xref: /openbsd/gnu/gcc/gcc/vec.h (revision 404b540a)
1 /* Vector API for GNU compiler.
2    Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3    Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24 
25 /* The macros here implement a set of templated vector types and
26    associated interfaces.  These templates are implemented with
27    macros, as we're not in C++ land.  The interface functions are
28    typesafe and use static inline functions, sometimes backed by
29    out-of-line generic functions.  The vectors are designed to
30    interoperate with the GTY machinery.
31 
32    Because of the different behavior of structure objects, scalar
33    objects and of pointers, there are three flavors, one for each of
34    these variants.  Both the structure object and pointer variants
35    pass pointers to objects around -- in the former case the pointers
36    are stored into the vector and in the latter case the pointers are
37    dereferenced and the objects copied into the vector.  The scalar
38    object variant is suitable for int-like objects, and the vector
39    elements are returned by value.
40 
41    There are both 'index' and 'iterate' accessors.  The iterator
42    returns a boolean iteration condition and updates the iteration
43    variable passed by reference.  Because the iterator will be
44    inlined, the address-of can be optimized away.
45 
46    The vectors are implemented using the trailing array idiom, thus
47    they are not resizeable without changing the address of the vector
48    object itself.  This means you cannot have variables or fields of
49    vector type -- always use a pointer to a vector.  The one exception
50    is the final field of a structure, which could be a vector type.
51    You will have to use the embedded_size & embedded_init calls to
52    create such objects, and they will probably not be resizeable (so
53    don't use the 'safe' allocation variants).  The trailing array
54    idiom is used (rather than a pointer to an array of data), because,
55    if we allow NULL to also represent an empty vector, empty vectors
56    occupy minimal space in the structure containing them.
57 
58    Each operation that increases the number of active elements is
59    available in 'quick' and 'safe' variants.  The former presumes that
60    there is sufficient allocated space for the operation to succeed
61    (it dies if there is not).  The latter will reallocate the
62    vector, if needed.  Reallocation causes an exponential increase in
63    vector size.  If you know you will be adding N elements, it would
64    be more efficient to use the reserve operation before adding the
65    elements with the 'quick' operation.  This will ensure there are at
66    least as many elements as you ask for, it will exponentially
67    increase if there are too few spare slots.  If you want reserve a
68    specific number of slots, but do not want the exponential increase
69    (for instance, you know this is the last allocation), use the
70    reserve_exact operation.  You can also create a vector of a
71    specific size from the get go.
72 
73    You should prefer the push and pop operations, as they append and
74    remove from the end of the vector. If you need to remove several
75    items in one go, use the truncate operation.  The insert and remove
76    operations allow you to change elements in the middle of the
77    vector.  There are two remove operations, one which preserves the
78    element ordering 'ordered_remove', and one which does not
79    'unordered_remove'.  The latter function copies the end element
80    into the removed slot, rather than invoke a memmove operation.  The
81    'lower_bound' function will determine where to place an item in the
82    array using insert that will maintain sorted order.
83 
84    When a vector type is defined, first a non-memory managed version
85    is created.  You can then define either or both garbage collected
86    and heap allocated versions.  The allocation mechanism is specified
87    when the type is defined, and is therefore part of the type.  If
88    you need both gc'd and heap allocated versions, you still must have
89    *exactly* one definition of the common non-memory managed base vector.
90 
91    If you need to directly manipulate a vector, then the 'address'
92    accessor will return the address of the start of the vector.  Also
93    the 'space' predicate will tell you whether there is spare capacity
94    in the vector.  You will not normally need to use these two functions.
95 
96    Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
97    get the non-memory allocation version, and then a
98    DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
99    vectors.  Variables of vector type are declared using a
100    VEC(TYPEDEF,ALLOC) macro.  The ALLOC argument specifies the
101    allocation strategy, and can be either 'gc' or 'heap' for garbage
102    collected and heap allocated respectively.  It can be 'none' to get
103    a vector that must be explicitly allocated (for instance as a
104    trailing array of another structure).  The characters O, P and I
105    indicate whether TYPEDEF is a pointer (P), object (O) or integral
106    (I) type.  Be careful to pick the correct one, as you'll get an
107    awkward and inefficient API if you use the wrong one.  There is a
108    check, which results in a compile-time warning, for the P and I
109    versions, but there is no check for the O versions, as that is not
110    possible in plain C.  Due to the way GTY works, you must annotate
111    any structures you wish to insert or reference from a vector with a
112    GTY(()) tag.  You need to do this even if you never declare the GC
113    allocated variants.
114 
115    An example of their use would be,
116 
117    DEF_VEC_P(tree);   // non-managed tree vector.
118    DEF_VEC_ALLOC_P(tree,gc);	// gc'd vector of tree pointers.  This must
119    			        // appear at file scope.
