1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8 /*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53
54 #include "internal.h"
55
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 enum rw_hint hint, struct writeback_control *wbc);
59
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
touch_buffer(struct buffer_head * bh)62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 trace_block_touch_buffer(bh);
65 folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68
__lock_buffer(struct buffer_head * bh)69 void __lock_buffer(struct buffer_head *bh)
70 {
71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74
unlock_buffer(struct buffer_head * bh)75 void unlock_buffer(struct buffer_head *bh)
76 {
77 clear_bit_unlock(BH_Lock, &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82
83 /*
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
87 */
buffer_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)88 void buffer_check_dirty_writeback(struct folio *folio,
89 bool *dirty, bool *writeback)
90 {
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
95 BUG_ON(!folio_test_locked(folio));
96
97 head = folio_buffers(folio);
98 if (!head)
99 return;
100
101 if (folio_test_writeback(folio))
102 *writeback = true;
103
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114 }
115
116 /*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
__wait_on_buffer(struct buffer_head * bh)121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
buffer_io_error(struct buffer_head * bh,char * msg)127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
142 */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
152 }
153
154 /*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
156 * unlock the buffer.
157 */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 __end_buffer_read_notouch(bh, uptodate);
161 put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
end_buffer_write_sync(struct buffer_head * bh,int uptodate)165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
170 buffer_io_error(bh, ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
183 * i_private_lock.
184 *
185 * Hack idea: for the blockdev mapping, i_private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take i_private_lock.
188 */
189 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 struct address_space *bd_mapping = bdev->bd_mapping;
193 const int blkbits = bd_mapping->host->i_blkbits;
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
198 struct folio *folio;
199 int all_mapped = 1;
200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202 index = ((loff_t)block << blkbits) / PAGE_SIZE;
203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 if (IS_ERR(folio))
205 goto out;
206
207 spin_lock(&bd_mapping->i_private_lock);
208 head = folio_buffers(folio);
209 if (!head)
210 goto out_unlock;
211 bh = head;
212 do {
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
219 }
220 bh = bh->b_this_page;
221 } while (bh != head);
222
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
227 */
228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
236 1 << blkbits);
237 }
238 out_unlock:
239 spin_unlock(&bd_mapping->i_private_lock);
240 folio_put(folio);
241 out:
242 return ret;
243 }
244
end_buffer_async_read(struct buffer_head * bh,int uptodate)245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 unsigned long flags;
248 struct buffer_head *first;
249 struct buffer_head *tmp;
250 struct folio *folio;
251 int folio_uptodate = 1;
252
253 BUG_ON(!buffer_async_read(bh));
254
255 folio = bh->b_folio;
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
260 buffer_io_error(bh, ", async page read");
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = folio_buffers(folio);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 folio_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 folio_end_read(folio, folio_uptodate);
285 return;
286
287 still_busy:
288 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
289 return;
290 }
291
292 struct postprocess_bh_ctx {
293 struct work_struct work;
294 struct buffer_head *bh;
295 };
296
verify_bh(struct work_struct * work)297 static void verify_bh(struct work_struct *work)
298 {
299 struct postprocess_bh_ctx *ctx =
300 container_of(work, struct postprocess_bh_ctx, work);
301 struct buffer_head *bh = ctx->bh;
302 bool valid;
303
304 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
305 end_buffer_async_read(bh, valid);
306 kfree(ctx);
307 }
308
need_fsverity(struct buffer_head * bh)309 static bool need_fsverity(struct buffer_head *bh)
310 {
311 struct folio *folio = bh->b_folio;
312 struct inode *inode = folio->mapping->host;
313
314 return fsverity_active(inode) &&
315 /* needed by ext4 */
316 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
317 }
318
decrypt_bh(struct work_struct * work)319 static void decrypt_bh(struct work_struct *work)
320 {
321 struct postprocess_bh_ctx *ctx =
322 container_of(work, struct postprocess_bh_ctx, work);
323 struct buffer_head *bh = ctx->bh;
324 int err;
325
326 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
327 bh_offset(bh));
328 if (err == 0 && need_fsverity(bh)) {
329 /*
330 * We use different work queues for decryption and for verity
331 * because verity may require reading metadata pages that need
332 * decryption, and we shouldn't recurse to the same workqueue.
333 */
334 INIT_WORK(&ctx->work, verify_bh);
335 fsverity_enqueue_verify_work(&ctx->work);
336 return;
337 }
338 end_buffer_async_read(bh, err == 0);
339 kfree(ctx);
340 }
341
342 /*
343 * I/O completion handler for block_read_full_folio() - pages
344 * which come unlocked at the end of I/O.
345 */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
347 {
348 struct inode *inode = bh->b_folio->mapping->host;
349 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
350 bool verify = need_fsverity(bh);
351
352 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
353 if (uptodate && (decrypt || verify)) {
354 struct postprocess_bh_ctx *ctx =
355 kmalloc(sizeof(*ctx), GFP_ATOMIC);
356
357 if (ctx) {
358 ctx->bh = bh;
359 if (decrypt) {
360 INIT_WORK(&ctx->work, decrypt_bh);
361 fscrypt_enqueue_decrypt_work(&ctx->work);
362 } else {
363 INIT_WORK(&ctx->work, verify_bh);
364 fsverity_enqueue_verify_work(&ctx->work);
365 }
366 return;
367 }
368 uptodate = 0;
369 }
370 end_buffer_async_read(bh, uptodate);
371 }
372
373 /*
374 * Completion handler for block_write_full_folio() - folios which are unlocked
375 * during I/O, and which have the writeback flag cleared upon I/O completion.
376 */
end_buffer_async_write(struct buffer_head * bh,int uptodate)377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
378 {
379 unsigned long flags;
380 struct buffer_head *first;
381 struct buffer_head *tmp;
382 struct folio *folio;
383
384 BUG_ON(!buffer_async_write(bh));
385
386 folio = bh->b_folio;
387 if (uptodate) {
388 set_buffer_uptodate(bh);
389 } else {
390 buffer_io_error(bh, ", lost async page write");
391 mark_buffer_write_io_error(bh);
392 clear_buffer_uptodate(bh);
393 }
394
395 first = folio_buffers(folio);
396 spin_lock_irqsave(&first->b_uptodate_lock, flags);
397
398 clear_buffer_async_write(bh);
399 unlock_buffer(bh);
400 tmp = bh->b_this_page;
401 while (tmp != bh) {
402 if (buffer_async_write(tmp)) {
403 BUG_ON(!buffer_locked(tmp));
404 goto still_busy;
405 }
406 tmp = tmp->b_this_page;
407 }
408 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
409 folio_end_writeback(folio);
410 return;
411
412 still_busy:
413 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
414 return;
415 }
416
417 /*
418 * If a page's buffers are under async readin (end_buffer_async_read
419 * completion) then there is a possibility that another thread of
420 * control could lock one of the buffers after it has completed
421 * but while some of the other buffers have not completed. This
422 * locked buffer would confuse end_buffer_async_read() into not unlocking
423 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
424 * that this buffer is not under async I/O.
425 *
426 * The page comes unlocked when it has no locked buffer_async buffers
427 * left.
428 *
429 * PageLocked prevents anyone starting new async I/O reads any of
430 * the buffers.
431 *
432 * PageWriteback is used to prevent simultaneous writeout of the same
433 * page.
434 *
435 * PageLocked prevents anyone from starting writeback of a page which is
436 * under read I/O (PageWriteback is only ever set against a locked page).
437 */
mark_buffer_async_read(struct buffer_head * bh)438 static void mark_buffer_async_read(struct buffer_head *bh)
439 {
440 bh->b_end_io = end_buffer_async_read_io;
441 set_buffer_async_read(bh);
442 }
443
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)444 static void mark_buffer_async_write_endio(struct buffer_head *bh,
445 bh_end_io_t *handler)
446 {
447 bh->b_end_io = handler;
448 set_buffer_async_write(bh);
449 }
450
mark_buffer_async_write(struct buffer_head * bh)451 void mark_buffer_async_write(struct buffer_head *bh)
452 {
453 mark_buffer_async_write_endio(bh, end_buffer_async_write);
454 }
455 EXPORT_SYMBOL(mark_buffer_async_write);
456
457
458 /*
459 * fs/buffer.c contains helper functions for buffer-backed address space's
460 * fsync functions. A common requirement for buffer-based filesystems is
461 * that certain data from the backing blockdev needs to be written out for
462 * a successful fsync(). For example, ext2 indirect blocks need to be
463 * written back and waited upon before fsync() returns.
464 *
465 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
466 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
467 * management of a list of dependent buffers at ->i_mapping->i_private_list.
468 *
469 * Locking is a little subtle: try_to_free_buffers() will remove buffers
470 * from their controlling inode's queue when they are being freed. But
471 * try_to_free_buffers() will be operating against the *blockdev* mapping
472 * at the time, not against the S_ISREG file which depends on those buffers.
473 * So the locking for i_private_list is via the i_private_lock in the address_space
474 * which backs the buffers. Which is different from the address_space
475 * against which the buffers are listed. So for a particular address_space,
476 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
477 * mapping->i_private_list will always be protected by the backing blockdev's
478 * ->i_private_lock.
479 *
480 * Which introduces a requirement: all buffers on an address_space's
481 * ->i_private_list must be from the same address_space: the blockdev's.
482 *
483 * address_spaces which do not place buffers at ->i_private_list via these
484 * utility functions are free to use i_private_lock and i_private_list for
485 * whatever they want. The only requirement is that list_empty(i_private_list)
486 * be true at clear_inode() time.
487 *
488 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
489 * filesystems should do that. invalidate_inode_buffers() should just go
490 * BUG_ON(!list_empty).
491 *
492 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
493 * take an address_space, not an inode. And it should be called
494 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
495 * queued up.
496 *
497 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
498 * list if it is already on a list. Because if the buffer is on a list,
499 * it *must* already be on the right one. If not, the filesystem is being
500 * silly. This will save a ton of locking. But first we have to ensure
501 * that buffers are taken *off* the old inode's list when they are freed
502 * (presumably in truncate). That requires careful auditing of all
503 * filesystems (do it inside bforget()). It could also be done by bringing
504 * b_inode back.
505 */
506
507 /*
508 * The buffer's backing address_space's i_private_lock must be held
509 */
__remove_assoc_queue(struct buffer_head * bh)510 static void __remove_assoc_queue(struct buffer_head *bh)
511 {
512 list_del_init(&bh->b_assoc_buffers);
513 WARN_ON(!bh->b_assoc_map);
514 bh->b_assoc_map = NULL;
515 }
516
inode_has_buffers(struct inode * inode)517 int inode_has_buffers(struct inode *inode)
518 {
519 return !list_empty(&inode->i_data.i_private_list);
520 }
521
522 /*
523 * osync is designed to support O_SYNC io. It waits synchronously for
524 * all already-submitted IO to complete, but does not queue any new
525 * writes to the disk.
526 *
527 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
528 * as you dirty the buffers, and then use osync_inode_buffers to wait for
529 * completion. Any other dirty buffers which are not yet queued for
530 * write will not be flushed to disk by the osync.
531 */
osync_buffers_list(spinlock_t * lock,struct list_head * list)532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
533 {
534 struct buffer_head *bh;
535 struct list_head *p;
536 int err = 0;
537
538 spin_lock(lock);
539 repeat:
540 list_for_each_prev(p, list) {
541 bh = BH_ENTRY(p);
542 if (buffer_locked(bh)) {
543 get_bh(bh);
544 spin_unlock(lock);
545 wait_on_buffer(bh);
546 if (!buffer_uptodate(bh))
547 err = -EIO;
548 brelse(bh);
549 spin_lock(lock);
550 goto repeat;
551 }
552 }
553 spin_unlock(lock);
554 return err;
555 }
556
557 /**
558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559 * @mapping: the mapping which wants those buffers written
560 *
561 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
562 * that I/O.
563 *
564 * Basically, this is a convenience function for fsync().
565 * @mapping is a file or directory which needs those buffers to be written for
566 * a successful fsync().
