xref: /openbsd/gnu/usr.bin/perl/utf8.h (revision fac98b93)
1 /*    utf8.h
2  *
3  * This file contains definitions for use with the UTF-8 encoding.  It
4  * actually also works with the variant UTF-8 encoding called UTF-EBCDIC, and
5  * hides almost all of the differences between these from the caller.  In other
6  * words, someone should #include this file, and if the code is being compiled
7  * on an EBCDIC platform, things should mostly just work.
8  *
9  *    Copyright (C) 2000, 2001, 2002, 2005, 2006, 2007, 2009,
10  *    2010, 2011 by Larry Wall and others
11  *
12  *    You may distribute under the terms of either the GNU General Public
13  *    License or the Artistic License, as specified in the README file.
14  *
15  * A note on nomenclature:  The term UTF-8 is used loosely and inconsistently
16  * in Perl documentation.  For one, perl uses an extension of UTF-8 to
17  * represent code points that Unicode considers illegal.  For another, ASCII
18  * platform UTF-8 is usually conflated with EBCDIC platform UTF-EBCDIC, because
19  * outside some of the macros in this this file, the differences are hopefully
20  * invisible at the semantic level.
21  *
22  * UTF-EBCDIC has an isomorphic translation named I8 (for "Intermediate eight")
23  * which differs from UTF-8 only in a few details.  It is often useful to
24  * translate UTF-EBCDIC into this form for processing.  In general, macros and
25  * functions that are expecting their inputs to be either in I8 or UTF-8 are
26  * named UTF_foo (without an '8'), to indicate this.
27  *
28  * Unfortunately there are inconsistencies.
29  *
30  */
31 
32 #ifndef PERL_UTF8_H_      /* Guard against recursive inclusion */
33 #define PERL_UTF8_H_ 1
34 
35 /*
36 =for apidoc Ay||utf8ness_t
37 
38 This typedef is used by several core functions that return PV strings, to
39 indicate the UTF-8ness of those strings.
40 
41 (If you write a new function, you probably should instead return the PV in an
42 SV with the UTF-8 flag of the SV properly set, rather than use this mechanism.)
43 
44 The possible values this can be are:
45 
46 =over
47 
48 =item C<UTF8NESS_YES>
49 
50 This means the string definitely should be treated as a sequence of
51 UTF-8-encoded characters.
52 
53 Most code that needs to handle this typedef should be of the form:
54 
55  if (utf8ness_flag == UTF8NESS_YES) {
56      treat as utf8;  // like turning on an SV UTF-8 flag
57  }
58 
59 =item C<UTF8NESS_NO>
60 
61 This means the string definitely should be treated as a sequence of bytes, not
62 encoded as UTF-8.
63 
64 =item C<UTF8NESS_IMMATERIAL>
65 
66 This means it is equally valid to treat the string as bytes, or as UTF-8
67 characters; use whichever way you want.  This happens when the string consists
68 entirely of characters which have the same representation whether encoded in
69 UTF-8 or not.
70 
71 =item C<UTF8NESS_UNKNOWN>
72 
73 This means it is unknown how the string should be treated.  No core function
74 will ever return this value to a non-core caller.  Instead, it is used by the
75 caller to initialize a variable to a non-legal value.  A typical call will look like:
76 
77  utf8ness_t string_is_utf8 = UTF8NESS_UNKNOWN
78  const char * string = foo(arg1, arg2, ..., &string_is_utf8);
79  if (string_is_utf8 == UTF8NESS_YES) {
80     do something for UTF-8;
81  }
82 
83 =back
84 
85 The following relationships hold between the enum values:
86 
87 =over
88 
89 =item S<C<0 E<lt>= I<enum value> E<lt>= UTF8NESS_IMMATERIAL>>
90 
91 the string may be treated in code as non-UTF8
92 
93 =item S<C<UTF8NESS_IMMATERIAL E<lt>= <I<enum value>>>
94 
95 the string may be treated in code as encoded in UTF-8
96 
97 =back
98 
99 =cut
100 */
101 
102 typedef enum {
103     UTF8NESS_NO               =  0,  /* Definitely not UTF-8 */
104     UTF8NESS_IMMATERIAL       =  1,  /* Representation is the same in UTF-8 as
105                                         not, so the UTF8ness doesn't actually
106                                         matter */
107     UTF8NESS_YES              =  2,  /* Defintely is UTF-8, wideness
108                                         unspecified */
109     UTF8NESS_UNKNOWN          = -1,  /* Undetermined so far */
110 } utf8ness_t;
111 
112 /* Use UTF-8 as the default script encoding?
113  * Turning this on will break scripts having non-UTF-8 binary
114  * data (such as Latin-1) in string literals. */
115 #ifdef USE_UTF8_SCRIPTS
116 #    define USE_UTF8_IN_NAMES (!IN_BYTES)
117 #else
118 #    define USE_UTF8_IN_NAMES (PL_hints & HINT_UTF8)
119 #endif
120 
121 #include "regcharclass.h"
122 #include "unicode_constants.h"
123 
124 /* For to_utf8_fold_flags, q.v. */
125 #define FOLD_FLAGS_LOCALE       0x1
126 #define FOLD_FLAGS_FULL         0x2
127 #define FOLD_FLAGS_NOMIX_ASCII  0x4
128 
129 /*
130 =for apidoc is_ascii_string
131 
132 This is a misleadingly-named synonym for L</is_utf8_invariant_string>.
133 On ASCII-ish platforms, the name isn't misleading: the ASCII-range characters
134 are exactly the UTF-8 invariants.  But EBCDIC machines have more invariants
135 than just the ASCII characters, so C<is_utf8_invariant_string> is preferred.
136 
137 =for apidoc is_invariant_string
138 
139 This is a somewhat misleadingly-named synonym for L</is_utf8_invariant_string>.
140 C<is_utf8_invariant_string> is preferred, as it indicates under what conditions
141 the string is invariant.
142 
143 =cut
144 */
145 #define is_ascii_string(s, len)     is_utf8_invariant_string(s, len)
146 #define is_invariant_string(s, len) is_utf8_invariant_string(s, len)
147 
148 #define uvoffuni_to_utf8_flags(d,uv,flags)                                     \
149                                uvoffuni_to_utf8_flags_msgs(d, uv, flags, 0)
150 #define uvchr_to_utf8(a,b)          uvchr_to_utf8_flags(a,b,0)
151 #define uvchr_to_utf8_flags(d,uv,flags)                                        \
152                                     uvchr_to_utf8_flags_msgs(d,uv,flags, 0)
153 #define uvchr_to_utf8_flags_msgs(d,uv,flags,msgs)                              \
154                 uvoffuni_to_utf8_flags_msgs(d,NATIVE_TO_UNI(uv),flags, msgs)
155 #define utf8_to_uvchr_buf(s, e, lenp)                                          \
156             utf8_to_uvchr_buf_helper((const U8 *) (s), (const U8 *) e, lenp)
157 #define utf8n_to_uvchr(s, len, lenp, flags)                                    \
158                                 utf8n_to_uvchr_error(s, len, lenp, flags, 0)
159 #define utf8n_to_uvchr_error(s, len, lenp, flags, errors)                      \
160                         utf8n_to_uvchr_msgs(s, len, lenp, flags, errors, 0)
161 
162 #define utf16_to_utf8(p, d, bytelen, newlen)                                \
163                             utf16_to_utf8_base(p, d, bytelen, newlen, 0, 1)
164 #define utf16_to_utf8_reversed(p, d, bytelen, newlen)                       \
165                             utf16_to_utf8_base(p, d, bytelen, newlen, 1, 0)
166 #define utf8_to_utf16(p, d, bytelen, newlen)                                \
167                             utf8_to_utf16_base(p, d, bytelen, newlen, 0, 1)
168 #define utf8_to_utf16_reversed(p, d, bytelen, newlen)                       \
169                             utf8_to_utf16_base(p, d, bytelen, newlen, 1, 0)
170 
171 #define to_uni_fold(c, p, lenp) _to_uni_fold_flags(c, p, lenp, FOLD_FLAGS_FULL)
172 
173 #define foldEQ_utf8(s1, pe1, l1, u1, s2, pe2, l2, u2) \
174                     foldEQ_utf8_flags(s1, pe1, l1, u1, s2, pe2, l2, u2, 0)
175 #define FOLDEQ_UTF8_NOMIX_ASCII   (1 << 0)
176 #define FOLDEQ_LOCALE             (1 << 1)
177 #define FOLDEQ_S1_ALREADY_FOLDED  (1 << 2)
178 #define FOLDEQ_S2_ALREADY_FOLDED  (1 << 3)
179 #define FOLDEQ_S1_FOLDS_SANE      (1 << 4)
180 #define FOLDEQ_S2_FOLDS_SANE      (1 << 5)
181 
182 /* This will be described more fully below, but it turns out that the
183  * fundamental difference between UTF-8 and UTF-EBCDIC is that the former has
184  * the upper 2 bits of a continuation byte be '10', and the latter has the
185  * upper 3 bits be '101', leaving 6 and 5 significant bits respectively.
