1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 // On computational properties of chains of recurrences
47 // Eugene V. Zima
48 //
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
51 //
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
54 //
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/ValueTracking.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DerivedTypes.h"
76 #include "llvm/IR/Dominators.h"
77 #include "llvm/IR/GetElementPtrTypeIterator.h"
78 #include "llvm/IR/GlobalAlias.h"
79 #include "llvm/IR/GlobalVariable.h"
80 #include "llvm/IR/InstIterator.h"
81 #include "llvm/IR/Instructions.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/Support/CommandLine.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetLibraryInfo.h"
91 #include <algorithm>
92 using namespace llvm;
93
94 #define DEBUG_TYPE "scalar-evolution"
95
96 STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98 STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100 STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102 STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
105 static cl::opt<unsigned>
106 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
108 "symbolically execute a constant "
109 "derived loop"),
110 cl::init(100));
111
112 // FIXME: Enable this with XDEBUG when the test suite is clean.
113 static cl::opt<bool>
114 VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
117 INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
119 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
120 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
122 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
123 INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
124 "Scalar Evolution Analysis", false, true)
125 char ScalarEvolution::ID = 0;
126
127 //===----------------------------------------------------------------------===//
128 // SCEV class definitions
129 //===----------------------------------------------------------------------===//
130
131 //===----------------------------------------------------------------------===//
132 // Implementation of the SCEV class.
133 //
134
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const136 void SCEV::dump() const {
137 print(dbgs());
138 dbgs() << '\n';
139 }
140 #endif
141
print(raw_ostream & OS) const142 void SCEV::print(raw_ostream &OS) const {
143 switch (static_cast<SCEVTypes>(getSCEVType())) {
144 case scConstant:
145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
174 if (AR->getNoWrapFlags(FlagNUW))
175 OS << "nuw><";
176 if (AR->getNoWrapFlags(FlagNSW))
177 OS << "nsw><";
178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
190 const char *OpStr = nullptr;
191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
201 if (std::next(I) != E)
202 OS << OpStr;
203 }
204 OS << ")";
205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
222 Type *AllocTy;
223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
231
232 Type *CTy;
233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
236 FieldNo->printAsOperand(OS, false);
237 OS << ")";
238 return;
239 }
240
241 // Otherwise just print it normally.
242 U->getValue()->printAsOperand(OS, false);
243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
248 }
249 llvm_unreachable("Unknown SCEV kind!");
250 }
251
getType() const252 Type *SCEV::getType() const {
253 switch (static_cast<SCEVTypes>(getSCEVType())) {
254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
273 }
274 llvm_unreachable("Unknown SCEV kind!");
275 }
276
isZero() const277 bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281 }
282
isOne() const283 bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287 }
288
isAllOnesValue() const289 bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293 }
294
295 /// isNonConstantNegative - Return true if the specified scev is negated, but
296 /// not a constant.
isNonConstantNegative() const297 bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307 }
308
SCEVCouldNotCompute()309 SCEVCouldNotCompute::SCEVCouldNotCompute() :
310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
311
classof(const SCEV * S)312 bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314 }
315
getConstant(ConstantInt * V)316 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
320 void *IP = nullptr;
321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
325 }
326
getConstant(const APInt & Val)327 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
328 return getConstant(ConstantInt::get(getContext(), Val));
329 }
330
331 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)332 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
334 return getConstant(ConstantInt::get(ITy, V, isSigned));
335 }
336
SCEVCastExpr(const FoldingSetNodeIDRef ID,unsigned SCEVTy,const SCEV * op,Type * ty)337 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
338 unsigned SCEVTy, const SCEV *op, Type *ty)
339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
340
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)341 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
342 const SCEV *op, Type *ty)
343 : SCEVCastExpr(ID, scTruncate, op, ty) {
344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
346 "Cannot truncate non-integer value!");
347 }
348
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)349 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
350 const SCEV *op, Type *ty)
351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
354 "Cannot zero extend non-integer value!");
355 }
356
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)357 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
358 const SCEV *op, Type *ty)
359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
362 "Cannot sign extend non-integer value!");
363 }
364
deleted()365 void SCEVUnknown::deleted() {
366 // Clear this SCEVUnknown from various maps.
367 SE->forgetMemoizedResults(this);
368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
373 setValPtr(nullptr);
374 }
375
allUsesReplacedWith(Value * New)376 void SCEVUnknown::allUsesReplacedWith(Value *New) {
377 // Clear this SCEVUnknown from various maps.
378 SE->forgetMemoizedResults(this);
379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387 }
388
isSizeOf(Type * & AllocTy) const389 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
402
403 return false;
404 }
405
isAlignOf(Type * & AllocTy) const406 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
412 Type *Ty =
413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
414 if (StructType *STy = dyn_cast<StructType>(Ty))
415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
421 STy->getElementType(0)->isIntegerTy(1)) {
422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
427
428 return false;
429 }
430
isOffsetOf(Type * & CTy,Constant * & FieldNo) const431 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
439 Type *Ty =
440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
443 if (Ty->isStructTy() || Ty->isArrayTy()) {
444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451 }
452
453 //===----------------------------------------------------------------------===//
454 // SCEV Utilities
455 //===----------------------------------------------------------------------===//
456
457 namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
461 class SCEVComplexityCompare {
462 const LoopInfo *const LI;
463 public:
SCEVComplexityCompare(const LoopInfo * li)464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
465
466 // Return true or false if LHS is less than, or at least RHS, respectively.
operator ()(const SCEV * LHS,const SCEV * RHS) const467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
compare(const SCEV * LHS,const SCEV * RHS) const474 int compare(const SCEV *LHS, const SCEV *RHS) const {
475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
477 return 0;
478
479 // Primarily, sort the SCEVs by their getSCEVType().
480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
482 return (int)LType - (int)RType;
483
484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
487 switch (static_cast<SCEVTypes>(LType)) {
488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
494 const Value *LV = LU->getValue(), *RV = RU->getValue();
495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
500 if (LIsPointer != RIsPointer)
501 return (int)LIsPointer - (int)RIsPointer;
502
503 // Compare getValueID values.
504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
506 if (LID != RID)
507 return (int)LID - (int)RID;
508
509 // Sort arguments by their position.
510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
514 }
515
516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
520
521 // Compare loop depths.
522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
528 return (int)LDepth - (int)RDepth;
529 }
530
531 // Compare the number of operands.
532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
534 return (int)LNumOps - (int)RNumOps;
535 }
536
537 return 0;
538 }
539
540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
543
544 // Compare constant values.
545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
548 if (LBitWidth != RBitWidth)
549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
551 }
552
553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
556
557 // Compare addrec loop depths.
558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
563 return (int)LDepth - (int)RDepth;
564 }
565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
579 }
580
581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
587
588 // Lexicographically compare n-ary expressions.
589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
599 }
600 return (int)LNumOps - (int)RNumOps;
601 }
602
603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
612 }
613
614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
626 }
627 llvm_unreachable("Unknown SCEV kind!");
628 }
629 };
630 }
631
632 /// GroupByComplexity - Given a list of SCEV objects, order them by their
633 /// complexity, and group objects of the same complexity together by value.
634 /// When this routine is finished, we know that any duplicates in the vector are
635 /// consecutive and that complexity is monotonically increasing.
636 ///
637 /// Note that we go take special precautions to ensure that we get deterministic
638 /// results from this routine. In other words, we don't want the results of
639 /// this to depend on where the addresses of various SCEV objects happened to
640 /// land in memory.
641 ///
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI)642 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
643 LoopInfo *LI) {
644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
651 return;
652 }
653
654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
676 }
677
678 namespace {
679 struct FindSCEVSize {
680 int Size;
FindSCEVSize__anonbe70a9c90211::FindSCEVSize681 FindSCEVSize() : Size(0) {}
682
follow__anonbe70a9c90211::FindSCEVSize683 bool follow(const SCEV *S) {
684 ++Size;
685 // Keep looking at all operands of S.
686 return true;
687 }
isDone__anonbe70a9c90211::FindSCEVSize688 bool isDone() const {
689 return false;
690 }
691 };
692 }
693
694 // Returns the size of the SCEV S.
sizeOfSCEV(const SCEV * S)695 static inline int sizeOfSCEV(const SCEV *S) {
696 FindSCEVSize F;
697 SCEVTraversal<FindSCEVSize> ST(F);
698 ST.visitAll(S);
699 return F.Size;
700 }
701
702 namespace {
703
704 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
705 public:
706 // Computes the Quotient and Remainder of the division of Numerator by
707 // Denominator.
divide__anonbe70a9c90311::SCEVDivision708 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709 const SCEV *Denominator, const SCEV **Quotient,
710 const SCEV **Remainder) {
711 assert(Numerator && Denominator && "Uninitialized SCEV");
712
713 SCEVDivision D(SE, Numerator, Denominator);
714
715 // Check for the trivial case here to avoid having to check for it in the
716 // rest of the code.
717 if (Numerator == Denominator) {
718 *Quotient = D.One;
719 *Remainder = D.Zero;
720 return;
721 }
722
723 if (Numerator->isZero()) {
724 *Quotient = D.Zero;
725 *Remainder = D.Zero;
726 return;
727 }
728
729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
visitTruncateExpr__anonbe70a9c90311::SCEVDivision756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
visitZeroExtendExpr__anonbe70a9c90311::SCEVDivision757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
visitSignExtendExpr__anonbe70a9c90311::SCEVDivision758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
visitUDivExpr__anonbe70a9c90311::SCEVDivision759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
visitSMaxExpr__anonbe70a9c90311::SCEVDivision760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
visitUMaxExpr__anonbe70a9c90311::SCEVDivision761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
visitUnknown__anonbe70a9c90311::SCEVDivision762 void visitUnknown(const SCEVUnknown *Numerator) {}
visitCouldNotCompute__anonbe70a9c90311::SCEVDivision763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
visitConstant__anonbe70a9c90311::SCEVDivision765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767 APInt NumeratorVal = Numerator->getValue()->getValue();
768 APInt DenominatorVal = D->getValue()->getValue();
769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
visitAddRecExpr__anonbe70a9c90311::SCEVDivision786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
788 assert(Numerator->isAffine() && "Numerator should be affine");
789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792 Numerator->getNoWrapFlags());
793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 }
796
visitAddExpr__anonbe70a9c90311::SCEVDivision797 void visitAddExpr(const SCEVAddExpr *Numerator) {
798 SmallVector<const SCEV *, 2> Qs, Rs;
799 Type *Ty = Denominator->getType();
800
801 for (const SCEV *Op : Numerator->operands()) {
802 const SCEV *Q, *R;
803 divide(SE, Op, Denominator, &Q, &R);
804
805 // Bail out if types do not match.
806 if (Ty != Q->getType() || Ty != R->getType()) {
807 Quotient = Zero;
808 Remainder = Numerator;
809 return;
810 }
811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
visitMulExpr__anonbe70a9c90311::SCEVDivision826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
833 if (Ty != Op->getType()) {
834 Quotient = Zero;
835 Remainder = Numerator;
836 return;
837 }
838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType()) {
854 Quotient = Zero;
855 Remainder = Numerator;
856 return;
857 }
858
859 FoundDenominatorTerm = true;
860 Qs.push_back(Q);
861 }
862
863 if (FoundDenominatorTerm) {
864 Remainder = Zero;
865 if (Qs.size() == 1)
866 Quotient = Qs[0];
867 else
868 Quotient = SE.getMulExpr(Qs);
869 return;
870 }
871
872 if (!isa<SCEVUnknown>(Denominator)) {
873 Quotient = Zero;
874 Remainder = Numerator;
875 return;
876 }
877
878 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879 ValueToValueMap RewriteMap;
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(Zero)->getValue();
882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884 if (Remainder->isZero()) {
885 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887 cast<SCEVConstant>(One)->getValue();
888 Quotient =
889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890 return;
891 }
892
893 // Quotient is (Numerator - Remainder) divided by Denominator.
894 const SCEV *Q, *R;
895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897 // This SCEV does not seem to simplify: fail the division here.
898 Quotient = Zero;
899 Remainder = Numerator;
900 return;
901 }
902 divide(SE, Diff, Denominator, &Q, &R);
903 assert(R == Zero &&
904 "(Numerator - Remainder) should evenly divide Denominator");
905 Quotient = Q;
906 }
907
908 private:
SCEVDivision__anonbe70a9c90311::SCEVDivision909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910 const SCEV *Denominator)
911 : SE(S), Denominator(Denominator) {
912 Zero = SE.getConstant(Denominator->getType(), 0);
913 One = SE.getConstant(Denominator->getType(), 1);
914
915 // By default, we don't know how to divide Expr by Denominator.
916 // Providing the default here simplifies the rest of the code.
917 Quotient = Zero;
918 Remainder = Numerator;
919 }
920
921 ScalarEvolution &SE;
922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
923 };
924
925 }
926
927 //===----------------------------------------------------------------------===//
928 // Simple SCEV method implementations
929 //===----------------------------------------------------------------------===//
930
931 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
932 /// Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)933 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
934 ScalarEvolution &SE,
935 Type *ResultTy) {
936 // Handle the simplest case efficiently.
937 if (K == 1)
938 return SE.getTruncateOrZeroExtend(It, ResultTy);
939
940 // We are using the following formula for BC(It, K):
941 //
942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943 //
944 // Suppose, W is the bitwidth of the return value. We must be prepared for
945 // overflow. Hence, we must assure that the result of our computation is
946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
947 // safe in modular arithmetic.
948 //
949 // However, this code doesn't use exactly that formula; the formula it uses
950 // is something like the following, where T is the number of factors of 2 in
951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952 // exponentiation:
953 //
954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
955 //
956 // This formula is trivially equivalent to the previous formula. However,
957 // this formula can be implemented much more efficiently. The trick is that
958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959 // arithmetic. To do exact division in modular arithmetic, all we have
960 // to do is multiply by the inverse. Therefore, this step can be done at
961 // width W.
962 //
963 // The next issue is how to safely do the division by 2^T. The way this
964 // is done is by doing the multiplication step at a width of at least W + T
965 // bits. This way, the bottom W+T bits of the product are accurate. Then,
966 // when we perform the division by 2^T (which is equivalent to a right shift
967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
968 // truncated out after the division by 2^T.
969 //
970 // In comparison to just directly using the first formula, this technique
971 // is much more efficient; using the first formula requires W * K bits,
972 // but this formula less than W + K bits. Also, the first formula requires
973 // a division step, whereas this formula only requires multiplies and shifts.
974 //
975 // It doesn't matter whether the subtraction step is done in the calculation
976 // width or the input iteration count's width; if the subtraction overflows,
977 // the result must be zero anyway. We prefer here to do it in the width of
978 // the induction variable because it helps a lot for certain cases; CodeGen
979 // isn't smart enough to ignore the overflow, which leads to much less
980 // efficient code if the width of the subtraction is wider than the native
981 // register width.
982 //
983 // (It's possible to not widen at all by pulling out factors of 2 before
984 // the multiplication; for example, K=2 can be calculated as
985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986 // extra arithmetic, so it's not an obvious win, and it gets
987 // much more complicated for K > 3.)
988
989 // Protection from insane SCEVs; this bound is conservative,
990 // but it probably doesn't matter.
991 if (K > 1000)
992 return SE.getCouldNotCompute();
993
994 unsigned W = SE.getTypeSizeInBits(ResultTy);
995
996 // Calculate K! / 2^T and T; we divide out the factors of two before
997 // multiplying for calculating K! / 2^T to avoid overflow.
998 // Other overflow doesn't matter because we only care about the bottom
999 // W bits of the result.
1000 APInt OddFactorial(W, 1);
1001 unsigned T = 1;
1002 for (unsigned i = 3; i <= K; ++i) {
1003 APInt Mult(W, i);
1004 unsigned TwoFactors = Mult.countTrailingZeros();
1005 T += TwoFactors;
1006 Mult = Mult.lshr(TwoFactors);
1007 OddFactorial *= Mult;
1008 }
1009
1010 // We need at least W + T bits for the multiplication step
1011 unsigned CalculationBits = W + T;
1012
1013 // Calculate 2^T, at width T+W.
1014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1015
1016 // Calculate the multiplicative inverse of K! / 2^T;
1017 // this multiplication factor will perform the exact division by
1018 // K! / 2^T.
1019 APInt Mod = APInt::getSignedMinValue(W+1);
1020 APInt MultiplyFactor = OddFactorial.zext(W+1);
1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022 MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024 // Calculate the product, at width T+W
1025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1026 CalculationBits);
1027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1028 for (unsigned i = 1; i != K; ++i) {
1029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1030 Dividend = SE.getMulExpr(Dividend,
1031 SE.getTruncateOrZeroExtend(S, CalculationTy));
1032 }
1033
1034 // Divide by 2^T
1035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1036
1037 // Truncate the result, and divide by K! / 2^T.
1038
1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1041 }
1042
1043 /// evaluateAtIteration - Return the value of this chain of recurrences at
1044 /// the specified iteration number. We can evaluate this recurrence by
1045 /// multiplying each element in the chain by the binomial coefficient
1046 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047 ///
1048 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1049 ///
1050 /// where BC(It, k) stands for binomial coefficient.
1051 ///
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const1052 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1053 ScalarEvolution &SE) const {
1054 const SCEV *Result = getStart();
1055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1056 // The computation is correct in the face of overflow provided that the
1057 // multiplication is performed _after_ the evaluation of the binomial
1058 // coefficient.
1059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1060 if (isa<SCEVCouldNotCompute>(Coeff))
1061 return Coeff;
1062
1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1064 }
1065 return Result;
1066 }
1067
1068 //===----------------------------------------------------------------------===//
1069 // SCEV Expression folder implementations
1070 //===----------------------------------------------------------------------===//
1071
getTruncateExpr(const SCEV * Op,Type * Ty)1072 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1073 Type *Ty) {
1074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1075 "This is not a truncating conversion!");
1076 assert(isSCEVable(Ty) &&
1077 "This is not a conversion to a SCEVable type!");
1078 Ty = getEffectiveSCEVType(Ty);
1079
1080 FoldingSetNodeID ID;
1081 ID.AddInteger(scTruncate);
1082 ID.AddPointer(Op);
1083 ID.AddPointer(Ty);
1084 void *IP = nullptr;
1085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
1087 // Fold if the operand is constant.
1088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1089 return getConstant(
1090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1091
1092 // trunc(trunc(x)) --> trunc(x)
1093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1094 return getTruncateExpr(ST->getOperand(), Ty);
1095
1096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1098 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
1104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105 // eliminate all the truncates.
1106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107 SmallVector<const SCEV *, 4> Operands;
1108 bool hasTrunc = false;
1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111 hasTrunc = isa<SCEVTruncateExpr>(S);
1112 Operands.push_back(S);
1113 }
1114 if (!hasTrunc)
1115 return getAddExpr(Operands);
1116 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
1117 }
1118
1119 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1120 // eliminate all the truncates.
1121 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1122 SmallVector<const SCEV *, 4> Operands;
1123 bool hasTrunc = false;
1124 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1125 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
1127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
1130 return getMulExpr(Operands);
1131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
1132 }
1133
1134 // If the input value is a chrec scev, truncate the chrec's operands.
1135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1136 SmallVector<const SCEV *, 4> Operands;
1137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1138 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
1139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1140 }
1141
1142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
1145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
1147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
1149 }
1150
getZeroExtendExpr(const SCEV * Op,Type * Ty)1151 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1152 Type *Ty) {
1153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1154 "This is not an extending conversion!");
1155 assert(isSCEVable(Ty) &&
1156 "This is not a conversion to a SCEVable type!");
1157 Ty = getEffectiveSCEVType(Ty);
1158
1159 // Fold if the operand is constant.
1160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1161 return getConstant(
1162 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1163
1164 // zext(zext(x)) --> zext(x)
1165 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1166 return getZeroExtendExpr(SZ->getOperand(), Ty);
1167
1168 // Before doing any expensive analysis, check to see if we've already
1169 // computed a SCEV for this Op and Ty.
1170 FoldingSetNodeID ID;
1171 ID.AddInteger(scZeroExtend);
1172 ID.AddPointer(Op);
1173 ID.AddPointer(Ty);
1174 void *IP = nullptr;
1175 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1176
1177 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1178 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1179 // It's possible the bits taken off by the truncate were all zero bits. If
1180 // so, we should be able to simplify this further.
1181 const SCEV *X = ST->getOperand();
1182 ConstantRange CR = getUnsignedRange(X);
1183 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1184 unsigned NewBits = getTypeSizeInBits(Ty);
1185 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1186 CR.zextOrTrunc(NewBits)))
1187 return getTruncateOrZeroExtend(X, Ty);
1188 }
1189
1190 // If the input value is a chrec scev, and we can prove that the value
1191 // did not overflow the old, smaller, value, we can zero extend all of the
1192 // operands (often constants). This allows analysis of something like
1193 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1194 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1195 if (AR->isAffine()) {
1196 const SCEV *Start = AR->getStart();
1197 const SCEV *Step = AR->getStepRecurrence(*this);
1198 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1199 const Loop *L = AR->getLoop();
1200
1201 // If we have special knowledge that this addrec won't overflow,
1202 // we don't need to do any further analysis.
1203 if (AR->getNoWrapFlags(SCEV::FlagNUW))
1204 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1205 getZeroExtendExpr(Step, Ty),
1206 L, AR->getNoWrapFlags());
1207
1208 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1209 // Note that this serves two purposes: It filters out loops that are
1210 // simply not analyzable, and it covers the case where this code is
1211 // being called from within backedge-taken count analysis, such that
1212 // attempting to ask for the backedge-taken count would likely result
1213 // in infinite recursion. In the later case, the analysis code will
1214 // cope with a conservative value, and it will take care to purge
1215 // that value once it has finished.
1216 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1217 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1218 // Manually compute the final value for AR, checking for
1219 // overflow.
1220
1221 // Check whether the backedge-taken count can be losslessly casted to
1222 // the addrec's type. The count is always unsigned.
1223 const SCEV *CastedMaxBECount =
1224 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1225 const SCEV *RecastedMaxBECount =
1226 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1227 if (MaxBECount == RecastedMaxBECount) {
1228 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1229 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1230 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1231 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1232 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1233 const SCEV *WideMaxBECount =
1234 getZeroExtendExpr(CastedMaxBECount, WideTy);
1235 const SCEV *OperandExtendedAdd =
1236 getAddExpr(WideStart,
1237 getMulExpr(WideMaxBECount,
1238 getZeroExtendExpr(Step, WideTy)));
1239 if (ZAdd == OperandExtendedAdd) {
1240 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1241 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1242 // Return the expression with the addrec on the outside.
1243 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1244 getZeroExtendExpr(Step, Ty),
1245 L, AR->getNoWrapFlags());
1246 }
1247 // Similar to above, only this time treat the step value as signed.
1248 // This covers loops that count down.
1249 OperandExtendedAdd =
1250 getAddExpr(WideStart,
1251 getMulExpr(WideMaxBECount,
1252 getSignExtendExpr(Step, WideTy)));
1253 if (ZAdd == OperandExtendedAdd) {
1254 // Cache knowledge of AR NW, which is propagated to this AddRec.
1255 // Negative step causes unsigned wrap, but it still can't self-wrap.
1256 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1257 // Return the expression with the addrec on the outside.
1258 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1259 getSignExtendExpr(Step, Ty),
1260 L, AR->getNoWrapFlags());
1261 }
1262 }
1263
1264 // If the backedge is guarded by a comparison with the pre-inc value
1265 // the addrec is safe. Also, if the entry is guarded by a comparison
1266 // with the start value and the backedge is guarded by a comparison
1267 // with the post-inc value, the addrec is safe.
1268 if (isKnownPositive(Step)) {
1269 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1270 getUnsignedRange(Step).getUnsignedMax());
1271 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1272 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1273 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1274 AR->getPostIncExpr(*this), N))) {
1275 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1276 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1277 // Return the expression with the addrec on the outside.
1278 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1279 getZeroExtendExpr(Step, Ty),
1280 L, AR->getNoWrapFlags());
1281 }
1282 } else if (isKnownNegative(Step)) {
1283 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1284 getSignedRange(Step).getSignedMin());
1285 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1286 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1287 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1288 AR->getPostIncExpr(*this), N))) {
1289 // Cache knowledge of AR NW, which is propagated to this AddRec.
1290 // Negative step causes unsigned wrap, but it still can't self-wrap.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1292 // Return the expression with the addrec on the outside.
1293 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1294 getSignExtendExpr(Step, Ty),
1295 L, AR->getNoWrapFlags());
1296 }
1297 }
1298 }
1299 }
1300
1301 // The cast wasn't folded; create an explicit cast node.
1302 // Recompute the insert position, as it may have been invalidated.
1303 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1304 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1305 Op, Ty);
1306 UniqueSCEVs.InsertNode(S, IP);
1307 return S;
1308 }
1309
1310 // Get the limit of a recurrence such that incrementing by Step cannot cause
1311 // signed overflow as long as the value of the recurrence within the loop does
1312 // not exceed this limit before incrementing.
getOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1313 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1314 ICmpInst::Predicate *Pred,
1315 ScalarEvolution *SE) {
1316 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1317 if (SE->isKnownPositive(Step)) {
1318 *Pred = ICmpInst::ICMP_SLT;
1319 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1320 SE->getSignedRange(Step).getSignedMax());
1321 }
1322 if (SE->isKnownNegative(Step)) {
1323 *Pred = ICmpInst::ICMP_SGT;
1324 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1325 SE->getSignedRange(Step).getSignedMin());
1326 }
1327 return nullptr;
1328 }
1329
1330 // The recurrence AR has been shown to have no signed wrap. Typically, if we can
1331 // prove NSW for AR, then we can just as easily prove NSW for its preincrement
1332 // or postincrement sibling. This allows normalizing a sign extended AddRec as
1333 // such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1334 // result, the expression "Step + sext(PreIncAR)" is congruent with
1335 // "sext(PostIncAR)"
getPreStartForSignExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE)1336 static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1337 Type *Ty,
1338 ScalarEvolution *SE) {
1339 const Loop *L = AR->getLoop();
1340 const SCEV *Start = AR->getStart();
1341 const SCEV *Step = AR->getStepRecurrence(*SE);
1342
1343 // Check for a simple looking step prior to loop entry.
1344 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1345 if (!SA)
1346 return nullptr;
1347
1348 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1349 // subtraction is expensive. For this purpose, perform a quick and dirty
1350 // difference, by checking for Step in the operand list.
1351 SmallVector<const SCEV *, 4> DiffOps;
1352 for (const SCEV *Op : SA->operands())
1353 if (Op != Step)
1354 DiffOps.push_back(Op);
1355
1356 if (DiffOps.size() == SA->getNumOperands())
1357 return nullptr;
1358
1359 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1360 // same three conditions that getSignExtendedExpr checks.
1361
1362 // 1. NSW flags on the step increment.
1363 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1364 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1365 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1366
1367 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1368 return PreStart;
1369
1370 // 2. Direct overflow check on the step operation's expression.
1371 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1372 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1373 const SCEV *OperandExtendedStart =
1374 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1375 SE->getSignExtendExpr(Step, WideTy));
1376 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1377 // Cache knowledge of PreAR NSW.
1378 if (PreAR)
1379 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1380 // FIXME: this optimization needs a unit test
1381 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1382 return PreStart;
1383 }
1384
1385 // 3. Loop precondition.
1386 ICmpInst::Predicate Pred;
1387 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1388
1389 if (OverflowLimit &&
1390 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1391 return PreStart;
1392 }
1393 return nullptr;
1394 }
1395
1396 // Get the normalized sign-extended expression for this AddRec's Start.
getSignExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE)1397 static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1398 Type *Ty,
1399 ScalarEvolution *SE) {
1400 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1401 if (!PreStart)
1402 return SE->getSignExtendExpr(AR->getStart(), Ty);
1403
1404 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1405 SE->getSignExtendExpr(PreStart, Ty));
1406 }
1407
getSignExtendExpr(const SCEV * Op,Type * Ty)1408 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1409 Type *Ty) {
1410 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1411 "This is not an extending conversion!");
1412 assert(isSCEVable(Ty) &&
1413 "This is not a conversion to a SCEVable type!");
1414 Ty = getEffectiveSCEVType(Ty);
1415
1416 // Fold if the operand is constant.
1417 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1418 return getConstant(
1419 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1420
1421 // sext(sext(x)) --> sext(x)
1422 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1423 return getSignExtendExpr(SS->getOperand(), Ty);
1424
1425 // sext(zext(x)) --> zext(x)
1426 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1427 return getZeroExtendExpr(SZ->getOperand(), Ty);
1428
1429 // Before doing any expensive analysis, check to see if we've already
1430 // computed a SCEV for this Op and Ty.
1431 FoldingSetNodeID ID;
1432 ID.AddInteger(scSignExtend);
1433 ID.AddPointer(Op);
1434 ID.AddPointer(Ty);
1435 void *IP = nullptr;
1436 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1437
1438 // If the input value is provably positive, build a zext instead.
1439 if (isKnownNonNegative(Op))
1440 return getZeroExtendExpr(Op, Ty);
1441
1442 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1443 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1444 // It's possible the bits taken off by the truncate were all sign bits. If
1445 // so, we should be able to simplify this further.
1446 const SCEV *X = ST->getOperand();
1447 ConstantRange CR = getSignedRange(X);
1448 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1449 unsigned NewBits = getTypeSizeInBits(Ty);
1450 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1451 CR.sextOrTrunc(NewBits)))
1452 return getTruncateOrSignExtend(X, Ty);
1453 }
1454
1455 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1456 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1457 if (SA->getNumOperands() == 2) {
1458 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1459 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1460 if (SMul && SC1) {
1461 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1462 const APInt &C1 = SC1->getValue()->getValue();
1463 const APInt &C2 = SC2->getValue()->getValue();
1464 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1465 C2.ugt(C1) && C2.isPowerOf2())
1466 return getAddExpr(getSignExtendExpr(SC1, Ty),
1467 getSignExtendExpr(SMul, Ty));
1468 }
1469 }
1470 }
1471 }
1472 // If the input value is a chrec scev, and we can prove that the value
1473 // did not overflow the old, smaller, value, we can sign extend all of the
1474 // operands (often constants). This allows analysis of something like
1475 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1476 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1477 if (AR->isAffine()) {
1478 const SCEV *Start = AR->getStart();
1479 const SCEV *Step = AR->getStepRecurrence(*this);
1480 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1481 const Loop *L = AR->getLoop();
1482
1483 // If we have special knowledge that this addrec won't overflow,
1484 // we don't need to do any further analysis.
1485 if (AR->getNoWrapFlags(SCEV::FlagNSW))
1486 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1487 getSignExtendExpr(Step, Ty),
1488 L, SCEV::FlagNSW);
1489
1490 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1491 // Note that this serves two purposes: It filters out loops that are
1492 // simply not analyzable, and it covers the case where this code is
1493 // being called from within backedge-taken count analysis, such that
1494 // attempting to ask for the backedge-taken count would likely result
1495 // in infinite recursion. In the later case, the analysis code will
1496 // cope with a conservative value, and it will take care to purge
1497 // that value once it has finished.
1498 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1499 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1500 // Manually compute the final value for AR, checking for
1501 // overflow.
1502
1503 // Check whether the backedge-taken count can be losslessly casted to
1504 // the addrec's type. The count is always unsigned.
1505 const SCEV *CastedMaxBECount =
1506 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1507 const SCEV *RecastedMaxBECount =
1508 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1509 if (MaxBECount == RecastedMaxBECount) {
1510 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1511 // Check whether Start+Step*MaxBECount has no signed overflow.
