1 //===- llvm/Analysis/VectorUtils.h - Vector utilities -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines some vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_VECTORUTILS_H
14 #define LLVM_ANALYSIS_VECTORUTILS_H
15 
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopAccessAnalysis.h"
19 #include "llvm/Support/CheckedArithmetic.h"
20 
21 namespace llvm {
22 class TargetLibraryInfo;
23 
24 /// Describes the type of Parameters
25 enum class VFParamKind {
26   Vector,            // No semantic information.
27   OMP_Linear,        // declare simd linear(i)
28   OMP_LinearRef,     // declare simd linear(ref(i))
29   OMP_LinearVal,     // declare simd linear(val(i))
30   OMP_LinearUVal,    // declare simd linear(uval(i))
31   OMP_LinearPos,     // declare simd linear(i:c) uniform(c)
32   OMP_LinearValPos,  // declare simd linear(val(i:c)) uniform(c)
33   OMP_LinearRefPos,  // declare simd linear(ref(i:c)) uniform(c)
34   OMP_LinearUValPos, // declare simd linear(uval(i:c)) uniform(c)
35   OMP_Uniform,       // declare simd uniform(i)
36   GlobalPredicate,   // Global logical predicate that acts on all lanes
37                      // of the input and output mask concurrently. For
38                      // example, it is implied by the `M` token in the
39                      // Vector Function ABI mangled name.
40   Unknown
41 };
42 
43 /// Describes the type of Instruction Set Architecture
44 enum class VFISAKind {
45   AdvancedSIMD, // AArch64 Advanced SIMD (NEON)
46   SVE,          // AArch64 Scalable Vector Extension
47   SSE,          // x86 SSE
48   AVX,          // x86 AVX
49   AVX2,         // x86 AVX2
50   AVX512,       // x86 AVX512
51   LLVM,         // LLVM internal ISA for functions that are not
52   // attached to an existing ABI via name mangling.
53   Unknown // Unknown ISA
54 };
55 
56 /// Encapsulates information needed to describe a parameter.
57 ///
58 /// The description of the parameter is not linked directly to
59 /// OpenMP or any other vector function description. This structure
60 /// is extendible to handle other paradigms that describe vector
61 /// functions and their parameters.
62 struct VFParameter {
63   unsigned ParamPos;         // Parameter Position in Scalar Function.
64   VFParamKind ParamKind;     // Kind of Parameter.
65   int LinearStepOrPos = 0;   // Step or Position of the Parameter.
66   Align Alignment = Align(); // Optional alignment in bytes, defaulted to 1.
67 
68   // Comparison operator.
69   bool operator==(const VFParameter &Other) const {
70     return std::tie(ParamPos, ParamKind, LinearStepOrPos, Alignment) ==
71            std::tie(Other.ParamPos, Other.ParamKind, Other.LinearStepOrPos,
72                     Other.Alignment);
73   }
74 };
75 
76 /// Contains the information about the kind of vectorization
77 /// available.
78 ///
79 /// This object in independent on the paradigm used to
80 /// represent vector functions. in particular, it is not attached to
81 /// any target-specific ABI.
82 struct VFShape {
83   ElementCount VF;                        // Vectorization factor.
84   SmallVector<VFParameter, 8> Parameters; // List of parameter information.
85   // Comparison operator.
86   bool operator==(const VFShape &Other) const {
87     return std::tie(VF, Parameters) == std::tie(Other.VF, Other.Parameters);
88   }
89 
90   /// Update the parameter in position P.ParamPos to P.
updateParamVFShape91   void updateParam(VFParameter P) {
92     assert(P.ParamPos < Parameters.size() && "Invalid parameter position.");
93     Parameters[P.ParamPos] = P;
94     assert(hasValidParameterList() && "Invalid parameter list");
95   }
96 
97   // Retrieve the VFShape that can be used to map a (scalar) function to itself,
98   // with VF = 1.
getScalarShapeVFShape99   static VFShape getScalarShape(const CallInst &CI) {
100     return VFShape::get(CI, ElementCount::getFixed(1),
101                         /*HasGlobalPredicate*/ false);
102   }
103 
104   // Retrieve the basic vectorization shape of the function, where all
105   // parameters are mapped to VFParamKind::Vector with \p EC
106   // lanes. Specifies whether the function has a Global Predicate
107   // argument via \p HasGlobalPred.
getVFShape108   static VFShape get(const CallInst &CI, ElementCount EC, bool HasGlobalPred) {
109     SmallVector<VFParameter, 8> Parameters;
110     for (unsigned I = 0; I < CI.arg_size(); ++I)
111       Parameters.push_back(VFParameter({I, VFParamKind::Vector}));
112     if (HasGlobalPred)
113       Parameters.push_back(
114           VFParameter({CI.arg_size(), VFParamKind::GlobalPredicate}));
115 
116     return {EC, Parameters};
117   }
118   /// Validation check on the Parameters in the VFShape.
119   bool hasValidParameterList() const;
120 };
121 
122 /// Holds the VFShape for a specific scalar to vector function mapping.
123 struct VFInfo {
124   VFShape Shape;          /// Classification of the vector function.
125   std::string ScalarName; /// Scalar Function Name.
126   std::string VectorName; /// Vector Function Name associated to this VFInfo.