186  *
187  * It is helpful to know the EBCDIC value on ASCII platforms, mainly to avoid
188  * some #ifdef's */
189 #define UTF_EBCDIC_CONTINUATION_BYTE_INFO_BITS 5
190 
191 /* See explanation below at 'UTF8_MAXBYTES' */
192 #define ASCII_PLATFORM_UTF8_MAXBYTES 13
193 
194 #ifdef EBCDIC
195 
196 /* The equivalent of the next few macros but implementing UTF-EBCDIC are in the
197  * following header file: */
198 #  include "utfebcdic.h"
199 
200 #  else	/* ! EBCDIC */
201 
202 START_EXTERN_C
203 
204 #  ifndef DOINIT
205 EXTCONST unsigned char PL_utf8skip[];
206 #  else
207 EXTCONST unsigned char PL_utf8skip[] = {
208 /* 0x00 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
209 /* 0x10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
210 /* 0x20 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
211 /* 0x30 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
212 /* 0x40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
213 /* 0x50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
214 /* 0x60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
215 /* 0x70 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
216 /* 0x80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
217 /* 0x90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
218 /* 0xA0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
219 /* 0xB0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
220 /* 0xC0 */ 2,2,				    /* overlong */
221 /* 0xC2 */     2,2,2,2,2,2,2,2,2,2,2,2,2,2, /* U+0080 to U+03FF */
222 /* 0xD0 */ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, /* U+0400 to U+07FF */
223 /* 0xE0 */ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, /* U+0800 to U+FFFF */
224 /* 0xF0 */ 4,4,4,4,4,4,4,4,5,5,5,5,6,6,	    /* above BMP to 2**31 - 1 */
225            /* Perl extended (never was official UTF-8).  Up to 36 bit */
226 /* 0xFE */                             7,
227            /* More extended, Up to 72 bits (64-bit + reserved) */
228 /* 0xFF */                               ASCII_PLATFORM_UTF8_MAXBYTES
229 };
230 #  endif
231 
232 END_EXTERN_C
233 
234 /*
235 
236 =for apidoc Am|U8|NATIVE_TO_LATIN1|U8 ch
237 
238 Returns the Latin-1 (including ASCII and control characters) equivalent of the
239 input native code point given by C<ch>.  Thus, C<NATIVE_TO_LATIN1(193)> on
240 EBCDIC platforms returns 65.  These each represent the character C<"A"> on
241 their respective platforms.  On ASCII platforms no conversion is needed, so
242 this macro expands to just its input, adding no time nor space requirements to
243 the implementation.
244 
245 For conversion of code points potentially larger than will fit in a character,
246 use L</NATIVE_TO_UNI>.
247 
248 =for apidoc Am|U8|LATIN1_TO_NATIVE|U8 ch
249 
250 Returns the native  equivalent of the input Latin-1 code point (including ASCII
251 and control characters) given by C<ch>.  Thus, C<LATIN1_TO_NATIVE(66)> on
252 EBCDIC platforms returns 194.  These each represent the character C<"B"> on
253 their respective platforms.  On ASCII platforms no conversion is needed, so
254 this macro expands to just its input, adding no time nor space requirements to
255 the implementation.
256 
257 For conversion of code points potentially larger than will fit in a character,
258 use L</UNI_TO_NATIVE>.
259 
260 =for apidoc Am|UV|NATIVE_TO_UNI|UV ch
261 
262 Returns the Unicode  equivalent of the input native code point given by C<ch>.
263 Thus, C<NATIVE_TO_UNI(195)> on EBCDIC platforms returns 67.  These each
264 represent the character C<"C"> on their respective platforms.  On ASCII
265 platforms no conversion is needed, so this macro expands to just its input,
266 adding no time nor space requirements to the implementation.
267 
268 =for apidoc Am|UV|UNI_TO_NATIVE|UV ch
269 
270 Returns the native  equivalent of the input Unicode code point  given by C<ch>.
271 Thus, C<UNI_TO_NATIVE(68)> on EBCDIC platforms returns 196.  These each
272 represent the character C<"D"> on their respective platforms.  On ASCII
273 platforms no conversion is needed, so this macro expands to just its input,
274 adding no time nor space requirements to the implementation.
275 
276 =cut
277 */
278 
279 #define NATIVE_TO_LATIN1(ch)  (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
280 #define LATIN1_TO_NATIVE(ch)  (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
281 
282 /* I8 is an intermediate version of UTF-8 used only in UTF-EBCDIC.  We thus
283  * consider it to be identical to UTF-8 on ASCII platforms.  Strictly speaking
284  * UTF-8 and UTF-EBCDIC are two different things, but we often conflate them
285  * because they are 8-bit encodings that serve the same purpose in Perl, and
286  * rarely do we need to distinguish them.  The term "NATIVE_UTF8" applies to
287  * whichever one is applicable on the current platform */
288 #define NATIVE_UTF8_TO_I8(ch)  (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
289 #define I8_TO_NATIVE_UTF8(ch)  (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
290 
291 #define UNI_TO_NATIVE(ch)        ((UV) ASSERT_NOT_PTR(ch))
292 #define NATIVE_TO_UNI(ch)        ((UV) ASSERT_NOT_PTR(ch))
293 
294 /*
295 
296  The following table is from Unicode 3.2, plus the Perl extensions for above
297  U+10FFFF
298 
299  Code Points		1st Byte  2nd Byte  3rd    4th     5th     6th       7th   8th-13th
300 
301    U+0000..U+007F	00..7F
302    U+0080..U+07FF     * C2..DF    80..BF
303    U+0800..U+0FFF	E0      * A0..BF  80..BF
304    U+1000..U+CFFF       E1..EC    80..BF  80..BF
305    U+D000..U+D7FF       ED        80..9F  80..BF
306    U+D800..U+DFFF       ED        A0..BF  80..BF  (surrogates)
307    U+E000..U+FFFF       EE..EF    80..BF  80..BF
308   U+10000..U+3FFFF	F0      * 90..BF  80..BF  80..BF
309   U+40000..U+FFFFF	F1..F3    80..BF  80..BF  80..BF
310  U+100000..U+10FFFF	F4        80..8F  80..BF  80..BF
311     Below are above-Unicode code points
312  U+110000..U+13FFFF	F4        90..BF  80..BF  80..BF
313  U+110000..U+1FFFFF	F5..F7    80..BF  80..BF  80..BF
314  U+200000..U+FFFFFF     F8      * 88..BF  80..BF  80..BF  80..BF
315 U+1000000..U+3FFFFFF    F9..FB    80..BF  80..BF  80..BF  80..BF
316 U+4000000..U+3FFFFFFF    FC     * 84..BF  80..BF  80..BF  80..BF  80..BF
317 U+40000000..U+7FFFFFFF   FD       80..BF  80..BF  80..BF  80..BF  80..BF
318 U+80000000..U+FFFFFFFFF  FE     * 82..BF  80..BF  80..BF  80..BF  80..BF    80..BF
319 U+1000000000..           FF       80..BF  80..BF  80..BF  80..BF  80..BF  * 81..BF  80..BF
320 
321 Note the gaps before several of the byte entries above marked by '*'.  These are
322 caused by legal UTF-8 avoiding non-shortest encodings: it is technically
323 possible to UTF-8-encode a single code point in different ways, but that is
324 explicitly forbidden, and the shortest possible encoding should always be used
325 (and that is what Perl does).  The non-shortest ones are called 'overlongs'.
326 
327 Another way to look at it, as bits:
328 
329                   Code Points      1st Byte   2nd Byte   3rd Byte   4th Byte
330 
331                         0aaa aaaa  0aaa aaaa
332               0000 0bbb bbaa aaaa  110b bbbb  10aa aaaa
333               cccc bbbb bbaa aaaa  1110 cccc  10bb bbbb  10aa aaaa
334  00 000d ddcc cccc bbbb bbaa aaaa  1111 0ddd  10cc cccc  10bb bbbb  10aa aaaa
335 
336 As you can see, the continuation bytes all begin with C<10>, and the
337 leading bits of the start byte tell how many bytes there are in the
338 encoded character.
339 
340 Perl's extended UTF-8 means we can have start bytes up through FF, though any
341 beginning with FF yields a code point that is too large for 32-bit ASCII
342 platforms.  FF signals to use 13 bytes for the encoded character.  This breaks
343 the paradigm that the number of leading bits gives how many total bytes there
344 are in the character. */
345 
346 /* This is the number of low-order bits a continuation byte in a UTF-8 encoded
347  * sequence contributes to the specification of the code point.  In the bit
348  * maps above, you see that the first 2 bits are a constant '10', leaving 6 of
349  * real information */
350 #  define UTF_CONTINUATION_BYTE_INFO_BITS 6
351 
352 /* ^? is defined to be DEL on ASCII systems.  See the definition of toCTRL()
353  * for more */
354 #  define QUESTION_MARK_CTRL  DEL_NATIVE
355 
356 #endif /* EBCDIC vs ASCII */
357 
358 /* It turns out that in a number of cases, that handling ASCII vs EBCDIC is a
359  * matter of being off-by-one.  So this is a convenience macro, used to avoid
360  * some #ifdefs. */
361 #define ONE_IF_EBCDIC_ZERO_IF_NOT                                           \
362  (UTF_CONTINUATION_BYTE_INFO_BITS == UTF_EBCDIC_CONTINUATION_BYTE_INFO_BITS)
363 
364 /* Since the significant bits in a continuation byte are stored in the
365  * least-significant positions, we often find ourselves shifting by that
366  * amount.  This is a clearer name in such situations */
367 #define UTF_ACCUMULATION_SHIFT  UTF_CONTINUATION_BYTE_INFO_BITS
368 
369 /* 2**info_bits - 1.  This masks out all but the bits that carry real
370  * information in a continuation byte.  This turns out to be 0x3F in UTF-8,
371  * 0x1F in UTF-EBCDIC. */
372 #define UTF_CONTINUATION_MASK                                               \
373                         ((U8) nBIT_MASK(UTF_CONTINUATION_BYTE_INFO_BITS))
374 
375 /* For use in UTF8_IS_CONTINUATION().  This turns out to be 0xC0 in UTF-8,
376  * E0 in UTF-EBCDIC */
377 #define UTF_IS_CONTINUATION_MASK    ((U8) (0xFF << UTF_ACCUMULATION_SHIFT))
378 
379 /* This defines the bits that are to be in the continuation bytes of a
380  * multi-byte UTF-8 encoded character that mark it is a continuation byte.
