1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
68
69 /*
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
76 */
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78
79 /*
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
83 *
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
88 */
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
90
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99 */
100 #define pcp_trylock_prepare(flags) do { } while (0)
101 #define pcp_trylock_finish(flag) do { } while (0)
102 #else
103
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags) local_irq_save(flags)
106 #define pcp_trylock_finish(flags) local_irq_restore(flags)
107 #endif
108
109 /*
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
116 */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin() preempt_disable()
119 #define pcpu_task_unpin() preempt_enable()
120 #else
121 #define pcpu_task_pin() migrate_disable()
122 #define pcpu_task_unpin() migrate_enable()
123 #endif
124
125 /*
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
128 */
129 #define pcpu_spin_lock(type, member, ptr) \
130 ({ \
131 type *_ret; \
132 pcpu_task_pin(); \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
135 _ret; \
136 })
137
138 #define pcpu_spin_trylock(type, member, ptr) \
139 ({ \
140 type *_ret; \
141 pcpu_task_pin(); \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
144 pcpu_task_unpin(); \
145 _ret = NULL; \
146 } \
147 _ret; \
148 })
149
150 #define pcpu_spin_unlock(member, ptr) \
151 ({ \
152 spin_unlock(&ptr->member); \
153 pcpu_task_unpin(); \
154 })
155
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159
160 #define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162
163 #define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
165
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
179 */
180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190
191 /*
192 * Array of node states.
193 */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 [N_POSSIBLE] = NODE_MASK_ALL,
196 [N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 [N_MEMORY] = { { [0] = 1UL } },
203 [N_CPU] = { { [0] = 1UL } },
204 #endif /* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 fpi_t fpi_flags);
216
217 /*
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224 *
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
227 */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 [ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 [ZONE_DMA32] = 256,
234 #endif
235 [ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 [ZONE_HIGHMEM] = 0,
238 #endif
239 [ZONE_MOVABLE] = 0,
240 };
241
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 "DMA32",
248 #endif
249 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 "HighMem",
252 #endif
253 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 "Device",
256 #endif
257 };
258
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 "Unmovable",
261 "Movable",
262 "Reclaimable",
263 "HighAtomic",
264 #ifdef CONFIG_CMA
265 "CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 "Isolate",
269 #endif
270 };
271
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291
292 int page_group_by_mobility_disabled __read_mostly;
293
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296 * During boot we initialize deferred pages on-demand, as needed, but once
297 * page_alloc_init_late() has finished, the deferred pages are all initialized,
298 * and we can permanently disable that path.
299 */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301
deferred_pages_enabled(void)302 static inline bool deferred_pages_enabled(void)
303 {
304 return static_branch_unlikely(&deferred_pages);
305 }
306
307 /*
308 * deferred_grow_zone() is __init, but it is called from
309 * get_page_from_freelist() during early boot until deferred_pages permanently
310 * disables this call. This is why we have refdata wrapper to avoid warning,
311 * and to ensure that the function body gets unloaded.
312 */
313 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 return deferred_grow_zone(zone, order);
317 }
318 #else
deferred_pages_enabled(void)319 static inline bool deferred_pages_enabled(void)
320 {
321 return false;
322 }
323
_deferred_grow_zone(struct zone * zone,unsigned int order)324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340
pfn_to_bitidx(const struct page * page,unsigned long pfn)341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 pfn &= (PAGES_PER_SECTION-1);
345 #else
346 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350
351 /**
352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353 * @page: The page within the block of interest
354 * @pfn: The target page frame number
355 * @mask: mask of bits that the caller is interested in
356 *
357 * Return: pageblock_bits flags
358 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 unsigned long pfn, unsigned long mask)
361 {
362 unsigned long *bitmap;
363 unsigned long bitidx, word_bitidx;
364 unsigned long word;
365
366 bitmap = get_pageblock_bitmap(page, pfn);
367 bitidx = pfn_to_bitidx(page, pfn);
368 word_bitidx = bitidx / BITS_PER_LONG;
369 bitidx &= (BITS_PER_LONG-1);
370 /*
371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 * a consistent read of the memory array, so that results, even though
373 * racy, are not corrupted.
374 */
375 word = READ_ONCE(bitmap[word_bitidx]);
376 return (word >> bitidx) & mask;
377 }
378
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 unsigned long pfn)
381 {
382 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384
385 /**
386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387 * @page: The page within the block of interest
388 * @flags: The flags to set
389 * @pfn: The target page frame number
390 * @mask: mask of bits that the caller is interested in
391 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 unsigned long pfn,
394 unsigned long mask)
395 {
396 unsigned long *bitmap;
397 unsigned long bitidx, word_bitidx;
398 unsigned long word;
399
400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402
403 bitmap = get_pageblock_bitmap(page, pfn);
404 bitidx = pfn_to_bitidx(page, pfn);
405 word_bitidx = bitidx / BITS_PER_LONG;
406 bitidx &= (BITS_PER_LONG-1);
407
408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409
410 mask <<= bitidx;
411 flags <<= bitidx;
412
413 word = READ_ONCE(bitmap[word_bitidx]);
414 do {
415 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417
set_pageblock_migratetype(struct page * page,int migratetype)418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 if (unlikely(page_group_by_mobility_disabled &&
421 migratetype < MIGRATE_PCPTYPES))
422 migratetype = MIGRATE_UNMOVABLE;
423
424 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427
428 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 int ret;
432 unsigned seq;
433 unsigned long pfn = page_to_pfn(page);
434 unsigned long sp, start_pfn;
435
436 do {
437 seq = zone_span_seqbegin(zone);
438 start_pfn = zone->zone_start_pfn;
439 sp = zone->spanned_pages;
440 ret = !zone_spans_pfn(zone, pfn);
441 } while (zone_span_seqretry(zone, seq));
442
443 if (ret)
444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 pfn, zone_to_nid(zone), zone->name,
446 start_pfn, start_pfn + sp);
447
448 return ret;
449 }
450
451 /*
452 * Temporary debugging check for pages not lying within a given zone.
453 */
bad_range(struct zone * zone,struct page * page)454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 if (page_outside_zone_boundaries(zone, page))
457 return true;
458 if (zone != page_zone(page))
459 return true;
460
461 return false;
462 }
463 #else
bad_range(struct zone * zone,struct page * page)464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 return false;
467 }
468 #endif
469
bad_page(struct page * page,const char * reason)470 static void bad_page(struct page *page, const char *reason)
471 {
472 static unsigned long resume;
473 static unsigned long nr_shown;
474 static unsigned long nr_unshown;
475
476 /*
477 * Allow a burst of 60 reports, then keep quiet for that minute;
478 * or allow a steady drip of one report per second.
479 */
480 if (nr_shown == 60) {
481 if (time_before(jiffies, resume)) {
482 nr_unshown++;
483 goto out;
484 }
485 if (nr_unshown) {
486 pr_alert(
487 "BUG: Bad page state: %lu messages suppressed\n",
488 nr_unshown);
489 nr_unshown = 0;
490 }
491 nr_shown = 0;
492 }
493 if (nr_shown++ == 0)
494 resume = jiffies + 60 * HZ;
495
496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
497 current->comm, page_to_pfn(page));
498 dump_page(page, reason);
499
500 print_modules();
501 dump_stack();
502 out:
503 /* Leave bad fields for debug, except PageBuddy could make trouble */
504 if (PageBuddy(page))
505 __ClearPageBuddy(page);
506 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508
order_to_pindex(int migratetype,int order)509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 bool __maybe_unused movable;
512
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 VM_BUG_ON(order != HPAGE_PMD_ORDER);
516
517 movable = migratetype == MIGRATE_MOVABLE;
518
519 return NR_LOWORDER_PCP_LISTS + movable;
520 }
521 #else
522 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524
525 return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527
pindex_to_order(unsigned int pindex)528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 int order = pindex / MIGRATE_PCPTYPES;
531
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 if (pindex >= NR_LOWORDER_PCP_LISTS)
534 order = HPAGE_PMD_ORDER;
535 #else
536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538
539 return order;
540 }
541
pcp_allowed_order(unsigned int order)542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 if (order == HPAGE_PMD_ORDER)
548 return true;
549 #endif
550 return false;
551 }
552
553 /*
554 * Higher-order pages are called "compound pages". They are structured thusly:
555 *
556 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557 *
558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560 *
561 * The first tail page's ->compound_order holds the order of allocation.
562 * This usage means that zero-order pages may not be compound.
563 */
564
prep_compound_page(struct page * page,unsigned int order)565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 int i;
568 int nr_pages = 1 << order;
569
570 __SetPageHead(page);
571 for (i = 1; i < nr_pages; i++)
572 prep_compound_tail(page, i);
573
574 prep_compound_head(page, order);
575 }
576
set_buddy_order(struct page * page,unsigned int order)577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 set_page_private(page, order);
580 __SetPageBuddy(page);
581 }
582
583 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 struct capture_control *capc = current->capture_control;
587
588 return unlikely(capc) &&
589 !(current->flags & PF_KTHREAD) &&
590 !capc->page &&
591 capc->cc->zone == zone ? capc : NULL;
592 }
593
594 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)595 compaction_capture(struct capture_control *capc, struct page *page,
596 int order, int migratetype)
597 {
598 if (!capc || order != capc->cc->order)
599 return false;
600
601 /* Do not accidentally pollute CMA or isolated regions*/
602 if (is_migrate_cma(migratetype) ||
603 is_migrate_isolate(migratetype))
604 return false;
605
606 /*
607 * Do not let lower order allocations pollute a movable pageblock
608 * unless compaction is also requesting movable pages.
609 * This might let an unmovable request use a reclaimable pageblock
610 * and vice-versa but no more than normal fallback logic which can
611 * have trouble finding a high-order free page.
612 */
613 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 capc->cc->migratetype != MIGRATE_MOVABLE)
615 return false;
616
617 capc->page = page;
618 return true;
619 }
620
621 #else
task_capc(struct zone * zone)622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 return NULL;
625 }
626
627 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)628 compaction_capture(struct capture_control *capc, struct page *page,
629 int order, int migratetype)
630 {
631 return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634
account_freepages(struct zone * zone,int nr_pages,int migratetype)635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 int migratetype)
637 {
638 if (is_migrate_isolate(migratetype))
639 return;
640
641 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
642
643 if (is_migrate_cma(migratetype))
644 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
645 }
646
647 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)648 static inline void __add_to_free_list(struct page *page, struct zone *zone,
649 unsigned int order, int migratetype,
650 bool tail)
651 {
652 struct free_area *area = &zone->free_area[order];
653
654 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
655 "page type is %lu, passed migratetype is %d (nr=%d)\n",
656 get_pageblock_migratetype(page), migratetype, 1 << order);
657
658 if (tail)
659 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
660 else
661 list_add(&page->buddy_list, &area->free_list[migratetype]);
662 area->nr_free++;
663 }
664
665 /*
666 * Used for pages which are on another list. Move the pages to the tail
667 * of the list - so the moved pages won't immediately be considered for
668 * allocation again (e.g., optimization for memory onlining).
669 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)670 static inline void move_to_free_list(struct page *page, struct zone *zone,
671 unsigned int order, int old_mt, int new_mt)
672 {
673 struct free_area *area = &zone->free_area[order];
674
675 /* Free page moving can fail, so it happens before the type update */
676 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
677 "page type is %lu, passed migratetype is %d (nr=%d)\n",
678 get_pageblock_migratetype(page), old_mt, 1 << order);
679
680 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
681
682 account_freepages(zone, -(1 << order), old_mt);
683 account_freepages(zone, 1 << order, new_mt);
684 }
685
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)686 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
687 unsigned int order, int migratetype)
688 {
689 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
690 "page type is %lu, passed migratetype is %d (nr=%d)\n",
691 get_pageblock_migratetype(page), migratetype, 1 << order);
692
693 /* clear reported state and update reported page count */
694 if (page_reported(page))
695 __ClearPageReported(page);
696
697 list_del(&page->buddy_list);
698 __ClearPageBuddy(page);
699 set_page_private(page, 0);
700 zone->free_area[order].nr_free--;
701 }
702
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)703 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
704 unsigned int order, int migratetype)
705 {
706 __del_page_from_free_list(page, zone, order, migratetype);
707 account_freepages(zone, -(1 << order), migratetype);
708 }
709
get_page_from_free_area(struct free_area * area,int migratetype)710 static inline struct page *get_page_from_free_area(struct free_area *area,
711 int migratetype)
712 {
713 return list_first_entry_or_null(&area->free_list[migratetype],
714 struct page, buddy_list);
715 }
716
717 /*
718 * If this is less than the 2nd largest possible page, check if the buddy
719 * of the next-higher order is free. If it is, it's possible
720 * that pages are being freed that will coalesce soon. In case,
721 * that is happening, add the free page to the tail of the list
722 * so it's less likely to be used soon and more likely to be merged
723 * as a 2-level higher order page
724 */
725 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
727 struct page *page, unsigned int order)
728 {
729 unsigned long higher_page_pfn;
730 struct page *higher_page;
731
732 if (order >= MAX_PAGE_ORDER - 1)
733 return false;
734
735 higher_page_pfn = buddy_pfn & pfn;
736 higher_page = page + (higher_page_pfn - pfn);
737
738 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
739 NULL) != NULL;
740 }
741
742 /*
743 * Freeing function for a buddy system allocator.
744 *
745 * The concept of a buddy system is to maintain direct-mapped table
746 * (containing bit values) for memory blocks of various "orders".
747 * The bottom level table contains the map for the smallest allocatable
748 * units of memory (here, pages), and each level above it describes
749 * pairs of units from the levels below, hence, "buddies".
750 * At a high level, all that happens here is marking the table entry
751 * at the bottom level available, and propagating the changes upward
752 * as necessary, plus some accounting needed to play nicely with other
753 * parts of the VM system.
754 * At each level, we keep a list of pages, which are heads of continuous
755 * free pages of length of (1 << order) and marked with PageBuddy.
756 * Page's order is recorded in page_private(page) field.
757 * So when we are allocating or freeing one, we can derive the state of the
758 * other. That is, if we allocate a small block, and both were
759 * free, the remainder of the region must be split into blocks.
760 * If a block is freed, and its buddy is also free, then this
761 * triggers coalescing into a block of larger size.
762 *
763 * -- nyc
764 */
765
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)766 static inline void __free_one_page(struct page *page,
767 unsigned long pfn,
768 struct zone *zone, unsigned int order,
769 int migratetype, fpi_t fpi_flags)
770 {
771 struct capture_control *capc = task_capc(zone);
772 unsigned long buddy_pfn = 0;
773 unsigned long combined_pfn;
774 struct page *buddy;
775 bool to_tail;
776
777 VM_BUG_ON(!zone_is_initialized(zone));
778 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
779
780 VM_BUG_ON(migratetype == -1);
781 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
782 VM_BUG_ON_PAGE(bad_range(zone, page), page);
783
784 account_freepages(zone, 1 << order, migratetype);
785
786 while (order < MAX_PAGE_ORDER) {
787 int buddy_mt = migratetype;
788
789 if (compaction_capture(capc, page, order, migratetype)) {
790 account_freepages(zone, -(1 << order), migratetype);
791 return;
792 }
793
794 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
795 if (!buddy)
796 goto done_merging;
797
798 if (unlikely(order >= pageblock_order)) {
799 /*
800 * We want to prevent merge between freepages on pageblock
801 * without fallbacks and normal pageblock. Without this,
802 * pageblock isolation could cause incorrect freepage or CMA
803 * accounting or HIGHATOMIC accounting.
804 */
805 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
806
807 if (migratetype != buddy_mt &&
808 (!migratetype_is_mergeable(migratetype) ||
809 !migratetype_is_mergeable(buddy_mt)))
810 goto done_merging;
811 }
812
813 /*
814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 * merge with it and move up one order.
816 */
817 if (page_is_guard(buddy))
818 clear_page_guard(zone, buddy, order);
819 else
820 __del_page_from_free_list(buddy, zone, order, buddy_mt);
821
822 if (unlikely(buddy_mt != migratetype)) {
823 /*
824 * Match buddy type. This ensures that an
825 * expand() down the line puts the sub-blocks
826 * on the right freelists.
