1 //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SValBuilder, the base class for all (complete) SValBuilder
10 //  implementations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Analysis/AnalysisDeclContext.h"
23 #include "clang/Basic/LLVM.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
35 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include <cassert>
40 #include <optional>
41 #include <tuple>
42 
43 using namespace clang;
44 using namespace ento;
45 
46 //===----------------------------------------------------------------------===//
47 // Basic SVal creation.
48 //===----------------------------------------------------------------------===//
49 
anchor()50 void SValBuilder::anchor() {}
51 
SValBuilder(llvm::BumpPtrAllocator & alloc,ASTContext & context,ProgramStateManager & stateMgr)52 SValBuilder::SValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
53                          ProgramStateManager &stateMgr)
54     : Context(context), BasicVals(context, alloc),
55       SymMgr(context, BasicVals, alloc), MemMgr(context, alloc),
56       StateMgr(stateMgr),
57       AnOpts(
58           stateMgr.getOwningEngine().getAnalysisManager().getAnalyzerOptions()),
59       ArrayIndexTy(context.LongLongTy),
60       ArrayIndexWidth(context.getTypeSize(ArrayIndexTy)) {}
61 
makeZeroVal(QualType type)62 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
63   if (Loc::isLocType(type))
64     return makeNullWithType(type);
65 
66   if (type->isIntegralOrEnumerationType())
67     return makeIntVal(0, type);
68 
69   if (type->isArrayType() || type->isRecordType() || type->isVectorType() ||
70       type->isAnyComplexType())
71     return makeCompoundVal(type, BasicVals.getEmptySValList());
72 
73   // FIXME: Handle floats.
74   return UnknownVal();
75 }
76 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const llvm::APSInt & rhs,QualType type)77 nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
78                                           BinaryOperator::Opcode op,
79                                           const llvm::APSInt &rhs,
80                                           QualType type) {
81   // The Environment ensures we always get a persistent APSInt in
82   // BasicValueFactory, so we don't need to get the APSInt from
83   // BasicValueFactory again.
84   assert(lhs);
85   assert(!Loc::isLocType(type));
86   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
87 }
88 
makeNonLoc(const llvm::APSInt & lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)89 nonloc::SymbolVal SValBuilder::makeNonLoc(const llvm::APSInt &lhs,
90                                           BinaryOperator::Opcode op,
91                                           const SymExpr *rhs, QualType type) {
92   assert(rhs);
93   assert(!Loc::isLocType(type));
94   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
95 }
96 
makeNonLoc(const SymExpr * lhs,BinaryOperator::Opcode op,const SymExpr * rhs,QualType type)97 nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *lhs,
98                                           BinaryOperator::Opcode op,
99                                           const SymExpr *rhs, QualType type) {
100   assert(lhs && rhs);
101   assert(!Loc::isLocType(type));
102   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
103 }
104 
makeNonLoc(const SymExpr * operand,UnaryOperator::Opcode op,QualType type)105 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, UnaryOperator::Opcode op,
106                                QualType type) {
107   assert(operand);
108   assert(!Loc::isLocType(type));
109   return nonloc::SymbolVal(SymMgr.getUnarySymExpr(operand, op, type));
110 }
111 
makeNonLoc(const SymExpr * operand,QualType fromTy,QualType toTy)112 nonloc::SymbolVal SValBuilder::makeNonLoc(const SymExpr *operand,
113                                           QualType fromTy, QualType toTy) {
114   assert(operand);
115   assert(!Loc::isLocType(toTy));
116   if (fromTy == toTy)
117     return nonloc::SymbolVal(operand);
118   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
119 }
120 
convertToArrayIndex(SVal val)121 SVal SValBuilder::convertToArrayIndex(SVal val) {
122   if (val.isUnknownOrUndef())
123     return val;
124 
125   // Common case: we have an appropriately sized integer.
126   if (std::optional<nonloc::ConcreteInt> CI =
127           val.getAs<nonloc::ConcreteInt>()) {
128     const llvm::APSInt& I = CI->getValue();
129     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
130       return val;
131   }
132 
133   return evalCast(val, ArrayIndexTy, QualType{});
134 }
135 
makeBoolVal(const CXXBoolLiteralExpr * boolean)136 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
137   return makeTruthVal(boolean->getValue());
138 }
139 
140 DefinedOrUnknownSVal
getRegionValueSymbolVal(const TypedValueRegion * region)141 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) {
142   QualType T = region->getValueType();
143 
144   if (T->isNullPtrType())
145     return makeZeroVal(T);
146 
147   if (!SymbolManager::canSymbolicate(T))
148     return UnknownVal();
149 
150   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
151 
152   if (Loc::isLocType(T))
153     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
154 
155   return nonloc::SymbolVal(sym);
156 }
157 
conjureSymbolVal(const void * SymbolTag,const Expr * Ex,const LocationContext * LCtx,unsigned Count)158 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
159                                                    const Expr *Ex,
160                                                    const LocationContext *LCtx,
161                                                    unsigned Count) {
162   QualType T = Ex->getType();
163 
164   if (T->isNullPtrType())
165     return makeZeroVal(T);
166 
167   // Compute the type of the result. If the expression is not an R-value, the
168   // result should be a location.