1512 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1513 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1514 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1515 const SCEV *WideMaxBECount =
1516 getZeroExtendExpr(CastedMaxBECount, WideTy);
1517 const SCEV *OperandExtendedAdd =
1518 getAddExpr(WideStart,
1519 getMulExpr(WideMaxBECount,
1520 getSignExtendExpr(Step, WideTy)));
1521 if (SAdd == OperandExtendedAdd) {
1522 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1523 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1524 // Return the expression with the addrec on the outside.
1525 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1526 getSignExtendExpr(Step, Ty),
1527 L, AR->getNoWrapFlags());
1528 }
1529 // Similar to above, only this time treat the step value as unsigned.
1530 // This covers loops that count up with an unsigned step.
1531 OperandExtendedAdd =
1532 getAddExpr(WideStart,
1533 getMulExpr(WideMaxBECount,
1534 getZeroExtendExpr(Step, WideTy)));
1535 if (SAdd == OperandExtendedAdd) {
1536 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1537 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1538 // Return the expression with the addrec on the outside.
1539 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1540 getZeroExtendExpr(Step, Ty),
1541 L, AR->getNoWrapFlags());
1542 }
1543 }
1544
1545 // If the backedge is guarded by a comparison with the pre-inc value
1546 // the addrec is safe. Also, if the entry is guarded by a comparison
1547 // with the start value and the backedge is guarded by a comparison
1548 // with the post-inc value, the addrec is safe.
1549 ICmpInst::Predicate Pred;
1550 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1551 if (OverflowLimit &&
1552 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1553 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1554 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1555 OverflowLimit)))) {
1556 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1557 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1558 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1559 getSignExtendExpr(Step, Ty),
1560 L, AR->getNoWrapFlags());
1561 }
1562 }
1563 // If Start and Step are constants, check if we can apply this
1564 // transformation:
1565 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1566 auto SC1 = dyn_cast<SCEVConstant>(Start);
1567 auto SC2 = dyn_cast<SCEVConstant>(Step);
1568 if (SC1 && SC2) {
1569 const APInt &C1 = SC1->getValue()->getValue();
1570 const APInt &C2 = SC2->getValue()->getValue();
1571 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1572 C2.isPowerOf2()) {
1573 Start = getSignExtendExpr(Start, Ty);
1574 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1575 L, AR->getNoWrapFlags());
1576 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1577 }
1578 }
1579 }
1580
1581 // The cast wasn't folded; create an explicit cast node.
1582 // Recompute the insert position, as it may have been invalidated.
1583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1584 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1585 Op, Ty);
1586 UniqueSCEVs.InsertNode(S, IP);
1587 return S;
1588 }
1589
1590 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1591 /// unspecified bits out to the given type.
1592 ///
getAnyExtendExpr(const SCEV * Op,Type * Ty)1593 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1594 Type *Ty) {
1595 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1596 "This is not an extending conversion!");
1597 assert(isSCEVable(Ty) &&
1598 "This is not a conversion to a SCEVable type!");
1599 Ty = getEffectiveSCEVType(Ty);
1600
1601 // Sign-extend negative constants.
1602 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1603 if (SC->getValue()->getValue().isNegative())
1604 return getSignExtendExpr(Op, Ty);
1605
1606 // Peel off a truncate cast.
1607 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1608 const SCEV *NewOp = T->getOperand();
1609 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1610 return getAnyExtendExpr(NewOp, Ty);
1611 return getTruncateOrNoop(NewOp, Ty);
1612 }
1613
1614 // Next try a zext cast. If the cast is folded, use it.
1615 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1616 if (!isa<SCEVZeroExtendExpr>(ZExt))
1617 return ZExt;
1618
1619 // Next try a sext cast. If the cast is folded, use it.
1620 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1621 if (!isa<SCEVSignExtendExpr>(SExt))
1622 return SExt;
1623
1624 // Force the cast to be folded into the operands of an addrec.
1625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1626 SmallVector<const SCEV *, 4> Ops;
1627 for (const SCEV *Op : AR->operands())
1628 Ops.push_back(getAnyExtendExpr(Op, Ty));
1629 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1630 }
1631
1632 // If the expression is obviously signed, use the sext cast value.
1633 if (isa<SCEVSMaxExpr>(Op))
1634 return SExt;
1635
1636 // Absent any other information, use the zext cast value.
1637 return ZExt;
1638 }
1639
1640 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1641 /// a list of operands to be added under the given scale, update the given
1642 /// map. This is a helper function for getAddRecExpr. As an example of
1643 /// what it does, given a sequence of operands that would form an add
1644 /// expression like this:
1645 ///
1646 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1647 ///
1648 /// where A and B are constants, update the map with these values:
1649 ///
1650 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1651 ///
1652 /// and add 13 + A*B*29 to AccumulatedConstant.
1653 /// This will allow getAddRecExpr to produce this:
1654 ///
1655 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1656 ///
1657 /// This form often exposes folding opportunities that are hidden in
1658 /// the original operand list.
1659 ///
1660 /// Return true iff it appears that any interesting folding opportunities
1661 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1662 /// the common case where no interesting opportunities are present, and
1663 /// is also used as a check to avoid infinite recursion.
1664 ///
1665 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)1666 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1667 SmallVectorImpl<const SCEV *> &NewOps,
1668 APInt &AccumulatedConstant,
1669 const SCEV *const *Ops, size_t NumOperands,
1670 const APInt &Scale,
1671 ScalarEvolution &SE) {
1672 bool Interesting = false;
1673
1674 // Iterate over the add operands. They are sorted, with constants first.
1675 unsigned i = 0;
1676 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1677 ++i;
1678 // Pull a buried constant out to the outside.
1679 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1680 Interesting = true;
1681 AccumulatedConstant += Scale * C->getValue()->getValue();
1682 }
1683
1684 // Next comes everything else. We're especially interested in multiplies
1685 // here, but they're in the middle, so just visit the rest with one loop.
1686 for (; i != NumOperands; ++i) {
1687 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1688 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1689 APInt NewScale =
1690 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1691 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1692 // A multiplication of a constant with another add; recurse.
1693 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1694 Interesting |=
1695 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1696 Add->op_begin(), Add->getNumOperands(),
1697 NewScale, SE);
1698 } else {
1699 // A multiplication of a constant with some other value. Update
1700 // the map.
1701 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1702 const SCEV *Key = SE.getMulExpr(MulOps);
1703 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1704 M.insert(std::make_pair(Key, NewScale));
1705 if (Pair.second) {
1706 NewOps.push_back(Pair.first->first);
1707 } else {
1708 Pair.first->second += NewScale;
1709 // The map already had an entry for this value, which may indicate
1710 // a folding opportunity.
1711 Interesting = true;
1712 }
1713 }
1714 } else {
1715 // An ordinary operand. Update the map.
1716 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1717 M.insert(std::make_pair(Ops[i], Scale));
1718 if (Pair.second) {
1719 NewOps.push_back(Pair.first->first);
1720 } else {
1721 Pair.first->second += Scale;
1722 // The map already had an entry for this value, which may indicate
1723 // a folding opportunity.
1724 Interesting = true;
1725 }
1726 }
1727 }
1728
1729 return Interesting;
1730 }
1731
1732 namespace {
1733 struct APIntCompare {
operator ()__anonbe70a9c90411::APIntCompare1734 bool operator()(const APInt &LHS, const APInt &RHS) const {
1735 return LHS.ult(RHS);
1736 }
1737 };
1738 }
1739
1740 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1741 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1742 // can't-overflow flags for the operation if possible.
1743 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OldFlags)1744 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1745 const SmallVectorImpl<const SCEV *> &Ops,
1746 SCEV::NoWrapFlags OldFlags) {
1747 using namespace std::placeholders;
1748
1749 bool CanAnalyze =
1750 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1751 (void)CanAnalyze;
1752 assert(CanAnalyze && "don't call from other places!");
1753
1754 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1755 SCEV::NoWrapFlags SignOrUnsignWrap =
1756 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1757
1758 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1759 auto IsKnownNonNegative =
1760 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1761
1762 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1763 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1764 return ScalarEvolution::setFlags(OldFlags,
1765 (SCEV::NoWrapFlags)SignOrUnsignMask);
1766
1767 return OldFlags;
1768 }
1769
1770 /// getAddExpr - Get a canonical add expression, or something simpler if
1771 /// possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)1772 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1773 SCEV::NoWrapFlags Flags) {
1774 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1775 "only nuw or nsw allowed");
1776 assert(!Ops.empty() && "Cannot get empty add!");
1777 if (Ops.size() == 1) return Ops[0];
1778 #ifndef NDEBUG
1779 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1780 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1781 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1782 "SCEVAddExpr operand types don't match!");
1783 #endif
1784
1785 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
1786
1787 // Sort by complexity, this groups all similar expression types together.
1788 GroupByComplexity(Ops, LI);
1789
1790 // If there are any constants, fold them together.
1791 unsigned Idx = 0;
1792 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1793 ++Idx;
1794 assert(Idx < Ops.size());
1795 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1796 // We found two constants, fold them together!
1797 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1798 RHSC->getValue()->getValue());
1799 if (Ops.size() == 2) return Ops[0];
1800 Ops.erase(Ops.begin()+1); // Erase the folded element
1801 LHSC = cast<SCEVConstant>(Ops[0]);
1802 }
1803
1804 // If we are left with a constant zero being added, strip it off.
1805 if (LHSC->getValue()->isZero()) {
1806 Ops.erase(Ops.begin());
1807 --Idx;
1808 }
1809
1810 if (Ops.size() == 1) return Ops[0];
1811 }
1812
1813 // Okay, check to see if the same value occurs in the operand list more than
1814 // once. If so, merge them together into an multiply expression. Since we
1815 // sorted the list, these values are required to be adjacent.
1816 Type *Ty = Ops[0]->getType();
1817 bool FoundMatch = false;
1818 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1819 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1820 // Scan ahead to count how many equal operands there are.
1821 unsigned Count = 2;
1822 while (i+Count != e && Ops[i+Count] == Ops[i])
1823 ++Count;
1824 // Merge the values into a multiply.
1825 const SCEV *Scale = getConstant(Ty, Count);
1826 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1827 if (Ops.size() == Count)
1828 return Mul;
1829 Ops[i] = Mul;
1830 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1831 --i; e -= Count - 1;
1832 FoundMatch = true;
1833 }
1834 if (FoundMatch)
1835 return getAddExpr(Ops, Flags);
1836
1837 // Check for truncates. If all the operands are truncated from the same
1838 // type, see if factoring out the truncate would permit the result to be
1839 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1840 // if the contents of the resulting outer trunc fold to something simple.
1841 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1842 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1843 Type *DstType = Trunc->getType();
1844 Type *SrcType = Trunc->getOperand()->getType();
1845 SmallVector<const SCEV *, 8> LargeOps;
1846 bool Ok = true;
1847 // Check all the operands to see if they can be represented in the
1848 // source type of the truncate.
1849 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1850 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1851 if (T->getOperand()->getType() != SrcType) {
1852 Ok = false;
1853 break;
1854 }
1855 LargeOps.push_back(T->getOperand());
1856 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1857 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1858 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1859 SmallVector<const SCEV *, 8> LargeMulOps;
1860 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1861 if (const SCEVTruncateExpr *T =
1862 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1863 if (T->getOperand()->getType() != SrcType) {
1864 Ok = false;
1865 break;
1866 }
1867 LargeMulOps.push_back(T->getOperand());
1868 } else if (const SCEVConstant *C =
1869 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1870 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1871 } else {
1872 Ok = false;
1873 break;
1874 }
1875 }
1876 if (Ok)
1877 LargeOps.push_back(getMulExpr(LargeMulOps));
1878 } else {
1879 Ok = false;
1880 break;
1881 }
1882 }
1883 if (Ok) {
1884 // Evaluate the expression in the larger type.
1885 const SCEV *Fold = getAddExpr(LargeOps, Flags);
1886 // If it folds to something simple, use it. Otherwise, don't.
1887 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1888 return getTruncateExpr(Fold, DstType);
1889 }
1890 }
1891
1892 // Skip past any other cast SCEVs.
1893 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1894 ++Idx;
1895
1896 // If there are add operands they would be next.
1897 if (Idx < Ops.size()) {
1898 bool DeletedAdd = false;
1899 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1900 // If we have an add, expand the add operands onto the end of the operands
1901 // list.
1902 Ops.erase(Ops.begin()+Idx);
1903 Ops.append(Add->op_begin(), Add->op_end());
1904 DeletedAdd = true;
1905 }
1906
1907 // If we deleted at least one add, we added operands to the end of the list,
1908 // and they are not necessarily sorted. Recurse to resort and resimplify
1909 // any operands we just acquired.
1910 if (DeletedAdd)
1911 return getAddExpr(Ops);
1912 }
1913
1914 // Skip over the add expression until we get to a multiply.
1915 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1916 ++Idx;
1917
1918 // Check to see if there are any folding opportunities present with
1919 // operands multiplied by constant values.
1920 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1921 uint64_t BitWidth = getTypeSizeInBits(Ty);
1922 DenseMap<const SCEV *, APInt> M;
1923 SmallVector<const SCEV *, 8> NewOps;
1924 APInt AccumulatedConstant(BitWidth, 0);
1925 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1926 Ops.data(), Ops.size(),
1927 APInt(BitWidth, 1), *this)) {
1928 // Some interesting folding opportunity is present, so its worthwhile to
1929 // re-generate the operands list. Group the operands by constant scale,
1930 // to avoid multiplying by the same constant scale multiple times.
1931 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1932 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
1933 E = NewOps.end(); I != E; ++I)
1934 MulOpLists[M.find(*I)->second].push_back(*I);
1935 // Re-generate the operands list.
1936 Ops.clear();
1937 if (AccumulatedConstant != 0)
1938 Ops.push_back(getConstant(AccumulatedConstant));
1939 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1940 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1941 if (I->first != 0)
1942 Ops.push_back(getMulExpr(getConstant(I->first),
1943 getAddExpr(I->second)));
1944 if (Ops.empty())
1945 return getConstant(Ty, 0);
1946 if (Ops.size() == 1)
1947 return Ops[0];
1948 return getAddExpr(Ops);
1949 }
1950 }
1951
1952 // If we are adding something to a multiply expression, make sure the
1953 // something is not already an operand of the multiply. If so, merge it into
1954 // the multiply.
1955 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1956 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1957 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1958 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1959 if (isa<SCEVConstant>(MulOpSCEV))
1960 continue;
1961 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1962 if (MulOpSCEV == Ops[AddOp]) {
1963 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1964 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1965 if (Mul->getNumOperands() != 2) {
1966 // If the multiply has more than two operands, we must get the
1967 // Y*Z term.
1968 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1969 Mul->op_begin()+MulOp);
1970 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1971 InnerMul = getMulExpr(MulOps);
1972 }
1973 const SCEV *One = getConstant(Ty, 1);
1974 const SCEV *AddOne = getAddExpr(One, InnerMul);
1975 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1976 if (Ops.size() == 2) return OuterMul;
1977 if (AddOp < Idx) {
1978 Ops.erase(Ops.begin()+AddOp);
1979 Ops.erase(Ops.begin()+Idx-1);
1980 } else {
1981 Ops.erase(Ops.begin()+Idx);
1982 Ops.erase(Ops.begin()+AddOp-1);
1983 }
1984 Ops.push_back(OuterMul);
1985 return getAddExpr(Ops);
1986 }
1987
1988 // Check this multiply against other multiplies being added together.
1989 for (unsigned OtherMulIdx = Idx+1;
1990 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1991 ++OtherMulIdx) {
1992 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1993 // If MulOp occurs in OtherMul, we can fold the two multiplies
1994 // together.
1995 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1996 OMulOp != e; ++OMulOp)
1997 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1998 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1999 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2000 if (Mul->getNumOperands() != 2) {
2001 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2002 Mul->op_begin()+MulOp);
2003 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2004 InnerMul1 = getMulExpr(MulOps);
2005 }
2006 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2007 if (OtherMul->getNumOperands() != 2) {
2008 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2009 OtherMul->op_begin()+OMulOp);
2010 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2011 InnerMul2 = getMulExpr(MulOps);
2012 }
2013 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2014 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2015 if (Ops.size() == 2) return OuterMul;
2016 Ops.erase(Ops.begin()+Idx);
2017 Ops.erase(Ops.begin()+OtherMulIdx-1);
2018 Ops.push_back(OuterMul);
2019 return getAddExpr(Ops);
2020 }
2021 }
2022 }
2023 }
2024
2025 // If there are any add recurrences in the operands list, see if any other
2026 // added values are loop invariant. If so, we can fold them into the
2027 // recurrence.
2028 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2029 ++Idx;
2030
2031 // Scan over all recurrences, trying to fold loop invariants into them.
2032 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2033 // Scan all of the other operands to this add and add them to the vector if
2034 // they are loop invariant w.r.t. the recurrence.
2035 SmallVector<const SCEV *, 8> LIOps;
2036 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2037 const Loop *AddRecLoop = AddRec->getLoop();
2038 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2039 if (isLoopInvariant(Ops[i], AddRecLoop)) {
2040 LIOps.push_back(Ops[i]);
2041 Ops.erase(Ops.begin()+i);
2042 --i; --e;
2043 }
2044
2045 // If we found some loop invariants, fold them into the recurrence.
2046 if (!LIOps.empty()) {
2047 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2048 LIOps.push_back(AddRec->getStart());
2049
2050 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2051 AddRec->op_end());
2052 AddRecOps[0] = getAddExpr(LIOps);
2053
2054 // Build the new addrec. Propagate the NUW and NSW flags if both the
2055 // outer add and the inner addrec are guaranteed to have no overflow.
2056 // Always propagate NW.
2057 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2058 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2059
2060 // If all of the other operands were loop invariant, we are done.
2061 if (Ops.size() == 1) return NewRec;
2062
2063 // Otherwise, add the folded AddRec by the non-invariant parts.
2064 for (unsigned i = 0;; ++i)
2065 if (Ops[i] == AddRec) {
2066 Ops[i] = NewRec;
2067 break;
2068 }
2069 return getAddExpr(Ops);
2070 }
2071
2072 // Okay, if there weren't any loop invariants to be folded, check to see if
2073 // there are multiple AddRec's with the same loop induction variable being
2074 // added together. If so, we can fold them.
2075 for (unsigned OtherIdx = Idx+1;
2076 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2077 ++OtherIdx)
2078 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2079 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2080 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2081 AddRec->op_end());
2082 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2083 ++OtherIdx)
2084 if (const SCEVAddRecExpr *OtherAddRec =
2085 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2086 if (OtherAddRec->getLoop() == AddRecLoop) {
2087 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2088 i != e; ++i) {
2089 if (i >= AddRecOps.size()) {
2090 AddRecOps.append(OtherAddRec->op_begin()+i,
2091 OtherAddRec->op_end());
2092 break;
2093 }
2094 AddRecOps[i] = getAddExpr(AddRecOps[i],
2095 OtherAddRec->getOperand(i));
2096 }
2097 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2098 }
2099 // Step size has changed, so we cannot guarantee no self-wraparound.
2100 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2101 return getAddExpr(Ops);
2102 }
2103
2104 // Otherwise couldn't fold anything into this recurrence. Move onto the
2105 // next one.
2106 }
2107
2108 // Okay, it looks like we really DO need an add expr. Check to see if we
2109 // already have one, otherwise create a new one.
2110 FoldingSetNodeID ID;
2111 ID.AddInteger(scAddExpr);
2112 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2113 ID.AddPointer(Ops[i]);
2114 void *IP = nullptr;
2115 SCEVAddExpr *S =
2116 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2117 if (!S) {
2118 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2119 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2120 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2121 O, Ops.size());
2122 UniqueSCEVs.InsertNode(S, IP);
2123 }
2124 S->setNoWrapFlags(Flags);
2125 return S;
2126 }
2127
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2128 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2129 uint64_t k = i*j;
2130 if (j > 1 && k / j != i) Overflow = true;
2131 return k;
2132 }
2133
2134 /// Compute the result of "n choose k", the binomial coefficient. If an
2135 /// intermediate computation overflows, Overflow will be set and the return will
2136 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2137 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2138 // We use the multiplicative formula:
2139 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2140 // At each iteration, we take the n-th term of the numeral and divide by the
2141 // (k-n)th term of the denominator. This division will always produce an
2142 // integral result, and helps reduce the chance of overflow in the
2143 // intermediate computations. However, we can still overflow even when the
2144 // final result would fit.
2145
2146 if (n == 0 || n == k) return 1;
2147 if (k > n) return 0;
2148
2149 if (k > n/2)
2150 k = n-k;
2151
2152 uint64_t r = 1;
2153 for (uint64_t i = 1; i <= k; ++i) {
2154 r = umul_ov(r, n-(i-1), Overflow);
2155 r /= i;
2156 }
2157 return r;
2158 }
2159
2160 /// Determine if any of the operands in this SCEV are a constant or if
2161 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantSomewhere(const SCEV * StartExpr)2162 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2163 SmallVector<const SCEV *, 4> Ops;
2164 Ops.push_back(StartExpr);
2165 while (!Ops.empty()) {
2166 const SCEV *CurrentExpr = Ops.pop_back_val();
2167 if (isa<SCEVConstant>(*CurrentExpr))
2168 return true;
2169
2170 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2171 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2172 for (const SCEV *Operand : CurrentNAry->operands())
2173 Ops.push_back(Operand);
2174 }
2175 }
2176 return false;
2177 }
2178
2179 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2180 /// possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)2181 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2182 SCEV::NoWrapFlags Flags) {
2183 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2184 "only nuw or nsw allowed");
2185 assert(!Ops.empty() && "Cannot get empty mul!");
2186 if (Ops.size() == 1) return Ops[0];
2187 #ifndef NDEBUG
2188 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2189 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2190 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2191 "SCEVMulExpr operand types don't match!");
2192 #endif
2193
2194 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2195
2196 // Sort by complexity, this groups all similar expression types together.
2197 GroupByComplexity(Ops, LI);
2198
2199 // If there are any constants, fold them together.
2200 unsigned Idx = 0;
2201 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2202
2203 // C1*(C2+V) -> C1*C2 + C1*V
2204 if (Ops.size() == 2)
2205 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2206 // If any of Add's ops are Adds or Muls with a constant,
2207 // apply this transformation as well.
2208 if (Add->getNumOperands() == 2)
2209 if (containsConstantSomewhere(Add))
2210 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2211 getMulExpr(LHSC, Add->getOperand(1)));
2212
2213 ++Idx;
2214 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2215 // We found two constants, fold them together!
2216 ConstantInt *Fold = ConstantInt::get(getContext(),
2217 LHSC->getValue()->getValue() *
2218 RHSC->getValue()->getValue());
2219 Ops[0] = getConstant(Fold);
2220 Ops.erase(Ops.begin()+1); // Erase the folded element
2221 if (Ops.size() == 1) return Ops[0];
2222 LHSC = cast<SCEVConstant>(Ops[0]);
2223 }
2224
2225 // If we are left with a constant one being multiplied, strip it off.
2226 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2227 Ops.erase(Ops.begin());
2228 --Idx;
2229 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2230 // If we have a multiply of zero, it will always be zero.
2231 return Ops[0];
2232 } else if (Ops[0]->isAllOnesValue()) {
2233 // If we have a mul by -1 of an add, try distributing the -1 among the
2234 // add operands.
2235 if (Ops.size() == 2) {
2236 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2237 SmallVector<const SCEV *, 4> NewOps;
2238 bool AnyFolded = false;
2239 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2240 E = Add->op_end(); I != E; ++I) {
2241 const SCEV *Mul = getMulExpr(Ops[0], *I);
2242 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2243 NewOps.push_back(Mul);
2244 }
2245 if (AnyFolded)
2246 return getAddExpr(NewOps);
2247 }
2248 else if (const SCEVAddRecExpr *
2249 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2250 // Negation preserves a recurrence's no self-wrap property.
2251 SmallVector<const SCEV *, 4> Operands;
2252 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2253 E = AddRec->op_end(); I != E; ++I) {
2254 Operands.push_back(getMulExpr(Ops[0], *I));
2255 }
2256 return getAddRecExpr(Operands, AddRec->getLoop(),
2257 AddRec->getNoWrapFlags(SCEV::FlagNW));
2258 }
2259 }
2260 }
2261
2262 if (Ops.size() == 1)
2263 return Ops[0];
2264 }
2265
2266 // Skip over the add expression until we get to a multiply.
2267 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2268 ++Idx;
2269
2270 // If there are mul operands inline them all into this expression.
2271 if (Idx < Ops.size()) {
2272 bool DeletedMul = false;
2273 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2274 // If we have an mul, expand the mul operands onto the end of the operands
2275 // list.
2276 Ops.erase(Ops.begin()+Idx);
2277 Ops.append(Mul->op_begin(), Mul->op_end());
2278 DeletedMul = true;
2279 }
2280
2281 // If we deleted at least one mul, we added operands to the end of the list,
2282 // and they are not necessarily sorted. Recurse to resort and resimplify
2283 // any operands we just acquired.
2284 if (DeletedMul)
2285 return getMulExpr(Ops);
2286 }
2287
2288 // If there are any add recurrences in the operands list, see if any other
2289 // added values are loop invariant. If so, we can fold them into the
2290 // recurrence.
2291 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2292 ++Idx;
2293
2294 // Scan over all recurrences, trying to fold loop invariants into them.
2295 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2296 // Scan all of the other operands to this mul and add them to the vector if
2297 // they are loop invariant w.r.t. the recurrence.
2298 SmallVector<const SCEV *, 8> LIOps;
2299 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2300 const Loop *AddRecLoop = AddRec->getLoop();
2301 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2302 if (isLoopInvariant(Ops[i], AddRecLoop)) {
2303 LIOps.push_back(Ops[i]);
2304 Ops.erase(Ops.begin()+i);
2305 --i; --e;
2306 }
2307
2308 // If we found some loop invariants, fold them into the recurrence.
2309 if (!LIOps.empty()) {
2310 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2311 SmallVector<const SCEV *, 4> NewOps;
2312 NewOps.reserve(AddRec->getNumOperands());
2313 const SCEV *Scale = getMulExpr(LIOps);
2314 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2315 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2316
2317 // Build the new addrec. Propagate the NUW and NSW flags if both the
2318 // outer mul and the inner addrec are guaranteed to have no overflow.
2319 //
2320 // No self-wrap cannot be guaranteed after changing the step size, but
2321 // will be inferred if either NUW or NSW is true.
2322 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2323 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2324
2325 // If all of the other operands were loop invariant, we are done.
2326 if (Ops.size() == 1) return NewRec;
2327
2328 // Otherwise, multiply the folded AddRec by the non-invariant parts.
2329 for (unsigned i = 0;; ++i)
2330 if (Ops[i] == AddRec) {
2331 Ops[i] = NewRec;
2332 break;
2333 }
2334 return getMulExpr(Ops);
2335 }
2336
2337 // Okay, if there weren't any loop invariants to be folded, check to see if
2338 // there are multiple AddRec's with the same loop induction variable being
2339 // multiplied together. If so, we can fold them.
2340
2341 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2342 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2343 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2344 // ]]],+,...up to x=2n}.
2345 // Note that the arguments to choose() are always integers with values
2346 // known at compile time, never SCEV objects.
2347 //
2348 // The implementation avoids pointless extra computations when the two
2349 // addrec's are of different length (mathematically, it's equivalent to
2350 // an infinite stream of zeros on the right).
2351 bool OpsModified = false;
2352 for (unsigned OtherIdx = Idx+1;
2353 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2354 ++OtherIdx) {
2355 const SCEVAddRecExpr *OtherAddRec =
2356 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2357 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2358 continue;
2359
2360 bool Overflow = false;
2361 Type *Ty = AddRec->getType();
2362 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2363 SmallVector<const SCEV*, 7> AddRecOps;
2364 for (int x = 0, xe = AddRec->getNumOperands() +
2365 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2366 const SCEV *Term = getConstant(Ty, 0);
2367 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2368 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2369 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2370 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2371 z < ze && !Overflow; ++z) {
2372 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2373 uint64_t Coeff;
2374 if (LargerThan64Bits)
2375 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2376 else
2377 Coeff = Coeff1*Coeff2;
2378 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2379 const SCEV *Term1 = AddRec->getOperand(y-z);
2380 const SCEV *Term2 = OtherAddRec->getOperand(z);
2381 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2382 }
2383 }
2384 AddRecOps.push_back(Term);
2385 }
2386 if (!Overflow) {
2387 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2388 SCEV::FlagAnyWrap);
2389 if (Ops.size() == 2) return NewAddRec;
2390 Ops[Idx] = NewAddRec;
2391 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2392 OpsModified = true;
2393 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2394 if (!AddRec)
2395 break;
2396 }
2397 }
2398 if (OpsModified)
2399 return getMulExpr(Ops);
2400
2401 // Otherwise couldn't fold anything into this recurrence. Move onto the
2402 // next one.
2403 }
2404
2405 // Okay, it looks like we really DO need an mul expr. Check to see if we
2406 // already have one, otherwise create a new one.
2407 FoldingSetNodeID ID;
2408 ID.AddInteger(scMulExpr);
2409 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2410 ID.AddPointer(Ops[i]);
2411 void *IP = nullptr;
2412 SCEVMulExpr *S =
2413 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2414 if (!S) {
2415 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2416 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2417 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2418 O, Ops.size());
2419 UniqueSCEVs.InsertNode(S, IP);
2420 }
2421 S->setNoWrapFlags(Flags);
2422 return S;
2423 }
2424
2425 /// getUDivExpr - Get a canonical unsigned division expression, or something
2426 /// simpler if possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)2427 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2428 const SCEV *RHS) {
2429 assert(getEffectiveSCEVType(LHS->getType()) ==
2430 getEffectiveSCEVType(RHS->getType()) &&
2431 "SCEVUDivExpr operand types don't match!");
2432
2433 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2434 if (RHSC->getValue()->equalsInt(1))
2435 return LHS; // X udiv 1 --> x
2436 // If the denominator is zero, the result of the udiv is undefined. Don't
2437 // try to analyze it, because the resolution chosen here may differ from
2438 // the resolution chosen in other parts of the compiler.
2439 if (!RHSC->getValue()->isZero()) {
2440 // Determine if the division can be folded into the operands of
2441 // its operands.
2442 // TODO: Generalize this to non-constants by using known-bits information.
2443 Type *Ty = LHS->getType();
2444 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2445 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2446 // For non-power-of-two values, effectively round the value up to the
2447 // nearest power of two.
2448 if (!RHSC->getValue()->getValue().isPowerOf2())
2449 ++MaxShiftAmt;
2450 IntegerType *ExtTy =
2451 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2452 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2453 if (const SCEVConstant *Step =
2454 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2455 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2456 const APInt &StepInt = Step->getValue()->getValue();
2457 const APInt &DivInt = RHSC->getValue()->getValue();
2458 if (!StepInt.urem(DivInt) &&
2459 getZeroExtendExpr(AR, ExtTy) ==
2460 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2461 getZeroExtendExpr(Step, ExtTy),
2462 AR->getLoop(), SCEV::FlagAnyWrap)) {
2463 SmallVector<const SCEV *, 4> Operands;
2464 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2465 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2466 return getAddRecExpr(Operands, AR->getLoop(),
2467 SCEV::FlagNW);
2468 }
2469 /// Get a canonical UDivExpr for a recurrence.
2470 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2471 // We can currently only fold X%N if X is constant.