827 */
828 set_pageblock_migratetype(buddy, migratetype);
829 }
830
831 combined_pfn = buddy_pfn & pfn;
832 page = page + (combined_pfn - pfn);
833 pfn = combined_pfn;
834 order++;
835 }
836
837 done_merging:
838 set_buddy_order(page, order);
839
840 if (fpi_flags & FPI_TO_TAIL)
841 to_tail = true;
842 else if (is_shuffle_order(order))
843 to_tail = shuffle_pick_tail();
844 else
845 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
846
847 __add_to_free_list(page, zone, order, migratetype, to_tail);
848
849 /* Notify page reporting subsystem of freed page */
850 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
851 page_reporting_notify_free(order);
852 }
853
854 /*
855 * A bad page could be due to a number of fields. Instead of multiple branches,
856 * try and check multiple fields with one check. The caller must do a detailed
857 * check if necessary.
858 */
page_expected_state(struct page * page,unsigned long check_flags)859 static inline bool page_expected_state(struct page *page,
860 unsigned long check_flags)
861 {
862 if (unlikely(atomic_read(&page->_mapcount) != -1))
863 return false;
864
865 if (unlikely((unsigned long)page->mapping |
866 page_ref_count(page) |
867 #ifdef CONFIG_MEMCG
868 page->memcg_data |
869 #endif
870 #ifdef CONFIG_PAGE_POOL
871 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
872 #endif
873 (page->flags & check_flags)))
874 return false;
875
876 return true;
877 }
878
page_bad_reason(struct page * page,unsigned long flags)879 static const char *page_bad_reason(struct page *page, unsigned long flags)
880 {
881 const char *bad_reason = NULL;
882
883 if (unlikely(atomic_read(&page->_mapcount) != -1))
884 bad_reason = "nonzero mapcount";
885 if (unlikely(page->mapping != NULL))
886 bad_reason = "non-NULL mapping";
887 if (unlikely(page_ref_count(page) != 0))
888 bad_reason = "nonzero _refcount";
889 if (unlikely(page->flags & flags)) {
890 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
891 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
892 else
893 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
894 }
895 #ifdef CONFIG_MEMCG
896 if (unlikely(page->memcg_data))
897 bad_reason = "page still charged to cgroup";
898 #endif
899 #ifdef CONFIG_PAGE_POOL
900 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
901 bad_reason = "page_pool leak";
902 #endif
903 return bad_reason;
904 }
905
free_page_is_bad_report(struct page * page)906 static void free_page_is_bad_report(struct page *page)
907 {
908 bad_page(page,
909 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
910 }
911
free_page_is_bad(struct page * page)912 static inline bool free_page_is_bad(struct page *page)
913 {
914 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
915 return false;
916
917 /* Something has gone sideways, find it */
918 free_page_is_bad_report(page);
919 return true;
920 }
921
is_check_pages_enabled(void)922 static inline bool is_check_pages_enabled(void)
923 {
924 return static_branch_unlikely(&check_pages_enabled);
925 }
926
free_tail_page_prepare(struct page * head_page,struct page * page)927 static int free_tail_page_prepare(struct page *head_page, struct page *page)
928 {
929 struct folio *folio = (struct folio *)head_page;
930 int ret = 1;
931
932 /*
933 * We rely page->lru.next never has bit 0 set, unless the page
934 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
935 */
936 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
937
938 if (!is_check_pages_enabled()) {
939 ret = 0;
940 goto out;
941 }
942 switch (page - head_page) {
943 case 1:
944 /* the first tail page: these may be in place of ->mapping */
945 if (unlikely(folio_entire_mapcount(folio))) {
946 bad_page(page, "nonzero entire_mapcount");
947 goto out;
948 }
949 if (unlikely(folio_large_mapcount(folio))) {
950 bad_page(page, "nonzero large_mapcount");
951 goto out;
952 }
953 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
954 bad_page(page, "nonzero nr_pages_mapped");
955 goto out;
956 }
957 if (unlikely(atomic_read(&folio->_pincount))) {
958 bad_page(page, "nonzero pincount");
959 goto out;
960 }
961 break;
962 case 2:
963 /* the second tail page: deferred_list overlaps ->mapping */
964 if (unlikely(!list_empty(&folio->_deferred_list) &&
965 folio_test_partially_mapped(folio))) {
966 bad_page(page, "partially mapped folio on deferred list");
967 goto out;
968 }
969 break;
970 default:
971 if (page->mapping != TAIL_MAPPING) {
972 bad_page(page, "corrupted mapping in tail page");
973 goto out;
974 }
975 break;
976 }
977 if (unlikely(!PageTail(page))) {
978 bad_page(page, "PageTail not set");
979 goto out;
980 }
981 if (unlikely(compound_head(page) != head_page)) {
982 bad_page(page, "compound_head not consistent");
983 goto out;
984 }
985 ret = 0;
986 out:
987 page->mapping = NULL;
988 clear_compound_head(page);
989 return ret;
990 }
991
992 /*
993 * Skip KASAN memory poisoning when either:
994 *
995 * 1. For generic KASAN: deferred memory initialization has not yet completed.
996 * Tag-based KASAN modes skip pages freed via deferred memory initialization
997 * using page tags instead (see below).
998 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
999 * that error detection is disabled for accesses via the page address.
1000 *
1001 * Pages will have match-all tags in the following circumstances:
1002 *
1003 * 1. Pages are being initialized for the first time, including during deferred
1004 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1005 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1006 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1007 * 3. The allocation was excluded from being checked due to sampling,
1008 * see the call to kasan_unpoison_pages.
1009 *
1010 * Poisoning pages during deferred memory init will greatly lengthen the
1011 * process and cause problem in large memory systems as the deferred pages
1012 * initialization is done with interrupt disabled.
1013 *
1014 * Assuming that there will be no reference to those newly initialized
1015 * pages before they are ever allocated, this should have no effect on
1016 * KASAN memory tracking as the poison will be properly inserted at page
1017 * allocation time. The only corner case is when pages are allocated by
1018 * on-demand allocation and then freed again before the deferred pages
1019 * initialization is done, but this is not likely to happen.
1020 */
should_skip_kasan_poison(struct page * page)1021 static inline bool should_skip_kasan_poison(struct page *page)
1022 {
1023 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1024 return deferred_pages_enabled();
1025
1026 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1027 }
1028
kernel_init_pages(struct page * page,int numpages)1029 static void kernel_init_pages(struct page *page, int numpages)
1030 {
1031 int i;
1032
1033 /* s390's use of memset() could override KASAN redzones. */
1034 kasan_disable_current();
1035 for (i = 0; i < numpages; i++)
1036 clear_highpage_kasan_tagged(page + i);
1037 kasan_enable_current();
1038 }
1039
free_pages_prepare(struct page * page,unsigned int order)1040 __always_inline bool free_pages_prepare(struct page *page,
1041 unsigned int order)
1042 {
1043 int bad = 0;
1044 bool skip_kasan_poison = should_skip_kasan_poison(page);
1045 bool init = want_init_on_free();
1046 bool compound = PageCompound(page);
1047
1048 VM_BUG_ON_PAGE(PageTail(page), page);
1049
1050 trace_mm_page_free(page, order);
1051 kmsan_free_page(page, order);
1052
1053 if (memcg_kmem_online() && PageMemcgKmem(page))
1054 __memcg_kmem_uncharge_page(page, order);
1055
1056 if (unlikely(PageHWPoison(page)) && !order) {
1057 /* Do not let hwpoison pages hit pcplists/buddy */
1058 reset_page_owner(page, order);
1059 page_table_check_free(page, order);
1060 pgalloc_tag_sub(page, 1 << order);
1061
1062 /*
1063 * The page is isolated and accounted for.
1064 * Mark the codetag as empty to avoid accounting error
1065 * when the page is freed by unpoison_memory().
1066 */
1067 clear_page_tag_ref(page);
1068 return false;
1069 }
1070
1071 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1072
1073 /*
1074 * Check tail pages before head page information is cleared to
1075 * avoid checking PageCompound for order-0 pages.
1076 */
1077 if (unlikely(order)) {
1078 int i;
1079
1080 if (compound)
1081 page[1].flags &= ~PAGE_FLAGS_SECOND;
1082 for (i = 1; i < (1 << order); i++) {
1083 if (compound)
1084 bad += free_tail_page_prepare(page, page + i);
1085 if (is_check_pages_enabled()) {
1086 if (free_page_is_bad(page + i)) {
1087 bad++;
1088 continue;
1089 }
1090 }
1091 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1092 }
1093 }
1094 if (PageMappingFlags(page)) {
1095 if (PageAnon(page))
1096 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1097 page->mapping = NULL;
1098 }
1099 if (is_check_pages_enabled()) {
1100 if (free_page_is_bad(page))
1101 bad++;
1102 if (bad)
1103 return false;
1104 }
1105
1106 page_cpupid_reset_last(page);
1107 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1108 reset_page_owner(page, order);
1109 page_table_check_free(page, order);
1110 pgalloc_tag_sub(page, 1 << order);
1111
1112 if (!PageHighMem(page)) {
1113 debug_check_no_locks_freed(page_address(page),
1114 PAGE_SIZE << order);
1115 debug_check_no_obj_freed(page_address(page),
1116 PAGE_SIZE << order);
1117 }
1118
1119 kernel_poison_pages(page, 1 << order);
1120
1121 /*
1122 * As memory initialization might be integrated into KASAN,
1123 * KASAN poisoning and memory initialization code must be
1124 * kept together to avoid discrepancies in behavior.
1125 *
1126 * With hardware tag-based KASAN, memory tags must be set before the
1127 * page becomes unavailable via debug_pagealloc or arch_free_page.
1128 */
1129 if (!skip_kasan_poison) {
1130 kasan_poison_pages(page, order, init);
1131
1132 /* Memory is already initialized if KASAN did it internally. */
1133 if (kasan_has_integrated_init())
1134 init = false;
1135 }
1136 if (init)
1137 kernel_init_pages(page, 1 << order);
1138
1139 /*
1140 * arch_free_page() can make the page's contents inaccessible. s390
1141 * does this. So nothing which can access the page's contents should
1142 * happen after this.
1143 */
1144 arch_free_page(page, order);
1145
1146 debug_pagealloc_unmap_pages(page, 1 << order);
1147
1148 return true;
1149 }
1150
1151 /*
1152 * Frees a number of pages from the PCP lists
1153 * Assumes all pages on list are in same zone.
1154 * count is the number of pages to free.
1155 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1156 static void free_pcppages_bulk(struct zone *zone, int count,
1157 struct per_cpu_pages *pcp,
1158 int pindex)
1159 {
1160 unsigned long flags;
1161 unsigned int order;
1162 struct page *page;
1163
1164 /*
1165 * Ensure proper count is passed which otherwise would stuck in the
1166 * below while (list_empty(list)) loop.
1167 */
1168 count = min(pcp->count, count);
1169
1170 /* Ensure requested pindex is drained first. */
1171 pindex = pindex - 1;
1172
1173 spin_lock_irqsave(&zone->lock, flags);
1174
1175 while (count > 0) {
1176 struct list_head *list;
1177 int nr_pages;
1178
1179 /* Remove pages from lists in a round-robin fashion. */
1180 do {
1181 if (++pindex > NR_PCP_LISTS - 1)
1182 pindex = 0;
1183 list = &pcp->lists[pindex];
1184 } while (list_empty(list));
1185
1186 order = pindex_to_order(pindex);
1187 nr_pages = 1 << order;
1188 do {
1189 unsigned long pfn;
1190 int mt;
1191
1192 page = list_last_entry(list, struct page, pcp_list);
1193 pfn = page_to_pfn(page);
1194 mt = get_pfnblock_migratetype(page, pfn);
1195
1196 /* must delete to avoid corrupting pcp list */
1197 list_del(&page->pcp_list);
1198 count -= nr_pages;
1199 pcp->count -= nr_pages;
1200
1201 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1202 trace_mm_page_pcpu_drain(page, order, mt);
1203 } while (count > 0 && !list_empty(list));
1204 }
1205
1206 spin_unlock_irqrestore(&zone->lock, flags);
1207 }
1208
1209 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1210 static void split_large_buddy(struct zone *zone, struct page *page,
1211 unsigned long pfn, int order, fpi_t fpi)
1212 {
1213 unsigned long end = pfn + (1 << order);
1214
1215 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1216 /* Caller removed page from freelist, buddy info cleared! */
1217 VM_WARN_ON_ONCE(PageBuddy(page));
1218
1219 if (order > pageblock_order)
1220 order = pageblock_order;
1221
1222 while (pfn != end) {
1223 int mt = get_pfnblock_migratetype(page, pfn);
1224
1225 __free_one_page(page, pfn, zone, order, mt, fpi);
1226 pfn += 1 << order;
1227 page = pfn_to_page(pfn);
1228 }
1229 }
1230
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1231 static void free_one_page(struct zone *zone, struct page *page,
1232 unsigned long pfn, unsigned int order,
1233 fpi_t fpi_flags)
1234 {
1235 unsigned long flags;
1236
1237 spin_lock_irqsave(&zone->lock, flags);
1238 split_large_buddy(zone, page, pfn, order, fpi_flags);
1239 spin_unlock_irqrestore(&zone->lock, flags);
1240
1241 __count_vm_events(PGFREE, 1 << order);
1242 }
1243
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1244 static void __free_pages_ok(struct page *page, unsigned int order,
1245 fpi_t fpi_flags)
1246 {
1247 unsigned long pfn = page_to_pfn(page);
1248 struct zone *zone = page_zone(page);
1249
1250 if (free_pages_prepare(page, order))
1251 free_one_page(zone, page, pfn, order, fpi_flags);
1252 }
1253
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1254 void __meminit __free_pages_core(struct page *page, unsigned int order,
1255 enum meminit_context context)
1256 {
1257 unsigned int nr_pages = 1 << order;
1258 struct page *p = page;
1259 unsigned int loop;
1260
1261 /*
1262 * When initializing the memmap, __init_single_page() sets the refcount
1263 * of all pages to 1 ("allocated"/"not free"). We have to set the
1264 * refcount of all involved pages to 0.
1265 *
1266 * Note that hotplugged memory pages are initialized to PageOffline().
1267 * Pages freed from memblock might be marked as reserved.
1268 */
1269 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1270 unlikely(context == MEMINIT_HOTPLUG)) {
1271 for (loop = 0; loop < nr_pages; loop++, p++) {
1272 VM_WARN_ON_ONCE(PageReserved(p));
1273 __ClearPageOffline(p);
1274 set_page_count(p, 0);
1275 }
1276
1277 /*
1278 * Freeing the page with debug_pagealloc enabled will try to
1279 * unmap it; some archs don't like double-unmappings, so
1280 * map it first.
1281 */
1282 debug_pagealloc_map_pages(page, nr_pages);
1283 adjust_managed_page_count(page, nr_pages);
1284 } else {
1285 for (loop = 0; loop < nr_pages; loop++, p++) {
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
1288 }
1289
1290 /* memblock adjusts totalram_pages() manually. */
1291 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1292 }
1293
1294 if (page_contains_unaccepted(page, order)) {
1295 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1296 return;
1297
1298 accept_memory(page_to_phys(page), PAGE_SIZE << order);
1299 }
1300
1301 /*
1302 * Bypass PCP and place fresh pages right to the tail, primarily
1303 * relevant for memory onlining.
1304 */
1305 __free_pages_ok(page, order, FPI_TO_TAIL);
1306 }
1307
1308 /*
1309 * Check that the whole (or subset of) a pageblock given by the interval of
1310 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1311 * with the migration of free compaction scanner.
1312 *
1313 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1314 *
1315 * It's possible on some configurations to have a setup like node0 node1 node0
1316 * i.e. it's possible that all pages within a zones range of pages do not
1317 * belong to a single zone. We assume that a border between node0 and node1
1318 * can occur within a single pageblock, but not a node0 node1 node0
1319 * interleaving within a single pageblock. It is therefore sufficient to check
1320 * the first and last page of a pageblock and avoid checking each individual
1321 * page in a pageblock.
1322 *
1323 * Note: the function may return non-NULL struct page even for a page block
1324 * which contains a memory hole (i.e. there is no physical memory for a subset
1325 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1326 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1327 * even though the start pfn is online and valid. This should be safe most of
1328 * the time because struct pages are still initialized via init_unavailable_range()
1329 * and pfn walkers shouldn't touch any physical memory range for which they do
1330 * not recognize any specific metadata in struct pages.
