xref: /qemu/include/hw/core/cpu.h (revision b709da5d)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/thread.h"
37 #include "qom/object.h"
38 
39 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
40                                      void *opaque);
41 
42 /**
43  * SECTION:cpu
44  * @section_id: QEMU-cpu
45  * @title: CPU Class
46  * @short_description: Base class for all CPUs
47  */
48 
49 #define TYPE_CPU "cpu"
50 
51 /* Since this macro is used a lot in hot code paths and in conjunction with
52  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
53  * an unchecked cast.
54  */
55 #define CPU(obj) ((CPUState *)(obj))
56 
57 /*
58  * The class checkers bring in CPU_GET_CLASS() which is potentially
59  * expensive given the eventual call to
60  * object_class_dynamic_cast_assert(). Because of this the CPUState
61  * has a cached value for the class in cs->cc which is set up in
62  * cpu_exec_realizefn() for use in hot code paths.
63  */
64 typedef struct CPUClass CPUClass;
65 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
66                        TYPE_CPU)
67 
68 /**
69  * OBJECT_DECLARE_CPU_TYPE:
70  * @CpuInstanceType: instance struct name
71  * @CpuClassType: class struct name
72  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
73  *
74  * This macro is typically used in "cpu-qom.h" header file, and will:
75  *
76  *   - create the typedefs for the CPU object and class structs
77  *   - register the type for use with g_autoptr
78  *   - provide three standard type cast functions
79  *
80  * The object struct and class struct need to be declared manually.
81  */
82 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
83     typedef struct ArchCPU CpuInstanceType; \
84     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
85 
86 typedef struct CPUWatchpoint CPUWatchpoint;
87 
88 /* see physmem.c */
89 struct CPUAddressSpace;
90 
91 /* see accel/tcg/tb-jmp-cache.h */
92 struct CPUJumpCache;
93 
94 /* see accel-cpu.h */
95 struct AccelCPUClass;
96 
97 /* see sysemu-cpu-ops.h */
98 struct SysemuCPUOps;
99 
100 /**
101  * CPUClass:
102  * @class_by_name: Callback to map -cpu command line model name to an
103  *                 instantiatable CPU type.
104  * @parse_features: Callback to parse command line arguments.
105  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
106  * @has_work: Callback for checking if there is work to do.
107  * @mmu_index: Callback for choosing softmmu mmu index;
108  *       may be used internally by memory_rw_debug without TCG.
109  * @memory_rw_debug: Callback for GDB memory access.
110  * @dump_state: Callback for dumping state.
111  * @query_cpu_fast:
112  *       Fill in target specific information for the "query-cpus-fast"
113  *       QAPI call.
114  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
115  * @set_pc: Callback for setting the Program Counter register. This
116  *       should have the semantics used by the target architecture when
117  *       setting the PC from a source such as an ELF file entry point;
118  *       for example on Arm it will also set the Thumb mode bit based
119  *       on the least significant bit of the new PC value.
120  *       If the target behaviour here is anything other than "set
121  *       the PC register to the value passed in" then the target must
122  *       also implement the synchronize_from_tb hook.
123  * @get_pc: Callback for getting the Program Counter register.
124  *       As above, with the semantics of the target architecture.
125  * @gdb_read_register: Callback for letting GDB read a register.
126  * @gdb_write_register: Callback for letting GDB write a register.
127  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
128  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
129  *       its Harvard architecture split code and data.
130  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
131  *                     from @gdb_core_xml_file.
132  * @gdb_core_xml_file: File name for core registers GDB XML description.
133  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
134  *           before the insn which triggers a watchpoint rather than after it.
135  * @gdb_arch_name: Optional callback that returns the architecture name known
136  * to GDB. The caller must free the returned string with g_free.
137  * @disas_set_info: Setup architecture specific components of disassembly info
138  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
139  * address before attempting to match it against watchpoints.
140  * @deprecation_note: If this CPUClass is deprecated, this field provides
141  *                    related information.
142  *
143  * Represents a CPU family or model.
144  */
145 struct CPUClass {
146     /*< private >*/
147     DeviceClass parent_class;
148     /*< public >*/
149 
150     ObjectClass *(*class_by_name)(const char *cpu_model);
151     void (*parse_features)(const char *typename, char *str, Error **errp);
152 
153     bool (*has_work)(CPUState *cpu);
154     int (*mmu_index)(CPUState *cpu, bool ifetch);
155     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
156                            uint8_t *buf, int len, bool is_write);
157     void (*dump_state)(CPUState *cpu, FILE *, int flags);
158     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
159     int64_t (*get_arch_id)(CPUState *cpu);
160     void (*set_pc)(CPUState *cpu, vaddr value);
161     vaddr (*get_pc)(CPUState *cpu);
162     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
163     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
164     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
165 
166     const char *gdb_core_xml_file;
167     const gchar * (*gdb_arch_name)(CPUState *cpu);
168 
169     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
170 
171     const char *deprecation_note;
172     struct AccelCPUClass *accel_cpu;
173 
174     /* when system emulation is not available, this pointer is NULL */
175     const struct SysemuCPUOps *sysemu_ops;
176 
177     /* when TCG is not available, this pointer is NULL */
178     const TCGCPUOps *tcg_ops;
179 
180     /*
181      * if not NULL, this is called in order for the CPUClass to initialize
182      * class data that depends on the accelerator, see accel/accel-common.c.