567 */
sync_mapping_buffers(struct address_space * mapping)568 int sync_mapping_buffers(struct address_space *mapping)
569 {
570 struct address_space *buffer_mapping = mapping->i_private_data;
571
572 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
573 return 0;
574
575 return fsync_buffers_list(&buffer_mapping->i_private_lock,
576 &mapping->i_private_list);
577 }
578 EXPORT_SYMBOL(sync_mapping_buffers);
579
580 /**
581 * generic_buffers_fsync_noflush - generic buffer fsync implementation
582 * for simple filesystems with no inode lock
583 *
584 * @file: file to synchronize
585 * @start: start offset in bytes
586 * @end: end offset in bytes (inclusive)
587 * @datasync: only synchronize essential metadata if true
588 *
589 * This is a generic implementation of the fsync method for simple
590 * filesystems which track all non-inode metadata in the buffers list
591 * hanging off the address_space structure.
592 */
generic_buffers_fsync_noflush(struct file * file,loff_t start,loff_t end,bool datasync)593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
594 bool datasync)
595 {
596 struct inode *inode = file->f_mapping->host;
597 int err;
598 int ret;
599
600 err = file_write_and_wait_range(file, start, end);
601 if (err)
602 return err;
603
604 ret = sync_mapping_buffers(inode->i_mapping);
605 if (!(inode->i_state & I_DIRTY_ALL))
606 goto out;
607 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
608 goto out;
609
610 err = sync_inode_metadata(inode, 1);
611 if (ret == 0)
612 ret = err;
613
614 out:
615 /* check and advance again to catch errors after syncing out buffers */
616 err = file_check_and_advance_wb_err(file);
617 if (ret == 0)
618 ret = err;
619 return ret;
620 }
621 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
622
623 /**
624 * generic_buffers_fsync - generic buffer fsync implementation
625 * for simple filesystems with no inode lock
626 *
627 * @file: file to synchronize
628 * @start: start offset in bytes
629 * @end: end offset in bytes (inclusive)
630 * @datasync: only synchronize essential metadata if true
631 *
632 * This is a generic implementation of the fsync method for simple
633 * filesystems which track all non-inode metadata in the buffers list
634 * hanging off the address_space structure. This also makes sure that
635 * a device cache flush operation is called at the end.
636 */
generic_buffers_fsync(struct file * file,loff_t start,loff_t end,bool datasync)637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
638 bool datasync)
639 {
640 struct inode *inode = file->f_mapping->host;
641 int ret;
642
643 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
644 if (!ret)
645 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
646 return ret;
647 }
648 EXPORT_SYMBOL(generic_buffers_fsync);
649
650 /*
651 * Called when we've recently written block `bblock', and it is known that
652 * `bblock' was for a buffer_boundary() buffer. This means that the block at
653 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
654 * dirty, schedule it for IO. So that indirects merge nicely with their data.
655 */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)656 void write_boundary_block(struct block_device *bdev,
657 sector_t bblock, unsigned blocksize)
658 {
659 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
660 if (bh) {
661 if (buffer_dirty(bh))
662 write_dirty_buffer(bh, 0);
663 put_bh(bh);
664 }
665 }
666
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
668 {
669 struct address_space *mapping = inode->i_mapping;
670 struct address_space *buffer_mapping = bh->b_folio->mapping;
671
672 mark_buffer_dirty(bh);
673 if (!mapping->i_private_data) {
674 mapping->i_private_data = buffer_mapping;
675 } else {
676 BUG_ON(mapping->i_private_data != buffer_mapping);
677 }
678 if (!bh->b_assoc_map) {
679 spin_lock(&buffer_mapping->i_private_lock);
680 list_move_tail(&bh->b_assoc_buffers,
681 &mapping->i_private_list);
682 bh->b_assoc_map = mapping;
683 spin_unlock(&buffer_mapping->i_private_lock);
684 }
685 }
686 EXPORT_SYMBOL(mark_buffer_dirty_inode);
687
688 /**
689 * block_dirty_folio - Mark a folio as dirty.
690 * @mapping: The address space containing this folio.
691 * @folio: The folio to mark dirty.
692 *
693 * Filesystems which use buffer_heads can use this function as their
694 * ->dirty_folio implementation. Some filesystems need to do a little
695 * work before calling this function. Filesystems which do not use
696 * buffer_heads should call filemap_dirty_folio() instead.
697 *
698 * If the folio has buffers, the uptodate buffers are set dirty, to
699 * preserve dirty-state coherency between the folio and the buffers.
700 * Buffers added to a dirty folio are created dirty.
701 *
702 * The buffers are dirtied before the folio is dirtied. There's a small
703 * race window in which writeback may see the folio cleanness but not the
704 * buffer dirtiness. That's fine. If this code were to set the folio
705 * dirty before the buffers, writeback could clear the folio dirty flag,
706 * see a bunch of clean buffers and we'd end up with dirty buffers/clean
707 * folio on the dirty folio list.
708 *
709 * We use i_private_lock to lock against try_to_free_buffers() while
710 * using the folio's buffer list. This also prevents clean buffers
711 * being added to the folio after it was set dirty.
712 *
713 * Context: May only be called from process context. Does not sleep.
714 * Caller must ensure that @folio cannot be truncated during this call,
715 * typically by holding the folio lock or having a page in the folio
716 * mapped and holding the page table lock.
717 *
718 * Return: True if the folio was dirtied; false if it was already dirtied.
719 */
block_dirty_folio(struct address_space * mapping,struct folio * folio)720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
721 {
722 struct buffer_head *head;
723 bool newly_dirty;
724
725 spin_lock(&mapping->i_private_lock);
726 head = folio_buffers(folio);
727 if (head) {
728 struct buffer_head *bh = head;
729
730 do {
731 set_buffer_dirty(bh);
732 bh = bh->b_this_page;
733 } while (bh != head);
734 }
735 /*
736 * Lock out page's memcg migration to keep PageDirty
737 * synchronized with per-memcg dirty page counters.
738 */
739 folio_memcg_lock(folio);
740 newly_dirty = !folio_test_set_dirty(folio);
741 spin_unlock(&mapping->i_private_lock);
742
743 if (newly_dirty)
744 __folio_mark_dirty(folio, mapping, 1);
745
746 folio_memcg_unlock(folio);
747
748 if (newly_dirty)
749 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
750
751 return newly_dirty;
752 }
753 EXPORT_SYMBOL(block_dirty_folio);
754
755 /*
756 * Write out and wait upon a list of buffers.
757 *
758 * We have conflicting pressures: we want to make sure that all
759 * initially dirty buffers get waited on, but that any subsequently
760 * dirtied buffers don't. After all, we don't want fsync to last
761 * forever if somebody is actively writing to the file.
762 *
763 * Do this in two main stages: first we copy dirty buffers to a
764 * temporary inode list, queueing the writes as we go. Then we clean
765 * up, waiting for those writes to complete.
766 *
767 * During this second stage, any subsequent updates to the file may end
768 * up refiling the buffer on the original inode's dirty list again, so
769 * there is a chance we will end up with a buffer queued for write but
770 * not yet completed on that list. So, as a final cleanup we go through
771 * the osync code to catch these locked, dirty buffers without requeuing
772 * any newly dirty buffers for write.
773 */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)774 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
775 {
776 struct buffer_head *bh;
777 struct address_space *mapping;
778 int err = 0, err2;
779 struct blk_plug plug;
780 LIST_HEAD(tmp);
781
782 blk_start_plug(&plug);
783
784 spin_lock(lock);
785 while (!list_empty(list)) {
786 bh = BH_ENTRY(list->next);
787 mapping = bh->b_assoc_map;
788 __remove_assoc_queue(bh);
789 /* Avoid race with mark_buffer_dirty_inode() which does
790 * a lockless check and we rely on seeing the dirty bit */
791 smp_mb();
792 if (buffer_dirty(bh) || buffer_locked(bh)) {
793 list_add(&bh->b_assoc_buffers, &tmp);
794 bh->b_assoc_map = mapping;
795 if (buffer_dirty(bh)) {
796 get_bh(bh);
797 spin_unlock(lock);
798 /*
799 * Ensure any pending I/O completes so that
800 * write_dirty_buffer() actually writes the
801 * current contents - it is a noop if I/O is
802 * still in flight on potentially older
803 * contents.
804 */
805 write_dirty_buffer(bh, REQ_SYNC);
806
807 /*
808 * Kick off IO for the previous mapping. Note
809 * that we will not run the very last mapping,
810 * wait_on_buffer() will do that for us
811 * through sync_buffer().
812 */
813 brelse(bh);
814 spin_lock(lock);
815 }
816 }
817 }
818
819 spin_unlock(lock);
820 blk_finish_plug(&plug);
821 spin_lock(lock);
822
823 while (!list_empty(&tmp)) {
824 bh = BH_ENTRY(tmp.prev);
825 get_bh(bh);
826 mapping = bh->b_assoc_map;
827 __remove_assoc_queue(bh);
828 /* Avoid race with mark_buffer_dirty_inode() which does
829 * a lockless check and we rely on seeing the dirty bit */
830 smp_mb();
831 if (buffer_dirty(bh)) {
832 list_add(&bh->b_assoc_buffers,
833 &mapping->i_private_list);
834 bh->b_assoc_map = mapping;
835 }
836 spin_unlock(lock);
837 wait_on_buffer(bh);
838 if (!buffer_uptodate(bh))
839 err = -EIO;
840 brelse(bh);
841 spin_lock(lock);
842 }
843
844 spin_unlock(lock);
845 err2 = osync_buffers_list(lock, list);
846 if (err)
847 return err;
848 else
849 return err2;
850 }
851
852 /*
853 * Invalidate any and all dirty buffers on a given inode. We are
854 * probably unmounting the fs, but that doesn't mean we have already
855 * done a sync(). Just drop the buffers from the inode list.
856 *
857 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
858 * assumes that all the buffers are against the blockdev. Not true
859 * for reiserfs.
860 */
invalidate_inode_buffers(struct inode * inode)861 void invalidate_inode_buffers(struct inode *inode)
862 {
863 if (inode_has_buffers(inode)) {
864 struct address_space *mapping = &inode->i_data;
865 struct list_head *list = &mapping->i_private_list;
866 struct address_space *buffer_mapping = mapping->i_private_data;
867
868 spin_lock(&buffer_mapping->i_private_lock);
869 while (!list_empty(list))
870 __remove_assoc_queue(BH_ENTRY(list->next));
871 spin_unlock(&buffer_mapping->i_private_lock);
872 }
873 }
874 EXPORT_SYMBOL(invalidate_inode_buffers);
875
876 /*
877 * Remove any clean buffers from the inode's buffer list. This is called
878 * when we're trying to free the inode itself. Those buffers can pin it.
879 *
880 * Returns true if all buffers were removed.
881 */
remove_inode_buffers(struct inode * inode)882 int remove_inode_buffers(struct inode *inode)
883 {
884 int ret = 1;
885
886 if (inode_has_buffers(inode)) {
887 struct address_space *mapping = &inode->i_data;
888 struct list_head *list = &mapping->i_private_list;
889 struct address_space *buffer_mapping = mapping->i_private_data;
890
891 spin_lock(&buffer_mapping->i_private_lock);
892 while (!list_empty(list)) {
893 struct buffer_head *bh = BH_ENTRY(list->next);
894 if (buffer_dirty(bh)) {
895 ret = 0;
896 break;
897 }
898 __remove_assoc_queue(bh);
899 }
900 spin_unlock(&buffer_mapping->i_private_lock);
901 }
902 return ret;
903 }
904
905 /*
906 * Create the appropriate buffers when given a folio for data area and
907 * the size of each buffer.. Use the bh->b_this_page linked list to
908 * follow the buffers created. Return NULL if unable to create more
909 * buffers.
910 *
911 * The retry flag is used to differentiate async IO (paging, swapping)
912 * which may not fail from ordinary buffer allocations.