127   VFISAKind ISA;          /// Instruction Set Architecture.
128 };
129 
130 namespace VFABI {
131 /// LLVM Internal VFABI ISA token for vector functions.
132 static constexpr char const *_LLVM_ = "_LLVM_";
133 /// Prefix for internal name redirection for vector function that
134 /// tells the compiler to scalarize the call using the scalar name
135 /// of the function. For example, a mangled name like
136 /// `_ZGV_LLVM_N2v_foo(_LLVM_Scalarize_foo)` would tell the
137 /// vectorizer to vectorize the scalar call `foo`, and to scalarize
138 /// it once vectorization is done.
139 static constexpr char const *_LLVM_Scalarize_ = "_LLVM_Scalarize_";
140 
141 /// Function to construct a VFInfo out of a mangled names in the
142 /// following format:
143 ///
144 /// <VFABI_name>{(<redirection>)}
145 ///
146 /// where <VFABI_name> is the name of the vector function, mangled according
147 /// to the rules described in the Vector Function ABI of the target vector
148 /// extension (or <isa> from now on). The <VFABI_name> is in the following
149 /// format:
150 ///
151 /// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)]
152 ///
153 /// This methods support demangling rules for the following <isa>:
154 ///
155 /// * AArch64: https://developer.arm.com/docs/101129/latest
156 ///
157 /// * x86 (libmvec): https://sourceware.org/glibc/wiki/libmvec and
158 ///  https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt
159 ///
160 /// \param MangledName -> input string in the format
161 /// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)].
162 /// \param M -> Module used to retrieve informations about the vector
163 /// function that are not possible to retrieve from the mangled
164 /// name. At the moment, this parameter is needed only to retrieve the
165 /// Vectorization Factor of scalable vector functions from their
166 /// respective IR declarations.
167 std::optional<VFInfo> tryDemangleForVFABI(StringRef MangledName,
168                                           const Module &M);
169 
170 /// This routine mangles the given VectorName according to the LangRef
171 /// specification for vector-function-abi-variant attribute and is specific to
172 /// the TLI mappings. It is the responsibility of the caller to make sure that
173 /// this is only used if all parameters in the vector function are vector type.
174 /// This returned string holds scalar-to-vector mapping:
175 ///    _ZGV<isa><mask><vlen><vparams>_<scalarname>(<vectorname>)
176 ///
177 /// where:
178 ///
179 /// <isa> = "_LLVM_"
180 /// <mask> = "N". Note: TLI does not support masked interfaces.
181 /// <vlen> = Number of concurrent lanes, stored in the `VectorizationFactor`
182 ///          field of the `VecDesc` struct. If the number of lanes is scalable
183 ///          then 'x' is printed instead.
184 /// <vparams> = "v", as many as are the numArgs.
185 /// <scalarname> = the name of the scalar function.
186 /// <vectorname> = the name of the vector function.
187 std::string mangleTLIVectorName(StringRef VectorName, StringRef ScalarName,
188                                 unsigned numArgs, ElementCount VF);
189 
190 /// Retrieve the `VFParamKind` from a string token.
191 VFParamKind getVFParamKindFromString(const StringRef Token);
192 
193 // Name of the attribute where the variant mappings are stored.
194 static constexpr char const *MappingsAttrName = "vector-function-abi-variant";
195 
196 /// Populates a set of strings representing the Vector Function ABI variants
197 /// associated to the CallInst CI. If the CI does not contain the
198 /// vector-function-abi-variant attribute, we return without populating
199 /// VariantMappings, i.e. callers of getVectorVariantNames need not check for
200 /// the presence of the attribute (see InjectTLIMappings).
201 void getVectorVariantNames(const CallInst &CI,
202                            SmallVectorImpl<std::string> &VariantMappings);
203 } // end namespace VFABI
204 
205 /// The Vector Function Database.
206 ///
207 /// Helper class used to find the vector functions associated to a
208 /// scalar CallInst.
209 class VFDatabase {
210   /// The Module of the CallInst CI.
211   const Module *M;
212   /// The CallInst instance being queried for scalar to vector mappings.
213   const CallInst &CI;
214   /// List of vector functions descriptors associated to the call
215   /// instruction.
216   const SmallVector<VFInfo, 8> ScalarToVectorMappings;
217 
218   /// Retrieve the scalar-to-vector mappings associated to the rule of
219   /// a vector Function ABI.
getVFABIMappings(const CallInst & CI,SmallVectorImpl<VFInfo> & Mappings)220   static void getVFABIMappings(const CallInst &CI,
221                                SmallVectorImpl<VFInfo> &Mappings) {
222     if (!CI.getCalledFunction())
223       return;
224 
225     const StringRef ScalarName = CI.getCalledFunction()->getName();
226 
227     SmallVector<std::string, 8> ListOfStrings;
228     // The check for the vector-function-abi-variant attribute is done when
229     // retrieving the vector variant names here.
230     VFABI::getVectorVariantNames(CI, ListOfStrings);
231     if (ListOfStrings.empty())
232       return;
233     for (const auto &MangledName : ListOfStrings) {
234       const std::optional<VFInfo> Shape =
235           VFABI::tryDemangleForVFABI(MangledName, *(CI.getModule()));
236       // A match is found via scalar and vector names, and also by
237       // ensuring that the variant described in the attribute has a
238       // corresponding definition or declaration of the vector
239       // function in the Module M.