381  * This turns out to be 0x80 in UTF-8, 0xA0 in UTF-EBCDIC.  (khw doesn't know
382  * the underlying reason that B0 works here, except it just happens to work.
383  * One could solve for two linear equations and come up with it.) */
384 #define UTF_CONTINUATION_MARK       (UTF_IS_CONTINUATION_MASK & 0xB0)
385 
386 /* This value is clearer in some contexts */
387 #define UTF_MIN_CONTINUATION_BYTE  UTF_CONTINUATION_MARK
388 
389 /* Is the byte 'c' part of a multi-byte UTF8-8 encoded sequence, and not the
390  * first byte thereof? */
391 #define UTF8_IS_CONTINUATION(c)     (__ASSERT_(FITS_IN_8_BITS(c))           \
392             (((NATIVE_UTF8_TO_I8(c) & UTF_IS_CONTINUATION_MASK)             \
393                                                 == UTF_CONTINUATION_MARK)))
394 
395 /* Is the representation of the Unicode code point 'cp' the same regardless of
396  * being encoded in UTF-8 or not? This is a fundamental property of
397  * UTF-8,EBCDIC */
398 #define OFFUNI_IS_INVARIANT(c)                                              \
399                         (((WIDEST_UTYPE)(c)) < UTF_MIN_CONTINUATION_BYTE)
400 
401 /*
402 =for apidoc Am|bool|UVCHR_IS_INVARIANT|UV cp
403 
404 Evaluates to 1 if the representation of code point C<cp> is the same whether or
405 not it is encoded in UTF-8; otherwise evaluates to 0.  UTF-8 invariant
406 characters can be copied as-is when converting to/from UTF-8, saving time.
407 C<cp> is Unicode if above 255; otherwise is platform-native.
408 
409 =cut
410  */
411 #if defined(__m88k__)
412 /* XXX workaround: m88k gcc3 produces wrong code with NATIVE_TO_UNI() */
413 #define UVCHR_IS_INVARIANT(cp)  (OFFUNI_IS_INVARIANT(cp))
414 #else	/* the original one */
415 #define UVCHR_IS_INVARIANT(cp)  (OFFUNI_IS_INVARIANT(NATIVE_TO_UNI(cp)))
416 #endif
417 
418 /* This defines the 1-bits that are to be in the first byte of a multi-byte
419  * UTF-8 encoded character that mark it as a start byte and give the number of
420  * bytes that comprise the character. 'len' is that number.
421  *
422  * To illustrate: len = 2 => ((U8) ~ 0b0011_1111) or 1100_0000
423  *                      7 => ((U8) ~ 0b0000_0001) or 1111_1110
424  *                    > 7 =>  0xFF
425  *
426  * This is not to be used on a single-byte character.  As in many places in
427  * perl, U8 must be 8 bits
428  */
429 #define UTF_START_MARK(len) ((U8) ~(0xFF >> (len)))
430 
431 /* Masks out the initial one bits in a start byte, leaving the following 0 bit
432  * and the real data bits.  'len' is the number of bytes in the multi-byte
433  * sequence that comprises the character.
434  *
435  * To illustrate: len = 2 => 0b0011_1111 works on start byte 110xxxxx
436  *                      6 => 0b0000_0011 works on start byte 1111110x
437  *                   >= 7 => There are no data bits in the start byte
438  * Note that on ASCII platforms, this can be passed a len=1 byte; and all the
439  * real data bits will be returned:
440                   len = 1 => 0b0111_1111
441  * This isn't true on EBCDIC platforms, where some len=1 bytes are of the form
442  * 0b101x_xxxx, so this can't be used there on single-byte characters. */
443 #define UTF_START_MASK(len) (0xFF >> (len))
444 
445 /*
446 
447 =for apidoc AmnU|STRLEN|UTF8_MAXBYTES
448 
449 The maximum width of a single UTF-8 encoded character, in bytes.
450 
451 NOTE: Strictly speaking Perl's UTF-8 should not be called UTF-8 since UTF-8
452 is an encoding of Unicode, and Unicode's upper limit, 0x10FFFF, can be
453 expressed with 4 bytes.  However, Perl thinks of UTF-8 as a way to encode
454 non-negative integers in a binary format, even those above Unicode.
455 
456 =cut
457 
458 The start byte 0xFE, never used in any ASCII platform UTF-8 specification, has
459 an obvious meaning, namely it has its upper 7 bits set, so it should start a
460 sequence of 7 bytes.  And in fact, this is exactly what standard UTF-EBCDIC
461 does.
462 
463 The start byte FF, on the other hand could have several different plausible
464 meanings:
465   1) The meaning in standard UTF-EBCDIC, namely as an FE start byte, with the
466      bottom bit that should be a fixed '0' to form FE, instead acting as an
467      info bit, 0 or 1.
468   2) That the sequence should have exactly 8 bytes.
469   3) That the next byte is to be treated as a sort of extended start byte,
470      which in combination with this one gives the total length of the sequence.
471      There are published UTF-8 extensions that do this, some string together
472      multiple initial FF start bytes to achieve arbitrary precision.
473   4) That the sequence has exactly n bytes, where n is what the implementation
474      chooses.
475 
476 Perl has chosen 4).
477 The goal is to be able to represent 64-bit values in UTF-8 or UTF-EBCDIC.  That
478 rules out items 1) and 2).  Item 3) has the deal-breaking disadvantage of
479 requiring one to read more than one byte to determine the total length of the
480 sequence.  So in Perl, a start byte of FF indicates a UTF-8 string consisting
481 of the start byte, plus enough continuation bytes to encode a 64 bit value.
482 This turns out to be 13 total bytes in UTF-8 and 14 in UTF-EBCDIC.  This is
483 because we get zero info bits from the start byte, plus
484     12 * 6 bits of info per continuation byte (could encode 72-bit numbers) on
485                 UTF-8 (khw knows not why 11, which would encode 66 bits wasn't
486                 chosen instead); and
487     13 * 5 bits of info per byte (could encode 65-bit numbers) on UTF-EBCDIC
488 
489 The disadvantages of this method are:
490   1) There's potentially a lot of wasted bytes for all but the largest values.
491      For example, something that could be represented by 7 continuation bytes,
492      instead requires the full 12 or 13.
493   2) There would be problems should larger values, 128-bit say, ever need to be
494      represented.
495 
496 WARNING: This number must be in sync with the value in
497 regen/charset_translations.pl. */
498 #define UTF8_MAXBYTES                                                       \
499                 (ASCII_PLATFORM_UTF8_MAXBYTES + ONE_IF_EBCDIC_ZERO_IF_NOT)
500 
501 /* Calculate how many bytes are necessary to represent a value whose most
502  * significant 1 bit is in bit position 'pos' of the word.  For 0x1, 'pos would
503  * be 0; and for 0x400, 'pos' would be 10, and the result would be:
504  *  EBCDIC floor((-1 + (10 + 5 - 1 - 1)) / (5 - 1))
505  *       = floor((-1 + (13)) / 4)
506  *       = floor(12 / 4)
507  *       = 3
508  *  ASCII  floor(( 0 + (10 + 6 - 1 - 1)) / (6 - 1))
509  *       = floor(14 / 5)
510  *       = 2
511  * The reason this works is because the number of bits needed to represent a
512  * value is proportional to (UTF_CONTINUATION_BYTE_INFO_BITS - 1).  The -1 is
513  * because each new continuation byte removes one bit of information from the
514  * start byte.
515  *
516  * This is a step function (we need to allocate a full extra byte if we
517  * overflow by just a single bit)
518  *
519  * The caller is responsible for making sure 'pos' is at least 8 (occupies 9
520  * bits), as it breaks down at the lower edge.  At the high end, if it returns
521  * 8 or more, Perl instead anomalously uses MAX_BYTES, so this would be wrong.
522  * */
523 #define UNISKIP_BY_MSB_(pos)                                                \
524   ( ( -ONE_IF_EBCDIC_ZERO_IF_NOT  /* platform break pos's are off-by-one */ \
525      + (pos) + ((UTF_CONTINUATION_BYTE_INFO_BITS - 1) - 1))  /* Step fcn */ \
526    / (UTF_CONTINUATION_BYTE_INFO_BITS - 1))             /* take floor of */
527 
528 /* Compute the number of UTF-8 bytes required for representing the input uv,
529  * which must be a Unicode, not native value.