913 */
folio_alloc_buffers(struct folio * folio,unsigned long size,gfp_t gfp)914 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
915 gfp_t gfp)
916 {
917 struct buffer_head *bh, *head;
918 long offset;
919 struct mem_cgroup *memcg, *old_memcg;
920
921 /* The folio lock pins the memcg */
922 memcg = folio_memcg(folio);
923 old_memcg = set_active_memcg(memcg);
924
925 head = NULL;
926 offset = folio_size(folio);
927 while ((offset -= size) >= 0) {
928 bh = alloc_buffer_head(gfp);
929 if (!bh)
930 goto no_grow;
931
932 bh->b_this_page = head;
933 bh->b_blocknr = -1;
934 head = bh;
935
936 bh->b_size = size;
937
938 /* Link the buffer to its folio */
939 folio_set_bh(bh, folio, offset);
940 }
941 out:
942 set_active_memcg(old_memcg);
943 return head;
944 /*
945 * In case anything failed, we just free everything we got.
946 */
947 no_grow:
948 if (head) {
949 do {
950 bh = head;
951 head = head->b_this_page;
952 free_buffer_head(bh);
953 } while (head);
954 }
955
956 goto out;
957 }
958 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
959
alloc_page_buffers(struct page * page,unsigned long size)960 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
961 {
962 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
963
964 return folio_alloc_buffers(page_folio(page), size, gfp);
965 }
966 EXPORT_SYMBOL_GPL(alloc_page_buffers);
967
link_dev_buffers(struct folio * folio,struct buffer_head * head)968 static inline void link_dev_buffers(struct folio *folio,
969 struct buffer_head *head)
970 {
971 struct buffer_head *bh, *tail;
972
973 bh = head;
974 do {
975 tail = bh;
976 bh = bh->b_this_page;
977 } while (bh);
978 tail->b_this_page = head;
979 folio_attach_private(folio, head);
980 }
981
blkdev_max_block(struct block_device * bdev,unsigned int size)982 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
983 {
984 sector_t retval = ~((sector_t)0);
985 loff_t sz = bdev_nr_bytes(bdev);
986
987 if (sz) {
988 unsigned int sizebits = blksize_bits(size);
989 retval = (sz >> sizebits);
990 }
991 return retval;
992 }
993
994 /*
995 * Initialise the state of a blockdev folio's buffers.
996 */
folio_init_buffers(struct folio * folio,struct block_device * bdev,unsigned size)997 static sector_t folio_init_buffers(struct folio *folio,
998 struct block_device *bdev, unsigned size)
999 {
1000 struct buffer_head *head = folio_buffers(folio);
1001 struct buffer_head *bh = head;
1002 bool uptodate = folio_test_uptodate(folio);
1003 sector_t block = div_u64(folio_pos(folio), size);
1004 sector_t end_block = blkdev_max_block(bdev, size);
1005
1006 do {
1007 if (!buffer_mapped(bh)) {
1008 bh->b_end_io = NULL;
1009 bh->b_private = NULL;
1010 bh->b_bdev = bdev;
1011 bh->b_blocknr = block;
1012 if (uptodate)
1013 set_buffer_uptodate(bh);
1014 if (block < end_block)
1015 set_buffer_mapped(bh);
1016 }
1017 block++;
1018 bh = bh->b_this_page;
1019 } while (bh != head);
1020
1021 /*
1022 * Caller needs to validate requested block against end of device.
1023 */
1024 return end_block;
1025 }
1026
1027 /*
1028 * Create the page-cache folio that contains the requested block.
1029 *
1030 * This is used purely for blockdev mappings.
1031 *
1032 * Returns false if we have a failure which cannot be cured by retrying
1033 * without sleeping. Returns true if we succeeded, or the caller should retry.
1034 */
grow_dev_folio(struct block_device * bdev,sector_t block,pgoff_t index,unsigned size,gfp_t gfp)1035 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1036 pgoff_t index, unsigned size, gfp_t gfp)
1037 {
1038 struct address_space *mapping = bdev->bd_mapping;
1039 struct folio *folio;
1040 struct buffer_head *bh;
1041 sector_t end_block = 0;
1042
1043 folio = __filemap_get_folio(mapping, index,
1044 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1045 if (IS_ERR(folio))
1046 return false;
1047
1048 bh = folio_buffers(folio);
1049 if (bh) {
1050 if (bh->b_size == size) {
1051 end_block = folio_init_buffers(folio, bdev, size);
1052 goto unlock;
1053 }
1054
1055 /*
1056 * Retrying may succeed; for example the folio may finish
1057 * writeback, or buffers may be cleaned. This should not
1058 * happen very often; maybe we have old buffers attached to
1059 * this blockdev's page cache and we're trying to change
1060 * the block size?
1061 */
1062 if (!try_to_free_buffers(folio)) {
1063 end_block = ~0ULL;
1064 goto unlock;
1065 }
1066 }
1067
1068 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1069 if (!bh)
1070 goto unlock;
1071
1072 /*
1073 * Link the folio to the buffers and initialise them. Take the
1074 * lock to be atomic wrt __find_get_block(), which does not
1075 * run under the folio lock.
1076 */
1077 spin_lock(&mapping->i_private_lock);
1078 link_dev_buffers(folio, bh);
1079 end_block = folio_init_buffers(folio, bdev, size);
1080 spin_unlock(&mapping->i_private_lock);
1081 unlock:
1082 folio_unlock(folio);
1083 folio_put(folio);
1084 return block < end_block;
1085 }
1086
1087 /*
1088 * Create buffers for the specified block device block's folio. If
1089 * that folio was dirty, the buffers are set dirty also. Returns false
1090 * if we've hit a permanent error.
1091 */
grow_buffers(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1092 static bool grow_buffers(struct block_device *bdev, sector_t block,
1093 unsigned size, gfp_t gfp)
1094 {
1095 loff_t pos;
1096
1097 /*
1098 * Check for a block which lies outside our maximum possible
1099 * pagecache index.
1100 */
1101 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1102 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1103 __func__, (unsigned long long)block,
1104 bdev);
1105 return false;
1106 }
1107
1108 /* Create a folio with the proper size buffers */
1109 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1110 }
1111
1112 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1113 __getblk_slow(struct block_device *bdev, sector_t block,
1114 unsigned size, gfp_t gfp)
1115 {
1116 /* Size must be multiple of hard sectorsize */
1117 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1118 (size < 512 || size > PAGE_SIZE))) {
1119 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1120 size);
1121 printk(KERN_ERR "logical block size: %d\n",
1122 bdev_logical_block_size(bdev));
1123
1124 dump_stack();
1125 return NULL;
1126 }
1127
1128 for (;;) {
1129 struct buffer_head *bh;
1130
1131 bh = __find_get_block(bdev, block, size);
1132 if (bh)
1133 return bh;
1134
1135 if (!grow_buffers(bdev, block, size, gfp))
1136 return NULL;
1137 }
1138 }
1139
1140 /*
1141 * The relationship between dirty buffers and dirty pages:
1142 *
1143 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1144 * the page is tagged dirty in the page cache.
1145 *
1146 * At all times, the dirtiness of the buffers represents the dirtiness of
1147 * subsections of the page. If the page has buffers, the page dirty bit is
1148 * merely a hint about the true dirty state.
1149 *
1150 * When a page is set dirty in its entirety, all its buffers are marked dirty
1151 * (if the page has buffers).
1152 *
1153 * When a buffer is marked dirty, its page is dirtied, but the page's other
1154 * buffers are not.
1155 *
1156 * Also. When blockdev buffers are explicitly read with bread(), they
1157 * individually become uptodate. But their backing page remains not
1158 * uptodate - even if all of its buffers are uptodate. A subsequent
1159 * block_read_full_folio() against that folio will discover all the uptodate
1160 * buffers, will set the folio uptodate and will perform no I/O.
1161 */
1162
1163 /**
1164 * mark_buffer_dirty - mark a buffer_head as needing writeout
1165 * @bh: the buffer_head to mark dirty
1166 *
1167 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1168 * its backing page dirty, then tag the page as dirty in the page cache
1169 * and then attach the address_space's inode to its superblock's dirty
1170 * inode list.
1171 *
1172 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
1173 * i_pages lock and mapping->host->i_lock.
1174 */
mark_buffer_dirty(struct buffer_head * bh)1175 void mark_buffer_dirty(struct buffer_head *bh)
1176 {
1177 WARN_ON_ONCE(!buffer_uptodate(bh));
1178
1179 trace_block_dirty_buffer(bh);
1180
1181 /*
1182 * Very *carefully* optimize the it-is-already-dirty case.
1183 *
1184 * Don't let the final "is it dirty" escape to before we
1185 * perhaps modified the buffer.
1186 */
1187 if (buffer_dirty(bh)) {
1188 smp_mb();
1189 if (buffer_dirty(bh))
1190 return;
1191 }
1192
1193 if (!test_set_buffer_dirty(bh)) {
1194 struct folio *folio = bh->b_folio;
1195 struct address_space *mapping = NULL;
1196
1197 folio_memcg_lock(folio);
1198 if (!folio_test_set_dirty(folio)) {
1199 mapping = folio->mapping;
1200 if (mapping)
1201 __folio_mark_dirty(folio, mapping, 0);
1202 }
1203 folio_memcg_unlock(folio);
1204 if (mapping)
1205 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1206 }
1207 }
1208 EXPORT_SYMBOL(mark_buffer_dirty);
1209
mark_buffer_write_io_error(struct buffer_head * bh)1210 void mark_buffer_write_io_error(struct buffer_head *bh)
1211 {
1212 set_buffer_write_io_error(bh);
1213 /* FIXME: do we need to set this in both places? */
1214 if (bh->b_folio && bh->b_folio->mapping)
1215 mapping_set_error(bh->b_folio->mapping, -EIO);
1216 if (bh->b_assoc_map) {
1217 mapping_set_error(bh->b_assoc_map, -EIO);
1218 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1219 }
1220 }
1221 EXPORT_SYMBOL(mark_buffer_write_io_error);
1222
1223 /**
1224 * __brelse - Release a buffer.
1225 * @bh: The buffer to release.
1226 *
1227 * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1228 */
__brelse(struct buffer_head * bh)1229 void __brelse(struct buffer_head *bh)
1230 {
1231 if (atomic_read(&bh->b_count)) {
1232 put_bh(bh);
1233 return;
1234 }
1235 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1236 }
1237 EXPORT_SYMBOL(__brelse);
1238
1239 /**
1240 * __bforget - Discard any dirty data in a buffer.
1241 * @bh: The buffer to forget.
1242 *
1243 * This variant of bforget() can be called if @bh is guaranteed to not
1244 * be NULL.
1245 */
__bforget(struct buffer_head * bh)1246 void __bforget(struct buffer_head *bh)
1247 {
1248 clear_buffer_dirty(bh);
1249 if (bh->b_assoc_map) {
1250 struct address_space *buffer_mapping = bh->b_folio->mapping;
1251
1252 spin_lock(&buffer_mapping->i_private_lock);
1253 list_del_init(&bh->b_assoc_buffers);
1254 bh->b_assoc_map = NULL;
1255 spin_unlock(&buffer_mapping->i_private_lock);
1256 }
1257 __brelse(bh);
1258 }
1259 EXPORT_SYMBOL(__bforget);
1260
__bread_slow(struct buffer_head * bh)1261 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1262 {
1263 lock_buffer(bh);
1264 if (buffer_uptodate(bh)) {
1265 unlock_buffer(bh);
1266 return bh;
1267 } else {
1268 get_bh(bh);
1269 bh->b_end_io = end_buffer_read_sync;
1270 submit_bh(REQ_OP_READ, bh);
1271 wait_on_buffer(bh);
1272 if (buffer_uptodate(bh))
1273 return bh;
1274 }
1275 brelse(bh);
1276 return NULL;
1277 }
1278
1279 /*
1280 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1281 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1282 * refcount elevated by one when they're in an LRU. A buffer can only appear
1283 * once in a particular CPU's LRU. A single buffer can be present in multiple
1284 * CPU's LRUs at the same time.
1285 *
1286 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1287 * sb_find_get_block().
1288 *
1289 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1290 * a local interrupt disable for that.
1291 */
1292
1293 #define BH_LRU_SIZE 16
1294
1295 struct bh_lru {
1296 struct buffer_head *bhs[BH_LRU_SIZE];
1297 };
1298
1299 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1300
1301 #ifdef CONFIG_SMP
1302 #define bh_lru_lock() local_irq_disable()
1303 #define bh_lru_unlock() local_irq_enable()
1304 #else
1305 #define bh_lru_lock() preempt_disable()
1306 #define bh_lru_unlock() preempt_enable()
1307 #endif
1308
check_irqs_on(void)1309 static inline void check_irqs_on(void)
1310 {
1311 #ifdef irqs_disabled
1312 BUG_ON(irqs_disabled());
1313 #endif
1314 }
1315
1316 /*
1317 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1318 * inserted at the front, and the buffer_head at the back if any is evicted.