240       if (Shape && (Shape->ScalarName == ScalarName)) {
241         assert(CI.getModule()->getFunction(Shape->VectorName) &&
242                "Vector function is missing.");
243         Mappings.push_back(*Shape);
244       }
245     }
246   }
247 
248 public:
249   /// Retrieve all the VFInfo instances associated to the CallInst CI.
getMappings(const CallInst & CI)250   static SmallVector<VFInfo, 8> getMappings(const CallInst &CI) {
251     SmallVector<VFInfo, 8> Ret;
252 
253     // Get mappings from the Vector Function ABI variants.
254     getVFABIMappings(CI, Ret);
255 
256     // Other non-VFABI variants should be retrieved here.
257 
258     return Ret;
259   }
260 
261   /// Constructor, requires a CallInst instance.
VFDatabase(CallInst & CI)262   VFDatabase(CallInst &CI)
263       : M(CI.getModule()), CI(CI),
264         ScalarToVectorMappings(VFDatabase::getMappings(CI)) {}
265   /// \defgroup VFDatabase query interface.
266   ///
267   /// @{
268   /// Retrieve the Function with VFShape \p Shape.
getVectorizedFunction(const VFShape & Shape)269   Function *getVectorizedFunction(const VFShape &Shape) const {
270     if (Shape == VFShape::getScalarShape(CI))
271       return CI.getCalledFunction();
272 
273     for (const auto &Info : ScalarToVectorMappings)
274       if (Info.Shape == Shape)
275         return M->getFunction(Info.VectorName);
276 
277     return nullptr;
278   }
279   /// @}
280 };
281 
282 template <typename T> class ArrayRef;
283 class DemandedBits;
284 class GetElementPtrInst;
285 template <typename InstTy> class InterleaveGroup;
286 class IRBuilderBase;
287 class Loop;
288 class ScalarEvolution;
289 class TargetTransformInfo;
290 class Type;
291 class Value;
292 
293 namespace Intrinsic {
294 typedef unsigned ID;
295 }
296 
297 /// A helper function for converting Scalar types to vector types. If
298 /// the incoming type is void, we return void. If the EC represents a
299 /// scalar, we return the scalar type.
ToVectorTy(Type * Scalar,ElementCount EC)300 inline Type *ToVectorTy(Type *Scalar, ElementCount EC) {
301   if (Scalar->isVoidTy() || Scalar->isMetadataTy() || EC.isScalar())
302     return Scalar;
303   return VectorType::get(Scalar, EC);
304 }
305 
ToVectorTy(Type * Scalar,unsigned VF)306 inline Type *ToVectorTy(Type *Scalar, unsigned VF) {
307   return ToVectorTy(Scalar, ElementCount::getFixed(VF));
308 }
309 
310 /// Identify if the intrinsic is trivially vectorizable.
311 /// This method returns true if the intrinsic's argument types are all scalars
312 /// for the scalar form of the intrinsic and all vectors (or scalars handled by
313 /// isVectorIntrinsicWithScalarOpAtArg) for the vector form of the intrinsic.
314 bool isTriviallyVectorizable(Intrinsic::ID ID);
315 
316 /// Identifies if the vector form of the intrinsic has a scalar operand.
317 bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
318                                         unsigned ScalarOpdIdx);
319 
320 /// Identifies if the vector form of the intrinsic has a operand that has
321 /// an overloaded type.
322 bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, unsigned OpdIdx);
323 
324 /// Returns intrinsic ID for call.
325 /// For the input call instruction it finds mapping intrinsic and returns
326 /// its intrinsic ID, in case it does not found it return not_intrinsic.
327 Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI,
328                                           const TargetLibraryInfo *TLI);
329 
330 /// Find the operand of the GEP that should be checked for consecutive
331 /// stores. This ignores trailing indices that have no effect on the final
332 /// pointer.
333 unsigned getGEPInductionOperand(const GetElementPtrInst *Gep);
334 
335 /// If the argument is a GEP, then returns the operand identified by
336 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
337 /// operand, it returns that instead.
338 Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp);
339 
340 /// If a value has only one user that is a CastInst, return it.
341 Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty);
342 
343 /// Get the stride of a pointer access in a loop. Looks for symbolic
344 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
345 Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp);
346 
347 /// Given a vector and an element number, see if the scalar value is
348 /// already around as a register, for example if it were inserted then extracted
349 /// from the vector.
350 Value *findScalarElement(Value *V, unsigned EltNo);
351 
352 /// If all non-negative \p Mask elements are the same value, return that value.
353 /// If all elements are negative (undefined) or \p Mask contains different
354 /// non-negative values, return -1.
355 int getSplatIndex(ArrayRef<int> Mask);
356 
357 /// Get splat value if the input is a splat vector or return nullptr.
358 /// The value may be extracted from a splat constants vector or from
359 /// a sequence of instructions that broadcast a single value into a vector.
360 Value *getSplatValue(const Value *V);
361 
362 /// Return true if each element of the vector value \p V is poisoned or equal to
363 /// every other non-poisoned element. If an index element is specified, either
364 /// every element of the vector is poisoned or the element at that index is not
365 /// poisoned and equal to every other non-poisoned element.
366 /// This may be more powerful than the related getSplatValue() because it is
367 /// not limited by finding a scalar source value to a splatted vector.