120 
121    struct my_struct {
122      VEC(tree,gc) *v;      // A (pointer to) a vector of tree pointers.
123    };
124 
125    struct my_struct *s;
126 
127    if (VEC_length(tree,s->v)) { we have some contents }
128    VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
129    for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
130      { do something with elt }
131 
132 */
133 
134 /* Macros to invoke API calls.  A single macro works for both pointer
135    and object vectors, but the argument and return types might well be
136    different.  In each macro, T is the typedef of the vector elements,
137    and A is the allocation strategy.  The allocation strategy is only
138    present when it is required.  Some of these macros pass the vector,
139    V, by reference (by taking its address), this is noted in the
140    descriptions.  */
141 
142 /* Length of vector
143    unsigned VEC_T_length(const VEC(T) *v);
144 
145    Return the number of active elements in V.  V can be NULL, in which
146    case zero is returned.  */
147 
148 #define VEC_length(T,V)	(VEC_OP(T,base,length)(VEC_BASE(V)))
149 
150 
151 /* Check if vector is empty
152    int VEC_T_empty(const VEC(T) *v);
153 
154    Return nonzero if V is an empty vector (or V is NULL), zero otherwise.  */
155 
156 #define VEC_empty(T,V)	(VEC_length (T,V) == 0)
157 
158 
159 /* Get the final element of the vector.
160    T VEC_T_last(VEC(T) *v); // Integer
161    T VEC_T_last(VEC(T) *v); // Pointer
162    T *VEC_T_last(VEC(T) *v); // Object
163 
164    Return the final element.  V must not be empty.  */
165 
166 #define VEC_last(T,V)	(VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
167 
168 /* Index into vector
169    T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
170    T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
171    T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
172 
173    Return the IX'th element.  If IX must be in the domain of V.  */
174 
175 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
176 
177 /* Iterate over vector
178    int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
179    int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
180    int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
181 
182    Return iteration condition and update PTR to point to the IX'th
183    element.  At the end of iteration, sets PTR to NULL.  Use this to
184    iterate over the elements of a vector as follows,
185 
186      for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
187        continue;  */
188 
189 #define VEC_iterate(T,V,I,P)	(VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
190 
191 /* Allocate new vector.
192    VEC(T,A) *VEC_T_A_alloc(int reserve);
193 
194    Allocate a new vector with space for RESERVE objects.  If RESERVE
195    is zero, NO vector is created.  */
196 
197 #define VEC_alloc(T,A,N)	(VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
198 
199 /* Free a vector.
200    void VEC_T_A_free(VEC(T,A) *&);
201 
202    Free a vector and set it to NULL.  */
203 
204 #define VEC_free(T,A,V)	(VEC_OP(T,A,free)(&V))
205 
206 /* Use these to determine the required size and initialization of a
207    vector embedded within another structure (as the final member).
208 
209    size_t VEC_T_embedded_size(int reserve);
210    void VEC_T_embedded_init(VEC(T) *v, int reserve);
211 
212    These allow the caller to perform the memory allocation.  */
213 
214 #define VEC_embedded_size(T,N)	 (VEC_OP(T,base,embedded_size)(N))
215 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
216 
217 /* Copy a vector.
218    VEC(T,A) *VEC_T_A_copy(VEC(T) *);
219 
220    Copy the live elements of a vector into a new vector.  The new and
221    old vectors need not be allocated by the same mechanism.  */
222 
223 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
224 
225 /* Determine if a vector has additional capacity.
226 
227    int VEC_T_space (VEC(T) *v,int reserve)
228 
229    If V has space for RESERVE additional entries, return nonzero.  You
230    usually only need to use this if you are doing your own vector
231    reallocation, for instance on an embedded vector.  This returns
232    nonzero in exactly the same circumstances that VEC_T_reserve
233    will.  */
234 
235 #define VEC_space(T,V,R) \
236 	(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
237 
238 /* Reserve space.
239    int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
240 
241    Ensure that V has at least RESERVE slots available.  This will
242    create additional headroom.  Note this can cause V to be
243    reallocated.  Returns nonzero iff reallocation actually
244    occurred.  */
245 
246 #define VEC_reserve(T,A,V,R)	\
247 	(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
248 
249 /* Reserve space exactly.
250    int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);
251 
252    Ensure that V has at least RESERVE slots available.  This will not
253    create additional headroom.  Note this can cause V to be
254    reallocated.  Returns nonzero iff reallocation actually
255    occurred.  */
256 
257 #define VEC_reserve_exact(T,A,V,R)	\
258 	(VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
259 
260 /* Push object with no reallocation
261    T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
262    T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
263    T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
264 
265    Push a new element onto the end, returns a pointer to the slot
266    filled in. For object vectors, the new value can be NULL, in which
267    case NO initialization is performed.  There must
268    be sufficient space in the vector.  */
269 
270 #define VEC_quick_push(T,V,O)	\
271 	(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
272 
273 /* Push object with reallocation
274    T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
275    T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
276    T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
277 
278    Push a new element onto the end, returns a pointer to the slot
279    filled in. For object vectors, the new value can be NULL, in which
280    case NO initialization is performed.  Reallocates V, if needed.  */
281 
282 #define VEC_safe_push(T,A,V,O)		\
283 	(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
284 
285 /* Pop element off end
286    T VEC_T_pop (VEC(T) *v);		// Integer
287    T VEC_T_pop (VEC(T) *v);		// Pointer
288    void VEC_T_pop (VEC(T) *v);		// Object
289 
290    Pop the last element off the end. Returns the element popped, for
291    pointer vectors.  */
292 
293 #define VEC_pop(T,V)	(VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
294 
295 /* Truncate to specific length
296    void VEC_T_truncate (VEC(T) *v, unsigned len);
297 
298    Set the length as specified.  The new length must be less than or
299    equal to the current length.  This is an O(1) operation.  */
300 
301 #define VEC_truncate(T,V,I)		\
302 	(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
303 
304 /* Grow to a specific length.