169   QualType ExType = Ex->getType();
170   if (Ex->isGLValue())
171     T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
172 
173   return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
174 }
175 
conjureSymbolVal(const void * symbolTag,const Expr * expr,const LocationContext * LCtx,QualType type,unsigned count)176 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
177                                                    const Expr *expr,
178                                                    const LocationContext *LCtx,
179                                                    QualType type,
180                                                    unsigned count) {
181   if (type->isNullPtrType())
182     return makeZeroVal(type);
183 
184   if (!SymbolManager::canSymbolicate(type))
185     return UnknownVal();
186 
187   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
188 
189   if (Loc::isLocType(type))
190     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
191 
192   return nonloc::SymbolVal(sym);
193 }
194 
conjureSymbolVal(const Stmt * stmt,const LocationContext * LCtx,QualType type,unsigned visitCount)195 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
196                                                    const LocationContext *LCtx,
197                                                    QualType type,
198                                                    unsigned visitCount) {
199   if (type->isNullPtrType())
200     return makeZeroVal(type);
201 
202   if (!SymbolManager::canSymbolicate(type))
203     return UnknownVal();
204 
205   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
206 
207   if (Loc::isLocType(type))
208     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
209 
210   return nonloc::SymbolVal(sym);
211 }
212 
213 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,unsigned VisitCount)214 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
215                                       const LocationContext *LCtx,
216                                       unsigned VisitCount) {
217   QualType T = E->getType();
218   return getConjuredHeapSymbolVal(E, LCtx, T, VisitCount);
219 }
220 
221 DefinedOrUnknownSVal
getConjuredHeapSymbolVal(const Expr * E,const LocationContext * LCtx,QualType type,unsigned VisitCount)222 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
223                                       const LocationContext *LCtx,
224                                       QualType type, unsigned VisitCount) {
225   assert(Loc::isLocType(type));
226   assert(SymbolManager::canSymbolicate(type));
227   if (type->isNullPtrType())
228     return makeZeroVal(type);
229 
230   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, type, VisitCount);
231   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
232 }
233 
getAllocaRegionVal(const Expr * E,const LocationContext * LCtx,unsigned VisitCount)234 loc::MemRegionVal SValBuilder::getAllocaRegionVal(const Expr *E,
235                                                   const LocationContext *LCtx,
236                                                   unsigned VisitCount) {
237   const AllocaRegion *R =
238       getRegionManager().getAllocaRegion(E, VisitCount, LCtx);
239   return loc::MemRegionVal(R);
240 }
241 
getMetadataSymbolVal(const void * symbolTag,const MemRegion * region,const Expr * expr,QualType type,const LocationContext * LCtx,unsigned count)242 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
243                                               const MemRegion *region,
244                                               const Expr *expr, QualType type,
245                                               const LocationContext *LCtx,
246                                               unsigned count) {
247   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
248 
249   SymbolRef sym =
250       SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);
251 
252   if (Loc::isLocType(type))
253     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
254 
255   return nonloc::SymbolVal(sym);
256 }
257 
258 DefinedOrUnknownSVal
getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,const TypedValueRegion * region)259 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
260                                              const TypedValueRegion *region) {
261   QualType T = region->getValueType();
262 
263   if (T->isNullPtrType())
264     return makeZeroVal(T);
265 
266   if (!SymbolManager::canSymbolicate(T))
267     return UnknownVal();
268 
269   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
270 
271   if (Loc::isLocType(T))
272     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
273 
274   return nonloc::SymbolVal(sym);
275 }
276 
getMemberPointer(const NamedDecl * ND)277 DefinedSVal SValBuilder::getMemberPointer(const NamedDecl *ND) {
278   assert(!ND || (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(ND)));
279 
280   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(ND)) {
281     // Sema treats pointers to static member functions as have function pointer
282     // type, so return a function pointer for the method.
283     // We don't need to play a similar trick for static member fields
284     // because these are represented as plain VarDecls and not FieldDecls
285     // in the AST.
286     if (!MD->isImplicitObjectMemberFunction())
287       return getFunctionPointer(MD);
288   }
289 
290   return nonloc::PointerToMember(ND);
291 }
292 
getFunctionPointer(const FunctionDecl * func)293 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
294   return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
295 }
296 
getBlockPointer(const BlockDecl * block,CanQualType locTy,const LocationContext * locContext,unsigned blockCount)297 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
298                                          CanQualType locTy,
299                                          const LocationContext *locContext,
300                                          unsigned blockCount) {
301   const BlockCodeRegion *BC =
302     MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
303   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
304                                                         blockCount);
305   return loc::MemRegionVal(BD);
306 }
307 
308 std::optional<loc::MemRegionVal>
getCastedMemRegionVal(const MemRegion * R,QualType Ty)309 SValBuilder::getCastedMemRegionVal(const MemRegion *R, QualType Ty) {
310   if (auto OptR = StateMgr.getStoreManager().castRegion(R, Ty))
311     return loc::MemRegionVal(*OptR);
312   return std::nullopt;
313 }
314 
315 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXMethodDecl * D,const StackFrameContext * SFC)316 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
317                                           const StackFrameContext *SFC) {
318   return loc::MemRegionVal(
319       getRegionManager().getCXXThisRegion(D->getThisType(), SFC));
320 }
321 
322 /// Return a memory region for the 'this' object reference.
getCXXThis(const CXXRecordDecl * D,const StackFrameContext * SFC)323 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
324                                           const StackFrameContext *SFC) {
325   const Type *T = D->getTypeForDecl();
326   QualType PT = getContext().getPointerType(QualType(T, 0));
327   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
328 }
329 
getConstantVal(const Expr * E)330 std::optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
331   E = E->IgnoreParens();
332 
333   switch (E->getStmtClass()) {
334   // Handle expressions that we treat differently from the AST's constant
335   // evaluator.