2472 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2473 if (StartC && !DivInt.urem(StepInt) &&
2474 getZeroExtendExpr(AR, ExtTy) ==
2475 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2476 getZeroExtendExpr(Step, ExtTy),
2477 AR->getLoop(), SCEV::FlagAnyWrap)) {
2478 const APInt &StartInt = StartC->getValue()->getValue();
2479 const APInt &StartRem = StartInt.urem(StepInt);
2480 if (StartRem != 0)
2481 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2482 AR->getLoop(), SCEV::FlagNW);
2483 }
2484 }
2485 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2486 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2487 SmallVector<const SCEV *, 4> Operands;
2488 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2489 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2490 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2491 // Find an operand that's safely divisible.
2492 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2493 const SCEV *Op = M->getOperand(i);
2494 const SCEV *Div = getUDivExpr(Op, RHSC);
2495 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2496 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2497 M->op_end());
2498 Operands[i] = Div;
2499 return getMulExpr(Operands);
2500 }
2501 }
2502 }
2503 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2504 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2505 SmallVector<const SCEV *, 4> Operands;
2506 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2507 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2508 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2509 Operands.clear();
2510 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2511 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2512 if (isa<SCEVUDivExpr>(Op) ||
2513 getMulExpr(Op, RHS) != A->getOperand(i))
2514 break;
2515 Operands.push_back(Op);
2516 }
2517 if (Operands.size() == A->getNumOperands())
2518 return getAddExpr(Operands);
2519 }
2520 }
2521
2522 // Fold if both operands are constant.
2523 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2524 Constant *LHSCV = LHSC->getValue();
2525 Constant *RHSCV = RHSC->getValue();
2526 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2527 RHSCV)));
2528 }
2529 }
2530 }
2531
2532 FoldingSetNodeID ID;
2533 ID.AddInteger(scUDivExpr);
2534 ID.AddPointer(LHS);
2535 ID.AddPointer(RHS);
2536 void *IP = nullptr;
2537 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2538 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2539 LHS, RHS);
2540 UniqueSCEVs.InsertNode(S, IP);
2541 return S;
2542 }
2543
gcd(const SCEVConstant * C1,const SCEVConstant * C2)2544 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2545 APInt A = C1->getValue()->getValue().abs();
2546 APInt B = C2->getValue()->getValue().abs();
2547 uint32_t ABW = A.getBitWidth();
2548 uint32_t BBW = B.getBitWidth();
2549
2550 if (ABW > BBW)
2551 B = B.zext(ABW);
2552 else if (ABW < BBW)
2553 A = A.zext(BBW);
2554
2555 return APIntOps::GreatestCommonDivisor(A, B);
2556 }
2557
2558 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2559 /// something simpler if possible. There is no representation for an exact udiv
2560 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2561 /// We can't do this when it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)2562 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2563 const SCEV *RHS) {
2564 // TODO: we could try to find factors in all sorts of things, but for now we
2565 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2566 // end of this file for inspiration.
2567
2568 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2569 if (!Mul)
2570 return getUDivExpr(LHS, RHS);
2571
2572 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2573 // If the mulexpr multiplies by a constant, then that constant must be the
2574 // first element of the mulexpr.
2575 if (const SCEVConstant *LHSCst =
2576 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2577 if (LHSCst == RHSCst) {
2578 SmallVector<const SCEV *, 2> Operands;
2579 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2580 return getMulExpr(Operands);
2581 }
2582
2583 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2584 // that there's a factor provided by one of the other terms. We need to
2585 // check.
2586 APInt Factor = gcd(LHSCst, RHSCst);
2587 if (!Factor.isIntN(1)) {
2588 LHSCst = cast<SCEVConstant>(
2589 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2590 RHSCst = cast<SCEVConstant>(
2591 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2592 SmallVector<const SCEV *, 2> Operands;
2593 Operands.push_back(LHSCst);
2594 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2595 LHS = getMulExpr(Operands);
2596 RHS = RHSCst;
2597 Mul = dyn_cast<SCEVMulExpr>(LHS);
2598 if (!Mul)
2599 return getUDivExactExpr(LHS, RHS);
2600 }
2601 }
2602 }
2603
2604 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2605 if (Mul->getOperand(i) == RHS) {
2606 SmallVector<const SCEV *, 2> Operands;
2607 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2608 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2609 return getMulExpr(Operands);
2610 }
2611 }
2612
2613 return getUDivExpr(LHS, RHS);
2614 }
2615
2616 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2617 /// Simplify the expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)2618 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2619 const Loop *L,
2620 SCEV::NoWrapFlags Flags) {
2621 SmallVector<const SCEV *, 4> Operands;
2622 Operands.push_back(Start);
2623 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2624 if (StepChrec->getLoop() == L) {
2625 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2626 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2627 }
2628
2629 Operands.push_back(Step);
2630 return getAddRecExpr(Operands, L, Flags);
2631 }
2632
2633 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2634 /// Simplify the expression as much as possible.
2635 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)2636 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2637 const Loop *L, SCEV::NoWrapFlags Flags) {
2638 if (Operands.size() == 1) return Operands[0];
2639 #ifndef NDEBUG
2640 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2641 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2642 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2643 "SCEVAddRecExpr operand types don't match!");
2644 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2645 assert(isLoopInvariant(Operands[i], L) &&
2646 "SCEVAddRecExpr operand is not loop-invariant!");
2647 #endif
2648
2649 if (Operands.back()->isZero()) {
2650 Operands.pop_back();
2651 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
2652 }
2653
2654 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2655 // use that information to infer NUW and NSW flags. However, computing a
2656 // BE count requires calling getAddRecExpr, so we may not yet have a
2657 // meaningful BE count at this point (and if we don't, we'd be stuck
2658 // with a SCEVCouldNotCompute as the cached BE count).
2659
2660 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2661
2662 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2663 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2664 const Loop *NestedLoop = NestedAR->getLoop();
2665 if (L->contains(NestedLoop) ?
2666 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2667 (!NestedLoop->contains(L) &&
2668 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2669 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2670 NestedAR->op_end());
2671 Operands[0] = NestedAR->getStart();
2672 // AddRecs require their operands be loop-invariant with respect to their
2673 // loops. Don't perform this transformation if it would break this
2674 // requirement.
2675 bool AllInvariant = true;
2676 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2677 if (!isLoopInvariant(Operands[i], L)) {
2678 AllInvariant = false;
2679 break;
2680 }
2681 if (AllInvariant) {
2682 // Create a recurrence for the outer loop with the same step size.
2683 //
2684 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2685 // inner recurrence has the same property.
2686 SCEV::NoWrapFlags OuterFlags =
2687 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2688
2689 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2690 AllInvariant = true;
2691 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2692 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2693 AllInvariant = false;
2694 break;
2695 }
2696 if (AllInvariant) {
2697 // Ok, both add recurrences are valid after the transformation.
2698 //
2699 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2700 // the outer recurrence has the same property.
2701 SCEV::NoWrapFlags InnerFlags =
2702 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2703 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2704 }
2705 }
2706 // Reset Operands to its original state.
2707 Operands[0] = NestedAR;
2708 }
2709 }
2710
2711 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2712 // already have one, otherwise create a new one.
2713 FoldingSetNodeID ID;
2714 ID.AddInteger(scAddRecExpr);
2715 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2716 ID.AddPointer(Operands[i]);
2717 ID.AddPointer(L);
2718 void *IP = nullptr;
2719 SCEVAddRecExpr *S =
2720 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2721 if (!S) {
2722 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2723 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2724 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2725 O, Operands.size(), L);
2726 UniqueSCEVs.InsertNode(S, IP);
2727 }
2728 S->setNoWrapFlags(Flags);
2729 return S;
2730 }
2731
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)2732 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2733 const SCEV *RHS) {
2734 SmallVector<const SCEV *, 2> Ops;
2735 Ops.push_back(LHS);
2736 Ops.push_back(RHS);
2737 return getSMaxExpr(Ops);
2738 }
2739
2740 const SCEV *
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)2741 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2742 assert(!Ops.empty() && "Cannot get empty smax!");
2743 if (Ops.size() == 1) return Ops[0];
2744 #ifndef NDEBUG
2745 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2746 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2747 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2748 "SCEVSMaxExpr operand types don't match!");
2749 #endif
2750
2751 // Sort by complexity, this groups all similar expression types together.
2752 GroupByComplexity(Ops, LI);
2753
2754 // If there are any constants, fold them together.
2755 unsigned Idx = 0;
2756 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2757 ++Idx;
2758 assert(Idx < Ops.size());
2759 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2760 // We found two constants, fold them together!
2761 ConstantInt *Fold = ConstantInt::get(getContext(),
2762 APIntOps::smax(LHSC->getValue()->getValue(),
2763 RHSC->getValue()->getValue()));
2764 Ops[0] = getConstant(Fold);
2765 Ops.erase(Ops.begin()+1); // Erase the folded element
2766 if (Ops.size() == 1) return Ops[0];
2767 LHSC = cast<SCEVConstant>(Ops[0]);
2768 }
2769
2770 // If we are left with a constant minimum-int, strip it off.
2771 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2772 Ops.erase(Ops.begin());
2773 --Idx;
2774 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2775 // If we have an smax with a constant maximum-int, it will always be
2776 // maximum-int.
2777 return Ops[0];
2778 }
2779
2780 if (Ops.size() == 1) return Ops[0];
2781 }
2782
2783 // Find the first SMax
2784 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2785 ++Idx;
2786
2787 // Check to see if one of the operands is an SMax. If so, expand its operands
2788 // onto our operand list, and recurse to simplify.
2789 if (Idx < Ops.size()) {
2790 bool DeletedSMax = false;
2791 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2792 Ops.erase(Ops.begin()+Idx);
2793 Ops.append(SMax->op_begin(), SMax->op_end());
2794 DeletedSMax = true;
2795 }
2796
2797 if (DeletedSMax)
2798 return getSMaxExpr(Ops);
2799 }
2800
2801 // Okay, check to see if the same value occurs in the operand list twice. If
2802 // so, delete one. Since we sorted the list, these values are required to
2803 // be adjacent.
2804 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2805 // X smax Y smax Y --> X smax Y
2806 // X smax Y --> X, if X is always greater than Y
2807 if (Ops[i] == Ops[i+1] ||
2808 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2809 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2810 --i; --e;
2811 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2812 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2813 --i; --e;
2814 }
2815
2816 if (Ops.size() == 1) return Ops[0];
2817
2818 assert(!Ops.empty() && "Reduced smax down to nothing!");
2819
2820 // Okay, it looks like we really DO need an smax expr. Check to see if we
2821 // already have one, otherwise create a new one.
2822 FoldingSetNodeID ID;
2823 ID.AddInteger(scSMaxExpr);
2824 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2825 ID.AddPointer(Ops[i]);
2826 void *IP = nullptr;
2827 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2828 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2829 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2830 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2831 O, Ops.size());
2832 UniqueSCEVs.InsertNode(S, IP);
2833 return S;
2834 }
2835
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)2836 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2837 const SCEV *RHS) {
2838 SmallVector<const SCEV *, 2> Ops;
2839 Ops.push_back(LHS);
2840 Ops.push_back(RHS);
2841 return getUMaxExpr(Ops);
2842 }
2843
2844 const SCEV *
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)2845 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2846 assert(!Ops.empty() && "Cannot get empty umax!");
2847 if (Ops.size() == 1) return Ops[0];
2848 #ifndef NDEBUG
2849 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2850 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2851 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2852 "SCEVUMaxExpr operand types don't match!");
2853 #endif
2854
2855 // Sort by complexity, this groups all similar expression types together.
2856 GroupByComplexity(Ops, LI);
2857
2858 // If there are any constants, fold them together.
2859 unsigned Idx = 0;
2860 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2861 ++Idx;
2862 assert(Idx < Ops.size());
2863 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2864 // We found two constants, fold them together!
2865 ConstantInt *Fold = ConstantInt::get(getContext(),
2866 APIntOps::umax(LHSC->getValue()->getValue(),
2867 RHSC->getValue()->getValue()));
2868 Ops[0] = getConstant(Fold);
2869 Ops.erase(Ops.begin()+1); // Erase the folded element
2870 if (Ops.size() == 1) return Ops[0];
2871 LHSC = cast<SCEVConstant>(Ops[0]);
2872 }
2873
2874 // If we are left with a constant minimum-int, strip it off.
2875 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2876 Ops.erase(Ops.begin());
2877 --Idx;
2878 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2879 // If we have an umax with a constant maximum-int, it will always be
2880 // maximum-int.
2881 return Ops[0];
2882 }
2883
2884 if (Ops.size() == 1) return Ops[0];
2885 }
2886
2887 // Find the first UMax
2888 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2889 ++Idx;
2890
2891 // Check to see if one of the operands is a UMax. If so, expand its operands
2892 // onto our operand list, and recurse to simplify.
2893 if (Idx < Ops.size()) {
2894 bool DeletedUMax = false;
2895 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2896 Ops.erase(Ops.begin()+Idx);
2897 Ops.append(UMax->op_begin(), UMax->op_end());
2898 DeletedUMax = true;
2899 }
2900
2901 if (DeletedUMax)
2902 return getUMaxExpr(Ops);
2903 }
2904
2905 // Okay, check to see if the same value occurs in the operand list twice. If
2906 // so, delete one. Since we sorted the list, these values are required to
2907 // be adjacent.
2908 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2909 // X umax Y umax Y --> X umax Y
2910 // X umax Y --> X, if X is always greater than Y
2911 if (Ops[i] == Ops[i+1] ||
2912 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2913 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2914 --i; --e;
2915 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2916 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2917 --i; --e;
2918 }
2919
2920 if (Ops.size() == 1) return Ops[0];
2921
2922 assert(!Ops.empty() && "Reduced umax down to nothing!");
2923
2924 // Okay, it looks like we really DO need a umax expr. Check to see if we
2925 // already have one, otherwise create a new one.
2926 FoldingSetNodeID ID;
2927 ID.AddInteger(scUMaxExpr);
2928 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2929 ID.AddPointer(Ops[i]);
2930 void *IP = nullptr;
2931 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2932 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2933 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2934 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2935 O, Ops.size());
2936 UniqueSCEVs.InsertNode(S, IP);
2937 return S;
2938 }
2939
getSMinExpr(const SCEV * LHS,const SCEV * RHS)2940 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2941 const SCEV *RHS) {
2942 // ~smax(~x, ~y) == smin(x, y).
2943 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2944 }
2945
getUMinExpr(const SCEV * LHS,const SCEV * RHS)2946 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2947 const SCEV *RHS) {
2948 // ~umax(~x, ~y) == umin(x, y)
2949 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2950 }
2951
getSizeOfExpr(Type * IntTy,Type * AllocTy)2952 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
2953 // If we have DataLayout, we can bypass creating a target-independent
2954 // constant expression and then folding it back into a ConstantInt.
2955 // This is just a compile-time optimization.
2956 if (DL)
2957 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
2958
2959 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2960 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2961 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
2962 C = Folded;
2963 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2964 assert(Ty == IntTy && "Effective SCEV type doesn't match");
2965 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2966 }
2967
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)2968 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2969 StructType *STy,
2970 unsigned FieldNo) {
2971 // If we have DataLayout, we can bypass creating a target-independent
2972 // constant expression and then folding it back into a ConstantInt.
2973 // This is just a compile-time optimization.
2974 if (DL) {
2975 return getConstant(IntTy,
2976 DL->getStructLayout(STy)->getElementOffset(FieldNo));
2977 }
2978
2979 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2980 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2981 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
2982 C = Folded;
2983
2984 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2985 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2986 }
2987
getUnknown(Value * V)2988 const SCEV *ScalarEvolution::getUnknown(Value *V) {
2989 // Don't attempt to do anything other than create a SCEVUnknown object
2990 // here. createSCEV only calls getUnknown after checking for all other
2991 // interesting possibilities, and any other code that calls getUnknown
2992 // is doing so in order to hide a value from SCEV canonicalization.
2993
2994 FoldingSetNodeID ID;
2995 ID.AddInteger(scUnknown);
2996 ID.AddPointer(V);
2997 void *IP = nullptr;
2998 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2999 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3000 "Stale SCEVUnknown in uniquing map!");
3001 return S;
3002 }
3003 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3004 FirstUnknown);
3005 FirstUnknown = cast<SCEVUnknown>(S);
3006 UniqueSCEVs.InsertNode(S, IP);
3007 return S;
3008 }
3009
3010 //===----------------------------------------------------------------------===//
3011 // Basic SCEV Analysis and PHI Idiom Recognition Code
3012 //
3013
3014 /// isSCEVable - Test if values of the given type are analyzable within
3015 /// the SCEV framework. This primarily includes integer types, and it
3016 /// can optionally include pointer types if the ScalarEvolution class
3017 /// has access to target-specific information.
isSCEVable(Type * Ty) const3018 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3019 // Integers and pointers are always SCEVable.
3020 return Ty->isIntegerTy() || Ty->isPointerTy();
3021 }
3022
3023 /// getTypeSizeInBits - Return the size in bits of the specified type,
3024 /// for which isSCEVable must return true.
getTypeSizeInBits(Type * Ty) const3025 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3026 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3027
3028 // If we have a DataLayout, use it!
3029 if (DL)
3030 return DL->getTypeSizeInBits(Ty);
3031
3032 // Integer types have fixed sizes.
3033 if (Ty->isIntegerTy())
3034 return Ty->getPrimitiveSizeInBits();
3035
3036 // The only other support type is pointer. Without DataLayout, conservatively
3037 // assume pointers are 64-bit.
3038 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
3039 return 64;
3040 }
3041
3042 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3043 /// the given type and which represents how SCEV will treat the given
3044 /// type, for which isSCEVable must return true. For pointer types,
3045 /// this is the pointer-sized integer type.
getEffectiveSCEVType(Type * Ty) const3046 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3047 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3048
3049 if (Ty->isIntegerTy()) {
3050 return Ty;
3051 }
3052
3053 // The only other support type is pointer.
3054 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3055
3056 if (DL)
3057 return DL->getIntPtrType(Ty);
3058
3059 // Without DataLayout, conservatively assume pointers are 64-bit.
3060 return Type::getInt64Ty(getContext());
3061 }
3062
getCouldNotCompute()3063 const SCEV *ScalarEvolution::getCouldNotCompute() {
3064 return &CouldNotCompute;
3065 }
3066
3067 namespace {
3068 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3069 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3070 // is set iff if find such SCEVUnknown.
3071 //
3072 struct FindInvalidSCEVUnknown {
3073 bool FindOne;
FindInvalidSCEVUnknown__anonbe70a9c90511::FindInvalidSCEVUnknown3074 FindInvalidSCEVUnknown() { FindOne = false; }
follow__anonbe70a9c90511::FindInvalidSCEVUnknown3075 bool follow(const SCEV *S) {
3076 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3077 case scConstant:
3078 return false;
3079 case scUnknown:
3080 if (!cast<SCEVUnknown>(S)->getValue())
3081 FindOne = true;
3082 return false;
3083 default:
3084 return true;
3085 }
3086 }
isDone__anonbe70a9c90511::FindInvalidSCEVUnknown3087 bool isDone() const { return FindOne; }
3088 };
3089 }
3090
checkValidity(const SCEV * S) const3091 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3092 FindInvalidSCEVUnknown F;
3093 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3094 ST.visitAll(S);
3095
3096 return !F.FindOne;
3097 }
3098
3099 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3100 /// expression and create a new one.
getSCEV(Value * V)3101 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3102 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3103
3104 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3105 if (I != ValueExprMap.end()) {
3106 const SCEV *S = I->second;
3107 if (checkValidity(S))
3108 return S;
3109 else
3110 ValueExprMap.erase(I);
3111 }
3112 const SCEV *S = createSCEV(V);
3113
3114 // The process of creating a SCEV for V may have caused other SCEVs
3115 // to have been created, so it's necessary to insert the new entry
3116 // from scratch, rather than trying to remember the insert position
3117 // above.
3118 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
3119 return S;
3120 }
3121
3122 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3123 ///
getNegativeSCEV(const SCEV * V)3124 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
3125 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3126 return getConstant(
3127 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3128
3129 Type *Ty = V->getType();
3130 Ty = getEffectiveSCEVType(Ty);
3131 return getMulExpr(V,
3132 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
3133 }
3134
3135 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)3136 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3137 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3138 return getConstant(
3139 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3140
3141 Type *Ty = V->getType();
3142 Ty = getEffectiveSCEVType(Ty);
3143 const SCEV *AllOnes =
3144 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3145 return getMinusSCEV(AllOnes, V);
3146 }
3147
3148 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags)3149 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3150 SCEV::NoWrapFlags Flags) {
3151 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3152
3153 // Fast path: X - X --> 0.
3154 if (LHS == RHS)
3155 return getConstant(LHS->getType(), 0);
3156
3157 // X - Y --> X + -Y.
3158 // X -(nsw || nuw) Y --> X + -Y.
3159 return getAddExpr(LHS, getNegativeSCEV(RHS));
3160 }
3161
3162 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3163 /// input value to the specified type. If the type must be extended, it is zero
3164 /// extended.
3165 const SCEV *
getTruncateOrZeroExtend(const SCEV * V,Type * Ty)3166 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3167 Type *SrcTy = V->getType();
3168 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3169 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3170 "Cannot truncate or zero extend with non-integer arguments!");
3171 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3172 return V; // No conversion
3173 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3174 return getTruncateExpr(V, Ty);
3175 return getZeroExtendExpr(V, Ty);
3176 }
3177
3178 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3179 /// input value to the specified type. If the type must be extended, it is sign
3180 /// extended.
3181 const SCEV *
getTruncateOrSignExtend(const SCEV * V,Type * Ty)3182 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3183 Type *Ty) {
3184 Type *SrcTy = V->getType();
3185 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3186 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3187 "Cannot truncate or zero extend with non-integer arguments!");
3188 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3189 return V; // No conversion
3190 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3191 return getTruncateExpr(V, Ty);
3192 return getSignExtendExpr(V, Ty);
3193 }
3194
3195 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3196 /// input value to the specified type. If the type must be extended, it is zero
3197 /// extended. The conversion must not be narrowing.
3198 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)3199 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3200 Type *SrcTy = V->getType();
3201 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3202 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3203 "Cannot noop or zero extend with non-integer arguments!");
3204 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3205 "getNoopOrZeroExtend cannot truncate!");
3206 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3207 return V; // No conversion
3208 return getZeroExtendExpr(V, Ty);
3209 }
3210
3211 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3212 /// input value to the specified type. If the type must be extended, it is sign
3213 /// extended. The conversion must not be narrowing.
3214 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)3215 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3216 Type *SrcTy = V->getType();
3217 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3218 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3219 "Cannot noop or sign extend with non-integer arguments!");
3220 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3221 "getNoopOrSignExtend cannot truncate!");
3222 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3223 return V; // No conversion
3224 return getSignExtendExpr(V, Ty);
3225 }
3226
3227 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3228 /// the input value to the specified type. If the type must be extended,
3229 /// it is extended with unspecified bits. The conversion must not be
3230 /// narrowing.
3231 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)3232 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3233 Type *SrcTy = V->getType();
3234 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3235 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3236 "Cannot noop or any extend with non-integer arguments!");
3237 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3238 "getNoopOrAnyExtend cannot truncate!");
3239 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3240 return V; // No conversion
3241 return getAnyExtendExpr(V, Ty);
3242 }
3243
3244 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3245 /// input value to the specified type. The conversion must not be widening.
3246 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)3247 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3248 Type *SrcTy = V->getType();
3249 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3250 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3251 "Cannot truncate or noop with non-integer arguments!");
3252 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3253 "getTruncateOrNoop cannot extend!");
3254 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3255 return V; // No conversion
3256 return getTruncateExpr(V, Ty);
3257 }
3258
3259 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3260 /// the types using zero-extension, and then perform a umax operation
3261 /// with them.
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)3262 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3263 const SCEV *RHS) {
3264 const SCEV *PromotedLHS = LHS;
3265 const SCEV *PromotedRHS = RHS;
3266
3267 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3268 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3269 else
3270 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3271
3272 return getUMaxExpr(PromotedLHS, PromotedRHS);
3273 }
3274
3275 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3276 /// the types using zero-extension, and then perform a umin operation
3277 /// with them.
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)3278 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3279 const SCEV *RHS) {
3280 const SCEV *PromotedLHS = LHS;
3281 const SCEV *PromotedRHS = RHS;
3282
3283 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3284 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3285 else
3286 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3287
3288 return getUMinExpr(PromotedLHS, PromotedRHS);
3289 }
3290
3291 /// getPointerBase - Transitively follow the chain of pointer-type operands
3292 /// until reaching a SCEV that does not have a single pointer operand. This
3293 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3294 /// but corner cases do exist.
getPointerBase(const SCEV * V)3295 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3296 // A pointer operand may evaluate to a nonpointer expression, such as null.
3297 if (!V->getType()->isPointerTy())
3298 return V;
3299
3300 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3301 return getPointerBase(Cast->getOperand());
3302 }
3303 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3304 const SCEV *PtrOp = nullptr;
3305 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3306 I != E; ++I) {
3307 if ((*I)->getType()->isPointerTy()) {
3308 // Cannot find the base of an expression with multiple pointer operands.
3309 if (PtrOp)
3310 return V;
3311 PtrOp = *I;
3312 }
3313 }
3314 if (!PtrOp)
3315 return V;
3316 return getPointerBase(PtrOp);
3317 }
3318 return V;
3319 }
3320
3321 /// PushDefUseChildren - Push users of the given Instruction
3322 /// onto the given Worklist.
3323 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)3324 PushDefUseChildren(Instruction *I,
3325 SmallVectorImpl<Instruction *> &Worklist) {
3326 // Push the def-use children onto the Worklist stack.
3327 for (User *U : I->users())
3328 Worklist.push_back(cast<Instruction>(U));
3329 }
3330
3331 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3332 /// instructions that depend on the given instruction and removes them from
3333 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3334 /// resolution.
3335 void
ForgetSymbolicName(Instruction * PN,const SCEV * SymName)3336 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3337 SmallVector<Instruction *, 16> Worklist;
3338 PushDefUseChildren(PN, Worklist);
3339
3340 SmallPtrSet<Instruction *, 8> Visited;
3341 Visited.insert(PN);
3342 while (!Worklist.empty()) {
3343 Instruction *I = Worklist.pop_back_val();
3344 if (!Visited.insert(I).second)
3345 continue;
3346
3347 ValueExprMapType::iterator It =
3348 ValueExprMap.find_as(static_cast<Value *>(I));
3349 if (It != ValueExprMap.end()) {
3350 const SCEV *Old = It->second;
3351
3352 // Short-circuit the def-use traversal if the symbolic name
3353 // ceases to appear in expressions.
3354 if (Old != SymName && !hasOperand(Old, SymName))
3355 continue;
3356
3357 // SCEVUnknown for a PHI either means that it has an unrecognized
3358 // structure, it's a PHI that's in the progress of being computed
3359 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3360 // additional loop trip count information isn't going to change anything.
3361 // In the second case, createNodeForPHI will perform the necessary
3362 // updates on its own when it gets to that point. In the third, we do
3363 // want to forget the SCEVUnknown.
3364 if (!isa<PHINode>(I) ||
3365 !isa<SCEVUnknown>(Old) ||
3366 (I != PN && Old == SymName)) {
3367 forgetMemoizedResults(Old);
3368 ValueExprMap.erase(It);
3369 }
3370 }
3371
3372 PushDefUseChildren(I, Worklist);
3373 }
3374 }
3375
3376 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3377 /// a loop header, making it a potential recurrence, or it doesn't.
3378 ///
createNodeForPHI(PHINode * PN)3379 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
3380 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3381 if (L->getHeader() == PN->getParent()) {
3382 // The loop may have multiple entrances or multiple exits; we can analyze
3383 // this phi as an addrec if it has a unique entry value and a unique
3384 // backedge value.
3385 Value *BEValueV = nullptr, *StartValueV = nullptr;
3386 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3387 Value *V = PN->getIncomingValue(i);
3388 if (L->contains(PN->getIncomingBlock(i))) {
3389 if (!BEValueV) {
3390 BEValueV = V;
3391 } else if (BEValueV != V) {
3392 BEValueV = nullptr;
3393 break;
3394 }
3395 } else if (!StartValueV) {
3396 StartValueV = V;
3397 } else if (StartValueV != V) {
3398 StartValueV = nullptr;
3399 break;
3400 }
3401 }
3402 if (BEValueV && StartValueV) {
3403 // While we are analyzing this PHI node, handle its value symbolically.
3404 const SCEV *SymbolicName = getUnknown(PN);
3405 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3406 "PHI node already processed?");
3407 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3408
3409 // Using this symbolic name for the PHI, analyze the value coming around
3410 // the back-edge.
3411 const SCEV *BEValue = getSCEV(BEValueV);
3412
3413 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3414 // has a special value for the first iteration of the loop.
3415
3416 // If the value coming around the backedge is an add with the symbolic
3417 // value we just inserted, then we found a simple induction variable!
3418 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3419 // If there is a single occurrence of the symbolic value, replace it
3420 // with a recurrence.
3421 unsigned FoundIndex = Add->getNumOperands();
3422 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3423 if (Add->getOperand(i) == SymbolicName)
3424 if (FoundIndex == e) {
3425 FoundIndex = i;
3426 break;
3427 }
3428
3429 if (FoundIndex != Add->getNumOperands()) {
3430 // Create an add with everything but the specified operand.
3431 SmallVector<const SCEV *, 8> Ops;
3432 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3433 if (i != FoundIndex)
3434 Ops.push_back(Add->getOperand(i));
3435 const SCEV *Accum = getAddExpr(Ops);
3436
3437 // This is not a valid addrec if the step amount is varying each
3438 // loop iteration, but is not itself an addrec in this loop.
3439 if (isLoopInvariant(Accum, L) ||
3440 (isa<SCEVAddRecExpr>(Accum) &&
3441 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3442 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3443
3444 // If the increment doesn't overflow, then neither the addrec nor
3445 // the post-increment will overflow.
3446 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3447 if (OBO->hasNoUnsignedWrap())
3448 Flags = setFlags(Flags, SCEV::FlagNUW);
3449 if (OBO->hasNoSignedWrap())
3450 Flags = setFlags(Flags, SCEV::FlagNSW);
3451 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3452 // If the increment is an inbounds GEP, then we know the address
3453 // space cannot be wrapped around. We cannot make any guarantee
3454 // about signed or unsigned overflow because pointers are
3455 // unsigned but we may have a negative index from the base
3456 // pointer. We can guarantee that no unsigned wrap occurs if the
3457 // indices form a positive value.
3458 if (GEP->isInBounds()) {
3459 Flags = setFlags(Flags, SCEV::FlagNW);
3460
3461 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3462 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3463 Flags = setFlags(Flags, SCEV::FlagNUW);
3464 }
3465
3466 // We cannot transfer nuw and nsw flags from subtraction
3467 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3468 // for instance.
3469 }
3470
3471 const SCEV *StartVal = getSCEV(StartValueV);
3472 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3473
3474 // Since the no-wrap flags are on the increment, they apply to the
3475 // post-incremented value as well.
3476 if (isLoopInvariant(Accum, L))
3477 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3478 Accum, L, Flags);
3479
3480 // Okay, for the entire analysis of this edge we assumed the PHI
3481 // to be symbolic. We now need to go back and purge all of the
3482 // entries for the scalars that use the symbolic expression.
3483 ForgetSymbolicName(PN, SymbolicName);
3484 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3485 return PHISCEV;
3486 }
3487 }
3488 } else if (const SCEVAddRecExpr *AddRec =
3489 dyn_cast<SCEVAddRecExpr>(BEValue)) {
3490 // Otherwise, this could be a loop like this:
3491 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3492 // In this case, j = {1,+,1} and BEValue is j.
3493 // Because the other in-value of i (0) fits the evolution of BEValue
3494 // i really is an addrec evolution.