183      */
184     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
185 
186     /*
187      * Keep non-pointer data at the end to minimize holes.
188      */
189     int reset_dump_flags;
190     int gdb_num_core_regs;
191     bool gdb_stop_before_watchpoint;
192 };
193 
194 /*
195  * Fix the number of mmu modes to 16, which is also the maximum
196  * supported by the softmmu tlb api.
197  */
198 #define NB_MMU_MODES 16
199 
200 /* Use a fully associative victim tlb of 8 entries. */
201 #define CPU_VTLB_SIZE 8
202 
203 /*
204  * The full TLB entry, which is not accessed by generated TCG code,
205  * so the layout is not as critical as that of CPUTLBEntry. This is
206  * also why we don't want to combine the two structs.
207  */
208 typedef struct CPUTLBEntryFull {
209     /*
210      * @xlat_section contains:
211      *  - in the lower TARGET_PAGE_BITS, a physical section number
212      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
213      *    must be added to the virtual address to obtain:
214      *     + the ram_addr_t of the target RAM (if the physical section
215      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
216      *     + the offset within the target MemoryRegion (otherwise)
217      */
218     hwaddr xlat_section;
219 
220     /*
221      * @phys_addr contains the physical address in the address space
222      * given by cpu_asidx_from_attrs(cpu, @attrs).
223      */
224     hwaddr phys_addr;
225 
226     /* @attrs contains the memory transaction attributes for the page. */
227     MemTxAttrs attrs;
228 
229     /* @prot contains the complete protections for the page. */
230     uint8_t prot;
231 
232     /* @lg_page_size contains the log2 of the page size. */
233     uint8_t lg_page_size;
234 
235     /* Additional tlb flags requested by tlb_fill. */
236     uint8_t tlb_fill_flags;
237 
238     /*
239      * Additional tlb flags for use by the slow path. If non-zero,
240      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
241      */
242     uint8_t slow_flags[MMU_ACCESS_COUNT];
243 
244     /*
245      * Allow target-specific additions to this structure.
246      * This may be used to cache items from the guest cpu
247      * page tables for later use by the implementation.
248      */
249     union {
250         /*
251          * Cache the attrs and shareability fields from the page table entry.
252          *
253          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
254          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
255          * For shareability and guarded, as in the SH and GP fields respectively
256          * of the VMSAv8-64 PTEs.
257          */
258         struct {
259             uint8_t pte_attrs;
260             uint8_t shareability;
261             bool guarded;
262         } arm;
263     } extra;
264 } CPUTLBEntryFull;
265 
266 /*
267  * Data elements that are per MMU mode, minus the bits accessed by
268  * the TCG fast path.
269  */
270 typedef struct CPUTLBDesc {
271     /*
272      * Describe a region covering all of the large pages allocated
273      * into the tlb.  When any page within this region is flushed,
274      * we must flush the entire tlb.  The region is matched if
275      * (addr & large_page_mask) == large_page_addr.
276      */
277     vaddr large_page_addr;
278     vaddr large_page_mask;
279     /* host time (in ns) at the beginning of the time window */
280     int64_t window_begin_ns;
281     /* maximum number of entries observed in the window */
282     size_t window_max_entries;
283     size_t n_used_entries;
284     /* The next index to use in the tlb victim table.  */
285     size_t vindex;
286     /* The tlb victim table, in two parts.  */
287     CPUTLBEntry vtable[CPU_VTLB_SIZE];
288     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
289     CPUTLBEntryFull *fulltlb;
290 } CPUTLBDesc;
291 
292 /*
293  * Data elements that are shared between all MMU modes.
294  */
295 typedef struct CPUTLBCommon {
296     /* Serialize updates to f.table and d.vtable, and others as noted. */
297     QemuSpin lock;
298     /*
299      * Within dirty, for each bit N, modifications have been made to
300      * mmu_idx N since the last time that mmu_idx was flushed.
301      * Protected by tlb_c.lock.