1331 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1332 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1333 unsigned long end_pfn, struct zone *zone)
1334 {
1335 struct page *start_page;
1336 struct page *end_page;
1337
1338 /* end_pfn is one past the range we are checking */
1339 end_pfn--;
1340
1341 if (!pfn_valid(end_pfn))
1342 return NULL;
1343
1344 start_page = pfn_to_online_page(start_pfn);
1345 if (!start_page)
1346 return NULL;
1347
1348 if (page_zone(start_page) != zone)
1349 return NULL;
1350
1351 end_page = pfn_to_page(end_pfn);
1352
1353 /* This gives a shorter code than deriving page_zone(end_page) */
1354 if (page_zone_id(start_page) != page_zone_id(end_page))
1355 return NULL;
1356
1357 return start_page;
1358 }
1359
1360 /*
1361 * The order of subdivision here is critical for the IO subsystem.
1362 * Please do not alter this order without good reasons and regression
1363 * testing. Specifically, as large blocks of memory are subdivided,
1364 * the order in which smaller blocks are delivered depends on the order
1365 * they're subdivided in this function. This is the primary factor
1366 * influencing the order in which pages are delivered to the IO
1367 * subsystem according to empirical testing, and this is also justified
1368 * by considering the behavior of a buddy system containing a single
1369 * large block of memory acted on by a series of small allocations.
1370 * This behavior is a critical factor in sglist merging's success.
1371 *
1372 * -- nyc
1373 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1374 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1375 int high, int migratetype)
1376 {
1377 unsigned int size = 1 << high;
1378 unsigned int nr_added = 0;
1379
1380 while (high > low) {
1381 high--;
1382 size >>= 1;
1383 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1384
1385 /*
1386 * Mark as guard pages (or page), that will allow to
1387 * merge back to allocator when buddy will be freed.
1388 * Corresponding page table entries will not be touched,
1389 * pages will stay not present in virtual address space
1390 */
1391 if (set_page_guard(zone, &page[size], high))
1392 continue;
1393
1394 __add_to_free_list(&page[size], zone, high, migratetype, false);
1395 set_buddy_order(&page[size], high);
1396 nr_added += size;
1397 }
1398
1399 return nr_added;
1400 }
1401
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1402 static __always_inline void page_del_and_expand(struct zone *zone,
1403 struct page *page, int low,
1404 int high, int migratetype)
1405 {
1406 int nr_pages = 1 << high;
1407
1408 __del_page_from_free_list(page, zone, high, migratetype);
1409 nr_pages -= expand(zone, page, low, high, migratetype);
1410 account_freepages(zone, -nr_pages, migratetype);
1411 }
1412
check_new_page_bad(struct page * page)1413 static void check_new_page_bad(struct page *page)
1414 {
1415 if (unlikely(page->flags & __PG_HWPOISON)) {
1416 /* Don't complain about hwpoisoned pages */
1417 if (PageBuddy(page))
1418 __ClearPageBuddy(page);
1419 return;
1420 }
1421
1422 bad_page(page,
1423 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1424 }
1425
1426 /*
1427 * This page is about to be returned from the page allocator
1428 */
check_new_page(struct page * page)1429 static bool check_new_page(struct page *page)
1430 {
1431 if (likely(page_expected_state(page,
1432 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1433 return false;
1434
1435 check_new_page_bad(page);
1436 return true;
1437 }
1438
check_new_pages(struct page * page,unsigned int order)1439 static inline bool check_new_pages(struct page *page, unsigned int order)
1440 {
1441 if (is_check_pages_enabled()) {
1442 for (int i = 0; i < (1 << order); i++) {
1443 struct page *p = page + i;
1444
1445 if (check_new_page(p))
1446 return true;
1447 }
1448 }
1449
1450 return false;
1451 }
1452
should_skip_kasan_unpoison(gfp_t flags)1453 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1454 {
1455 /* Don't skip if a software KASAN mode is enabled. */
1456 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1457 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1458 return false;
1459
1460 /* Skip, if hardware tag-based KASAN is not enabled. */
1461 if (!kasan_hw_tags_enabled())
1462 return true;
1463
1464 /*
1465 * With hardware tag-based KASAN enabled, skip if this has been
1466 * requested via __GFP_SKIP_KASAN.
1467 */
1468 return flags & __GFP_SKIP_KASAN;
1469 }
1470
should_skip_init(gfp_t flags)1471 static inline bool should_skip_init(gfp_t flags)
1472 {
1473 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1474 if (!kasan_hw_tags_enabled())
1475 return false;
1476
1477 /* For hardware tag-based KASAN, skip if requested. */
1478 return (flags & __GFP_SKIP_ZERO);
1479 }
1480
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1481 inline void post_alloc_hook(struct page *page, unsigned int order,
1482 gfp_t gfp_flags)
1483 {
1484 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1485 !should_skip_init(gfp_flags);
1486 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1487 int i;
1488
1489 set_page_private(page, 0);
1490 set_page_refcounted(page);
1491
1492 arch_alloc_page(page, order);
1493 debug_pagealloc_map_pages(page, 1 << order);
1494
1495 /*
1496 * Page unpoisoning must happen before memory initialization.
1497 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1498 * allocations and the page unpoisoning code will complain.
1499 */
1500 kernel_unpoison_pages(page, 1 << order);
1501
1502 /*
1503 * As memory initialization might be integrated into KASAN,
1504 * KASAN unpoisoning and memory initializion code must be
1505 * kept together to avoid discrepancies in behavior.
1506 */
1507
1508 /*
1509 * If memory tags should be zeroed
1510 * (which happens only when memory should be initialized as well).
1511 */
1512 if (zero_tags) {
1513 /* Initialize both memory and memory tags. */
1514 for (i = 0; i != 1 << order; ++i)
1515 tag_clear_highpage(page + i);
1516
1517 /* Take note that memory was initialized by the loop above. */
1518 init = false;
1519 }
1520 if (!should_skip_kasan_unpoison(gfp_flags) &&
1521 kasan_unpoison_pages(page, order, init)) {
1522 /* Take note that memory was initialized by KASAN. */
1523 if (kasan_has_integrated_init())
1524 init = false;
1525 } else {
1526 /*
1527 * If memory tags have not been set by KASAN, reset the page
1528 * tags to ensure page_address() dereferencing does not fault.
1529 */
1530 for (i = 0; i != 1 << order; ++i)
1531 page_kasan_tag_reset(page + i);
1532 }
1533 /* If memory is still not initialized, initialize it now. */
1534 if (init)
1535 kernel_init_pages(page, 1 << order);
1536
1537 set_page_owner(page, order, gfp_flags);
1538 page_table_check_alloc(page, order);
1539 pgalloc_tag_add(page, current, 1 << order);
1540 }
1541
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1542 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1543 unsigned int alloc_flags)
1544 {
1545 post_alloc_hook(page, order, gfp_flags);
1546
1547 if (order && (gfp_flags & __GFP_COMP))
1548 prep_compound_page(page, order);
1549
1550 /*
1551 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1552 * allocate the page. The expectation is that the caller is taking
1553 * steps that will free more memory. The caller should avoid the page
1554 * being used for !PFMEMALLOC purposes.
1555 */
1556 if (alloc_flags & ALLOC_NO_WATERMARKS)
1557 set_page_pfmemalloc(page);
1558 else
1559 clear_page_pfmemalloc(page);
1560 }
1561
1562 /*
1563 * Go through the free lists for the given migratetype and remove
1564 * the smallest available page from the freelists
1565 */
1566 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1567 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1568 int migratetype)
1569 {
1570 unsigned int current_order;
1571 struct free_area *area;
1572 struct page *page;
1573
1574 /* Find a page of the appropriate size in the preferred list */
1575 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1576 area = &(zone->free_area[current_order]);
1577 page = get_page_from_free_area(area, migratetype);
1578 if (!page)
1579 continue;
1580
1581 page_del_and_expand(zone, page, order, current_order,
1582 migratetype);
1583 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1584 pcp_allowed_order(order) &&
1585 migratetype < MIGRATE_PCPTYPES);
1586 return page;
1587 }
1588
1589 return NULL;
1590 }
1591
1592
1593 /*
1594 * This array describes the order lists are fallen back to when
1595 * the free lists for the desirable migrate type are depleted
1596 *
1597 * The other migratetypes do not have fallbacks.
1598 */
1599 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1600 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1601 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1602 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1603 };
1604
1605 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1606 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1607 unsigned int order)
1608 {
1609 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1610 }
1611 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1612 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1613 unsigned int order) { return NULL; }
1614 #endif
1615
1616 /*
1617 * Change the type of a block and move all its free pages to that
1618 * type's freelist.
1619 */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1620 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1621 int old_mt, int new_mt)
1622 {
1623 struct page *page;
1624 unsigned long pfn, end_pfn;
1625 unsigned int order;
1626 int pages_moved = 0;
1627
1628 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1629 end_pfn = pageblock_end_pfn(start_pfn);
1630
1631 for (pfn = start_pfn; pfn < end_pfn;) {
1632 page = pfn_to_page(pfn);
1633 if (!PageBuddy(page)) {
1634 pfn++;
1635 continue;
1636 }
1637
1638 /* Make sure we are not inadvertently changing nodes */
1639 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1640 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1641
1642 order = buddy_order(page);
1643
1644 move_to_free_list(page, zone, order, old_mt, new_mt);
1645
1646 pfn += 1 << order;
1647 pages_moved += 1 << order;
1648 }
1649
1650 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1651
1652 return pages_moved;
1653 }
1654
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1655 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1656 unsigned long *start_pfn,
1657 int *num_free, int *num_movable)
1658 {
1659 unsigned long pfn, start, end;
1660
1661 pfn = page_to_pfn(page);
1662 start = pageblock_start_pfn(pfn);
1663 end = pageblock_end_pfn(pfn);
1664
1665 /*
1666 * The caller only has the lock for @zone, don't touch ranges
1667 * that straddle into other zones. While we could move part of
1668 * the range that's inside the zone, this call is usually
1669 * accompanied by other operations such as migratetype updates
1670 * which also should be locked.
1671 */
1672 if (!zone_spans_pfn(zone, start))
1673 return false;
1674 if (!zone_spans_pfn(zone, end - 1))
1675 return false;
1676
1677 *start_pfn = start;
1678
1679 if (num_free) {
1680 *num_free = 0;
1681 *num_movable = 0;
1682 for (pfn = start; pfn < end;) {
1683 page = pfn_to_page(pfn);
1684 if (PageBuddy(page)) {
1685 int nr = 1 << buddy_order(page);
1686
1687 *num_free += nr;
1688 pfn += nr;
1689 continue;
1690 }
1691 /*
1692 * We assume that pages that could be isolated for
1693 * migration are movable. But we don't actually try
1694 * isolating, as that would be expensive.
1695 */
1696 if (PageLRU(page) || __PageMovable(page))
1697 (*num_movable)++;
1698 pfn++;
1699 }
1700 }
1701
1702 return true;
1703 }
1704
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)1705 static int move_freepages_block(struct zone *zone, struct page *page,
1706 int old_mt, int new_mt)
1707 {
1708 unsigned long start_pfn;
1709
1710 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1711 return -1;
1712
1713 return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1714 }
1715
1716 #ifdef CONFIG_MEMORY_ISOLATION
1717 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)1718 static unsigned long find_large_buddy(unsigned long start_pfn)
1719 {
1720 int order = 0;
1721 struct page *page;
1722 unsigned long pfn = start_pfn;
1723
1724 while (!PageBuddy(page = pfn_to_page(pfn))) {
1725 /* Nothing found */
1726 if (++order > MAX_PAGE_ORDER)
1727 return start_pfn;
1728 pfn &= ~0UL << order;
1729 }
1730
1731 /*
1732 * Found a preceding buddy, but does it straddle?
1733 */
1734 if (pfn + (1 << buddy_order(page)) > start_pfn)
1735 return pfn;
1736
1737 /* Nothing found */
1738 return start_pfn;
1739 }
1740
1741 /**
1742 * move_freepages_block_isolate - move free pages in block for page isolation
1743 * @zone: the zone
1744 * @page: the pageblock page
1745 * @migratetype: migratetype to set on the pageblock
1746 *
1747 * This is similar to move_freepages_block(), but handles the special
1748 * case encountered in page isolation, where the block of interest
1749 * might be part of a larger buddy spanning multiple pageblocks.
1750 *
1751 * Unlike the regular page allocator path, which moves pages while
1752 * stealing buddies off the freelist, page isolation is interested in
1753 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1754 *
1755 * This function handles that. Straddling buddies are split into
1756 * individual pageblocks. Only the block of interest is moved.
1757 *
1758 * Returns %true if pages could be moved, %false otherwise.
1759 */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)1760 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1761 int migratetype)
1762 {
1763 unsigned long start_pfn, pfn;
1764
1765 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1766 return false;
1767
1768 /* No splits needed if buddies can't span multiple blocks */
1769 if (pageblock_order == MAX_PAGE_ORDER)
1770 goto move;
1771
1772 /* We're a tail block in a larger buddy */
1773 pfn = find_large_buddy(start_pfn);
1774 if (pfn != start_pfn) {
1775 struct page *buddy = pfn_to_page(pfn);
1776 int order = buddy_order(buddy);
1777
1778 del_page_from_free_list(buddy, zone, order,
1779 get_pfnblock_migratetype(buddy, pfn));
1780 set_pageblock_migratetype(page, migratetype);
1781 split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1782 return true;
1783 }
1784
1785 /* We're the starting block of a larger buddy */
1786 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1787 int order = buddy_order(page);
1788
1789 del_page_from_free_list(page, zone, order,
1790 get_pfnblock_migratetype(page, pfn));
1791 set_pageblock_migratetype(page, migratetype);
1792 split_large_buddy(zone, page, pfn, order, FPI_NONE);
1793 return true;
1794 }
1795 move:
1796 __move_freepages_block(zone, start_pfn,
1797 get_pfnblock_migratetype(page, start_pfn),
1798 migratetype);
1799 return true;
1800 }
1801 #endif /* CONFIG_MEMORY_ISOLATION */
1802
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1803 static void change_pageblock_range(struct page *pageblock_page,
1804 int start_order, int migratetype)
1805 {
1806 int nr_pageblocks = 1 << (start_order - pageblock_order);
1807
1808 while (nr_pageblocks--) {
1809 set_pageblock_migratetype(pageblock_page, migratetype);
1810 pageblock_page += pageblock_nr_pages;
1811 }
1812 }
1813
1814 /*
1815 * When we are falling back to another migratetype during allocation, try to
1816 * steal extra free pages from the same pageblocks to satisfy further
1817 * allocations, instead of polluting multiple pageblocks.
1818 *
1819 * If we are stealing a relatively large buddy page, it is likely there will
1820 * be more free pages in the pageblock, so try to steal them all. For
1821 * reclaimable and unmovable allocations, we steal regardless of page size,
1822 * as fragmentation caused by those allocations polluting movable pageblocks
1823 * is worse than movable allocations stealing from unmovable and reclaimable
1824 * pageblocks.
1825 */
can_steal_fallback(unsigned int order,int start_mt)1826 static bool can_steal_fallback(unsigned int order, int start_mt)
1827 {
1828 /*
1829 * Leaving this order check is intended, although there is
1830 * relaxed order check in next check. The reason is that
1831 * we can actually steal whole pageblock if this condition met,
1832 * but, below check doesn't guarantee it and that is just heuristic
1833 * so could be changed anytime.
1834 */
1835 if (order >= pageblock_order)
1836 return true;
1837
1838 if (order >= pageblock_order / 2 ||
1839 start_mt == MIGRATE_RECLAIMABLE ||
1840 start_mt == MIGRATE_UNMOVABLE ||
1841 page_group_by_mobility_disabled)
1842 return true;
1843
1844 return false;
1845 }
1846
boost_watermark(struct zone * zone)1847 static inline bool boost_watermark(struct zone *zone)
1848 {
1849 unsigned long max_boost;
1850
1851 if (!watermark_boost_factor)
1852 return false;
1853 /*
1854 * Don't bother in zones that are unlikely to produce results.
1855 * On small machines, including kdump capture kernels running
1856 * in a small area, boosting the watermark can cause an out of
1857 * memory situation immediately.
1858 */
1859 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1860 return false;
1861
1862 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1863 watermark_boost_factor, 10000);
1864
1865 /*
1866 * high watermark may be uninitialised if fragmentation occurs
1867 * very early in boot so do not boost. We do not fall
1868 * through and boost by pageblock_nr_pages as failing
1869 * allocations that early means that reclaim is not going
1870 * to help and it may even be impossible to reclaim the
1871 * boosted watermark resulting in a hang.