3495 if (AddRec->getLoop() == L && AddRec->isAffine()) {
3496 const SCEV *StartVal = getSCEV(StartValueV);
3497
3498 // If StartVal = j.start - j.stride, we can use StartVal as the
3499 // initial step of the addrec evolution.
3500 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3501 AddRec->getOperand(1))) {
3502 // FIXME: For constant StartVal, we should be able to infer
3503 // no-wrap flags.
3504 const SCEV *PHISCEV =
3505 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3506 SCEV::FlagAnyWrap);
3507
3508 // Okay, for the entire analysis of this edge we assumed the PHI
3509 // to be symbolic. We now need to go back and purge all of the
3510 // entries for the scalars that use the symbolic expression.
3511 ForgetSymbolicName(PN, SymbolicName);
3512 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3513 return PHISCEV;
3514 }
3515 }
3516 }
3517 }
3518 }
3519
3520 // If the PHI has a single incoming value, follow that value, unless the
3521 // PHI's incoming blocks are in a different loop, in which case doing so
3522 // risks breaking LCSSA form. Instcombine would normally zap these, but
3523 // it doesn't have DominatorTree information, so it may miss cases.
3524 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC))
3525 if (LI->replacementPreservesLCSSAForm(PN, V))
3526 return getSCEV(V);
3527
3528 // If it's not a loop phi, we can't handle it yet.
3529 return getUnknown(PN);
3530 }
3531
3532 /// createNodeForGEP - Expand GEP instructions into add and multiply
3533 /// operations. This allows them to be analyzed by regular SCEV code.
3534 ///
createNodeForGEP(GEPOperator * GEP)3535 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3536 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3537 Value *Base = GEP->getOperand(0);
3538 // Don't attempt to analyze GEPs over unsized objects.
3539 if (!Base->getType()->getPointerElementType()->isSized())
3540 return getUnknown(GEP);
3541
3542 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3543 // Add expression, because the Instruction may be guarded by control flow
3544 // and the no-overflow bits may not be valid for the expression in any
3545 // context.
3546 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3547
3548 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3549 gep_type_iterator GTI = gep_type_begin(GEP);
3550 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
3551 E = GEP->op_end();
3552 I != E; ++I) {
3553 Value *Index = *I;
3554 // Compute the (potentially symbolic) offset in bytes for this index.
3555 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3556 // For a struct, add the member offset.
3557 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3558 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3559
3560 // Add the field offset to the running total offset.
3561 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3562 } else {
3563 // For an array, add the element offset, explicitly scaled.
3564 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
3565 const SCEV *IndexS = getSCEV(Index);
3566 // Getelementptr indices are signed.
3567 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3568
3569 // Multiply the index by the element size to compute the element offset.
3570 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
3571
3572 // Add the element offset to the running total offset.
3573 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3574 }
3575 }
3576
3577 // Get the SCEV for the GEP base.
3578 const SCEV *BaseS = getSCEV(Base);
3579
3580 // Add the total offset from all the GEP indices to the base.
3581 return getAddExpr(BaseS, TotalOffset, Wrap);
3582 }
3583
3584 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3585 /// guaranteed to end in (at every loop iteration). It is, at the same time,
3586 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3587 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
3588 uint32_t
GetMinTrailingZeros(const SCEV * S)3589 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3590 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3591 return C->getValue()->getValue().countTrailingZeros();
3592
3593 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3594 return std::min(GetMinTrailingZeros(T->getOperand()),
3595 (uint32_t)getTypeSizeInBits(T->getType()));
3596
3597 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3598 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3599 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3600 getTypeSizeInBits(E->getType()) : OpRes;
3601 }
3602
3603 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3604 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3605 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3606 getTypeSizeInBits(E->getType()) : OpRes;
3607 }
3608
3609 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3610 // The result is the min of all operands results.
3611 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3612 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3613 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3614 return MinOpRes;
3615 }
3616
3617 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3618 // The result is the sum of all operands results.
3619 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3620 uint32_t BitWidth = getTypeSizeInBits(M->getType());
3621 for (unsigned i = 1, e = M->getNumOperands();
3622 SumOpRes != BitWidth && i != e; ++i)
3623 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3624 BitWidth);
3625 return SumOpRes;
3626 }
3627
3628 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3629 // The result is the min of all operands results.
3630 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3631 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3632 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3633 return MinOpRes;
3634 }
3635
3636 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3637 // The result is the min of all operands results.
3638 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3639 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3640 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3641 return MinOpRes;
3642 }
3643
3644 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3645 // The result is the min of all operands results.
3646 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3647 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3648 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3649 return MinOpRes;
3650 }
3651
3652 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3653 // For a SCEVUnknown, ask ValueTracking.
3654 unsigned BitWidth = getTypeSizeInBits(U->getType());
3655 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3656 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
3657 return Zeros.countTrailingOnes();
3658 }
3659
3660 // SCEVUDivExpr
3661 return 0;
3662 }
3663
3664 /// GetRangeFromMetadata - Helper method to assign a range to V from
3665 /// metadata present in the IR.
GetRangeFromMetadata(Value * V)3666 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3667 if (Instruction *I = dyn_cast<Instruction>(V)) {
3668 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
3669 ConstantRange TotalRange(
3670 cast<IntegerType>(I->getType())->getBitWidth(), false);
3671
3672 unsigned NumRanges = MD->getNumOperands() / 2;
3673 assert(NumRanges >= 1);
3674
3675 for (unsigned i = 0; i < NumRanges; ++i) {
3676 ConstantInt *Lower =
3677 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3678 ConstantInt *Upper =
3679 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
3680 ConstantRange Range(Lower->getValue(), Upper->getValue());
3681 TotalRange = TotalRange.unionWith(Range);
3682 }
3683
3684 return TotalRange;
3685 }
3686 }
3687
3688 return None;
3689 }
3690
3691 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3692 ///
3693 ConstantRange
getUnsignedRange(const SCEV * S)3694 ScalarEvolution::getUnsignedRange(const SCEV *S) {
3695 // See if we've computed this range already.
3696 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3697 if (I != UnsignedRanges.end())
3698 return I->second;
3699
3700 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3701 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3702
3703 unsigned BitWidth = getTypeSizeInBits(S->getType());
3704 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3705
3706 // If the value has known zeros, the maximum unsigned value will have those
3707 // known zeros as well.
3708 uint32_t TZ = GetMinTrailingZeros(S);
3709 if (TZ != 0)
3710 ConservativeResult =
3711 ConstantRange(APInt::getMinValue(BitWidth),
3712 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3713
3714 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3715 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3716 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3717 X = X.add(getUnsignedRange(Add->getOperand(i)));
3718 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3719 }
3720
3721 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3722 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3723 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3724 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3725 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3726 }
3727
3728 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3729 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3730 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3731 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3732 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3733 }
3734
3735 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3736 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3737 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3738 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3739 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3740 }
3741
3742 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3743 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3744 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3745 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3746 }
3747
3748 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3749 ConstantRange X = getUnsignedRange(ZExt->getOperand());
3750 return setUnsignedRange(ZExt,
3751 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3752 }
3753
3754 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3755 ConstantRange X = getUnsignedRange(SExt->getOperand());
3756 return setUnsignedRange(SExt,
3757 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3758 }
3759
3760 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3761 ConstantRange X = getUnsignedRange(Trunc->getOperand());
3762 return setUnsignedRange(Trunc,
3763 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3764 }
3765
3766 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3767 // If there's no unsigned wrap, the value will never be less than its
3768 // initial value.
3769 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3770 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3771 if (!C->getValue()->isZero())
3772 ConservativeResult =
3773 ConservativeResult.intersectWith(
3774 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3775
3776 // TODO: non-affine addrec
3777 if (AddRec->isAffine()) {
3778 Type *Ty = AddRec->getType();
3779 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3780 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3781 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3782 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3783
3784 const SCEV *Start = AddRec->getStart();
3785 const SCEV *Step = AddRec->getStepRecurrence(*this);
3786
3787 ConstantRange StartRange = getUnsignedRange(Start);
3788 ConstantRange StepRange = getSignedRange(Step);
3789 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3790 ConstantRange EndRange =
3791 StartRange.add(MaxBECountRange.multiply(StepRange));
3792
3793 // Check for overflow. This must be done with ConstantRange arithmetic
3794 // because we could be called from within the ScalarEvolution overflow
3795 // checking code.
3796 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3797 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3798 ConstantRange ExtMaxBECountRange =
3799 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3800 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3801 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3802 ExtEndRange)
3803 return setUnsignedRange(AddRec, ConservativeResult);
3804
3805 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3806 EndRange.getUnsignedMin());
3807 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3808 EndRange.getUnsignedMax());
3809 if (Min.isMinValue() && Max.isMaxValue())
3810 return setUnsignedRange(AddRec, ConservativeResult);
3811 return setUnsignedRange(AddRec,
3812 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3813 }
3814 }
3815
3816 return setUnsignedRange(AddRec, ConservativeResult);
3817 }
3818
3819 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3820 // Check if the IR explicitly contains !range metadata.
3821 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3822 if (MDRange.hasValue())
3823 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3824
3825 // For a SCEVUnknown, ask ValueTracking.
3826 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3827 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
3828 if (Ones == ~Zeros + 1)
3829 return setUnsignedRange(U, ConservativeResult);
3830 return setUnsignedRange(U,
3831 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3832 }
3833
3834 return setUnsignedRange(S, ConservativeResult);
3835 }
3836
3837 /// getSignedRange - Determine the signed range for a particular SCEV.
3838 ///
3839 ConstantRange
getSignedRange(const SCEV * S)3840 ScalarEvolution::getSignedRange(const SCEV *S) {
3841 // See if we've computed this range already.
3842 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3843 if (I != SignedRanges.end())
3844 return I->second;
3845
3846 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3847 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3848
3849 unsigned BitWidth = getTypeSizeInBits(S->getType());
3850 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3851
3852 // If the value has known zeros, the maximum signed value will have those
3853 // known zeros as well.
3854 uint32_t TZ = GetMinTrailingZeros(S);
3855 if (TZ != 0)
3856 ConservativeResult =
3857 ConstantRange(APInt::getSignedMinValue(BitWidth),
3858 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3859
3860 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3861 ConstantRange X = getSignedRange(Add->getOperand(0));
3862 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3863 X = X.add(getSignedRange(Add->getOperand(i)));
3864 return setSignedRange(Add, ConservativeResult.intersectWith(X));
3865 }
3866
3867 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3868 ConstantRange X = getSignedRange(Mul->getOperand(0));
3869 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3870 X = X.multiply(getSignedRange(Mul->getOperand(i)));
3871 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3872 }
3873
3874 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3875 ConstantRange X = getSignedRange(SMax->getOperand(0));
3876 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3877 X = X.smax(getSignedRange(SMax->getOperand(i)));
3878 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3879 }
3880
3881 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3882 ConstantRange X = getSignedRange(UMax->getOperand(0));
3883 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3884 X = X.umax(getSignedRange(UMax->getOperand(i)));
3885 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3886 }
3887
3888 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3889 ConstantRange X = getSignedRange(UDiv->getLHS());
3890 ConstantRange Y = getSignedRange(UDiv->getRHS());
3891 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3892 }
3893
3894 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3895 ConstantRange X = getSignedRange(ZExt->getOperand());
3896 return setSignedRange(ZExt,
3897 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3898 }
3899
3900 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3901 ConstantRange X = getSignedRange(SExt->getOperand());
3902 return setSignedRange(SExt,
3903 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3904 }
3905
3906 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3907 ConstantRange X = getSignedRange(Trunc->getOperand());
3908 return setSignedRange(Trunc,
3909 ConservativeResult.intersectWith(X.truncate(BitWidth)));
3910 }
3911
3912 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3913 // If there's no signed wrap, and all the operands have the same sign or
3914 // zero, the value won't ever change sign.
3915 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3916 bool AllNonNeg = true;
3917 bool AllNonPos = true;
3918 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3919 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3920 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3921 }
3922 if (AllNonNeg)
3923 ConservativeResult = ConservativeResult.intersectWith(
3924 ConstantRange(APInt(BitWidth, 0),
3925 APInt::getSignedMinValue(BitWidth)));
3926 else if (AllNonPos)
3927 ConservativeResult = ConservativeResult.intersectWith(
3928 ConstantRange(APInt::getSignedMinValue(BitWidth),
3929 APInt(BitWidth, 1)));
3930 }
3931
3932 // TODO: non-affine addrec
3933 if (AddRec->isAffine()) {
3934 Type *Ty = AddRec->getType();
3935 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3936 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3937 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3938 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3939
3940 const SCEV *Start = AddRec->getStart();
3941 const SCEV *Step = AddRec->getStepRecurrence(*this);
3942
3943 ConstantRange StartRange = getSignedRange(Start);
3944 ConstantRange StepRange = getSignedRange(Step);
3945 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3946 ConstantRange EndRange =
3947 StartRange.add(MaxBECountRange.multiply(StepRange));
3948
3949 // Check for overflow. This must be done with ConstantRange arithmetic
3950 // because we could be called from within the ScalarEvolution overflow
3951 // checking code.
3952 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3953 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3954 ConstantRange ExtMaxBECountRange =
3955 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3956 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3957 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3958 ExtEndRange)
3959 return setSignedRange(AddRec, ConservativeResult);
3960
3961 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3962 EndRange.getSignedMin());
3963 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3964 EndRange.getSignedMax());
3965 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3966 return setSignedRange(AddRec, ConservativeResult);
3967 return setSignedRange(AddRec,
3968 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3969 }
3970 }
3971
3972 return setSignedRange(AddRec, ConservativeResult);
3973 }
3974
3975 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3976 // Check if the IR explicitly contains !range metadata.
3977 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3978 if (MDRange.hasValue())
3979 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3980
3981 // For a SCEVUnknown, ask ValueTracking.
3982 if (!U->getValue()->getType()->isIntegerTy() && !DL)
3983 return setSignedRange(U, ConservativeResult);
3984 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
3985 if (NS <= 1)
3986 return setSignedRange(U, ConservativeResult);
3987 return setSignedRange(U, ConservativeResult.intersectWith(
3988 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3989 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3990 }
3991
3992 return setSignedRange(S, ConservativeResult);
3993 }
3994
3995 /// createSCEV - We know that there is no SCEV for the specified value.
3996 /// Analyze the expression.
3997 ///
createSCEV(Value * V)3998 const SCEV *ScalarEvolution::createSCEV(Value *V) {
3999 if (!isSCEVable(V->getType()))
4000 return getUnknown(V);
4001
4002 unsigned Opcode = Instruction::UserOp1;
4003 if (Instruction *I = dyn_cast<Instruction>(V)) {
4004 Opcode = I->getOpcode();
4005
4006 // Don't attempt to analyze instructions in blocks that aren't
4007 // reachable. Such instructions don't matter, and they aren't required
4008 // to obey basic rules for definitions dominating uses which this
4009 // analysis depends on.
4010 if (!DT->isReachableFromEntry(I->getParent()))
4011 return getUnknown(V);
4012 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
4013 Opcode = CE->getOpcode();
4014 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4015 return getConstant(CI);
4016 else if (isa<ConstantPointerNull>(V))
4017 return getConstant(V->getType(), 0);
4018 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4019 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4020 else
4021 return getUnknown(V);
4022
4023 Operator *U = cast<Operator>(V);
4024 switch (Opcode) {
4025 case Instruction::Add: {
4026 // The simple thing to do would be to just call getSCEV on both operands
4027 // and call getAddExpr with the result. However if we're looking at a
4028 // bunch of things all added together, this can be quite inefficient,
4029 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4030 // Instead, gather up all the operands and make a single getAddExpr call.
4031 // LLVM IR canonical form means we need only traverse the left operands.
4032 //
4033 // Don't apply this instruction's NSW or NUW flags to the new
4034 // expression. The instruction may be guarded by control flow that the
4035 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4036 // mapped to the same SCEV expression, and it would be incorrect to transfer
4037 // NSW/NUW semantics to those operations.
4038 SmallVector<const SCEV *, 4> AddOps;
4039 AddOps.push_back(getSCEV(U->getOperand(1)));
4040 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4041 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4042 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4043 break;
4044 U = cast<Operator>(Op);
4045 const SCEV *Op1 = getSCEV(U->getOperand(1));
4046 if (Opcode == Instruction::Sub)
4047 AddOps.push_back(getNegativeSCEV(Op1));
4048 else
4049 AddOps.push_back(Op1);
4050 }
4051 AddOps.push_back(getSCEV(U->getOperand(0)));
4052 return getAddExpr(AddOps);
4053 }
4054 case Instruction::Mul: {
4055 // Don't transfer NSW/NUW for the same reason as AddExpr.
4056 SmallVector<const SCEV *, 4> MulOps;
4057 MulOps.push_back(getSCEV(U->getOperand(1)));
4058 for (Value *Op = U->getOperand(0);
4059 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
4060 Op = U->getOperand(0)) {
4061 U = cast<Operator>(Op);
4062 MulOps.push_back(getSCEV(U->getOperand(1)));
4063 }
4064 MulOps.push_back(getSCEV(U->getOperand(0)));
4065 return getMulExpr(MulOps);
4066 }
4067 case Instruction::UDiv:
4068 return getUDivExpr(getSCEV(U->getOperand(0)),
4069 getSCEV(U->getOperand(1)));
4070 case Instruction::Sub:
4071 return getMinusSCEV(getSCEV(U->getOperand(0)),
4072 getSCEV(U->getOperand(1)));
4073 case Instruction::And:
4074 // For an expression like x&255 that merely masks off the high bits,
4075 // use zext(trunc(x)) as the SCEV expression.
4076 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4077 if (CI->isNullValue())
4078 return getSCEV(U->getOperand(1));
4079 if (CI->isAllOnesValue())
4080 return getSCEV(U->getOperand(0));
4081 const APInt &A = CI->getValue();
4082
4083 // Instcombine's ShrinkDemandedConstant may strip bits out of
4084 // constants, obscuring what would otherwise be a low-bits mask.
4085 // Use computeKnownBits to compute what ShrinkDemandedConstant
4086 // knew about to reconstruct a low-bits mask value.
4087 unsigned LZ = A.countLeadingZeros();
4088 unsigned TZ = A.countTrailingZeros();
4089 unsigned BitWidth = A.getBitWidth();
4090 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4091 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC,
4092 nullptr, DT);
4093
4094 APInt EffectiveMask =
4095 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4096 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4097 const SCEV *MulCount = getConstant(
4098 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4099 return getMulExpr(
4100 getZeroExtendExpr(
4101 getTruncateExpr(
4102 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4103 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4104 U->getType()),
4105 MulCount);
4106 }
4107 }
4108 break;
4109
4110 case Instruction::Or:
4111 // If the RHS of the Or is a constant, we may have something like:
4112 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4113 // optimizations will transparently handle this case.
4114 //
4115 // In order for this transformation to be safe, the LHS must be of the
4116 // form X*(2^n) and the Or constant must be less than 2^n.
4117 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4118 const SCEV *LHS = getSCEV(U->getOperand(0));
4119 const APInt &CIVal = CI->getValue();
4120 if (GetMinTrailingZeros(LHS) >=
4121 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4122 // Build a plain add SCEV.
4123 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4124 // If the LHS of the add was an addrec and it has no-wrap flags,
4125 // transfer the no-wrap flags, since an or won't introduce a wrap.
4126 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4127 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4128 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4129 OldAR->getNoWrapFlags());
4130 }
4131 return S;
4132 }
4133 }
4134 break;
4135 case Instruction::Xor:
4136 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
4137 // If the RHS of the xor is a signbit, then this is just an add.
4138 // Instcombine turns add of signbit into xor as a strength reduction step.
4139 if (CI->getValue().isSignBit())
4140 return getAddExpr(getSCEV(U->getOperand(0)),
4141 getSCEV(U->getOperand(1)));
4142
4143 // If the RHS of xor is -1, then this is a not operation.
4144 if (CI->isAllOnesValue())
4145 return getNotSCEV(getSCEV(U->getOperand(0)));
4146
4147 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4148 // This is a variant of the check for xor with -1, and it handles
4149 // the case where instcombine has trimmed non-demanded bits out
4150 // of an xor with -1.
4151 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4152 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4153 if (BO->getOpcode() == Instruction::And &&
4154 LCI->getValue() == CI->getValue())
4155 if (const SCEVZeroExtendExpr *Z =
4156 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
4157 Type *UTy = U->getType();
4158 const SCEV *Z0 = Z->getOperand();
4159 Type *Z0Ty = Z0->getType();
4160 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4161
4162 // If C is a low-bits mask, the zero extend is serving to
4163 // mask off the high bits. Complement the operand and
4164 // re-apply the zext.
4165 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4166 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4167
4168 // If C is a single bit, it may be in the sign-bit position
4169 // before the zero-extend. In this case, represent the xor
4170 // using an add, which is equivalent, and re-apply the zext.
4171 APInt Trunc = CI->getValue().trunc(Z0TySize);
4172 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
4173 Trunc.isSignBit())
4174 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4175 UTy);
4176 }
4177 }
4178 break;
4179
4180 case Instruction::Shl:
4181 // Turn shift left of a constant amount into a multiply.
4182 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4183 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4184
4185 // If the shift count is not less than the bitwidth, the result of
4186 // the shift is undefined. Don't try to analyze it, because the
4187 // resolution chosen here may differ from the resolution chosen in
4188 // other parts of the compiler.
4189 if (SA->getValue().uge(BitWidth))
4190 break;
4191
4192 Constant *X = ConstantInt::get(getContext(),
4193 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4194 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4195 }
4196 break;
4197
4198 case Instruction::LShr:
4199 // Turn logical shift right of a constant into a unsigned divide.
4200 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
4201 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
4202
4203 // If the shift count is not less than the bitwidth, the result of
4204 // the shift is undefined. Don't try to analyze it, because the
4205 // resolution chosen here may differ from the resolution chosen in
4206 // other parts of the compiler.
4207 if (SA->getValue().uge(BitWidth))
4208 break;
4209
4210 Constant *X = ConstantInt::get(getContext(),
4211 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4212 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
4213 }
4214 break;
4215
4216 case Instruction::AShr:
4217 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4218 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
4219 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
4220 if (L->getOpcode() == Instruction::Shl &&
4221 L->getOperand(1) == U->getOperand(1)) {
4222 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4223
4224 // If the shift count is not less than the bitwidth, the result of
4225 // the shift is undefined. Don't try to analyze it, because the
4226 // resolution chosen here may differ from the resolution chosen in
4227 // other parts of the compiler.
4228 if (CI->getValue().uge(BitWidth))
4229 break;
4230
4231 uint64_t Amt = BitWidth - CI->getZExtValue();
4232 if (Amt == BitWidth)
4233 return getSCEV(L->getOperand(0)); // shift by zero --> noop
4234 return
4235 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
4236 IntegerType::get(getContext(),
4237 Amt)),
4238 U->getType());
4239 }
4240 break;
4241
4242 case Instruction::Trunc:
4243 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
4244
4245 case Instruction::ZExt:
4246 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4247
4248 case Instruction::SExt:
4249 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
4250
4251 case Instruction::BitCast:
4252 // BitCasts are no-op casts so we just eliminate the cast.
4253 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
4254 return getSCEV(U->getOperand(0));
4255 break;
4256
4257 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4258 // lead to pointer expressions which cannot safely be expanded to GEPs,
4259 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4260 // simplifying integer expressions.
4261
4262 case Instruction::GetElementPtr:
4263 return createNodeForGEP(cast<GEPOperator>(U));
4264
4265 case Instruction::PHI:
4266 return createNodeForPHI(cast<PHINode>(U));
4267
4268 case Instruction::Select:
4269 // This could be a smax or umax that was lowered earlier.
4270 // Try to recover it.
4271 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4272 Value *LHS = ICI->getOperand(0);
4273 Value *RHS = ICI->getOperand(1);
4274 switch (ICI->getPredicate()) {
4275 case ICmpInst::ICMP_SLT:
4276 case ICmpInst::ICMP_SLE:
4277 std::swap(LHS, RHS);
4278 // fall through
4279 case ICmpInst::ICMP_SGT:
4280 case ICmpInst::ICMP_SGE:
4281 // a >s b ? a+x : b+x -> smax(a, b)+x
4282 // a >s b ? b+x : a+x -> smin(a, b)+x
4283 if (LHS->getType() == U->getType()) {
4284 const SCEV *LS = getSCEV(LHS);
4285 const SCEV *RS = getSCEV(RHS);
4286 const SCEV *LA = getSCEV(U->getOperand(1));
4287 const SCEV *RA = getSCEV(U->getOperand(2));
4288 const SCEV *LDiff = getMinusSCEV(LA, LS);
4289 const SCEV *RDiff = getMinusSCEV(RA, RS);
4290 if (LDiff == RDiff)
4291 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4292 LDiff = getMinusSCEV(LA, RS);
4293 RDiff = getMinusSCEV(RA, LS);
4294 if (LDiff == RDiff)
4295 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4296 }
4297 break;
4298 case ICmpInst::ICMP_ULT:
4299 case ICmpInst::ICMP_ULE:
4300 std::swap(LHS, RHS);
4301 // fall through
4302 case ICmpInst::ICMP_UGT:
4303 case ICmpInst::ICMP_UGE:
4304 // a >u b ? a+x : b+x -> umax(a, b)+x
4305 // a >u b ? b+x : a+x -> umin(a, b)+x
4306 if (LHS->getType() == U->getType()) {
4307 const SCEV *LS = getSCEV(LHS);
4308 const SCEV *RS = getSCEV(RHS);
4309 const SCEV *LA = getSCEV(U->getOperand(1));
4310 const SCEV *RA = getSCEV(U->getOperand(2));
4311 const SCEV *LDiff = getMinusSCEV(LA, LS);
4312 const SCEV *RDiff = getMinusSCEV(RA, RS);
4313 if (LDiff == RDiff)
4314 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4315 LDiff = getMinusSCEV(LA, RS);
4316 RDiff = getMinusSCEV(RA, LS);
4317 if (LDiff == RDiff)
4318 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4319 }
4320 break;
4321 case ICmpInst::ICMP_NE:
4322 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4323 if (LHS->getType() == U->getType() &&
4324 isa<ConstantInt>(RHS) &&
4325 cast<ConstantInt>(RHS)->isZero()) {
4326 const SCEV *One = getConstant(LHS->getType(), 1);
4327 const SCEV *LS = getSCEV(LHS);
4328 const SCEV *LA = getSCEV(U->getOperand(1));
4329 const SCEV *RA = getSCEV(U->getOperand(2));
4330 const SCEV *LDiff = getMinusSCEV(LA, LS);
4331 const SCEV *RDiff = getMinusSCEV(RA, One);
4332 if (LDiff == RDiff)
4333 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4334 }
4335 break;
4336 case ICmpInst::ICMP_EQ:
4337 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4338 if (LHS->getType() == U->getType() &&
4339 isa<ConstantInt>(RHS) &&
4340 cast<ConstantInt>(RHS)->isZero()) {
4341 const SCEV *One = getConstant(LHS->getType(), 1);
4342 const SCEV *LS = getSCEV(LHS);
4343 const SCEV *LA = getSCEV(U->getOperand(1));
4344 const SCEV *RA = getSCEV(U->getOperand(2));
4345 const SCEV *LDiff = getMinusSCEV(LA, One);
4346 const SCEV *RDiff = getMinusSCEV(RA, LS);
4347 if (LDiff == RDiff)
4348 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4349 }
4350 break;
4351 default:
4352 break;
4353 }
4354 }
4355
4356 default: // We cannot analyze this expression.
4357 break;
4358 }
4359
4360 return getUnknown(V);
4361 }
4362
4363
4364
4365 //===----------------------------------------------------------------------===//
4366 // Iteration Count Computation Code
4367 //
4368
getSmallConstantTripCount(Loop * L)4369 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4370 if (BasicBlock *ExitingBB = L->getExitingBlock())
4371 return getSmallConstantTripCount(L, ExitingBB);
4372
4373 // No trip count information for multiple exits.
4374 return 0;
4375 }
4376
4377 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
4378 /// normal unsigned value. Returns 0 if the trip count is unknown or not
4379 /// constant. Will also return 0 if the maximum trip count is very large (>=
4380 /// 2^32).
4381 ///
4382 /// This "trip count" assumes that control exits via ExitingBlock. More
4383 /// precisely, it is the number of times that control may reach ExitingBlock
4384 /// before taking the branch. For loops with multiple exits, it may not be the
4385 /// number times that the loop header executes because the loop may exit
4386 /// prematurely via another branch.
getSmallConstantTripCount(Loop * L,BasicBlock * ExitingBlock)4387 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4388 BasicBlock *ExitingBlock) {
4389 assert(ExitingBlock && "Must pass a non-null exiting block!");
4390 assert(L->isLoopExiting(ExitingBlock) &&
4391 "Exiting block must actually branch out of the loop!");
4392 const SCEVConstant *ExitCount =
4393 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
4394 if (!ExitCount)
4395 return 0;
4396
4397 ConstantInt *ExitConst = ExitCount->getValue();
4398
4399 // Guard against huge trip counts.
4400 if (ExitConst->getValue().getActiveBits() > 32)
4401 return 0;
4402
4403 // In case of integer overflow, this returns 0, which is correct.
4404 return ((unsigned)ExitConst->getZExtValue()) + 1;
4405 }
4406
getSmallConstantTripMultiple(Loop * L)4407 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4408 if (BasicBlock *ExitingBB = L->getExitingBlock())
4409 return getSmallConstantTripMultiple(L, ExitingBB);
4410
4411 // No trip multiple information for multiple exits.
4412 return 0;
4413 }
4414
4415 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4416 /// trip count of this loop as a normal unsigned value, if possible. This
4417 /// means that the actual trip count is always a multiple of the returned
4418 /// value (don't forget the trip count could very well be zero as well!).
4419 ///
4420 /// Returns 1 if the trip count is unknown or not guaranteed to be the
4421 /// multiple of a constant (which is also the case if the trip count is simply
4422 /// constant, use getSmallConstantTripCount for that case), Will also return 1
4423 /// if the trip count is very large (>= 2^32).
4424 ///
4425 /// As explained in the comments for getSmallConstantTripCount, this assumes
4426 /// that control exits the loop via ExitingBlock.
4427 unsigned
getSmallConstantTripMultiple(Loop * L,BasicBlock * ExitingBlock)4428 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4429 BasicBlock *ExitingBlock) {
4430 assert(ExitingBlock && "Must pass a non-null exiting block!");
4431 assert(L->isLoopExiting(ExitingBlock) &&
4432 "Exiting block must actually branch out of the loop!");
4433 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
4434 if (ExitCount == getCouldNotCompute())
4435 return 1;
4436
4437 // Get the trip count from the BE count by adding 1.
4438 const SCEV *TCMul = getAddExpr(ExitCount,
4439 getConstant(ExitCount->getType(), 1));
4440 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4441 // to factor simple cases.
4442 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4443 TCMul = Mul->getOperand(0);
4444
4445 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4446 if (!MulC)
4447 return 1;
4448
4449 ConstantInt *Result = MulC->getValue();
4450
4451 // Guard against huge trip counts (this requires checking
4452 // for zero to handle the case where the trip count == -1 and the
4453 // addition wraps).
4454 if (!Result || Result->getValue().getActiveBits() > 32 ||
4455 Result->getValue().getActiveBits() == 0)
4456 return 1;
4457
4458 return (unsigned)Result->getZExtValue();
4459 }
4460
4461 // getExitCount - Get the expression for the number of loop iterations for which
4462 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
4463 // SCEVCouldNotCompute.
getExitCount(Loop * L,BasicBlock * ExitingBlock)4464 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4465 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
4466 }
4467
4468 /// getBackedgeTakenCount - If the specified loop has a predictable
4469 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4470 /// object. The backedge-taken count is the number of times the loop header
4471 /// will be branched to from within the loop. This is one less than the
4472 /// trip count of the loop, since it doesn't count the first iteration,
4473 /// when the header is branched to from outside the loop.
