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
3105 
3106   // The set of blocks we'll be examining.
3107   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3108 
3109   // The order in which to examine them (RPO).
3110   SmallVector<MachineBasicBlock *, 8> BlockOrders;
3111 
3112   // RPO ordering function.
3113   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3114     return BBToOrder[A] < BBToOrder[B];
3115   };
3116 
3117   getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
3118 
3119   // Single block scope: not interesting! No propagation at all. Note that
3120   // this could probably go above ArtificialBlocks without damage, but
3121   // that then produces output differences from original-live-debug-values,
3122   // which propagates from a single block into many artificial ones.
3123   if (BlocksToExplore.size() == 1)
3124     return;
3125 
3126   // Convert a const set to a non-const set. LexicalScopes
3127   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
3128   // (Neither of them mutate anything).
3129   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
3130   for (const auto *MBB : BlocksToExplore)
3131     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
3132 
3133   // Picks out relevants blocks RPO order and sort them.
3134   for (const auto *MBB : BlocksToExplore)
3135     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
3136 
3137   llvm::sort(BlockOrders, Cmp);
3138   unsigned NumBlocks = BlockOrders.size();
3139 
3140   // Allocate some vectors for storing the live ins and live outs. Large.
3141   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
3142   LiveIns.reserve(NumBlocks);
3143   LiveOuts.reserve(NumBlocks);
3144 
3145   // Initialize all values to start as NoVals. This signifies "it's live
3146   // through, but we don't know what it is".
3147   DbgValueProperties EmptyProperties(EmptyExpr, false, false);
3148   for (unsigned int I = 0; I < NumBlocks; ++I) {
3149     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3150     LiveIns.push_back(EmptyDbgValue);
3151     LiveOuts.push_back(EmptyDbgValue);
3152   }
3153 
3154   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
3155   // vlocJoin.
3156   LiveIdxT LiveOutIdx, LiveInIdx;
3157   LiveOutIdx.reserve(NumBlocks);
3158   LiveInIdx.reserve(NumBlocks);
3159   for (unsigned I = 0; I < NumBlocks; ++I) {
3160     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3161     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3162   }
3163 
3164   // Loop over each variable and place PHIs for it, then propagate values
3165   // between blocks. This keeps the locality of working on one lexical scope at
3166   // at time, but avoids re-processing variable values because some other
3167   // variable has been assigned.
3168   for (const auto &Var : VarsWeCareAbout) {
3169     // Re-initialize live-ins and live-outs, to clear the remains of previous
3170     // variables live-ins / live-outs.
3171     for (unsigned int I = 0; I < NumBlocks; ++I) {
3172       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
3173       LiveIns[I] = EmptyDbgValue;
3174       LiveOuts[I] = EmptyDbgValue;
3175     }
3176 
3177     // Place PHIs for variable values, using the LLVM IDF calculator.
3178     // Collect the set of blocks where variables are def'd.
3179     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
3180     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
3181       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
3182       if (TransferFunc.find(Var) != TransferFunc.end())
3183         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
3184     }
3185 
3186     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
3187 
3188     // Request the set of PHIs we should insert for this variable. If there's
3189     // only one value definition, things are very simple.
3190     if (DefBlocks.size() == 1) {
3191       placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
3192                                       AllTheVLocs, Var, Output);
3193       continue;
3194     }
3195 
3196     // Otherwise: we need to place PHIs through SSA and propagate values.
3197     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
3198 
3199     // Insert PHIs into the per-block live-in tables for this variable.
3200     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
3201       unsigned BlockNo = PHIMBB->getNumber();
3202       DbgValue *LiveIn = LiveInIdx[PHIMBB];
3203       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
3204     }
3205 
3206     for (auto *MBB : BlockOrders) {
3207       Worklist.push(BBToOrder[MBB]);
3208       OnWorklist.insert(MBB);
3209     }
3210 
3211     // Iterate over all the blocks we selected, propagating the variables value.
3212     // This loop does two things:
3213     //  * Eliminates un-necessary VPHIs in vlocJoin,
3214     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
3215     //    stores the result to the blocks live-outs.
3216     // Always evaluate the transfer function on the first iteration, and when
3217     // the live-ins change thereafter.
3218     bool FirstTrip = true;
3219     while (!Worklist.empty() || !Pending.empty()) {
3220       while (!Worklist.empty()) {
3221         auto *MBB = OrderToBB[Worklist.top()];
3222         CurBB = MBB->getNumber();
3223         Worklist.pop();
3224 
3225         auto LiveInsIt = LiveInIdx.find(MBB);
3226         assert(LiveInsIt != LiveInIdx.end());
3227         DbgValue *LiveIn = LiveInsIt->second;
3228 
3229         // Join values from predecessors. Updates LiveInIdx, and writes output
3230         // into JoinedInLocs.
3231         bool InLocsChanged =
3232             vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
3233 
3234         SmallVector<const MachineBasicBlock *, 8> Preds;
3235         for (const auto *Pred : MBB->predecessors())
3236           Preds.push_back(Pred);
3237 
3238         // If this block's live-in value is a VPHI, try to pick a machine-value
3239         // for it. This makes the machine-value available and propagated
3240         // through all blocks by the time value propagation finishes. We can't
3241         // do this any earlier as it needs to read the block live-outs.
3242         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
3243           // There's a small possibility that on a preceeding path, a VPHI is
3244           // eliminated and transitions from VPHI-with-location to
3245           // live-through-value. As a result, the selected location of any VPHI
3246           // might change, so we need to re-compute it on each iteration.