302      */
303     uint16_t dirty;
304     /*
305      * Statistics.  These are not lock protected, but are read and
306      * written atomically.  This allows the monitor to print a snapshot
307      * of the stats without interfering with the cpu.
308      */
309     size_t full_flush_count;
310     size_t part_flush_count;
311     size_t elide_flush_count;
312 } CPUTLBCommon;
313 
314 /*
315  * The entire softmmu tlb, for all MMU modes.
316  * The meaning of each of the MMU modes is defined in the target code.
317  * Since this is placed within CPUNegativeOffsetState, the smallest
318  * negative offsets are at the end of the struct.
319  */
320 typedef struct CPUTLB {
321 #ifdef CONFIG_TCG
322     CPUTLBCommon c;
323     CPUTLBDesc d[NB_MMU_MODES];
324     CPUTLBDescFast f[NB_MMU_MODES];
325 #endif
326 } CPUTLB;
327 
328 /*
329  * Low 16 bits: number of cycles left, used only in icount mode.
330  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
331  * for this CPU and return to its top level loop (even in non-icount mode).
332  * This allows a single read-compare-cbranch-write sequence to test
333  * for both decrementer underflow and exceptions.
334  */
335 typedef union IcountDecr {
336     uint32_t u32;
337     struct {
338 #if HOST_BIG_ENDIAN
339         uint16_t high;
340         uint16_t low;
341 #else
342         uint16_t low;
343         uint16_t high;
344 #endif
345     } u16;
346 } IcountDecr;
347 
348 /**
349  * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
350  *                         from CPUArchState, via small negative offsets.
351  * @can_do_io: True if memory-mapped IO is allowed.
352  * @plugin_mem_cbs: active plugin memory callbacks
353  * @plugin_mem_value_low: 64 lower bits of latest accessed mem value.
354  * @plugin_mem_value_high: 64 higher bits of latest accessed mem value.
355  */
356 typedef struct CPUNegativeOffsetState {
357     CPUTLB tlb;
358 #ifdef CONFIG_PLUGIN
359     /*
360      * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
361      */
362     GArray *plugin_mem_cbs;
363     uint64_t plugin_mem_value_low;
364     uint64_t plugin_mem_value_high;
365 #endif
366     IcountDecr icount_decr;
367     bool can_do_io;
368 } CPUNegativeOffsetState;
369 
370 struct KVMState;
371 struct kvm_run;
372 
373 /* work queue */
374 
375 /* The union type allows passing of 64 bit target pointers on 32 bit
376  * hosts in a single parameter
377  */
378 typedef union {
379     int           host_int;
380     unsigned long host_ulong;
381     void         *host_ptr;
382     vaddr         target_ptr;
383 } run_on_cpu_data;
384 
385 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
386 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
387 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
388 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
389 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
390 
391 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
392 
393 struct qemu_work_item;
394 
395 #define CPU_UNSET_NUMA_NODE_ID -1
396 
397 /**
398  * struct CPUState - common state of one CPU core or thread.
399  *
400  * @cpu_index: CPU index (informative).
401  * @cluster_index: Identifies which cluster this CPU is in.
402  *   For boards which don't define clusters or for "loose" CPUs not assigned
403  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
404  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
405  *   QOM parent.
406  *   Under TCG this value is propagated to @tcg_cflags.
407  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
408  * @tcg_cflags: Pre-computed cflags for this cpu.
409  * @nr_cores: Number of cores within this CPU package.
410  * @nr_threads: Number of threads within this CPU core.
411  * @thread: Host thread details, only live once @created is #true
412  * @sem: WIN32 only semaphore used only for qtest
413  * @thread_id: native thread id of vCPU, only live once @created is #true
414  * @running: #true if CPU is currently running (lockless).
415  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
416  * valid under cpu_list_lock.
417  * @created: Indicates whether the CPU thread has been successfully created.
418  * @halt_cond: condition variable sleeping threads can wait on.
419  * @interrupt_request: Indicates a pending interrupt request.
420  * @halted: Nonzero if the CPU is in suspended state.
421  * @stop: Indicates a pending stop request.
422  * @stopped: Indicates the CPU has been artificially stopped.
423  * @unplug: Indicates a pending CPU unplug request.
424  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
425  * @singlestep_enabled: Flags for single-stepping.
426  * @icount_extra: Instructions until next timer event.
427  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
428  *            AddressSpaces this CPU has)
429  * @num_ases: number of CPUAddressSpaces in @cpu_ases
430  * @as: Pointer to the first AddressSpace, for the convenience of targets which
431  *      only have a single AddressSpace
432  * @gdb_regs: Additional GDB registers.
433  * @gdb_num_regs: Number of total registers accessible to GDB.
434  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
435  * @node: QTAILQ of CPUs sharing TB cache.
436  * @opaque: User data.