1319 * Or, if already in the LRU it is moved to the front.
1320 */
bh_lru_install(struct buffer_head * bh)1321 static void bh_lru_install(struct buffer_head *bh)
1322 {
1323 struct buffer_head *evictee = bh;
1324 struct bh_lru *b;
1325 int i;
1326
1327 check_irqs_on();
1328 bh_lru_lock();
1329
1330 /*
1331 * the refcount of buffer_head in bh_lru prevents dropping the
1332 * attached page(i.e., try_to_free_buffers) so it could cause
1333 * failing page migration.
1334 * Skip putting upcoming bh into bh_lru until migration is done.
1335 */
1336 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1337 bh_lru_unlock();
1338 return;
1339 }
1340
1341 b = this_cpu_ptr(&bh_lrus);
1342 for (i = 0; i < BH_LRU_SIZE; i++) {
1343 swap(evictee, b->bhs[i]);
1344 if (evictee == bh) {
1345 bh_lru_unlock();
1346 return;
1347 }
1348 }
1349
1350 get_bh(bh);
1351 bh_lru_unlock();
1352 brelse(evictee);
1353 }
1354
1355 /*
1356 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1357 */
1358 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1359 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1360 {
1361 struct buffer_head *ret = NULL;
1362 unsigned int i;
1363
1364 check_irqs_on();
1365 bh_lru_lock();
1366 if (cpu_is_isolated(smp_processor_id())) {
1367 bh_lru_unlock();
1368 return NULL;
1369 }
1370 for (i = 0; i < BH_LRU_SIZE; i++) {
1371 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1372
1373 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1374 bh->b_size == size) {
1375 if (i) {
1376 while (i) {
1377 __this_cpu_write(bh_lrus.bhs[i],
1378 __this_cpu_read(bh_lrus.bhs[i - 1]));
1379 i--;
1380 }
1381 __this_cpu_write(bh_lrus.bhs[0], bh);
1382 }
1383 get_bh(bh);
1384 ret = bh;
1385 break;
1386 }
1387 }
1388 bh_lru_unlock();
1389 return ret;
1390 }
1391
1392 /*
1393 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1394 * it in the LRU and mark it as accessed. If it is not present then return
1395 * NULL
1396 */
1397 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1398 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1399 {
1400 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1401
1402 if (bh == NULL) {
1403 /* __find_get_block_slow will mark the page accessed */
1404 bh = __find_get_block_slow(bdev, block);
1405 if (bh)
1406 bh_lru_install(bh);
1407 } else
1408 touch_buffer(bh);
1409
1410 return bh;
1411 }
1412 EXPORT_SYMBOL(__find_get_block);
1413
1414 /**
1415 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1416 * @bdev: The block device.
1417 * @block: The block number.
1418 * @size: The size of buffer_heads for this @bdev.
1419 * @gfp: The memory allocation flags to use.
1420 *
1421 * The returned buffer head has its reference count incremented, but is
1422 * not locked. The caller should call brelse() when it has finished
1423 * with the buffer. The buffer may not be uptodate. If needed, the
1424 * caller can bring it uptodate either by reading it or overwriting it.
1425 *
1426 * Return: The buffer head, or NULL if memory could not be allocated.
1427 */
bdev_getblk(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1428 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1429 unsigned size, gfp_t gfp)
1430 {
1431 struct buffer_head *bh = __find_get_block(bdev, block, size);
1432
1433 might_alloc(gfp);
1434 if (bh)
1435 return bh;
1436
1437 return __getblk_slow(bdev, block, size, gfp);
1438 }
1439 EXPORT_SYMBOL(bdev_getblk);
1440
1441 /*
1442 * Do async read-ahead on a buffer..
1443 */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1444 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1445 {
1446 struct buffer_head *bh = bdev_getblk(bdev, block, size,
1447 GFP_NOWAIT | __GFP_MOVABLE);
1448
1449 if (likely(bh)) {
1450 bh_readahead(bh, REQ_RAHEAD);
1451 brelse(bh);
1452 }
1453 }
1454 EXPORT_SYMBOL(__breadahead);
1455
1456 /**
1457 * __bread_gfp() - Read a block.
1458 * @bdev: The block device to read from.
1459 * @block: Block number in units of block size.
1460 * @size: The block size of this device in bytes.
1461 * @gfp: Not page allocation flags; see below.
1462 *
1463 * You are not expected to call this function. You should use one of
1464 * sb_bread(), sb_bread_unmovable() or __bread().
1465 *
1466 * Read a specified block, and return the buffer head that refers to it.
1467 * If @gfp is 0, the memory will be allocated using the block device's
1468 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
1469 * allocated from a movable area. Do not pass in a complete set of
1470 * GFP flags.
1471 *
1472 * The returned buffer head has its refcount increased. The caller should
1473 * call brelse() when it has finished with the buffer.
1474 *
1475 * Context: May sleep waiting for I/O.
1476 * Return: NULL if the block was unreadable.
1477 */
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1478 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1479 unsigned size, gfp_t gfp)
1480 {
1481 struct buffer_head *bh;
1482
1483 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1484
1485 /*
1486 * Prefer looping in the allocator rather than here, at least that
1487 * code knows what it's doing.
1488 */
1489 gfp |= __GFP_NOFAIL;
1490
1491 bh = bdev_getblk(bdev, block, size, gfp);
1492
1493 if (likely(bh) && !buffer_uptodate(bh))
1494 bh = __bread_slow(bh);
1495 return bh;
1496 }
1497 EXPORT_SYMBOL(__bread_gfp);
1498
__invalidate_bh_lrus(struct bh_lru * b)1499 static void __invalidate_bh_lrus(struct bh_lru *b)
1500 {
1501 int i;
1502
1503 for (i = 0; i < BH_LRU_SIZE; i++) {
1504 brelse(b->bhs[i]);
1505 b->bhs[i] = NULL;
1506 }
1507 }
1508 /*
1509 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1510 * This doesn't race because it runs in each cpu either in irq
1511 * or with preempt disabled.
1512 */
invalidate_bh_lru(void * arg)1513 static void invalidate_bh_lru(void *arg)
1514 {
1515 struct bh_lru *b = &get_cpu_var(bh_lrus);
1516
1517 __invalidate_bh_lrus(b);
1518 put_cpu_var(bh_lrus);
1519 }
1520
has_bh_in_lru(int cpu,void * dummy)1521 bool has_bh_in_lru(int cpu, void *dummy)
1522 {
1523 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1524 int i;
1525
1526 for (i = 0; i < BH_LRU_SIZE; i++) {
1527 if (b->bhs[i])
1528 return true;
1529 }
1530
1531 return false;
1532 }
1533
invalidate_bh_lrus(void)1534 void invalidate_bh_lrus(void)
1535 {
1536 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1537 }
1538 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1539
1540 /*
1541 * It's called from workqueue context so we need a bh_lru_lock to close
1542 * the race with preemption/irq.
1543 */
invalidate_bh_lrus_cpu(void)1544 void invalidate_bh_lrus_cpu(void)
1545 {
1546 struct bh_lru *b;
1547
1548 bh_lru_lock();
1549 b = this_cpu_ptr(&bh_lrus);
1550 __invalidate_bh_lrus(b);
1551 bh_lru_unlock();
1552 }
1553
folio_set_bh(struct buffer_head * bh,struct folio * folio,unsigned long offset)1554 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1555 unsigned long offset)
1556 {
1557 bh->b_folio = folio;
1558 BUG_ON(offset >= folio_size(folio));
1559 if (folio_test_highmem(folio))
1560 /*
1561 * This catches illegal uses and preserves the offset:
1562 */
1563 bh->b_data = (char *)(0 + offset);
1564 else
1565 bh->b_data = folio_address(folio) + offset;
1566 }
1567 EXPORT_SYMBOL(folio_set_bh);
1568
1569 /*
1570 * Called when truncating a buffer on a page completely.
1571 */
1572
1573 /* Bits that are cleared during an invalidate */
1574 #define BUFFER_FLAGS_DISCARD \
1575 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1576 1 << BH_Delay | 1 << BH_Unwritten)
1577
discard_buffer(struct buffer_head * bh)1578 static void discard_buffer(struct buffer_head * bh)
1579 {
1580 unsigned long b_state;
1581
1582 lock_buffer(bh);
1583 clear_buffer_dirty(bh);
1584 bh->b_bdev = NULL;
1585 b_state = READ_ONCE(bh->b_state);
1586 do {
1587 } while (!try_cmpxchg(&bh->b_state, &b_state,
1588 b_state & ~BUFFER_FLAGS_DISCARD));
1589 unlock_buffer(bh);
1590 }
1591
1592 /**
1593 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1594 * @folio: The folio which is affected.
1595 * @offset: start of the range to invalidate
1596 * @length: length of the range to invalidate
1597 *
1598 * block_invalidate_folio() is called when all or part of the folio has been
1599 * invalidated by a truncate operation.
1600 *
1601 * block_invalidate_folio() does not have to release all buffers, but it must
1602 * ensure that no dirty buffer is left outside @offset and that no I/O
1603 * is underway against any of the blocks which are outside the truncation
1604 * point. Because the caller is about to free (and possibly reuse) those
1605 * blocks on-disk.
1606 */
block_invalidate_folio(struct folio * folio,size_t offset,size_t length)1607 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1608 {
1609 struct buffer_head *head, *bh, *next;
1610 size_t curr_off = 0;
1611 size_t stop = length + offset;
1612
1613 BUG_ON(!folio_test_locked(folio));
1614
1615 /*
1616 * Check for overflow
1617 */
1618 BUG_ON(stop > folio_size(folio) || stop < length);
1619
1620 head = folio_buffers(folio);
1621 if (!head)
1622 return;
1623
1624 bh = head;
1625 do {
1626 size_t next_off = curr_off + bh->b_size;
1627 next = bh->b_this_page;
1628
1629 /*
1630 * Are we still fully in range ?
1631 */
1632 if (next_off > stop)
1633 goto out;
1634
1635 /*
1636 * is this block fully invalidated?
1637 */
1638 if (offset <= curr_off)
1639 discard_buffer(bh);
1640 curr_off = next_off;
1641 bh = next;
1642 } while (bh != head);
1643
1644 /*
1645 * We release buffers only if the entire folio is being invalidated.
1646 * The get_block cached value has been unconditionally invalidated,
1647 * so real IO is not possible anymore.
1648 */
1649 if (length == folio_size(folio))
1650 filemap_release_folio(folio, 0);
1651 out:
1652 return;
1653 }
1654 EXPORT_SYMBOL(block_invalidate_folio);
1655
1656 /*
1657 * We attach and possibly dirty the buffers atomically wrt
1658 * block_dirty_folio() via i_private_lock. try_to_free_buffers
1659 * is already excluded via the folio lock.
1660 */
create_empty_buffers(struct folio * folio,unsigned long blocksize,unsigned long b_state)1661 struct buffer_head *create_empty_buffers(struct folio *folio,
1662 unsigned long blocksize, unsigned long b_state)
1663 {
1664 struct buffer_head *bh, *head, *tail;
1665 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1666
1667 head = folio_alloc_buffers(folio, blocksize, gfp);
1668 bh = head;
1669 do {
1670 bh->b_state |= b_state;
1671 tail = bh;
1672 bh = bh->b_this_page;
1673 } while (bh);
1674 tail->b_this_page = head;
1675
1676 spin_lock(&folio->mapping->i_private_lock);
1677 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1678 bh = head;
1679 do {
1680 if (folio_test_dirty(folio))
1681 set_buffer_dirty(bh);
1682 if (folio_test_uptodate(folio))
1683 set_buffer_uptodate(bh);
1684 bh = bh->b_this_page;
1685 } while (bh != head);
1686 }
1687 folio_attach_private(folio, head);
1688 spin_unlock(&folio->mapping->i_private_lock);
1689
1690 return head;
1691 }
1692 EXPORT_SYMBOL(create_empty_buffers);
1693
1694 /**
1695 * clean_bdev_aliases: clean a range of buffers in block device
1696 * @bdev: Block device to clean buffers in
1697 * @block: Start of a range of blocks to clean
1698 * @len: Number of blocks to clean
1699 *
1700 * We are taking a range of blocks for data and we don't want writeback of any
1701 * buffer-cache aliases starting from return from this function and until the
1702 * moment when something will explicitly mark the buffer dirty (hopefully that
1703 * will not happen until we will free that block ;-) We don't even need to mark
1704 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1705 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1706 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1707 * would confuse anyone who might pick it with bread() afterwards...