530  *
531  * This uses msbit_pos() which doesn't work on NUL, and UNISKIP_BY_MSB_ breaks
532  * down for small code points.  So first check if the input is invariant to get
533  * around that, and use a helper for high code points to accommodate the fact
534  * that above 7 btyes, the value is anomalous.  The helper is empty on
535  * platforms that don't go that high */
536 #define OFFUNISKIP(uv)                                                      \
537     ((OFFUNI_IS_INVARIANT(uv))                                              \
538      ? 1                                                                    \
539      : (OFFUNISKIP_helper_(uv) UNISKIP_BY_MSB_(msbit_pos(uv))))
540 
541 /* We need to go to MAX_BYTES when we can't represent 'uv' by the number of
542  * information bits in 6 continuation bytes (when we get to 6, the start byte
543  * has no information bits to add to the total).  But on 32-bit ASCII
544  * platforms, that doesn't happen until 6*6 bits, so on those platforms, this
545  * will always be false */
546 #if UVSIZE * CHARBITS > (6 * UTF_CONTINUATION_BYTE_INFO_BITS)
547 #  define HAS_EXTRA_LONG_UTF8
548 #  define OFFUNISKIP_helper_(uv)                                            \
549      UNLIKELY(uv > nBIT_UMAX(6 * UTF_CONTINUATION_BYTE_INFO_BITS))          \
550       ? UTF8_MAXBYTES :
551 #else
552 #  define OFFUNISKIP_helper_(uv)
553 #endif
554 
555 /*
556 
557 =for apidoc Am|STRLEN|UVCHR_SKIP|UV cp
558 returns the number of bytes required to represent the code point C<cp> when
559 encoded as UTF-8.  C<cp> is a native (ASCII or EBCDIC) code point if less than
560 255; a Unicode code point otherwise.
561 
562 =cut
563  */
564 #define UVCHR_SKIP(uv)  OFFUNISKIP(NATIVE_TO_UNI(uv))
565 
566 #define NATIVE_SKIP(uv) UVCHR_SKIP(uv)  /* Old terminology */
567 
568 /* Most code which says UNISKIP is really thinking in terms of native code
569  * points (0-255) plus all those beyond.  This is an imprecise term, but having
570  * it means existing code continues to work.  For precision, use UVCHR_SKIP,
571  * NATIVE_SKIP, or OFFUNISKIP */
572 #define UNISKIP(uv)   UVCHR_SKIP(uv)
573 
574 /* Compute the start byte for a given code point.  This requires the log2 of
575  * the code point, which is hard to compute at compile time, which this macro
576  * wants to be.  (Perhaps deBruijn sequences could be used.)  So a parameter
577  * for the number of bits the value occupies is passed in, which the programmer
578  * has had to figure out to get compile-time effect.  And asserts are used to
579  * make sure the value is correct.
580  *
581  * Since we are interested only in the start byte, we ignore the lower bits
582  * accounted for by the continuation bytes.  Each continuation byte eats up
583  * UTF_CONTINUATION_BYTE_INFO_BITS bits, so the number of continuation bytes
584  * needed is floor(bits / UTF_CONTINUATION_BYTE_INFO_BITS).  That number is fed
585  * to UTF_START_MARK() to get the upper part of the start byte.  The left over
586  * bits form the lower part which is OR'd with the mark
587  *
588  * Note that on EBCDIC platforms, this is actually the I8 */
589 #define UTF_START_BYTE(uv, bits)                                            \
590            (__ASSERT_((uv) >> ((bits) - 1)) /* At least 'bits' */           \
591             __ASSERT_(((uv) & ~nBIT_MASK(bits)) == 0) /* No extra bits */   \
592               UTF_START_MARK(UNISKIP_BY_MSB_((bits) - 1))                   \
593             | ((uv) >> (((bits) / UTF_CONTINUATION_BYTE_INFO_BITS)          \
594                                 * UTF_CONTINUATION_BYTE_INFO_BITS)))
595 
596 /* Compute the first continuation byte for a given code point.  This is mostly
597  * for compile-time, so how many bits it occupies is also passed in).
598  *
599  * We are interested in the first continuation byte, so we ignore the lower
600  * bits accounted for by the rest of the continuation bytes by right shifting
601  * out their info bit, and mask out the higher bits that will go into the start
602  * byte.
603  *
604  * Note that on EBCDIC platforms, this is actually the I8 */
605 #define UTF_FIRST_CONT_BYTE(uv, bits)                                       \
606    (__ASSERT_((uv) >> ((bits) - 1)) /* At least 'bits' */                   \
607     __ASSERT_(((uv) & ~nBIT_MASK(bits)) == 0) /* No extra bits */           \
608        UTF_CONTINUATION_MARK                                                \
609     | (   UTF_CONTINUATION_MASK                                             \
610        & ((uv) >> ((((bits) / UTF_CONTINUATION_BYTE_INFO_BITS) - 1)         \
611                             * UTF_CONTINUATION_BYTE_INFO_BITS))))
612 
613 #define UTF_MIN_START_BYTE  UTF_START_BYTE(UTF_MIN_CONTINUATION_BYTE, 8)
614 
615 /* Is the byte 'c' the first byte of a multi-byte UTF8-8 encoded sequence?
616  * This excludes invariants (they are single-byte).  It also excludes the
617  * illegal overlong sequences that begin with C0 and C1 on ASCII platforms, and
618  * C0-C4 I8 start bytes on EBCDIC ones.  On EBCDIC E0 can't start a
619  * non-overlong sequence, so we define a base macro and for those platforms,
620  * extend it to also exclude E0 */
621 #define UTF8_IS_START_base(c)    (__ASSERT_(FITS_IN_8_BITS(c))              \
622                              (NATIVE_UTF8_TO_I8(c) >= UTF_MIN_START_BYTE))
623 #ifdef EBCDIC
624 #  define UTF8_IS_START(c)                                                  \
625                 (UTF8_IS_START_base(c) && (c) != I8_TO_NATIVE_UTF8(0xE0))
626 #else
627 #  define UTF8_IS_START(c)  UTF8_IS_START_base(c)
628 #endif
629 
630 #define UTF_MIN_ABOVE_LATIN1_BYTE  UTF_START_BYTE(0x100, 9)
631 
632 /* Is the UTF8-encoded byte 'c' the first byte of a sequence of bytes that
633  * represent a code point > 255? */
634 #define UTF8_IS_ABOVE_LATIN1(c)     (__ASSERT_(FITS_IN_8_BITS(c))           \
635                         (NATIVE_UTF8_TO_I8(c) >= UTF_MIN_ABOVE_LATIN1_BYTE))
636 
637 /* Is the UTF8-encoded byte 'c' the first byte of a two byte sequence?  Use
638  * UTF8_IS_NEXT_CHAR_DOWNGRADEABLE() instead if the input isn't known to
639  * be well-formed. */
640 #define UTF8_IS_DOWNGRADEABLE_START(c)	(__ASSERT_(FITS_IN_8_BITS(c))       \
641                 inRANGE_helper_(U8, NATIVE_UTF8_TO_I8(c),                   \
642                         UTF_MIN_START_BYTE, UTF_MIN_ABOVE_LATIN1_BYTE - 1))
643 
644 /* The largest code point representable by two UTF-8 bytes on this platform.
645  * The binary for that code point is:
646  *      1101_1111 10xx_xxxx in UTF-8, and
647  *      1101_1111 101y_yyyy in UTF-EBCDIC I8.
648  * where both x and y are 1, and shown this way to indicate there is one more x
649  * than there is y.  The number of x and y bits are their platform's respective
650  * UTF_CONTINUATION_BYTE_INFO_BITS.  Squeezing out the bits that don't
651  * contribute to the value, these evaluate to:
652  *      1_1111 xx_xxxx in UTF-8, and
653  *      1_1111 y_yyyy in UTF-EBCDIC I8.
654  * or, the maximum value of an unsigned with (5 + info_bit_count) bits */
655 #define MAX_UTF8_TWO_BYTE  nBIT_UMAX(5 + UTF_CONTINUATION_BYTE_INFO_BITS)
656 
657 /* The largest code point representable by two UTF-8 bytes on any platform that
658  * Perl runs on. */
659 #define MAX_PORTABLE_UTF8_TWO_BYTE                                          \
660                 nBIT_UMAX(5 + MIN(       UTF_CONTINUATION_BYTE_INFO_BITS,   \
661                                   UTF_EBCDIC_CONTINUATION_BYTE_INFO_BITS))
662 
663 /*
664 
665 =for apidoc AmnU|STRLEN|UTF8_MAXBYTES_CASE
666 
667 The maximum number of UTF-8 bytes a single Unicode character can
668 uppercase/lowercase/titlecase/fold into.