368 bool isSplatValue(const Value *V, int Index = -1, unsigned Depth = 0);
369 
370 /// Transform a shuffle mask's output demanded element mask into demanded
371 /// element masks for the 2 operands, returns false if the mask isn't valid.
372 /// Both \p DemandedLHS and \p DemandedRHS are initialised to [SrcWidth].
373 /// \p AllowUndefElts permits "-1" indices to be treated as undef.
374 bool getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
375                             const APInt &DemandedElts, APInt &DemandedLHS,
376                             APInt &DemandedRHS, bool AllowUndefElts = false);
377 
378 /// Replace each shuffle mask index with the scaled sequential indices for an
379 /// equivalent mask of narrowed elements. Mask elements that are less than 0
380 /// (sentinel values) are repeated in the output mask.
381 ///
382 /// Example with Scale = 4:
383 ///   <4 x i32> <3, 2, 0, -1> -->
384 ///   <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1>
385 ///
386 /// This is the reverse process of widening shuffle mask elements, but it always
387 /// succeeds because the indexes can always be multiplied (scaled up) to map to
388 /// narrower vector elements.
389 void narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
390                            SmallVectorImpl<int> &ScaledMask);
391 
392 /// Try to transform a shuffle mask by replacing elements with the scaled index
393 /// for an equivalent mask of widened elements. If all mask elements that would
394 /// map to a wider element of the new mask are the same negative number
395 /// (sentinel value), that element of the new mask is the same value. If any
396 /// element in a given slice is negative and some other element in that slice is
397 /// not the same value, return false (partial matches with sentinel values are
398 /// not allowed).
399 ///
400 /// Example with Scale = 4:
401 ///   <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1> -->
402 ///   <4 x i32> <3, 2, 0, -1>
403 ///
404 /// This is the reverse process of narrowing shuffle mask elements if it
405 /// succeeds. This transform is not always possible because indexes may not
406 /// divide evenly (scale down) to map to wider vector elements.
407 bool widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
408                           SmallVectorImpl<int> &ScaledMask);
409 
410 /// Repetitively apply `widenShuffleMaskElts()` for as long as it succeeds,
411 /// to get the shuffle mask with widest possible elements.
412 void getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
413                                   SmallVectorImpl<int> &ScaledMask);
414 
415 /// Splits and processes shuffle mask depending on the number of input and
416 /// output registers. The function does 2 main things: 1) splits the
417 /// source/destination vectors into real registers; 2) do the mask analysis to
418 /// identify which real registers are permuted. Then the function processes
419 /// resulting registers mask using provided action items. If no input register
420 /// is defined, \p NoInputAction action is used. If only 1 input register is
421 /// used, \p SingleInputAction is used, otherwise \p ManyInputsAction is used to
422 /// process > 2 input registers and masks.
423 /// \param Mask Original shuffle mask.
424 /// \param NumOfSrcRegs Number of source registers.
425 /// \param NumOfDestRegs Number of destination registers.
426 /// \param NumOfUsedRegs Number of actually used destination registers.
427 void processShuffleMasks(
428     ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
429     unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
430     function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
431     function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction);
432 
433 /// Compute a map of integer instructions to their minimum legal type
434 /// size.
435 ///
436 /// C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int
437 /// type (e.g. i32) whenever arithmetic is performed on them.
438 ///
439 /// For targets with native i8 or i16 operations, usually InstCombine can shrink
440 /// the arithmetic type down again. However InstCombine refuses to create
441 /// illegal types, so for targets without i8 or i16 registers, the lengthening
442 /// and shrinking remains.
443 ///
444 /// Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when
445 /// their scalar equivalents do not, so during vectorization it is important to
446 /// remove these lengthens and truncates when deciding the profitability of
447 /// vectorization.
448 ///
449 /// This function analyzes the given range of instructions and determines the
450 /// minimum type size each can be converted to. It attempts to remove or
451 /// minimize type size changes across each def-use chain, so for example in the
452 /// following code:
453 ///
454 ///   %1 = load i8, i8*
455 ///   %2 = add i8 %1, 2
456 ///   %3 = load i16, i16*
457 ///   %4 = zext i8 %2 to i32
458 ///   %5 = zext i16 %3 to i32
459 ///   %6 = add i32 %4, %5
460 ///   %7 = trunc i32 %6 to i16
461 ///
462 /// Instruction %6 must be done at least in i16, so computeMinimumValueSizes
463 /// will return: {%1: 16, %2: 16, %3: 16, %4: 16, %5: 16, %6: 16, %7: 16}.
464 ///
465 /// If the optional TargetTransformInfo is provided, this function tries harder
466 /// to do less work by only looking at illegal types.
467 MapVector<Instruction*, uint64_t>
468 computeMinimumValueSizes(ArrayRef<BasicBlock*> Blocks,
469                          DemandedBits &DB,
470                          const TargetTransformInfo *TTI=nullptr);
471 
472 /// Compute the union of two access-group lists.
473 ///
474 /// If the list contains just one access group, it is returned directly. If the
475 /// list is empty, returns nullptr.
476 MDNode *uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2);
477 
478 /// Compute the access-group list of access groups that @p Inst1 and @p Inst2
479 /// are both in. If either instruction does not access memory at all, it is
480 /// considered to be in every list.
481 ///
482 /// If the list contains just one access group, it is returned directly. If the
483 /// list is empty, returns nullptr.