1708 *
1709 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1710 * writeout I/O going on against recently-freed buffers. We don't wait on that
1711 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1712 * need to. That happens here.
1713 */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1714 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1715 {
1716 struct address_space *bd_mapping = bdev->bd_mapping;
1717 const int blkbits = bd_mapping->host->i_blkbits;
1718 struct folio_batch fbatch;
1719 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1720 pgoff_t end;
1721 int i, count;
1722 struct buffer_head *bh;
1723 struct buffer_head *head;
1724
1725 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1726 folio_batch_init(&fbatch);
1727 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1728 count = folio_batch_count(&fbatch);
1729 for (i = 0; i < count; i++) {
1730 struct folio *folio = fbatch.folios[i];
1731
1732 if (!folio_buffers(folio))
1733 continue;
1734 /*
1735 * We use folio lock instead of bd_mapping->i_private_lock
1736 * to pin buffers here since we can afford to sleep and
1737 * it scales better than a global spinlock lock.
1738 */
1739 folio_lock(folio);
1740 /* Recheck when the folio is locked which pins bhs */
1741 head = folio_buffers(folio);
1742 if (!head)
1743 goto unlock_page;
1744 bh = head;
1745 do {
1746 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1747 goto next;
1748 if (bh->b_blocknr >= block + len)
1749 break;
1750 clear_buffer_dirty(bh);
1751 wait_on_buffer(bh);
1752 clear_buffer_req(bh);
1753 next:
1754 bh = bh->b_this_page;
1755 } while (bh != head);
1756 unlock_page:
1757 folio_unlock(folio);
1758 }
1759 folio_batch_release(&fbatch);
1760 cond_resched();
1761 /* End of range already reached? */
1762 if (index > end || !index)
1763 break;
1764 }
1765 }
1766 EXPORT_SYMBOL(clean_bdev_aliases);
1767
folio_create_buffers(struct folio * folio,struct inode * inode,unsigned int b_state)1768 static struct buffer_head *folio_create_buffers(struct folio *folio,
1769 struct inode *inode,
1770 unsigned int b_state)
1771 {
1772 struct buffer_head *bh;
1773
1774 BUG_ON(!folio_test_locked(folio));
1775
1776 bh = folio_buffers(folio);
1777 if (!bh)
1778 bh = create_empty_buffers(folio,
1779 1 << READ_ONCE(inode->i_blkbits), b_state);
1780 return bh;
1781 }
1782
1783 /*
1784 * NOTE! All mapped/uptodate combinations are valid:
1785 *
1786 * Mapped Uptodate Meaning
1787 *
1788 * No No "unknown" - must do get_block()
1789 * No Yes "hole" - zero-filled
1790 * Yes No "allocated" - allocated on disk, not read in
1791 * Yes Yes "valid" - allocated and up-to-date in memory.
1792 *
1793 * "Dirty" is valid only with the last case (mapped+uptodate).
1794 */
1795
1796 /*
1797 * While block_write_full_folio is writing back the dirty buffers under
1798 * the page lock, whoever dirtied the buffers may decide to clean them
1799 * again at any time. We handle that by only looking at the buffer
1800 * state inside lock_buffer().
1801 *
1802 * If block_write_full_folio() is called for regular writeback
1803 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1804 * locked buffer. This only can happen if someone has written the buffer
1805 * directly, with submit_bh(). At the address_space level PageWriteback
1806 * prevents this contention from occurring.
1807 *
1808 * If block_write_full_folio() is called with wbc->sync_mode ==
1809 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1810 * causes the writes to be flagged as synchronous writes.
1811 */
__block_write_full_folio(struct inode * inode,struct folio * folio,get_block_t * get_block,struct writeback_control * wbc)1812 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1813 get_block_t *get_block, struct writeback_control *wbc)
1814 {
1815 int err;
1816 sector_t block;
1817 sector_t last_block;
1818 struct buffer_head *bh, *head;
1819 size_t blocksize;
1820 int nr_underway = 0;
1821 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1822
1823 head = folio_create_buffers(folio, inode,
1824 (1 << BH_Dirty) | (1 << BH_Uptodate));
1825
1826 /*
1827 * Be very careful. We have no exclusion from block_dirty_folio
1828 * here, and the (potentially unmapped) buffers may become dirty at
1829 * any time. If a buffer becomes dirty here after we've inspected it
1830 * then we just miss that fact, and the folio stays dirty.
1831 *
1832 * Buffers outside i_size may be dirtied by block_dirty_folio;
1833 * handle that here by just cleaning them.
1834 */
1835
1836 bh = head;
1837 blocksize = bh->b_size;
1838
1839 block = div_u64(folio_pos(folio), blocksize);
1840 last_block = div_u64(i_size_read(inode) - 1, blocksize);
1841
1842 /*
1843 * Get all the dirty buffers mapped to disk addresses and
1844 * handle any aliases from the underlying blockdev's mapping.
1845 */
1846 do {
1847 if (block > last_block) {
1848 /*
1849 * mapped buffers outside i_size will occur, because
1850 * this folio can be outside i_size when there is a
1851 * truncate in progress.
1852 */
1853 /*
1854 * The buffer was zeroed by block_write_full_folio()
1855 */
1856 clear_buffer_dirty(bh);
1857 set_buffer_uptodate(bh);
1858 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1859 buffer_dirty(bh)) {
1860 WARN_ON(bh->b_size != blocksize);
1861 err = get_block(inode, block, bh, 1);
1862 if (err)
1863 goto recover;
1864 clear_buffer_delay(bh);
1865 if (buffer_new(bh)) {
1866 /* blockdev mappings never come here */
1867 clear_buffer_new(bh);
1868 clean_bdev_bh_alias(bh);
1869 }
1870 }
1871 bh = bh->b_this_page;
1872 block++;
1873 } while (bh != head);
1874
1875 do {
1876 if (!buffer_mapped(bh))
1877 continue;
1878 /*
1879 * If it's a fully non-blocking write attempt and we cannot
1880 * lock the buffer then redirty the folio. Note that this can
1881 * potentially cause a busy-wait loop from writeback threads
1882 * and kswapd activity, but those code paths have their own
1883 * higher-level throttling.
1884 */
1885 if (wbc->sync_mode != WB_SYNC_NONE) {
1886 lock_buffer(bh);
1887 } else if (!trylock_buffer(bh)) {
1888 folio_redirty_for_writepage(wbc, folio);
1889 continue;
1890 }
1891 if (test_clear_buffer_dirty(bh)) {
1892 mark_buffer_async_write_endio(bh,
1893 end_buffer_async_write);
1894 } else {
1895 unlock_buffer(bh);
1896 }
1897 } while ((bh = bh->b_this_page) != head);
1898
1899 /*
1900 * The folio and its buffers are protected by the writeback flag,
1901 * so we can drop the bh refcounts early.
1902 */
1903 BUG_ON(folio_test_writeback(folio));
1904 folio_start_writeback(folio);
1905
1906 do {
1907 struct buffer_head *next = bh->b_this_page;
1908 if (buffer_async_write(bh)) {
1909 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1910 inode->i_write_hint, wbc);
1911 nr_underway++;
1912 }
1913 bh = next;
1914 } while (bh != head);
1915 folio_unlock(folio);
1916
1917 err = 0;
1918 done:
1919 if (nr_underway == 0) {
1920 /*
1921 * The folio was marked dirty, but the buffers were
1922 * clean. Someone wrote them back by hand with
1923 * write_dirty_buffer/submit_bh. A rare case.
1924 */
1925 folio_end_writeback(folio);
1926
1927 /*
1928 * The folio and buffer_heads can be released at any time from
1929 * here on.
1930 */
1931 }
1932 return err;
1933
1934 recover:
1935 /*
1936 * ENOSPC, or some other error. We may already have added some
1937 * blocks to the file, so we need to write these out to avoid
1938 * exposing stale data.
1939 * The folio is currently locked and not marked for writeback
1940 */
1941 bh = head;
1942 /* Recovery: lock and submit the mapped buffers */
1943 do {
1944 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1945 !buffer_delay(bh)) {
1946 lock_buffer(bh);
1947 mark_buffer_async_write_endio(bh,
1948 end_buffer_async_write);
1949 } else {
1950 /*
1951 * The buffer may have been set dirty during
1952 * attachment to a dirty folio.
1953 */
1954 clear_buffer_dirty(bh);
1955 }
1956 } while ((bh = bh->b_this_page) != head);
1957 BUG_ON(folio_test_writeback(folio));
1958 mapping_set_error(folio->mapping, err);
1959 folio_start_writeback(folio);
1960 do {
1961 struct buffer_head *next = bh->b_this_page;
1962 if (buffer_async_write(bh)) {
1963 clear_buffer_dirty(bh);
1964 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1965 inode->i_write_hint, wbc);
1966 nr_underway++;
1967 }
1968 bh = next;
1969 } while (bh != head);
1970 folio_unlock(folio);
1971 goto done;
1972 }
1973 EXPORT_SYMBOL(__block_write_full_folio);
1974
1975 /*
1976 * If a folio has any new buffers, zero them out here, and mark them uptodate
1977 * and dirty so they'll be written out (in order to prevent uninitialised
1978 * block data from leaking). And clear the new bit.
1979 */
folio_zero_new_buffers(struct folio * folio,size_t from,size_t to)1980 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1981 {
1982 size_t block_start, block_end;
1983 struct buffer_head *head, *bh;
1984
1985 BUG_ON(!folio_test_locked(folio));
1986 head = folio_buffers(folio);
1987 if (!head)
1988 return;
1989
1990 bh = head;
1991 block_start = 0;
1992 do {
1993 block_end = block_start + bh->b_size;
1994
1995 if (buffer_new(bh)) {
1996 if (block_end > from && block_start < to) {
1997 if (!folio_test_uptodate(folio)) {
1998 size_t start, xend;
1999
2000 start = max(from, block_start);
2001 xend = min(to, block_end);
2002
2003 folio_zero_segment(folio, start, xend);
2004 set_buffer_uptodate(bh);
2005 }
2006
2007 clear_buffer_new(bh);
2008 mark_buffer_dirty(bh);
2009 }
2010 }
2011
2012 block_start = block_end;
2013 bh = bh->b_this_page;
2014 } while (bh != head);
2015 }
2016 EXPORT_SYMBOL(folio_zero_new_buffers);
2017
2018 static int
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,const struct iomap * iomap)2019 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2020 const struct iomap *iomap)
2021 {
2022 loff_t offset = (loff_t)block << inode->i_blkbits;
2023
2024 bh->b_bdev = iomap->bdev;
2025
2026 /*
2027 * Block points to offset in file we need to map, iomap contains
2028 * the offset at which the map starts. If the map ends before the
2029 * current block, then do not map the buffer and let the caller
2030 * handle it.
2031 */
2032 if (offset >= iomap->offset + iomap->length)
2033 return -EIO;
2034
2035 switch (iomap->type) {
2036 case IOMAP_HOLE:
2037 /*
2038 * If the buffer is not up to date or beyond the current EOF,
2039 * we need to mark it as new to ensure sub-block zeroing is
2040 * executed if necessary.