336   case Stmt::AddrLabelExprClass:
337     return makeLoc(cast<AddrLabelExpr>(E));
338 
339   case Stmt::CXXScalarValueInitExprClass:
340   case Stmt::ImplicitValueInitExprClass:
341     return makeZeroVal(E->getType());
342 
343   case Stmt::ObjCStringLiteralClass: {
344     const auto *SL = cast<ObjCStringLiteral>(E);
345     return makeLoc(getRegionManager().getObjCStringRegion(SL));
346   }
347 
348   case Stmt::StringLiteralClass: {
349     const auto *SL = cast<StringLiteral>(E);
350     return makeLoc(getRegionManager().getStringRegion(SL));
351   }
352 
353   case Stmt::PredefinedExprClass: {
354     const auto *PE = cast<PredefinedExpr>(E);
355     assert(PE->getFunctionName() &&
356            "Since we analyze only instantiated functions, PredefinedExpr "
357            "should have a function name.");
358     return makeLoc(getRegionManager().getStringRegion(PE->getFunctionName()));
359   }
360 
361   // Fast-path some expressions to avoid the overhead of going through the AST's
362   // constant evaluator
363   case Stmt::CharacterLiteralClass: {
364     const auto *C = cast<CharacterLiteral>(E);
365     return makeIntVal(C->getValue(), C->getType());
366   }
367 
368   case Stmt::CXXBoolLiteralExprClass:
369     return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
370 
371   case Stmt::TypeTraitExprClass: {
372     const auto *TE = cast<TypeTraitExpr>(E);
373     return makeTruthVal(TE->getValue(), TE->getType());
374   }
375 
376   case Stmt::IntegerLiteralClass:
377     return makeIntVal(cast<IntegerLiteral>(E));
378 
379   case Stmt::ObjCBoolLiteralExprClass:
380     return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
381 
382   case Stmt::CXXNullPtrLiteralExprClass:
383     return makeNullWithType(E->getType());
384 
385   case Stmt::CStyleCastExprClass:
386   case Stmt::CXXFunctionalCastExprClass:
387   case Stmt::CXXConstCastExprClass:
388   case Stmt::CXXReinterpretCastExprClass:
389   case Stmt::CXXStaticCastExprClass:
390   case Stmt::ImplicitCastExprClass: {
391     const auto *CE = cast<CastExpr>(E);
392     switch (CE->getCastKind()) {
393     default:
394       break;
395     case CK_ArrayToPointerDecay:
396     case CK_IntegralToPointer:
397     case CK_NoOp:
398     case CK_BitCast: {
399       const Expr *SE = CE->getSubExpr();
400       std::optional<SVal> Val = getConstantVal(SE);
401       if (!Val)
402         return std::nullopt;
403       return evalCast(*Val, CE->getType(), SE->getType());
404     }
405     }
406     [[fallthrough]];
407   }
408 
409   // If we don't have a special case, fall back to the AST's constant evaluator.
410   default: {
411     // Don't try to come up with a value for materialized temporaries.
412     if (E->isGLValue())
413       return std::nullopt;
414 
415     ASTContext &Ctx = getContext();
416     Expr::EvalResult Result;
417     if (E->EvaluateAsInt(Result, Ctx))
418       return makeIntVal(Result.Val.getInt());
419 
420     if (Loc::isLocType(E->getType()))
421       if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
422         return makeNullWithType(E->getType());
423 
424     return std::nullopt;
425   }
426   }
427 }
428 
makeSymExprValNN(BinaryOperator::Opcode Op,NonLoc LHS,NonLoc RHS,QualType ResultTy)429 SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op,
430                                    NonLoc LHS, NonLoc RHS,
431                                    QualType ResultTy) {
432   SymbolRef symLHS = LHS.getAsSymbol();
433   SymbolRef symRHS = RHS.getAsSymbol();
434 
435   // TODO: When the Max Complexity is reached, we should conjure a symbol
436   // instead of generating an Unknown value and propagate the taint info to it.