305    void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
306 
307    Grow the vector to a specific length.  The LEN must be as
308    long or longer than the current length.  The new elements are
309    uninitialized.  */
310 
311 #define VEC_safe_grow(T,A,V,I)		\
312 	(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
313 
314 /* Replace element
315    T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
316    T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
317    T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val);  // Object
318 
319    Replace the IXth element of V with a new value, VAL.  For pointer
320    vectors returns the original value. For object vectors returns a
321    pointer to the new value.  For object vectors the new value can be
322    NULL, in which case no overwriting of the slot is actually
323    performed.  */
324 
325 #define VEC_replace(T,V,I,O)		\
326 	(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
327 
328 /* Insert object with no reallocation
329    T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
330    T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
331    T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
332 
333    Insert an element, VAL, at the IXth position of V. Return a pointer
334    to the slot created.  For vectors of object, the new value can be
335    NULL, in which case no initialization of the inserted slot takes
336    place. There must be sufficient space.  */
337 
338 #define VEC_quick_insert(T,V,I,O)	\
339 	(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
340 
341 /* Insert object with reallocation
342    T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
343    T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
344    T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
345 
346    Insert an element, VAL, at the IXth position of V. Return a pointer
347    to the slot created.  For vectors of object, the new value can be
348    NULL, in which case no initialization of the inserted slot takes
349    place. Reallocate V, if necessary.  */
350 
351 #define VEC_safe_insert(T,A,V,I,O)	\
352 	(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
353 
354 /* Remove element retaining order
355    T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
356    T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
357    void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
358 
359    Remove an element from the IXth position of V. Ordering of
360    remaining elements is preserved.  For pointer vectors returns the
361    removed object.  This is an O(N) operation due to a memmove.  */
362 
363 #define VEC_ordered_remove(T,V,I)	\
364 	(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
365 
366 /* Remove element destroying order
367    T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
368    T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
369    void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
370 
371    Remove an element from the IXth position of V. Ordering of
372    remaining elements is destroyed.  For pointer vectors returns the
373    removed object.  This is an O(1) operation.  */
374 
375 #define VEC_unordered_remove(T,V,I)	\
376 	(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
377 
378 /* Remove a block of elements
379    void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
380 
381    Remove LEN elements starting at the IXth.  Ordering is retained.
382    This is an O(1) operation.  */
383 
384 #define VEC_block_remove(T,V,I,L)	\
385 	(VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
386 
387 /* Get the address of the array of elements
388    T *VEC_T_address (VEC(T) v)
389 
390    If you need to directly manipulate the array (for instance, you
391    want to feed it to qsort), use this accessor.  */
392 
393 #define VEC_address(T,V)		(VEC_OP(T,base,address)(VEC_BASE(V)))
394 
395 /* Find the first index in the vector not less than the object.