437  * @mem_io_pc: Host Program Counter at which the memory was accessed.
438  * @accel: Pointer to accelerator specific state.
439  * @kvm_fd: vCPU file descriptor for KVM.
440  * @work_mutex: Lock to prevent multiple access to @work_list.
441  * @work_list: List of pending asynchronous work.
442  * @plugin_state: per-CPU plugin state
443  * @ignore_memory_transaction_failures: Cached copy of the MachineState
444  *    flag of the same name: allows the board to suppress calling of the
445  *    CPU do_transaction_failed hook function.
446  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
447  *    ring is enabled.
448  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
449  *    dirty ring structure.
450  *
451  * @neg_align: The CPUState is the common part of a concrete ArchCPU
452  * which is allocated when an individual CPU instance is created. As
453  * such care is taken is ensure there is no gap between between
454  * CPUState and CPUArchState within ArchCPU.
455  *
456  * @neg: The architectural register state ("cpu_env") immediately follows
457  * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds
458  * some common TCG CPU variables which are accessed with a negative offset
459  * from cpu_env.
460  */
461 struct CPUState {
462     /*< private >*/
463     DeviceState parent_obj;
464     /* cache to avoid expensive CPU_GET_CLASS */
465     CPUClass *cc;
466     /*< public >*/
467 
468     int nr_cores;
469     int nr_threads;
470 
471     struct QemuThread *thread;
472 #ifdef _WIN32
473     QemuSemaphore sem;
474 #endif
475     int thread_id;
476     bool running, has_waiter;
477     struct QemuCond *halt_cond;
478     bool thread_kicked;
479     bool created;
480     bool stop;
481     bool stopped;
482 
483     /* Should CPU start in powered-off state? */
484     bool start_powered_off;
485 
486     bool unplug;
487     bool crash_occurred;
488     bool exit_request;
489     int exclusive_context_count;
490     uint32_t cflags_next_tb;
491     /* updates protected by BQL */
492     uint32_t interrupt_request;
493     int singlestep_enabled;
494     int64_t icount_budget;
495     int64_t icount_extra;
496     uint64_t random_seed;
497     sigjmp_buf jmp_env;
498 
499     QemuMutex work_mutex;
500     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
501 
502     struct CPUAddressSpace *cpu_ases;
503     int cpu_ases_count;
504     int num_ases;
505     AddressSpace *as;
506     MemoryRegion *memory;
507 
508     struct CPUJumpCache *tb_jmp_cache;
509 
510     GArray *gdb_regs;
511     int gdb_num_regs;
512     int gdb_num_g_regs;
513     QTAILQ_ENTRY(CPUState) node;
514 
515     /* ice debug support */
516     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
517 
518     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
519     CPUWatchpoint *watchpoint_hit;
520 
521     void *opaque;
522 
523     /* In order to avoid passing too many arguments to the MMIO helpers,
524      * we store some rarely used information in the CPU context.
525      */
526     uintptr_t mem_io_pc;
527 
528     /* Only used in KVM */
529     int kvm_fd;
530     struct KVMState *kvm_state;
531     struct kvm_run *kvm_run;
532     struct kvm_dirty_gfn *kvm_dirty_gfns;
533     uint32_t kvm_fetch_index;
534     uint64_t dirty_pages;
535     int kvm_vcpu_stats_fd;
536     bool vcpu_dirty;
537 
538     /* Use by accel-block: CPU is executing an ioctl() */
539     QemuLockCnt in_ioctl_lock;
540 
541 #ifdef CONFIG_PLUGIN
542     CPUPluginState *plugin_state;
543 #endif
544 
545     /* TODO Move common fields from CPUArchState here. */
546     int cpu_index;
547     int cluster_index;
548     uint32_t tcg_cflags;
549     uint32_t halted;
550     int32_t exception_index;
551 
552     AccelCPUState *accel;
553 
554     /* Used to keep track of an outstanding cpu throttle thread for migration
555      * autoconverge
556      */
557     bool throttle_thread_scheduled;
558 
559     /*
560      * Sleep throttle_us_per_full microseconds once dirty ring is full
561      * if dirty page rate limit is enabled.
562      */
563     int64_t throttle_us_per_full;
564 
565     bool ignore_memory_transaction_failures;
566 
567     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
568     bool prctl_unalign_sigbus;
569 
570     /* track IOMMUs whose translations we've cached in the TCG TLB */
571     GArray *iommu_notifiers;
572 
573     /*
574      * MUST BE LAST in order to minimize the displacement to CPUArchState.