4474 ///
4475 /// Note that it is not valid to call this method on a loop without a
4476 /// loop-invariant backedge-taken count (see
4477 /// hasLoopInvariantBackedgeTakenCount).
4478 ///
getBackedgeTakenCount(const Loop * L)4479 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4480 return getBackedgeTakenInfo(L).getExact(this);
4481 }
4482
4483 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4484 /// return the least SCEV value that is known never to be less than the
4485 /// actual backedge taken count.
getMaxBackedgeTakenCount(const Loop * L)4486 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4487 return getBackedgeTakenInfo(L).getMax(this);
4488 }
4489
4490 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
4491 /// onto the given Worklist.
4492 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)4493 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4494 BasicBlock *Header = L->getHeader();
4495
4496 // Push all Loop-header PHIs onto the Worklist stack.
4497 for (BasicBlock::iterator I = Header->begin();
4498 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4499 Worklist.push_back(PN);
4500 }
4501
4502 const ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)4503 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4504 // Initially insert an invalid entry for this loop. If the insertion
4505 // succeeds, proceed to actually compute a backedge-taken count and
4506 // update the value. The temporary CouldNotCompute value tells SCEV
4507 // code elsewhere that it shouldn't attempt to request a new
4508 // backedge-taken count, which could result in infinite recursion.
4509 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4510 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4511 if (!Pair.second)
4512 return Pair.first->second;
4513
4514 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4515 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4516 // must be cleared in this scope.
4517 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4518
4519 if (Result.getExact(this) != getCouldNotCompute()) {
4520 assert(isLoopInvariant(Result.getExact(this), L) &&
4521 isLoopInvariant(Result.getMax(this), L) &&
4522 "Computed backedge-taken count isn't loop invariant for loop!");
4523 ++NumTripCountsComputed;
4524 }
4525 else if (Result.getMax(this) == getCouldNotCompute() &&
4526 isa<PHINode>(L->getHeader()->begin())) {
4527 // Only count loops that have phi nodes as not being computable.
4528 ++NumTripCountsNotComputed;
4529 }
4530
4531 // Now that we know more about the trip count for this loop, forget any
4532 // existing SCEV values for PHI nodes in this loop since they are only
4533 // conservative estimates made without the benefit of trip count
4534 // information. This is similar to the code in forgetLoop, except that
4535 // it handles SCEVUnknown PHI nodes specially.
4536 if (Result.hasAnyInfo()) {
4537 SmallVector<Instruction *, 16> Worklist;
4538 PushLoopPHIs(L, Worklist);
4539
4540 SmallPtrSet<Instruction *, 8> Visited;
4541 while (!Worklist.empty()) {
4542 Instruction *I = Worklist.pop_back_val();
4543 if (!Visited.insert(I).second)
4544 continue;
4545
4546 ValueExprMapType::iterator It =
4547 ValueExprMap.find_as(static_cast<Value *>(I));
4548 if (It != ValueExprMap.end()) {
4549 const SCEV *Old = It->second;
4550
4551 // SCEVUnknown for a PHI either means that it has an unrecognized
4552 // structure, or it's a PHI that's in the progress of being computed
4553 // by createNodeForPHI. In the former case, additional loop trip
4554 // count information isn't going to change anything. In the later
4555 // case, createNodeForPHI will perform the necessary updates on its
4556 // own when it gets to that point.
4557 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4558 forgetMemoizedResults(Old);
4559 ValueExprMap.erase(It);
4560 }
4561 if (PHINode *PN = dyn_cast<PHINode>(I))
4562 ConstantEvolutionLoopExitValue.erase(PN);
4563 }
4564
4565 PushDefUseChildren(I, Worklist);
4566 }
4567 }
4568
4569 // Re-lookup the insert position, since the call to
4570 // ComputeBackedgeTakenCount above could result in a
4571 // recusive call to getBackedgeTakenInfo (on a different
4572 // loop), which would invalidate the iterator computed
4573 // earlier.
4574 return BackedgeTakenCounts.find(L)->second = Result;
4575 }
4576
4577 /// forgetLoop - This method should be called by the client when it has
4578 /// changed a loop in a way that may effect ScalarEvolution's ability to
4579 /// compute a trip count, or if the loop is deleted.
forgetLoop(const Loop * L)4580 void ScalarEvolution::forgetLoop(const Loop *L) {
4581 // Drop any stored trip count value.
4582 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4583 BackedgeTakenCounts.find(L);
4584 if (BTCPos != BackedgeTakenCounts.end()) {
4585 BTCPos->second.clear();
4586 BackedgeTakenCounts.erase(BTCPos);
4587 }
4588
4589 // Drop information about expressions based on loop-header PHIs.
4590 SmallVector<Instruction *, 16> Worklist;
4591 PushLoopPHIs(L, Worklist);
4592
4593 SmallPtrSet<Instruction *, 8> Visited;
4594 while (!Worklist.empty()) {
4595 Instruction *I = Worklist.pop_back_val();
4596 if (!Visited.insert(I).second)
4597 continue;
4598
4599 ValueExprMapType::iterator It =
4600 ValueExprMap.find_as(static_cast<Value *>(I));
4601 if (It != ValueExprMap.end()) {
4602 forgetMemoizedResults(It->second);
4603 ValueExprMap.erase(It);
4604 if (PHINode *PN = dyn_cast<PHINode>(I))
4605 ConstantEvolutionLoopExitValue.erase(PN);
4606 }
4607
4608 PushDefUseChildren(I, Worklist);
4609 }
4610
4611 // Forget all contained loops too, to avoid dangling entries in the
4612 // ValuesAtScopes map.
4613 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4614 forgetLoop(*I);
4615 }
4616
4617 /// forgetValue - This method should be called by the client when it has
4618 /// changed a value in a way that may effect its value, or which may
4619 /// disconnect it from a def-use chain linking it to a loop.
forgetValue(Value * V)4620 void ScalarEvolution::forgetValue(Value *V) {
4621 Instruction *I = dyn_cast<Instruction>(V);
4622 if (!I) return;
4623
4624 // Drop information about expressions based on loop-header PHIs.
4625 SmallVector<Instruction *, 16> Worklist;
4626 Worklist.push_back(I);
4627
4628 SmallPtrSet<Instruction *, 8> Visited;
4629 while (!Worklist.empty()) {
4630 I = Worklist.pop_back_val();
4631 if (!Visited.insert(I).second)
4632 continue;
4633
4634 ValueExprMapType::iterator It =
4635 ValueExprMap.find_as(static_cast<Value *>(I));
4636 if (It != ValueExprMap.end()) {
4637 forgetMemoizedResults(It->second);
4638 ValueExprMap.erase(It);
4639 if (PHINode *PN = dyn_cast<PHINode>(I))
4640 ConstantEvolutionLoopExitValue.erase(PN);
4641 }
4642
4643 PushDefUseChildren(I, Worklist);
4644 }
4645 }
4646
4647 /// getExact - Get the exact loop backedge taken count considering all loop
4648 /// exits. A computable result can only be return for loops with a single exit.
4649 /// Returning the minimum taken count among all exits is incorrect because one
4650 /// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4651 /// the limit of each loop test is never skipped. This is a valid assumption as
4652 /// long as the loop exits via that test. For precise results, it is the
4653 /// caller's responsibility to specify the relevant loop exit using
4654 /// getExact(ExitingBlock, SE).
4655 const SCEV *
getExact(ScalarEvolution * SE) const4656 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4657 // If any exits were not computable, the loop is not computable.
4658 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4659
4660 // We need exactly one computable exit.
4661 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4662 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4663
4664 const SCEV *BECount = nullptr;
4665 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4666 ENT != nullptr; ENT = ENT->getNextExit()) {
4667
4668 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4669
4670 if (!BECount)
4671 BECount = ENT->ExactNotTaken;
4672 else if (BECount != ENT->ExactNotTaken)
4673 return SE->getCouldNotCompute();
4674 }
4675 assert(BECount && "Invalid not taken count for loop exit");
4676 return BECount;
4677 }
4678
4679 /// getExact - Get the exact not taken count for this loop exit.
4680 const SCEV *
getExact(BasicBlock * ExitingBlock,ScalarEvolution * SE) const4681 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4682 ScalarEvolution *SE) const {
4683 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4684 ENT != nullptr; ENT = ENT->getNextExit()) {
4685
4686 if (ENT->ExitingBlock == ExitingBlock)
4687 return ENT->ExactNotTaken;
4688 }
4689 return SE->getCouldNotCompute();
4690 }
4691
4692 /// getMax - Get the max backedge taken count for the loop.
4693 const SCEV *
getMax(ScalarEvolution * SE) const4694 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4695 return Max ? Max : SE->getCouldNotCompute();
4696 }
4697
hasOperand(const SCEV * S,ScalarEvolution * SE) const4698 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4699 ScalarEvolution *SE) const {
4700 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4701 return true;
4702
4703 if (!ExitNotTaken.ExitingBlock)
4704 return false;
4705
4706 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4707 ENT != nullptr; ENT = ENT->getNextExit()) {
4708
4709 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4710 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4711 return true;
4712 }
4713 }
4714 return false;
4715 }
4716
4717 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4718 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(SmallVectorImpl<std::pair<BasicBlock *,const SCEV * >> & ExitCounts,bool Complete,const SCEV * MaxCount)4719 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4720 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4721 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4722
4723 if (!Complete)
4724 ExitNotTaken.setIncomplete();
4725
4726 unsigned NumExits = ExitCounts.size();
4727 if (NumExits == 0) return;
4728
4729 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4730 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4731 if (NumExits == 1) return;
4732
4733 // Handle the rare case of multiple computable exits.
4734 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4735
4736 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4737 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4738 PrevENT->setNextExit(ENT);
4739 ENT->ExitingBlock = ExitCounts[i].first;
4740 ENT->ExactNotTaken = ExitCounts[i].second;
4741 }
4742 }
4743
4744 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
clear()4745 void ScalarEvolution::BackedgeTakenInfo::clear() {
4746 ExitNotTaken.ExitingBlock = nullptr;
4747 ExitNotTaken.ExactNotTaken = nullptr;
4748 delete[] ExitNotTaken.getNextExit();
4749 }
4750
4751 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
4752 /// of the specified loop will execute.
4753 ScalarEvolution::BackedgeTakenInfo
ComputeBackedgeTakenCount(const Loop * L)4754 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4755 SmallVector<BasicBlock *, 8> ExitingBlocks;
4756 L->getExitingBlocks(ExitingBlocks);
4757
4758 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4759 bool CouldComputeBECount = true;
4760 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
4761 const SCEV *MustExitMaxBECount = nullptr;
4762 const SCEV *MayExitMaxBECount = nullptr;
4763
4764 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4765 // and compute maxBECount.
4766 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4767 BasicBlock *ExitBB = ExitingBlocks[i];
4768 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4769
4770 // 1. For each exit that can be computed, add an entry to ExitCounts.
4771 // CouldComputeBECount is true only if all exits can be computed.
4772 if (EL.Exact == getCouldNotCompute())
4773 // We couldn't compute an exact value for this exit, so
4774 // we won't be able to compute an exact value for the loop.
4775 CouldComputeBECount = false;
4776 else
4777 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
4778
4779 // 2. Derive the loop's MaxBECount from each exit's max number of
4780 // non-exiting iterations. Partition the loop exits into two kinds:
4781 // LoopMustExits and LoopMayExits.
4782 //
4783 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4784 // is a LoopMayExit. If any computable LoopMustExit is found, then
4785 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4786 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4787 // considered greater than any computable EL.Max.
4788 if (EL.Max != getCouldNotCompute() && Latch &&
4789 DT->dominates(ExitBB, Latch)) {
4790 if (!MustExitMaxBECount)
4791 MustExitMaxBECount = EL.Max;
4792 else {
4793 MustExitMaxBECount =
4794 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
4795 }
4796 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4797 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4798 MayExitMaxBECount = EL.Max;
4799 else {
4800 MayExitMaxBECount =
4801 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4802 }
4803 }
4804 }
4805 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4806 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
4807 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4808 }
4809
4810 /// ComputeExitLimit - Compute the number of times the backedge of the specified
4811 /// loop will execute if it exits via the specified block.
4812 ScalarEvolution::ExitLimit
ComputeExitLimit(const Loop * L,BasicBlock * ExitingBlock)4813 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4814
4815 // Okay, we've chosen an exiting block. See what condition causes us to
4816 // exit at this block and remember the exit block and whether all other targets
4817 // lead to the loop header.
4818 bool MustExecuteLoopHeader = true;
4819 BasicBlock *Exit = nullptr;
4820 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4821 SI != SE; ++SI)
4822 if (!L->contains(*SI)) {
4823 if (Exit) // Multiple exit successors.
4824 return getCouldNotCompute();
4825 Exit = *SI;
4826 } else if (*SI != L->getHeader()) {
4827 MustExecuteLoopHeader = false;
4828 }
4829
4830 // At this point, we know we have a conditional branch that determines whether
4831 // the loop is exited. However, we don't know if the branch is executed each
4832 // time through the loop. If not, then the execution count of the branch will
4833 // not be equal to the trip count of the loop.
4834 //
4835 // Currently we check for this by checking to see if the Exit branch goes to
4836 // the loop header. If so, we know it will always execute the same number of
4837 // times as the loop. We also handle the case where the exit block *is* the
4838 // loop header. This is common for un-rotated loops.
4839 //
4840 // If both of those tests fail, walk up the unique predecessor chain to the
4841 // header, stopping if there is an edge that doesn't exit the loop. If the
4842 // header is reached, the execution count of the branch will be equal to the
4843 // trip count of the loop.
4844 //
4845 // More extensive analysis could be done to handle more cases here.
4846 //
4847 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
4848 // The simple checks failed, try climbing the unique predecessor chain
4849 // up to the header.
4850 bool Ok = false;
4851 for (BasicBlock *BB = ExitingBlock; BB; ) {
4852 BasicBlock *Pred = BB->getUniquePredecessor();
4853 if (!Pred)
4854 return getCouldNotCompute();
4855 TerminatorInst *PredTerm = Pred->getTerminator();
4856 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4857 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4858 if (PredSucc == BB)
4859 continue;
4860 // If the predecessor has a successor that isn't BB and isn't
4861 // outside the loop, assume the worst.
4862 if (L->contains(PredSucc))
4863 return getCouldNotCompute();
4864 }
4865 if (Pred == L->getHeader()) {
4866 Ok = true;
4867 break;
4868 }
4869 BB = Pred;
4870 }
4871 if (!Ok)
4872 return getCouldNotCompute();
4873 }
4874
4875 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
4876 TerminatorInst *Term = ExitingBlock->getTerminator();
4877 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4878 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4879 // Proceed to the next level to examine the exit condition expression.
4880 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4881 BI->getSuccessor(1),
4882 /*ControlsExit=*/IsOnlyExit);
4883 }
4884
4885 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4886 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4887 /*ControlsExit=*/IsOnlyExit);
4888
4889 return getCouldNotCompute();
4890 }
4891
4892 /// ComputeExitLimitFromCond - Compute the number of times the
4893 /// backedge of the specified loop will execute if its exit condition
4894 /// were a conditional branch of ExitCond, TBB, and FBB.
4895 ///
4896 /// @param ControlsExit is true if ExitCond directly controls the exit
4897 /// branch. In this case, we can assume that the loop exits only if the
4898 /// condition is true and can infer that failing to meet the condition prior to
4899 /// integer wraparound results in undefined behavior.
4900 ScalarEvolution::ExitLimit
ComputeExitLimitFromCond(const Loop * L,Value * ExitCond,BasicBlock * TBB,BasicBlock * FBB,bool ControlsExit)4901 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4902 Value *ExitCond,
4903 BasicBlock *TBB,
4904 BasicBlock *FBB,
4905 bool ControlsExit) {
4906 // Check if the controlling expression for this loop is an And or Or.
4907 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4908 if (BO->getOpcode() == Instruction::And) {
4909 // Recurse on the operands of the and.
4910 bool EitherMayExit = L->contains(TBB);
4911 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4912 ControlsExit && !EitherMayExit);
4913 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4914 ControlsExit && !EitherMayExit);
4915 const SCEV *BECount = getCouldNotCompute();
4916 const SCEV *MaxBECount = getCouldNotCompute();
4917 if (EitherMayExit) {
4918 // Both conditions must be true for the loop to continue executing.
4919 // Choose the less conservative count.
4920 if (EL0.Exact == getCouldNotCompute() ||
4921 EL1.Exact == getCouldNotCompute())
4922 BECount = getCouldNotCompute();
4923 else
4924 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4925 if (EL0.Max == getCouldNotCompute())
4926 MaxBECount = EL1.Max;
4927 else if (EL1.Max == getCouldNotCompute())
4928 MaxBECount = EL0.Max;
4929 else
4930 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4931 } else {
4932 // Both conditions must be true at the same time for the loop to exit.
4933 // For now, be conservative.
4934 assert(L->contains(FBB) && "Loop block has no successor in loop!");
4935 if (EL0.Max == EL1.Max)
4936 MaxBECount = EL0.Max;
4937 if (EL0.Exact == EL1.Exact)
4938 BECount = EL0.Exact;
4939 }
4940
4941 return ExitLimit(BECount, MaxBECount);
4942 }
4943 if (BO->getOpcode() == Instruction::Or) {
4944 // Recurse on the operands of the or.
4945 bool EitherMayExit = L->contains(FBB);
4946 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4947 ControlsExit && !EitherMayExit);
4948 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4949 ControlsExit && !EitherMayExit);
4950 const SCEV *BECount = getCouldNotCompute();
4951 const SCEV *MaxBECount = getCouldNotCompute();
4952 if (EitherMayExit) {
4953 // Both conditions must be false for the loop to continue executing.
4954 // Choose the less conservative count.
4955 if (EL0.Exact == getCouldNotCompute() ||
4956 EL1.Exact == getCouldNotCompute())
4957 BECount = getCouldNotCompute();
4958 else
4959 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4960 if (EL0.Max == getCouldNotCompute())
4961 MaxBECount = EL1.Max;
4962 else if (EL1.Max == getCouldNotCompute())
4963 MaxBECount = EL0.Max;
4964 else
4965 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4966 } else {
4967 // Both conditions must be false at the same time for the loop to exit.
4968 // For now, be conservative.
4969 assert(L->contains(TBB) && "Loop block has no successor in loop!");
4970 if (EL0.Max == EL1.Max)
4971 MaxBECount = EL0.Max;
4972 if (EL0.Exact == EL1.Exact)
4973 BECount = EL0.Exact;
4974 }
4975
4976 return ExitLimit(BECount, MaxBECount);
4977 }
4978 }
4979
4980 // With an icmp, it may be feasible to compute an exact backedge-taken count.
4981 // Proceed to the next level to examine the icmp.
4982 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4983 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
4984
4985 // Check for a constant condition. These are normally stripped out by
4986 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4987 // preserve the CFG and is temporarily leaving constant conditions
4988 // in place.
4989 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4990 if (L->contains(FBB) == !CI->getZExtValue())
4991 // The backedge is always taken.
4992 return getCouldNotCompute();
4993 else
4994 // The backedge is never taken.
4995 return getConstant(CI->getType(), 0);
4996 }
4997
4998 // If it's not an integer or pointer comparison then compute it the hard way.
4999 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5000 }
5001
5002 /// ComputeExitLimitFromICmp - Compute the number of times the
5003 /// backedge of the specified loop will execute if its exit condition
5004 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
5005 ScalarEvolution::ExitLimit
ComputeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,BasicBlock * TBB,BasicBlock * FBB,bool ControlsExit)5006 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5007 ICmpInst *ExitCond,
5008 BasicBlock *TBB,
5009 BasicBlock *FBB,
5010 bool ControlsExit) {
5011
5012 // If the condition was exit on true, convert the condition to exit on false
5013 ICmpInst::Predicate Cond;
5014 if (!L->contains(FBB))
5015 Cond = ExitCond->getPredicate();
5016 else
5017 Cond = ExitCond->getInversePredicate();
5018
5019 // Handle common loops like: for (X = "string"; *X; ++X)
5020 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5021 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5022 ExitLimit ItCnt =
5023 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5024 if (ItCnt.hasAnyInfo())
5025 return ItCnt;
5026 }
5027
5028 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5029 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5030
5031 // Try to evaluate any dependencies out of the loop.
5032 LHS = getSCEVAtScope(LHS, L);
5033 RHS = getSCEVAtScope(RHS, L);
5034
5035 // At this point, we would like to compute how many iterations of the
5036 // loop the predicate will return true for these inputs.
5037 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5038 // If there is a loop-invariant, force it into the RHS.
5039 std::swap(LHS, RHS);
5040 Cond = ICmpInst::getSwappedPredicate(Cond);
5041 }
5042
5043 // Simplify the operands before analyzing them.
5044 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5045
5046 // If we have a comparison of a chrec against a constant, try to use value
5047 // ranges to answer this query.
5048 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5049 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5050 if (AddRec->getLoop() == L) {
5051 // Form the constant range.
5052 ConstantRange CompRange(
5053 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
5054
5055 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5056 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5057 }
5058
5059 switch (Cond) {
5060 case ICmpInst::ICMP_NE: { // while (X != Y)
5061 // Convert to: while (X-Y != 0)
5062 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5063 if (EL.hasAnyInfo()) return EL;
5064 break;
5065 }
5066 case ICmpInst::ICMP_EQ: { // while (X == Y)
5067 // Convert to: while (X-Y == 0)
5068 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5069 if (EL.hasAnyInfo()) return EL;
5070 break;
5071 }
5072 case ICmpInst::ICMP_SLT:
5073 case ICmpInst::ICMP_ULT: { // while (X < Y)
5074 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5075 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5076 if (EL.hasAnyInfo()) return EL;
5077 break;
5078 }
5079 case ICmpInst::ICMP_SGT:
5080 case ICmpInst::ICMP_UGT: { // while (X > Y)
5081 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5082 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5083 if (EL.hasAnyInfo()) return EL;
5084 break;
5085 }
5086 default:
5087 #if 0
5088 dbgs() << "ComputeBackedgeTakenCount ";
5089 if (ExitCond->getOperand(0)->getType()->isUnsigned())
5090 dbgs() << "[unsigned] ";
5091 dbgs() << *LHS << " "
5092 << Instruction::getOpcodeName(Instruction::ICmp)
5093 << " " << *RHS << "\n";
5094 #endif
5095 break;
5096 }
5097 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5098 }
5099
5100 ScalarEvolution::ExitLimit
ComputeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)5101 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5102 SwitchInst *Switch,
5103 BasicBlock *ExitingBlock,
5104 bool ControlsExit) {
5105 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5106
5107 // Give up if the exit is the default dest of a switch.
5108 if (Switch->getDefaultDest() == ExitingBlock)
5109 return getCouldNotCompute();
5110
5111 assert(L->contains(Switch->getDefaultDest()) &&
5112 "Default case must not exit the loop!");
5113 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5114 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5115
5116 // while (X != Y) --> while (X-Y != 0)
5117 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5118 if (EL.hasAnyInfo())
5119 return EL;
5120
5121 return getCouldNotCompute();
5122 }
5123
5124 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)5125 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5126 ScalarEvolution &SE) {
5127 const SCEV *InVal = SE.getConstant(C);
5128 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5129 assert(isa<SCEVConstant>(Val) &&
5130 "Evaluation of SCEV at constant didn't fold correctly?");
5131 return cast<SCEVConstant>(Val)->getValue();
5132 }
5133
5134 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of
5135 /// 'icmp op load X, cst', try to see if we can compute the backedge
5136 /// execution count.
5137 ScalarEvolution::ExitLimit
ComputeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)5138 ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5139 LoadInst *LI,
5140 Constant *RHS,
5141 const Loop *L,
5142 ICmpInst::Predicate predicate) {
5143
5144 if (LI->isVolatile()) return getCouldNotCompute();
5145
5146 // Check to see if the loaded pointer is a getelementptr of a global.
5147 // TODO: Use SCEV instead of manually grubbing with GEPs.
5148 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5149 if (!GEP) return getCouldNotCompute();
5150
5151 // Make sure that it is really a constant global we are gepping, with an
5152 // initializer, and make sure the first IDX is really 0.
5153 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5154 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5155 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5156 !cast<Constant>(GEP->getOperand(1))->isNullValue())
5157 return getCouldNotCompute();
5158
5159 // Okay, we allow one non-constant index into the GEP instruction.
5160 Value *VarIdx = nullptr;
5161 std::vector<Constant*> Indexes;
5162 unsigned VarIdxNum = 0;
5163 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5164 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5165 Indexes.push_back(CI);
5166 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5167 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
5168 VarIdx = GEP->getOperand(i);
5169 VarIdxNum = i-2;
5170 Indexes.push_back(nullptr);
5171 }
5172
5173 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5174 if (!VarIdx)
5175 return getCouldNotCompute();
5176
5177 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5178 // Check to see if X is a loop variant variable value now.
5179 const SCEV *Idx = getSCEV(VarIdx);
5180 Idx = getSCEVAtScope(Idx, L);
5181
5182 // We can only recognize very limited forms of loop index expressions, in
5183 // particular, only affine AddRec's like {C1,+,C2}.
5184 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5185 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5186 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5187 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5188 return getCouldNotCompute();
5189
5190 unsigned MaxSteps = MaxBruteForceIterations;
5191 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5192 ConstantInt *ItCst = ConstantInt::get(
5193 cast<IntegerType>(IdxExpr->getType()), IterationNum);
5194 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5195
5196 // Form the GEP offset.
5197 Indexes[VarIdxNum] = Val;
5198
5199 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5200 Indexes);
5201 if (!Result) break; // Cannot compute!
5202
5203 // Evaluate the condition for this iteration.
5204 Result = ConstantExpr::getICmp(predicate, Result, RHS);
5205 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
5206 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5207 #if 0
5208 dbgs() << "\n***\n*** Computed loop count " << *ItCst
5209 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5210 << "***\n";
5211 #endif
5212 ++NumArrayLenItCounts;
5213 return getConstant(ItCst); // Found terminating iteration!
5214 }
5215 }
5216 return getCouldNotCompute();
5217 }
5218
5219
5220 /// CanConstantFold - Return true if we can constant fold an instruction of the
5221 /// specified type, assuming that all operands were constants.
CanConstantFold(const Instruction * I)5222 static bool CanConstantFold(const Instruction *I) {
5223 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
5224 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5225 isa<LoadInst>(I))
5226 return true;
5227
5228 if (const CallInst *CI = dyn_cast<CallInst>(I))
5229 if (const Function *F = CI->getCalledFunction())
5230 return canConstantFoldCallTo(F);
5231 return false;
5232 }
5233
5234 /// Determine whether this instruction can constant evolve within this loop
5235 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)5236 static bool canConstantEvolve(Instruction *I, const Loop *L) {
5237 // An instruction outside of the loop can't be derived from a loop PHI.
5238 if (!L->contains(I)) return false;
5239
5240 if (isa<PHINode>(I)) {
5241 if (L->getHeader() == I->getParent())
5242 return true;
5243 else
5244 // We don't currently keep track of the control flow needed to evaluate
5245 // PHIs, so we cannot handle PHIs inside of loops.
5246 return false;
5247 }
5248
5249 // If we won't be able to constant fold this expression even if the operands
5250 // are constants, bail early.
5251 return CanConstantFold(I);
5252 }
5253
5254 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5255 /// recursing through each instruction operand until reaching a loop header phi.
5256 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap)5257 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
5258 DenseMap<Instruction *, PHINode *> &PHIMap) {
5259
5260 // Otherwise, we can evaluate this instruction if all of its operands are
5261 // constant or derived from a PHI node themselves.
5262 PHINode *PHI = nullptr;
5263 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5264 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5265
5266 if (isa<Constant>(*OpI)) continue;
5267
5268 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
5269 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
5270
5271 PHINode *P = dyn_cast<PHINode>(OpInst);
5272 if (!P)
5273 // If this operand is already visited, reuse the prior result.
5274 // We may have P != PHI if this is the deepest point at which the
5275 // inconsistent paths meet.
5276 P = PHIMap.lookup(OpInst);
5277 if (!P) {
5278 // Recurse and memoize the results, whether a phi is found or not.
5279 // This recursive call invalidates pointers into PHIMap.
5280 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5281 PHIMap[OpInst] = P;
5282 }
5283 if (!P)
5284 return nullptr; // Not evolving from PHI
5285 if (PHI && PHI != P)
5286 return nullptr; // Evolving from multiple different PHIs.
5287 PHI = P;
5288 }
5289 // This is a expression evolving from a constant PHI!
5290 return PHI;
5291 }
5292
5293 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5294 /// in the loop that V is derived from. We allow arbitrary operations along the
5295 /// way, but the operands of an operation must either be constants or a value
5296 /// derived from a constant PHI. If this expression does not fit with these
5297 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)5298 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
5299 Instruction *I = dyn_cast<Instruction>(V);
5300 if (!I || !canConstantEvolve(I, L)) return nullptr;
5301
5302 if (PHINode *PN = dyn_cast<PHINode>(I)) {
5303 return PN;
5304 }
5305
5306 // Record non-constant instructions contained by the loop.
5307 DenseMap<Instruction *, PHINode *> PHIMap;
5308 return getConstantEvolvingPHIOperands(I, L, PHIMap);
5309 }
5310
5311 /// EvaluateExpression - Given an expression that passes the
5312 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5313 /// in the loop has the value PHIVal. If we can't fold this expression for some
5314 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout * DL,const TargetLibraryInfo * TLI)5315 static Constant *EvaluateExpression(Value *V, const Loop *L,
5316 DenseMap<Instruction *, Constant *> &Vals,
5317 const DataLayout *DL,
5318 const TargetLibraryInfo *TLI) {
5319 // Convenient constant check, but redundant for recursive calls.
5320 if (Constant *C = dyn_cast<Constant>(V)) return C;
5321 Instruction *I = dyn_cast<Instruction>(V);
5322 if (!I) return nullptr;
5323
5324 if (Constant *C = Vals.lookup(I)) return C;
5325
5326 // An instruction inside the loop depends on a value outside the loop that we
5327 // weren't given a mapping for, or a value such as a call inside the loop.
5328 if (!canConstantEvolve(I, L)) return nullptr;
5329
5330 // An unmapped PHI can be due to a branch or another loop inside this loop,
5331 // or due to this not being the initial iteration through a loop where we
5332 // couldn't compute the evolution of this particular PHI last time.
5333 if (isa<PHINode>(I)) return nullptr;
5334
5335 std::vector<Constant*> Operands(I->getNumOperands());
5336
5337 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5338 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5339 if (!Operand) {
5340 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
5341 if (!Operands[i]) return nullptr;
5342 continue;
5343 }
5344 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
5345 Vals[Operand] = C;
5346 if (!C) return nullptr;
5347 Operands[i] = C;
5348 }
5349
5350 if (CmpInst *CI = dyn_cast<CmpInst>(I))
5351 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
5352 Operands[1], DL, TLI);
5353 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5354 if (!LI->isVolatile())
5355 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
5356 }
5357 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
5358 TLI);
5359 }
5360
5361 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5362 /// in the header of its containing loop, we know the loop executes a
5363 /// constant number of times, and the PHI node is just a recurrence
5364 /// involving constants, fold it.