3247           SmallVector<DbgOpID> JoinedOps;
3248 
3249           if (pickVPHILoc(JoinedOps, *MBB, LiveOutIdx, MOutLocs, Preds)) {
3250             bool NewLocPicked = !equal(LiveIn->getDbgOpIDs(), JoinedOps);
3251             InLocsChanged |= NewLocPicked;
3252             if (NewLocPicked)
3253               LiveIn->setDbgOpIDs(JoinedOps);
3254           }
3255         }
3256 
3257         if (!InLocsChanged && !FirstTrip)
3258           continue;
3259 
3260         DbgValue *LiveOut = LiveOutIdx[MBB];
3261         bool OLChanged = false;
3262 
3263         // Do transfer function.
3264         auto &VTracker = AllTheVLocs[MBB->getNumber()];
3265         auto TransferIt = VTracker.Vars.find(Var);
3266         if (TransferIt != VTracker.Vars.end()) {
3267           // Erase on empty transfer (DBG_VALUE $noreg).
3268           if (TransferIt->second.Kind == DbgValue::Undef) {
3269             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
3270             if (*LiveOut != NewVal) {
3271               *LiveOut = NewVal;
3272               OLChanged = true;
3273             }
3274           } else {
3275             // Insert new variable value; or overwrite.
3276             if (*LiveOut != TransferIt->second) {
3277               *LiveOut = TransferIt->second;
3278               OLChanged = true;
3279             }
3280           }
3281         } else {
3282           // Just copy live-ins to live-outs, for anything not transferred.
3283           if (*LiveOut != *LiveIn) {
3284             *LiveOut = *LiveIn;
3285             OLChanged = true;
3286           }
3287         }
3288 
3289         // If no live-out value changed, there's no need to explore further.
3290         if (!OLChanged)
3291           continue;
3292 
3293         // We should visit all successors. Ensure we'll visit any non-backedge
3294         // successors during this dataflow iteration; book backedge successors
3295         // to be visited next time around.
3296         for (auto *s : MBB->successors()) {
3297           // Ignore out of scope / not-to-be-explored successors.
3298           if (LiveInIdx.find(s) == LiveInIdx.end())
3299             continue;
3300 
3301           if (BBToOrder[s] > BBToOrder[MBB]) {
3302             if (OnWorklist.insert(s).second)
3303               Worklist.push(BBToOrder[s]);
3304           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3305             Pending.push(BBToOrder[s]);
3306           }
3307         }
3308       }
3309       Worklist.swap(Pending);
3310       std::swap(OnWorklist, OnPending);
3311       OnPending.clear();
3312       assert(Pending.empty());
3313       FirstTrip = false;
3314     }
3315 
3316     // Save live-ins to output vector. Ignore any that are still marked as being
3317     // VPHIs with no location -- those are variables that we know the value of,
3318     // but are not actually available in the register file.
3319     for (auto *MBB : BlockOrders) {
3320       DbgValue *BlockLiveIn = LiveInIdx[MBB];
3321       if (BlockLiveIn->Kind == DbgValue::NoVal)
3322         continue;
3323       if (BlockLiveIn->isUnjoinedPHI())
3324         continue;
3325       if (BlockLiveIn->Kind == DbgValue::VPHI)
3326         BlockLiveIn->Kind = DbgValue::Def;
3327       assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
3328              Var.getFragment() && "Fragment info missing during value prop");
3329       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
3330     }
3331   } // Per-variable loop.
3332 
3333   BlockOrders.clear();
3334   BlocksToExplore.clear();
3335 }
3336 
placePHIsForSingleVarDefinition(const SmallPtrSetImpl<MachineBasicBlock * > & InScopeBlocks,MachineBasicBlock * AssignMBB,SmallVectorImpl<VLocTracker> & AllTheVLocs,const DebugVariable & Var,LiveInsT & Output)3337 void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
3338     const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
3339     MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
3340     const DebugVariable &Var, LiveInsT &Output) {
3341   // If there is a single definition of the variable, then working out it's
3342   // value everywhere is very simple: it's every block dominated by the
3343   // definition. At the dominance frontier, the usual algorithm would:
3344   //  * Place PHIs,
3345   //  * Propagate values into them,
3346   //  * Find there's no incoming variable value from the other incoming branches
3347   //    of the dominance frontier,
3348   //  * Specify there's no variable value in blocks past the frontier.
3349   // This is a common case, hence it's worth special-casing it.
3350 
3351   // Pick out the variables value from the block transfer function.
3352   VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
3353   auto ValueIt = VLocs.Vars.find(Var);
3354   const DbgValue &Value = ValueIt->second;
3355 
3356   // If it's an explicit assignment of "undef", that means there is no location
3357   // anyway, anywhere.
3358   if (Value.Kind == DbgValue::Undef)
3359     return;
3360 
3361   // Assign the variable value to entry to each dominated block that's in scope.
3362   // Skip the definition block -- it's assigned the variable value in the middle
3363   // of the block somewhere.
3364   for (auto *ScopeBlock : InScopeBlocks) {
3365     if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
3366       continue;
3367 
3368     Output[ScopeBlock->getNumber()].push_back({Var, Value});
3369   }
3370 
3371   // All blocks that aren't dominated have no live-in value, thus no variable
3372   // value will be given to them.
3373 }
3374 
3375 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump_mloc_transfer(const MLocTransferMap & mloc_transfer) const3376 void InstrRefBasedLDV::dump_mloc_transfer(
3377     const MLocTransferMap &mloc_transfer) const {
3378   for (const auto &P : mloc_transfer) {
3379     std::string foo = MTracker->LocIdxToName(P.first);
3380     std::string bar = MTracker->IDAsString(P.second);
3381     dbgs() << "Loc " << foo << " --> " << bar << "\n";
3382   }
3383 }
3384 #endif
3385 
initialSetup(MachineFunction & MF)3386 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3387   // Build some useful data structures.