669 
670 =cut
671 
672  * Unicode guarantees that the maximum expansion is UTF8_MAX_FOLD_CHAR_EXPAND
673  * characters, but any above-Unicode code point will fold to itself, so we only
674  * have to look at the expansion of the maximum Unicode code point.  But this
675  * number may be less than the space occupied by a very large code point under
676  * Perl's extended UTF-8.  We have to make it large enough to fit any single
677  * character.  (It turns out that ASCII and EBCDIC differ in which is larger)
678  *
679 =cut
680 */
681 #define UTF8_MAXBYTES_CASE	                                            \
682         MAX(UTF8_MAXBYTES, UTF8_MAX_FOLD_CHAR_EXPAND * UNISKIP_BY_MSB_(20))
683 
684 /* Rest of these are attributes of Unicode and perl's internals rather than the
685  * encoding, or happen to be the same in both ASCII and EBCDIC (at least at
686  * this level; the macros that some of these call may have different
687  * definitions in the two encodings */
688 
689 /* In domain restricted to ASCII, these may make more sense to the reader than
690  * the ones with Latin1 in the name */
691 #define NATIVE_TO_ASCII(ch)      NATIVE_TO_LATIN1(ch)
692 #define ASCII_TO_NATIVE(ch)      LATIN1_TO_NATIVE(ch)
693 
694 /* More or less misleadingly-named defines, retained for back compat */
695 #define NATIVE_TO_UTF(ch)        NATIVE_UTF8_TO_I8(ch)
696 #define NATIVE_TO_I8(ch)         NATIVE_UTF8_TO_I8(ch)
697 #define UTF_TO_NATIVE(ch)        I8_TO_NATIVE_UTF8(ch)
698 #define I8_TO_NATIVE(ch)         I8_TO_NATIVE_UTF8(ch)
699 #define NATIVE8_TO_UNI(ch)       NATIVE_TO_LATIN1(ch)
700 
701 /* Adds a UTF8 continuation byte 'new' of information to a running total code
702  * point 'old' of all the continuation bytes so far.  This is designed to be
703  * used in a loop to convert from UTF-8 to the code point represented.  Note
704  * that this is asymmetric on EBCDIC platforms, in that the 'new' parameter is
705  * the UTF-EBCDIC byte, whereas the 'old' parameter is a Unicode (not EBCDIC)
706  * code point in process of being generated */
707 #define UTF8_ACCUMULATE(old, new) (__ASSERT_(FITS_IN_8_BITS(new))              \
708                                    ((old) << UTF_ACCUMULATION_SHIFT)           \
709                                    | ((NATIVE_UTF8_TO_I8(new))                 \
710                                        & UTF_CONTINUATION_MASK))
711 
712 /* This works in the face of malformed UTF-8. */
713 #define UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, e)                                 \
714                                        (   ( (e) - (s) > 1)                   \
715                                         && UTF8_IS_DOWNGRADEABLE_START(*(s))  \
716                                         && UTF8_IS_CONTINUATION(*((s)+1)))
717 
718 /* Longer, but more accurate name */
719 #define UTF8_IS_ABOVE_LATIN1_START(c)     UTF8_IS_ABOVE_LATIN1(c)
720 
721 /* Convert a UTF-8 variant Latin1 character to a native code point value.
722  * Needs just one iteration of accumulate.  Should be used only if it is known
723  * that the code point is < 256, and is not UTF-8 invariant.  Use the slower
724  * but more general TWO_BYTE_UTF8_TO_NATIVE() which handles any code point
725  * representable by two bytes (which turns out to be up through
726  * MAX_PORTABLE_UTF8_TWO_BYTE).  The two parameters are:
727  *  HI: a downgradable start byte;
728  *  LO: continuation.
729  * */
730 #define EIGHT_BIT_UTF8_TO_NATIVE(HI, LO)                                        \
731     ( __ASSERT_(UTF8_IS_DOWNGRADEABLE_START(HI))                                \
732       __ASSERT_(UTF8_IS_CONTINUATION(LO))                                       \
733      LATIN1_TO_NATIVE(UTF8_ACCUMULATE((                                         \
734                             NATIVE_UTF8_TO_I8(HI) & UTF_START_MASK(2)), (LO))))
735 
736 /* Convert a two (not one) byte utf8 character to a native code point value.
737  * Needs just one iteration of accumulate.  Should not be used unless it is
738  * known that the two bytes are legal: 1) two-byte start, and 2) continuation.
739  * Note that the result can be larger than 255 if the input character is not
740  * downgradable */
741 #define TWO_BYTE_UTF8_TO_NATIVE(HI, LO) \
742     (__ASSERT_(FITS_IN_8_BITS(HI))                                              \
743      __ASSERT_(FITS_IN_8_BITS(LO))                                              \
744      __ASSERT_(PL_utf8skip[(U8) HI] == 2)                                            \
745      __ASSERT_(UTF8_IS_CONTINUATION(LO))                                        \
746      UNI_TO_NATIVE(UTF8_ACCUMULATE((NATIVE_UTF8_TO_I8(HI) & UTF_START_MASK(2)), \
747                                    (LO))))
748 
749 /* Should never be used, and be deprecated */
750 #define TWO_BYTE_UTF8_TO_UNI(HI, LO) NATIVE_TO_UNI(TWO_BYTE_UTF8_TO_NATIVE(HI, LO))
751 
752 /*
753 
754 =for apidoc Am|STRLEN|UTF8SKIP|char* s
755 returns the number of bytes a non-malformed UTF-8 encoded character whose first
756 (perhaps only) byte is pointed to by C<s>.
757 
758 If there is a possibility of malformed input, use instead:
759 
760 =over
761 
762 =item C<L</UTF8_SAFE_SKIP>> if you know the maximum ending pointer in the
763 buffer pointed to by C<s>; or
764 
765 =item C<L</UTF8_CHK_SKIP>> if you don't know it.
766 
767 =back
768 
769 It is better to restructure your code so the end pointer is passed down so that
770 you know what it actually is at the point of this call, but if that isn't
771 possible, C<L</UTF8_CHK_SKIP>> can minimize the chance of accessing beyond the end
772 of the input buffer.
773 
774 =cut
775  */
776 #define UTF8SKIP(s)  PL_utf8skip[*(const U8*)(ASSERT_IS_PTR(s))]
777 
778 /*
779 =for apidoc Am|STRLEN|UTF8_SKIP|char* s
780 This is a synonym for C<L</UTF8SKIP>>
781 
782 =cut
783 */
784 
785 #define UTF8_SKIP(s) UTF8SKIP(s)
786 
787 /*
788 =for apidoc Am|STRLEN|UTF8_CHK_SKIP|char* s
789 
790 This is a safer version of C<L</UTF8SKIP>>, but still not as safe as
791 C<L</UTF8_SAFE_SKIP>>.  This version doesn't blindly assume that the input
792 string pointed to by C<s> is well-formed, but verifies that there isn't a NUL
793 terminating character before the expected end of the next character in C<s>.
794 The length C<UTF8_CHK_SKIP> returns stops just before any such NUL.
795 
796 Perl tends to add NULs, as an insurance policy, after the end of strings in
797 SV's, so it is likely that using this macro will prevent inadvertent reading
798 beyond the end of the input buffer, even if it is malformed UTF-8.
799 
800 This macro is intended to be used by XS modules where the inputs could be
801 malformed, and it isn't feasible to restructure to use the safer
802 C<L</UTF8_SAFE_SKIP>>, for example when interfacing with a C library.
803 
804 =cut
805 */
806 
807 #define UTF8_CHK_SKIP(s)                                                       \
808             (UNLIKELY(s[0] == '\0') ? 1 : MIN(UTF8SKIP(s),                     \
809                                     my_strnlen((char *) (s), UTF8SKIP(s))))
810 /*
811 
812 =for apidoc Am|STRLEN|UTF8_SAFE_SKIP|char* s|char* e
813 returns 0 if S<C<s E<gt>= e>>; otherwise returns the number of bytes in the
814 UTF-8 encoded character whose first  byte is pointed to by C<s>.  But it never
815 returns beyond C<e>.  On DEBUGGING builds, it asserts that S<C<s E<lt>= e>>.
816 
817 =cut
818  */
819 #define UTF8_SAFE_SKIP(s, e)  (__ASSERT_((e) >= (s))                \
820                               UNLIKELY(((e) - (s)) <= 0)            \
821                                ? 0                                  \
822                                : MIN(((e) - (s)), UTF8_SKIP(s)))
823 
824 /* Most code that says 'UNI_' really means the native value for code points up
825  * through 255 */
826 #define UNI_IS_INVARIANT(cp)   UVCHR_IS_INVARIANT(cp)
827 
828 /*
829 =for apidoc Am|bool|UTF8_IS_INVARIANT|char c
830 
831 Evaluates to 1 if the byte C<c> represents the same character when encoded in
832 UTF-8 as when not; otherwise evaluates to 0.  UTF-8 invariant characters can be
833 copied as-is when converting to/from UTF-8, saving time.
834 
835 In spite of the name, this macro gives the correct result if the input string
836 from which C<c> comes is not encoded in UTF-8.