484 MDNode *intersectAccessGroups(const Instruction *Inst1,
485                               const Instruction *Inst2);
486 
487 /// Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath,
488 /// MD_nontemporal, MD_access_group].
489 /// For K in Kinds, we get the MDNode for K from each of the
490 /// elements of VL, compute their "intersection" (i.e., the most generic
491 /// metadata value that covers all of the individual values), and set I's
492 /// metadata for M equal to the intersection value.
493 ///
494 /// This function always sets a (possibly null) value for each K in Kinds.
495 Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL);
496 
497 /// Create a mask that filters the members of an interleave group where there
498 /// are gaps.
499 ///
500 /// For example, the mask for \p Group with interleave-factor 3
501 /// and \p VF 4, that has only its first member present is:
502 ///
503 ///   <1,0,0,1,0,0,1,0,0,1,0,0>
504 ///
505 /// Note: The result is a mask of 0's and 1's, as opposed to the other
506 /// create[*]Mask() utilities which create a shuffle mask (mask that
507 /// consists of indices).
508 Constant *createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
509                                const InterleaveGroup<Instruction> &Group);
510 
511 /// Create a mask with replicated elements.
512 ///
513 /// This function creates a shuffle mask for replicating each of the \p VF
514 /// elements in a vector \p ReplicationFactor times. It can be used to
515 /// transform a mask of \p VF elements into a mask of
516 /// \p VF * \p ReplicationFactor elements used by a predicated
517 /// interleaved-group of loads/stores whose Interleaved-factor ==
518 /// \p ReplicationFactor.
519 ///
520 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
521 ///
522 ///   <0,0,0,1,1,1,2,2,2,3,3,3>
523 llvm::SmallVector<int, 16> createReplicatedMask(unsigned ReplicationFactor,
524                                                 unsigned VF);
525 
526 /// Create an interleave shuffle mask.
527 ///
528 /// This function creates a shuffle mask for interleaving \p NumVecs vectors of
529 /// vectorization factor \p VF into a single wide vector. The mask is of the
530 /// form:
531 ///
532 ///   <0, VF, VF * 2, ..., VF * (NumVecs - 1), 1, VF + 1, VF * 2 + 1, ...>
533 ///
534 /// For example, the mask for VF = 4 and NumVecs = 2 is:
535 ///
536 ///   <0, 4, 1, 5, 2, 6, 3, 7>.
537 llvm::SmallVector<int, 16> createInterleaveMask(unsigned VF, unsigned NumVecs);
538 
539 /// Create a stride shuffle mask.
540 ///
541 /// This function creates a shuffle mask whose elements begin at \p Start and
542 /// are incremented by \p Stride. The mask can be used to deinterleave an
543 /// interleaved vector into separate vectors of vectorization factor \p VF. The
544 /// mask is of the form:
545 ///
546 ///   <Start, Start + Stride, ..., Start + Stride * (VF - 1)>
547 ///
548 /// For example, the mask for Start = 0, Stride = 2, and VF = 4 is:
549 ///
550 ///   <0, 2, 4, 6>
551 llvm::SmallVector<int, 16> createStrideMask(unsigned Start, unsigned Stride,
552                                             unsigned VF);
553 
554 /// Create a sequential shuffle mask.
555 ///
556 /// This function creates shuffle mask whose elements are sequential and begin
557 /// at \p Start.  The mask contains \p NumInts integers and is padded with \p
558 /// NumUndefs undef values. The mask is of the form:
559 ///
560 ///   <Start, Start + 1, ... Start + NumInts - 1, undef_1, ... undef_NumUndefs>
561 ///
562 /// For example, the mask for Start = 0, NumInsts = 4, and NumUndefs = 4 is:
563 ///
564 ///   <0, 1, 2, 3, undef, undef, undef, undef>
565 llvm::SmallVector<int, 16>
566 createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs);
567 
568 /// Given a shuffle mask for a binary shuffle, create the equivalent shuffle
569 /// mask assuming both operands are identical. This assumes that the unary
570 /// shuffle will use elements from operand 0 (operand 1 will be unused).
571 llvm::SmallVector<int, 16> createUnaryMask(ArrayRef<int> Mask,
572                                            unsigned NumElts);
573 
574 /// Concatenate a list of vectors.
575 ///
576 /// This function generates code that concatenate the vectors in \p Vecs into a
577 /// single large vector. The number of vectors should be greater than one, and
578 /// their element types should be the same. The number of elements in the
579 /// vectors should also be the same; however, if the last vector has fewer
580 /// elements, it will be padded with undefs.
581 Value *concatenateVectors(IRBuilderBase &Builder, ArrayRef<Value *> Vecs);
582 
583 /// Given a mask vector of i1, Return true if all of the elements of this
584 /// predicate mask are known to be false or undef.  That is, return true if all
585 /// lanes can be assumed inactive.
586 bool maskIsAllZeroOrUndef(Value *Mask);
587 
588 /// Given a mask vector of i1, Return true if all of the elements of this
589 /// predicate mask are known to be true or undef.  That is, return true if all
590 /// lanes can be assumed active.
591 bool maskIsAllOneOrUndef(Value *Mask);
592 
593 /// Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y)
594 /// for each lane which may be active.