575      */
576     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
577     CPUNegativeOffsetState neg;
578 };
579 
580 /* Validate placement of CPUNegativeOffsetState. */
581 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
582                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
583 
cpu_env(CPUState * cpu)584 static inline CPUArchState *cpu_env(CPUState *cpu)
585 {
586     /* We validate that CPUArchState follows CPUState in cpu-all.h. */
587     return (CPUArchState *)(cpu + 1);
588 }
589 
590 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
591 extern CPUTailQ cpus_queue;
592 
593 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
594 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
595 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
596 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
597     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
598 
599 extern __thread CPUState *current_cpu;
600 
601 /**
602  * qemu_tcg_mttcg_enabled:
603  * Check whether we are running MultiThread TCG or not.
604  *
605  * Returns: %true if we are in MTTCG mode %false otherwise.
606  */
607 extern bool mttcg_enabled;
608 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
609 
610 /**
611  * cpu_paging_enabled:
612  * @cpu: The CPU whose state is to be inspected.
613  *
614  * Returns: %true if paging is enabled, %false otherwise.
615  */
616 bool cpu_paging_enabled(const CPUState *cpu);
617 
618 /**
619  * cpu_get_memory_mapping:
620  * @cpu: The CPU whose memory mappings are to be obtained.
621  * @list: Where to write the memory mappings to.
622  * @errp: Pointer for reporting an #Error.
623  *
624  * Returns: %true on success, %false otherwise.
625  */
626 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
627                             Error **errp);
628 
629 #if !defined(CONFIG_USER_ONLY)
630 
631 /**
632  * cpu_write_elf64_note:
633  * @f: pointer to a function that writes memory to a file
634  * @cpu: The CPU whose memory is to be dumped
635  * @cpuid: ID number of the CPU
636  * @opaque: pointer to the CPUState struct
637  */
638 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
639                          int cpuid, void *opaque);
640 
641 /**
642  * cpu_write_elf64_qemunote:
643  * @f: pointer to a function that writes memory to a file
644  * @cpu: The CPU whose memory is to be dumped
645  * @cpuid: ID number of the CPU
646  * @opaque: pointer to the CPUState struct
647  */
648 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
649                              void *opaque);
650 
651 /**
652  * cpu_write_elf32_note:
653  * @f: pointer to a function that writes memory to a file
654  * @cpu: The CPU whose memory is to be dumped
655  * @cpuid: ID number of the CPU
656  * @opaque: pointer to the CPUState struct
657  */
658 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
659                          int cpuid, void *opaque);
660 
661 /**
662  * cpu_write_elf32_qemunote:
663  * @f: pointer to a function that writes memory to a file
664  * @cpu: The CPU whose memory is to be dumped
665  * @cpuid: ID number of the CPU
666  * @opaque: pointer to the CPUState struct
667  */
668 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
669                              void *opaque);
670 
671 /**
672  * cpu_get_crash_info:
673  * @cpu: The CPU to get crash information for
674  *
675  * Gets the previously saved crash information.
676  * Caller is responsible for freeing the data.
677  */
678 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
679 
680 #endif /* !CONFIG_USER_ONLY */
681 
682 /**
683  * CPUDumpFlags:
684  * @CPU_DUMP_CODE:
685  * @CPU_DUMP_FPU: dump FPU register state, not just integer
686  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
687  * @CPU_DUMP_VPU: dump VPU registers
688  */
689 enum CPUDumpFlags {
690     CPU_DUMP_CODE = 0x00010000,
691     CPU_DUMP_FPU  = 0x00020000,
692     CPU_DUMP_CCOP = 0x00040000,
693     CPU_DUMP_VPU  = 0x00080000,
694 };
695 
696 /**
697  * cpu_dump_state:
698  * @cpu: The CPU whose state is to be dumped.
699  * @f: If non-null, dump to this stream, else to current print sink.
700  *
701  * Dumps CPU state.
702  */
703 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
704 
705 #ifndef CONFIG_USER_ONLY
706 /**
707  * cpu_get_phys_page_attrs_debug:
708  * @cpu: The CPU to obtain the physical page address for.
709  * @addr: The virtual address.
710  * @attrs: Updated on return with the memory transaction attributes to use
711  *         for this access.
712  *
713  * Obtains the physical page corresponding to a virtual one, together
714  * with the corresponding memory transaction attributes to use for the access.
715  * Use it only for debugging because no protection checks are done.
716  *
717  * Returns: Corresponding physical page address or -1 if no page found.
718  */
719 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
720                                      MemTxAttrs *attrs);
721 
722 /**
723  * cpu_get_phys_page_debug:
724  * @cpu: The CPU to obtain the physical page address for.
725  * @addr: The virtual address.
726  *
727  * Obtains the physical page corresponding to a virtual one.
728  * Use it only for debugging because no protection checks are done.
729  *
730  * Returns: Corresponding physical page address or -1 if no page found.