396    unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
397                                bool (*lessthan) (const T, const T)); // Integer
398    unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
399                                bool (*lessthan) (const T, const T)); // Pointer
400    unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
401                                bool (*lessthan) (const T*, const T*)); // Object
402 
403    Find the first position in which VAL could be inserted without
404    changing the ordering of V.  LESSTHAN is a function that returns
405    true if the first argument is strictly less than the second.  */
406 
407 #define VEC_lower_bound(T,V,O,LT)    \
408        (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
409 
410 #if !IN_GENGTYPE
411 /* Reallocate an array of elements with prefix.  */
412 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
413 extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
414 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
415 extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
416 				     MEM_STAT_DECL);
417 extern void ggc_free (void *);
418 #define vec_gc_free(V) ggc_free (V)
419 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
420 extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
421 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
422 extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
423 				       MEM_STAT_DECL);
424 #define vec_heap_free(V) free (V)
425 
426 #if ENABLE_CHECKING
427 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
428 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
429 #define VEC_CHECK_PASS ,file_,line_,function_
430 
431 #define VEC_ASSERT(EXPR,OP,T,A) \
432   (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
433 
434 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
435      ATTRIBUTE_NORETURN;
436 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
437 #else
438 #define VEC_CHECK_INFO
439 #define VEC_CHECK_DECL
440 #define VEC_CHECK_PASS
441 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
442 #endif
443 
444 #define VEC(T,A) VEC_##T##_##A
445 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
446 #else  /* IN_GENGTYPE */
447 #define VEC(T,A) VEC_ T _ A
448 #define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
449 #define VEC_STRINGIFY_(X) #X
450 #undef GTY
451 #endif /* IN_GENGTYPE */
452 
453 /* Base of vector type, not user visible.  */
454 #define VEC_T(T,B)							  \
455 typedef struct VEC(T,B) 				 		  \
456 {									  \
457   unsigned num;								  \
458   unsigned alloc;							  \
459   T vec[1];								  \
460 } VEC(T,B)
461 
462 #define VEC_T_GTY(T,B)							  \
463 typedef struct VEC(T,B) GTY(())				 		  \
464 {									  \
465   unsigned num;								  \
466   unsigned alloc;							  \
467   T GTY ((length ("%h.num"))) vec[1];					  \
468 } VEC(T,B)
469 
470 /* Derived vector type, user visible.  */
471 #define VEC_TA_GTY(T,B,A,GTY)						  \
472 typedef struct VEC(T,A) GTY						  \
473 {									  \
474   VEC(T,B) base;							  \
475 } VEC(T,A)
476 
477 /* Convert to base type.  */
478 #define VEC_BASE(P)  ((P) ? &(P)->base : 0)
479 
480 /* Vector of integer-like object.  */
481 #if IN_GENGTYPE
482 {"DEF_VEC_I", VEC_STRINGIFY (VEC_T(#0,#1)) ";", "none"},
483 {"DEF_VEC_ALLOC_I", VEC_STRINGIFY (VEC_TA (#0,#1,#2,#3)) ";", NULL},
484 #else
485 #define DEF_VEC_I(T)							  \
486 static inline void VEC_OP (T,must_be,integral_type) (void) 		  \
487 {									  \
488   (void)~(T)0;								  \
489 }									  \
490 									  \
491 VEC_T(T,base);								  \
492 VEC_TA_GTY(T,base,none,);						  \
493 DEF_VEC_FUNC_P(T)							  \
494 struct vec_swallow_trailing_semi
495 #define DEF_VEC_ALLOC_I(T,A)						  \
496 VEC_TA_GTY(T,base,A,);							  \
497 DEF_VEC_ALLOC_FUNC_I(T,A)						  \
498 struct vec_swallow_trailing_semi
499 #endif
500 
501 /* Vector of pointer to object.  */
502 #if IN_GENGTYPE
503 {"DEF_VEC_P", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
504 {"DEF_VEC_ALLOC_P", VEC_STRINGIFY (VEC_TA_GTY (#0,#1,#2,#3)) ";", NULL},
505 #else
506 #define DEF_VEC_P(T) 							  \
507 static inline void VEC_OP (T,must_be,pointer_type) (void) 		  \
508 {									  \
509   (void)((T)1 == (void *)1);						  \
510 }									  \
511 									  \
512 VEC_T_GTY(T,base);							  \
513 VEC_TA_GTY(T,base,none,);						  \
514 DEF_VEC_FUNC_P(T)							  \
515 struct vec_swallow_trailing_semi
516 #define DEF_VEC_ALLOC_P(T,A)						  \
517 VEC_TA_GTY(T,base,A,);							  \
518 DEF_VEC_ALLOC_FUNC_P(T,A)						  \
519 struct vec_swallow_trailing_semi
520 #endif
521 
522 #define DEF_VEC_FUNC_P(T)						  \
523 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)   \
524 {									  \
525   return vec_ ? vec_->num : 0;						  \
526 }									  \
527 									  \
528 static inline T VEC_OP (T,base,last)					  \
529      (const VEC(T,base) *vec_ VEC_CHECK_DECL)				  \
530 {									  \
531   VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
532   									  \
533   return vec_->vec[vec_->num - 1];					  \
534 }									  \
535 									  \
536 static inline T VEC_OP (T,base,index)					  \
537      (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)		  \
538 {									  \
539   VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
540   									  \
541   return vec_->vec[ix_];						  \
542 }									  \
543 									  \
544 static inline int VEC_OP (T,base,iterate)			  	  \
545      (const VEC(T,base) *vec_, unsigned ix_, T *ptr)			  \
546 {									  \
547   if (vec_ && ix_ < vec_->num)						  \
548     {									  \
549       *ptr = vec_->vec[ix_];						  \
550       return 1;								  \
551     }									  \