595 APInt possiblyDemandedEltsInMask(Value *Mask);
596 
597 /// The group of interleaved loads/stores sharing the same stride and
598 /// close to each other.
599 ///
600 /// Each member in this group has an index starting from 0, and the largest
601 /// index should be less than interleaved factor, which is equal to the absolute
602 /// value of the access's stride.
603 ///
604 /// E.g. An interleaved load group of factor 4:
605 ///        for (unsigned i = 0; i < 1024; i+=4) {
606 ///          a = A[i];                           // Member of index 0
607 ///          b = A[i+1];                         // Member of index 1
608 ///          d = A[i+3];                         // Member of index 3
609 ///          ...
610 ///        }
611 ///
612 ///      An interleaved store group of factor 4:
613 ///        for (unsigned i = 0; i < 1024; i+=4) {
614 ///          ...
615 ///          A[i]   = a;                         // Member of index 0
616 ///          A[i+1] = b;                         // Member of index 1
617 ///          A[i+2] = c;                         // Member of index 2
618 ///          A[i+3] = d;                         // Member of index 3
619 ///        }
620 ///
621 /// Note: the interleaved load group could have gaps (missing members), but
622 /// the interleaved store group doesn't allow gaps.
623 template <typename InstTy> class InterleaveGroup {
624 public:
InterleaveGroup(uint32_t Factor,bool Reverse,Align Alignment)625   InterleaveGroup(uint32_t Factor, bool Reverse, Align Alignment)
626       : Factor(Factor), Reverse(Reverse), Alignment(Alignment),
627         InsertPos(nullptr) {}
628 
InterleaveGroup(InstTy * Instr,int32_t Stride,Align Alignment)629   InterleaveGroup(InstTy *Instr, int32_t Stride, Align Alignment)
630       : Alignment(Alignment), InsertPos(Instr) {
631     Factor = std::abs(Stride);
632     assert(Factor > 1 && "Invalid interleave factor");
633 
634     Reverse = Stride < 0;
635     Members[0] = Instr;
636   }
637 
isReverse()638   bool isReverse() const { return Reverse; }
getFactor()639   uint32_t getFactor() const { return Factor; }
getAlign()640   Align getAlign() const { return Alignment; }
getNumMembers()641   uint32_t getNumMembers() const { return Members.size(); }
642 
643   /// Try to insert a new member \p Instr with index \p Index and
644   /// alignment \p NewAlign. The index is related to the leader and it could be
645   /// negative if it is the new leader.
646   ///
647   /// \returns false if the instruction doesn't belong to the group.
insertMember(InstTy * Instr,int32_t Index,Align NewAlign)648   bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign) {
649     // Make sure the key fits in an int32_t.
650     std::optional<int32_t> MaybeKey = checkedAdd(Index, SmallestKey);
651     if (!MaybeKey)
652       return false;
653     int32_t Key = *MaybeKey;
654 
655     // Skip if the key is used for either the tombstone or empty special values.
656     if (DenseMapInfo<int32_t>::getTombstoneKey() == Key ||
657         DenseMapInfo<int32_t>::getEmptyKey() == Key)
658       return false;
659 
660     // Skip if there is already a member with the same index.
661     if (Members.find(Key) != Members.end())
662       return false;
663 
664     if (Key > LargestKey) {
665       // The largest index is always less than the interleave factor.
666       if (Index >= static_cast<int32_t>(Factor))
667         return false;
668 
669       LargestKey = Key;
670     } else if (Key < SmallestKey) {
671 
672       // Make sure the largest index fits in an int32_t.
673       std::optional<int32_t> MaybeLargestIndex = checkedSub(LargestKey, Key);
674       if (!MaybeLargestIndex)
675         return false;
676 
677       // The largest index is always less than the interleave factor.
678       if (*MaybeLargestIndex >= static_cast<int64_t>(Factor))
679         return false;
680 
681       SmallestKey = Key;
682     }
683 
684     // It's always safe to select the minimum alignment.
685     Alignment = std::min(Alignment, NewAlign);
686     Members[Key] = Instr;
687     return true;
688   }
689 
690   /// Get the member with the given index \p Index
691   ///
692   /// \returns nullptr if contains no such member.
getMember(uint32_t Index)693   InstTy *getMember(uint32_t Index) const {
694     int32_t Key = SmallestKey + Index;
695     return Members.lookup(Key);
696   }
697 
698   /// Get the index for the given member. Unlike the key in the member
699   /// map, the index starts from 0.
getIndex(const InstTy * Instr)700   uint32_t getIndex(const InstTy *Instr) const {
701     for (auto I : Members) {
702       if (I.second == Instr)
703         return I.first - SmallestKey;
704     }
705 
706     llvm_unreachable("InterleaveGroup contains no such member");
707   }
708 
getInsertPos()709   InstTy *getInsertPos() const { return InsertPos; }
setInsertPos(InstTy * Inst)710   void setInsertPos(InstTy *Inst) { InsertPos = Inst; }
711 
712   /// Add metadata (e.g. alias info) from the instructions in this group to \p
713   /// NewInst.
714   ///
715   /// FIXME: this function currently does not add noalias metadata a'la
716   /// addNewMedata.  To do that we need to compute the intersection of the
717   /// noalias info from all members.
718   void addMetadata(InstTy *NewInst) const;
719 
720   /// Returns true if this Group requires a scalar iteration to handle gaps.
requiresScalarEpilogue()721   bool requiresScalarEpilogue() const {
722     // If the last member of the Group exists, then a scalar epilog is not
723     // needed for this group.