731  */
732 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
733 
734 /** cpu_asidx_from_attrs:
735  * @cpu: CPU
736  * @attrs: memory transaction attributes
737  *
738  * Returns the address space index specifying the CPU AddressSpace
739  * to use for a memory access with the given transaction attributes.
740  */
741 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
742 
743 /**
744  * cpu_virtio_is_big_endian:
745  * @cpu: CPU
746 
747  * Returns %true if a CPU which supports runtime configurable endianness
748  * is currently big-endian.
749  */
750 bool cpu_virtio_is_big_endian(CPUState *cpu);
751 
752 #endif /* CONFIG_USER_ONLY */
753 
754 /**
755  * cpu_list_add:
756  * @cpu: The CPU to be added to the list of CPUs.
757  */
758 void cpu_list_add(CPUState *cpu);
759 
760 /**
761  * cpu_list_remove:
762  * @cpu: The CPU to be removed from the list of CPUs.
763  */
764 void cpu_list_remove(CPUState *cpu);
765 
766 /**
767  * cpu_reset:
768  * @cpu: The CPU whose state is to be reset.
769  */
770 void cpu_reset(CPUState *cpu);
771 
772 /**
773  * cpu_class_by_name:
774  * @typename: The CPU base type.
775  * @cpu_model: The model string without any parameters.
776  *
777  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
778  *
779  * Returns: A concrete #CPUClass or %NULL if no matching class is found
780  *          or if the matching class is abstract.
781  */
782 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
783 
784 /**
785  * cpu_model_from_type:
786  * @typename: The CPU type name
787  *
788  * Extract the CPU model name from the CPU type name. The
789  * CPU type name is either the combination of the CPU model
790  * name and suffix, or same to the CPU model name.
791  *
792  * Returns: CPU model name or NULL if the CPU class doesn't exist
793  *          The user should g_free() the string once no longer needed.
794  */
795 char *cpu_model_from_type(const char *typename);
796 
797 /**
798  * cpu_create:
799  * @typename: The CPU type.
800  *
801  * Instantiates a CPU and realizes the CPU.
802  *
803  * Returns: A #CPUState or %NULL if an error occurred.
804  */
805 CPUState *cpu_create(const char *typename);
806 
807 /**
808  * parse_cpu_option:
809  * @cpu_option: The -cpu option including optional parameters.
810  *
811  * processes optional parameters and registers them as global properties
812  *
813  * Returns: type of CPU to create or prints error and terminates process
814  *          if an error occurred.
815  */
816 const char *parse_cpu_option(const char *cpu_option);
817 
818 /**
819  * cpu_has_work:
820  * @cpu: The vCPU to check.
821  *
822  * Checks whether the CPU has work to do.
823  *
824  * Returns: %true if the CPU has work, %false otherwise.
825  */
cpu_has_work(CPUState * cpu)826 static inline bool cpu_has_work(CPUState *cpu)
827 {
828     CPUClass *cc = CPU_GET_CLASS(cpu);
829 
830     g_assert(cc->has_work);
831     return cc->has_work(cpu);
832 }
833 
834 /**
835  * qemu_cpu_is_self:
836  * @cpu: The vCPU to check against.
837  *
838  * Checks whether the caller is executing on the vCPU thread.
839  *
840  * Returns: %true if called from @cpu's thread, %false otherwise.
841  */
842 bool qemu_cpu_is_self(CPUState *cpu);
843 
844 /**
845  * qemu_cpu_kick:
846  * @cpu: The vCPU to kick.
847  *
848  * Kicks @cpu's thread.
849  */
850 void qemu_cpu_kick(CPUState *cpu);
851 
852 /**
853  * cpu_is_stopped:
854  * @cpu: The CPU to check.
855  *
856  * Checks whether the CPU is stopped.
857  *
858  * Returns: %true if run state is not running or if artificially stopped;
859  * %false otherwise.
860  */
861 bool cpu_is_stopped(CPUState *cpu);
862 
863 /**
864  * do_run_on_cpu:
865  * @cpu: The vCPU to run on.
866  * @func: The function to be executed.
867  * @data: Data to pass to the function.
868  * @mutex: Mutex to release while waiting for @func to run.
869  *
870  * Used internally in the implementation of run_on_cpu.
871  */
872 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
873                    QemuMutex *mutex);
874 
875 /**
876  * run_on_cpu:
877  * @cpu: The vCPU to run on.
878  * @func: The function to be executed.
879  * @data: Data to pass to the function.
880  *
881  * Schedules the function @func for execution on the vCPU @cpu.
882  */
883 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
884 
885 /**
886  * async_run_on_cpu:
887  * @cpu: The vCPU to run on.
888  * @func: The function to be executed.
889  * @data: Data to pass to the function.