552   else									  \
553     {									  \
554       *ptr = 0;								  \
555       return 0;								  \
556     }									  \
557 }									  \
558 									  \
559 static inline size_t VEC_OP (T,base,embedded_size)			  \
560      (int alloc_)							  \
561 {									  \
562   return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
563 }									  \
564 									  \
565 static inline void VEC_OP (T,base,embedded_init)			  \
566      (VEC(T,base) *vec_, int alloc_)					  \
567 {									  \
568   vec_->num = 0;							  \
569   vec_->alloc = alloc_;							  \
570 }									  \
571 									  \
572 static inline int VEC_OP (T,base,space)	       				  \
573      (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
574 {									  \
575   VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
576   return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
577 }									  \
578 									  \
579 static inline T *VEC_OP (T,base,quick_push)				  \
580      (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL)				  \
581 {									  \
582   T *slot_;								  \
583   									  \
584   VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
585   slot_ = &vec_->vec[vec_->num++];					  \
586   *slot_ = obj_;							  \
587   									  \
588   return slot_;								  \
589 }									  \
590 									  \
591 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL)	  \
592 {									  \
593   T obj_;								  \
594 									  \
595   VEC_ASSERT (vec_->num, "pop", T, base);				  \
596   obj_ = vec_->vec[--vec_->num];					  \
597 									  \
598   return obj_;								  \
599 }									  \
600 									  \
601 static inline void VEC_OP (T,base,truncate)				  \
602      (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
603 {									  \
604   VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
605   if (vec_)								  \
606     vec_->num = size_;							  \
607 }									  \
608 									  \
609 static inline T VEC_OP (T,base,replace)		  	     		  \
610      (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
611 {									  \
612   T old_obj_;								  \
613 									  \
614   VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
615   old_obj_ = vec_->vec[ix_];						  \
616   vec_->vec[ix_] = obj_;						  \
617 									  \
618   return old_obj_;							  \
619 }									  \
620 									  \
621 static inline T *VEC_OP (T,base,quick_insert)				  \
622      (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL)		  \
623 {									  \
624   T *slot_;								  \
625 									  \
626   VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
627   VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
628   slot_ = &vec_->vec[ix_];						  \
629   memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
630   *slot_ = obj_;							  \
631   									  \
632   return slot_;								  \
633 }									  \
634 									  \
635 static inline T VEC_OP (T,base,ordered_remove)				  \
636      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
637 {									  \
638   T *slot_;								  \
639   T obj_;								  \
640 									  \
641   VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
642   slot_ = &vec_->vec[ix_];						  \
643   obj_ = *slot_;							  \
644   memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));     	  \
645 									  \
646   return obj_;								  \
647 }									  \
648 									  \
649 static inline T VEC_OP (T,base,unordered_remove)			  \
650      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
651 {									  \
652   T *slot_;								  \
653   T obj_;								  \
654 									  \
655   VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
656   slot_ = &vec_->vec[ix_];						  \
657   obj_ = *slot_;							  \
658   *slot_ = vec_->vec[--vec_->num];					  \
659 									  \
660   return obj_;								  \
661 }									  \
662 									  \
663 static inline void VEC_OP (T,base,block_remove)				  \
664      (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
665 {									  \
666   T *slot_;								  \
667 									  \
668   VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
669   slot_ = &vec_->vec[ix_];						  \
670   vec_->num -= len_;							  \
671   memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
672 }									  \
673 									  \
674 static inline T *VEC_OP (T,base,address)				  \
675      (VEC(T,base) *vec_)						  \
676 {									  \
677   return vec_ ? vec_->vec : 0;						  \
678 }									  \
679 									  \
680 static inline unsigned VEC_OP (T,base,lower_bound)			  \
681      (VEC(T,base) *vec_, const T obj_,					  \
682       bool (*lessthan_)(const T, const T) VEC_CHECK_DECL)		  \
683 {									  \
684    unsigned int len_ = VEC_OP (T,base, length) (vec_);			  \
685    unsigned int half_, middle_;						  \
686    unsigned int first_ = 0;						  \
687    while (len_ > 0)							  \
688      {									  \
689         T middle_elem_;							  \
690         half_ = len_ >> 1;						  \
691         middle_ = first_;						  \
692         middle_ += half_;						  \
693         middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
694         if (lessthan_ (middle_elem_, obj_))				  \
695           {								  \
696              first_ = middle_;						  \
697              ++first_;							  \
698              len_ = len_ - half_ - 1;					  \
699           }								  \
700         else								  \
701           len_ = half_;							  \
702      }									  \
703    return first_;							  \
704 }
705 
706 #define DEF_VEC_ALLOC_FUNC_P(T,A)					  \
707 static inline VEC(T,A) *VEC_OP (T,A,alloc)				  \
708      (int alloc_ MEM_STAT_DECL)						  \
709 {									  \
710   return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_		  \
711 						 PASS_MEM_STAT);	  \