437   const unsigned MaxComp = AnOpts.MaxSymbolComplexity;
438 
439   if (symLHS && symRHS &&
440       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
441     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
442 
443   if (symLHS && symLHS->computeComplexity() < MaxComp)
444     if (std::optional<nonloc::ConcreteInt> rInt =
445             RHS.getAs<nonloc::ConcreteInt>())
446       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
447 
448   if (symRHS && symRHS->computeComplexity() < MaxComp)
449     if (std::optional<nonloc::ConcreteInt> lInt =
450             LHS.getAs<nonloc::ConcreteInt>())
451       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
452 
453   return UnknownVal();
454 }
455 
evalMinus(NonLoc X)456 SVal SValBuilder::evalMinus(NonLoc X) {
457   switch (X.getKind()) {
458   case nonloc::ConcreteIntKind:
459     return makeIntVal(-X.castAs<nonloc::ConcreteInt>().getValue());
460   case nonloc::SymbolValKind:
461     return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Minus,
462                       X.getType(Context));
463   default:
464     return UnknownVal();
465   }
466 }
467 
evalComplement(NonLoc X)468 SVal SValBuilder::evalComplement(NonLoc X) {
469   switch (X.getKind()) {
470   case nonloc::ConcreteIntKind:
471     return makeIntVal(~X.castAs<nonloc::ConcreteInt>().getValue());
472   case nonloc::SymbolValKind:
473     return makeNonLoc(X.castAs<nonloc::SymbolVal>().getSymbol(), UO_Not,
474                       X.getType(Context));
475   default:
476     return UnknownVal();
477   }
478 }
479 
evalUnaryOp(ProgramStateRef state,UnaryOperator::Opcode opc,SVal operand,QualType type)480 SVal SValBuilder::evalUnaryOp(ProgramStateRef state, UnaryOperator::Opcode opc,
481                  SVal operand, QualType type) {
482   auto OpN = operand.getAs<NonLoc>();
483   if (!OpN)
484     return UnknownVal();
485 
486   if (opc == UO_Minus)
487     return evalMinus(*OpN);
488   if (opc == UO_Not)
489     return evalComplement(*OpN);
490   llvm_unreachable("Unexpected unary operator");
491 }
492 
evalBinOp(ProgramStateRef state,BinaryOperator::Opcode op,SVal lhs,SVal rhs,QualType type)493 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
494                             SVal lhs, SVal rhs, QualType type) {
495   if (lhs.isUndef() || rhs.isUndef())
496     return UndefinedVal();
497 
498   if (lhs.isUnknown() || rhs.isUnknown())
499     return UnknownVal();
500 
501   if (isa<nonloc::LazyCompoundVal>(lhs) || isa<nonloc::LazyCompoundVal>(rhs)) {
502     return UnknownVal();
503   }
504 
505   if (op == BinaryOperatorKind::BO_Cmp) {
506     // We can't reason about C++20 spaceship operator yet.
507     //
508     // FIXME: Support C++20 spaceship operator.
509     //        The main problem here is that the result is not integer.
510     return UnknownVal();
511   }
512 
513   if (std::optional<Loc> LV = lhs.getAs<Loc>()) {
514     if (std::optional<Loc> RV = rhs.getAs<Loc>())
515       return evalBinOpLL(state, op, *LV, *RV, type);
516 
517     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
518   }
519 
520   if (const std::optional<Loc> RV = rhs.getAs<Loc>()) {
521     const auto IsCommutative = [](BinaryOperatorKind Op) {
522       return Op == BO_Mul || Op == BO_Add || Op == BO_And || Op == BO_Xor ||
523              Op == BO_Or;
524     };
525 
526     if (IsCommutative(op)) {
527       // Swap operands.
528       return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
529     }
530 
531     // If the right operand is a concrete int location then we have nothing
532     // better but to treat it as a simple nonloc.
533     if (auto RV = rhs.getAs<loc::ConcreteInt>()) {
534       const nonloc::ConcreteInt RhsAsLoc = makeIntVal(RV->getValue());
535       return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), RhsAsLoc, type);
536     }
537   }
538 
539   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
540                      type);
541 }
542 
areEqual(ProgramStateRef state,SVal lhs,SVal rhs)543 ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs,
544                                         SVal rhs) {
545   return state->isNonNull(evalEQ(state, lhs, rhs));
546 }
547 
evalEQ(ProgramStateRef state,SVal lhs,SVal rhs)548 SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) {
549   return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType());
550 }
551 
evalEQ(ProgramStateRef state,DefinedOrUnknownSVal lhs,DefinedOrUnknownSVal rhs)552 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
553                                          DefinedOrUnknownSVal lhs,
554                                          DefinedOrUnknownSVal rhs) {
555   return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs))
556       .castAs<DefinedOrUnknownSVal>();
557 }
558 
559 /// Recursively check if the pointer types are equal modulo const, volatile,
560 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
561 /// Assumes the input types are canonical.
shouldBeModeledWithNoOp(ASTContext & Context,QualType ToTy,QualType FromTy)562 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
563                                                          QualType FromTy) {
564   while (Context.UnwrapSimilarTypes(ToTy, FromTy)) {
565     Qualifiers Quals1, Quals2;
566     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
567     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
568 
569     // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
570     // spaces) are identical.
571     Quals1.removeCVRQualifiers();
572     Quals2.removeCVRQualifiers();
573     if (Quals1 != Quals2)
574       return false;
575   }
576 
577   // If we are casting to void, the 'From' value can be used to represent the
578   // 'To' value.
579   //
580   // FIXME: Doing this after unwrapping the types doesn't make any sense. A
581   // cast from 'int**' to 'void**' is not special in the way that a cast from
582   // 'int*' to 'void*' is.
583   if (ToTy->isVoidType())
584     return true;
585 
586   if (ToTy != FromTy)
587     return false;
588 
589   return true;
590 }
591 
592 // Handles casts of type CK_IntegralCast.
593 // At the moment, this function will redirect to evalCast, except when the range
594 // of the original value is known to be greater than the max of the target type.
evalIntegralCast(ProgramStateRef state,SVal val,QualType castTy,QualType originalTy)595 SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
596                                    QualType castTy, QualType originalTy) {
597   // No truncations if target type is big enough.
598   if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
599     return evalCast(val, castTy, originalTy);
600 
601   SymbolRef se = val.getAsSymbol();
602   if (!se) // Let evalCast handle non symbolic expressions.
603     return evalCast(val, castTy, originalTy);
604 
605   // Find the maximum value of the target type.
606   APSIntType ToType(getContext().getTypeSize(castTy),
607                     castTy->isUnsignedIntegerType());
608   llvm::APSInt ToTypeMax = ToType.getMaxValue();
609 
610   NonLoc ToTypeMaxVal = makeIntVal(ToTypeMax);
611 
612   // Check the range of the symbol being casted against the maximum value of the
613   // target type.