1872 */
1873 if (!max_boost)
1874 return false;
1875
1876 max_boost = max(pageblock_nr_pages, max_boost);
1877
1878 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1879 max_boost);
1880
1881 return true;
1882 }
1883
1884 /*
1885 * This function implements actual steal behaviour. If order is large enough, we
1886 * can claim the whole pageblock for the requested migratetype. If not, we check
1887 * the pageblock for constituent pages; if at least half of the pages are free
1888 * or compatible, we can still claim the whole block, so pages freed in the
1889 * future will be put on the correct free list. Otherwise, we isolate exactly
1890 * the order we need from the fallback block and leave its migratetype alone.
1891 */
1892 static struct page *
steal_suitable_fallback(struct zone * zone,struct page * page,int current_order,int order,int start_type,unsigned int alloc_flags,bool whole_block)1893 steal_suitable_fallback(struct zone *zone, struct page *page,
1894 int current_order, int order, int start_type,
1895 unsigned int alloc_flags, bool whole_block)
1896 {
1897 int free_pages, movable_pages, alike_pages;
1898 unsigned long start_pfn;
1899 int block_type;
1900
1901 block_type = get_pageblock_migratetype(page);
1902
1903 /*
1904 * This can happen due to races and we want to prevent broken
1905 * highatomic accounting.
1906 */
1907 if (is_migrate_highatomic(block_type))
1908 goto single_page;
1909
1910 /* Take ownership for orders >= pageblock_order */
1911 if (current_order >= pageblock_order) {
1912 unsigned int nr_added;
1913
1914 del_page_from_free_list(page, zone, current_order, block_type);
1915 change_pageblock_range(page, current_order, start_type);
1916 nr_added = expand(zone, page, order, current_order, start_type);
1917 account_freepages(zone, nr_added, start_type);
1918 return page;
1919 }
1920
1921 /*
1922 * Boost watermarks to increase reclaim pressure to reduce the
1923 * likelihood of future fallbacks. Wake kswapd now as the node
1924 * may be balanced overall and kswapd will not wake naturally.
1925 */
1926 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1927 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1928
1929 /* We are not allowed to try stealing from the whole block */
1930 if (!whole_block)
1931 goto single_page;
1932
1933 /* moving whole block can fail due to zone boundary conditions */
1934 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1935 &movable_pages))
1936 goto single_page;
1937
1938 /*
1939 * Determine how many pages are compatible with our allocation.
1940 * For movable allocation, it's the number of movable pages which
1941 * we just obtained. For other types it's a bit more tricky.
1942 */
1943 if (start_type == MIGRATE_MOVABLE) {
1944 alike_pages = movable_pages;
1945 } else {
1946 /*
1947 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1948 * to MOVABLE pageblock, consider all non-movable pages as
1949 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1950 * vice versa, be conservative since we can't distinguish the
1951 * exact migratetype of non-movable pages.
1952 */
1953 if (block_type == MIGRATE_MOVABLE)
1954 alike_pages = pageblock_nr_pages
1955 - (free_pages + movable_pages);
1956 else
1957 alike_pages = 0;
1958 }
1959 /*
1960 * If a sufficient number of pages in the block are either free or of
1961 * compatible migratability as our allocation, claim the whole block.
1962 */
1963 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1964 page_group_by_mobility_disabled) {
1965 __move_freepages_block(zone, start_pfn, block_type, start_type);
1966 return __rmqueue_smallest(zone, order, start_type);
1967 }
1968
1969 single_page:
1970 page_del_and_expand(zone, page, order, current_order, block_type);
1971 return page;
1972 }
1973
1974 /*
1975 * Check whether there is a suitable fallback freepage with requested order.
1976 * If only_stealable is true, this function returns fallback_mt only if
1977 * we can steal other freepages all together. This would help to reduce
1978 * fragmentation due to mixed migratetype pages in one pageblock.
1979 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1980 int find_suitable_fallback(struct free_area *area, unsigned int order,
1981 int migratetype, bool only_stealable, bool *can_steal)
1982 {
1983 int i;
1984 int fallback_mt;
1985
1986 if (area->nr_free == 0)
1987 return -1;
1988
1989 *can_steal = false;
1990 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1991 fallback_mt = fallbacks[migratetype][i];
1992 if (free_area_empty(area, fallback_mt))
1993 continue;
1994
1995 if (can_steal_fallback(order, migratetype))
1996 *can_steal = true;
1997
1998 if (!only_stealable)
1999 return fallback_mt;
2000
2001 if (*can_steal)
2002 return fallback_mt;
2003 }
2004
2005 return -1;
2006 }
2007
2008 /*
2009 * Reserve the pageblock(s) surrounding an allocation request for
2010 * exclusive use of high-order atomic allocations if there are no
2011 * empty page blocks that contain a page with a suitable order
2012 */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)2013 static void reserve_highatomic_pageblock(struct page *page, int order,
2014 struct zone *zone)
2015 {
2016 int mt;
2017 unsigned long max_managed, flags;
2018
2019 /*
2020 * The number reserved as: minimum is 1 pageblock, maximum is
2021 * roughly 1% of a zone. But if 1% of a zone falls below a
2022 * pageblock size, then don't reserve any pageblocks.
2023 * Check is race-prone but harmless.
2024 */
2025 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2026 return;
2027 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2028 if (zone->nr_reserved_highatomic >= max_managed)
2029 return;
2030
2031 spin_lock_irqsave(&zone->lock, flags);
2032
2033 /* Recheck the nr_reserved_highatomic limit under the lock */
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 goto out_unlock;
2036
2037 /* Yoink! */
2038 mt = get_pageblock_migratetype(page);
2039 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2040 if (!migratetype_is_mergeable(mt))
2041 goto out_unlock;
2042
2043 if (order < pageblock_order) {
2044 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2045 goto out_unlock;
2046 zone->nr_reserved_highatomic += pageblock_nr_pages;
2047 } else {
2048 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2049 zone->nr_reserved_highatomic += 1 << order;
2050 }
2051
2052 out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055
2056 /*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2061 *
2062 * If @force is true, try to unreserve pageblocks even though highatomic
2063 * pageblock is exhausted.
2064 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
2067 {
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
2074 int ret;
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2077 ac->nodemask) {
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < NR_PAGE_ORDERS; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089 int mt;
2090
2091 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2092 if (!page)
2093 continue;
2094
2095 mt = get_pageblock_migratetype(page);
2096 /*
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop although we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
2102 */
2103 if (is_migrate_highatomic(mt)) {
2104 unsigned long size;
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 size = max(pageblock_nr_pages, 1UL << order);
2113 size = min(size, zone->nr_reserved_highatomic);
2114 zone->nr_reserved_highatomic -= size;
2115 }
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 if (order < pageblock_order)
2127 ret = move_freepages_block(zone, page, mt,
2128 ac->migratetype);
2129 else {
2130 move_to_free_list(page, zone, order, mt,
2131 ac->migratetype);
2132 change_pageblock_range(page, order,
2133 ac->migratetype);
2134 ret = 1;
2135 }
2136 /*
2137 * Reserving the block(s) already succeeded,
2138 * so this should not fail on zone boundaries.
2139 */
2140 WARN_ON_ONCE(ret == -1);
2141 if (ret > 0) {
2142 spin_unlock_irqrestore(&zone->lock, flags);
2143 return ret;
2144 }
2145 }
2146 spin_unlock_irqrestore(&zone->lock, flags);
2147 }
2148
2149 return false;
2150 }
2151
2152 /*
2153 * Try finding a free buddy page on the fallback list and put it on the free
2154 * list of requested migratetype, possibly along with other pages from the same
2155 * block, depending on fragmentation avoidance heuristics. Returns true if
2156 * fallback was found so that __rmqueue_smallest() can grab it.
2157 *
2158 * The use of signed ints for order and current_order is a deliberate
2159 * deviation from the rest of this file, to make the for loop
2160 * condition simpler.
2161 */
2162 static __always_inline struct page *
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2163 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2164 unsigned int alloc_flags)
2165 {
2166 struct free_area *area;
2167 int current_order;
2168 int min_order = order;
2169 struct page *page;
2170 int fallback_mt;
2171 bool can_steal;
2172
2173 /*
2174 * Do not steal pages from freelists belonging to other pageblocks
2175 * i.e. orders < pageblock_order. If there are no local zones free,
2176 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2177 */
2178 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2179 min_order = pageblock_order;
2180
2181 /*
2182 * Find the largest available free page in the other list. This roughly
2183 * approximates finding the pageblock with the most free pages, which
2184 * would be too costly to do exactly.
2185 */
2186 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2187 --current_order) {
2188 area = &(zone->free_area[current_order]);
2189 fallback_mt = find_suitable_fallback(area, current_order,
2190 start_migratetype, false, &can_steal);
2191 if (fallback_mt == -1)
2192 continue;
2193
2194 /*
2195 * We cannot steal all free pages from the pageblock and the
2196 * requested migratetype is movable. In that case it's better to
2197 * steal and split the smallest available page instead of the
2198 * largest available page, because even if the next movable
2199 * allocation falls back into a different pageblock than this
2200 * one, it won't cause permanent fragmentation.
2201 */
2202 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2203 && current_order > order)
2204 goto find_smallest;
2205
2206 goto do_steal;
2207 }
2208
2209 return NULL;
2210
2211 find_smallest:
2212 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2213 area = &(zone->free_area[current_order]);
2214 fallback_mt = find_suitable_fallback(area, current_order,
2215 start_migratetype, false, &can_steal);
2216 if (fallback_mt != -1)
2217 break;
2218 }
2219
2220 /*
2221 * This should not happen - we already found a suitable fallback
2222 * when looking for the largest page.
2223 */
2224 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2225
2226 do_steal:
2227 page = get_page_from_free_area(area, fallback_mt);
2228
2229 /* take off list, maybe claim block, expand remainder */
2230 page = steal_suitable_fallback(zone, page, current_order, order,
2231 start_migratetype, alloc_flags, can_steal);
2232
2233 trace_mm_page_alloc_extfrag(page, order, current_order,
2234 start_migratetype, fallback_mt);
2235
2236 return page;
2237 }
2238
2239 /*
2240 * Do the hard work of removing an element from the buddy allocator.
2241 * Call me with the zone->lock already held.
2242 */
2243 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2244 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2245 unsigned int alloc_flags)
2246 {
2247 struct page *page;
2248
2249 if (IS_ENABLED(CONFIG_CMA)) {
2250 /*
2251 * Balance movable allocations between regular and CMA areas by
2252 * allocating from CMA when over half of the zone's free memory
2253 * is in the CMA area.
2254 */
2255 if (alloc_flags & ALLOC_CMA &&
2256 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2257 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2258 page = __rmqueue_cma_fallback(zone, order);
2259 if (page)
2260 return page;
2261 }
2262 }
2263
2264 page = __rmqueue_smallest(zone, order, migratetype);
2265 if (unlikely(!page)) {
2266 if (alloc_flags & ALLOC_CMA)
2267 page = __rmqueue_cma_fallback(zone, order);
2268
2269 if (!page)
2270 page = __rmqueue_fallback(zone, order, migratetype,
2271 alloc_flags);
2272 }
2273 return page;
2274 }
2275
2276 /*
2277 * Obtain a specified number of elements from the buddy allocator, all under
2278 * a single hold of the lock, for efficiency. Add them to the supplied list.
2279 * Returns the number of new pages which were placed at *list.
2280 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2281 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2282 unsigned long count, struct list_head *list,
2283 int migratetype, unsigned int alloc_flags)
2284 {
2285 unsigned long flags;
2286 int i;
2287
2288 spin_lock_irqsave(&zone->lock, flags);
2289 for (i = 0; i < count; ++i) {
2290 struct page *page = __rmqueue(zone, order, migratetype,
2291 alloc_flags);
2292 if (unlikely(page == NULL))
2293 break;
2294
2295 /*
2296 * Split buddy pages returned by expand() are received here in
2297 * physical page order. The page is added to the tail of
2298 * caller's list. From the callers perspective, the linked list
2299 * is ordered by page number under some conditions. This is
2300 * useful for IO devices that can forward direction from the
2301 * head, thus also in the physical page order. This is useful
2302 * for IO devices that can merge IO requests if the physical
2303 * pages are ordered properly.
2304 */
2305 list_add_tail(&page->pcp_list, list);
2306 }
2307 spin_unlock_irqrestore(&zone->lock, flags);
2308
2309 return i;
2310 }
2311
2312 /*
2313 * Called from the vmstat counter updater to decay the PCP high.
2314 * Return whether there are addition works to do.
2315 */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2316 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2317 {
2318 int high_min, to_drain, batch;
2319 int todo = 0;
2320
2321 high_min = READ_ONCE(pcp->high_min);
2322 batch = READ_ONCE(pcp->batch);
2323 /*
2324 * Decrease pcp->high periodically to try to free possible
2325 * idle PCP pages. And, avoid to free too many pages to
2326 * control latency. This caps pcp->high decrement too.
2327 */
2328 if (pcp->high > high_min) {
2329 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2330 pcp->high - (pcp->high >> 3), high_min);
2331 if (pcp->high > high_min)
2332 todo++;
2333 }
2334
2335 to_drain = pcp->count - pcp->high;
2336 if (to_drain > 0) {
2337 spin_lock(&pcp->lock);
2338 free_pcppages_bulk(zone, to_drain, pcp, 0);
2339 spin_unlock(&pcp->lock);
2340 todo++;
2341 }
2342
2343 return todo;
2344 }
2345
2346 #ifdef CONFIG_NUMA
2347 /*
2348 * Called from the vmstat counter updater to drain pagesets of this
2349 * currently executing processor on remote nodes after they have
2350 * expired.
2351 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2352 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2353 {
2354 int to_drain, batch;
2355
2356 batch = READ_ONCE(pcp->batch);
2357 to_drain = min(pcp->count, batch);
2358 if (to_drain > 0) {
2359 spin_lock(&pcp->lock);
2360 free_pcppages_bulk(zone, to_drain, pcp, 0);
2361 spin_unlock(&pcp->lock);
2362 }
2363 }
2364 #endif
2365
2366 /*
2367 * Drain pcplists of the indicated processor and zone.
2368 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2369 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2370 {
2371 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2372 int count;
2373
2374 do {
2375 spin_lock(&pcp->lock);
2376 count = pcp->count;
2377 if (count) {
2378 int to_drain = min(count,
2379 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2380
2381 free_pcppages_bulk(zone, to_drain, pcp, 0);
2382 count -= to_drain;
2383 }
2384 spin_unlock(&pcp->lock);
2385 } while (count);
2386 }
2387
2388 /*
2389 * Drain pcplists of all zones on the indicated processor.
2390 */
drain_pages(unsigned int cpu)2391 static void drain_pages(unsigned int cpu)
2392 {
2393 struct zone *zone;
2394
2395 for_each_populated_zone(zone) {
2396 drain_pages_zone(cpu, zone);
2397 }
2398 }
2399
2400 /*
2401 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2402 */
drain_local_pages(struct zone * zone)2403 void drain_local_pages(struct zone *zone)
2404 {
2405 int cpu = smp_processor_id();
2406
2407 if (zone)
2408 drain_pages_zone(cpu, zone);
2409 else
2410 drain_pages(cpu);
2411 }
2412
2413 /*
2414 * The implementation of drain_all_pages(), exposing an extra parameter to
2415 * drain on all cpus.
2416 *
2417 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2418 * not empty. The check for non-emptiness can however race with a free to
2419 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2420 * that need the guarantee that every CPU has drained can disable the
2421 * optimizing racy check.
2422 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2423 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2424 {
2425 int cpu;
2426
2427 /*
2428 * Allocate in the BSS so we won't require allocation in
2429 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2430 */
2431 static cpumask_t cpus_with_pcps;
2432
2433 /*
2434 * Do not drain if one is already in progress unless it's specific to
2435 * a zone. Such callers are primarily CMA and memory hotplug and need
2436 * the drain to be complete when the call returns.
2437 */
2438 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2439 if (!zone)
2440 return;
2441 mutex_lock(&pcpu_drain_mutex);
2442 }
2443
2444 /*
2445 * We don't care about racing with CPU hotplug event
2446 * as offline notification will cause the notified
2447 * cpu to drain that CPU pcps and on_each_cpu_mask
2448 * disables preemption as part of its processing
2449 */
2450 for_each_online_cpu(cpu) {
2451 struct per_cpu_pages *pcp;
2452 struct zone *z;
2453 bool has_pcps = false;
2454
2455 if (force_all_cpus) {
2456 /*
2457 * The pcp.count check is racy, some callers need a
2458 * guarantee that no cpu is missed.