837 
838 See C<L</UVCHR_IS_INVARIANT>> for checking if a UV is invariant.
839 
840 =cut
841 
842 The reason it works on both UTF-8 encoded strings and non-UTF-8 encoded, is
843 that it returns TRUE in each for the exact same set of bit patterns.  It is
844 valid on a subset of what UVCHR_IS_INVARIANT is valid on, so can just use that;
845 and the compiler should optimize out anything extraneous given the
846 implementation of the latter. */
847 #define UTF8_IS_INVARIANT(c)	UVCHR_IS_INVARIANT(ASSERT_NOT_PTR(c))
848 
849 /* Like the above, but its name implies a non-UTF8 input, which as the comments
850  * above show, doesn't matter as to its implementation */
851 #define NATIVE_BYTE_IS_INVARIANT(c)	UVCHR_IS_INVARIANT(c)
852 
853 /* Misleadingly named: is the UTF8-encoded byte 'c' part of a variant sequence
854  * in UTF-8?  This is the inverse of UTF8_IS_INVARIANT. */
855 #define UTF8_IS_CONTINUED(c)  (__ASSERT_(FITS_IN_8_BITS(c))                 \
856                                (! UTF8_IS_INVARIANT(c)))
857 
858 /* The macros in the next 4 sets are used to generate the two utf8 or utfebcdic
859  * bytes from an ordinal that is known to fit into exactly two (not one) bytes;
860  * it must be less than 0x3FF to work across both encodings. */
861 
862 /* These two are helper macros for the other three sets, and should not be used
863  * directly anywhere else.  'translate_function' is either NATIVE_TO_LATIN1
864  * (which works for code points up through 0xFF) or NATIVE_TO_UNI which works
865  * for any code point */
866 #define __BASE_TWO_BYTE_HI(c, translate_function)                               \
867            (__ASSERT_(! UVCHR_IS_INVARIANT(c))                                  \
868             I8_TO_NATIVE_UTF8((translate_function(c) >> UTF_ACCUMULATION_SHIFT) \
869                               | UTF_START_MARK(2)))
870 #define __BASE_TWO_BYTE_LO(c, translate_function)                               \
871              (__ASSERT_(! UVCHR_IS_INVARIANT(c))                                \
872               I8_TO_NATIVE_UTF8((translate_function(c) & UTF_CONTINUATION_MASK) \
873                                  | UTF_CONTINUATION_MARK))
874 
875 /* The next two macros should not be used.  They were designed to be usable as
876  * the case label of a switch statement, but this doesn't work for EBCDIC.  Use
877  * regen/unicode_constants.pl instead */
878 #define UTF8_TWO_BYTE_HI_nocast(c)  __BASE_TWO_BYTE_HI(c, NATIVE_TO_UNI)
879 #define UTF8_TWO_BYTE_LO_nocast(c)  __BASE_TWO_BYTE_LO(c, NATIVE_TO_UNI)
880 
881 /* The next two macros are used when the source should be a single byte
882  * character; checked for under DEBUGGING */
883 #define UTF8_EIGHT_BIT_HI(c) (__ASSERT_(FITS_IN_8_BITS(c))                    \
884                              ( __BASE_TWO_BYTE_HI(c, NATIVE_TO_LATIN1)))
885 #define UTF8_EIGHT_BIT_LO(c) (__ASSERT_(FITS_IN_8_BITS(c))                    \
886                              (__BASE_TWO_BYTE_LO(c, NATIVE_TO_LATIN1)))
887 
888 /* These final two macros in the series are used when the source can be any
889  * code point whose UTF-8 is known to occupy 2 bytes; they are less efficient
890  * than the EIGHT_BIT versions on EBCDIC platforms.  We use the logical '~'
891  * operator instead of "<=" to avoid getting compiler warnings.
892  * MAX_UTF8_TWO_BYTE should be exactly all one bits in the lower few
893  * places, so the ~ works */
894 #define UTF8_TWO_BYTE_HI(c)                                                    \
895        (__ASSERT_((sizeof(c) ==  1)                                            \
896                   || !(((WIDEST_UTYPE)(c)) & ~MAX_UTF8_TWO_BYTE))              \
897         (__BASE_TWO_BYTE_HI(c, NATIVE_TO_UNI)))
898 #define UTF8_TWO_BYTE_LO(c)                                                    \
899        (__ASSERT_((sizeof(c) ==  1)                                            \
900                   || !(((WIDEST_UTYPE)(c)) & ~MAX_UTF8_TWO_BYTE))              \
901         (__BASE_TWO_BYTE_LO(c, NATIVE_TO_UNI)))
902 
903 /* This is illegal in any well-formed UTF-8 in both EBCDIC and ASCII
904  * as it is only in overlongs. */
905 #define ILLEGAL_UTF8_BYTE   I8_TO_NATIVE_UTF8(0xC1)
906 
907 /*
908  * 'UTF' is whether or not p is encoded in UTF8.  The names 'foo_lazy_if' stem
909  * from an earlier version of these macros in which they didn't call the
910  * foo_utf8() macros (i.e. were 'lazy') unless they decided that *p is the
911  * beginning of a utf8 character.  Now that foo_utf8() determines that itself,
912  * no need to do it again here
913  */
914 #define isIDFIRST_lazy_if_safe(p, e, UTF)                                   \
915                    ((IN_BYTES || !UTF)                                      \
916                      ? isIDFIRST(*(p))                                      \
917                      : isIDFIRST_utf8_safe(p, e))
918 #define isWORDCHAR_lazy_if_safe(p, e, UTF)                                  \
919                    ((IN_BYTES || !UTF)                                      \
920                      ? isWORDCHAR(*(p))                                     \
921                      : isWORDCHAR_utf8_safe((U8 *) p, (U8 *) e))
922 #define isALNUM_lazy_if_safe(p, e, UTF) isWORDCHAR_lazy_if_safe(p, e, UTF)
923 
924 #define UTF8_MAXLEN  UTF8_MAXBYTES
925 
926 /* A Unicode character can fold to up to 3 characters */
927 #define UTF8_MAX_FOLD_CHAR_EXPAND  3
928 
929 #define IN_BYTES  UNLIKELY(CopHINTS_get(PL_curcop) & HINT_BYTES)
930 
931 /*
932 
933 =for apidoc Am|bool|DO_UTF8|SV* sv
934 Returns a bool giving whether or not the PV in C<sv> is to be treated as being
935 encoded in UTF-8.
936 
937 You should use this I<after> a call to C<SvPV()> or one of its variants, in
938 case any call to string overloading updates the internal UTF-8 encoding flag.
939 
940 =cut
941 */
942 #define DO_UTF8(sv) (SvUTF8(sv) && !IN_BYTES)
943 
944 /* Should all strings be treated as Unicode, and not just UTF-8 encoded ones?
945  * Is so within 'feature unicode_strings' or 'locale :not_characters', and not
946  * within 'use bytes'.  UTF-8 locales are not tested for here, because it gets
947  * complicated by the probability of having categories in different locales. */
948 #define IN_UNI_8_BIT                                                    \
949             ((    (      (CopHINTS_get(PL_curcop) & HINT_UNI_8_BIT))    \
950                    || (   CopHINTS_get(PL_curcop) & HINT_LOCALE_PARTIAL \
951                             /* -1 below is for :not_characters */       \
952                        && _is_in_locale_category(FALSE, -1)))           \
953               && (! IN_BYTES))
954 
955 #define UNICODE_SURROGATE_FIRST		0xD800
956 #define UNICODE_SURROGATE_LAST		0xDFFF
957 
958 /*
959 =for apidoc Am|bool|UNICODE_IS_SURROGATE|const UV uv
960 
961 Returns a boolean as to whether or not C<uv> is one of the Unicode surrogate
962 code points
963 
964 =for apidoc Am|bool|UTF8_IS_SURROGATE|const U8 *s|const U8 *e
965 
966 Evaluates to non-zero if the first few bytes of the string starting at C<s> and
967 looking no further than S<C<e - 1>> are well-formed UTF-8 that represents one
968 of the Unicode surrogate code points; otherwise it evaluates to 0.  If
969 non-zero, the value gives how many bytes starting at C<s> comprise the code
970 point's representation.
971 
972 =cut
973  */
974 
975 #define UNICODE_IS_SURROGATE(uv) UNLIKELY(inRANGE(uv, UNICODE_SURROGATE_FIRST,  \
976                                                       UNICODE_SURROGATE_LAST))
977 #define UTF8_IS_SURROGATE(s, e)      is_SURROGATE_utf8_safe(s, e)
978 
979 /*
980 
981 =for apidoc AmnU|UV|UNICODE_REPLACEMENT
982 
983 Evaluates to 0xFFFD, the code point of the Unicode REPLACEMENT CHARACTER
984 
985 =for apidoc Am|bool|UNICODE_IS_REPLACEMENT|const UV uv
986 
987 Returns a boolean as to whether or not C<uv> is the Unicode REPLACEMENT
988 CHARACTER
989 
990 =for apidoc Am|bool|UTF8_IS_REPLACEMENT|const U8 *s|const U8 *e
991 
992 Evaluates to non-zero if the first few bytes of the string starting at C<s> and
993 looking no further than S<C<e - 1>> are well-formed UTF-8 that represents the
994 Unicode REPLACEMENT CHARACTER; otherwise it evaluates to 0.  If non-zero, the
995 value gives how many bytes starting at C<s> comprise the code point's
996 representation.
997 
998 =cut
999  */
1000 #define UNICODE_REPLACEMENT		0xFFFD
1001 #define UNICODE_IS_REPLACEMENT(uv)  UNLIKELY((UV) (uv) == UNICODE_REPLACEMENT)
1002 #define UTF8_IS_REPLACEMENT(s, send)                                         \
1003     UNLIKELY(                                                                \
1004         ((send) - (s)) >= ((SSize_t)(sizeof(REPLACEMENT_CHARACTER_UTF8) - 1))\
1005              && memEQ((s), REPLACEMENT_CHARACTER_UTF8,                       \
1006                       sizeof(REPLACEMENT_CHARACTER_UTF8) - 1))
1007 
1008 /* Max legal code point according to Unicode */
1009 #define PERL_UNICODE_MAX	0x10FFFF
1010 
1011 /*
1012 
1013 =for apidoc Am|bool|UNICODE_IS_SUPER|const UV uv
1014 
1015 Returns a boolean as to whether or not C<uv> is above the maximum legal Unicode
1016 code point of U+10FFFF.
1017 
1018 =cut
1019 */
1020 
1021 #define UNICODE_IS_SUPER(uv)  UNLIKELY((UV) (uv) > PERL_UNICODE_MAX)
1022 
1023 /*
1024 =for apidoc Am|bool|UTF8_IS_SUPER|const U8 *s|const U8 *e
1025 
1026 Recall that Perl recognizes an extension to UTF-8 that can encode code
1027 points larger than the ones defined by Unicode, which are 0..0x10FFFF.
1028 
1029 This macro evaluates to non-zero if the first few bytes of the string starting
1030 at C<s> and looking no further than S<C<e - 1>> are from this UTF-8 extension;
1031 otherwise it evaluates to 0.  If non-zero, the return is how many bytes
1032 starting at C<s> comprise the code point's representation.