2041 */
2042 if (!buffer_uptodate(bh) ||
2043 (offset >= i_size_read(inode)))
2044 set_buffer_new(bh);
2045 return 0;
2046 case IOMAP_DELALLOC:
2047 if (!buffer_uptodate(bh) ||
2048 (offset >= i_size_read(inode)))
2049 set_buffer_new(bh);
2050 set_buffer_uptodate(bh);
2051 set_buffer_mapped(bh);
2052 set_buffer_delay(bh);
2053 return 0;
2054 case IOMAP_UNWRITTEN:
2055 /*
2056 * For unwritten regions, we always need to ensure that regions
2057 * in the block we are not writing to are zeroed. Mark the
2058 * buffer as new to ensure this.
2059 */
2060 set_buffer_new(bh);
2061 set_buffer_unwritten(bh);
2062 fallthrough;
2063 case IOMAP_MAPPED:
2064 if ((iomap->flags & IOMAP_F_NEW) ||
2065 offset >= i_size_read(inode)) {
2066 /*
2067 * This can happen if truncating the block device races
2068 * with the check in the caller as i_size updates on
2069 * block devices aren't synchronized by i_rwsem for
2070 * block devices.
2071 */
2072 if (S_ISBLK(inode->i_mode))
2073 return -EIO;
2074 set_buffer_new(bh);
2075 }
2076 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2077 inode->i_blkbits;
2078 set_buffer_mapped(bh);
2079 return 0;
2080 default:
2081 WARN_ON_ONCE(1);
2082 return -EIO;
2083 }
2084 }
2085
__block_write_begin_int(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block,const struct iomap * iomap)2086 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2087 get_block_t *get_block, const struct iomap *iomap)
2088 {
2089 size_t from = offset_in_folio(folio, pos);
2090 size_t to = from + len;
2091 struct inode *inode = folio->mapping->host;
2092 size_t block_start, block_end;
2093 sector_t block;
2094 int err = 0;
2095 size_t blocksize;
2096 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2097
2098 BUG_ON(!folio_test_locked(folio));
2099 BUG_ON(to > folio_size(folio));
2100 BUG_ON(from > to);
2101
2102 head = folio_create_buffers(folio, inode, 0);
2103 blocksize = head->b_size;
2104 block = div_u64(folio_pos(folio), blocksize);
2105
2106 for (bh = head, block_start = 0; bh != head || !block_start;
2107 block++, block_start=block_end, bh = bh->b_this_page) {
2108 block_end = block_start + blocksize;
2109 if (block_end <= from || block_start >= to) {
2110 if (folio_test_uptodate(folio)) {
2111 if (!buffer_uptodate(bh))
2112 set_buffer_uptodate(bh);
2113 }
2114 continue;
2115 }
2116 if (buffer_new(bh))
2117 clear_buffer_new(bh);
2118 if (!buffer_mapped(bh)) {
2119 WARN_ON(bh->b_size != blocksize);
2120 if (get_block)
2121 err = get_block(inode, block, bh, 1);
2122 else
2123 err = iomap_to_bh(inode, block, bh, iomap);
2124 if (err)
2125 break;
2126
2127 if (buffer_new(bh)) {
2128 clean_bdev_bh_alias(bh);
2129 if (folio_test_uptodate(folio)) {
2130 clear_buffer_new(bh);
2131 set_buffer_uptodate(bh);
2132 mark_buffer_dirty(bh);
2133 continue;
2134 }
2135 if (block_end > to || block_start < from)
2136 folio_zero_segments(folio,
2137 to, block_end,
2138 block_start, from);
2139 continue;
2140 }
2141 }
2142 if (folio_test_uptodate(folio)) {
2143 if (!buffer_uptodate(bh))
2144 set_buffer_uptodate(bh);
2145 continue;
2146 }
2147 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2148 !buffer_unwritten(bh) &&
2149 (block_start < from || block_end > to)) {
2150 bh_read_nowait(bh, 0);
2151 *wait_bh++=bh;
2152 }
2153 }
2154 /*
2155 * If we issued read requests - let them complete.
2156 */
2157 while(wait_bh > wait) {
2158 wait_on_buffer(*--wait_bh);
2159 if (!buffer_uptodate(*wait_bh))
2160 err = -EIO;
2161 }
2162 if (unlikely(err))
2163 folio_zero_new_buffers(folio, from, to);
2164 return err;
2165 }
2166
__block_write_begin(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)2167 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2168 get_block_t *get_block)
2169 {
2170 return __block_write_begin_int(folio, pos, len, get_block, NULL);
2171 }
2172 EXPORT_SYMBOL(__block_write_begin);
2173
__block_commit_write(struct folio * folio,size_t from,size_t to)2174 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2175 {
2176 size_t block_start, block_end;
2177 bool partial = false;
2178 unsigned blocksize;
2179 struct buffer_head *bh, *head;
2180
2181 bh = head = folio_buffers(folio);
2182 if (!bh)
2183 return;
2184 blocksize = bh->b_size;
2185
2186 block_start = 0;
2187 do {
2188 block_end = block_start + blocksize;
2189 if (block_end <= from || block_start >= to) {
2190 if (!buffer_uptodate(bh))
2191 partial = true;
2192 } else {
2193 set_buffer_uptodate(bh);
2194 mark_buffer_dirty(bh);
2195 }
2196 if (buffer_new(bh))
2197 clear_buffer_new(bh);
2198
2199 block_start = block_end;
2200 bh = bh->b_this_page;
2201 } while (bh != head);
2202
2203 /*
2204 * If this is a partial write which happened to make all buffers
2205 * uptodate then we can optimize away a bogus read_folio() for
2206 * the next read(). Here we 'discover' whether the folio went
2207 * uptodate as a result of this (potentially partial) write.
2208 */
2209 if (!partial)
2210 folio_mark_uptodate(folio);
2211 }
2212
2213 /*
2214 * block_write_begin takes care of the basic task of block allocation and
2215 * bringing partial write blocks uptodate first.
2216 *
2217 * The filesystem needs to handle block truncation upon failure.
2218 */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,get_block_t * get_block)2219 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2220 struct folio **foliop, get_block_t *get_block)
2221 {
2222 pgoff_t index = pos >> PAGE_SHIFT;
2223 struct folio *folio;
2224 int status;
2225
2226 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2227 mapping_gfp_mask(mapping));
2228 if (IS_ERR(folio))
2229 return PTR_ERR(folio);
2230
2231 status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2232 if (unlikely(status)) {
2233 folio_unlock(folio);
2234 folio_put(folio);
2235 folio = NULL;
2236 }
2237
2238 *foliop = folio;
2239 return status;
2240 }
2241 EXPORT_SYMBOL(block_write_begin);
2242
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)2243 int block_write_end(struct file *file, struct address_space *mapping,
2244 loff_t pos, unsigned len, unsigned copied,
2245 struct folio *folio, void *fsdata)
2246 {
2247 size_t start = pos - folio_pos(folio);
2248
2249 if (unlikely(copied < len)) {
2250 /*
2251 * The buffers that were written will now be uptodate, so
2252 * we don't have to worry about a read_folio reading them
2253 * and overwriting a partial write. However if we have
2254 * encountered a short write and only partially written
2255 * into a buffer, it will not be marked uptodate, so a
2256 * read_folio might come in and destroy our partial write.
2257 *
2258 * Do the simplest thing, and just treat any short write to a
2259 * non uptodate folio as a zero-length write, and force the
2260 * caller to redo the whole thing.
2261 */
2262 if (!folio_test_uptodate(folio))
2263 copied = 0;
2264
2265 folio_zero_new_buffers(folio, start+copied, start+len);
2266 }
2267 flush_dcache_folio(folio);
2268
2269 /* This could be a short (even 0-length) commit */
2270 __block_commit_write(folio, start, start + copied);
2271
2272 return copied;
2273 }
2274 EXPORT_SYMBOL(block_write_end);
2275
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)2276 int generic_write_end(struct file *file, struct address_space *mapping,
2277 loff_t pos, unsigned len, unsigned copied,
2278 struct folio *folio, void *fsdata)
2279 {
2280 struct inode *inode = mapping->host;
2281 loff_t old_size = inode->i_size;
2282 bool i_size_changed = false;
2283
2284 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
2285
2286 /*
2287 * No need to use i_size_read() here, the i_size cannot change under us
2288 * because we hold i_rwsem.
2289 *
2290 * But it's important to update i_size while still holding folio lock:
2291 * page writeout could otherwise come in and zero beyond i_size.
2292 */
2293 if (pos + copied > inode->i_size) {
2294 i_size_write(inode, pos + copied);
2295 i_size_changed = true;
2296 }
2297
2298 folio_unlock(folio);
2299 folio_put(folio);
2300
2301 if (old_size < pos)
2302 pagecache_isize_extended(inode, old_size, pos);
2303 /*
2304 * Don't mark the inode dirty under page lock. First, it unnecessarily
2305 * makes the holding time of page lock longer. Second, it forces lock
2306 * ordering of page lock and transaction start for journaling
2307 * filesystems.
2308 */
2309 if (i_size_changed)
2310 mark_inode_dirty(inode);
2311 return copied;
2312 }
2313 EXPORT_SYMBOL(generic_write_end);
2314
2315 /*
2316 * block_is_partially_uptodate checks whether buffers within a folio are
2317 * uptodate or not.
2318 *
2319 * Returns true if all buffers which correspond to the specified part
2320 * of the folio are uptodate.
2321 */
block_is_partially_uptodate(struct folio * folio,size_t from,size_t count)2322 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2323 {
2324 unsigned block_start, block_end, blocksize;
2325 unsigned to;
2326 struct buffer_head *bh, *head;
2327 bool ret = true;
2328
2329 head = folio_buffers(folio);
2330 if (!head)
2331 return false;
2332 blocksize = head->b_size;
2333 to = min_t(unsigned, folio_size(folio) - from, count);
2334 to = from + to;
2335 if (from < blocksize && to > folio_size(folio) - blocksize)
2336 return false;
2337
2338 bh = head;
2339 block_start = 0;
2340 do {
2341 block_end = block_start + blocksize;
2342 if (block_end > from && block_start < to) {
2343 if (!buffer_uptodate(bh)) {
2344 ret = false;
2345 break;
2346 }
2347 if (block_end >= to)
2348 break;
2349 }
2350 block_start = block_end;
2351 bh = bh->b_this_page;
2352 } while (bh != head);
2353
2354 return ret;
2355 }
2356 EXPORT_SYMBOL(block_is_partially_uptodate);
2357
2358 /*
2359 * Generic "read_folio" function for block devices that have the normal
2360 * get_block functionality. This is most of the block device filesystems.
2361 * Reads the folio asynchronously --- the unlock_buffer() and
2362 * set/clear_buffer_uptodate() functions propagate buffer state into the
2363 * folio once IO has completed.
2364 */
block_read_full_folio(struct folio * folio,get_block_t * get_block)2365 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2366 {
2367 struct inode *inode = folio->mapping->host;
2368 sector_t iblock, lblock;
2369 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2370 size_t blocksize;
2371 int nr, i;
2372 int fully_mapped = 1;
2373 bool page_error = false;
2374 loff_t limit = i_size_read(inode);
2375
2376 /* This is needed for ext4. */
2377 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2378 limit = inode->i_sb->s_maxbytes;
2379
2380 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2381
2382 head = folio_create_buffers(folio, inode, 0);
2383 blocksize = head->b_size;
2384
2385 iblock = div_u64(folio_pos(folio), blocksize);
2386 lblock = div_u64(limit + blocksize - 1, blocksize);
2387 bh = head;
2388 nr = 0;
2389 i = 0;
2390
2391 do {
2392 if (buffer_uptodate(bh))
2393 continue;
2394
2395 if (!buffer_mapped(bh)) {
2396 int err = 0;
2397
2398 fully_mapped = 0;
2399 if (iblock < lblock) {
2400 WARN_ON(bh->b_size != blocksize);
2401 err = get_block(inode, iblock, bh, 0);
2402 if (err)
2403 page_error = true;
2404 }
2405 if (!buffer_mapped(bh)) {
2406 folio_zero_range(folio, i * blocksize,
2407 blocksize);
2408 if (!err)
2409 set_buffer_uptodate(bh);
2410 continue;
2411 }
2412 /*
2413 * get_block() might have updated the buffer
2414 * synchronously
2415 */
2416 if (buffer_uptodate(bh))
2417 continue;
2418 }
2419 arr[nr++] = bh;
2420 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2421
2422 if (fully_mapped)
2423 folio_set_mappedtodisk(folio);
2424
2425 if (!nr) {
2426 /*
2427 * All buffers are uptodate or get_block() returned an
2428 * error when trying to map them - we can finish the read.