614   NonLoc FromVal = val.castAs<NonLoc>();
615   QualType CmpTy = getConditionType();
616   NonLoc CompVal =
617       evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
618   ProgramStateRef IsNotTruncated, IsTruncated;
619   std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
620   if (!IsNotTruncated && IsTruncated) {
621     // Symbol is truncated so we evaluate it as a cast.
622     return makeNonLoc(se, originalTy, castTy);
623   }
624   return evalCast(val, castTy, originalTy);
625 }
626 
627 //===----------------------------------------------------------------------===//
628 // Cast method.
629 // `evalCast` and its helper `EvalCastVisitor`
630 //===----------------------------------------------------------------------===//
631 
632 namespace {
633 class EvalCastVisitor : public SValVisitor<EvalCastVisitor, SVal> {
634 private:
635   SValBuilder &VB;
636   ASTContext &Context;
637   QualType CastTy, OriginalTy;
638 
639 public:
EvalCastVisitor(SValBuilder & VB,QualType CastTy,QualType OriginalTy)640   EvalCastVisitor(SValBuilder &VB, QualType CastTy, QualType OriginalTy)
641       : VB(VB), Context(VB.getContext()), CastTy(CastTy),
642         OriginalTy(OriginalTy) {}
643 
Visit(SVal V)644   SVal Visit(SVal V) {
645     if (CastTy.isNull())
646       return V;
647 
648     CastTy = Context.getCanonicalType(CastTy);
649 
650     const bool IsUnknownOriginalType = OriginalTy.isNull();
651     if (!IsUnknownOriginalType) {
652       OriginalTy = Context.getCanonicalType(OriginalTy);
653 
654       if (CastTy == OriginalTy)
655         return V;
656 
657       // FIXME: Move this check to the most appropriate
658       // evalCastKind/evalCastSubKind function. For const casts, casts to void,
659       // just propagate the value.
660       if (!CastTy->isVariableArrayType() && !OriginalTy->isVariableArrayType())
661         if (shouldBeModeledWithNoOp(Context, Context.getPointerType(CastTy),
662                                     Context.getPointerType(OriginalTy)))
663           return V;
664     }
665     return SValVisitor::Visit(V);
666   }
VisitUndefinedVal(UndefinedVal V)667   SVal VisitUndefinedVal(UndefinedVal V) { return V; }
VisitUnknownVal(UnknownVal V)668   SVal VisitUnknownVal(UnknownVal V) { return V; }
VisitConcreteInt(loc::ConcreteInt V)669   SVal VisitConcreteInt(loc::ConcreteInt V) {
670     // Pointer to bool.
671     if (CastTy->isBooleanType())
672       return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy);
673 
674     // Pointer to integer.
675     if (CastTy->isIntegralOrEnumerationType()) {
676       llvm::APSInt Value = V.getValue();
677       VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
678       return VB.makeIntVal(Value);
679     }
680 
681     // Pointer to any pointer.
682     if (Loc::isLocType(CastTy)) {
683       llvm::APSInt Value = V.getValue();
684       VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
685       return loc::ConcreteInt(VB.getBasicValueFactory().getValue(Value));
686     }
687 
688     // Pointer to whatever else.
689     return UnknownVal();
690   }
VisitGotoLabel(loc::GotoLabel V)691   SVal VisitGotoLabel(loc::GotoLabel V) {
692     // Pointer to bool.
693     if (CastTy->isBooleanType())
694       // Labels are always true.
695       return VB.makeTruthVal(true, CastTy);
696 
697     // Pointer to integer.
698     if (CastTy->isIntegralOrEnumerationType()) {
699       const unsigned BitWidth = Context.getIntWidth(CastTy);
700       return VB.makeLocAsInteger(V, BitWidth);
701     }
702 
703     const bool IsUnknownOriginalType = OriginalTy.isNull();
704     if (!IsUnknownOriginalType) {
705       // Array to pointer.
706       if (isa<ArrayType>(OriginalTy))
707         if (CastTy->isPointerType() || CastTy->isReferenceType())
708           return UnknownVal();
709     }
710 
711     // Pointer to any pointer.
712     if (Loc::isLocType(CastTy))
713       return V;
714 
715     // Pointer to whatever else.
716     return UnknownVal();
717   }
VisitMemRegionVal(loc::MemRegionVal V)718   SVal VisitMemRegionVal(loc::MemRegionVal V) {
719     // Pointer to bool.
720     if (CastTy->isBooleanType()) {
721       const MemRegion *R = V.getRegion();
722       if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
723         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
724           if (FD->isWeak())
725             // FIXME: Currently we are using an extent symbol here,
726             // because there are no generic region address metadata
727             // symbols to use, only content metadata.
728             return nonloc::SymbolVal(
729                 VB.getSymbolManager().getExtentSymbol(FTR));
730 
731       if (const SymbolicRegion *SymR = R->getSymbolicBase()) {
732         SymbolRef Sym = SymR->getSymbol();
733         QualType Ty = Sym->getType();
734         // This change is needed for architectures with varying
735         // pointer widths. See the amdgcn opencl reproducer with
736         // this change as an example: solver-sym-simplification-ptr-bool.cl
737         if (!Ty->isReferenceType())
738           return VB.makeNonLoc(
739               Sym, BO_NE, VB.getBasicValueFactory().getZeroWithTypeSize(Ty),
740               CastTy);
741       }
742       // Non-symbolic memory regions are always true.