890  *
891  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
892  */
893 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
894 
895 /**
896  * async_safe_run_on_cpu:
897  * @cpu: The vCPU to run on.
898  * @func: The function to be executed.
899  * @data: Data to pass to the function.
900  *
901  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
902  * while all other vCPUs are sleeping.
903  *
904  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
905  * BQL.
906  */
907 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
908 
909 /**
910  * cpu_in_exclusive_context()
911  * @cpu: The vCPU to check
912  *
913  * Returns true if @cpu is an exclusive context, for example running
914  * something which has previously been queued via async_safe_run_on_cpu().
915  */
cpu_in_exclusive_context(const CPUState * cpu)916 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
917 {
918     return cpu->exclusive_context_count;
919 }
920 
921 /**
922  * qemu_get_cpu:
923  * @index: The CPUState@cpu_index value of the CPU to obtain.
924  *
925  * Gets a CPU matching @index.
926  *
927  * Returns: The CPU or %NULL if there is no matching CPU.
928  */
929 CPUState *qemu_get_cpu(int index);
930 
931 /**
932  * cpu_exists:
933  * @id: Guest-exposed CPU ID to lookup.
934  *
935  * Search for CPU with specified ID.
936  *
937  * Returns: %true - CPU is found, %false - CPU isn't found.
938  */
939 bool cpu_exists(int64_t id);
940 
941 /**
942  * cpu_by_arch_id:
943  * @id: Guest-exposed CPU ID of the CPU to obtain.
944  *
945  * Get a CPU with matching @id.
946  *
947  * Returns: The CPU or %NULL if there is no matching CPU.
948  */
949 CPUState *cpu_by_arch_id(int64_t id);
950 
951 /**
952  * cpu_interrupt:
953  * @cpu: The CPU to set an interrupt on.
954  * @mask: The interrupts to set.
955  *
956  * Invokes the interrupt handler.
957  */
958 
959 void cpu_interrupt(CPUState *cpu, int mask);
960 
961 /**
962  * cpu_set_pc:
963  * @cpu: The CPU to set the program counter for.
964  * @addr: Program counter value.
965  *
966  * Sets the program counter for a CPU.
967  */
cpu_set_pc(CPUState * cpu,vaddr addr)968 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
969 {
970     CPUClass *cc = CPU_GET_CLASS(cpu);
971 
972     cc->set_pc(cpu, addr);
973 }
974 
975 /**
976  * cpu_reset_interrupt:
977  * @cpu: The CPU to clear the interrupt on.
978  * @mask: The interrupt mask to clear.
979  *
980  * Resets interrupts on the vCPU @cpu.
981  */
982 void cpu_reset_interrupt(CPUState *cpu, int mask);
983 
984 /**
985  * cpu_exit:
986  * @cpu: The CPU to exit.
987  *
988  * Requests the CPU @cpu to exit execution.
989  */
990 void cpu_exit(CPUState *cpu);
991 
992 /**
993  * cpu_pause:
994  * @cpu: The CPU to pause.
995  *
996  * Pauses CPU, i.e. puts CPU into stopped state.
997  */
998 void cpu_pause(CPUState *cpu);
999 
1000 /**
1001  * cpu_resume:
1002  * @cpu: The CPU to resume.
1003  *
1004  * Resumes CPU, i.e. puts CPU into runnable state.
1005  */
1006 void cpu_resume(CPUState *cpu);
1007 
1008 /**
1009  * cpu_remove_sync:
1010  * @cpu: The CPU to remove.
1011  *
1012  * Requests the CPU to be removed and waits till it is removed.
1013  */
1014 void cpu_remove_sync(CPUState *cpu);
1015 
1016 /**
1017  * free_queued_cpu_work() - free all items on CPU work queue
1018  * @cpu: The CPU which work queue to free.
1019  */
1020 void free_queued_cpu_work(CPUState *cpu);
1021 
1022 /**
1023  * process_queued_cpu_work() - process all items on CPU work queue
1024  * @cpu: The CPU which work queue to process.
1025  */
1026 void process_queued_cpu_work(CPUState *cpu);
1027 
1028 /**
1029  * cpu_exec_start:
1030  * @cpu: The CPU for the current thread.
1031  *
1032  * Record that a CPU has started execution and can be interrupted with
1033  * cpu_exit.
1034  */
1035 void cpu_exec_start(CPUState *cpu);
1036 
1037 /**
1038  * cpu_exec_end:
1039  * @cpu: The CPU for the current thread.
1040  *
1041  * Record that a CPU has stopped execution and exclusive sections
1042  * can be executed without interrupting it.