2429 */
2430 folio_end_read(folio, !page_error);
2431 return 0;
2432 }
2433
2434 /* Stage two: lock the buffers */
2435 for (i = 0; i < nr; i++) {
2436 bh = arr[i];
2437 lock_buffer(bh);
2438 mark_buffer_async_read(bh);
2439 }
2440
2441 /*
2442 * Stage 3: start the IO. Check for uptodateness
2443 * inside the buffer lock in case another process reading
2444 * the underlying blockdev brought it uptodate (the sct fix).
2445 */
2446 for (i = 0; i < nr; i++) {
2447 bh = arr[i];
2448 if (buffer_uptodate(bh))
2449 end_buffer_async_read(bh, 1);
2450 else
2451 submit_bh(REQ_OP_READ, bh);
2452 }
2453 return 0;
2454 }
2455 EXPORT_SYMBOL(block_read_full_folio);
2456
2457 /* utility function for filesystems that need to do work on expanding
2458 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2459 * deal with the hole.
2460 */
generic_cont_expand_simple(struct inode * inode,loff_t size)2461 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2462 {
2463 struct address_space *mapping = inode->i_mapping;
2464 const struct address_space_operations *aops = mapping->a_ops;
2465 struct folio *folio;
2466 void *fsdata = NULL;
2467 int err;
2468
2469 err = inode_newsize_ok(inode, size);
2470 if (err)
2471 goto out;
2472
2473 err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2474 if (err)
2475 goto out;
2476
2477 err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2478 BUG_ON(err > 0);
2479
2480 out:
2481 return err;
2482 }
2483 EXPORT_SYMBOL(generic_cont_expand_simple);
2484
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2485 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2486 loff_t pos, loff_t *bytes)
2487 {
2488 struct inode *inode = mapping->host;
2489 const struct address_space_operations *aops = mapping->a_ops;
2490 unsigned int blocksize = i_blocksize(inode);
2491 struct folio *folio;
2492 void *fsdata = NULL;
2493 pgoff_t index, curidx;
2494 loff_t curpos;
2495 unsigned zerofrom, offset, len;
2496 int err = 0;
2497
2498 index = pos >> PAGE_SHIFT;
2499 offset = pos & ~PAGE_MASK;
2500
2501 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2502 zerofrom = curpos & ~PAGE_MASK;
2503 if (zerofrom & (blocksize-1)) {
2504 *bytes |= (blocksize-1);
2505 (*bytes)++;
2506 }
2507 len = PAGE_SIZE - zerofrom;
2508
2509 err = aops->write_begin(file, mapping, curpos, len,
2510 &folio, &fsdata);
2511 if (err)
2512 goto out;
2513 folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2514 err = aops->write_end(file, mapping, curpos, len, len,
2515 folio, fsdata);
2516 if (err < 0)
2517 goto out;
2518 BUG_ON(err != len);
2519 err = 0;
2520
2521 balance_dirty_pages_ratelimited(mapping);
2522
2523 if (fatal_signal_pending(current)) {
2524 err = -EINTR;
2525 goto out;
2526 }
2527 }
2528
2529 /* page covers the boundary, find the boundary offset */
2530 if (index == curidx) {
2531 zerofrom = curpos & ~PAGE_MASK;
2532 /* if we will expand the thing last block will be filled */
2533 if (offset <= zerofrom) {
2534 goto out;
2535 }
2536 if (zerofrom & (blocksize-1)) {
2537 *bytes |= (blocksize-1);
2538 (*bytes)++;
2539 }
2540 len = offset - zerofrom;
2541
2542 err = aops->write_begin(file, mapping, curpos, len,
2543 &folio, &fsdata);
2544 if (err)
2545 goto out;
2546 folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2547 err = aops->write_end(file, mapping, curpos, len, len,
2548 folio, fsdata);
2549 if (err < 0)
2550 goto out;
2551 BUG_ON(err != len);
2552 err = 0;
2553 }
2554 out:
2555 return err;
2556 }
2557
2558 /*
2559 * For moronic filesystems that do not allow holes in file.
2560 * We may have to extend the file.
2561 */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata,get_block_t * get_block,loff_t * bytes)2562 int cont_write_begin(struct file *file, struct address_space *mapping,
2563 loff_t pos, unsigned len,
2564 struct folio **foliop, void **fsdata,
2565 get_block_t *get_block, loff_t *bytes)
2566 {
2567 struct inode *inode = mapping->host;
2568 unsigned int blocksize = i_blocksize(inode);
2569 unsigned int zerofrom;
2570 int err;
2571
2572 err = cont_expand_zero(file, mapping, pos, bytes);
2573 if (err)
2574 return err;
2575
2576 zerofrom = *bytes & ~PAGE_MASK;
2577 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2578 *bytes |= (blocksize-1);
2579 (*bytes)++;
2580 }
2581
2582 return block_write_begin(mapping, pos, len, foliop, get_block);
2583 }
2584 EXPORT_SYMBOL(cont_write_begin);
2585
block_commit_write(struct page * page,unsigned from,unsigned to)2586 void block_commit_write(struct page *page, unsigned from, unsigned to)
2587 {
2588 struct folio *folio = page_folio(page);
2589 __block_commit_write(folio, from, to);
2590 }
2591 EXPORT_SYMBOL(block_commit_write);
2592
2593 /*
2594 * block_page_mkwrite() is not allowed to change the file size as it gets
2595 * called from a page fault handler when a page is first dirtied. Hence we must
2596 * be careful to check for EOF conditions here. We set the page up correctly
2597 * for a written page which means we get ENOSPC checking when writing into
2598 * holes and correct delalloc and unwritten extent mapping on filesystems that
2599 * support these features.
2600 *
2601 * We are not allowed to take the i_mutex here so we have to play games to
2602 * protect against truncate races as the page could now be beyond EOF. Because
2603 * truncate writes the inode size before removing pages, once we have the
2604 * page lock we can determine safely if the page is beyond EOF. If it is not
2605 * beyond EOF, then the page is guaranteed safe against truncation until we
2606 * unlock the page.
2607 *
2608 * Direct callers of this function should protect against filesystem freezing
2609 * using sb_start_pagefault() - sb_end_pagefault() functions.
2610 */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2611 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2612 get_block_t get_block)
2613 {
2614 struct folio *folio = page_folio(vmf->page);
2615 struct inode *inode = file_inode(vma->vm_file);
2616 unsigned long end;
2617 loff_t size;
2618 int ret;
2619
2620 folio_lock(folio);
2621 size = i_size_read(inode);
2622 if ((folio->mapping != inode->i_mapping) ||
2623 (folio_pos(folio) >= size)) {
2624 /* We overload EFAULT to mean page got truncated */
2625 ret = -EFAULT;
2626 goto out_unlock;
2627 }
2628
2629 end = folio_size(folio);
2630 /* folio is wholly or partially inside EOF */
2631 if (folio_pos(folio) + end > size)
2632 end = size - folio_pos(folio);
2633
2634 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2635 if (unlikely(ret))
2636 goto out_unlock;
2637
2638 __block_commit_write(folio, 0, end);
2639
2640 folio_mark_dirty(folio);
2641 folio_wait_stable(folio);
2642 return 0;
2643 out_unlock:
2644 folio_unlock(folio);
2645 return ret;
2646 }
2647 EXPORT_SYMBOL(block_page_mkwrite);
2648
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2649 int block_truncate_page(struct address_space *mapping,
2650 loff_t from, get_block_t *get_block)
2651 {
2652 pgoff_t index = from >> PAGE_SHIFT;
2653 unsigned blocksize;
2654 sector_t iblock;
2655 size_t offset, length, pos;
2656 struct inode *inode = mapping->host;
2657 struct folio *folio;
2658 struct buffer_head *bh;
2659 int err = 0;
2660
2661 blocksize = i_blocksize(inode);
2662 length = from & (blocksize - 1);
2663
2664 /* Block boundary? Nothing to do */
2665 if (!length)
2666 return 0;
2667
2668 length = blocksize - length;
2669 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2670
2671 folio = filemap_grab_folio(mapping, index);
2672 if (IS_ERR(folio))
2673 return PTR_ERR(folio);
2674
2675 bh = folio_buffers(folio);
2676 if (!bh)
2677 bh = create_empty_buffers(folio, blocksize, 0);
2678
2679 /* Find the buffer that contains "offset" */
2680 offset = offset_in_folio(folio, from);
2681 pos = blocksize;
2682 while (offset >= pos) {
2683 bh = bh->b_this_page;
2684 iblock++;
2685 pos += blocksize;
2686 }
2687
2688 if (!buffer_mapped(bh)) {
2689 WARN_ON(bh->b_size != blocksize);
2690 err = get_block(inode, iblock, bh, 0);
2691 if (err)
2692 goto unlock;
2693 /* unmapped? It's a hole - nothing to do */
2694 if (!buffer_mapped(bh))
2695 goto unlock;
2696 }
2697
2698 /* Ok, it's mapped. Make sure it's up-to-date */
2699 if (folio_test_uptodate(folio))
2700 set_buffer_uptodate(bh);
2701
2702 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2703 err = bh_read(bh, 0);
2704 /* Uhhuh. Read error. Complain and punt. */
2705 if (err < 0)
2706 goto unlock;
2707 }
2708
2709 folio_zero_range(folio, offset, length);
2710 mark_buffer_dirty(bh);
2711
2712 unlock:
2713 folio_unlock(folio);
2714 folio_put(folio);
2715
2716 return err;
2717 }
2718 EXPORT_SYMBOL(block_truncate_page);
2719
2720 /*
2721 * The generic ->writepage function for buffer-backed address_spaces
2722 */
block_write_full_folio(struct folio * folio,struct writeback_control * wbc,void * get_block)2723 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2724 void *get_block)
2725 {
2726 struct inode * const inode = folio->mapping->host;
2727 loff_t i_size = i_size_read(inode);
2728
2729 /* Is the folio fully inside i_size? */
2730 if (folio_pos(folio) + folio_size(folio) <= i_size)
2731 return __block_write_full_folio(inode, folio, get_block, wbc);
2732
2733 /* Is the folio fully outside i_size? (truncate in progress) */
2734 if (folio_pos(folio) >= i_size) {
2735 folio_unlock(folio);
2736 return 0; /* don't care */
2737 }
2738
2739 /*
2740 * The folio straddles i_size. It must be zeroed out on each and every
2741 * writepage invocation because it may be mmapped. "A file is mapped
2742 * in multiples of the page size. For a file that is not a multiple of
2743 * the page size, the remaining memory is zeroed when mapped, and
2744 * writes to that region are not written out to the file."