724     if (getMember(getFactor() - 1))
725       return false;
726 
727     // We have a group with gaps. It therefore can't be a reversed access,
728     // because such groups get invalidated (TODO).
729     assert(!isReverse() && "Group should have been invalidated");
730 
731     // This is a group of loads, with gaps, and without a last-member
732     return true;
733   }
734 
735 private:
736   uint32_t Factor; // Interleave Factor.
737   bool Reverse;
738   Align Alignment;
739   DenseMap<int32_t, InstTy *> Members;
740   int32_t SmallestKey = 0;
741   int32_t LargestKey = 0;
742 
743   // To avoid breaking dependences, vectorized instructions of an interleave
744   // group should be inserted at either the first load or the last store in
745   // program order.
746   //
747   // E.g. %even = load i32             // Insert Position
748   //      %add = add i32 %even         // Use of %even
749   //      %odd = load i32
750   //
751   //      store i32 %even
752   //      %odd = add i32               // Def of %odd
753   //      store i32 %odd               // Insert Position
754   InstTy *InsertPos;
755 };
756 
757 /// Drive the analysis of interleaved memory accesses in the loop.
758 ///
759 /// Use this class to analyze interleaved accesses only when we can vectorize
760 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
761 /// on interleaved accesses is unsafe.
762 ///
763 /// The analysis collects interleave groups and records the relationships
764 /// between the member and the group in a map.
765 class InterleavedAccessInfo {
766 public:
InterleavedAccessInfo(PredicatedScalarEvolution & PSE,Loop * L,DominatorTree * DT,LoopInfo * LI,const LoopAccessInfo * LAI)767   InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
768                         DominatorTree *DT, LoopInfo *LI,
769                         const LoopAccessInfo *LAI)
770       : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {}
771 
~InterleavedAccessInfo()772   ~InterleavedAccessInfo() { invalidateGroups(); }
773 
774   /// Analyze the interleaved accesses and collect them in interleave
775   /// groups. Substitute symbolic strides using \p Strides.
776   /// Consider also predicated loads/stores in the analysis if
777   /// \p EnableMaskedInterleavedGroup is true.
778   void analyzeInterleaving(bool EnableMaskedInterleavedGroup);
779 
780   /// Invalidate groups, e.g., in case all blocks in loop will be predicated
781   /// contrary to original assumption. Although we currently prevent group
782   /// formation for predicated accesses, we may be able to relax this limitation
783   /// in the future once we handle more complicated blocks. Returns true if any
784   /// groups were invalidated.
invalidateGroups()785   bool invalidateGroups() {
786     if (InterleaveGroups.empty()) {
787       assert(
788           !RequiresScalarEpilogue &&
789           "RequiresScalarEpilog should not be set without interleave groups");
790       return false;
791     }
792 
793     InterleaveGroupMap.clear();
794     for (auto *Ptr : InterleaveGroups)
795       delete Ptr;
796     InterleaveGroups.clear();
797     RequiresScalarEpilogue = false;
798     return true;
799   }
800 
801   /// Check if \p Instr belongs to any interleave group.
isInterleaved(Instruction * Instr)802   bool isInterleaved(Instruction *Instr) const {
803     return InterleaveGroupMap.find(Instr) != InterleaveGroupMap.end();
804   }
805 
806   /// Get the interleave group that \p Instr belongs to.
807   ///
808   /// \returns nullptr if doesn't have such group.
809   InterleaveGroup<Instruction> *
getInterleaveGroup(const Instruction * Instr)810   getInterleaveGroup(const Instruction *Instr) const {
811     return InterleaveGroupMap.lookup(Instr);
812   }
813 
814   iterator_range<SmallPtrSetIterator<llvm::InterleaveGroup<Instruction> *>>
getInterleaveGroups()815   getInterleaveGroups() {
816     return make_range(InterleaveGroups.begin(), InterleaveGroups.end());
817   }
818 
819   /// Returns true if an interleaved group that may access memory
820   /// out-of-bounds requires a scalar epilogue iteration for correctness.
requiresScalarEpilogue()821   bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
822 
823   /// Invalidate groups that require a scalar epilogue (due to gaps). This can
824   /// happen when optimizing for size forbids a scalar epilogue, and the gap
825   /// cannot be filtered by masking the load/store.
826   void invalidateGroupsRequiringScalarEpilogue();
827 
828   /// Returns true if we have any interleave groups.
hasGroups()829   bool hasGroups() const { return !InterleaveGroups.empty(); }
830 
831 private:
832   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
833   /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
834   /// The interleaved access analysis can also add new predicates (for example
835   /// by versioning strides of pointers).
836   PredicatedScalarEvolution &PSE;
837 
838   Loop *TheLoop;
839   DominatorTree *DT;
840   LoopInfo *LI;
841   const LoopAccessInfo *LAI;
842 
843   /// True if the loop may contain non-reversed interleaved groups with
844   /// out-of-bounds accesses. We ensure we don't speculatively access memory
845   /// out-of-bounds by executing at least one scalar epilogue iteration.
846   bool RequiresScalarEpilogue = false;
847 
848   /// Holds the relationships between the members and the interleave group.