5365 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)5366 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
5367 const APInt &BEs,
5368 const Loop *L) {
5369 DenseMap<PHINode*, Constant*>::const_iterator I =
5370 ConstantEvolutionLoopExitValue.find(PN);
5371 if (I != ConstantEvolutionLoopExitValue.end())
5372 return I->second;
5373
5374 if (BEs.ugt(MaxBruteForceIterations))
5375 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
5376
5377 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5378
5379 DenseMap<Instruction *, Constant *> CurrentIterVals;
5380 BasicBlock *Header = L->getHeader();
5381 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5382
5383 // Since the loop is canonicalized, the PHI node must have two entries. One
5384 // entry must be a constant (coming in from outside of the loop), and the
5385 // second must be derived from the same PHI.
5386 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5387 PHINode *PHI = nullptr;
5388 for (BasicBlock::iterator I = Header->begin();
5389 (PHI = dyn_cast<PHINode>(I)); ++I) {
5390 Constant *StartCST =
5391 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5392 if (!StartCST) continue;
5393 CurrentIterVals[PHI] = StartCST;
5394 }
5395 if (!CurrentIterVals.count(PN))
5396 return RetVal = nullptr;
5397
5398 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
5399
5400 // Execute the loop symbolically to determine the exit value.
5401 if (BEs.getActiveBits() >= 32)
5402 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
5403
5404 unsigned NumIterations = BEs.getZExtValue(); // must be in range
5405 unsigned IterationNum = 0;
5406 for (; ; ++IterationNum) {
5407 if (IterationNum == NumIterations)
5408 return RetVal = CurrentIterVals[PN]; // Got exit value!
5409
5410 // Compute the value of the PHIs for the next iteration.
5411 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
5412 DenseMap<Instruction *, Constant *> NextIterVals;
5413 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
5414 TLI);
5415 if (!NextPHI)
5416 return nullptr; // Couldn't evaluate!
5417 NextIterVals[PN] = NextPHI;
5418
5419 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5420
5421 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5422 // cease to be able to evaluate one of them or if they stop evolving,
5423 // because that doesn't necessarily prevent us from computing PN.
5424 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
5425 for (DenseMap<Instruction *, Constant *>::const_iterator
5426 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5427 PHINode *PHI = dyn_cast<PHINode>(I->first);
5428 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
5429 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5430 }
5431 // We use two distinct loops because EvaluateExpression may invalidate any
5432 // iterators into CurrentIterVals.
5433 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5434 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5435 PHINode *PHI = I->first;
5436 Constant *&NextPHI = NextIterVals[PHI];
5437 if (!NextPHI) { // Not already computed.
5438 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5439 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5440 }
5441 if (NextPHI != I->second)
5442 StoppedEvolving = false;
5443 }
5444
5445 // If all entries in CurrentIterVals == NextIterVals then we can stop
5446 // iterating, the loop can't continue to change.
5447 if (StoppedEvolving)
5448 return RetVal = CurrentIterVals[PN];
5449
5450 CurrentIterVals.swap(NextIterVals);
5451 }
5452 }
5453
5454 /// ComputeExitCountExhaustively - If the loop is known to execute a
5455 /// constant number of times (the condition evolves only from constants),
5456 /// try to evaluate a few iterations of the loop until we get the exit
5457 /// condition gets a value of ExitWhen (true or false). If we cannot
5458 /// evaluate the trip count of the loop, return getCouldNotCompute().
ComputeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)5459 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5460 Value *Cond,
5461 bool ExitWhen) {
5462 PHINode *PN = getConstantEvolvingPHI(Cond, L);
5463 if (!PN) return getCouldNotCompute();
5464
5465 // If the loop is canonicalized, the PHI will have exactly two entries.
5466 // That's the only form we support here.
5467 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5468
5469 DenseMap<Instruction *, Constant *> CurrentIterVals;
5470 BasicBlock *Header = L->getHeader();
5471 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5472
5473 // One entry must be a constant (coming in from outside of the loop), and the
5474 // second must be derived from the same PHI.
5475 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
5476 PHINode *PHI = nullptr;
5477 for (BasicBlock::iterator I = Header->begin();
5478 (PHI = dyn_cast<PHINode>(I)); ++I) {
5479 Constant *StartCST =
5480 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5481 if (!StartCST) continue;
5482 CurrentIterVals[PHI] = StartCST;
5483 }
5484 if (!CurrentIterVals.count(PN))
5485 return getCouldNotCompute();
5486
5487 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5488 // the loop symbolically to determine when the condition gets a value of
5489 // "ExitWhen".
5490
5491 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
5492 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
5493 ConstantInt *CondVal =
5494 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
5495 DL, TLI));
5496
5497 // Couldn't symbolically evaluate.
5498 if (!CondVal) return getCouldNotCompute();
5499
5500 if (CondVal->getValue() == uint64_t(ExitWhen)) {
5501 ++NumBruteForceTripCountsComputed;
5502 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
5503 }
5504
5505 // Update all the PHI nodes for the next iteration.
5506 DenseMap<Instruction *, Constant *> NextIterVals;
5507
5508 // Create a list of which PHIs we need to compute. We want to do this before
5509 // calling EvaluateExpression on them because that may invalidate iterators
5510 // into CurrentIterVals.
5511 SmallVector<PHINode *, 8> PHIsToCompute;
5512 for (DenseMap<Instruction *, Constant *>::const_iterator
5513 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5514 PHINode *PHI = dyn_cast<PHINode>(I->first);
5515 if (!PHI || PHI->getParent() != Header) continue;
5516 PHIsToCompute.push_back(PHI);
5517 }
5518 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5519 E = PHIsToCompute.end(); I != E; ++I) {
5520 PHINode *PHI = *I;
5521 Constant *&NextPHI = NextIterVals[PHI];
5522 if (NextPHI) continue; // Already computed!
5523
5524 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
5525 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
5526 }
5527 CurrentIterVals.swap(NextIterVals);
5528 }
5529
5530 // Too many iterations were needed to evaluate.
5531 return getCouldNotCompute();
5532 }
5533
5534 /// getSCEVAtScope - Return a SCEV expression for the specified value
5535 /// at the specified scope in the program. The L value specifies a loop
5536 /// nest to evaluate the expression at, where null is the top-level or a
5537 /// specified loop is immediately inside of the loop.
5538 ///
5539 /// This method can be used to compute the exit value for a variable defined
5540 /// in a loop by querying what the value will hold in the parent loop.
5541 ///
5542 /// In the case that a relevant loop exit value cannot be computed, the
5543 /// original value V is returned.
getSCEVAtScope(const SCEV * V,const Loop * L)5544 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
5545 // Check to see if we've folded this expression at this loop before.
5546 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5547 for (unsigned u = 0; u < Values.size(); u++) {
5548 if (Values[u].first == L)
5549 return Values[u].second ? Values[u].second : V;
5550 }
5551 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
5552 // Otherwise compute it.
5553 const SCEV *C = computeSCEVAtScope(V, L);
5554 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5555 for (unsigned u = Values2.size(); u > 0; u--) {
5556 if (Values2[u - 1].first == L) {
5557 Values2[u - 1].second = C;
5558 break;
5559 }
5560 }
5561 return C;
5562 }
5563
5564 /// This builds up a Constant using the ConstantExpr interface. That way, we
5565 /// will return Constants for objects which aren't represented by a
5566 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5567 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)5568 static Constant *BuildConstantFromSCEV(const SCEV *V) {
5569 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
5570 case scCouldNotCompute:
5571 case scAddRecExpr:
5572 break;
5573 case scConstant:
5574 return cast<SCEVConstant>(V)->getValue();
5575 case scUnknown:
5576 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5577 case scSignExtend: {
5578 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5579 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5580 return ConstantExpr::getSExt(CastOp, SS->getType());
5581 break;
5582 }
5583 case scZeroExtend: {
5584 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5585 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5586 return ConstantExpr::getZExt(CastOp, SZ->getType());
5587 break;
5588 }
5589 case scTruncate: {
5590 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5591 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5592 return ConstantExpr::getTrunc(CastOp, ST->getType());
5593 break;
5594 }
5595 case scAddExpr: {
5596 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5597 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5598 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5599 unsigned AS = PTy->getAddressSpace();
5600 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5601 C = ConstantExpr::getBitCast(C, DestPtrTy);
5602 }
5603 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5604 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5605 if (!C2) return nullptr;
5606
5607 // First pointer!
5608 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5609 unsigned AS = C2->getType()->getPointerAddressSpace();
5610 std::swap(C, C2);
5611 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5612 // The offsets have been converted to bytes. We can add bytes to an
5613 // i8* by GEP with the byte count in the first index.
5614 C = ConstantExpr::getBitCast(C, DestPtrTy);
5615 }
5616
5617 // Don't bother trying to sum two pointers. We probably can't
5618 // statically compute a load that results from it anyway.
5619 if (C2->getType()->isPointerTy())
5620 return nullptr;
5621
5622 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5623 if (PTy->getElementType()->isStructTy())
5624 C2 = ConstantExpr::getIntegerCast(
5625 C2, Type::getInt32Ty(C->getContext()), true);
5626 C = ConstantExpr::getGetElementPtr(C, C2);
5627 } else
5628 C = ConstantExpr::getAdd(C, C2);
5629 }
5630 return C;
5631 }
5632 break;
5633 }
5634 case scMulExpr: {
5635 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5636 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5637 // Don't bother with pointers at all.
5638 if (C->getType()->isPointerTy()) return nullptr;
5639 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5640 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5641 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
5642 C = ConstantExpr::getMul(C, C2);
5643 }
5644 return C;
5645 }
5646 break;
5647 }
5648 case scUDivExpr: {
5649 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5650 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5651 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5652 if (LHS->getType() == RHS->getType())
5653 return ConstantExpr::getUDiv(LHS, RHS);
5654 break;
5655 }
5656 case scSMaxExpr:
5657 case scUMaxExpr:
5658 break; // TODO: smax, umax.
5659 }
5660 return nullptr;
5661 }
5662
computeSCEVAtScope(const SCEV * V,const Loop * L)5663 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5664 if (isa<SCEVConstant>(V)) return V;
5665
5666 // If this instruction is evolved from a constant-evolving PHI, compute the
5667 // exit value from the loop without using SCEVs.
5668 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5669 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5670 const Loop *LI = (*this->LI)[I->getParent()];
5671 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5672 if (PHINode *PN = dyn_cast<PHINode>(I))
5673 if (PN->getParent() == LI->getHeader()) {
5674 // Okay, there is no closed form solution for the PHI node. Check
5675 // to see if the loop that contains it has a known backedge-taken
5676 // count. If so, we may be able to force computation of the exit
5677 // value.
5678 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5679 if (const SCEVConstant *BTCC =
5680 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5681 // Okay, we know how many times the containing loop executes. If
5682 // this is a constant evolving PHI node, get the final value at
5683 // the specified iteration number.
5684 Constant *RV = getConstantEvolutionLoopExitValue(PN,
5685 BTCC->getValue()->getValue(),
5686 LI);
5687 if (RV) return getSCEV(RV);
5688 }
5689 }
5690
5691 // Okay, this is an expression that we cannot symbolically evaluate
5692 // into a SCEV. Check to see if it's possible to symbolically evaluate
5693 // the arguments into constants, and if so, try to constant propagate the
5694 // result. This is particularly useful for computing loop exit values.
5695 if (CanConstantFold(I)) {
5696 SmallVector<Constant *, 4> Operands;
5697 bool MadeImprovement = false;
5698 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5699 Value *Op = I->getOperand(i);
5700 if (Constant *C = dyn_cast<Constant>(Op)) {
5701 Operands.push_back(C);
5702 continue;
5703 }
5704
5705 // If any of the operands is non-constant and if they are
5706 // non-integer and non-pointer, don't even try to analyze them
5707 // with scev techniques.
5708 if (!isSCEVable(Op->getType()))
5709 return V;
5710
5711 const SCEV *OrigV = getSCEV(Op);
5712 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5713 MadeImprovement |= OrigV != OpV;
5714
5715 Constant *C = BuildConstantFromSCEV(OpV);
5716 if (!C) return V;
5717 if (C->getType() != Op->getType())
5718 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5719 Op->getType(),
5720 false),
5721 C, Op->getType());
5722 Operands.push_back(C);
5723 }
5724
5725 // Check to see if getSCEVAtScope actually made an improvement.
5726 if (MadeImprovement) {
5727 Constant *C = nullptr;
5728 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5729 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5730 Operands[0], Operands[1], DL,
5731 TLI);
5732 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5733 if (!LI->isVolatile())
5734 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
5735 } else
5736 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5737 Operands, DL, TLI);
5738 if (!C) return V;
5739 return getSCEV(C);
5740 }
5741 }
5742 }
5743
5744 // This is some other type of SCEVUnknown, just return it.
5745 return V;
5746 }
5747
5748 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5749 // Avoid performing the look-up in the common case where the specified
5750 // expression has no loop-variant portions.
5751 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5752 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5753 if (OpAtScope != Comm->getOperand(i)) {
5754 // Okay, at least one of these operands is loop variant but might be
5755 // foldable. Build a new instance of the folded commutative expression.
5756 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5757 Comm->op_begin()+i);
5758 NewOps.push_back(OpAtScope);
5759
5760 for (++i; i != e; ++i) {
5761 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5762 NewOps.push_back(OpAtScope);
5763 }
5764 if (isa<SCEVAddExpr>(Comm))
5765 return getAddExpr(NewOps);
5766 if (isa<SCEVMulExpr>(Comm))
5767 return getMulExpr(NewOps);
5768 if (isa<SCEVSMaxExpr>(Comm))
5769 return getSMaxExpr(NewOps);
5770 if (isa<SCEVUMaxExpr>(Comm))
5771 return getUMaxExpr(NewOps);
5772 llvm_unreachable("Unknown commutative SCEV type!");
5773 }
5774 }
5775 // If we got here, all operands are loop invariant.
5776 return Comm;
5777 }
5778
5779 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5780 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5781 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5782 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5783 return Div; // must be loop invariant
5784 return getUDivExpr(LHS, RHS);
5785 }
5786
5787 // If this is a loop recurrence for a loop that does not contain L, then we
5788 // are dealing with the final value computed by the loop.
5789 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5790 // First, attempt to evaluate each operand.
5791 // Avoid performing the look-up in the common case where the specified
5792 // expression has no loop-variant portions.
5793 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5794 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5795 if (OpAtScope == AddRec->getOperand(i))
5796 continue;
5797
5798 // Okay, at least one of these operands is loop variant but might be
5799 // foldable. Build a new instance of the folded commutative expression.
5800 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5801 AddRec->op_begin()+i);
5802 NewOps.push_back(OpAtScope);
5803 for (++i; i != e; ++i)
5804 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5805
5806 const SCEV *FoldedRec =
5807 getAddRecExpr(NewOps, AddRec->getLoop(),
5808 AddRec->getNoWrapFlags(SCEV::FlagNW));
5809 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5810 // The addrec may be folded to a nonrecurrence, for example, if the
5811 // induction variable is multiplied by zero after constant folding. Go
5812 // ahead and return the folded value.
5813 if (!AddRec)
5814 return FoldedRec;
5815 break;
5816 }
5817
5818 // If the scope is outside the addrec's loop, evaluate it by using the
5819 // loop exit value of the addrec.
5820 if (!AddRec->getLoop()->contains(L)) {
5821 // To evaluate this recurrence, we need to know how many times the AddRec
5822 // loop iterates. Compute this now.
5823 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5824 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5825
5826 // Then, evaluate the AddRec.
5827 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5828 }
5829
5830 return AddRec;
5831 }
5832
5833 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5834 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5835 if (Op == Cast->getOperand())
5836 return Cast; // must be loop invariant
5837 return getZeroExtendExpr(Op, Cast->getType());
5838 }
5839
5840 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5841 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5842 if (Op == Cast->getOperand())
5843 return Cast; // must be loop invariant
5844 return getSignExtendExpr(Op, Cast->getType());
5845 }
5846
5847 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5848 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5849 if (Op == Cast->getOperand())
5850 return Cast; // must be loop invariant
5851 return getTruncateExpr(Op, Cast->getType());
5852 }
5853
5854 llvm_unreachable("Unknown SCEV type!");
5855 }
5856
5857 /// getSCEVAtScope - This is a convenience function which does
5858 /// getSCEVAtScope(getSCEV(V), L).
getSCEVAtScope(Value * V,const Loop * L)5859 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5860 return getSCEVAtScope(getSCEV(V), L);
5861 }
5862
5863 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5864 /// following equation:
5865 ///
5866 /// A * X = B (mod N)
5867 ///
5868 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5869 /// A and B isn't important.
5870 ///
5871 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const APInt & B,ScalarEvolution & SE)5872 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5873 ScalarEvolution &SE) {
5874 uint32_t BW = A.getBitWidth();
5875 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5876 assert(A != 0 && "A must be non-zero.");
5877
5878 // 1. D = gcd(A, N)
5879 //
5880 // The gcd of A and N may have only one prime factor: 2. The number of
5881 // trailing zeros in A is its multiplicity
5882 uint32_t Mult2 = A.countTrailingZeros();
5883 // D = 2^Mult2
5884
5885 // 2. Check if B is divisible by D.
5886 //
5887 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5888 // is not less than multiplicity of this prime factor for D.
5889 if (B.countTrailingZeros() < Mult2)
5890 return SE.getCouldNotCompute();
5891
5892 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5893 // modulo (N / D).
5894 //
5895 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5896 // bit width during computations.
5897 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5898 APInt Mod(BW + 1, 0);
5899 Mod.setBit(BW - Mult2); // Mod = N / D
5900 APInt I = AD.multiplicativeInverse(Mod);
5901
5902 // 4. Compute the minimum unsigned root of the equation:
5903 // I * (B / D) mod (N / D)
5904 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5905
5906 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5907 // bits.
5908 return SE.getConstant(Result.trunc(BW));
5909 }
5910
5911 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5912 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5913 /// might be the same) or two SCEVCouldNotCompute objects.
5914 ///
5915 static std::pair<const SCEV *,const SCEV *>
SolveQuadraticEquation(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)5916 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5917 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5918 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5919 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5920 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5921
5922 // We currently can only solve this if the coefficients are constants.
5923 if (!LC || !MC || !NC) {
5924 const SCEV *CNC = SE.getCouldNotCompute();
5925 return std::make_pair(CNC, CNC);
5926 }
5927
5928 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5929 const APInt &L = LC->getValue()->getValue();
5930 const APInt &M = MC->getValue()->getValue();
5931 const APInt &N = NC->getValue()->getValue();
5932 APInt Two(BitWidth, 2);
5933 APInt Four(BitWidth, 4);
5934
5935 {
5936 using namespace APIntOps;
5937 const APInt& C = L;
5938 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5939 // The B coefficient is M-N/2
5940 APInt B(M);
5941 B -= sdiv(N,Two);
5942
5943 // The A coefficient is N/2
5944 APInt A(N.sdiv(Two));
5945
5946 // Compute the B^2-4ac term.
5947 APInt SqrtTerm(B);
5948 SqrtTerm *= B;
5949 SqrtTerm -= Four * (A * C);
5950
5951 if (SqrtTerm.isNegative()) {
5952 // The loop is provably infinite.
5953 const SCEV *CNC = SE.getCouldNotCompute();
5954 return std::make_pair(CNC, CNC);
5955 }
5956
5957 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5958 // integer value or else APInt::sqrt() will assert.
5959 APInt SqrtVal(SqrtTerm.sqrt());
5960
5961 // Compute the two solutions for the quadratic formula.
5962 // The divisions must be performed as signed divisions.
5963 APInt NegB(-B);
5964 APInt TwoA(A << 1);
5965 if (TwoA.isMinValue()) {
5966 const SCEV *CNC = SE.getCouldNotCompute();
5967 return std::make_pair(CNC, CNC);
5968 }
5969
5970 LLVMContext &Context = SE.getContext();
5971
5972 ConstantInt *Solution1 =
5973 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5974 ConstantInt *Solution2 =
5975 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5976
5977 return std::make_pair(SE.getConstant(Solution1),
5978 SE.getConstant(Solution2));
5979 } // end APIntOps namespace
5980 }
5981
5982 /// HowFarToZero - Return the number of times a backedge comparing the specified
5983 /// value to zero will execute. If not computable, return CouldNotCompute.
5984 ///
5985 /// This is only used for loops with a "x != y" exit test. The exit condition is
5986 /// now expressed as a single expression, V = x-y. So the exit test is
5987 /// effectively V != 0. We know and take advantage of the fact that this
5988 /// expression only being used in a comparison by zero context.
5989 ScalarEvolution::ExitLimit
HowFarToZero(const SCEV * V,const Loop * L,bool ControlsExit)5990 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
5991 // If the value is a constant
5992 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5993 // If the value is already zero, the branch will execute zero times.
5994 if (C->getValue()->isZero()) return C;
5995 return getCouldNotCompute(); // Otherwise it will loop infinitely.
5996 }
5997
5998 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5999 if (!AddRec || AddRec->getLoop() != L)
6000 return getCouldNotCompute();
6001
6002 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6003 // the quadratic equation to solve it.
6004 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6005 std::pair<const SCEV *,const SCEV *> Roots =
6006 SolveQuadraticEquation(AddRec, *this);
6007 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6008 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6009 if (R1 && R2) {
6010 #if 0
6011 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
6012 << " sol#2: " << *R2 << "\n";
6013 #endif
6014 // Pick the smallest positive root value.
6015 if (ConstantInt *CB =
6016 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6017 R1->getValue(),
6018 R2->getValue()))) {
6019 if (CB->getZExtValue() == false)
6020 std::swap(R1, R2); // R1 is the minimum root now.
6021
6022 // We can only use this value if the chrec ends up with an exact zero
6023 // value at this index. When solving for "X*X != 5", for example, we
6024 // should not accept a root of 2.
6025 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6026 if (Val->isZero())
6027 return R1; // We found a quadratic root!
6028 }
6029 }
6030 return getCouldNotCompute();
6031 }
6032
6033 // Otherwise we can only handle this if it is affine.
6034 if (!AddRec->isAffine())
6035 return getCouldNotCompute();
6036
6037 // If this is an affine expression, the execution count of this branch is
6038 // the minimum unsigned root of the following equation:
6039 //
6040 // Start + Step*N = 0 (mod 2^BW)
6041 //
6042 // equivalent to:
6043 //
6044 // Step*N = -Start (mod 2^BW)
6045 //
6046 // where BW is the common bit width of Start and Step.
6047
6048 // Get the initial value for the loop.
6049 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6050 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6051
6052 // For now we handle only constant steps.
6053 //
6054 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6055 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6056 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6057 // We have not yet seen any such cases.
6058 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6059 if (!StepC || StepC->getValue()->equalsInt(0))
6060 return getCouldNotCompute();
6061
6062 // For positive steps (counting up until unsigned overflow):
6063 // N = -Start/Step (as unsigned)
6064 // For negative steps (counting down to zero):
6065 // N = Start/-Step
6066 // First compute the unsigned distance from zero in the direction of Step.
6067 bool CountDown = StepC->getValue()->getValue().isNegative();
6068 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6069
6070 // Handle unitary steps, which cannot wraparound.
6071 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6072 // N = Distance (as unsigned)
6073 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6074 ConstantRange CR = getUnsignedRange(Start);
6075 const SCEV *MaxBECount;
6076 if (!CountDown && CR.getUnsignedMin().isMinValue())
6077 // When counting up, the worst starting value is 1, not 0.
6078 MaxBECount = CR.getUnsignedMax().isMinValue()
6079 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6080 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6081 else
6082 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6083 : -CR.getUnsignedMin());
6084 return ExitLimit(Distance, MaxBECount);
6085 }
6086
6087 // As a special case, handle the instance where Step is a positive power of
6088 // two. In this case, determining whether Step divides Distance evenly can be
6089 // done by counting and comparing the number of trailing zeros of Step and
6090 // Distance.
6091 if (!CountDown) {
6092 const APInt &StepV = StepC->getValue()->getValue();
6093 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6094 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6095 // case is not handled as this code is guarded by !CountDown.
6096 if (StepV.isPowerOf2() &&
6097 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6098 return getUDivExactExpr(Distance, Step);
6099 }
6100
6101 // If the condition controls loop exit (the loop exits only if the expression
6102 // is true) and the addition is no-wrap we can use unsigned divide to
6103 // compute the backedge count. In this case, the step may not divide the
6104 // distance, but we don't care because if the condition is "missed" the loop
6105 // will have undefined behavior due to wrapping.
6106 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6107 const SCEV *Exact =
6108 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6109 return ExitLimit(Exact, Exact);
6110 }
6111
6112 // Then, try to solve the above equation provided that Start is constant.
6113 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6114 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6115 -StartC->getValue()->getValue(),
6116 *this);
6117 return getCouldNotCompute();
6118 }
6119
6120 /// HowFarToNonZero - Return the number of times a backedge checking the
6121 /// specified value for nonzero will execute. If not computable, return
6122 /// CouldNotCompute
6123 ScalarEvolution::ExitLimit
HowFarToNonZero(const SCEV * V,const Loop * L)6124 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
6125 // Loops that look like: while (X == 0) are very strange indeed. We don't
6126 // handle them yet except for the trivial case. This could be expanded in the
6127 // future as needed.
6128
6129 // If the value is a constant, check to see if it is known to be non-zero
6130 // already. If so, the backedge will execute zero times.
6131 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6132 if (!C->getValue()->isNullValue())
6133 return getConstant(C->getType(), 0);
6134 return getCouldNotCompute(); // Otherwise it will loop infinitely.
6135 }
6136
6137 // We could implement others, but I really doubt anyone writes loops like
6138 // this, and if they did, they would already be constant folded.
6139 return getCouldNotCompute();
6140 }
6141
6142 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6143 /// (which may not be an immediate predecessor) which has exactly one
6144 /// successor from which BB is reachable, or null if no such block is
6145 /// found.
6146 ///
6147 std::pair<BasicBlock *, BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(BasicBlock * BB)6148 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
6149 // If the block has a unique predecessor, then there is no path from the
6150 // predecessor to the block that does not go through the direct edge
6151 // from the predecessor to the block.
6152 if (BasicBlock *Pred = BB->getSinglePredecessor())
6153 return std::make_pair(Pred, BB);
6154
6155 // A loop's header is defined to be a block that dominates the loop.
6156 // If the header has a unique predecessor outside the loop, it must be
6157 // a block that has exactly one successor that can reach the loop.
6158 if (Loop *L = LI->getLoopFor(BB))
6159 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
6160
6161 return std::pair<BasicBlock *, BasicBlock *>();
6162 }
6163
6164 /// HasSameValue - SCEV structural equivalence is usually sufficient for
6165 /// testing whether two expressions are equal, however for the purposes of
6166 /// looking for a condition guarding a loop, it can be useful to be a little
6167 /// more general, since a front-end may have replicated the controlling
6168 /// expression.
6169 ///
HasSameValue(const SCEV * A,const SCEV * B)6170 static bool HasSameValue(const SCEV *A, const SCEV *B) {
6171 // Quick check to see if they are the same SCEV.
6172 if (A == B) return true;
6173
6174 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6175 // two different instructions with the same value. Check for this case.
6176 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6177 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6178 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6179 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
6180 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
6181 return true;
6182
6183 // Otherwise assume they may have a different value.
6184 return false;
6185 }
6186
6187 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
6188 /// predicate Pred. Return true iff any changes were made.
6189 ///
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)6190 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
6191 const SCEV *&LHS, const SCEV *&RHS,
6192 unsigned Depth) {
6193 bool Changed = false;
6194
6195 // If we hit the max recursion limit bail out.
6196 if (Depth >= 3)
6197 return false;
6198
6199 // Canonicalize a constant to the right side.
6200 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6201 // Check for both operands constant.
6202 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6203 if (ConstantExpr::getICmp(Pred,
6204 LHSC->getValue(),
6205 RHSC->getValue())->isNullValue())
6206 goto trivially_false;
6207 else
6208 goto trivially_true;
6209 }
6210 // Otherwise swap the operands to put the constant on the right.
6211 std::swap(LHS, RHS);
6212 Pred = ICmpInst::getSwappedPredicate(Pred);
6213 Changed = true;
6214 }
6215
6216 // If we're comparing an addrec with a value which is loop-invariant in the
6217 // addrec's loop, put the addrec on the left. Also make a dominance check,
6218 // as both operands could be addrecs loop-invariant in each other's loop.
6219 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6220 const Loop *L = AR->getLoop();
6221 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
6222 std::swap(LHS, RHS);
6223 Pred = ICmpInst::getSwappedPredicate(Pred);
6224 Changed = true;
6225 }
6226 }
6227
6228 // If there's a constant operand, canonicalize comparisons with boundary
6229 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6230 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6231 const APInt &RA = RC->getValue()->getValue();
6232 switch (Pred) {
6233 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6234 case ICmpInst::ICMP_EQ:
6235 case ICmpInst::ICMP_NE:
6236 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6237 if (!RA)
6238 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6239 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
6240 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6241 ME->getOperand(0)->isAllOnesValue()) {
6242 RHS = AE->getOperand(1);
6243 LHS = ME->getOperand(1);
6244 Changed = true;
6245 }
6246 break;
6247 case ICmpInst::ICMP_UGE:
6248 if ((RA - 1).isMinValue()) {
6249 Pred = ICmpInst::ICMP_NE;
6250 RHS = getConstant(RA - 1);
6251 Changed = true;
6252 break;
6253 }
6254 if (RA.isMaxValue()) {
6255 Pred = ICmpInst::ICMP_EQ;
6256 Changed = true;
6257 break;
6258 }
6259 if (RA.isMinValue()) goto trivially_true;
6260
6261 Pred = ICmpInst::ICMP_UGT;
6262 RHS = getConstant(RA - 1);
6263 Changed = true;
6264 break;
6265 case ICmpInst::ICMP_ULE:
6266 if ((RA + 1).isMaxValue()) {
6267 Pred = ICmpInst::ICMP_NE;
6268 RHS = getConstant(RA + 1);
6269 Changed = true;
6270 break;
6271 }
6272 if (RA.isMinValue()) {
6273 Pred = ICmpInst::ICMP_EQ;
6274 Changed = true;
6275 break;
6276 }
6277 if (RA.isMaxValue()) goto trivially_true;
6278
6279 Pred = ICmpInst::ICMP_ULT;
6280 RHS = getConstant(RA + 1);
6281 Changed = true;
6282 break;
6283 case ICmpInst::ICMP_SGE:
6284 if ((RA - 1).isMinSignedValue()) {
6285 Pred = ICmpInst::ICMP_NE;
6286 RHS = getConstant(RA - 1);
6287 Changed = true;
6288 break;
6289 }
6290 if (RA.isMaxSignedValue()) {
6291 Pred = ICmpInst::ICMP_EQ;
6292 Changed = true;
6293 break;
6294 }
6295 if (RA.isMinSignedValue()) goto trivially_true;
6296
6297 Pred = ICmpInst::ICMP_SGT;
6298 RHS = getConstant(RA - 1);
6299 Changed = true;
6300 break;
6301 case ICmpInst::ICMP_SLE:
6302 if ((RA + 1).isMaxSignedValue()) {
6303 Pred = ICmpInst::ICMP_NE;
6304 RHS = getConstant(RA + 1);
6305 Changed = true;
6306 break;
6307 }
6308 if (RA.isMinSignedValue()) {
6309 Pred = ICmpInst::ICMP_EQ;
6310 Changed = true;
6311 break;
6312 }
6313 if (RA.isMaxSignedValue()) goto trivially_true;
6314
6315 Pred = ICmpInst::ICMP_SLT;
6316 RHS = getConstant(RA + 1);
6317 Changed = true;
6318 break;
6319 case ICmpInst::ICMP_UGT:
6320 if (RA.isMinValue()) {
6321 Pred = ICmpInst::ICMP_NE;
6322 Changed = true;
6323 break;
6324 }
6325 if ((RA + 1).isMaxValue()) {
6326 Pred = ICmpInst::ICMP_EQ;
6327 RHS = getConstant(RA + 1);
6328 Changed = true;
6329 break;
6330 }
6331 if (RA.isMaxValue()) goto trivially_false;
6332 break;
6333 case ICmpInst::ICMP_ULT:
6334 if (RA.isMaxValue()) {
6335 Pred = ICmpInst::ICMP_NE;
6336 Changed = true;
6337 break;
6338 }
6339 if ((RA - 1).isMinValue()) {
6340 Pred = ICmpInst::ICMP_EQ;
6341 RHS = getConstant(RA - 1);
6342 Changed = true;
6343 break;
6344 }
6345 if (RA.isMinValue()) goto trivially_false;
6346 break;
6347 case ICmpInst::ICMP_SGT:
6348 if (RA.isMinSignedValue()) {
6349 Pred = ICmpInst::ICMP_NE;
6350 Changed = true;
6351 break;
6352 }
6353 if ((RA + 1).isMaxSignedValue()) {
6354 Pred = ICmpInst::ICMP_EQ;
6355 RHS = getConstant(RA + 1);
6356 Changed = true;
6357 break;
6358 }
6359 if (RA.isMaxSignedValue()) goto trivially_false;
6360 break;
6361 case ICmpInst::ICMP_SLT:
6362 if (RA.isMaxSignedValue()) {
6363 Pred = ICmpInst::ICMP_NE;
6364 Changed = true;
6365 break;
6366 }
6367 if ((RA - 1).isMinSignedValue()) {
6368 Pred = ICmpInst::ICMP_EQ;
6369 RHS = getConstant(RA - 1);
6370 Changed = true;
6371 break;
6372 }
6373 if (RA.isMinSignedValue()) goto trivially_false;
6374 break;
6375 }
6376 }
6377
6378 // Check for obvious equality.