1033 
1034 0 is returned if the bytes are not well-formed extended UTF-8, or if they
1035 represent a code point that cannot fit in a UV on the current platform.  Hence
1036 this macro can give different results when run on a 64-bit word machine than on
1037 one with a 32-bit word size.
1038 
1039 Note that it is illegal in Perl to have code points that are larger than what can
1040 fit in an IV on the current machine; and illegal in Unicode to have any that
1041 this macro matches
1042 
1043 =cut
1044 
1045  *		  ASCII		     EBCDIC I8
1046  * U+10FFFF: \xF4\x8F\xBF\xBF	\xF9\xA1\xBF\xBF\xBF	max legal Unicode
1047  * U+110000: \xF4\x90\x80\x80	\xF9\xA2\xA0\xA0\xA0
1048  * U+110001: \xF4\x90\x80\x81	\xF9\xA2\xA0\xA0\xA1
1049  */
1050 #define UTF_START_BYTE_110000_  UTF_START_BYTE(PERL_UNICODE_MAX + 1, 21)
1051 #define UTF_FIRST_CONT_BYTE_110000_                                         \
1052                           UTF_FIRST_CONT_BYTE(PERL_UNICODE_MAX + 1, 21)
1053 #define UTF8_IS_SUPER(s, e)                                                 \
1054     (   ((e) - (s)) >= UNISKIP_BY_MSB_(20)                                  \
1055      && (       NATIVE_UTF8_TO_I8(s[0]) >= UTF_START_BYTE_110000_           \
1056          && (   NATIVE_UTF8_TO_I8(s[0]) >  UTF_START_BYTE_110000_           \
1057              || NATIVE_UTF8_TO_I8(s[1]) >= UTF_FIRST_CONT_BYTE_110000_)))   \
1058      ? isUTF8_CHAR(s, e)                                                    \
1059      : 0
1060 
1061 /*
1062 =for apidoc Am|bool|UNICODE_IS_NONCHAR|const UV uv
1063 
1064 Returns a boolean as to whether or not C<uv> is one of the Unicode
1065 non-character code points
1066 
1067 =cut
1068 */
1069 
1070 /* Is 'uv' one of the 32 contiguous-range noncharacters? */
1071 #define UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)                               \
1072                                     UNLIKELY(inRANGE(uv, 0xFDD0, 0xFDEF))
1073 
1074 /* Is 'uv' one of the 34 plane-ending noncharacters 0xFFFE, 0xFFFF, 0x1FFFE,
1075  * 0x1FFFF, ... 0x10FFFE, 0x10FFFF, given that we know that 'uv' is not above
1076  * the Unicode legal max */
1077 #define UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)                    \
1078                                   UNLIKELY(((UV) (uv) & 0xFFFE) == 0xFFFE)
1079 
1080 #define UNICODE_IS_NONCHAR(uv)                                              \
1081     (       UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))                 \
1082      || (   UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))      \
1083          && LIKELY(! UNICODE_IS_SUPER(uv))))
1084 
1085 /*
1086 =for apidoc Am|bool|UTF8_IS_NONCHAR|const U8 *s|const U8 *e
1087 
1088 Evaluates to non-zero if the first few bytes of the string starting at C<s> and
1089 looking no further than S<C<e - 1>> are well-formed UTF-8 that represents one
1090 of the Unicode non-character code points; otherwise it evaluates to 0.  If
1091 non-zero, the value gives how many bytes starting at C<s> comprise the code
1092 point's representation.
1093 
1094 =cut
1095 */
1096 #define UTF8_IS_NONCHAR(s, e)  is_NONCHAR_utf8_safe(s,e)
1097 
1098 /* This is now machine generated, and the 'given' clause is no longer
1099  * applicable */
1100 #define UTF8_IS_NONCHAR_GIVEN_THAT_NON_SUPER_AND_GE_PROBLEMATIC(s, e)       \
1101                                                 UTF8_IS_NONCHAR(s, e)
1102 
1103 /* Surrogates, non-character code points and above-Unicode code points are
1104  * problematic in some contexts.  These macros allow code that needs to check
1105  * for those to quickly exclude the vast majority of code points it will
1106  * encounter.
1107  *
1108  * The lowest such code point is the smallest surrogate, U+D800.  We calculate
1109  * the start byte of that.  0xD800 occupies 16 bits. */
1110 #define isUNICODE_POSSIBLY_PROBLEMATIC(uv) ((uv) >= UNICODE_SURROGATE_FIRST)
1111 #define isUTF8_POSSIBLY_PROBLEMATIC(c)                                      \
1112     (NATIVE_UTF8_TO_I8(c) >= UTF_START_BYTE(UNICODE_SURROGATE_FIRST, 16))
1113 
1114 /* Perl extends Unicode so that it is possible to encode (as extended UTF-8 or
1115  * UTF-EBCDIC) any 64-bit value.  No standard known to khw ever encoded higher
1116  * than a 31 bit value.  On ASCII platforms this just meant arbitrarily saying
1117  * nothing could be higher than this.  On these the start byte FD gets you to
1118  * 31 bits, and FE and FF are forbidden as start bytes.  On EBCDIC platforms,
1119  * FD gets you only to 26 bits; adding FE to mean 7 total bytes gets you to 30
1120  * bits.  To get to 31 bits, they treated an initial FF byte idiosyncratically.
1121  * It was considered to be the start byte FE meaning it had 7 total bytes, and
1122  * the final 1 was treated as an information bit, getting you to 31 bits.
1123  *
1124  * Perl used to accept this idiosyncratic interpretation of FF, but now rejects
1125  * it in order to get to being able to encode 64 bits.  The bottom line is that
1126  * it is a Perl extension to use the start bytes FE and FF on ASCII platforms,
1127  * and the start byte FF on EBCDIC ones.  That translates into that it is a
1128  * Perl extension to represent anything occupying more than 31 bits on ASCII
1129  * platforms; 30 bits on EBCDIC. */
1130 #define UNICODE_IS_PERL_EXTENDED(uv)                                        \
1131           UNLIKELY((UV) (uv) > nBIT_UMAX(31 - ONE_IF_EBCDIC_ZERO_IF_NOT))
1132 #define UTF8_IS_PERL_EXTENDED(s)                                            \
1133                            (UTF8SKIP(s) > 6 + ONE_IF_EBCDIC_ZERO_IF_NOT)
1134 
1135 /* Largest code point we accept from external sources */
1136 #define MAX_LEGAL_CP  ((UV)IV_MAX)
1137 
1138 #define UTF8_ALLOW_EMPTY		0x0001	/* Allow a zero length string */
1139 #define UTF8_GOT_EMPTY                  UTF8_ALLOW_EMPTY
1140 
1141 /* Allow first byte to be a continuation byte */
1142 #define UTF8_ALLOW_CONTINUATION		0x0002
1143 #define UTF8_GOT_CONTINUATION		UTF8_ALLOW_CONTINUATION
1144 
1145 /* Unexpected non-continuation byte */
1146 #define UTF8_ALLOW_NON_CONTINUATION	0x0004
1147 #define UTF8_GOT_NON_CONTINUATION	UTF8_ALLOW_NON_CONTINUATION
1148 
1149 /* expecting more bytes than were available in the string */
1150 #define UTF8_ALLOW_SHORT		0x0008
1151 #define UTF8_GOT_SHORT		        UTF8_ALLOW_SHORT
1152 
1153 /* Overlong sequence; i.e., the code point can be specified in fewer bytes.