2459 */
2460 has_pcps = true;
2461 } else if (zone) {
2462 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2463 if (pcp->count)
2464 has_pcps = true;
2465 } else {
2466 for_each_populated_zone(z) {
2467 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2468 if (pcp->count) {
2469 has_pcps = true;
2470 break;
2471 }
2472 }
2473 }
2474
2475 if (has_pcps)
2476 cpumask_set_cpu(cpu, &cpus_with_pcps);
2477 else
2478 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2479 }
2480
2481 for_each_cpu(cpu, &cpus_with_pcps) {
2482 if (zone)
2483 drain_pages_zone(cpu, zone);
2484 else
2485 drain_pages(cpu);
2486 }
2487
2488 mutex_unlock(&pcpu_drain_mutex);
2489 }
2490
2491 /*
2492 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2493 *
2494 * When zone parameter is non-NULL, spill just the single zone's pages.
2495 */
drain_all_pages(struct zone * zone)2496 void drain_all_pages(struct zone *zone)
2497 {
2498 __drain_all_pages(zone, false);
2499 }
2500
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2501 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2502 {
2503 int min_nr_free, max_nr_free;
2504
2505 /* Free as much as possible if batch freeing high-order pages. */
2506 if (unlikely(free_high))
2507 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2508
2509 /* Check for PCP disabled or boot pageset */
2510 if (unlikely(high < batch))
2511 return 1;
2512
2513 /* Leave at least pcp->batch pages on the list */
2514 min_nr_free = batch;
2515 max_nr_free = high - batch;
2516
2517 /*
2518 * Increase the batch number to the number of the consecutive
2519 * freed pages to reduce zone lock contention.
2520 */
2521 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2522
2523 return batch;
2524 }
2525
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2526 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2527 int batch, bool free_high)
2528 {
2529 int high, high_min, high_max;
2530
2531 high_min = READ_ONCE(pcp->high_min);
2532 high_max = READ_ONCE(pcp->high_max);
2533 high = pcp->high = clamp(pcp->high, high_min, high_max);
2534
2535 if (unlikely(!high))
2536 return 0;
2537
2538 if (unlikely(free_high)) {
2539 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2540 high_min);
2541 return 0;
2542 }
2543
2544 /*
2545 * If reclaim is active, limit the number of pages that can be
2546 * stored on pcp lists
2547 */
2548 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2549 int free_count = max_t(int, pcp->free_count, batch);
2550
2551 pcp->high = max(high - free_count, high_min);
2552 return min(batch << 2, pcp->high);
2553 }
2554
2555 if (high_min == high_max)
2556 return high;
2557
2558 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2559 int free_count = max_t(int, pcp->free_count, batch);
2560
2561 pcp->high = max(high - free_count, high_min);
2562 high = max(pcp->count, high_min);
2563 } else if (pcp->count >= high) {
2564 int need_high = pcp->free_count + batch;
2565
2566 /* pcp->high should be large enough to hold batch freed pages */
2567 if (pcp->high < need_high)
2568 pcp->high = clamp(need_high, high_min, high_max);
2569 }
2570
2571 return high;
2572 }
2573
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2574 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2575 struct page *page, int migratetype,
2576 unsigned int order)
2577 {
2578 int high, batch;
2579 int pindex;
2580 bool free_high = false;
2581
2582 /*
2583 * On freeing, reduce the number of pages that are batch allocated.
2584 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2585 * allocations.
2586 */
2587 pcp->alloc_factor >>= 1;
2588 __count_vm_events(PGFREE, 1 << order);
2589 pindex = order_to_pindex(migratetype, order);
2590 list_add(&page->pcp_list, &pcp->lists[pindex]);
2591 pcp->count += 1 << order;
2592
2593 batch = READ_ONCE(pcp->batch);
2594 /*
2595 * As high-order pages other than THP's stored on PCP can contribute
2596 * to fragmentation, limit the number stored when PCP is heavily
2597 * freeing without allocation. The remainder after bulk freeing
2598 * stops will be drained from vmstat refresh context.
2599 */
2600 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2601 free_high = (pcp->free_count >= batch &&
2602 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2603 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2604 pcp->count >= READ_ONCE(batch)));
2605 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2606 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2607 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2608 }
2609 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2610 pcp->free_count += (1 << order);
2611 high = nr_pcp_high(pcp, zone, batch, free_high);
2612 if (pcp->count >= high) {
2613 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2614 pcp, pindex);
2615 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2616 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2617 ZONE_MOVABLE, 0))
2618 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2619 }
2620 }
2621
2622 /*
2623 * Free a pcp page
2624 */
free_unref_page(struct page * page,unsigned int order)2625 void free_unref_page(struct page *page, unsigned int order)
2626 {
2627 unsigned long __maybe_unused UP_flags;
2628 struct per_cpu_pages *pcp;
2629 struct zone *zone;
2630 unsigned long pfn = page_to_pfn(page);
2631 int migratetype;
2632
2633 if (!pcp_allowed_order(order)) {
2634 __free_pages_ok(page, order, FPI_NONE);
2635 return;
2636 }
2637
2638 if (!free_pages_prepare(page, order))
2639 return;
2640
2641 /*
2642 * We only track unmovable, reclaimable and movable on pcp lists.
2643 * Place ISOLATE pages on the isolated list because they are being
2644 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2645 * get those areas back if necessary. Otherwise, we may have to free
2646 * excessively into the page allocator
2647 */
2648 migratetype = get_pfnblock_migratetype(page, pfn);
2649 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2650 if (unlikely(is_migrate_isolate(migratetype))) {
2651 free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2652 return;
2653 }
2654 migratetype = MIGRATE_MOVABLE;
2655 }
2656
2657 zone = page_zone(page);
2658 pcp_trylock_prepare(UP_flags);
2659 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2660 if (pcp) {
2661 free_unref_page_commit(zone, pcp, page, migratetype, order);
2662 pcp_spin_unlock(pcp);
2663 } else {
2664 free_one_page(zone, page, pfn, order, FPI_NONE);
2665 }
2666 pcp_trylock_finish(UP_flags);
2667 }
2668
2669 /*
2670 * Free a batch of folios
2671 */
free_unref_folios(struct folio_batch * folios)2672 void free_unref_folios(struct folio_batch *folios)
2673 {
2674 unsigned long __maybe_unused UP_flags;
2675 struct per_cpu_pages *pcp = NULL;
2676 struct zone *locked_zone = NULL;
2677 int i, j;
2678
2679 /* Prepare folios for freeing */
2680 for (i = 0, j = 0; i < folios->nr; i++) {
2681 struct folio *folio = folios->folios[i];
2682 unsigned long pfn = folio_pfn(folio);
2683 unsigned int order = folio_order(folio);
2684
2685 folio_undo_large_rmappable(folio);
2686 if (!free_pages_prepare(&folio->page, order))
2687 continue;
2688 /*
2689 * Free orders not handled on the PCP directly to the
2690 * allocator.
2691 */
2692 if (!pcp_allowed_order(order)) {
2693 free_one_page(folio_zone(folio), &folio->page,
2694 pfn, order, FPI_NONE);
2695 continue;
2696 }
2697 folio->private = (void *)(unsigned long)order;
2698 if (j != i)
2699 folios->folios[j] = folio;
2700 j++;
2701 }
2702 folios->nr = j;
2703
2704 for (i = 0; i < folios->nr; i++) {
2705 struct folio *folio = folios->folios[i];
2706 struct zone *zone = folio_zone(folio);
2707 unsigned long pfn = folio_pfn(folio);
2708 unsigned int order = (unsigned long)folio->private;
2709 int migratetype;
2710
2711 folio->private = NULL;
2712 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2713
2714 /* Different zone requires a different pcp lock */
2715 if (zone != locked_zone ||
2716 is_migrate_isolate(migratetype)) {
2717 if (pcp) {
2718 pcp_spin_unlock(pcp);
2719 pcp_trylock_finish(UP_flags);
2720 locked_zone = NULL;
2721 pcp = NULL;
2722 }
2723
2724 /*
2725 * Free isolated pages directly to the
2726 * allocator, see comment in free_unref_page.
2727 */
2728 if (is_migrate_isolate(migratetype)) {
2729 free_one_page(zone, &folio->page, pfn,
2730 order, FPI_NONE);
2731 continue;
2732 }
2733
2734 /*
2735 * trylock is necessary as folios may be getting freed
2736 * from IRQ or SoftIRQ context after an IO completion.
2737 */
2738 pcp_trylock_prepare(UP_flags);
2739 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2740 if (unlikely(!pcp)) {
2741 pcp_trylock_finish(UP_flags);
2742 free_one_page(zone, &folio->page, pfn,
2743 order, FPI_NONE);
2744 continue;
2745 }
2746 locked_zone = zone;
2747 }
2748
2749 /*
2750 * Non-isolated types over MIGRATE_PCPTYPES get added
2751 * to the MIGRATE_MOVABLE pcp list.
2752 */
2753 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2754 migratetype = MIGRATE_MOVABLE;
2755
2756 trace_mm_page_free_batched(&folio->page);
2757 free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2758 order);
2759 }
2760
2761 if (pcp) {
2762 pcp_spin_unlock(pcp);
2763 pcp_trylock_finish(UP_flags);
2764 }
2765 folio_batch_reinit(folios);
2766 }
2767
2768 /*
2769 * split_page takes a non-compound higher-order page, and splits it into
2770 * n (1<<order) sub-pages: page[0..n]
2771 * Each sub-page must be freed individually.
2772 *
2773 * Note: this is probably too low level an operation for use in drivers.
2774 * Please consult with lkml before using this in your driver.
2775 */
split_page(struct page * page,unsigned int order)2776 void split_page(struct page *page, unsigned int order)
2777 {
2778 int i;
2779
2780 VM_BUG_ON_PAGE(PageCompound(page), page);
2781 VM_BUG_ON_PAGE(!page_count(page), page);
2782
2783 for (i = 1; i < (1 << order); i++)
2784 set_page_refcounted(page + i);
2785 split_page_owner(page, order, 0);
2786 pgalloc_tag_split(page_folio(page), order, 0);
2787 split_page_memcg(page, order, 0);
2788 }
2789 EXPORT_SYMBOL_GPL(split_page);
2790
__isolate_free_page(struct page * page,unsigned int order)2791 int __isolate_free_page(struct page *page, unsigned int order)
2792 {
2793 struct zone *zone = page_zone(page);
2794 int mt = get_pageblock_migratetype(page);
2795
2796 if (!is_migrate_isolate(mt)) {
2797 unsigned long watermark;
2798 /*
2799 * Obey watermarks as if the page was being allocated. We can
2800 * emulate a high-order watermark check with a raised order-0
2801 * watermark, because we already know our high-order page
2802 * exists.
2803 */
2804 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2805 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2806 return 0;
2807 }
2808
2809 del_page_from_free_list(page, zone, order, mt);
2810
2811 /*
2812 * Set the pageblock if the isolated page is at least half of a
2813 * pageblock
2814 */
2815 if (order >= pageblock_order - 1) {
2816 struct page *endpage = page + (1 << order) - 1;
2817 for (; page < endpage; page += pageblock_nr_pages) {
2818 int mt = get_pageblock_migratetype(page);
2819 /*
2820 * Only change normal pageblocks (i.e., they can merge
2821 * with others)
2822 */
2823 if (migratetype_is_mergeable(mt))
2824 move_freepages_block(zone, page, mt,
2825 MIGRATE_MOVABLE);
2826 }
2827 }
2828
2829 return 1UL << order;
2830 }
2831
2832 /**
2833 * __putback_isolated_page - Return a now-isolated page back where we got it
2834 * @page: Page that was isolated
2835 * @order: Order of the isolated page
2836 * @mt: The page's pageblock's migratetype
2837 *
2838 * This function is meant to return a page pulled from the free lists via
2839 * __isolate_free_page back to the free lists they were pulled from.
2840 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2841 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2842 {
2843 struct zone *zone = page_zone(page);
2844
2845 /* zone lock should be held when this function is called */
2846 lockdep_assert_held(&zone->lock);
2847
2848 /* Return isolated page to tail of freelist. */
2849 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2850 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2851 }
2852
2853 /*
2854 * Update NUMA hit/miss statistics
2855 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2856 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2857 long nr_account)
2858 {
2859 #ifdef CONFIG_NUMA
2860 enum numa_stat_item local_stat = NUMA_LOCAL;
2861
2862 /* skip numa counters update if numa stats is disabled */
2863 if (!static_branch_likely(&vm_numa_stat_key))
2864 return;
2865
2866 if (zone_to_nid(z) != numa_node_id())
2867 local_stat = NUMA_OTHER;
2868
2869 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2870 __count_numa_events(z, NUMA_HIT, nr_account);
2871 else {
2872 __count_numa_events(z, NUMA_MISS, nr_account);
2873 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2874 }
2875 __count_numa_events(z, local_stat, nr_account);
2876 #endif
2877 }
2878
2879 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2880 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2881 unsigned int order, unsigned int alloc_flags,
2882 int migratetype)
2883 {
2884 struct page *page;
2885 unsigned long flags;
2886
2887 do {
2888 page = NULL;
2889 spin_lock_irqsave(&zone->lock, flags);
2890 if (alloc_flags & ALLOC_HIGHATOMIC)
2891 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2892 if (!page) {
2893 page = __rmqueue(zone, order, migratetype, alloc_flags);
2894
2895 /*
2896 * If the allocation fails, allow OOM handling and
2897 * order-0 (atomic) allocs access to HIGHATOMIC
2898 * reserves as failing now is worse than failing a
2899 * high-order atomic allocation in the future.
2900 */
2901 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2902 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2903
2904 if (!page) {
2905 spin_unlock_irqrestore(&zone->lock, flags);
2906 return NULL;
2907 }
2908 }
2909 spin_unlock_irqrestore(&zone->lock, flags);
2910 } while (check_new_pages(page, order));
2911
2912 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2913 zone_statistics(preferred_zone, zone, 1);
2914
2915 return page;
2916 }
2917
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)2918 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2919 {
2920 int high, base_batch, batch, max_nr_alloc;
2921 int high_max, high_min;
2922
2923 base_batch = READ_ONCE(pcp->batch);
2924 high_min = READ_ONCE(pcp->high_min);
2925 high_max = READ_ONCE(pcp->high_max);
2926 high = pcp->high = clamp(pcp->high, high_min, high_max);
2927
2928 /* Check for PCP disabled or boot pageset */
2929 if (unlikely(high < base_batch))
2930 return 1;
2931
2932 if (order)
2933 batch = base_batch;
2934 else
2935 batch = (base_batch << pcp->alloc_factor);
2936
2937 /*
2938 * If we had larger pcp->high, we could avoid to allocate from
2939 * zone.
2940 */
2941 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2942 high = pcp->high = min(high + batch, high_max);
2943
2944 if (!order) {
2945 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2946 /*
2947 * Double the number of pages allocated each time there is
2948 * subsequent allocation of order-0 pages without any freeing.
2949 */
2950 if (batch <= max_nr_alloc &&
2951 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2952 pcp->alloc_factor++;
2953 batch = min(batch, max_nr_alloc);
2954 }
2955
2956 /*
2957 * Scale batch relative to order if batch implies free pages
2958 * can be stored on the PCP. Batch can be 1 for small zones or
2959 * for boot pagesets which should never store free pages as
2960 * the pages may belong to arbitrary zones.
2961 */
2962 if (batch > 1)
2963 batch = max(batch >> order, 2);
2964
2965 return batch;
2966 }
2967
2968 /* Remove page from the per-cpu list, caller must protect the list */
2969 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2970 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2971 int migratetype,
2972 unsigned int alloc_flags,
2973 struct per_cpu_pages *pcp,
2974 struct list_head *list)
2975 {
2976 struct page *page;
2977
2978 do {
2979 if (list_empty(list)) {
2980 int batch = nr_pcp_alloc(pcp, zone, order);
2981 int alloced;
2982
2983 alloced = rmqueue_bulk(zone, order,
2984 batch, list,
2985 migratetype, alloc_flags);
2986
2987 pcp->count += alloced << order;
2988 if (unlikely(list_empty(list)))
2989 return NULL;
2990 }
2991
2992 page = list_first_entry(list, struct page, pcp_list);
2993 list_del(&page->pcp_list);
2994 pcp->count -= 1 << order;
2995 } while (check_new_pages(page, order));
2996
2997 return page;
2998 }
2999
3000 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3001 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3002 struct zone *zone, unsigned int order,
3003 int migratetype, unsigned int alloc_flags)
3004 {
3005 struct per_cpu_pages *pcp;
3006 struct list_head *list;
3007 struct page *page;
3008 unsigned long __maybe_unused UP_flags;
3009
3010 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3011 pcp_trylock_prepare(UP_flags);
3012 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3013 if (!pcp) {
3014 pcp_trylock_finish(UP_flags);
3015 return NULL;
3016 }
3017
3018 /*
3019 * On allocation, reduce the number of pages that are batch freed.