6379 if (HasSameValue(LHS, RHS)) {
6380 if (ICmpInst::isTrueWhenEqual(Pred))
6381 goto trivially_true;
6382 if (ICmpInst::isFalseWhenEqual(Pred))
6383 goto trivially_false;
6384 }
6385
6386 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6387 // adding or subtracting 1 from one of the operands.
6388 switch (Pred) {
6389 case ICmpInst::ICMP_SLE:
6390 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6391 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6392 SCEV::FlagNSW);
6393 Pred = ICmpInst::ICMP_SLT;
6394 Changed = true;
6395 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
6396 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6397 SCEV::FlagNSW);
6398 Pred = ICmpInst::ICMP_SLT;
6399 Changed = true;
6400 }
6401 break;
6402 case ICmpInst::ICMP_SGE:
6403 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
6404 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6405 SCEV::FlagNSW);
6406 Pred = ICmpInst::ICMP_SGT;
6407 Changed = true;
6408 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6409 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6410 SCEV::FlagNSW);
6411 Pred = ICmpInst::ICMP_SGT;
6412 Changed = true;
6413 }
6414 break;
6415 case ICmpInst::ICMP_ULE:
6416 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
6417 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
6418 SCEV::FlagNUW);
6419 Pred = ICmpInst::ICMP_ULT;
6420 Changed = true;
6421 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
6422 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
6423 SCEV::FlagNUW);
6424 Pred = ICmpInst::ICMP_ULT;
6425 Changed = true;
6426 }
6427 break;
6428 case ICmpInst::ICMP_UGE:
6429 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
6430 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
6431 SCEV::FlagNUW);
6432 Pred = ICmpInst::ICMP_UGT;
6433 Changed = true;
6434 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
6435 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
6436 SCEV::FlagNUW);
6437 Pred = ICmpInst::ICMP_UGT;
6438 Changed = true;
6439 }
6440 break;
6441 default:
6442 break;
6443 }
6444
6445 // TODO: More simplifications are possible here.
6446
6447 // Recursively simplify until we either hit a recursion limit or nothing
6448 // changes.
6449 if (Changed)
6450 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6451
6452 return Changed;
6453
6454 trivially_true:
6455 // Return 0 == 0.
6456 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6457 Pred = ICmpInst::ICMP_EQ;
6458 return true;
6459
6460 trivially_false:
6461 // Return 0 != 0.
6462 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
6463 Pred = ICmpInst::ICMP_NE;
6464 return true;
6465 }
6466
isKnownNegative(const SCEV * S)6467 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6468 return getSignedRange(S).getSignedMax().isNegative();
6469 }
6470
isKnownPositive(const SCEV * S)6471 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6472 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6473 }
6474
isKnownNonNegative(const SCEV * S)6475 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6476 return !getSignedRange(S).getSignedMin().isNegative();
6477 }
6478
isKnownNonPositive(const SCEV * S)6479 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6480 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6481 }
6482
isKnownNonZero(const SCEV * S)6483 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6484 return isKnownNegative(S) || isKnownPositive(S);
6485 }
6486
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)6487 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6488 const SCEV *LHS, const SCEV *RHS) {
6489 // Canonicalize the inputs first.
6490 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6491
6492 // If LHS or RHS is an addrec, check to see if the condition is true in
6493 // every iteration of the loop.
6494 // If LHS and RHS are both addrec, both conditions must be true in
6495 // every iteration of the loop.
6496 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6497 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6498 bool LeftGuarded = false;
6499 bool RightGuarded = false;
6500 if (LAR) {
6501 const Loop *L = LAR->getLoop();
6502 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6503 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6504 if (!RAR) return true;
6505 LeftGuarded = true;
6506 }
6507 }
6508 if (RAR) {
6509 const Loop *L = RAR->getLoop();
6510 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6511 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6512 if (!LAR) return true;
6513 RightGuarded = true;
6514 }
6515 }
6516 if (LeftGuarded && RightGuarded)
6517 return true;
6518
6519 // Otherwise see what can be done with known constant ranges.
6520 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6521 }
6522
6523 bool
isKnownPredicateWithRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)6524 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6525 const SCEV *LHS, const SCEV *RHS) {
6526 if (HasSameValue(LHS, RHS))
6527 return ICmpInst::isTrueWhenEqual(Pred);
6528
6529 // This code is split out from isKnownPredicate because it is called from
6530 // within isLoopEntryGuardedByCond.
6531 switch (Pred) {
6532 default:
6533 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6534 case ICmpInst::ICMP_SGT:
6535 std::swap(LHS, RHS);
6536 case ICmpInst::ICMP_SLT: {
6537 ConstantRange LHSRange = getSignedRange(LHS);
6538 ConstantRange RHSRange = getSignedRange(RHS);
6539 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6540 return true;
6541 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6542 return false;
6543 break;
6544 }
6545 case ICmpInst::ICMP_SGE:
6546 std::swap(LHS, RHS);
6547 case ICmpInst::ICMP_SLE: {
6548 ConstantRange LHSRange = getSignedRange(LHS);
6549 ConstantRange RHSRange = getSignedRange(RHS);
6550 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6551 return true;
6552 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6553 return false;
6554 break;
6555 }
6556 case ICmpInst::ICMP_UGT:
6557 std::swap(LHS, RHS);
6558 case ICmpInst::ICMP_ULT: {
6559 ConstantRange LHSRange = getUnsignedRange(LHS);
6560 ConstantRange RHSRange = getUnsignedRange(RHS);
6561 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6562 return true;
6563 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6564 return false;
6565 break;
6566 }
6567 case ICmpInst::ICMP_UGE:
6568 std::swap(LHS, RHS);
6569 case ICmpInst::ICMP_ULE: {
6570 ConstantRange LHSRange = getUnsignedRange(LHS);
6571 ConstantRange RHSRange = getUnsignedRange(RHS);
6572 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6573 return true;
6574 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6575 return false;
6576 break;
6577 }
6578 case ICmpInst::ICMP_NE: {
6579 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6580 return true;
6581 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6582 return true;
6583
6584 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6585 if (isKnownNonZero(Diff))
6586 return true;
6587 break;
6588 }
6589 case ICmpInst::ICMP_EQ:
6590 // The check at the top of the function catches the case where
6591 // the values are known to be equal.
6592 break;
6593 }
6594 return false;
6595 }
6596
6597 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6598 /// protected by a conditional between LHS and RHS. This is used to
6599 /// to eliminate casts.
6600 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)6601 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6602 ICmpInst::Predicate Pred,
6603 const SCEV *LHS, const SCEV *RHS) {
6604 // Interpret a null as meaning no loop, where there is obviously no guard
6605 // (interprocedural conditions notwithstanding).
6606 if (!L) return true;
6607
6608 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6609
6610 BasicBlock *Latch = L->getLoopLatch();
6611 if (!Latch)
6612 return false;
6613
6614 BranchInst *LoopContinuePredicate =
6615 dyn_cast<BranchInst>(Latch->getTerminator());
6616 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6617 isImpliedCond(Pred, LHS, RHS,
6618 LoopContinuePredicate->getCondition(),
6619 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6620 return true;
6621
6622 // Check conditions due to any @llvm.assume intrinsics.
6623 for (auto &AssumeVH : AC->assumptions()) {
6624 if (!AssumeVH)
6625 continue;
6626 auto *CI = cast<CallInst>(AssumeVH);
6627 if (!DT->dominates(CI, Latch->getTerminator()))
6628 continue;
6629
6630 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6631 return true;
6632 }
6633
6634 return false;
6635 }
6636
6637 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6638 /// by a conditional between LHS and RHS. This is used to help avoid max
6639 /// expressions in loop trip counts, and to eliminate casts.
6640 bool
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)6641 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6642 ICmpInst::Predicate Pred,
6643 const SCEV *LHS, const SCEV *RHS) {
6644 // Interpret a null as meaning no loop, where there is obviously no guard
6645 // (interprocedural conditions notwithstanding).
6646 if (!L) return false;
6647
6648 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6649
6650 // Starting at the loop predecessor, climb up the predecessor chain, as long
6651 // as there are predecessors that can be found that have unique successors
6652 // leading to the original header.
6653 for (std::pair<BasicBlock *, BasicBlock *>
6654 Pair(L->getLoopPredecessor(), L->getHeader());
6655 Pair.first;
6656 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6657
6658 BranchInst *LoopEntryPredicate =
6659 dyn_cast<BranchInst>(Pair.first->getTerminator());
6660 if (!LoopEntryPredicate ||
6661 LoopEntryPredicate->isUnconditional())
6662 continue;
6663
6664 if (isImpliedCond(Pred, LHS, RHS,
6665 LoopEntryPredicate->getCondition(),
6666 LoopEntryPredicate->getSuccessor(0) != Pair.second))
6667 return true;
6668 }
6669
6670 // Check conditions due to any @llvm.assume intrinsics.
6671 for (auto &AssumeVH : AC->assumptions()) {
6672 if (!AssumeVH)
6673 continue;
6674 auto *CI = cast<CallInst>(AssumeVH);
6675 if (!DT->dominates(CI, L->getHeader()))
6676 continue;
6677
6678 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6679 return true;
6680 }
6681
6682 return false;
6683 }
6684
6685 /// RAII wrapper to prevent recursive application of isImpliedCond.
6686 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6687 /// currently evaluating isImpliedCond.
6688 struct MarkPendingLoopPredicate {
6689 Value *Cond;
6690 DenseSet<Value*> &LoopPreds;
6691 bool Pending;
6692
MarkPendingLoopPredicateMarkPendingLoopPredicate6693 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6694 : Cond(C), LoopPreds(LP) {
6695 Pending = !LoopPreds.insert(Cond).second;
6696 }
~MarkPendingLoopPredicateMarkPendingLoopPredicate6697 ~MarkPendingLoopPredicate() {
6698 if (!Pending)
6699 LoopPreds.erase(Cond);
6700 }
6701 };
6702
6703 /// isImpliedCond - Test whether the condition described by Pred, LHS,
6704 /// and RHS is true whenever the given Cond value evaluates to true.
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,Value * FoundCondValue,bool Inverse)6705 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6706 const SCEV *LHS, const SCEV *RHS,
6707 Value *FoundCondValue,
6708 bool Inverse) {
6709 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6710 if (Mark.Pending)
6711 return false;
6712
6713 // Recursively handle And and Or conditions.
6714 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6715 if (BO->getOpcode() == Instruction::And) {
6716 if (!Inverse)
6717 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6718 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6719 } else if (BO->getOpcode() == Instruction::Or) {
6720 if (Inverse)
6721 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6722 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6723 }
6724 }
6725
6726 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6727 if (!ICI) return false;
6728
6729 // Bail if the ICmp's operands' types are wider than the needed type
6730 // before attempting to call getSCEV on them. This avoids infinite
6731 // recursion, since the analysis of widening casts can require loop
6732 // exit condition information for overflow checking, which would
6733 // lead back here.
6734 if (getTypeSizeInBits(LHS->getType()) <
6735 getTypeSizeInBits(ICI->getOperand(0)->getType()))
6736 return false;
6737
6738 // Now that we found a conditional branch that dominates the loop or controls
6739 // the loop latch. Check to see if it is the comparison we are looking for.
6740 ICmpInst::Predicate FoundPred;
6741 if (Inverse)
6742 FoundPred = ICI->getInversePredicate();
6743 else
6744 FoundPred = ICI->getPredicate();
6745
6746 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6747 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6748
6749 // Balance the types. The case where FoundLHS' type is wider than
6750 // LHS' type is checked for above.
6751 if (getTypeSizeInBits(LHS->getType()) >
6752 getTypeSizeInBits(FoundLHS->getType())) {
6753 if (CmpInst::isSigned(FoundPred)) {
6754 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6755 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6756 } else {
6757 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6758 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6759 }
6760 }
6761
6762 // Canonicalize the query to match the way instcombine will have
6763 // canonicalized the comparison.
6764 if (SimplifyICmpOperands(Pred, LHS, RHS))
6765 if (LHS == RHS)
6766 return CmpInst::isTrueWhenEqual(Pred);
6767 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6768 if (FoundLHS == FoundRHS)
6769 return CmpInst::isFalseWhenEqual(FoundPred);
6770
6771 // Check to see if we can make the LHS or RHS match.
6772 if (LHS == FoundRHS || RHS == FoundLHS) {
6773 if (isa<SCEVConstant>(RHS)) {
6774 std::swap(FoundLHS, FoundRHS);
6775 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6776 } else {
6777 std::swap(LHS, RHS);
6778 Pred = ICmpInst::getSwappedPredicate(Pred);
6779 }
6780 }
6781
6782 // Check whether the found predicate is the same as the desired predicate.
6783 if (FoundPred == Pred)
6784 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6785
6786 // Check whether swapping the found predicate makes it the same as the
6787 // desired predicate.
6788 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6789 if (isa<SCEVConstant>(RHS))
6790 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6791 else
6792 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6793 RHS, LHS, FoundLHS, FoundRHS);
6794 }
6795
6796 // Check if we can make progress by sharpening ranges.
6797 if (FoundPred == ICmpInst::ICMP_NE &&
6798 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6799
6800 const SCEVConstant *C = nullptr;
6801 const SCEV *V = nullptr;
6802
6803 if (isa<SCEVConstant>(FoundLHS)) {
6804 C = cast<SCEVConstant>(FoundLHS);
6805 V = FoundRHS;
6806 } else {
6807 C = cast<SCEVConstant>(FoundRHS);
6808 V = FoundLHS;
6809 }
6810
6811 // The guarding predicate tells us that C != V. If the known range
6812 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6813 // range we consider has to correspond to same signedness as the
6814 // predicate we're interested in folding.
6815
6816 APInt Min = ICmpInst::isSigned(Pred) ?
6817 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6818
6819 if (Min == C->getValue()->getValue()) {
6820 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6821 // This is true even if (Min + 1) wraps around -- in case of
6822 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6823
6824 APInt SharperMin = Min + 1;
6825
6826 switch (Pred) {
6827 case ICmpInst::ICMP_SGE:
6828 case ICmpInst::ICMP_UGE:
6829 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6830 // RHS, we're done.
6831 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6832 getConstant(SharperMin)))
6833 return true;
6834
6835 case ICmpInst::ICMP_SGT:
6836 case ICmpInst::ICMP_UGT:
6837 // We know from the range information that (V `Pred` Min ||
6838 // V == Min). We know from the guarding condition that !(V
6839 // == Min). This gives us
6840 //
6841 // V `Pred` Min || V == Min && !(V == Min)
6842 // => V `Pred` Min
6843 //
6844 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6845
6846 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6847 return true;
6848
6849 default:
6850 // No change
6851 break;
6852 }
6853 }
6854 }
6855
6856 // Check whether the actual condition is beyond sufficient.
6857 if (FoundPred == ICmpInst::ICMP_EQ)
6858 if (ICmpInst::isTrueWhenEqual(Pred))
6859 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6860 return true;
6861 if (Pred == ICmpInst::ICMP_NE)
6862 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6863 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6864 return true;
6865
6866 // Otherwise assume the worst.
6867 return false;
6868 }
6869
6870 /// isImpliedCondOperands - Test whether the condition described by Pred,
6871 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6872 /// and FoundRHS is true.
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)6873 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6874 const SCEV *LHS, const SCEV *RHS,
6875 const SCEV *FoundLHS,
6876 const SCEV *FoundRHS) {
6877 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6878 FoundLHS, FoundRHS) ||
6879 // ~x < ~y --> x > y
6880 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6881 getNotSCEV(FoundRHS),
6882 getNotSCEV(FoundLHS));
6883 }
6884
6885
6886 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)6887 static const SCEV *MatchNotExpr(const SCEV *Expr) {
6888 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
6889 if (!Add || Add->getNumOperands() != 2) return nullptr;
6890
6891 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
6892 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
6893 return nullptr;
6894
6895 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
6896 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
6897
6898 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
6899 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
6900 return nullptr;
6901
6902 return AddRHS->getOperand(1);
6903 }
6904
6905
6906 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
6907 template<typename MaxExprType>
IsMaxConsistingOf(const SCEV * MaybeMaxExpr,const SCEV * Candidate)6908 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
6909 const SCEV *Candidate) {
6910 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
6911 if (!MaxExpr) return false;
6912
6913 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
6914 return It != MaxExpr->op_end();
6915 }
6916
6917
6918 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
6919 template<typename MaxExprType>
IsMinConsistingOf(ScalarEvolution & SE,const SCEV * MaybeMinExpr,const SCEV * Candidate)6920 static bool IsMinConsistingOf(ScalarEvolution &SE,
6921 const SCEV *MaybeMinExpr,
6922 const SCEV *Candidate) {
6923 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
6924 if (!MaybeMaxExpr)
6925 return false;
6926
6927 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
6928 }
6929
6930
6931 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
6932 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)6933 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
6934 ICmpInst::Predicate Pred,
6935 const SCEV *LHS, const SCEV *RHS) {
6936 switch (Pred) {
6937 default:
6938 return false;
6939
6940 case ICmpInst::ICMP_SGE:
6941 std::swap(LHS, RHS);
6942 // fall through
6943 case ICmpInst::ICMP_SLE:
6944 return
6945 // min(A, ...) <= A
6946 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
6947 // A <= max(A, ...)
6948 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
6949
6950 case ICmpInst::ICMP_UGE:
6951 std::swap(LHS, RHS);
6952 // fall through
6953 case ICmpInst::ICMP_ULE:
6954 return
6955 // min(A, ...) <= A
6956 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
6957 // A <= max(A, ...)
6958 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
6959 }
6960
6961 llvm_unreachable("covered switch fell through?!");
6962 }
6963
6964 /// isImpliedCondOperandsHelper - Test whether the condition described by
6965 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
6966 /// FoundLHS, and FoundRHS is true.
6967 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)6968 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6969 const SCEV *LHS, const SCEV *RHS,
6970 const SCEV *FoundLHS,
6971 const SCEV *FoundRHS) {
6972 auto IsKnownPredicateFull =
6973 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
6974 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
6975 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
6976 };
6977
6978 switch (Pred) {
6979 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6980 case ICmpInst::ICMP_EQ:
6981 case ICmpInst::ICMP_NE:
6982 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6983 return true;
6984 break;
6985 case ICmpInst::ICMP_SLT:
6986 case ICmpInst::ICMP_SLE:
6987 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6988 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6989 return true;
6990 break;
6991 case ICmpInst::ICMP_SGT:
6992 case ICmpInst::ICMP_SGE:
6993 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6994 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6995 return true;
6996 break;
6997 case ICmpInst::ICMP_ULT:
6998 case ICmpInst::ICMP_ULE:
6999 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7000 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
7001 return true;
7002 break;
7003 case ICmpInst::ICMP_UGT:
7004 case ICmpInst::ICMP_UGE:
7005 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7006 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
7007 return true;
7008 break;
7009 }
7010
7011 return false;
7012 }
7013
7014 // Verify if an linear IV with positive stride can overflow when in a
7015 // less-than comparison, knowing the invariant term of the comparison, the
7016 // stride and the knowledge of NSW/NUW flags on the recurrence.
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)7017 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7018 bool IsSigned, bool NoWrap) {
7019 if (NoWrap) return false;
7020
7021 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7022 const SCEV *One = getConstant(Stride->getType(), 1);
7023
7024 if (IsSigned) {
7025 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7026 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7027 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7028 .getSignedMax();
7029
7030 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7031 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
7032 }
7033
7034 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7035 APInt MaxValue = APInt::getMaxValue(BitWidth);
7036 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7037 .getUnsignedMax();
7038
7039 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7040 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7041 }
7042
7043 // Verify if an linear IV with negative stride can overflow when in a
7044 // greater-than comparison, knowing the invariant term of the comparison,
7045 // the stride and the knowledge of NSW/NUW flags on the recurrence.
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)7046 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7047 bool IsSigned, bool NoWrap) {
7048 if (NoWrap) return false;
7049
7050 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7051 const SCEV *One = getConstant(Stride->getType(), 1);
7052
7053 if (IsSigned) {
7054 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7055 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7056 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7057 .getSignedMax();
7058
7059 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7060 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7061 }
7062
7063 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7064 APInt MinValue = APInt::getMinValue(BitWidth);
7065 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7066 .getUnsignedMax();
7067
7068 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7069 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7070 }
7071
7072 // Compute the backedge taken count knowing the interval difference, the
7073 // stride and presence of the equality in the comparison.
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)7074 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
7075 bool Equality) {
7076 const SCEV *One = getConstant(Step->getType(), 1);
7077 Delta = Equality ? getAddExpr(Delta, Step)
7078 : getAddExpr(Delta, getMinusSCEV(Step, One));
7079 return getUDivExpr(Delta, Step);
7080 }
7081
7082 /// HowManyLessThans - Return the number of times a backedge containing the
7083 /// specified less-than comparison will execute. If not computable, return
7084 /// CouldNotCompute.
7085 ///
7086 /// @param ControlsExit is true when the LHS < RHS condition directly controls
7087 /// the branch (loops exits only if condition is true). In this case, we can use
7088 /// NoWrapFlags to skip overflow checks.
7089 ScalarEvolution::ExitLimit
HowManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit)7090 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
7091 const Loop *L, bool IsSigned,
7092 bool ControlsExit) {
7093 // We handle only IV < Invariant
7094 if (!isLoopInvariant(RHS, L))
7095 return getCouldNotCompute();
7096
7097 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7098
7099 // Avoid weird loops
7100 if (!IV || IV->getLoop() != L || !IV->isAffine())
7101 return getCouldNotCompute();
7102
7103 bool NoWrap = ControlsExit &&
7104 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7105
7106 const SCEV *Stride = IV->getStepRecurrence(*this);
7107
7108 // Avoid negative or zero stride values
7109 if (!isKnownPositive(Stride))
7110 return getCouldNotCompute();
7111
7112 // Avoid proven overflow cases: this will ensure that the backedge taken count
7113 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7114 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7115 // behaviors like the case of C language.
7116 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7117 return getCouldNotCompute();
7118
7119 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7120 : ICmpInst::ICMP_ULT;
7121 const SCEV *Start = IV->getStart();
7122 const SCEV *End = RHS;
7123 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7124 const SCEV *Diff = getMinusSCEV(RHS, Start);
7125 // If we have NoWrap set, then we can assume that the increment won't
7126 // overflow, in which case if RHS - Start is a constant, we don't need to
7127 // do a max operation since we can just figure it out statically
7128 if (NoWrap && isa<SCEVConstant>(Diff)) {
7129 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7130 if (D.isNegative())
7131 End = Start;
7132 } else
7133 End = IsSigned ? getSMaxExpr(RHS, Start)
7134 : getUMaxExpr(RHS, Start);
7135 }
7136
7137 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
7138
7139 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7140 : getUnsignedRange(Start).getUnsignedMin();
7141
7142 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7143 : getUnsignedRange(Stride).getUnsignedMin();
7144
7145 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7146 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7147 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
7148
7149 // Although End can be a MAX expression we estimate MaxEnd considering only
7150 // the case End = RHS. This is safe because in the other case (End - Start)
7151 // is zero, leading to a zero maximum backedge taken count.
7152 APInt MaxEnd =
7153 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7154 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7155
7156 const SCEV *MaxBECount;
7157 if (isa<SCEVConstant>(BECount))
7158 MaxBECount = BECount;
7159 else
7160 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7161 getConstant(MinStride), false);
7162
7163 if (isa<SCEVCouldNotCompute>(MaxBECount))
7164 MaxBECount = BECount;
7165
7166 return ExitLimit(BECount, MaxBECount);
7167 }
7168
7169 ScalarEvolution::ExitLimit
HowManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit)7170 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7171 const Loop *L, bool IsSigned,
7172 bool ControlsExit) {
7173 // We handle only IV > Invariant
7174 if (!isLoopInvariant(RHS, L))
7175 return getCouldNotCompute();
7176
7177 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7178
7179 // Avoid weird loops
7180 if (!IV || IV->getLoop() != L || !IV->isAffine())
7181 return getCouldNotCompute();
7182
7183 bool NoWrap = ControlsExit &&
7184 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7185
7186 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7187
7188 // Avoid negative or zero stride values
7189 if (!isKnownPositive(Stride))
7190 return getCouldNotCompute();
7191
7192 // Avoid proven overflow cases: this will ensure that the backedge taken count
7193 // will not generate any unsigned overflow. Relaxed no-overflow conditions
7194 // exploit NoWrapFlags, allowing to optimize in presence of undefined
7195 // behaviors like the case of C language.
7196 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7197 return getCouldNotCompute();
7198
7199 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7200 : ICmpInst::ICMP_UGT;
7201
7202 const SCEV *Start = IV->getStart();
7203 const SCEV *End = RHS;
7204 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7205 const SCEV *Diff = getMinusSCEV(RHS, Start);
7206 // If we have NoWrap set, then we can assume that the increment won't
7207 // overflow, in which case if RHS - Start is a constant, we don't need to
7208 // do a max operation since we can just figure it out statically
7209 if (NoWrap && isa<SCEVConstant>(Diff)) {
7210 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7211 if (!D.isNegative())
7212 End = Start;
7213 } else
7214 End = IsSigned ? getSMinExpr(RHS, Start)
7215 : getUMinExpr(RHS, Start);
7216 }
7217
7218 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7219
7220 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7221 : getUnsignedRange(Start).getUnsignedMax();
7222
7223 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7224 : getUnsignedRange(Stride).getUnsignedMin();
7225
7226 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7227 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7228 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7229
7230 // Although End can be a MIN expression we estimate MinEnd considering only
7231 // the case End = RHS. This is safe because in the other case (Start - End)
7232 // is zero, leading to a zero maximum backedge taken count.
7233 APInt MinEnd =
7234 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7235 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7236
7237
7238 const SCEV *MaxBECount = getCouldNotCompute();
7239 if (isa<SCEVConstant>(BECount))
7240 MaxBECount = BECount;
7241 else
7242 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
7243 getConstant(MinStride), false);
7244
7245 if (isa<SCEVCouldNotCompute>(MaxBECount))
7246 MaxBECount = BECount;
7247
7248 return ExitLimit(BECount, MaxBECount);
7249 }
7250
7251 /// getNumIterationsInRange - Return the number of iterations of this loop that
7252 /// produce values in the specified constant range. Another way of looking at
7253 /// this is that it returns the first iteration number where the value is not in
7254 /// the condition, thus computing the exit count. If the iteration count can't
7255 /// be computed, an instance of SCEVCouldNotCompute is returned.
getNumIterationsInRange(ConstantRange Range,ScalarEvolution & SE) const7256 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
7257 ScalarEvolution &SE) const {
7258 if (Range.isFullSet()) // Infinite loop.
7259 return SE.getCouldNotCompute();
7260
7261 // If the start is a non-zero constant, shift the range to simplify things.
7262 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
7263 if (!SC->getValue()->isZero()) {
7264 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
7265 Operands[0] = SE.getConstant(SC->getType(), 0);
7266 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
7267 getNoWrapFlags(FlagNW));
7268 if (const SCEVAddRecExpr *ShiftedAddRec =
7269 dyn_cast<SCEVAddRecExpr>(Shifted))
7270 return ShiftedAddRec->getNumIterationsInRange(
7271 Range.subtract(SC->getValue()->getValue()), SE);
7272 // This is strange and shouldn't happen.
7273 return SE.getCouldNotCompute();
7274 }
7275
7276 // The only time we can solve this is when we have all constant indices.
7277 // Otherwise, we cannot determine the overflow conditions.
7278 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7279 if (!isa<SCEVConstant>(getOperand(i)))
7280 return SE.getCouldNotCompute();
7281
7282
7283 // Okay at this point we know that all elements of the chrec are constants and
7284 // that the start element is zero.
7285
7286 // First check to see if the range contains zero. If not, the first
7287 // iteration exits.
7288 unsigned BitWidth = SE.getTypeSizeInBits(getType());
7289 if (!Range.contains(APInt(BitWidth, 0)))
7290 return SE.getConstant(getType(), 0);
7291
7292 if (isAffine()) {
7293 // If this is an affine expression then we have this situation:
7294 // Solve {0,+,A} in Range === Ax in Range
7295
7296 // We know that zero is in the range. If A is positive then we know that
7297 // the upper value of the range must be the first possible exit value.
7298 // If A is negative then the lower of the range is the last possible loop
7299 // value. Also note that we already checked for a full range.
7300 APInt One(BitWidth,1);
7301 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7302 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
7303
7304 // The exit value should be (End+A)/A.
7305 APInt ExitVal = (End + A).udiv(A);
7306 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
7307
7308 // Evaluate at the exit value. If we really did fall out of the valid
7309 // range, then we computed our trip count, otherwise wrap around or other
7310 // things must have happened.
7311 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
7312 if (Range.contains(Val->getValue()))
7313 return SE.getCouldNotCompute(); // Something strange happened
7314
7315 // Ensure that the previous value is in the range. This is a sanity check.
7316 assert(Range.contains(
7317 EvaluateConstantChrecAtConstant(this,
7318 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
7319 "Linear scev computation is off in a bad way!");
7320 return SE.getConstant(ExitValue);
7321 } else if (isQuadratic()) {
7322 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7323 // quadratic equation to solve it. To do this, we must frame our problem in
7324 // terms of figuring out when zero is crossed, instead of when
7325 // Range.getUpper() is crossed.
7326 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
7327 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
7328 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7329 // getNoWrapFlags(FlagNW)
7330 FlagAnyWrap);
7331
7332 // Next, solve the constructed addrec
7333 std::pair<const SCEV *,const SCEV *> Roots =
7334 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
7335 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7336 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
7337 if (R1) {
7338 // Pick the smallest positive root value.
7339 if (ConstantInt *CB =
7340 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
7341 R1->getValue(), R2->getValue()))) {
7342 if (CB->getZExtValue() == false)
7343 std::swap(R1, R2); // R1 is the minimum root now.