2745 */
2746 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2747 folio_size(folio));
2748 return __block_write_full_folio(inode, folio, get_block, wbc);
2749 }
2750
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2751 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2752 get_block_t *get_block)
2753 {
2754 struct inode *inode = mapping->host;
2755 struct buffer_head tmp = {
2756 .b_size = i_blocksize(inode),
2757 };
2758
2759 get_block(inode, block, &tmp, 0);
2760 return tmp.b_blocknr;
2761 }
2762 EXPORT_SYMBOL(generic_block_bmap);
2763
end_bio_bh_io_sync(struct bio * bio)2764 static void end_bio_bh_io_sync(struct bio *bio)
2765 {
2766 struct buffer_head *bh = bio->bi_private;
2767
2768 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2769 set_bit(BH_Quiet, &bh->b_state);
2770
2771 bh->b_end_io(bh, !bio->bi_status);
2772 bio_put(bio);
2773 }
2774
submit_bh_wbc(blk_opf_t opf,struct buffer_head * bh,enum rw_hint write_hint,struct writeback_control * wbc)2775 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2776 enum rw_hint write_hint,
2777 struct writeback_control *wbc)
2778 {
2779 const enum req_op op = opf & REQ_OP_MASK;
2780 struct bio *bio;
2781
2782 BUG_ON(!buffer_locked(bh));
2783 BUG_ON(!buffer_mapped(bh));
2784 BUG_ON(!bh->b_end_io);
2785 BUG_ON(buffer_delay(bh));
2786 BUG_ON(buffer_unwritten(bh));
2787
2788 /*
2789 * Only clear out a write error when rewriting
2790 */
2791 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2792 clear_buffer_write_io_error(bh);
2793
2794 if (buffer_meta(bh))
2795 opf |= REQ_META;
2796 if (buffer_prio(bh))
2797 opf |= REQ_PRIO;
2798
2799 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2800
2801 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2802
2803 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2804 bio->bi_write_hint = write_hint;
2805
2806 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2807
2808 bio->bi_end_io = end_bio_bh_io_sync;
2809 bio->bi_private = bh;
2810
2811 /* Take care of bh's that straddle the end of the device */
2812 guard_bio_eod(bio);
2813
2814 if (wbc) {
2815 wbc_init_bio(wbc, bio);
2816 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2817 }
2818
2819 submit_bio(bio);
2820 }
2821
submit_bh(blk_opf_t opf,struct buffer_head * bh)2822 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2823 {
2824 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2825 }
2826 EXPORT_SYMBOL(submit_bh);
2827
write_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2828 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2829 {
2830 lock_buffer(bh);
2831 if (!test_clear_buffer_dirty(bh)) {
2832 unlock_buffer(bh);
2833 return;
2834 }
2835 bh->b_end_io = end_buffer_write_sync;
2836 get_bh(bh);
2837 submit_bh(REQ_OP_WRITE | op_flags, bh);
2838 }
2839 EXPORT_SYMBOL(write_dirty_buffer);
2840
2841 /*
2842 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2843 * and then start new I/O and then wait upon it. The caller must have a ref on
2844 * the buffer_head.
2845 */
__sync_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2846 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2847 {
2848 WARN_ON(atomic_read(&bh->b_count) < 1);
2849 lock_buffer(bh);
2850 if (test_clear_buffer_dirty(bh)) {
2851 /*
2852 * The bh should be mapped, but it might not be if the
2853 * device was hot-removed. Not much we can do but fail the I/O.
2854 */
2855 if (!buffer_mapped(bh)) {
2856 unlock_buffer(bh);
2857 return -EIO;
2858 }
2859
2860 get_bh(bh);
2861 bh->b_end_io = end_buffer_write_sync;
2862 submit_bh(REQ_OP_WRITE | op_flags, bh);
2863 wait_on_buffer(bh);
2864 if (!buffer_uptodate(bh))
2865 return -EIO;
2866 } else {
2867 unlock_buffer(bh);
2868 }
2869 return 0;
2870 }
2871 EXPORT_SYMBOL(__sync_dirty_buffer);
2872
sync_dirty_buffer(struct buffer_head * bh)2873 int sync_dirty_buffer(struct buffer_head *bh)
2874 {
2875 return __sync_dirty_buffer(bh, REQ_SYNC);
2876 }
2877 EXPORT_SYMBOL(sync_dirty_buffer);
2878
buffer_busy(struct buffer_head * bh)2879 static inline int buffer_busy(struct buffer_head *bh)
2880 {
2881 return atomic_read(&bh->b_count) |
2882 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2883 }
2884
2885 static bool
drop_buffers(struct folio * folio,struct buffer_head ** buffers_to_free)2886 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2887 {
2888 struct buffer_head *head = folio_buffers(folio);
2889 struct buffer_head *bh;
2890
2891 bh = head;
2892 do {
2893 if (buffer_busy(bh))
2894 goto failed;
2895 bh = bh->b_this_page;
2896 } while (bh != head);
2897
2898 do {
2899 struct buffer_head *next = bh->b_this_page;
2900
2901 if (bh->b_assoc_map)
2902 __remove_assoc_queue(bh);
2903 bh = next;
2904 } while (bh != head);
2905 *buffers_to_free = head;
2906 folio_detach_private(folio);
2907 return true;
2908 failed:
2909 return false;
2910 }
2911
2912 /**
2913 * try_to_free_buffers - Release buffers attached to this folio.
2914 * @folio: The folio.
2915 *
2916 * If any buffers are in use (dirty, under writeback, elevated refcount),
2917 * no buffers will be freed.
2918 *
2919 * If the folio is dirty but all the buffers are clean then we need to
2920 * be sure to mark the folio clean as well. This is because the folio
2921 * may be against a block device, and a later reattachment of buffers
2922 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2923 * filesystem data on the same device.
2924 *
2925 * The same applies to regular filesystem folios: if all the buffers are
2926 * clean then we set the folio clean and proceed. To do that, we require
2927 * total exclusion from block_dirty_folio(). That is obtained with
2928 * i_private_lock.
2929 *
2930 * Exclusion against try_to_free_buffers may be obtained by either
2931 * locking the folio or by holding its mapping's i_private_lock.
2932 *
2933 * Context: Process context. @folio must be locked. Will not sleep.
2934 * Return: true if all buffers attached to this folio were freed.
2935 */
try_to_free_buffers(struct folio * folio)2936 bool try_to_free_buffers(struct folio *folio)
2937 {
2938 struct address_space * const mapping = folio->mapping;
2939 struct buffer_head *buffers_to_free = NULL;
2940 bool ret = 0;
2941
2942 BUG_ON(!folio_test_locked(folio));
2943 if (folio_test_writeback(folio))
2944 return false;
2945
2946 if (mapping == NULL) { /* can this still happen? */
2947 ret = drop_buffers(folio, &buffers_to_free);
2948 goto out;
2949 }
2950
2951 spin_lock(&mapping->i_private_lock);
2952 ret = drop_buffers(folio, &buffers_to_free);
2953
2954 /*
2955 * If the filesystem writes its buffers by hand (eg ext3)
2956 * then we can have clean buffers against a dirty folio. We
2957 * clean the folio here; otherwise the VM will never notice
2958 * that the filesystem did any IO at all.
2959 *
2960 * Also, during truncate, discard_buffer will have marked all
2961 * the folio's buffers clean. We discover that here and clean
2962 * the folio also.
2963 *
2964 * i_private_lock must be held over this entire operation in order
2965 * to synchronise against block_dirty_folio and prevent the
2966 * dirty bit from being lost.
2967 */
2968 if (ret)
2969 folio_cancel_dirty(folio);
2970 spin_unlock(&mapping->i_private_lock);
2971 out:
2972 if (buffers_to_free) {
2973 struct buffer_head *bh = buffers_to_free;
2974
2975 do {
2976 struct buffer_head *next = bh->b_this_page;
2977 free_buffer_head(bh);
2978 bh = next;
2979 } while (bh != buffers_to_free);
2980 }
2981 return ret;
2982 }
2983 EXPORT_SYMBOL(try_to_free_buffers);
2984
2985 /*
2986 * Buffer-head allocation
2987 */
2988 static struct kmem_cache *bh_cachep __ro_after_init;
2989
2990 /*
2991 * Once the number of bh's in the machine exceeds this level, we start
2992 * stripping them in writeback.
2993 */
2994 static unsigned long max_buffer_heads __ro_after_init;
2995
2996 int buffer_heads_over_limit;
2997
2998 struct bh_accounting {
2999 int nr; /* Number of live bh's */
3000 int ratelimit; /* Limit cacheline bouncing */
3001 };
3002
3003 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3004
recalc_bh_state(void)3005 static void recalc_bh_state(void)
3006 {
3007 int i;
3008 int tot = 0;
3009
3010 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3011 return;
3012 __this_cpu_write(bh_accounting.ratelimit, 0);
3013 for_each_online_cpu(i)
3014 tot += per_cpu(bh_accounting, i).nr;
3015 buffer_heads_over_limit = (tot > max_buffer_heads);
3016 }
3017
alloc_buffer_head(gfp_t gfp_flags)3018 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3019 {
3020 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3021 if (ret) {
3022 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3023 spin_lock_init(&ret->b_uptodate_lock);
3024 preempt_disable();
3025 __this_cpu_inc(bh_accounting.nr);
3026 recalc_bh_state();
3027 preempt_enable();
3028 }
3029 return ret;
3030 }
3031 EXPORT_SYMBOL(alloc_buffer_head);
3032
free_buffer_head(struct buffer_head * bh)3033 void free_buffer_head(struct buffer_head *bh)
3034 {
3035 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3036 kmem_cache_free(bh_cachep, bh);
3037 preempt_disable();
3038 __this_cpu_dec(bh_accounting.nr);
3039 recalc_bh_state();
3040 preempt_enable();
3041 }
3042 EXPORT_SYMBOL(free_buffer_head);
3043
buffer_exit_cpu_dead(unsigned int cpu)3044 static int buffer_exit_cpu_dead(unsigned int cpu)
3045 {
3046 int i;
3047 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3048
3049 for (i = 0; i < BH_LRU_SIZE; i++) {
3050 brelse(b->bhs[i]);
3051 b->bhs[i] = NULL;
3052 }
3053 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3054 per_cpu(bh_accounting, cpu).nr = 0;
3055 return 0;
3056 }
3057
3058 /**
3059 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3060 * @bh: struct buffer_head
3061 *
3062 * Return true if the buffer is up-to-date and false,
3063 * with the buffer locked, if not.
3064 */
bh_uptodate_or_lock(struct buffer_head * bh)3065 int bh_uptodate_or_lock(struct buffer_head *bh)
3066 {
3067 if (!buffer_uptodate(bh)) {
3068 lock_buffer(bh);
3069 if (!buffer_uptodate(bh))
3070 return 0;
3071 unlock_buffer(bh);
3072 }
3073 return 1;
3074 }
3075 EXPORT_SYMBOL(bh_uptodate_or_lock);
3076
3077 /**
3078 * __bh_read - Submit read for a locked buffer
3079 * @bh: struct buffer_head
3080 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3081 * @wait: wait until reading finish
3082 *
3083 * Returns zero on success or don't wait, and -EIO on error.
3084 */
__bh_read(struct buffer_head * bh,blk_opf_t op_flags,bool wait)3085 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3086 {
3087 int ret = 0;
3088
3089 BUG_ON(!buffer_locked(bh));
3090
3091 get_bh(bh);
3092 bh->b_end_io = end_buffer_read_sync;
3093 submit_bh(REQ_OP_READ | op_flags, bh);
3094 if (wait) {
3095 wait_on_buffer(bh);
3096 if (!buffer_uptodate(bh))
3097 ret = -EIO;
3098 }
3099 return ret;
3100 }
3101 EXPORT_SYMBOL(__bh_read);
3102
3103 /**
3104 * __bh_read_batch - Submit read for a batch of unlocked buffers
3105 * @nr: entry number of the buffer batch
3106 * @bhs: a batch of struct buffer_head
3107 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3108 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3109 * buffer that cannot lock.
3110 *
3111 * Returns zero on success or don't wait, and -EIO on error.
3112 */
__bh_read_batch(int nr,struct buffer_head * bhs[],blk_opf_t op_flags,bool force_lock)3113 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3114 blk_opf_t op_flags, bool force_lock)
3115 {
3116 int i;
3117
3118 for (i = 0; i < nr; i++) {
3119 struct buffer_head *bh = bhs[i];
3120
3121 if (buffer_uptodate(bh))
3122 continue;
3123
3124 if (force_lock)
3125 lock_buffer(bh);
3126 else
3127 if (!trylock_buffer(bh))
3128 continue;
3129
3130 if (buffer_uptodate(bh)) {
3131 unlock_buffer(bh);
3132 continue;
3133 }
3134
3135 bh->b_end_io = end_buffer_read_sync;
3136 get_bh(bh);
3137 submit_bh(REQ_OP_READ | op_flags, bh);
3138 }
3139 }
3140 EXPORT_SYMBOL(__bh_read_batch);
3141
buffer_init(void)3142 void __init buffer_init(void)
3143 {
3144 unsigned long nrpages;
3145 int ret;
3146
3147 bh_cachep = KMEM_CACHE(buffer_head,
3148 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3149 /*
3150 * Limit the bh occupancy to 10% of ZONE_NORMAL
3151 */
3152 nrpages = (nr_free_buffer_pages() * 10) / 100;
3153 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3154 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3155 NULL, buffer_exit_cpu_dead);
3156 WARN_ON(ret < 0);
3157 }
3158