3020 * See nr_pcp_free() where free_factor is increased for subsequent
3021 * frees.
3022 */
3023 pcp->free_count >>= 1;
3024 list = &pcp->lists[order_to_pindex(migratetype, order)];
3025 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3026 pcp_spin_unlock(pcp);
3027 pcp_trylock_finish(UP_flags);
3028 if (page) {
3029 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3030 zone_statistics(preferred_zone, zone, 1);
3031 }
3032 return page;
3033 }
3034
3035 /*
3036 * Allocate a page from the given zone.
3037 * Use pcplists for THP or "cheap" high-order allocations.
3038 */
3039
3040 /*
3041 * Do not instrument rmqueue() with KMSAN. This function may call
3042 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3043 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3044 * may call rmqueue() again, which will result in a deadlock.
3045 */
3046 __no_sanitize_memory
3047 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3048 struct page *rmqueue(struct zone *preferred_zone,
3049 struct zone *zone, unsigned int order,
3050 gfp_t gfp_flags, unsigned int alloc_flags,
3051 int migratetype)
3052 {
3053 struct page *page;
3054
3055 if (likely(pcp_allowed_order(order))) {
3056 page = rmqueue_pcplist(preferred_zone, zone, order,
3057 migratetype, alloc_flags);
3058 if (likely(page))
3059 goto out;
3060 }
3061
3062 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3063 migratetype);
3064
3065 out:
3066 /* Separate test+clear to avoid unnecessary atomics */
3067 if ((alloc_flags & ALLOC_KSWAPD) &&
3068 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3069 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3070 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3071 }
3072
3073 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3074 return page;
3075 }
3076
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3077 static inline long __zone_watermark_unusable_free(struct zone *z,
3078 unsigned int order, unsigned int alloc_flags)
3079 {
3080 long unusable_free = (1 << order) - 1;
3081
3082 /*
3083 * If the caller does not have rights to reserves below the min
3084 * watermark then subtract the high-atomic reserves. This will
3085 * over-estimate the size of the atomic reserve but it avoids a search.
3086 */
3087 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3088 unusable_free += z->nr_reserved_highatomic;
3089
3090 #ifdef CONFIG_CMA
3091 /* If allocation can't use CMA areas don't use free CMA pages */
3092 if (!(alloc_flags & ALLOC_CMA))
3093 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3094 #endif
3095
3096 return unusable_free;
3097 }
3098
3099 /*
3100 * Return true if free base pages are above 'mark'. For high-order checks it
3101 * will return true of the order-0 watermark is reached and there is at least
3102 * one free page of a suitable size. Checking now avoids taking the zone lock
3103 * to check in the allocation paths if no pages are free.
3104 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3105 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3106 int highest_zoneidx, unsigned int alloc_flags,
3107 long free_pages)
3108 {
3109 long min = mark;
3110 int o;
3111
3112 /* free_pages may go negative - that's OK */
3113 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3114
3115 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3116 /*
3117 * __GFP_HIGH allows access to 50% of the min reserve as well
3118 * as OOM.
3119 */
3120 if (alloc_flags & ALLOC_MIN_RESERVE) {
3121 min -= min / 2;
3122
3123 /*
3124 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3125 * access more reserves than just __GFP_HIGH. Other
3126 * non-blocking allocations requests such as GFP_NOWAIT
3127 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3128 * access to the min reserve.
3129 */
3130 if (alloc_flags & ALLOC_NON_BLOCK)
3131 min -= min / 4;
3132 }
3133
3134 /*
3135 * OOM victims can try even harder than the normal reserve
3136 * users on the grounds that it's definitely going to be in
3137 * the exit path shortly and free memory. Any allocation it
3138 * makes during the free path will be small and short-lived.
3139 */
3140 if (alloc_flags & ALLOC_OOM)
3141 min -= min / 2;
3142 }
3143
3144 /*
3145 * Check watermarks for an order-0 allocation request. If these
3146 * are not met, then a high-order request also cannot go ahead
3147 * even if a suitable page happened to be free.
3148 */
3149 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3150 return false;
3151
3152 /* If this is an order-0 request then the watermark is fine */
3153 if (!order)
3154 return true;
3155
3156 /* For a high-order request, check at least one suitable page is free */
3157 for (o = order; o < NR_PAGE_ORDERS; o++) {
3158 struct free_area *area = &z->free_area[o];
3159 int mt;
3160
3161 if (!area->nr_free)
3162 continue;
3163
3164 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3165 if (!free_area_empty(area, mt))
3166 return true;
3167 }
3168
3169 #ifdef CONFIG_CMA
3170 if ((alloc_flags & ALLOC_CMA) &&
3171 !free_area_empty(area, MIGRATE_CMA)) {
3172 return true;
3173 }
3174 #endif
3175 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3176 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3177 return true;
3178 }
3179 }
3180 return false;
3181 }
3182
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3183 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3184 int highest_zoneidx, unsigned int alloc_flags)
3185 {
3186 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3187 zone_page_state(z, NR_FREE_PAGES));
3188 }
3189
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3190 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3191 unsigned long mark, int highest_zoneidx,
3192 unsigned int alloc_flags, gfp_t gfp_mask)
3193 {
3194 long free_pages;
3195
3196 free_pages = zone_page_state(z, NR_FREE_PAGES);
3197
3198 /*
3199 * Fast check for order-0 only. If this fails then the reserves
3200 * need to be calculated.
3201 */
3202 if (!order) {
3203 long usable_free;
3204 long reserved;
3205
3206 usable_free = free_pages;
3207 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3208
3209 /* reserved may over estimate high-atomic reserves. */
3210 usable_free -= min(usable_free, reserved);
3211 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3212 return true;
3213 }
3214
3215 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3216 free_pages))
3217 return true;
3218
3219 /*
3220 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3221 * when checking the min watermark. The min watermark is the
3222 * point where boosting is ignored so that kswapd is woken up
3223 * when below the low watermark.
3224 */
3225 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3226 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3227 mark = z->_watermark[WMARK_MIN];
3228 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3229 alloc_flags, free_pages);
3230 }
3231
3232 return false;
3233 }
3234
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3235 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3236 unsigned long mark, int highest_zoneidx)
3237 {
3238 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3239
3240 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3241 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3242
3243 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3244 free_pages);
3245 }
3246
3247 #ifdef CONFIG_NUMA
3248 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3249
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3250 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3251 {
3252 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3253 node_reclaim_distance;
3254 }
3255 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3256 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3257 {
3258 return true;
3259 }
3260 #endif /* CONFIG_NUMA */
3261
3262 /*
3263 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3264 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3265 * premature use of a lower zone may cause lowmem pressure problems that
3266 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3267 * probably too small. It only makes sense to spread allocations to avoid
3268 * fragmentation between the Normal and DMA32 zones.
3269 */
3270 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3271 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3272 {
3273 unsigned int alloc_flags;
3274
3275 /*
3276 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3277 * to save a branch.
3278 */
3279 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3280
3281 #ifdef CONFIG_ZONE_DMA32
3282 if (!zone)
3283 return alloc_flags;
3284
3285 if (zone_idx(zone) != ZONE_NORMAL)
3286 return alloc_flags;
3287
3288 /*
3289 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3290 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3291 * on UMA that if Normal is populated then so is DMA32.
3292 */
3293 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3294 if (nr_online_nodes > 1 && !populated_zone(--zone))
3295 return alloc_flags;
3296
3297 alloc_flags |= ALLOC_NOFRAGMENT;
3298 #endif /* CONFIG_ZONE_DMA32 */
3299 return alloc_flags;
3300 }
3301
3302 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3303 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3304 unsigned int alloc_flags)
3305 {
3306 #ifdef CONFIG_CMA
3307 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3308 alloc_flags |= ALLOC_CMA;
3309 #endif
3310 return alloc_flags;
3311 }
3312
3313 /*
3314 * get_page_from_freelist goes through the zonelist trying to allocate
3315 * a page.
3316 */
3317 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3318 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3319 const struct alloc_context *ac)
3320 {
3321 struct zoneref *z;
3322 struct zone *zone;
3323 struct pglist_data *last_pgdat = NULL;
3324 bool last_pgdat_dirty_ok = false;
3325 bool no_fallback;
3326
3327 retry:
3328 /*
3329 * Scan zonelist, looking for a zone with enough free.
3330 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3331 */
3332 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3333 z = ac->preferred_zoneref;
3334 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3335 ac->nodemask) {
3336 struct page *page;
3337 unsigned long mark;
3338
3339 if (cpusets_enabled() &&
3340 (alloc_flags & ALLOC_CPUSET) &&
3341 !__cpuset_zone_allowed(zone, gfp_mask))
3342 continue;
3343 /*
3344 * When allocating a page cache page for writing, we
3345 * want to get it from a node that is within its dirty
3346 * limit, such that no single node holds more than its
3347 * proportional share of globally allowed dirty pages.
3348 * The dirty limits take into account the node's
3349 * lowmem reserves and high watermark so that kswapd
3350 * should be able to balance it without having to
3351 * write pages from its LRU list.
3352 *
3353 * XXX: For now, allow allocations to potentially
3354 * exceed the per-node dirty limit in the slowpath
3355 * (spread_dirty_pages unset) before going into reclaim,
3356 * which is important when on a NUMA setup the allowed
3357 * nodes are together not big enough to reach the
3358 * global limit. The proper fix for these situations
3359 * will require awareness of nodes in the
3360 * dirty-throttling and the flusher threads.
3361 */
3362 if (ac->spread_dirty_pages) {
3363 if (last_pgdat != zone->zone_pgdat) {
3364 last_pgdat = zone->zone_pgdat;
3365 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3366 }
3367
3368 if (!last_pgdat_dirty_ok)
3369 continue;
3370 }
3371
3372 if (no_fallback && nr_online_nodes > 1 &&
3373 zone != zonelist_zone(ac->preferred_zoneref)) {
3374 int local_nid;
3375
3376 /*
3377 * If moving to a remote node, retry but allow
3378 * fragmenting fallbacks. Locality is more important
3379 * than fragmentation avoidance.
3380 */
3381 local_nid = zonelist_node_idx(ac->preferred_zoneref);
3382 if (zone_to_nid(zone) != local_nid) {
3383 alloc_flags &= ~ALLOC_NOFRAGMENT;
3384 goto retry;
3385 }
3386 }
3387
3388 cond_accept_memory(zone, order);
3389
3390 /*
3391 * Detect whether the number of free pages is below high
3392 * watermark. If so, we will decrease pcp->high and free
3393 * PCP pages in free path to reduce the possibility of
3394 * premature page reclaiming. Detection is done here to
3395 * avoid to do that in hotter free path.
3396 */
3397 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3398 goto check_alloc_wmark;
3399
3400 mark = high_wmark_pages(zone);
3401 if (zone_watermark_fast(zone, order, mark,
3402 ac->highest_zoneidx, alloc_flags,
3403 gfp_mask))
3404 goto try_this_zone;
3405 else
3406 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3407
3408 check_alloc_wmark:
3409 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3410 if (!zone_watermark_fast(zone, order, mark,
3411 ac->highest_zoneidx, alloc_flags,
3412 gfp_mask)) {
3413 int ret;
3414
3415 if (cond_accept_memory(zone, order))
3416 goto try_this_zone;
3417
3418 /*
3419 * Watermark failed for this zone, but see if we can
3420 * grow this zone if it contains deferred pages.
3421 */
3422 if (deferred_pages_enabled()) {
3423 if (_deferred_grow_zone(zone, order))
3424 goto try_this_zone;
3425 }
3426 /* Checked here to keep the fast path fast */
3427 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3428 if (alloc_flags & ALLOC_NO_WATERMARKS)
3429 goto try_this_zone;
3430
3431 if (!node_reclaim_enabled() ||
3432 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3433 continue;
3434
3435 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3436 switch (ret) {
3437 case NODE_RECLAIM_NOSCAN:
3438 /* did not scan */
3439 continue;
3440 case NODE_RECLAIM_FULL:
3441 /* scanned but unreclaimable */
3442 continue;
3443 default:
3444 /* did we reclaim enough */
3445 if (zone_watermark_ok(zone, order, mark,
3446 ac->highest_zoneidx, alloc_flags))
3447 goto try_this_zone;
3448
3449 continue;
3450 }
3451 }
3452
3453 try_this_zone:
3454 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3455 gfp_mask, alloc_flags, ac->migratetype);
3456 if (page) {
3457 prep_new_page(page, order, gfp_mask, alloc_flags);
3458
3459 /*
3460 * If this is a high-order atomic allocation then check
3461 * if the pageblock should be reserved for the future
3462 */
3463 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3464 reserve_highatomic_pageblock(page, order, zone);
3465
3466 return page;
3467 } else {
3468 if (cond_accept_memory(zone, order))
3469 goto try_this_zone;
3470
3471 /* Try again if zone has deferred pages */
3472 if (deferred_pages_enabled()) {
3473 if (_deferred_grow_zone(zone, order))
3474 goto try_this_zone;
3475 }
3476 }
3477 }
3478
3479 /*
3480 * It's possible on a UMA machine to get through all zones that are
3481 * fragmented. If avoiding fragmentation, reset and try again.
3482 */
3483 if (no_fallback) {
3484 alloc_flags &= ~ALLOC_NOFRAGMENT;
3485 goto retry;
3486 }
3487
3488 return NULL;
3489 }
3490
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3491 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3492 {
3493 unsigned int filter = SHOW_MEM_FILTER_NODES;
3494
3495 /*
3496 * This documents exceptions given to allocations in certain
3497 * contexts that are allowed to allocate outside current's set
3498 * of allowed nodes.
3499 */
3500 if (!(gfp_mask & __GFP_NOMEMALLOC))
3501 if (tsk_is_oom_victim(current) ||
3502 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3503 filter &= ~SHOW_MEM_FILTER_NODES;
3504 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3505 filter &= ~SHOW_MEM_FILTER_NODES;
3506
3507 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3508 }
3509
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3510 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3511 {
3512 struct va_format vaf;
3513 va_list args;
3514 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3515
3516 if ((gfp_mask & __GFP_NOWARN) ||
3517 !__ratelimit(&nopage_rs) ||
3518 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3519 return;
3520
3521 va_start(args, fmt);
3522 vaf.fmt = fmt;
3523 vaf.va = &args;
3524 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3525 current->comm, &vaf, gfp_mask, &gfp_mask,
3526 nodemask_pr_args(nodemask));
3527 va_end(args);
3528
3529 cpuset_print_current_mems_allowed();
3530 pr_cont("\n");
3531 dump_stack();
3532 warn_alloc_show_mem(gfp_mask, nodemask);
3533 }
3534
3535 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3536 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3537 unsigned int alloc_flags,
3538 const struct alloc_context *ac)
3539 {
3540 struct page *page;
3541
3542 page = get_page_from_freelist(gfp_mask, order,
3543 alloc_flags|ALLOC_CPUSET, ac);
3544 /*
3545 * fallback to ignore cpuset restriction if our nodes
3546 * are depleted
3547 */
3548 if (!page)
3549 page = get_page_from_freelist(gfp_mask, order,
3550 alloc_flags, ac);
3551
3552 return page;
3553 }
3554
3555 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3556 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3557 const struct alloc_context *ac, unsigned long *did_some_progress)
3558 {
3559 struct oom_control oc = {
3560 .zonelist = ac->zonelist,
3561 .nodemask = ac->nodemask,
3562 .memcg = NULL,
3563 .gfp_mask = gfp_mask,
3564 .order = order,
3565 };
3566 struct page *page;
3567
3568 *did_some_progress = 0;
3569
3570 /*
3571 * Acquire the oom lock. If that fails, somebody else is
3572 * making progress for us.
3573 */
3574 if (!mutex_trylock(&oom_lock)) {
3575 *did_some_progress = 1;
3576 schedule_timeout_uninterruptible(1);
3577 return NULL;
3578 }
3579
3580 /*
3581 * Go through the zonelist yet one more time, keep very high watermark
3582 * here, this is only to catch a parallel oom killing, we must fail if
3583 * we're still under heavy pressure. But make sure that this reclaim
3584 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3585 * allocation which will never fail due to oom_lock already held.