1154  * First one will convert the overlong to the REPLACEMENT CHARACTER; second
1155  * will return what the overlong evaluates to */
1156 #define UTF8_ALLOW_LONG                 0x0010
1157 #define UTF8_ALLOW_LONG_AND_ITS_VALUE   (UTF8_ALLOW_LONG|0x0020)
1158 #define UTF8_GOT_LONG                   UTF8_ALLOW_LONG
1159 
1160 #define UTF8_ALLOW_OVERFLOW             0x0080
1161 #define UTF8_GOT_OVERFLOW               UTF8_ALLOW_OVERFLOW
1162 
1163 #define UTF8_DISALLOW_SURROGATE		0x0100	/* Unicode surrogates */
1164 #define UTF8_GOT_SURROGATE		UTF8_DISALLOW_SURROGATE
1165 #define UTF8_WARN_SURROGATE		0x0200
1166 
1167 /* Unicode non-character  code points */
1168 #define UTF8_DISALLOW_NONCHAR           0x0400
1169 #define UTF8_GOT_NONCHAR                UTF8_DISALLOW_NONCHAR
1170 #define UTF8_WARN_NONCHAR               0x0800
1171 
1172 /* Super-set of Unicode: code points above the legal max */
1173 #define UTF8_DISALLOW_SUPER		0x1000
1174 #define UTF8_GOT_SUPER		        UTF8_DISALLOW_SUPER
1175 #define UTF8_WARN_SUPER		        0x2000
1176 
1177 /* The original UTF-8 standard did not define UTF-8 with start bytes of 0xFE or
1178  * 0xFF, though UTF-EBCDIC did.  This allowed both versions to represent code
1179  * points up to 2 ** 31 - 1.  Perl extends UTF-8 so that 0xFE and 0xFF are
1180  * usable on ASCII platforms, and 0xFF means something different than
1181  * UTF-EBCDIC defines.  These changes allow code points of 64 bits (actually
1182  * somewhat more) to be represented on both platforms.  But these are Perl
1183  * extensions, and not likely to be interchangeable with other languages.  Note
1184  * that on ASCII platforms, FE overflows a signed 32-bit word, and FF an
1185  * unsigned one. */
1186 #define UTF8_DISALLOW_PERL_EXTENDED     0x4000
1187 #define UTF8_GOT_PERL_EXTENDED          UTF8_DISALLOW_PERL_EXTENDED
1188 #define UTF8_WARN_PERL_EXTENDED         0x8000
1189 
1190 /* For back compat, these old names are misleading for overlongs and
1191  * UTF_EBCDIC. */
1192 #define UTF8_DISALLOW_ABOVE_31_BIT      UTF8_DISALLOW_PERL_EXTENDED
1193 #define UTF8_GOT_ABOVE_31_BIT           UTF8_GOT_PERL_EXTENDED
1194 #define UTF8_WARN_ABOVE_31_BIT          UTF8_WARN_PERL_EXTENDED
1195 #define UTF8_DISALLOW_FE_FF             UTF8_DISALLOW_PERL_EXTENDED
1196 #define UTF8_WARN_FE_FF                 UTF8_WARN_PERL_EXTENDED
1197 
1198 #define UTF8_CHECK_ONLY			0x10000
1199 #define _UTF8_NO_CONFIDENCE_IN_CURLEN   0x20000  /* Internal core use only */
1200 
1201 /* For backwards source compatibility.  They do nothing, as the default now
1202  * includes what they used to mean.  The first one's meaning was to allow the
1203  * just the single non-character 0xFFFF */
1204 #define UTF8_ALLOW_FFFF 0
1205 #define UTF8_ALLOW_FE_FF 0
1206 #define UTF8_ALLOW_SURROGATE 0
1207 
1208 /* C9 refers to Unicode Corrigendum #9: allows but discourages non-chars */
1209 #define UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE                                    \
1210                                  (UTF8_DISALLOW_SUPER|UTF8_DISALLOW_SURROGATE)
1211 #define UTF8_WARN_ILLEGAL_C9_INTERCHANGE (UTF8_WARN_SUPER|UTF8_WARN_SURROGATE)
1212 
1213 #define UTF8_DISALLOW_ILLEGAL_INTERCHANGE                                       \
1214                   (UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE|UTF8_DISALLOW_NONCHAR)
1215 #define UTF8_WARN_ILLEGAL_INTERCHANGE \
1216                           (UTF8_WARN_ILLEGAL_C9_INTERCHANGE|UTF8_WARN_NONCHAR)
1217 
1218 /* This is typically used for code that processes UTF-8 input and doesn't want
1219  * to have to deal with any malformations that might be present.  All such will
1220  * be safely replaced by the REPLACEMENT CHARACTER, unless other flags
1221  * overriding this are also present. */
1222 #define UTF8_ALLOW_ANY ( UTF8_ALLOW_CONTINUATION                                \
1223                         |UTF8_ALLOW_NON_CONTINUATION                            \
1224                         |UTF8_ALLOW_SHORT                                       \
1225                         |UTF8_ALLOW_LONG                                        \
1226                         |UTF8_ALLOW_OVERFLOW)
1227 
1228 /* Accept any Perl-extended UTF-8 that evaluates to any UV on the platform, but
1229  * not any malformed.  This is the default. */
1230 #define UTF8_ALLOW_ANYUV   0
1231 #define UTF8_ALLOW_DEFAULT UTF8_ALLOW_ANYUV
1232 
1233 #define UNICODE_WARN_SURROGATE         0x0001	/* UTF-16 surrogates */
1234 #define UNICODE_WARN_NONCHAR           0x0002	/* Non-char code points */
1235 #define UNICODE_WARN_SUPER             0x0004	/* Above 0x10FFFF */
1236 #define UNICODE_WARN_PERL_EXTENDED     0x0008	/* Above 0x7FFF_FFFF */
1237 #define UNICODE_WARN_ABOVE_31_BIT      UNICODE_WARN_PERL_EXTENDED
1238 #define UNICODE_DISALLOW_SURROGATE     0x0010
1239 #define UNICODE_DISALLOW_NONCHAR       0x0020
1240 #define UNICODE_DISALLOW_SUPER         0x0040
1241 #define UNICODE_DISALLOW_PERL_EXTENDED 0x0080
1242 
1243 #ifdef PERL_CORE
1244 #  define UNICODE_ALLOW_ABOVE_IV_MAX   0x0100
1245 #endif
1246 #define UNICODE_DISALLOW_ABOVE_31_BIT  UNICODE_DISALLOW_PERL_EXTENDED
1247 
1248 #define UNICODE_GOT_SURROGATE       UNICODE_DISALLOW_SURROGATE
1249 #define UNICODE_GOT_NONCHAR         UNICODE_DISALLOW_NONCHAR
1250 #define UNICODE_GOT_SUPER           UNICODE_DISALLOW_SUPER
1251 #define UNICODE_GOT_PERL_EXTENDED   UNICODE_DISALLOW_PERL_EXTENDED
1252 
1253 #define UNICODE_WARN_ILLEGAL_C9_INTERCHANGE                                   \
1254                                   (UNICODE_WARN_SURROGATE|UNICODE_WARN_SUPER)
1255 #define UNICODE_WARN_ILLEGAL_INTERCHANGE                                      \
1256                    (UNICODE_WARN_ILLEGAL_C9_INTERCHANGE|UNICODE_WARN_NONCHAR)
1257 #define UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE                               \
1258                           (UNICODE_DISALLOW_SURROGATE|UNICODE_DISALLOW_SUPER)
1259 #define UNICODE_DISALLOW_ILLEGAL_INTERCHANGE                                  \
1260            (UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE|UNICODE_DISALLOW_NONCHAR)
1261 
1262 /* For backward source compatibility, as are now the default */
1263 #define UNICODE_ALLOW_SURROGATE 0
1264 #define UNICODE_ALLOW_SUPER	0
1265 #define UNICODE_ALLOW_ANY	0
1266 
1267 #define UNICODE_BYTE_ORDER_MARK		0xFEFF
1268 #define UNICODE_IS_BYTE_ORDER_MARK(uv)	UNLIKELY((UV) (uv)                  \
1269                                                 == UNICODE_BYTE_ORDER_MARK)
1270 
1271 #define LATIN_SMALL_LETTER_SHARP_S      LATIN_SMALL_LETTER_SHARP_S_NATIVE
1272 #define LATIN_SMALL_LETTER_Y_WITH_DIAERESIS                                  \
1273                                 LATIN_SMALL_LETTER_Y_WITH_DIAERESIS_NATIVE
1274 #define MICRO_SIGN      MICRO_SIGN_NATIVE
1275 #define LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE                               \
1276                             LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE_NATIVE
1277 #define LATIN_SMALL_LETTER_A_WITH_RING_ABOVE                                 \
1278                                 LATIN_SMALL_LETTER_A_WITH_RING_ABOVE_NATIVE
1279 #define UNICODE_GREEK_CAPITAL_LETTER_SIGMA	0x03A3
1280 #define UNICODE_GREEK_SMALL_LETTER_FINAL_SIGMA	0x03C2
1281 #define UNICODE_GREEK_SMALL_LETTER_SIGMA	0x03C3
1282 #define GREEK_SMALL_LETTER_MU                   0x03BC
1283 #define GREEK_CAPITAL_LETTER_MU                 0x039C	/* Upper and title case
1284                                                            of MICRON */
1285 #define LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS   0x0178	/* Also is title case */
1286 #ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
1287 #   define LATIN_CAPITAL_LETTER_SHARP_S	        0x1E9E
1288 #endif
1289 #define LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE   0x130
1290 #define LATIN_SMALL_LETTER_DOTLESS_I            0x131
1291 #define LATIN_SMALL_LETTER_LONG_S               0x017F
1292 #define LATIN_SMALL_LIGATURE_LONG_S_T           0xFB05
1293 #define LATIN_SMALL_LIGATURE_ST                 0xFB06
1294 #define KELVIN_SIGN                             0x212A
1295 #define ANGSTROM_SIGN                           0x212B
1296 
1297 #define UNI_DISPLAY_ISPRINT	0x0001
1298 #define UNI_DISPLAY_BACKSLASH	0x0002
1299 #define UNI_DISPLAY_BACKSPACE	0x0004  /* Allow \b when also
1300                                            UNI_DISPLAY_BACKSLASH */
1301 #define UNI_DISPLAY_QQ		(UNI_DISPLAY_ISPRINT                \
1302                                 |UNI_DISPLAY_BACKSLASH              \
1303                                 |UNI_DISPLAY_BACKSPACE)
1304 
1305 /* Character classes could also allow \b, but not patterns in general */
1306 #define UNI_DISPLAY_REGEX	(UNI_DISPLAY_ISPRINT|UNI_DISPLAY_BACKSLASH)
1307 
1308 /* Should be removed; maybe deprecated, but not used in CPAN */
1309 #define SHARP_S_SKIP 2
1310 
1311 #define is_utf8_char_buf(buf, buf_end) isUTF8_CHAR(buf, buf_end)
1312 #define bytes_from_utf8(s, lenp, is_utf8p)                                  \
1313                             bytes_from_utf8_loc(s, lenp, is_utf8p, 0)
1314 
1315 /* Do not use; should be deprecated.  Use isUTF8_CHAR() instead; this is
1316  * retained solely for backwards compatibility */
1317 #define IS_UTF8_CHAR(p, n)      (isUTF8_CHAR(p, (p) + (n)) == n)
1318 
1319 #endif /* PERL_UTF8_H_ */
1320 
1321 /*
1322  * ex: set ts=8 sts=4 sw=4 et:
1323  */
1324