712 }									  \
713 									  \
714 static inline void VEC_OP (T,A,free)					  \
715      (VEC(T,A) **vec_)							  \
716 {									  \
717   if (*vec_)								  \
718     vec_##A##_free (*vec_);						  \
719   *vec_ = NULL;								  \
720 }									  \
721 									  \
722 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
723 {									  \
724   size_t len_ = vec_ ? vec_->num : 0;					  \
725   VEC (T,A) *new_vec_ = NULL;						  \
726 									  \
727   if (len_)								  \
728     {									  \
729       new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact		  \
730 			       (NULL, len_ PASS_MEM_STAT));		  \
731 									  \
732       new_vec_->base.num = len_;					  \
733       memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
734     }									  \
735   return new_vec_;							  \
736 }									  \
737 									  \
738 static inline int VEC_OP (T,A,reserve)	       				  \
739      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
740 {									  \
741   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
742 				       VEC_CHECK_PASS);			  \
743 		  							  \
744   if (extend)	  							  \
745     *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
746 		  							  \
747   return extend;							  \
748 }									  \
749 									  \
750 static inline int VEC_OP (T,A,reserve_exact)  				  \
751      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
752 {									  \
753   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
754 				       VEC_CHECK_PASS);			  \
755 		  							  \
756   if (extend)	  							  \
757     *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_	  \
758 						    PASS_MEM_STAT);	  \
759 		  							  \
760   return extend;							  \
761 }									  \
762 									  \
763 static inline void VEC_OP (T,A,safe_grow)				  \
764      (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
765 {									  \
766   VEC_ASSERT (size_ >= 0						  \
767 	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
768 						 "grow", T, A);		  \
769   VEC_OP (T,A,reserve_exact) (vec_,					  \
770 			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
771 			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
772   VEC_BASE (*vec_)->num = size_;					  \
773 }									  \
774 									  \
775 static inline T *VEC_OP (T,A,safe_push)					  \
776      (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)       	  \
777 {									  \
778   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
779 									  \
780   return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
781 }									  \
782 									  \
783 static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
784      (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL)  \
785 {									  \
786   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
787 									  \
788   return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
789  				       VEC_CHECK_PASS);			  \
790 }
791 
792 /* Vector of object.  */
793 #if IN_GENGTYPE
794 {"DEF_VEC_O", VEC_STRINGIFY (VEC_T_GTY(#0,#1)) ";", "none"},
795 {"DEF_VEC_ALLOC_O", VEC_STRINGIFY (VEC_TA_GTY(#0,#1,#2,#3)) ";", NULL},
796 #else
797 #define DEF_VEC_O(T)							  \
798 VEC_T_GTY(T,base);							  \
799 VEC_TA_GTY(T,base,none,);						  \
800 DEF_VEC_FUNC_O(T)							  \
801 struct vec_swallow_trailing_semi
802 #define DEF_VEC_ALLOC_O(T,A)						  \
803 VEC_TA_GTY(T,base,A,);							  \
804 DEF_VEC_ALLOC_FUNC_O(T,A)						  \
805 struct vec_swallow_trailing_semi
806 #endif
807 
808 #define DEF_VEC_FUNC_O(T)						  \
809 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_)	  \
810 {									  \
811   return vec_ ? vec_->num : 0;						  \
812 }									  \
813 									  \
814 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL)  \
815 {									  \
816   VEC_ASSERT (vec_ && vec_->num, "last", T, base);			  \
817   									  \
818   return &vec_->vec[vec_->num - 1];					  \
819 }									  \
820 									  \
821 static inline T *VEC_OP (T,base,index)					  \
822      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
823 {									  \
824   VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base);		  \
825   									  \
826   return &vec_->vec[ix_];						  \
827 }									  \
828 									  \
829 static inline int VEC_OP (T,base,iterate)			     	  \
830      (VEC(T,base) *vec_, unsigned ix_, T **ptr)				  \
831 {									  \
832   if (vec_ && ix_ < vec_->num)						  \
833     {									  \
834       *ptr = &vec_->vec[ix_];						  \
835       return 1;								  \
836     }									  \
837   else									  \
838     {									  \
839       *ptr = 0;								  \
840       return 0;								  \
841     }									  \
842 }									  \
843 									  \
844 static inline size_t VEC_OP (T,base,embedded_size)			  \
845      (int alloc_)							  \
846 {									  \
847   return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T);		  \
848 }									  \
849 									  \
850 static inline void VEC_OP (T,base,embedded_init)			  \
851      (VEC(T,base) *vec_, int alloc_)					  \
852 {									  \
853   vec_->num = 0;							  \
854   vec_->alloc = alloc_;							  \
855 }									  \
856 									  \
857 static inline int VEC_OP (T,base,space)	       				  \
858      (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL)			  \
859 {									  \
860   VEC_ASSERT (alloc_ >= 0, "space", T, base);				  \
861   return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_;	  \
862 }									  \
863 									  \
864 static inline T *VEC_OP (T,base,quick_push)				  \
865      (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL)			  \
866 {									  \
867   T *slot_;								  \
868   									  \
869   VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base);		  \