3586 */
3587 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3588 ~__GFP_DIRECT_RECLAIM, order,
3589 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3590 if (page)
3591 goto out;
3592
3593 /* Coredumps can quickly deplete all memory reserves */
3594 if (current->flags & PF_DUMPCORE)
3595 goto out;
3596 /* The OOM killer will not help higher order allocs */
3597 if (order > PAGE_ALLOC_COSTLY_ORDER)
3598 goto out;
3599 /*
3600 * We have already exhausted all our reclaim opportunities without any
3601 * success so it is time to admit defeat. We will skip the OOM killer
3602 * because it is very likely that the caller has a more reasonable
3603 * fallback than shooting a random task.
3604 *
3605 * The OOM killer may not free memory on a specific node.
3606 */
3607 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3608 goto out;
3609 /* The OOM killer does not needlessly kill tasks for lowmem */
3610 if (ac->highest_zoneidx < ZONE_NORMAL)
3611 goto out;
3612 if (pm_suspended_storage())
3613 goto out;
3614 /*
3615 * XXX: GFP_NOFS allocations should rather fail than rely on
3616 * other request to make a forward progress.
3617 * We are in an unfortunate situation where out_of_memory cannot
3618 * do much for this context but let's try it to at least get
3619 * access to memory reserved if the current task is killed (see
3620 * out_of_memory). Once filesystems are ready to handle allocation
3621 * failures more gracefully we should just bail out here.
3622 */
3623
3624 /* Exhausted what can be done so it's blame time */
3625 if (out_of_memory(&oc) ||
3626 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3627 *did_some_progress = 1;
3628
3629 /*
3630 * Help non-failing allocations by giving them access to memory
3631 * reserves
3632 */
3633 if (gfp_mask & __GFP_NOFAIL)
3634 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3635 ALLOC_NO_WATERMARKS, ac);
3636 }
3637 out:
3638 mutex_unlock(&oom_lock);
3639 return page;
3640 }
3641
3642 /*
3643 * Maximum number of compaction retries with a progress before OOM
3644 * killer is consider as the only way to move forward.
3645 */
3646 #define MAX_COMPACT_RETRIES 16
3647
3648 #ifdef CONFIG_COMPACTION
3649 /* Try memory compaction for high-order allocations before reclaim */
3650 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3651 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3652 unsigned int alloc_flags, const struct alloc_context *ac,
3653 enum compact_priority prio, enum compact_result *compact_result)
3654 {
3655 struct page *page = NULL;
3656 unsigned long pflags;
3657 unsigned int noreclaim_flag;
3658
3659 if (!order)
3660 return NULL;
3661
3662 psi_memstall_enter(&pflags);
3663 delayacct_compact_start();
3664 noreclaim_flag = memalloc_noreclaim_save();
3665
3666 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3667 prio, &page);
3668
3669 memalloc_noreclaim_restore(noreclaim_flag);
3670 psi_memstall_leave(&pflags);
3671 delayacct_compact_end();
3672
3673 if (*compact_result == COMPACT_SKIPPED)
3674 return NULL;
3675 /*
3676 * At least in one zone compaction wasn't deferred or skipped, so let's
3677 * count a compaction stall
3678 */
3679 count_vm_event(COMPACTSTALL);
3680
3681 /* Prep a captured page if available */
3682 if (page)
3683 prep_new_page(page, order, gfp_mask, alloc_flags);
3684
3685 /* Try get a page from the freelist if available */
3686 if (!page)
3687 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3688
3689 if (page) {
3690 struct zone *zone = page_zone(page);
3691
3692 zone->compact_blockskip_flush = false;
3693 compaction_defer_reset(zone, order, true);
3694 count_vm_event(COMPACTSUCCESS);
3695 return page;
3696 }
3697
3698 /*
3699 * It's bad if compaction run occurs and fails. The most likely reason
3700 * is that pages exist, but not enough to satisfy watermarks.
3701 */
3702 count_vm_event(COMPACTFAIL);
3703
3704 cond_resched();
3705
3706 return NULL;
3707 }
3708
3709 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3710 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3711 enum compact_result compact_result,
3712 enum compact_priority *compact_priority,
3713 int *compaction_retries)
3714 {
3715 int max_retries = MAX_COMPACT_RETRIES;
3716 int min_priority;
3717 bool ret = false;
3718 int retries = *compaction_retries;
3719 enum compact_priority priority = *compact_priority;
3720
3721 if (!order)
3722 return false;
3723
3724 if (fatal_signal_pending(current))
3725 return false;
3726
3727 /*
3728 * Compaction was skipped due to a lack of free order-0
3729 * migration targets. Continue if reclaim can help.
3730 */
3731 if (compact_result == COMPACT_SKIPPED) {
3732 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3733 goto out;
3734 }
3735
3736 /*
3737 * Compaction managed to coalesce some page blocks, but the
3738 * allocation failed presumably due to a race. Retry some.
3739 */
3740 if (compact_result == COMPACT_SUCCESS) {
3741 /*
3742 * !costly requests are much more important than
3743 * __GFP_RETRY_MAYFAIL costly ones because they are de
3744 * facto nofail and invoke OOM killer to move on while
3745 * costly can fail and users are ready to cope with
3746 * that. 1/4 retries is rather arbitrary but we would
3747 * need much more detailed feedback from compaction to
3748 * make a better decision.
3749 */
3750 if (order > PAGE_ALLOC_COSTLY_ORDER)
3751 max_retries /= 4;
3752
3753 if (++(*compaction_retries) <= max_retries) {
3754 ret = true;
3755 goto out;
3756 }
3757 }
3758
3759 /*
3760 * Compaction failed. Retry with increasing priority.
3761 */
3762 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3763 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3764
3765 if (*compact_priority > min_priority) {
3766 (*compact_priority)--;
3767 *compaction_retries = 0;
3768 ret = true;
3769 }
3770 out:
3771 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3772 return ret;
3773 }
3774 #else
3775 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3776 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3777 unsigned int alloc_flags, const struct alloc_context *ac,
3778 enum compact_priority prio, enum compact_result *compact_result)
3779 {
3780 *compact_result = COMPACT_SKIPPED;
3781 return NULL;
3782 }
3783
3784 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3785 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3786 enum compact_result compact_result,
3787 enum compact_priority *compact_priority,
3788 int *compaction_retries)
3789 {
3790 struct zone *zone;
3791 struct zoneref *z;
3792
3793 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3794 return false;
3795
3796 /*
3797 * There are setups with compaction disabled which would prefer to loop
3798 * inside the allocator rather than hit the oom killer prematurely.
3799 * Let's give them a good hope and keep retrying while the order-0
3800 * watermarks are OK.
3801 */
3802 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3803 ac->highest_zoneidx, ac->nodemask) {
3804 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3805 ac->highest_zoneidx, alloc_flags))
3806 return true;
3807 }
3808 return false;
3809 }
3810 #endif /* CONFIG_COMPACTION */
3811
3812 #ifdef CONFIG_LOCKDEP
3813 static struct lockdep_map __fs_reclaim_map =
3814 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3815
__need_reclaim(gfp_t gfp_mask)3816 static bool __need_reclaim(gfp_t gfp_mask)
3817 {
3818 /* no reclaim without waiting on it */
3819 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3820 return false;
3821
3822 /* this guy won't enter reclaim */
3823 if (current->flags & PF_MEMALLOC)
3824 return false;
3825
3826 if (gfp_mask & __GFP_NOLOCKDEP)
3827 return false;
3828
3829 return true;
3830 }
3831
__fs_reclaim_acquire(unsigned long ip)3832 void __fs_reclaim_acquire(unsigned long ip)
3833 {
3834 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3835 }
3836
__fs_reclaim_release(unsigned long ip)3837 void __fs_reclaim_release(unsigned long ip)
3838 {
3839 lock_release(&__fs_reclaim_map, ip);
3840 }
3841
fs_reclaim_acquire(gfp_t gfp_mask)3842 void fs_reclaim_acquire(gfp_t gfp_mask)
3843 {
3844 gfp_mask = current_gfp_context(gfp_mask);
3845
3846 if (__need_reclaim(gfp_mask)) {
3847 if (gfp_mask & __GFP_FS)
3848 __fs_reclaim_acquire(_RET_IP_);
3849
3850 #ifdef CONFIG_MMU_NOTIFIER
3851 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3852 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3853 #endif
3854
3855 }
3856 }
3857 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3858
fs_reclaim_release(gfp_t gfp_mask)3859 void fs_reclaim_release(gfp_t gfp_mask)
3860 {
3861 gfp_mask = current_gfp_context(gfp_mask);
3862
3863 if (__need_reclaim(gfp_mask)) {
3864 if (gfp_mask & __GFP_FS)
3865 __fs_reclaim_release(_RET_IP_);
3866 }
3867 }
3868 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3869 #endif
3870
3871 /*
3872 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3873 * have been rebuilt so allocation retries. Reader side does not lock and
3874 * retries the allocation if zonelist changes. Writer side is protected by the
3875 * embedded spin_lock.
3876 */
3877 static DEFINE_SEQLOCK(zonelist_update_seq);
3878
zonelist_iter_begin(void)3879 static unsigned int zonelist_iter_begin(void)
3880 {
3881 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3882 return read_seqbegin(&zonelist_update_seq);
3883
3884 return 0;
3885 }
3886
check_retry_zonelist(unsigned int seq)3887 static unsigned int check_retry_zonelist(unsigned int seq)
3888 {
3889 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3890 return read_seqretry(&zonelist_update_seq, seq);
3891
3892 return seq;
3893 }
3894
3895 /* Perform direct synchronous page reclaim */
3896 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3897 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3898 const struct alloc_context *ac)
3899 {
3900 unsigned int noreclaim_flag;
3901 unsigned long progress;
3902
3903 cond_resched();
3904
3905 /* We now go into synchronous reclaim */
3906 cpuset_memory_pressure_bump();
3907 fs_reclaim_acquire(gfp_mask);
3908 noreclaim_flag = memalloc_noreclaim_save();
3909
3910 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3911 ac->nodemask);
3912
3913 memalloc_noreclaim_restore(noreclaim_flag);
3914 fs_reclaim_release(gfp_mask);
3915
3916 cond_resched();
3917
3918 return progress;
3919 }
3920
3921 /* The really slow allocator path where we enter direct reclaim */
3922 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3923 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3924 unsigned int alloc_flags, const struct alloc_context *ac,
3925 unsigned long *did_some_progress)
3926 {
3927 struct page *page = NULL;
3928 unsigned long pflags;
3929 bool drained = false;
3930
3931 psi_memstall_enter(&pflags);
3932 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3933 if (unlikely(!(*did_some_progress)))
3934 goto out;
3935
3936 retry:
3937 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3938
3939 /*
3940 * If an allocation failed after direct reclaim, it could be because
3941 * pages are pinned on the per-cpu lists or in high alloc reserves.
3942 * Shrink them and try again
3943 */
3944 if (!page && !drained) {
3945 unreserve_highatomic_pageblock(ac, false);
3946 drain_all_pages(NULL);
3947 drained = true;
3948 goto retry;
3949 }
3950 out:
3951 psi_memstall_leave(&pflags);
3952
3953 return page;
3954 }
3955
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3956 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3957 const struct alloc_context *ac)
3958 {
3959 struct zoneref *z;
3960 struct zone *zone;
3961 pg_data_t *last_pgdat = NULL;
3962 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3963
3964 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3965 ac->nodemask) {
3966 if (!managed_zone(zone))
3967 continue;
3968 if (last_pgdat != zone->zone_pgdat) {
3969 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3970 last_pgdat = zone->zone_pgdat;
3971 }
3972 }
3973 }
3974
3975 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3976 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3977 {
3978 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3979
3980 /*
3981 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3982 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3983 * to save two branches.
3984 */
3985 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3986 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3987
3988 /*
3989 * The caller may dip into page reserves a bit more if the caller
3990 * cannot run direct reclaim, or if the caller has realtime scheduling
3991 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3992 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3993 */
3994 alloc_flags |= (__force int)
3995 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3996
3997 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3998 /*
3999 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4000 * if it can't schedule.
4001 */
4002 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4003 alloc_flags |= ALLOC_NON_BLOCK;
4004
4005 if (order > 0)
4006 alloc_flags |= ALLOC_HIGHATOMIC;
4007 }
4008
4009 /*
4010 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4011 * GFP_ATOMIC) rather than fail, see the comment for
4012 * cpuset_node_allowed().
4013 */
4014 if (alloc_flags & ALLOC_MIN_RESERVE)
4015 alloc_flags &= ~ALLOC_CPUSET;
4016 } else if (unlikely(rt_or_dl_task(current)) && in_task())
4017 alloc_flags |= ALLOC_MIN_RESERVE;
4018
4019 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4020
4021 return alloc_flags;
4022 }
4023
oom_reserves_allowed(struct task_struct * tsk)4024 static bool oom_reserves_allowed(struct task_struct *tsk)
4025 {
4026 if (!tsk_is_oom_victim(tsk))
4027 return false;
4028
4029 /*
4030 * !MMU doesn't have oom reaper so give access to memory reserves
4031 * only to the thread with TIF_MEMDIE set
4032 */
4033 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4034 return false;
4035
4036 return true;
4037 }
4038
4039 /*
4040 * Distinguish requests which really need access to full memory
4041 * reserves from oom victims which can live with a portion of it
4042 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4043 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4044 {
4045 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4046 return 0;
4047 if (gfp_mask & __GFP_MEMALLOC)
4048 return ALLOC_NO_WATERMARKS;
4049 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4050 return ALLOC_NO_WATERMARKS;
4051 if (!in_interrupt()) {
4052 if (current->flags & PF_MEMALLOC)
4053 return ALLOC_NO_WATERMARKS;
4054 else if (oom_reserves_allowed(current))
4055 return ALLOC_OOM;
4056 }
4057
4058 return 0;
4059 }
4060
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4061 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4062 {
4063 return !!__gfp_pfmemalloc_flags(gfp_mask);
4064 }
4065
4066 /*
4067 * Checks whether it makes sense to retry the reclaim to make a forward progress
4068 * for the given allocation request.
4069 *
4070 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4071 * without success, or when we couldn't even meet the watermark if we
4072 * reclaimed all remaining pages on the LRU lists.
4073 *
4074 * Returns true if a retry is viable or false to enter the oom path.
4075 */
4076 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4077 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4078 struct alloc_context *ac, int alloc_flags,
4079 bool did_some_progress, int *no_progress_loops)
4080 {
4081 struct zone *zone;
4082 struct zoneref *z;
4083 bool ret = false;
4084
4085 /*
4086 * Costly allocations might have made a progress but this doesn't mean
4087 * their order will become available due to high fragmentation so
4088 * always increment the no progress counter for them
4089 */
4090 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4091 *no_progress_loops = 0;
4092 else
4093 (*no_progress_loops)++;
4094
4095 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4096 goto out;
4097
4098
4099 /*
4100 * Keep reclaiming pages while there is a chance this will lead
4101 * somewhere. If none of the target zones can satisfy our allocation
4102 * request even if all reclaimable pages are considered then we are
4103 * screwed and have to go OOM.
4104 */
4105 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4106 ac->highest_zoneidx, ac->nodemask) {
4107 unsigned long available;
4108 unsigned long reclaimable;
4109 unsigned long min_wmark = min_wmark_pages(zone);
4110 bool wmark;
4111
4112 if (cpusets_enabled() &&
4113 (alloc_flags & ALLOC_CPUSET) &&
4114 !__cpuset_zone_allowed(zone, gfp_mask))
4115 continue;
4116
4117 available = reclaimable = zone_reclaimable_pages(zone);
4118 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4119
4120 /*
4121 * Would the allocation succeed if we reclaimed all
4122 * reclaimable pages?
4123 */
4124 wmark = __zone_watermark_ok(zone, order, min_wmark,
4125 ac->highest_zoneidx, alloc_flags, available);
4126 trace_reclaim_retry_zone(z, order, reclaimable,
4127 available, min_wmark, *no_progress_loops, wmark);
4128 if (wmark) {
4129 ret = true;
4130 break;
4131 }
4132 }
4133
4134 /*
4135 * Memory allocation/reclaim might be called from a WQ context and the
4136 * current implementation of the WQ concurrency control doesn't
4137 * recognize that a particular WQ is congested if the worker thread is
4138 * looping without ever sleeping. Therefore we have to do a short sleep
4139 * here rather than calling cond_resched().