1043  */
1044 void cpu_exec_end(CPUState *cpu);
1045 
1046 /**
1047  * start_exclusive:
1048  *
1049  * Wait for a concurrent exclusive section to end, and then start
1050  * a section of work that is run while other CPUs are not running
1051  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1052  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1053  * during the exclusive section go to sleep until this CPU calls
1054  * end_exclusive.
1055  */
1056 void start_exclusive(void);
1057 
1058 /**
1059  * end_exclusive:
1060  *
1061  * Concludes an exclusive execution section started by start_exclusive.
1062  */
1063 void end_exclusive(void);
1064 
1065 /**
1066  * qemu_init_vcpu:
1067  * @cpu: The vCPU to initialize.
1068  *
1069  * Initializes a vCPU.
1070  */
1071 void qemu_init_vcpu(CPUState *cpu);
1072 
1073 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1074 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1075 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1076 
1077 /**
1078  * cpu_single_step:
1079  * @cpu: CPU to the flags for.
1080  * @enabled: Flags to enable.
1081  *
1082  * Enables or disables single-stepping for @cpu.
1083  */
1084 void cpu_single_step(CPUState *cpu, int enabled);
1085 
1086 /* Breakpoint/watchpoint flags */
1087 #define BP_MEM_READ           0x01
1088 #define BP_MEM_WRITE          0x02
1089 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1090 #define BP_STOP_BEFORE_ACCESS 0x04
1091 /* 0x08 currently unused */
1092 #define BP_GDB                0x10
1093 #define BP_CPU                0x20
1094 #define BP_ANY                (BP_GDB | BP_CPU)
1095 #define BP_HIT_SHIFT          6
1096 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1097 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1098 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1099 
1100 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1101                           CPUBreakpoint **breakpoint);
1102 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1103 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1104 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1105 
1106 /* Return true if PC matches an installed breakpoint.  */
cpu_breakpoint_test(CPUState * cpu,vaddr pc,int mask)1107 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1108 {
1109     CPUBreakpoint *bp;
1110 
1111     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1112         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1113             if (bp->pc == pc && (bp->flags & mask)) {
1114                 return true;
1115             }
1116         }
1117     }
1118     return false;
1119 }
1120 
1121 #if defined(CONFIG_USER_ONLY)
cpu_watchpoint_insert(CPUState * cpu,vaddr addr,vaddr len,int flags,CPUWatchpoint ** watchpoint)1122 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1123                                         int flags, CPUWatchpoint **watchpoint)
1124 {
1125     return -ENOSYS;
1126 }
1127 
cpu_watchpoint_remove(CPUState * cpu,vaddr addr,vaddr len,int flags)1128 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1129                                         vaddr len, int flags)
1130 {
1131     return -ENOSYS;
1132 }
1133 
cpu_watchpoint_remove_by_ref(CPUState * cpu,CPUWatchpoint * wp)1134 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1135                                                 CPUWatchpoint *wp)
1136 {
1137 }
1138 
cpu_watchpoint_remove_all(CPUState * cpu,int mask)1139 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1140 {
1141 }
1142 #else
1143 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1144                           int flags, CPUWatchpoint **watchpoint);
1145 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1146                           vaddr len, int flags);
1147 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1148 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1149 #endif
1150 
1151 /**
1152  * cpu_get_address_space:
1153  * @cpu: CPU to get address space from
1154  * @asidx: index identifying which address space to get
1155  *
1156  * Return the requested address space of this CPU. @asidx
1157  * specifies which address space to read.
1158  */
1159 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1160 
1161 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1162     G_GNUC_PRINTF(2, 3);
1163 
1164 /* $(top_srcdir)/cpu.c */
1165 void cpu_class_init_props(DeviceClass *dc);
1166 void cpu_exec_initfn(CPUState *cpu);
1167 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1168 void cpu_exec_unrealizefn(CPUState *cpu);
1169 void cpu_exec_reset_hold(CPUState *cpu);
1170 
1171 const char *target_name(void);
1172 
1173 #ifdef COMPILING_PER_TARGET
1174 
1175 #ifndef CONFIG_USER_ONLY
1176 
1177 extern const VMStateDescription vmstate_cpu_common;
1178 
1179 #define VMSTATE_CPU() {                                                     \
1180     .name = "parent_obj",                                                   \
1181     .size = sizeof(CPUState),                                               \
1182     .vmsd = &vmstate_cpu_common,                                            \
1183     .flags = VMS_STRUCT,                                                    \
1184     .offset = 0,                                                            \
1185 }
1186 #endif /* !CONFIG_USER_ONLY */
1187 
1188 #endif /* COMPILING_PER_TARGET */
1189 
1190 #define UNASSIGNED_CPU_INDEX -1
1191 #define UNASSIGNED_CLUSTER_INDEX -1
1192 
1193 #endif
1194