743       return VB.makeTruthVal(true, CastTy);
744     }
745 
746     const bool IsUnknownOriginalType = OriginalTy.isNull();
747     // Try to cast to array
748     const auto *ArrayTy =
749         IsUnknownOriginalType
750             ? nullptr
751             : dyn_cast<ArrayType>(OriginalTy.getCanonicalType());
752 
753     // Pointer to integer.
754     if (CastTy->isIntegralOrEnumerationType()) {
755       SVal Val = V;
756       // Array to integer.
757       if (ArrayTy) {
758         // We will always decay to a pointer.
759         QualType ElemTy = ArrayTy->getElementType();
760         Val = VB.getStateManager().ArrayToPointer(V, ElemTy);
761         // FIXME: Keep these here for now in case we decide soon that we
762         // need the original decayed type.
763         //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
764         //    QualType pointerTy = C.getPointerType(elemTy);
765       }
766       const unsigned BitWidth = Context.getIntWidth(CastTy);
767       return VB.makeLocAsInteger(Val.castAs<Loc>(), BitWidth);
768     }
769 
770     // Pointer to pointer.
771     if (Loc::isLocType(CastTy)) {
772 
773       if (IsUnknownOriginalType) {
774         // When retrieving symbolic pointer and expecting a non-void pointer,
775         // wrap them into element regions of the expected type if necessary.
776         // It is necessary to make sure that the retrieved value makes sense,
777         // because there's no other cast in the AST that would tell us to cast
778         // it to the correct pointer type. We might need to do that for non-void
779         // pointers as well.
780         // FIXME: We really need a single good function to perform casts for us
781         // correctly every time we need it.
782         const MemRegion *R = V.getRegion();
783         if (CastTy->isPointerType() && !CastTy->isVoidPointerType()) {
784           if (const auto *SR = dyn_cast<SymbolicRegion>(R)) {
785             QualType SRTy = SR->getSymbol()->getType();
786 
787             auto HasSameUnqualifiedPointeeType = [](QualType ty1,
788                                                     QualType ty2) {
789               return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
790                      ty2->getPointeeType().getCanonicalType().getTypePtr();
791             };
792             if (!HasSameUnqualifiedPointeeType(SRTy, CastTy)) {
793               if (auto OptMemRegV = VB.getCastedMemRegionVal(SR, CastTy))
794                 return *OptMemRegV;
795             }
796           }
797         }
798         // Next fixes pointer dereference using type different from its initial
799         // one. See PR37503 and PR49007 for details.
800         if (const auto *ER = dyn_cast<ElementRegion>(R)) {
801           if (auto OptMemRegV = VB.getCastedMemRegionVal(ER, CastTy))
802             return *OptMemRegV;
803         }
804 
805         return V;
806       }
807 
808       if (OriginalTy->isIntegralOrEnumerationType() ||
809           OriginalTy->isBlockPointerType() ||
810           OriginalTy->isFunctionPointerType())
811         return V;
812 
813       // Array to pointer.
814       if (ArrayTy) {
815         // Are we casting from an array to a pointer?  If so just pass on
816         // the decayed value.
817         if (CastTy->isPointerType() || CastTy->isReferenceType()) {
818           // We will always decay to a pointer.
819           QualType ElemTy = ArrayTy->getElementType();
820           return VB.getStateManager().ArrayToPointer(V, ElemTy);
821         }
822         // Are we casting from an array to an integer?  If so, cast the decayed
823         // pointer value to an integer.
824         assert(CastTy->isIntegralOrEnumerationType());
825       }
826 
827       // Other pointer to pointer.
828       assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
829              CastTy->isReferenceType());
830 
831       // We get a symbolic function pointer for a dereference of a function
832       // pointer, but it is of function type. Example:
833 
834       //  struct FPRec {
835       //    void (*my_func)(int * x);
836       //  };
837       //
838       //  int bar(int x);
839       //
840       //  int f1_a(struct FPRec* foo) {
841       //    int x;
842       //    (*foo->my_func)(&x);
843       //    return bar(x)+1; // no-warning
844       //  }
845 
846       // Get the result of casting a region to a different type.
847       const MemRegion *R = V.getRegion();
848       if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
849         return *OptMemRegV;
850     }
851 
852     // Pointer to whatever else.
853     // FIXME: There can be gross cases where one casts the result of a
854     // function (that returns a pointer) to some other value that happens to
855     // fit within that pointer value.  We currently have no good way to model
856     // such operations.  When this happens, the underlying operation is that
857     // the caller is reasoning about bits.  Conceptually we are layering a
858     // "view" of a location on top of those bits.  Perhaps we need to be more
859     // lazy about mutual possible views, even on an SVal?  This may be
860     // necessary for bit-level reasoning as well.
861     return UnknownVal();
862   }
VisitCompoundVal(nonloc::CompoundVal V)863   SVal VisitCompoundVal(nonloc::CompoundVal V) {
864     // Compound to whatever.
865     return UnknownVal();
866   }
VisitConcreteInt(nonloc::ConcreteInt V)867   SVal VisitConcreteInt(nonloc::ConcreteInt V) {
868     auto CastedValue = [V, this]() {
869       llvm::APSInt Value = V.getValue();
870       VB.getBasicValueFactory().getAPSIntType(CastTy).apply(Value);
871       return Value;
872     };
873 
874     // Integer to bool.
875     if (CastTy->isBooleanType())
876       return VB.makeTruthVal(V.getValue().getBoolValue(), CastTy);
877 
878     // Integer to pointer.