870   slot_ = &vec_->vec[vec_->num++];					  \
871   if (obj_)								  \
872     *slot_ = *obj_;							  \
873   									  \
874   return slot_;								  \
875 }									  \
876 									  \
877 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
878 {									  \
879   VEC_ASSERT (vec_->num, "pop", T, base);				  \
880   --vec_->num;								  \
881 }									  \
882 									  \
883 static inline void VEC_OP (T,base,truncate)				  \
884      (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL)			  \
885 {									  \
886   VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base);	  \
887   if (vec_)								  \
888     vec_->num = size_;							  \
889 }									  \
890 									  \
891 static inline T *VEC_OP (T,base,replace)				  \
892      (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
893 {									  \
894   T *slot_;								  \
895 									  \
896   VEC_ASSERT (ix_ < vec_->num, "replace", T, base);			  \
897   slot_ = &vec_->vec[ix_];						  \
898   if (obj_)								  \
899     *slot_ = *obj_;							  \
900 									  \
901   return slot_;								  \
902 }									  \
903 									  \
904 static inline T *VEC_OP (T,base,quick_insert)				  \
905      (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL)	  \
906 {									  \
907   T *slot_;								  \
908 									  \
909   VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base);		  \
910   VEC_ASSERT (ix_ <= vec_->num, "insert", T, base);			  \
911   slot_ = &vec_->vec[ix_];						  \
912   memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T));		  \
913   if (obj_)								  \
914     *slot_ = *obj_;							  \
915   									  \
916   return slot_;								  \
917 }									  \
918 									  \
919 static inline void VEC_OP (T,base,ordered_remove)			  \
920      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
921 {									  \
922   T *slot_;								  \
923 									  \
924   VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
925   slot_ = &vec_->vec[ix_];						  \
926   memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T));		  \
927 }									  \
928 									  \
929 static inline void VEC_OP (T,base,unordered_remove)			  \
930      (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL)			  \
931 {									  \
932   VEC_ASSERT (ix_ < vec_->num, "remove", T, base);			  \
933   vec_->vec[ix_] = vec_->vec[--vec_->num];				  \
934 }									  \
935 									  \
936 static inline void VEC_OP (T,base,block_remove)				  \
937      (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL)	  \
938 {									  \
939   T *slot_;								  \
940 									  \
941   VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base);	  \
942   slot_ = &vec_->vec[ix_];						  \
943   vec_->num -= len_;							  \
944   memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T));	  \
945 }									  \
946 									  \
947 static inline T *VEC_OP (T,base,address)				  \
948      (VEC(T,base) *vec_)						  \
949 {									  \
950   return vec_ ? vec_->vec : 0;						  \
951 }									  \
952 									  \
953 static inline unsigned VEC_OP (T,base,lower_bound)			  \
954      (VEC(T,base) *vec_, const T *obj_,					  \
955       bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL)		  \
956 {									  \
957    unsigned int len_ = VEC_OP (T, base, length) (vec_);			  \
958    unsigned int half_, middle_;						  \
959    unsigned int first_ = 0;						  \
960    while (len_ > 0)							  \
961      {									  \
962         T *middle_elem_;						  \
963         half_ = len_ >> 1;						  \
964         middle_ = first_;						  \
965         middle_ += half_;						  \
966         middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
967         if (lessthan_ (middle_elem_, obj_))				  \
968           {								  \
969              first_ = middle_;						  \
970              ++first_;							  \
971              len_ = len_ - half_ - 1;					  \
972           }								  \
973         else								  \
974           len_ = half_;							  \
975      }									  \
976    return first_;							  \
977 }
978 
979 #define DEF_VEC_ALLOC_FUNC_O(T,A)					  \
980 static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
981      (int alloc_ MEM_STAT_DECL)						  \
982 {									  \
983   return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_,		  \
984 						 offsetof (VEC(T,A),base.vec), \
985 						 sizeof (T)		  \
986 						 PASS_MEM_STAT);	  \
987 }									  \
988 									  \
989 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
990 {									  \
991   size_t len_ = vec_ ? vec_->num : 0;					  \
992   VEC (T,A) *new_vec_ = NULL;						  \
993 									  \
994   if (len_)								  \
995     {									  \
996       new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
997 			       (NULL, len_,				  \
998 				offsetof (VEC(T,A),base.vec), sizeof (T)  \
999 				PASS_MEM_STAT));			  \
1000 									  \
1001       new_vec_->base.num = len_;					  \
1002       memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
1003     }									  \
1004   return new_vec_;							  \
1005 }									  \
1006 									  \
1007 static inline void VEC_OP (T,A,free)					  \
1008      (VEC(T,A) **vec_)							  \
1009 {									  \
1010   if (*vec_)								  \
1011     vec_##A##_free (*vec_);						  \
1012   *vec_ = NULL;								  \
1013 }									  \
1014 									  \
1015 static inline int VEC_OP (T,A,reserve)	   	    			  \
1016      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1017 {									  \
1018   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1019 				       VEC_CHECK_PASS);			  \
1020 									  \
1021   if (extend)								  \
1022     *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
1023 			   		      offsetof (VEC(T,A),base.vec),\