849   DenseMap<Instruction *, InterleaveGroup<Instruction> *> InterleaveGroupMap;
850 
851   SmallPtrSet<InterleaveGroup<Instruction> *, 4> InterleaveGroups;
852 
853   /// Holds dependences among the memory accesses in the loop. It maps a source
854   /// access to a set of dependent sink accesses.
855   DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
856 
857   /// The descriptor for a strided memory access.
858   struct StrideDescriptor {
859     StrideDescriptor() = default;
StrideDescriptorStrideDescriptor860     StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
861                      Align Alignment)
862         : Stride(Stride), Scev(Scev), Size(Size), Alignment(Alignment) {}
863 
864     // The access's stride. It is negative for a reverse access.
865     int64_t Stride = 0;
866 
867     // The scalar expression of this access.
868     const SCEV *Scev = nullptr;
869 
870     // The size of the memory object.
871     uint64_t Size = 0;
872 
873     // The alignment of this access.
874     Align Alignment;
875   };
876 
877   /// A type for holding instructions and their stride descriptors.
878   using StrideEntry = std::pair<Instruction *, StrideDescriptor>;
879 
880   /// Create a new interleave group with the given instruction \p Instr,
881   /// stride \p Stride and alignment \p Align.
882   ///
883   /// \returns the newly created interleave group.
884   InterleaveGroup<Instruction> *
createInterleaveGroup(Instruction * Instr,int Stride,Align Alignment)885   createInterleaveGroup(Instruction *Instr, int Stride, Align Alignment) {
886     assert(!InterleaveGroupMap.count(Instr) &&
887            "Already in an interleaved access group");
888     InterleaveGroupMap[Instr] =
889         new InterleaveGroup<Instruction>(Instr, Stride, Alignment);
890     InterleaveGroups.insert(InterleaveGroupMap[Instr]);
891     return InterleaveGroupMap[Instr];
892   }
893 
894   /// Release the group and remove all the relationships.
releaseGroup(InterleaveGroup<Instruction> * Group)895   void releaseGroup(InterleaveGroup<Instruction> *Group) {
896     for (unsigned i = 0; i < Group->getFactor(); i++)
897       if (Instruction *Member = Group->getMember(i))
898         InterleaveGroupMap.erase(Member);
899 
900     InterleaveGroups.erase(Group);
901     delete Group;
902   }
903 
904   /// Collect all the accesses with a constant stride in program order.
905   void collectConstStrideAccesses(
906       MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
907       const ValueToValueMap &Strides);
908 
909   /// Returns true if \p Stride is allowed in an interleaved group.
910   static bool isStrided(int Stride);
911 
912   /// Returns true if \p BB is a predicated block.
isPredicated(BasicBlock * BB)913   bool isPredicated(BasicBlock *BB) const {
914     return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
915   }
916 
917   /// Returns true if LoopAccessInfo can be used for dependence queries.
areDependencesValid()918   bool areDependencesValid() const {
919     return LAI && LAI->getDepChecker().getDependences();
920   }
921 
922   /// Returns true if memory accesses \p A and \p B can be reordered, if
923   /// necessary, when constructing interleaved groups.
924   ///
925   /// \p A must precede \p B in program order. We return false if reordering is
926   /// not necessary or is prevented because \p A and \p B may be dependent.
canReorderMemAccessesForInterleavedGroups(StrideEntry * A,StrideEntry * B)927   bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
928                                                  StrideEntry *B) const {
929     // Code motion for interleaved accesses can potentially hoist strided loads
930     // and sink strided stores. The code below checks the legality of the
931     // following two conditions:
932     //
933     // 1. Potentially moving a strided load (B) before any store (A) that
934     //    precedes B, or
935     //
936     // 2. Potentially moving a strided store (A) after any load or store (B)
937     //    that A precedes.
938     //
939     // It's legal to reorder A and B if we know there isn't a dependence from A
940     // to B. Note that this determination is conservative since some
941     // dependences could potentially be reordered safely.
942 
943     // A is potentially the source of a dependence.
944     auto *Src = A->first;
945     auto SrcDes = A->second;
946 
947     // B is potentially the sink of a dependence.
948     auto *Sink = B->first;
949     auto SinkDes = B->second;
950 
951     // Code motion for interleaved accesses can't violate WAR dependences.
952     // Thus, reordering is legal if the source isn't a write.
953     if (!Src->mayWriteToMemory())
954       return true;
955 
956     // At least one of the accesses must be strided.
957     if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
958       return true;
959 
960     // If dependence information is not available from LoopAccessInfo,
961     // conservatively assume the instructions can't be reordered.
962     if (!areDependencesValid())
963       return false;
964 
965     // If we know there is a dependence from source to sink, assume the
966     // instructions can't be reordered. Otherwise, reordering is legal.
967     return Dependences.find(Src) == Dependences.end() ||
968            !Dependences.lookup(Src).count(Sink);
969   }
970 
971   /// Collect the dependences from LoopAccessInfo.
972   ///
973   /// We process the dependences once during the interleaved access analysis to
974   /// enable constant-time dependence queries.
collectDependences()975   void collectDependences() {
976     if (!areDependencesValid())
977       return;
978     auto *Deps = LAI->getDepChecker().getDependences();
979     for (auto Dep : *Deps)
980       Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
981   }
982 };
983 
984 } // llvm namespace
985 
986 #endif
987