3388 
3389   LLVMContext &Context = MF.getFunction().getContext();
3390   EmptyExpr = DIExpression::get(Context, {});
3391 
3392   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3393     if (const DebugLoc &DL = MI.getDebugLoc())
3394       return DL.getLine() != 0;
3395     return false;
3396   };
3397   // Collect a set of all the artificial blocks.
3398   for (auto &MBB : MF)
3399     if (none_of(MBB.instrs(), hasNonArtificialLocation))
3400       ArtificialBlocks.insert(&MBB);
3401 
3402   // Compute mappings of block <=> RPO order.
3403   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3404   unsigned int RPONumber = 0;
3405   auto processMBB = [&](MachineBasicBlock *MBB) {
3406     OrderToBB[RPONumber] = MBB;
3407     BBToOrder[MBB] = RPONumber;
3408     BBNumToRPO[MBB->getNumber()] = RPONumber;
3409     ++RPONumber;
3410   };
3411   for (MachineBasicBlock *MBB : RPOT)
3412     processMBB(MBB);
3413   for (MachineBasicBlock &MBB : MF)
3414     if (BBToOrder.find(&MBB) == BBToOrder.end())
3415       processMBB(&MBB);
3416 
3417   // Order value substitutions by their "source" operand pair, for quick lookup.
3418   llvm::sort(MF.DebugValueSubstitutions);
3419 
3420 #ifdef EXPENSIVE_CHECKS
3421   // As an expensive check, test whether there are any duplicate substitution
3422   // sources in the collection.
3423   if (MF.DebugValueSubstitutions.size() > 2) {
3424     for (auto It = MF.DebugValueSubstitutions.begin();
3425          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
3426       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
3427                                               "substitution seen");
3428     }
3429   }
3430 #endif
3431 }
3432 
3433 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered
3434 // lexical scope it's used in. When exploring in DFS order and we pass that
3435 // scope, the block can be processed and any tracking information freed.
makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> & EjectionMap,const ScopeToDILocT & ScopeToDILocation,ScopeToAssignBlocksT & ScopeToAssignBlocks)3436 void InstrRefBasedLDV::makeDepthFirstEjectionMap(
3437     SmallVectorImpl<unsigned> &EjectionMap,
3438     const ScopeToDILocT &ScopeToDILocation,
3439     ScopeToAssignBlocksT &ScopeToAssignBlocks) {
3440   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3441   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3442   auto *TopScope = LS.getCurrentFunctionScope();
3443 
3444   // Unlike lexical scope explorers, we explore in reverse order, to find the
3445   // "last" lexical scope used for each block early.
3446   WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
3447 
3448   while (!WorkStack.empty()) {
3449     auto &ScopePosition = WorkStack.back();
3450     LexicalScope *WS = ScopePosition.first;
3451     ssize_t ChildNum = ScopePosition.second--;
3452 
3453     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3454     if (ChildNum >= 0) {
3455       // If ChildNum is positive, there are remaining children to explore.
3456       // Push the child and its children-count onto the stack.
3457       auto &ChildScope = Children[ChildNum];
3458       WorkStack.push_back(
3459           std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
3460     } else {
3461       WorkStack.pop_back();
3462 
3463       // We've explored all children and any later blocks: examine all blocks
3464       // in our scope. If they haven't yet had an ejection number set, then
3465       // this scope will be the last to use that block.
3466       auto DILocationIt = ScopeToDILocation.find(WS);
3467       if (DILocationIt != ScopeToDILocation.end()) {
3468         getBlocksForScope(DILocationIt->second, BlocksToExplore,
3469                           ScopeToAssignBlocks.find(WS)->second);
3470         for (const auto *MBB : BlocksToExplore) {
3471           unsigned BBNum = MBB->getNumber();
3472           if (EjectionMap[BBNum] == 0)
3473             EjectionMap[BBNum] = WS->getDFSOut();
3474         }
3475 
3476         BlocksToExplore.clear();
3477       }
3478     }
3479   }
3480 }
3481 
depthFirstVLocAndEmit(unsigned MaxNumBlocks,const ScopeToDILocT & ScopeToDILocation,const ScopeToVarsT & ScopeToVars,ScopeToAssignBlocksT & ScopeToAssignBlocks,LiveInsT & Output,FuncValueTable & MOutLocs,FuncValueTable & MInLocs,SmallVectorImpl<VLocTracker> & AllTheVLocs,MachineFunction & MF,DenseMap<DebugVariable,unsigned> & AllVarsNumbering,const TargetPassConfig & TPC)3482 bool InstrRefBasedLDV::depthFirstVLocAndEmit(
3483     unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
3484     const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
3485     LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3486     SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
3487     DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
3488     const TargetPassConfig &TPC) {
3489   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
3490   unsigned NumLocs = MTracker->getNumLocs();
3491   VTracker = nullptr;
3492 
3493   // No scopes? No variable locations.
3494   if (!LS.getCurrentFunctionScope())
3495     return false;
3496 
3497   // Build map from block number to the last scope that uses the block.
3498   SmallVector<unsigned, 16> EjectionMap;
3499   EjectionMap.resize(MaxNumBlocks, 0);
3500   makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
3501                             ScopeToAssignBlocks);
3502 
3503   // Helper lambda for ejecting a block -- if nothing is going to use the block,
3504   // we can translate the variable location information into DBG_VALUEs and then
3505   // free all of InstrRefBasedLDV's data structures.