1024  					      sizeof (T)		  \
1025 			   		      PASS_MEM_STAT);		  \
1026 									  \
1027   return extend;							  \
1028 }									  \
1029 									  \
1030 static inline int VEC_OP (T,A,reserve_exact)   	    			  \
1031      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1032 {									  \
1033   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1034 				       VEC_CHECK_PASS);			  \
1035 									  \
1036   if (extend)								  \
1037     *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
1038 			 (*vec_, alloc_,				  \
1039 			  offsetof (VEC(T,A),base.vec),			  \
1040 			  sizeof (T) PASS_MEM_STAT);			  \
1041 									  \
1042   return extend;							  \
1043 }									  \
1044 									  \
1045 static inline void VEC_OP (T,A,safe_grow)				  \
1046      (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1047 {									  \
1048   VEC_ASSERT (size_ >= 0						  \
1049 	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1050 						 "grow", T, A);		  \
1051   VEC_OP (T,A,reserve_exact) (vec_,					  \
1052 			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1053 			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1054   VEC_BASE (*vec_)->num = size_;					  \
1055 }									  \
1056 									  \
1057 static inline T *VEC_OP (T,A,safe_push)					  \
1058      (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
1059 {									  \
1060   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1061 									  \
1062   return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
1063 }									  \
1064 									  \
1065 static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
1066      (VEC(T,A) **vec_, unsigned ix_, const T *obj_			  \
1067  		VEC_CHECK_DECL MEM_STAT_DECL)				  \
1068 {									  \
1069   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1070 									  \
1071   return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
1072 				       VEC_CHECK_PASS);			  \
1073 }
1074 
1075 #define DEF_VEC_ALLOC_FUNC_I(T,A)					  \
1076 static inline VEC(T,A) *VEC_OP (T,A,alloc)      			  \
1077      (int alloc_ MEM_STAT_DECL)						  \
1078 {									  \
1079   return (VEC(T,A) *) vec_##A##_o_reserve_exact				  \
1080 		      (NULL, alloc_, offsetof (VEC(T,A),base.vec),	  \
1081 		       sizeof (T) PASS_MEM_STAT);			  \
1082 }									  \
1083 									  \
1084 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1085 {									  \
1086   size_t len_ = vec_ ? vec_->num : 0;					  \
1087   VEC (T,A) *new_vec_ = NULL;						  \
1088 									  \
1089   if (len_)								  \
1090     {									  \
1091       new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact		  \
1092 			       (NULL, len_,				  \
1093 				offsetof (VEC(T,A),base.vec), sizeof (T)  \
1094 				PASS_MEM_STAT));			  \
1095 									  \
1096       new_vec_->base.num = len_;					  \
1097       memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_);	  \
1098     }									  \
1099   return new_vec_;							  \
1100 }									  \
1101 									  \
1102 static inline void VEC_OP (T,A,free)					  \
1103      (VEC(T,A) **vec_)							  \
1104 {									  \
1105   if (*vec_)								  \
1106     vec_##A##_free (*vec_);						  \
1107   *vec_ = NULL;								  \
1108 }									  \
1109 									  \
1110 static inline int VEC_OP (T,A,reserve)	   	    			  \
1111      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1112 {									  \
1113   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1114 				       VEC_CHECK_PASS);			  \
1115 									  \
1116   if (extend)								  \
1117     *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_,		  \
1118 			   		      offsetof (VEC(T,A),base.vec),\
1119  					      sizeof (T)		  \
1120 			   		      PASS_MEM_STAT);		  \
1121 									  \
1122   return extend;							  \
1123 }									  \
1124 									  \
1125 static inline int VEC_OP (T,A,reserve_exact)   	    			  \
1126      (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1127 {									  \
1128   int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_		  \
1129 				       VEC_CHECK_PASS);			  \
1130 									  \
1131   if (extend)								  \
1132     *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact			  \
1133 			 (*vec_, alloc_, offsetof (VEC(T,A),base.vec),	  \
1134 			  sizeof (T) PASS_MEM_STAT);			  \
1135 									  \
1136   return extend;							  \
1137 }									  \
1138 									  \
1139 static inline void VEC_OP (T,A,safe_grow)				  \
1140      (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL)		  \
1141 {									  \
1142   VEC_ASSERT (size_ >= 0						  \
1143 	      && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1144 						 "grow", T, A);		  \
1145   VEC_OP (T,A,reserve_exact) (vec_,					  \
1146 			      size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1147 			      VEC_CHECK_PASS PASS_MEM_STAT);		  \
1148   VEC_BASE (*vec_)->num = size_;					  \
1149 }									  \
1150 									  \
1151 static inline T *VEC_OP (T,A,safe_push)					  \
1152      (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL)	  \
1153 {									  \
1154   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1155 									  \
1156   return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS);  \
1157 }									  \
1158 									  \
1159 static inline T *VEC_OP (T,A,safe_insert)		     	  	  \
1160      (VEC(T,A) **vec_, unsigned ix_, const T obj_			  \
1161  		VEC_CHECK_DECL MEM_STAT_DECL)				  \
1162 {									  \
1163   VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT);		  \
1164 									  \
1165   return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_	  \
1166 				       VEC_CHECK_PASS);			  \
1167 }
1168 
1169 #endif /* GCC_VEC_H */
1170