879     if (CastTy->isIntegralOrEnumerationType())
880       return VB.makeIntVal(CastedValue());
881 
882     // Integer to pointer.
883     if (Loc::isLocType(CastTy))
884       return VB.makeIntLocVal(CastedValue());
885 
886     // Pointer to whatever else.
887     return UnknownVal();
888   }
VisitLazyCompoundVal(nonloc::LazyCompoundVal V)889   SVal VisitLazyCompoundVal(nonloc::LazyCompoundVal V) {
890     // LazyCompound to whatever.
891     return UnknownVal();
892   }
VisitLocAsInteger(nonloc::LocAsInteger V)893   SVal VisitLocAsInteger(nonloc::LocAsInteger V) {
894     Loc L = V.getLoc();
895 
896     // Pointer as integer to bool.
897     if (CastTy->isBooleanType())
898       // Pass to Loc function.
899       return Visit(L);
900 
901     const bool IsUnknownOriginalType = OriginalTy.isNull();
902     // Pointer as integer to pointer.
903     if (!IsUnknownOriginalType && Loc::isLocType(CastTy) &&
904         OriginalTy->isIntegralOrEnumerationType()) {
905       if (const MemRegion *R = L.getAsRegion())
906         if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
907           return *OptMemRegV;
908       return L;
909     }
910 
911     // Pointer as integer with region to integer/pointer.
912     const MemRegion *R = L.getAsRegion();
913     if (!IsUnknownOriginalType && R) {
914       if (CastTy->isIntegralOrEnumerationType())
915         return VisitMemRegionVal(loc::MemRegionVal(R));
916 
917       if (Loc::isLocType(CastTy)) {
918         assert(Loc::isLocType(OriginalTy) || OriginalTy->isFunctionType() ||
919                CastTy->isReferenceType());
920         // Delegate to store manager to get the result of casting a region to a
921         // different type. If the MemRegion* returned is NULL, this expression
922         // Evaluates to UnknownVal.
923         if (auto OptMemRegV = VB.getCastedMemRegionVal(R, CastTy))
924           return *OptMemRegV;
925       }
926     } else {
927       if (Loc::isLocType(CastTy)) {
928         if (IsUnknownOriginalType)
929           return VisitMemRegionVal(loc::MemRegionVal(R));
930         return L;
931       }
932 
933       SymbolRef SE = nullptr;
934       if (R) {
935         if (const SymbolicRegion *SR =
936                 dyn_cast<SymbolicRegion>(R->StripCasts())) {
937           SE = SR->getSymbol();
938         }
939       }
940 
941       if (!CastTy->isFloatingType() || !SE || SE->getType()->isFloatingType()) {
942         // FIXME: Correctly support promotions/truncations.
943         const unsigned CastSize = Context.getIntWidth(CastTy);
944         if (CastSize == V.getNumBits())
945           return V;
946 
947         return VB.makeLocAsInteger(L, CastSize);
948       }
949     }
950 
951     // Pointer as integer to whatever else.
952     return UnknownVal();
953   }
VisitSymbolVal(nonloc::SymbolVal V)954   SVal VisitSymbolVal(nonloc::SymbolVal V) {
955     SymbolRef SE = V.getSymbol();
956 
957     const bool IsUnknownOriginalType = OriginalTy.isNull();
958     // Symbol to bool.
959     if (!IsUnknownOriginalType && CastTy->isBooleanType()) {
960       // Non-float to bool.
961       if (Loc::isLocType(OriginalTy) ||
962           OriginalTy->isIntegralOrEnumerationType() ||
963           OriginalTy->isMemberPointerType()) {
964         BasicValueFactory &BVF = VB.getBasicValueFactory();
965         return VB.makeNonLoc(SE, BO_NE, BVF.getValue(0, SE->getType()), CastTy);
966       }
967     } else {
968       // Symbol to integer, float.
969       QualType T = Context.getCanonicalType(SE->getType());
970 
971       // Produce SymbolCast if CastTy and T are different integers.
972       // NOTE: In the end the type of SymbolCast shall be equal to CastTy.
973       if (T->isIntegralOrUnscopedEnumerationType() &&
974           CastTy->isIntegralOrUnscopedEnumerationType()) {
975         AnalyzerOptions &Opts = VB.getStateManager()
976                                     .getOwningEngine()
977                                     .getAnalysisManager()
978                                     .getAnalyzerOptions();
979         // If appropriate option is disabled, ignore the cast.
980         // NOTE: ShouldSupportSymbolicIntegerCasts is `false` by default.
981         if (!Opts.ShouldSupportSymbolicIntegerCasts)
982           return V;
983         return simplifySymbolCast(V, CastTy);
984       }
985       if (!Loc::isLocType(CastTy))
986         if (!IsUnknownOriginalType || !CastTy->isFloatingType() ||
987             T->isFloatingType())
988           return VB.makeNonLoc(SE, T, CastTy);
989     }
990 
991     // FIXME: We should be able to cast NonLoc -> Loc
992     // (when Loc::isLocType(CastTy) is true)
993     // But it's hard to do as SymbolicRegions can't refer to SymbolCasts holding
994     // generic SymExprs. Check the commit message for the details.
995 
996     // Symbol to pointer and whatever else.
997     return UnknownVal();
998   }
VisitPointerToMember(nonloc::PointerToMember V)999   SVal VisitPointerToMember(nonloc::PointerToMember V) {
1000     // Member pointer to whatever.