3506   auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
3507     unsigned BBNum = MBB.getNumber();
3508     AllTheVLocs[BBNum].clear();
3509 
3510     // Prime the transfer-tracker, and then step through all the block
3511     // instructions, installing transfers.
3512     MTracker->reset();
3513     MTracker->loadFromArray(MInLocs[BBNum], BBNum);
3514     TTracker->loadInlocs(MBB, MInLocs[BBNum], DbgOpStore, Output[BBNum],
3515                          NumLocs);
3516 
3517     CurBB = BBNum;
3518     CurInst = 1;
3519     for (auto &MI : MBB) {
3520       process(MI, MOutLocs.get(), MInLocs.get());
3521       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3522       ++CurInst;
3523     }
3524 
3525     // Free machine-location tables for this block.
3526     MInLocs[BBNum].reset();
3527     MOutLocs[BBNum].reset();
3528     // We don't need live-in variable values for this block either.
3529     Output[BBNum].clear();
3530     AllTheVLocs[BBNum].clear();
3531   };
3532 
3533   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3534   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3535   WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
3536   unsigned HighestDFSIn = 0;
3537 
3538   // Proceed to explore in depth first order.
3539   while (!WorkStack.empty()) {
3540     auto &ScopePosition = WorkStack.back();
3541     LexicalScope *WS = ScopePosition.first;
3542     ssize_t ChildNum = ScopePosition.second++;
3543 
3544     // We obesrve scopes with children twice here, once descending in, once
3545     // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
3546     // we don't process a scope twice. Additionally, ignore scopes that don't
3547     // have a DILocation -- by proxy, this means we never tracked any variable
3548     // assignments in that scope.
3549     auto DILocIt = ScopeToDILocation.find(WS);
3550     if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
3551       const DILocation *DILoc = DILocIt->second;
3552       auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
3553       auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
3554 
3555       buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
3556                         MInLocs, AllTheVLocs);
3557     }
3558 
3559     HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
3560 
3561     // Descend into any scope nests.
3562     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3563     if (ChildNum < (ssize_t)Children.size()) {
3564       // There are children to explore -- push onto stack and continue.
3565       auto &ChildScope = Children[ChildNum];
3566       WorkStack.push_back(std::make_pair(ChildScope, 0));
3567     } else {
3568       WorkStack.pop_back();
3569 
3570       // We've explored a leaf, or have explored all the children of a scope.
3571       // Try to eject any blocks where this is the last scope it's relevant to.
3572       auto DILocationIt = ScopeToDILocation.find(WS);
3573       if (DILocationIt == ScopeToDILocation.end())
3574         continue;
3575 
3576       getBlocksForScope(DILocationIt->second, BlocksToExplore,
3577                         ScopeToAssignBlocks.find(WS)->second);
3578       for (const auto *MBB : BlocksToExplore)
3579         if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
3580           EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
3581 
3582       BlocksToExplore.clear();
3583     }
3584   }
3585 
3586   // Some artificial blocks may not have been ejected, meaning they're not
3587   // connected to an actual legitimate scope. This can technically happen
3588   // with things like the entry block. In theory, we shouldn't need to do
3589   // anything for such out-of-scope blocks, but for the sake of being similar
3590   // to VarLocBasedLDV, eject these too.
3591   for (auto *MBB : ArtificialBlocks)
3592     if (MOutLocs[MBB->getNumber()])
3593       EjectBlock(*MBB);
3594 
3595   return emitTransfers(AllVarsNumbering);
3596 }
3597 
emitTransfers(DenseMap<DebugVariable,unsigned> & AllVarsNumbering)3598 bool InstrRefBasedLDV::emitTransfers(
3599     DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3600   // Go through all the transfers recorded in the TransferTracker -- this is
3601   // both the live-ins to a block, and any movements of values that happen
3602   // in the middle.
3603   for (const auto &P : TTracker->Transfers) {
3604     // We have to insert DBG_VALUEs in a consistent order, otherwise they
3605     // appear in DWARF in different orders. Use the order that they appear
3606     // when walking through each block / each instruction, stored in
3607     // AllVarsNumbering.
3608     SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
3609     for (MachineInstr *MI : P.Insts) {
3610       DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
3611                         MI->getDebugLoc()->getInlinedAt());
3612       Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
3613     }
3614     llvm::sort(Insts, llvm::less_first());
3615 
3616     // Insert either before or after the designated point...
3617     if (P.MBB) {
3618       MachineBasicBlock &MBB = *P.MBB;
3619       for (const auto &Pair : Insts)
3620         MBB.insert(P.Pos, Pair.second);
3621     } else {
3622       // Terminators, like tail calls, can clobber things. Don't try and place
3623       // transfers after them.
3624       if (P.Pos->isTerminator())
3625         continue;
3626 
3627       MachineBasicBlock &MBB = *P.Pos->getParent();
3628       for (const auto &Pair : Insts)
3629         MBB.insertAfterBundle(P.Pos, Pair.second);
3630     }
3631   }
3632 
3633   return TTracker->Transfers.size() != 0;
3634 }
3635 
3636 /// Calculate the liveness information for the given machine function and
3637 /// extend ranges across basic blocks.
ExtendRanges(MachineFunction & MF,MachineDominatorTree * DomTree,TargetPassConfig * TPC,unsigned InputBBLimit,unsigned InputDbgValLimit)3638 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3639                                     MachineDominatorTree *DomTree,
3640                                     TargetPassConfig *TPC,
3641                                     unsigned InputBBLimit,
3642                                     unsigned InputDbgValLimit) {
3643   // No subprogram means this function contains no debuginfo.