7344
7345 // Make sure the root is not off by one. The returned iteration should
7346 // not be in the range, but the previous one should be. When solving
7347 // for "X*X < 5", for example, we should not return a root of 2.
7348 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
7349 R1->getValue(),
7350 SE);
7351 if (Range.contains(R1Val->getValue())) {
7352 // The next iteration must be out of the range...
7353 ConstantInt *NextVal =
7354 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
7355
7356 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7357 if (!Range.contains(R1Val->getValue()))
7358 return SE.getConstant(NextVal);
7359 return SE.getCouldNotCompute(); // Something strange happened
7360 }
7361
7362 // If R1 was not in the range, then it is a good return value. Make
7363 // sure that R1-1 WAS in the range though, just in case.
7364 ConstantInt *NextVal =
7365 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
7366 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
7367 if (Range.contains(R1Val->getValue()))
7368 return R1;
7369 return SE.getCouldNotCompute(); // Something strange happened
7370 }
7371 }
7372 }
7373
7374 return SE.getCouldNotCompute();
7375 }
7376
7377 namespace {
7378 struct FindUndefs {
7379 bool Found;
FindUndefs__anonbe70a9c90711::FindUndefs7380 FindUndefs() : Found(false) {}
7381
follow__anonbe70a9c90711::FindUndefs7382 bool follow(const SCEV *S) {
7383 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7384 if (isa<UndefValue>(C->getValue()))
7385 Found = true;
7386 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7387 if (isa<UndefValue>(C->getValue()))
7388 Found = true;
7389 }
7390
7391 // Keep looking if we haven't found it yet.
7392 return !Found;
7393 }
isDone__anonbe70a9c90711::FindUndefs7394 bool isDone() const {
7395 // Stop recursion if we have found an undef.
7396 return Found;
7397 }
7398 };
7399 }
7400
7401 // Return true when S contains at least an undef value.
7402 static inline bool
containsUndefs(const SCEV * S)7403 containsUndefs(const SCEV *S) {
7404 FindUndefs F;
7405 SCEVTraversal<FindUndefs> ST(F);
7406 ST.visitAll(S);
7407
7408 return F.Found;
7409 }
7410
7411 namespace {
7412 // Collect all steps of SCEV expressions.
7413 struct SCEVCollectStrides {
7414 ScalarEvolution &SE;
7415 SmallVectorImpl<const SCEV *> &Strides;
7416
SCEVCollectStrides__anonbe70a9c90811::SCEVCollectStrides7417 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7418 : SE(SE), Strides(S) {}
7419
follow__anonbe70a9c90811::SCEVCollectStrides7420 bool follow(const SCEV *S) {
7421 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7422 Strides.push_back(AR->getStepRecurrence(SE));
7423 return true;
7424 }
isDone__anonbe70a9c90811::SCEVCollectStrides7425 bool isDone() const { return false; }
7426 };
7427
7428 // Collect all SCEVUnknown and SCEVMulExpr expressions.
7429 struct SCEVCollectTerms {
7430 SmallVectorImpl<const SCEV *> &Terms;
7431
SCEVCollectTerms__anonbe70a9c90811::SCEVCollectTerms7432 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7433 : Terms(T) {}
7434
follow__anonbe70a9c90811::SCEVCollectTerms7435 bool follow(const SCEV *S) {
7436 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
7437 if (!containsUndefs(S))
7438 Terms.push_back(S);
7439
7440 // Stop recursion: once we collected a term, do not walk its operands.
7441 return false;
7442 }
7443
7444 // Keep looking.
7445 return true;
7446 }
isDone__anonbe70a9c90811::SCEVCollectTerms7447 bool isDone() const { return false; }
7448 };
7449 }
7450
7451 /// Find parametric terms in this SCEVAddRecExpr.
collectParametricTerms(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms) const7452 void SCEVAddRecExpr::collectParametricTerms(
7453 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7454 SmallVector<const SCEV *, 4> Strides;
7455 SCEVCollectStrides StrideCollector(SE, Strides);
7456 visitAll(this, StrideCollector);
7457
7458 DEBUG({
7459 dbgs() << "Strides:\n";
7460 for (const SCEV *S : Strides)
7461 dbgs() << *S << "\n";
7462 });
7463
7464 for (const SCEV *S : Strides) {
7465 SCEVCollectTerms TermCollector(Terms);
7466 visitAll(S, TermCollector);
7467 }
7468
7469 DEBUG({
7470 dbgs() << "Terms:\n";
7471 for (const SCEV *T : Terms)
7472 dbgs() << *T << "\n";
7473 });
7474 }
7475
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)7476 static bool findArrayDimensionsRec(ScalarEvolution &SE,
7477 SmallVectorImpl<const SCEV *> &Terms,
7478 SmallVectorImpl<const SCEV *> &Sizes) {
7479 int Last = Terms.size() - 1;
7480 const SCEV *Step = Terms[Last];
7481
7482 // End of recursion.
7483 if (Last == 0) {
7484 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
7485 SmallVector<const SCEV *, 2> Qs;
7486 for (const SCEV *Op : M->operands())
7487 if (!isa<SCEVConstant>(Op))
7488 Qs.push_back(Op);
7489
7490 Step = SE.getMulExpr(Qs);
7491 }
7492
7493 Sizes.push_back(Step);
7494 return true;
7495 }
7496
7497 for (const SCEV *&Term : Terms) {
7498 // Normalize the terms before the next call to findArrayDimensionsRec.
7499 const SCEV *Q, *R;
7500 SCEVDivision::divide(SE, Term, Step, &Q, &R);
7501
7502 // Bail out when GCD does not evenly divide one of the terms.
7503 if (!R->isZero())
7504 return false;
7505
7506 Term = Q;
7507 }
7508
7509 // Remove all SCEVConstants.
7510 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7511 return isa<SCEVConstant>(E);
7512 }),
7513 Terms.end());
7514
7515 if (Terms.size() > 0)
7516 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7517 return false;
7518
7519 Sizes.push_back(Step);
7520 return true;
7521 }
7522
7523 namespace {
7524 struct FindParameter {
7525 bool FoundParameter;
FindParameter__anonbe70a9c90a11::FindParameter7526 FindParameter() : FoundParameter(false) {}
7527
follow__anonbe70a9c90a11::FindParameter7528 bool follow(const SCEV *S) {
7529 if (isa<SCEVUnknown>(S)) {
7530 FoundParameter = true;
7531 // Stop recursion: we found a parameter.
7532 return false;
7533 }
7534 // Keep looking.
7535 return true;
7536 }
isDone__anonbe70a9c90a11::FindParameter7537 bool isDone() const {
7538 // Stop recursion if we have found a parameter.
7539 return FoundParameter;
7540 }
7541 };
7542 }
7543
7544 // Returns true when S contains at least a SCEVUnknown parameter.
7545 static inline bool
containsParameters(const SCEV * S)7546 containsParameters(const SCEV *S) {
7547 FindParameter F;
7548 SCEVTraversal<FindParameter> ST(F);
7549 ST.visitAll(S);
7550
7551 return F.FoundParameter;
7552 }
7553
7554 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7555 static inline bool
containsParameters(SmallVectorImpl<const SCEV * > & Terms)7556 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7557 for (const SCEV *T : Terms)
7558 if (containsParameters(T))
7559 return true;
7560 return false;
7561 }
7562
7563 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)7564 static inline int numberOfTerms(const SCEV *S) {
7565 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7566 return Expr->getNumOperands();
7567 return 1;
7568 }
7569
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)7570 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7571 if (isa<SCEVConstant>(T))
7572 return nullptr;
7573
7574 if (isa<SCEVUnknown>(T))
7575 return T;
7576
7577 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7578 SmallVector<const SCEV *, 2> Factors;
7579 for (const SCEV *Op : M->operands())
7580 if (!isa<SCEVConstant>(Op))
7581 Factors.push_back(Op);
7582
7583 return SE.getMulExpr(Factors);
7584 }
7585
7586 return T;
7587 }
7588
7589 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)7590 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7591 Type *Ty;
7592 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7593 Ty = Store->getValueOperand()->getType();
7594 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
7595 Ty = Load->getType();
7596 else
7597 return nullptr;
7598
7599 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7600 return getSizeOfExpr(ETy, Ty);
7601 }
7602
7603 /// Second step of delinearization: compute the array dimensions Sizes from the
7604 /// set of Terms extracted from the memory access function of this SCEVAddRec.
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize) const7605 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7606 SmallVectorImpl<const SCEV *> &Sizes,
7607 const SCEV *ElementSize) const {
7608
7609 if (Terms.size() < 1 || !ElementSize)
7610 return;
7611
7612 // Early return when Terms do not contain parameters: we do not delinearize
7613 // non parametric SCEVs.
7614 if (!containsParameters(Terms))
7615 return;
7616
7617 DEBUG({
7618 dbgs() << "Terms:\n";
7619 for (const SCEV *T : Terms)
7620 dbgs() << *T << "\n";
7621 });
7622
7623 // Remove duplicates.
7624 std::sort(Terms.begin(), Terms.end());
7625 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7626
7627 // Put larger terms first.
7628 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7629 return numberOfTerms(LHS) > numberOfTerms(RHS);
7630 });
7631
7632 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7633
7634 // Divide all terms by the element size.
7635 for (const SCEV *&Term : Terms) {
7636 const SCEV *Q, *R;
7637 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
7638 Term = Q;
7639 }
7640
7641 SmallVector<const SCEV *, 4> NewTerms;
7642
7643 // Remove constant factors.
7644 for (const SCEV *T : Terms)
7645 if (const SCEV *NewT = removeConstantFactors(SE, T))
7646 NewTerms.push_back(NewT);
7647
7648 DEBUG({
7649 dbgs() << "Terms after sorting:\n";
7650 for (const SCEV *T : NewTerms)
7651 dbgs() << *T << "\n";
7652 });
7653
7654 if (NewTerms.empty() ||
7655 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
7656 Sizes.clear();
7657 return;
7658 }
7659
7660 // The last element to be pushed into Sizes is the size of an element.
7661 Sizes.push_back(ElementSize);
7662
7663 DEBUG({
7664 dbgs() << "Sizes:\n";
7665 for (const SCEV *S : Sizes)
7666 dbgs() << *S << "\n";
7667 });
7668 }
7669
7670 /// Third step of delinearization: compute the access functions for the
7671 /// Subscripts based on the dimensions in Sizes.
computeAccessFunctions(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes) const7672 void SCEVAddRecExpr::computeAccessFunctions(
7673 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7674 SmallVectorImpl<const SCEV *> &Sizes) const {
7675
7676 // Early exit in case this SCEV is not an affine multivariate function.
7677 if (Sizes.empty() || !this->isAffine())
7678 return;
7679
7680 const SCEV *Res = this;
7681 int Last = Sizes.size() - 1;
7682 for (int i = Last; i >= 0; i--) {
7683 const SCEV *Q, *R;
7684 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
7685
7686 DEBUG({
7687 dbgs() << "Res: " << *Res << "\n";
7688 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7689 dbgs() << "Res divided by Sizes[i]:\n";
7690 dbgs() << "Quotient: " << *Q << "\n";
7691 dbgs() << "Remainder: " << *R << "\n";
7692 });
7693
7694 Res = Q;
7695
7696 // Do not record the last subscript corresponding to the size of elements in
7697 // the array.
7698 if (i == Last) {
7699
7700 // Bail out if the remainder is too complex.
7701 if (isa<SCEVAddRecExpr>(R)) {
7702 Subscripts.clear();
7703 Sizes.clear();
7704 return;
7705 }
7706
7707 continue;
7708 }
7709
7710 // Record the access function for the current subscript.
7711 Subscripts.push_back(R);
7712 }
7713
7714 // Also push in last position the remainder of the last division: it will be
7715 // the access function of the innermost dimension.
7716 Subscripts.push_back(Res);
7717
7718 std::reverse(Subscripts.begin(), Subscripts.end());
7719
7720 DEBUG({
7721 dbgs() << "Subscripts:\n";
7722 for (const SCEV *S : Subscripts)
7723 dbgs() << *S << "\n";
7724 });
7725 }
7726
7727 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7728 /// sizes of an array access. Returns the remainder of the delinearization that
7729 /// is the offset start of the array. The SCEV->delinearize algorithm computes
7730 /// the multiples of SCEV coefficients: that is a pattern matching of sub
7731 /// expressions in the stride and base of a SCEV corresponding to the
7732 /// computation of a GCD (greatest common divisor) of base and stride. When
7733 /// SCEV->delinearize fails, it returns the SCEV unchanged.
7734 ///
7735 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
7736 ///
7737 /// void foo(long n, long m, long o, double A[n][m][o]) {
7738 ///
7739 /// for (long i = 0; i < n; i++)
7740 /// for (long j = 0; j < m; j++)
7741 /// for (long k = 0; k < o; k++)
7742 /// A[i][j][k] = 1.0;
7743 /// }
7744 ///
7745 /// the delinearization input is the following AddRec SCEV:
7746 ///
7747 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7748 ///
7749 /// From this SCEV, we are able to say that the base offset of the access is %A
7750 /// because it appears as an offset that does not divide any of the strides in
7751 /// the loops:
7752 ///
7753 /// CHECK: Base offset: %A
7754 ///
7755 /// and then SCEV->delinearize determines the size of some of the dimensions of
7756 /// the array as these are the multiples by which the strides are happening:
7757 ///
7758 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7759 ///
7760 /// Note that the outermost dimension remains of UnknownSize because there are
7761 /// no strides that would help identifying the size of the last dimension: when
7762 /// the array has been statically allocated, one could compute the size of that
7763 /// dimension by dividing the overall size of the array by the size of the known
7764 /// dimensions: %m * %o * 8.
7765 ///
7766 /// Finally delinearize provides the access functions for the array reference
7767 /// that does correspond to A[i][j][k] of the above C testcase:
7768 ///
7769 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7770 ///
7771 /// The testcases are checking the output of a function pass:
7772 /// DelinearizationPass that walks through all loads and stores of a function
7773 /// asking for the SCEV of the memory access with respect to all enclosing
7774 /// loops, calling SCEV->delinearize on that and printing the results.
7775
delinearize(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize) const7776 void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7777 SmallVectorImpl<const SCEV *> &Subscripts,
7778 SmallVectorImpl<const SCEV *> &Sizes,
7779 const SCEV *ElementSize) const {
7780 // First step: collect parametric terms.
7781 SmallVector<const SCEV *, 4> Terms;
7782 collectParametricTerms(SE, Terms);
7783
7784 if (Terms.empty())
7785 return;
7786
7787 // Second step: find subscript sizes.
7788 SE.findArrayDimensions(Terms, Sizes, ElementSize);
7789
7790 if (Sizes.empty())
7791 return;
7792
7793 // Third step: compute the access functions for each subscript.
7794 computeAccessFunctions(SE, Subscripts, Sizes);
7795
7796 if (Subscripts.empty())
7797 return;
7798
7799 DEBUG({
7800 dbgs() << "succeeded to delinearize " << *this << "\n";
7801 dbgs() << "ArrayDecl[UnknownSize]";
7802 for (const SCEV *S : Sizes)
7803 dbgs() << "[" << *S << "]";
7804
7805 dbgs() << "\nArrayRef";
7806 for (const SCEV *S : Subscripts)
7807 dbgs() << "[" << *S << "]";
7808 dbgs() << "\n";
7809 });
7810 }
7811
7812 //===----------------------------------------------------------------------===//
7813 // SCEVCallbackVH Class Implementation
7814 //===----------------------------------------------------------------------===//
7815
deleted()7816 void ScalarEvolution::SCEVCallbackVH::deleted() {
7817 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7818 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7819 SE->ConstantEvolutionLoopExitValue.erase(PN);
7820 SE->ValueExprMap.erase(getValPtr());
7821 // this now dangles!
7822 }
7823
allUsesReplacedWith(Value * V)7824 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
7825 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
7826
7827 // Forget all the expressions associated with users of the old value,
7828 // so that future queries will recompute the expressions using the new
7829 // value.
7830 Value *Old = getValPtr();
7831 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
7832 SmallPtrSet<User *, 8> Visited;
7833 while (!Worklist.empty()) {
7834 User *U = Worklist.pop_back_val();
7835 // Deleting the Old value will cause this to dangle. Postpone
7836 // that until everything else is done.
7837 if (U == Old)
7838 continue;
7839 if (!Visited.insert(U).second)
7840 continue;
7841 if (PHINode *PN = dyn_cast<PHINode>(U))
7842 SE->ConstantEvolutionLoopExitValue.erase(PN);
7843 SE->ValueExprMap.erase(U);
7844 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
7845 }
7846 // Delete the Old value.
7847 if (PHINode *PN = dyn_cast<PHINode>(Old))
7848 SE->ConstantEvolutionLoopExitValue.erase(PN);
7849 SE->ValueExprMap.erase(Old);
7850 // this now dangles!
7851 }
7852
SCEVCallbackVH(Value * V,ScalarEvolution * se)7853 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
7854 : CallbackVH(V), SE(se) {}
7855
7856 //===----------------------------------------------------------------------===//
7857 // ScalarEvolution Class Implementation
7858 //===----------------------------------------------------------------------===//
7859
ScalarEvolution()7860 ScalarEvolution::ScalarEvolution()
7861 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7862 BlockDispositions(64), FirstUnknown(nullptr) {
7863 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
7864 }
7865
runOnFunction(Function & F)7866 bool ScalarEvolution::runOnFunction(Function &F) {
7867 this->F = &F;
7868 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
7869 LI = &getAnalysis<LoopInfo>();
7870 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
7871 DL = DLP ? &DLP->getDataLayout() : nullptr;
7872 TLI = &getAnalysis<TargetLibraryInfo>();
7873 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7874 return false;
7875 }
7876
releaseMemory()7877 void ScalarEvolution::releaseMemory() {
7878 // Iterate through all the SCEVUnknown instances and call their
7879 // destructors, so that they release their references to their values.
7880 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7881 U->~SCEVUnknown();
7882 FirstUnknown = nullptr;
7883
7884 ValueExprMap.clear();
7885
7886 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7887 // that a loop had multiple computable exits.
7888 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7889 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7890 I != E; ++I) {
7891 I->second.clear();
7892 }
7893
7894 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7895
7896 BackedgeTakenCounts.clear();
7897 ConstantEvolutionLoopExitValue.clear();
7898 ValuesAtScopes.clear();
7899 LoopDispositions.clear();
7900 BlockDispositions.clear();
7901 UnsignedRanges.clear();
7902 SignedRanges.clear();
7903 UniqueSCEVs.clear();
7904 SCEVAllocator.Reset();
7905 }
7906
getAnalysisUsage(AnalysisUsage & AU) const7907 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7908 AU.setPreservesAll();
7909 AU.addRequired<AssumptionCacheTracker>();
7910 AU.addRequiredTransitive<LoopInfo>();
7911 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
7912 AU.addRequired<TargetLibraryInfo>();
7913 }
7914
hasLoopInvariantBackedgeTakenCount(const Loop * L)7915 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
7916 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
7917 }
7918
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)7919 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
7920 const Loop *L) {
7921 // Print all inner loops first
7922 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7923 PrintLoopInfo(OS, SE, *I);
7924
7925 OS << "Loop ";
7926 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
7927 OS << ": ";
7928
7929 SmallVector<BasicBlock *, 8> ExitBlocks;
7930 L->getExitBlocks(ExitBlocks);
7931 if (ExitBlocks.size() != 1)
7932 OS << "<multiple exits> ";
7933
7934 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7935 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
7936 } else {
7937 OS << "Unpredictable backedge-taken count. ";
7938 }
7939
7940 OS << "\n"
7941 "Loop ";
7942 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
7943 OS << ": ";
7944
7945 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7946 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7947 } else {
7948 OS << "Unpredictable max backedge-taken count. ";
7949 }
7950
7951 OS << "\n";
7952 }
7953
print(raw_ostream & OS,const Module *) const7954 void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
7955 // ScalarEvolution's implementation of the print method is to print
7956 // out SCEV values of all instructions that are interesting. Doing
7957 // this potentially causes it to create new SCEV objects though,
7958 // which technically conflicts with the const qualifier. This isn't
7959 // observable from outside the class though, so casting away the
7960 // const isn't dangerous.
7961 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7962
7963 OS << "Classifying expressions for: ";
7964 F->printAsOperand(OS, /*PrintType=*/false);
7965 OS << "\n";
7966 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
7967 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
7968 OS << *I << '\n';
7969 OS << " --> ";
7970 const SCEV *SV = SE.getSCEV(&*I);
7971 SV->print(OS);
7972
7973 const Loop *L = LI->getLoopFor((*I).getParent());
7974
7975 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
7976 if (AtUse != SV) {
7977 OS << " --> ";
7978 AtUse->print(OS);
7979 }
7980
7981 if (L) {
7982 OS << "\t\t" "Exits: ";
7983 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
7984 if (!SE.isLoopInvariant(ExitValue, L)) {
7985 OS << "<<Unknown>>";
7986 } else {
7987 OS << *ExitValue;
7988 }
7989 }
7990
7991 OS << "\n";
7992 }
7993
7994 OS << "Determining loop execution counts for: ";
7995 F->printAsOperand(OS, /*PrintType=*/false);
7996 OS << "\n";
7997 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7998 PrintLoopInfo(OS, &SE, *I);
7999 }
8000
8001 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)8002 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
8003 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
8004 for (unsigned u = 0; u < Values.size(); u++) {
8005 if (Values[u].first == L)
8006 return Values[u].second;
8007 }
8008 Values.push_back(std::make_pair(L, LoopVariant));
8009 LoopDisposition D = computeLoopDisposition(S, L);
8010 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
8011 for (unsigned u = Values2.size(); u > 0; u--) {
8012 if (Values2[u - 1].first == L) {
8013 Values2[u - 1].second = D;
8014 break;
8015 }
8016 }
8017 return D;
8018 }
8019
8020 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)8021 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
8022 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
8023 case scConstant:
8024 return LoopInvariant;
8025 case scTruncate:
8026 case scZeroExtend:
8027 case scSignExtend:
8028 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
8029 case scAddRecExpr: {
8030 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8031
8032 // If L is the addrec's loop, it's computable.
8033 if (AR->getLoop() == L)
8034 return LoopComputable;
8035
8036 // Add recurrences are never invariant in the function-body (null loop).
8037 if (!L)
8038 return LoopVariant;
8039
8040 // This recurrence is variant w.r.t. L if L contains AR's loop.
8041 if (L->contains(AR->getLoop()))
8042 return LoopVariant;
8043
8044 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8045 if (AR->getLoop()->contains(L))
8046 return LoopInvariant;
8047
8048 // This recurrence is variant w.r.t. L if any of its operands
8049 // are variant.
8050 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8051 I != E; ++I)
8052 if (!isLoopInvariant(*I, L))
8053 return LoopVariant;
8054
8055 // Otherwise it's loop-invariant.
8056 return LoopInvariant;
8057 }
8058 case scAddExpr:
8059 case scMulExpr:
8060 case scUMaxExpr:
8061 case scSMaxExpr: {
8062 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
8063 bool HasVarying = false;
8064 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8065 I != E; ++I) {
8066 LoopDisposition D = getLoopDisposition(*I, L);
8067 if (D == LoopVariant)
8068 return LoopVariant;
8069 if (D == LoopComputable)
8070 HasVarying = true;
8071 }
8072 return HasVarying ? LoopComputable : LoopInvariant;
8073 }
8074 case scUDivExpr: {
8075 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
8076 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8077 if (LD == LoopVariant)
8078 return LoopVariant;
8079 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8080 if (RD == LoopVariant)
8081 return LoopVariant;
8082 return (LD == LoopInvariant && RD == LoopInvariant) ?
8083 LoopInvariant : LoopComputable;
8084 }
8085 case scUnknown:
8086 // All non-instruction values are loop invariant. All instructions are loop
8087 // invariant if they are not contained in the specified loop.
8088 // Instructions are never considered invariant in the function body
8089 // (null loop) because they are defined within the "loop".
8090 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8091 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8092 return LoopInvariant;
8093 case scCouldNotCompute:
8094 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
8095 }
8096 llvm_unreachable("Unknown SCEV kind!");
8097 }
8098
isLoopInvariant(const SCEV * S,const Loop * L)8099 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8100 return getLoopDisposition(S, L) == LoopInvariant;
8101 }
8102
hasComputableLoopEvolution(const SCEV * S,const Loop * L)8103 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8104 return getLoopDisposition(S, L) == LoopComputable;
8105 }
8106
8107 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)8108 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
8109 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
8110 for (unsigned u = 0; u < Values.size(); u++) {
8111 if (Values[u].first == BB)
8112 return Values[u].second;
8113 }
8114 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
8115 BlockDisposition D = computeBlockDisposition(S, BB);
8116 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
8117 for (unsigned u = Values2.size(); u > 0; u--) {
8118 if (Values2[u - 1].first == BB) {
8119 Values2[u - 1].second = D;
8120 break;
8121 }
8122 }
8123 return D;
8124 }
8125
8126 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)8127 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
8128 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
8129 case scConstant:
8130 return ProperlyDominatesBlock;
8131 case scTruncate:
8132 case scZeroExtend:
8133 case scSignExtend:
8134 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
8135 case scAddRecExpr: {
8136 // This uses a "dominates" query instead of "properly dominates" query
8137 // to test for proper dominance too, because the instruction which
8138 // produces the addrec's value is a PHI, and a PHI effectively properly
8139 // dominates its entire containing block.
8140 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8141 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
8142 return DoesNotDominateBlock;
8143 }
8144 // FALL THROUGH into SCEVNAryExpr handling.
8145 case scAddExpr:
8146 case scMulExpr:
8147 case scUMaxExpr:
8148 case scSMaxExpr: {
8149 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
8150 bool Proper = true;
8151 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8152 I != E; ++I) {
8153 BlockDisposition D = getBlockDisposition(*I, BB);
8154 if (D == DoesNotDominateBlock)
8155 return DoesNotDominateBlock;
8156 if (D == DominatesBlock)
8157 Proper = false;
8158 }
8159 return Proper ? ProperlyDominatesBlock : DominatesBlock;
8160 }
8161 case scUDivExpr: {
8162 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
8163 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8164 BlockDisposition LD = getBlockDisposition(LHS, BB);
8165 if (LD == DoesNotDominateBlock)
8166 return DoesNotDominateBlock;
8167 BlockDisposition RD = getBlockDisposition(RHS, BB);
8168 if (RD == DoesNotDominateBlock)
8169 return DoesNotDominateBlock;
8170 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8171 ProperlyDominatesBlock : DominatesBlock;
8172 }
8173 case scUnknown:
8174 if (Instruction *I =
8175 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8176 if (I->getParent() == BB)
8177 return DominatesBlock;
8178 if (DT->properlyDominates(I->getParent(), BB))
8179 return ProperlyDominatesBlock;
8180 return DoesNotDominateBlock;
8181 }
8182 return ProperlyDominatesBlock;
8183 case scCouldNotCompute:
8184 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
8185 }
8186 llvm_unreachable("Unknown SCEV kind!");
8187 }
8188
dominates(const SCEV * S,const BasicBlock * BB)8189 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8190 return getBlockDisposition(S, BB) >= DominatesBlock;
8191 }
8192
properlyDominates(const SCEV * S,const BasicBlock * BB)8193 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8194 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
8195 }
8196
8197 namespace {
8198 // Search for a SCEV expression node within an expression tree.
8199 // Implements SCEVTraversal::Visitor.
8200 struct SCEVSearch {
8201 const SCEV *Node;
8202 bool IsFound;
8203
SCEVSearch__anonbe70a9c90c11::SCEVSearch8204 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8205
follow__anonbe70a9c90c11::SCEVSearch8206 bool follow(const SCEV *S) {
8207 IsFound |= (S == Node);
8208 return !IsFound;
8209 }
isDone__anonbe70a9c90c11::SCEVSearch8210 bool isDone() const { return IsFound; }
8211 };
8212 }
8213
hasOperand(const SCEV * S,const SCEV * Op) const8214 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
8215 SCEVSearch Search(Op);
8216 visitAll(S, Search);
8217 return Search.IsFound;
8218 }
8219
forgetMemoizedResults(const SCEV * S)8220 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8221 ValuesAtScopes.erase(S);
8222 LoopDispositions.erase(S);
8223 BlockDispositions.erase(S);
8224 UnsignedRanges.erase(S);
8225 SignedRanges.erase(S);
8226
8227 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8228 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8229 BackedgeTakenInfo &BEInfo = I->second;
8230 if (BEInfo.hasOperand(S, this)) {
8231 BEInfo.clear();
8232 BackedgeTakenCounts.erase(I++);
8233 }
8234 else
8235 ++I;
8236 }
8237 }
8238
8239 typedef DenseMap<const Loop *, std::string> VerifyMap;
8240
8241 /// replaceSubString - Replaces all occurrences of From in Str with To.
replaceSubString(std::string & Str,StringRef From,StringRef To)8242 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8243 size_t Pos = 0;
8244 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8245 Str.replace(Pos, From.size(), To.data(), To.size());
8246 Pos += To.size();
8247 }
8248 }
8249
8250 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8251 static void
getLoopBackedgeTakenCounts(Loop * L,VerifyMap & Map,ScalarEvolution & SE)8252 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8253 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8254 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8255
8256 std::string &S = Map[L];
8257 if (S.empty()) {
8258 raw_string_ostream OS(S);
8259 SE.getBackedgeTakenCount(L)->print(OS);
8260
8261 // false and 0 are semantically equivalent. This can happen in dead loops.
8262 replaceSubString(OS.str(), "false", "0");
8263 // Remove wrap flags, their use in SCEV is highly fragile.
8264 // FIXME: Remove this when SCEV gets smarter about them.
8265 replaceSubString(OS.str(), "<nw>", "");
8266 replaceSubString(OS.str(), "<nsw>", "");
8267 replaceSubString(OS.str(), "<nuw>", "");
8268 }
8269 }
8270 }
8271
verifyAnalysis() const8272 void ScalarEvolution::verifyAnalysis() const {
8273 if (!VerifySCEV)
8274 return;
8275
8276 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8277
8278 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8279 // FIXME: It would be much better to store actual values instead of strings,
8280 // but SCEV pointers will change if we drop the caches.
8281 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8282 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8283 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8284
8285 // Gather stringified backedge taken counts for all loops without using
8286 // SCEV's caches.
8287 SE.releaseMemory();
8288 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8289 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8290
8291 // Now compare whether they're the same with and without caches. This allows
8292 // verifying that no pass changed the cache.
8293 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8294 "New loops suddenly appeared!");
8295
8296 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8297 OldE = BackedgeDumpsOld.end(),
8298 NewI = BackedgeDumpsNew.begin();
8299 OldI != OldE; ++OldI, ++NewI) {
8300 assert(OldI->first == NewI->first && "Loop order changed!");
8301
8302 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8303 // changes.
8304 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
8305 // means that a pass is buggy or SCEV has to learn a new pattern but is
8306 // usually not harmful.
8307 if (OldI->second != NewI->second &&
8308 OldI->second.find("undef") == std::string::npos &&
8309 NewI->second.find("undef") == std::string::npos &&
8310 OldI->second != "***COULDNOTCOMPUTE***" &&
8311 NewI->second != "***COULDNOTCOMPUTE***") {
8312 dbgs() << "SCEVValidator: SCEV for loop '"
8313 << OldI->first->getHeader()->getName()
8314 << "' changed from '" << OldI->second
8315 << "' to '" << NewI->second << "'!\n";
8316 std::abort();
8317 }
8318 }
8319
8320 // TODO: Verify more things.
8321 }
8322