1001     return V;
1002   }
1003 
1004   /// Reduce cast expression by removing redundant intermediate casts.
1005   /// E.g.
1006   /// - (char)(short)(int x) -> (char)(int x)
1007   /// - (int)(int x) -> int x
1008   ///
1009   /// \param V -- SymbolVal, which pressumably contains SymbolCast or any symbol
1010   /// that is applicable for cast operation.
1011   /// \param CastTy -- QualType, which `V` shall be cast to.
1012   /// \return SVal with simplified cast expression.
1013   /// \note: Currently only support integral casts.
simplifySymbolCast(nonloc::SymbolVal V,QualType CastTy)1014   nonloc::SymbolVal simplifySymbolCast(nonloc::SymbolVal V, QualType CastTy) {
1015     // We use seven conditions to recognize a simplification case.
1016     // For the clarity let `CastTy` be `C`, SE->getType() - `T`, root type -
1017     // `R`, prefix `u` for unsigned, `s` for signed, no prefix - any sign: E.g.
1018     // (char)(short)(uint x)
1019     //      ( sC )( sT  )( uR  x)
1020     //
1021     // C === R (the same type)
1022     //  (char)(char x) -> (char x)
1023     //  (long)(long x) -> (long x)
1024     // Note: Comparisons operators below are for bit width.
1025     // C == T
1026     //  (short)(short)(int x) -> (short)(int x)
1027     //  (int)(long)(char x) -> (int)(char x) (sizeof(long) == sizeof(int))
1028     //  (long)(ullong)(char x) -> (long)(char x) (sizeof(long) ==
1029     //  sizeof(ullong))
1030     // C < T
1031     //  (short)(int)(char x) -> (short)(char x)
1032     //  (char)(int)(short x) -> (char)(short x)
1033     //  (short)(int)(short x) -> (short x)
1034     // C > T > uR
1035     //  (int)(short)(uchar x) -> (int)(uchar x)
1036     //  (uint)(short)(uchar x) -> (uint)(uchar x)
1037     //  (int)(ushort)(uchar x) -> (int)(uchar x)
1038     // C > sT > sR
1039     //  (int)(short)(char x) -> (int)(char x)
1040     //  (uint)(short)(char x) -> (uint)(char x)
1041     // C > sT == sR
1042     //  (int)(char)(char x) -> (int)(char x)
1043     //  (uint)(short)(short x) -> (uint)(short x)
1044     // C > uT == uR
1045     //  (int)(uchar)(uchar x) -> (int)(uchar x)
1046     //  (uint)(ushort)(ushort x) -> (uint)(ushort x)
1047     //  (llong)(ulong)(uint x) -> (llong)(uint x) (sizeof(ulong) ==
1048     //  sizeof(uint))
1049 
1050     SymbolRef SE = V.getSymbol();
1051     QualType T = Context.getCanonicalType(SE->getType());
1052 
1053     if (T == CastTy)
1054       return V;
1055 
1056     if (!isa<SymbolCast>(SE))
1057       return VB.makeNonLoc(SE, T, CastTy);
1058 
1059     SymbolRef RootSym = cast<SymbolCast>(SE)->getOperand();
1060     QualType RT = RootSym->getType().getCanonicalType();
1061 
1062     // FIXME support simplification from non-integers.
1063     if (!RT->isIntegralOrEnumerationType())
1064       return VB.makeNonLoc(SE, T, CastTy);
1065 
1066     BasicValueFactory &BVF = VB.getBasicValueFactory();
1067     APSIntType CTy = BVF.getAPSIntType(CastTy);
1068     APSIntType TTy = BVF.getAPSIntType(T);
1069 
1070     const auto WC = CTy.getBitWidth();
1071     const auto WT = TTy.getBitWidth();
1072 
1073     if (WC <= WT) {
1074       const bool isSameType = (RT == CastTy);
1075       if (isSameType)
1076         return nonloc::SymbolVal(RootSym);
1077       return VB.makeNonLoc(RootSym, RT, CastTy);
1078     }
1079 
1080     APSIntType RTy = BVF.getAPSIntType(RT);
1081     const auto WR = RTy.getBitWidth();
1082     const bool UT = TTy.isUnsigned();
1083     const bool UR = RTy.isUnsigned();
1084 
1085     if (((WT > WR) && (UR || !UT)) || ((WT == WR) && (UT == UR)))
1086       return VB.makeNonLoc(RootSym, RT, CastTy);
1087 
1088     return VB.makeNonLoc(SE, T, CastTy);
1089   }
1090 };
1091 } // end anonymous namespace
1092 
1093 /// Cast a given SVal to another SVal using given QualType's.
1094 /// \param V -- SVal that should be casted.
1095 /// \param CastTy -- QualType that V should be casted according to.
1096 /// \param OriginalTy -- QualType which is associated to V. It provides
1097 /// additional information about what type the cast performs from.
1098 /// \returns the most appropriate casted SVal.
1099 /// Note: Many cases don't use an exact OriginalTy. It can be extracted
1100 /// from SVal or the cast can performs unconditionaly. Always pass OriginalTy!
1101 /// It can be crucial in certain cases and generates different results.
1102 /// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy
1103 /// only. This behavior is uncertain and should be improved.
evalCast(SVal V,QualType CastTy,QualType OriginalTy)1104 SVal SValBuilder::evalCast(SVal V, QualType CastTy, QualType OriginalTy) {
1105   EvalCastVisitor TRV{*this, CastTy, OriginalTy};
1106   return TRV.Visit(V);
1107 }
1108