3644   if (!MF.getFunction().getSubprogram())
3645     return false;
3646 
3647   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3648   this->TPC = TPC;
3649 
3650   this->DomTree = DomTree;
3651   TRI = MF.getSubtarget().getRegisterInfo();
3652   MRI = &MF.getRegInfo();
3653   TII = MF.getSubtarget().getInstrInfo();
3654   TFI = MF.getSubtarget().getFrameLowering();
3655   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3656   MFI = &MF.getFrameInfo();
3657   LS.initialize(MF);
3658 
3659   const auto &STI = MF.getSubtarget();
3660   AdjustsStackInCalls = MFI->adjustsStack() &&
3661                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
3662   if (AdjustsStackInCalls)
3663     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
3664 
3665   MTracker =
3666       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3667   VTracker = nullptr;
3668   TTracker = nullptr;
3669 
3670   SmallVector<MLocTransferMap, 32> MLocTransfer;
3671   SmallVector<VLocTracker, 8> vlocs;
3672   LiveInsT SavedLiveIns;
3673 
3674   int MaxNumBlocks = -1;
3675   for (auto &MBB : MF)
3676     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3677   assert(MaxNumBlocks >= 0);
3678   ++MaxNumBlocks;
3679 
3680   initialSetup(MF);
3681 
3682   MLocTransfer.resize(MaxNumBlocks);
3683   vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
3684   SavedLiveIns.resize(MaxNumBlocks);
3685 
3686   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3687 
3688   // Allocate and initialize two array-of-arrays for the live-in and live-out
3689   // machine values. The outer dimension is the block number; while the inner
3690   // dimension is a LocIdx from MLocTracker.
3691   FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3692   FuncValueTable MInLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3693   unsigned NumLocs = MTracker->getNumLocs();
3694   for (int i = 0; i < MaxNumBlocks; ++i) {
3695     // These all auto-initialize to ValueIDNum::EmptyValue
3696     MOutLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3697     MInLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3698   }
3699 
3700   // Solve the machine value dataflow problem using the MLocTransfer function,
3701   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3702   // both live-ins and live-outs for decision making in the variable value
3703   // dataflow problem.
3704   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
3705 
3706   // Patch up debug phi numbers, turning unknown block-live-in values into
3707   // either live-through machine values, or PHIs.
3708   for (auto &DBG_PHI : DebugPHINumToValue) {
3709     // Identify unresolved block-live-ins.
3710     if (!DBG_PHI.ValueRead)
3711       continue;
3712 
3713     ValueIDNum &Num = *DBG_PHI.ValueRead;
3714     if (!Num.isPHI())
3715       continue;
3716 
3717     unsigned BlockNo = Num.getBlock();
3718     LocIdx LocNo = Num.getLoc();
3719     Num = MInLocs[BlockNo][LocNo.asU64()];
3720   }
3721   // Later, we'll be looking up ranges of instruction numbers.
3722   llvm::sort(DebugPHINumToValue);
3723 
3724   // Walk back through each block / instruction, collecting DBG_VALUE
3725   // instructions and recording what machine value their operands refer to.
3726   for (auto &OrderPair : OrderToBB) {
3727     MachineBasicBlock &MBB = *OrderPair.second;
3728     CurBB = MBB.getNumber();
3729     VTracker = &vlocs[CurBB];
3730     VTracker->MBB = &MBB;
3731     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3732     CurInst = 1;
3733     for (auto &MI : MBB) {
3734       process(MI, MOutLocs.get(), MInLocs.get());
3735       ++CurInst;
3736     }
3737     MTracker->reset();
3738   }
3739 
3740   // Number all variables in the order that they appear, to be used as a stable
3741   // insertion order later.
3742   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3743 
3744   // Map from one LexicalScope to all the variables in that scope.
3745   ScopeToVarsT ScopeToVars;
3746 
3747   // Map from One lexical scope to all blocks where assignments happen for
3748   // that scope.
3749   ScopeToAssignBlocksT ScopeToAssignBlocks;
3750 
3751   // Store map of DILocations that describes scopes.
3752   ScopeToDILocT ScopeToDILocation;
3753 
3754   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3755   // the order is unimportant, it just has to be stable.
3756   unsigned VarAssignCount = 0;
3757   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3758     auto *MBB = OrderToBB[I];
3759     auto *VTracker = &vlocs[MBB->getNumber()];
3760     // Collect each variable with a DBG_VALUE in this block.
3761     for (auto &idx : VTracker->Vars) {
3762       const auto &Var = idx.first;
3763       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3764       assert(ScopeLoc != nullptr);
3765       auto *Scope = LS.findLexicalScope(ScopeLoc);
3766 
3767       // No insts in scope -> shouldn't have been recorded.
3768       assert(Scope != nullptr);
3769 
3770       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3771       ScopeToVars[Scope].insert(Var);
3772       ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
3773       ScopeToDILocation[Scope] = ScopeLoc;
3774       ++VarAssignCount;
3775     }
3776   }
3777 
3778   bool Changed = false;
3779 
3780   // If we have an extremely large number of variable assignments and blocks,
3781   // bail out at this point. We've burnt some time doing analysis already,
3782   // however we should cut our losses.
3783   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3784       VarAssignCount > InputDbgValLimit) {
3785     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3786                       << " has " << MaxNumBlocks << " basic blocks and "
3787                       << VarAssignCount
3788                       << " variable assignments, exceeding limits.\n");
3789   } else {
3790     // Optionally, solve the variable value problem and emit to blocks by using
3791     // a lexical-scope-depth search. It should be functionally identical to
3792     // the "else" block of this condition.
3793     Changed = depthFirstVLocAndEmit(
3794         MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
3795         SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
3796   }
3797 
3798   delete MTracker;
3799   delete TTracker;
3800   MTracker = nullptr;
3801   VTracker = nullptr;
3802   TTracker = nullptr;
3803 
3804   ArtificialBlocks.clear();
3805   OrderToBB.clear();
3806   BBToOrder.clear();
3807   BBNumToRPO.clear();
3808   DebugInstrNumToInstr.clear();
3809   DebugPHINumToValue.clear();
3810   OverlapFragments.clear();
3811   SeenFragments.clear();
3812   SeenDbgPHIs.clear();
3813   DbgOpStore.clear();
3814 
3815   return Changed;
3816 }
3817 
makeInstrRefBasedLiveDebugValues()3818 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3819   return new InstrRefBasedLDV();
3820 }
3821 
3822 namespace {
3823 class LDVSSABlock;
3824 class LDVSSAUpdater;
3825 
3826 // Pick a type to identify incoming block values as we construct SSA. We
3827 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3828 // expects to zero-initialize the type.
3829 typedef uint64_t BlockValueNum;
3830 
3831 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3832 /// this PHI is in, the value number it would have, and the expected incoming
3833 /// values from parent blocks.
3834 class LDVSSAPhi {
3835 public:
3836   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3837   LDVSSABlock *ParentBlock;
3838   BlockValueNum PHIValNum;
LDVSSAPhi(BlockValueNum PHIValNum,LDVSSABlock * ParentBlock)3839   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3840       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3841 
getParent()3842   LDVSSABlock *getParent() { return ParentBlock; }
3843 };
3844 
3845 /// Thin wrapper around a block predecessor iterator. Only difference from a
3846 /// normal block iterator is that it dereferences to an LDVSSABlock.
3847 class LDVSSABlockIterator {
3848 public:
3849   MachineBasicBlock::pred_iterator PredIt;
3850   LDVSSAUpdater &Updater;
3851 
LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,LDVSSAUpdater & Updater)3852   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3853                       LDVSSAUpdater &Updater)
3854       : PredIt(PredIt), Updater(Updater) {}
3855 
operator !=(const LDVSSABlockIterator & OtherIt) const3856   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3857     return OtherIt.PredIt != PredIt;
3858   }
3859 
operator ++()3860   LDVSSABlockIterator &operator++() {
3861     ++PredIt;
3862     return *this;
3863   }
3864 
3865   LDVSSABlock *operator*();
3866 };
3867 
3868 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3869 /// we need to track the PHI value(s) that we may have observed as necessary
3870 /// in this block.
3871 class LDVSSABlock {
3872 public:
3873   MachineBasicBlock &BB;
3874   LDVSSAUpdater &Updater;
3875   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3876   /// List of PHIs in this block. There should only ever be one.
3877   PHIListT PHIList;
3878 
LDVSSABlock(MachineBasicBlock & BB,LDVSSAUpdater & Updater)3879   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3880       : BB(BB), Updater(Updater) {}
3881 
succ_begin()3882   LDVSSABlockIterator succ_begin() {
3883     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3884   }
3885 
succ_end()3886   LDVSSABlockIterator succ_end() {
3887     return LDVSSABlockIterator(BB.succ_end(), Updater);
3888   }
3889 
3890   /// SSAUpdater has requested a PHI: create that within this block record.
newPHI(BlockValueNum Value)3891   LDVSSAPhi *newPHI(BlockValueNum Value) {
3892     PHIList.emplace_back(Value, this);
3893     return &PHIList.back();
3894   }
3895 
3896   /// SSAUpdater wishes to know what PHIs already exist in this block.
phis()3897   PHIListT &phis() { return PHIList; }
3898 };
3899 
3900 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3901 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3902 // SSAUpdaterTraits<LDVSSAUpdater>.
3903 class LDVSSAUpdater {
3904 public:
3905   /// Map of value numbers to PHI records.
3906   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3907   /// Map of which blocks generate Undef values -- blocks that are not
3908   /// dominated by any Def.
3909   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3910   /// Map of machine blocks to our own records of them.
3911   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3912   /// Machine location where any PHI must occur.
3913   LocIdx Loc;
3914   /// Table of live-in machine value numbers for blocks / locations.
3915   const ValueTable *MLiveIns;
3916 
LDVSSAUpdater(LocIdx L,const ValueTable * MLiveIns)3917   LDVSSAUpdater(LocIdx L, const ValueTable *MLiveIns)
3918       : Loc(L), MLiveIns(MLiveIns) {}
3919 
reset()3920   void reset() {
3921     for (auto &Block : BlockMap)
3922       delete Block.second;
3923 
3924     PHIs.clear();
3925     UndefMap.clear();
3926     BlockMap.clear();
3927   }
3928 
~LDVSSAUpdater()3929   ~LDVSSAUpdater() { reset(); }
3930 
3931   /// For a given MBB, create a wrapper block for it. Stores it in the
3932   /// LDVSSAUpdater block map.
getSSALDVBlock(MachineBasicBlock * BB)3933   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3934     auto it = BlockMap.find(BB);
3935     if (it == BlockMap.end()) {
3936       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3937       it = BlockMap.find(BB);
3938     }
3939     return it->second;
3940   }
3941 
3942   /// Find the live-in value number for the given block. Looks up the value at
3943   /// the PHI location on entry.
getValue(LDVSSABlock * LDVBB)3944   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3945     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3946   }
3947 };
3948 
operator *()3949 LDVSSABlock *LDVSSABlockIterator::operator*() {
3950   return Updater.getSSALDVBlock(*PredIt);
3951 }
3952 
3953 #ifndef NDEBUG
3954 
operator <<(raw_ostream & out,const LDVSSAPhi & PHI)3955 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3956   out << "SSALDVPHI " << PHI.PHIValNum;
3957   return out;
3958 }
3959 
3960 #endif
3961 
3962 } // namespace
3963 
3964 namespace llvm {
3965 
3966 /// Template specialization to give SSAUpdater access to CFG and value
3967 /// information. SSAUpdater calls methods in these traits, passing in the
3968 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3969 /// It also provides methods to create PHI nodes and track them.
3970 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3971 public:
3972   using BlkT = LDVSSABlock;
3973   using ValT = BlockValueNum;
3974   using PhiT = LDVSSAPhi;
3975   using BlkSucc_iterator = LDVSSABlockIterator;
3976 
3977   // Methods to access block successors -- dereferencing to our wrapper class.
BlkSucc_begin(BlkT * BB)3978   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
BlkSucc_end(BlkT * BB)3979   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3980 
3981   /// Iterator for PHI operands.
3982   class PHI_iterator {
3983   private:
3984     LDVSSAPhi *PHI;
3985     unsigned Idx;
3986 
3987   public:
PHI_iterator(LDVSSAPhi * P)3988     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3989         : PHI(P), Idx(0) {}
PHI_iterator(LDVSSAPhi * P,bool)3990     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3991         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3992 
operator ++()3993     PHI_iterator &operator++() {
3994       Idx++;
3995       return *this;
3996     }
operator ==(const PHI_iterator & X) const3997     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
operator !=(const PHI_iterator & X) const3998     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3999 
getIncomingValue()4000     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
4001 
getIncomingBlock()4002     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
4003   };
4004 
PHI_begin(PhiT * PHI)4005   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
4006 
PHI_end(PhiT * PHI)4007   static inline PHI_iterator PHI_end(PhiT *PHI) {
4008     return PHI_iterator(PHI, true);
4009   }
4010 
4011   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
4012   /// vector.
FindPredecessorBlocks(LDVSSABlock * BB,SmallVectorImpl<LDVSSABlock * > * Preds)4013   static void FindPredecessorBlocks(LDVSSABlock *BB,
4014                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
4015     for (MachineBasicBlock *Pred : BB->BB.predecessors())
4016       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
4017   }
4018 
4019   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
4020   /// register. For LiveDebugValues, represents a block identified as not having
4021   /// any DBG_PHI predecessors.
GetUndefVal(LDVSSABlock * BB,LDVSSAUpdater * Updater)4022   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
4023     // Create a value number for this block -- it needs to be unique and in the
4024     // "undef" collection, so that we know it's not real. Use a number
4025     // representing a PHI into this block.
4026     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
4027     Updater->UndefMap[&BB->BB] = Num;
4028     return Num;
4029   }
4030 
4031   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
4032   /// SSAUpdater will populate it with information about incoming values. The
4033   /// value number of this PHI is whatever the  machine value number problem
4034   /// solution determined it to be. This includes non-phi values if SSAUpdater
4035   /// tries to create a PHI where the incoming values are identical.
CreateEmptyPHI(LDVSSABlock * BB,unsigned NumPreds,LDVSSAUpdater * Updater)4036   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
4037                                    LDVSSAUpdater *Updater) {
4038     BlockValueNum PHIValNum = Updater->getValue(BB);
4039     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
4040     Updater->PHIs[PHIValNum] = PHI;
4041     return PHIValNum;
4042   }
4043 
4044   /// AddPHIOperand - Add the specified value as an operand of the PHI for
4045   /// the specified predecessor block.
AddPHIOperand(LDVSSAPhi * PHI,BlockValueNum Val,LDVSSABlock * Pred)4046   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
4047     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
4048   }
4049 
4050   /// ValueIsPHI - Check if the instruction that defines the specified value
4051   /// is a PHI instruction.
ValueIsPHI(BlockValueNum Val,LDVSSAUpdater * Updater)4052   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4053     auto PHIIt = Updater->PHIs.find(Val);
4054     if (PHIIt == Updater->PHIs.end())
4055       return nullptr;
4056     return PHIIt->second;
4057   }
4058 
4059   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
4060   /// operands, i.e., it was just added.
ValueIsNewPHI(BlockValueNum Val,LDVSSAUpdater * Updater)4061   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
4062     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
4063     if (PHI && PHI->IncomingValues.size() == 0)
4064       return PHI;
4065     return nullptr;
4066   }
4067 
4068   /// GetPHIValue - For the specified PHI instruction, return the value
4069   /// that it defines.
GetPHIValue(LDVSSAPhi * PHI)4070   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
4071 };
4072 
4073 } // end namespace llvm
4074 
resolveDbgPHIs(MachineFunction & MF,const ValueTable * MLiveOuts,const ValueTable * MLiveIns,MachineInstr & Here,uint64_t InstrNum)4075 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
4076     MachineFunction &MF, const ValueTable *MLiveOuts,
4077     const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4078   assert(MLiveOuts && MLiveIns &&
4079          "Tried to resolve DBG_PHI before location "
4080          "tables allocated?");
4081 
4082   // This function will be called twice per DBG_INSTR_REF, and might end up
4083   // computing lots of SSA information: memoize it.
4084   auto SeenDbgPHIIt = SeenDbgPHIs.find(std::make_pair(&Here, InstrNum));
4085   if (SeenDbgPHIIt != SeenDbgPHIs.end())
4086     return SeenDbgPHIIt->second;
4087 
4088   std::optional<ValueIDNum> Result =
4089       resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
4090   SeenDbgPHIs.insert({std::make_pair(&Here, InstrNum), Result});
4091   return Result;
4092 }
4093 
resolveDbgPHIsImpl(MachineFunction & MF,const ValueTable * MLiveOuts,const ValueTable * MLiveIns,MachineInstr & Here,uint64_t InstrNum)4094 std::optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
4095     MachineFunction &MF, const ValueTable *MLiveOuts,
4096     const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
4097   // Pick out records of DBG_PHI instructions that have been observed. If there
4098   // are none, then we cannot compute a value number.
4099   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
4100                                     DebugPHINumToValue.end(), InstrNum);
4101   auto LowerIt = RangePair.first;
4102   auto UpperIt = RangePair.second;
4103 
4104   // No DBG_PHI means there can be no location.
4105   if (LowerIt == UpperIt)
4106     return std::nullopt;
4107 
4108   // If any DBG_PHIs referred to a location we didn't understand, don't try to
4109   // compute a value. There might be scenarios where we could recover a value
4110   // for some range of DBG_INSTR_REFs, but at this point we can have high
4111   // confidence that we've seen a bug.
4112   auto DBGPHIRange = make_range(LowerIt, UpperIt);
4113   for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
4114     if (!DBG_PHI.ValueRead)
4115       return std::nullopt;
4116 
4117   // If there's only one DBG_PHI, then that is our value number.
4118   if (std::distance(LowerIt, UpperIt) == 1)
4119     return *LowerIt->ValueRead;
4120 
4121   // Pick out the location (physreg, slot) where any PHIs must occur. It's
4122   // technically possible for us to merge values in different registers in each
4123   // block, but highly unlikely that LLVM will generate such code after register
4124   // allocation.
4125   LocIdx Loc = *LowerIt->ReadLoc;
4126 
4127   // We have several DBG_PHIs, and a use position (the Here inst). All each
4128   // DBG_PHI does is identify a value at a program position. We can treat each
4129   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
4130   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
4131   // determine which Def is used at the Use, and any PHIs that happen along
4132   // the way.
4133   // Adapted LLVM SSA Updater:
4134   LDVSSAUpdater Updater(Loc, MLiveIns);
4135   // Map of which Def or PHI is the current value in each block.
4136   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
4137   // Set of PHIs that we have created along the way.
4138   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
4139 
4140   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
4141   // for the SSAUpdater.
4142   for (const auto &DBG_PHI : DBGPHIRange) {
4143     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4144     const ValueIDNum &Num = *DBG_PHI.ValueRead;
4145     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
4146   }
4147 
4148   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
4149   const auto &AvailIt = AvailableValues.find(HereBlock);
4150   if (AvailIt != AvailableValues.end()) {
4151     // Actually, we already know what the value is -- the Use is in the same
4152     // block as the Def.
4153     return ValueIDNum::fromU64(AvailIt->second);
4154   }
4155 
4156   // Otherwise, we must use the SSA Updater. It will identify the value number
4157   // that we are to use, and the PHIs that must happen along the way.
4158   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
4159   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
4160   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
4161 
4162   // We have the number for a PHI, or possibly live-through value, to be used
4163   // at this Use. There are a number of things we have to check about it though:
4164   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
4165   //    Use was not completely dominated by DBG_PHIs and we should abort.
4166   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
4167   //    we've left SSA form. Validate that the inputs to each PHI are the
4168   //    expected values.
4169   //  * Is a PHI we've created actually a merging of values, or are all the
4170   //    predecessor values the same, leading to a non-PHI machine value number?
4171   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
4172   //    the ValidatedValues collection below to sort this out.
4173   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
4174 
4175   // Define all the input DBG_PHI values in ValidatedValues.
4176   for (const auto &DBG_PHI : DBGPHIRange) {
4177     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4178     const ValueIDNum &Num = *DBG_PHI.ValueRead;
4179     ValidatedValues.insert(std::make_pair(Block, Num));
4180   }
4181 
4182   // Sort PHIs to validate into RPO-order.
4183   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
4184   for (auto &PHI : CreatedPHIs)
4185     SortedPHIs.push_back(PHI);
4186 
4187   llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) {
4188     return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
4189   });
4190 
4191   for (auto &PHI : SortedPHIs) {
4192     ValueIDNum ThisBlockValueNum =
4193         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
4194 
4195     // Are all these things actually defined?
4196     for (auto &PHIIt : PHI->IncomingValues) {
4197       // Any undef input means DBG_PHIs didn't dominate the use point.
4198       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
4199         return std::nullopt;
4200 
4201       ValueIDNum ValueToCheck;
4202       const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
4203 
4204       auto VVal = ValidatedValues.find(PHIIt.first);
4205       if (VVal == ValidatedValues.end()) {
4206         // We cross a loop, and this is a backedge. LLVMs tail duplication
4207         // happens so late that DBG_PHI instructions should not be able to
4208         // migrate into loops -- meaning we can only be live-through this
4209         // loop.
4210         ValueToCheck = ThisBlockValueNum;
4211       } else {
4212         // Does the block have as a live-out, in the location we're examining,
4213         // the value that we expect? If not, it's been moved or clobbered.
4214         ValueToCheck = VVal->second;
4215       }
4216 
4217       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
4218         return std::nullopt;
4219     }
4220 
4221     // Record this value as validated.
4222     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
4223   }
4224 
4225   // All the PHIs are valid: we can return what the SSAUpdater said our value
4226   // number was.
4227   return Result;
4228 }
4229