4140 */
4141 if (current->flags & PF_WQ_WORKER)
4142 schedule_timeout_uninterruptible(1);
4143 else
4144 cond_resched();
4145 out:
4146 /* Before OOM, exhaust highatomic_reserve */
4147 if (!ret)
4148 return unreserve_highatomic_pageblock(ac, true);
4149
4150 return ret;
4151 }
4152
4153 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4154 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4155 {
4156 /*
4157 * It's possible that cpuset's mems_allowed and the nodemask from
4158 * mempolicy don't intersect. This should be normally dealt with by
4159 * policy_nodemask(), but it's possible to race with cpuset update in
4160 * such a way the check therein was true, and then it became false
4161 * before we got our cpuset_mems_cookie here.
4162 * This assumes that for all allocations, ac->nodemask can come only
4163 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4164 * when it does not intersect with the cpuset restrictions) or the
4165 * caller can deal with a violated nodemask.
4166 */
4167 if (cpusets_enabled() && ac->nodemask &&
4168 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4169 ac->nodemask = NULL;
4170 return true;
4171 }
4172
4173 /*
4174 * When updating a task's mems_allowed or mempolicy nodemask, it is
4175 * possible to race with parallel threads in such a way that our
4176 * allocation can fail while the mask is being updated. If we are about
4177 * to fail, check if the cpuset changed during allocation and if so,
4178 * retry.
4179 */
4180 if (read_mems_allowed_retry(cpuset_mems_cookie))
4181 return true;
4182
4183 return false;
4184 }
4185
4186 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4187 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4188 struct alloc_context *ac)
4189 {
4190 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4191 bool can_compact = gfp_compaction_allowed(gfp_mask);
4192 bool nofail = gfp_mask & __GFP_NOFAIL;
4193 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4194 struct page *page = NULL;
4195 unsigned int alloc_flags;
4196 unsigned long did_some_progress;
4197 enum compact_priority compact_priority;
4198 enum compact_result compact_result;
4199 int compaction_retries;
4200 int no_progress_loops;
4201 unsigned int cpuset_mems_cookie;
4202 unsigned int zonelist_iter_cookie;
4203 int reserve_flags;
4204
4205 if (unlikely(nofail)) {
4206 /*
4207 * We most definitely don't want callers attempting to
4208 * allocate greater than order-1 page units with __GFP_NOFAIL.
4209 */
4210 WARN_ON_ONCE(order > 1);
4211 /*
4212 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4213 * otherwise, we may result in lockup.
4214 */
4215 WARN_ON_ONCE(!can_direct_reclaim);
4216 /*
4217 * PF_MEMALLOC request from this context is rather bizarre
4218 * because we cannot reclaim anything and only can loop waiting
4219 * for somebody to do a work for us.
4220 */
4221 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4222 }
4223
4224 restart:
4225 compaction_retries = 0;
4226 no_progress_loops = 0;
4227 compact_priority = DEF_COMPACT_PRIORITY;
4228 cpuset_mems_cookie = read_mems_allowed_begin();
4229 zonelist_iter_cookie = zonelist_iter_begin();
4230
4231 /*
4232 * The fast path uses conservative alloc_flags to succeed only until
4233 * kswapd needs to be woken up, and to avoid the cost of setting up
4234 * alloc_flags precisely. So we do that now.
4235 */
4236 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4237
4238 /*
4239 * We need to recalculate the starting point for the zonelist iterator
4240 * because we might have used different nodemask in the fast path, or
4241 * there was a cpuset modification and we are retrying - otherwise we
4242 * could end up iterating over non-eligible zones endlessly.
4243 */
4244 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4245 ac->highest_zoneidx, ac->nodemask);
4246 if (!zonelist_zone(ac->preferred_zoneref))
4247 goto nopage;
4248
4249 /*
4250 * Check for insane configurations where the cpuset doesn't contain
4251 * any suitable zone to satisfy the request - e.g. non-movable
4252 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4253 */
4254 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4255 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4256 ac->highest_zoneidx,
4257 &cpuset_current_mems_allowed);
4258 if (!zonelist_zone(z))
4259 goto nopage;
4260 }
4261
4262 if (alloc_flags & ALLOC_KSWAPD)
4263 wake_all_kswapds(order, gfp_mask, ac);
4264
4265 /*
4266 * The adjusted alloc_flags might result in immediate success, so try
4267 * that first
4268 */
4269 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4270 if (page)
4271 goto got_pg;
4272
4273 /*
4274 * For costly allocations, try direct compaction first, as it's likely
4275 * that we have enough base pages and don't need to reclaim. For non-
4276 * movable high-order allocations, do that as well, as compaction will
4277 * try prevent permanent fragmentation by migrating from blocks of the
4278 * same migratetype.
4279 * Don't try this for allocations that are allowed to ignore
4280 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4281 */
4282 if (can_direct_reclaim && can_compact &&
4283 (costly_order ||
4284 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4285 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4286 page = __alloc_pages_direct_compact(gfp_mask, order,
4287 alloc_flags, ac,
4288 INIT_COMPACT_PRIORITY,
4289 &compact_result);
4290 if (page)
4291 goto got_pg;
4292
4293 /*
4294 * Checks for costly allocations with __GFP_NORETRY, which
4295 * includes some THP page fault allocations
4296 */
4297 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4298 /*
4299 * If allocating entire pageblock(s) and compaction
4300 * failed because all zones are below low watermarks
4301 * or is prohibited because it recently failed at this
4302 * order, fail immediately unless the allocator has
4303 * requested compaction and reclaim retry.
4304 *
4305 * Reclaim is
4306 * - potentially very expensive because zones are far
4307 * below their low watermarks or this is part of very
4308 * bursty high order allocations,
4309 * - not guaranteed to help because isolate_freepages()
4310 * may not iterate over freed pages as part of its
4311 * linear scan, and
4312 * - unlikely to make entire pageblocks free on its
4313 * own.
4314 */
4315 if (compact_result == COMPACT_SKIPPED ||
4316 compact_result == COMPACT_DEFERRED)
4317 goto nopage;
4318
4319 /*
4320 * Looks like reclaim/compaction is worth trying, but
4321 * sync compaction could be very expensive, so keep
4322 * using async compaction.
4323 */
4324 compact_priority = INIT_COMPACT_PRIORITY;
4325 }
4326 }
4327
4328 retry:
4329 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4330 if (alloc_flags & ALLOC_KSWAPD)
4331 wake_all_kswapds(order, gfp_mask, ac);
4332
4333 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4334 if (reserve_flags)
4335 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4336 (alloc_flags & ALLOC_KSWAPD);
4337
4338 /*
4339 * Reset the nodemask and zonelist iterators if memory policies can be
4340 * ignored. These allocations are high priority and system rather than
4341 * user oriented.
4342 */
4343 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4344 ac->nodemask = NULL;
4345 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4346 ac->highest_zoneidx, ac->nodemask);
4347 }
4348
4349 /* Attempt with potentially adjusted zonelist and alloc_flags */
4350 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4351 if (page)
4352 goto got_pg;
4353
4354 /* Caller is not willing to reclaim, we can't balance anything */
4355 if (!can_direct_reclaim)
4356 goto nopage;
4357
4358 /* Avoid recursion of direct reclaim */
4359 if (current->flags & PF_MEMALLOC)
4360 goto nopage;
4361
4362 /* Try direct reclaim and then allocating */
4363 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4364 &did_some_progress);
4365 if (page)
4366 goto got_pg;
4367
4368 /* Try direct compaction and then allocating */
4369 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4370 compact_priority, &compact_result);
4371 if (page)
4372 goto got_pg;
4373
4374 /* Do not loop if specifically requested */
4375 if (gfp_mask & __GFP_NORETRY)
4376 goto nopage;
4377
4378 /*
4379 * Do not retry costly high order allocations unless they are
4380 * __GFP_RETRY_MAYFAIL and we can compact
4381 */
4382 if (costly_order && (!can_compact ||
4383 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4384 goto nopage;
4385
4386 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4387 did_some_progress > 0, &no_progress_loops))
4388 goto retry;
4389
4390 /*
4391 * It doesn't make any sense to retry for the compaction if the order-0
4392 * reclaim is not able to make any progress because the current
4393 * implementation of the compaction depends on the sufficient amount
4394 * of free memory (see __compaction_suitable)
4395 */
4396 if (did_some_progress > 0 && can_compact &&
4397 should_compact_retry(ac, order, alloc_flags,
4398 compact_result, &compact_priority,
4399 &compaction_retries))
4400 goto retry;
4401
4402
4403 /*
4404 * Deal with possible cpuset update races or zonelist updates to avoid
4405 * a unnecessary OOM kill.
4406 */
4407 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4408 check_retry_zonelist(zonelist_iter_cookie))
4409 goto restart;
4410
4411 /* Reclaim has failed us, start killing things */
4412 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4413 if (page)
4414 goto got_pg;
4415
4416 /* Avoid allocations with no watermarks from looping endlessly */
4417 if (tsk_is_oom_victim(current) &&
4418 (alloc_flags & ALLOC_OOM ||
4419 (gfp_mask & __GFP_NOMEMALLOC)))
4420 goto nopage;
4421
4422 /* Retry as long as the OOM killer is making progress */
4423 if (did_some_progress) {
4424 no_progress_loops = 0;
4425 goto retry;
4426 }
4427
4428 nopage:
4429 /*
4430 * Deal with possible cpuset update races or zonelist updates to avoid
4431 * a unnecessary OOM kill.
4432 */
4433 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4434 check_retry_zonelist(zonelist_iter_cookie))
4435 goto restart;
4436
4437 /*
4438 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4439 * we always retry
4440 */
4441 if (unlikely(nofail)) {
4442 /*
4443 * Lacking direct_reclaim we can't do anything to reclaim memory,
4444 * we disregard these unreasonable nofail requests and still
4445 * return NULL
4446 */
4447 if (!can_direct_reclaim)
4448 goto fail;
4449
4450 /*
4451 * Help non-failing allocations by giving some access to memory
4452 * reserves normally used for high priority non-blocking
4453 * allocations but do not use ALLOC_NO_WATERMARKS because this
4454 * could deplete whole memory reserves which would just make
4455 * the situation worse.
4456 */
4457 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4458 if (page)
4459 goto got_pg;
4460
4461 cond_resched();
4462 goto retry;
4463 }
4464 fail:
4465 warn_alloc(gfp_mask, ac->nodemask,
4466 "page allocation failure: order:%u", order);
4467 got_pg:
4468 return page;
4469 }
4470
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4471 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4472 int preferred_nid, nodemask_t *nodemask,
4473 struct alloc_context *ac, gfp_t *alloc_gfp,
4474 unsigned int *alloc_flags)
4475 {
4476 ac->highest_zoneidx = gfp_zone(gfp_mask);
4477 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4478 ac->nodemask = nodemask;
4479 ac->migratetype = gfp_migratetype(gfp_mask);
4480
4481 if (cpusets_enabled()) {
4482 *alloc_gfp |= __GFP_HARDWALL;
4483 /*
4484 * When we are in the interrupt context, it is irrelevant
4485 * to the current task context. It means that any node ok.
4486 */
4487 if (in_task() && !ac->nodemask)
4488 ac->nodemask = &cpuset_current_mems_allowed;
4489 else
4490 *alloc_flags |= ALLOC_CPUSET;
4491 }
4492
4493 might_alloc(gfp_mask);
4494
4495 if (should_fail_alloc_page(gfp_mask, order))
4496 return false;
4497
4498 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4499
4500 /* Dirty zone balancing only done in the fast path */
4501 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4502
4503 /*
4504 * The preferred zone is used for statistics but crucially it is
4505 * also used as the starting point for the zonelist iterator. It
4506 * may get reset for allocations that ignore memory policies.
4507 */
4508 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4509 ac->highest_zoneidx, ac->nodemask);
4510
4511 return true;
4512 }
4513
4514 /*
4515 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4516 * @gfp: GFP flags for the allocation
4517 * @preferred_nid: The preferred NUMA node ID to allocate from
4518 * @nodemask: Set of nodes to allocate from, may be NULL
4519 * @nr_pages: The number of pages desired on the list or array
4520 * @page_list: Optional list to store the allocated pages
4521 * @page_array: Optional array to store the pages
4522 *
4523 * This is a batched version of the page allocator that attempts to
4524 * allocate nr_pages quickly. Pages are added to page_list if page_list
4525 * is not NULL, otherwise it is assumed that the page_array is valid.
4526 *
4527 * For lists, nr_pages is the number of pages that should be allocated.
4528 *
4529 * For arrays, only NULL elements are populated with pages and nr_pages
4530 * is the maximum number of pages that will be stored in the array.
4531 *
4532 * Returns the number of pages on the list or array.
4533 */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4534 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4535 nodemask_t *nodemask, int nr_pages,
4536 struct list_head *page_list,
4537 struct page **page_array)
4538 {
4539 struct page *page;
4540 unsigned long __maybe_unused UP_flags;
4541 struct zone *zone;
4542 struct zoneref *z;
4543 struct per_cpu_pages *pcp;
4544 struct list_head *pcp_list;
4545 struct alloc_context ac;
4546 gfp_t alloc_gfp;
4547 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4548 int nr_populated = 0, nr_account = 0;
4549
4550 /*
4551 * Skip populated array elements to determine if any pages need
4552 * to be allocated before disabling IRQs.
4553 */
4554 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4555 nr_populated++;
4556
4557 /* No pages requested? */
4558 if (unlikely(nr_pages <= 0))
4559 goto out;
4560
4561 /* Already populated array? */
4562 if (unlikely(page_array && nr_pages - nr_populated == 0))
4563 goto out;
4564
4565 /* Bulk allocator does not support memcg accounting. */
4566 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4567 goto failed;
4568
4569 /* Use the single page allocator for one page. */
4570 if (nr_pages - nr_populated == 1)
4571 goto failed;
4572
4573 #ifdef CONFIG_PAGE_OWNER
4574 /*
4575 * PAGE_OWNER may recurse into the allocator to allocate space to
4576 * save the stack with pagesets.lock held. Releasing/reacquiring
4577 * removes much of the performance benefit of bulk allocation so
4578 * force the caller to allocate one page at a time as it'll have
4579 * similar performance to added complexity to the bulk allocator.
4580 */
4581 if (static_branch_unlikely(&page_owner_inited))
4582 goto failed;
4583 #endif
4584
4585 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4586 gfp &= gfp_allowed_mask;
4587 alloc_gfp = gfp;
4588 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4589 goto out;
4590 gfp = alloc_gfp;
4591
4592 /* Find an allowed local zone that meets the low watermark. */
4593 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4594 unsigned long mark;
4595
4596 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4597 !__cpuset_zone_allowed(zone, gfp)) {
4598 continue;
4599 }
4600
4601 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4602 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4603 goto failed;
4604 }
4605
4606 cond_accept_memory(zone, 0);
4607 retry_this_zone:
4608 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4609 if (zone_watermark_fast(zone, 0, mark,
4610 zonelist_zone_idx(ac.preferred_zoneref),
4611 alloc_flags, gfp)) {
4612 break;
4613 }
4614
4615 if (cond_accept_memory(zone, 0))
4616 goto retry_this_zone;
4617
4618 /* Try again if zone has deferred pages */
4619 if (deferred_pages_enabled()) {
4620 if (_deferred_grow_zone(zone, 0))
4621 goto retry_this_zone;
4622 }
4623 }
4624
4625 /*
4626 * If there are no allowed local zones that meets the watermarks then
4627 * try to allocate a single page and reclaim if necessary.
4628 */
4629 if (unlikely(!zone))
4630 goto failed;
4631
4632 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4633 pcp_trylock_prepare(UP_flags);
4634 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4635 if (!pcp)
4636 goto failed_irq;
4637
4638 /* Attempt the batch allocation */
4639 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4640 while (nr_populated < nr_pages) {
4641
4642 /* Skip existing pages */
4643 if (page_array && page_array[nr_populated]) {
4644 nr_populated++;
4645 continue;
4646 }
4647
4648 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4649 pcp, pcp_list);
4650 if (unlikely(!page)) {
4651 /* Try and allocate at least one page */
4652 if (!nr_account) {
4653 pcp_spin_unlock(pcp);
4654 goto failed_irq;
4655 }
4656 break;
4657 }
4658 nr_account++;
4659
4660 prep_new_page(page, 0, gfp, 0);
4661 if (page_list)
4662 list_add(&page->lru, page_list);
4663 else
4664 page_array[nr_populated] = page;
4665 nr_populated++;
4666 }
4667
4668 pcp_spin_unlock(pcp);
4669 pcp_trylock_finish(UP_flags);
4670
4671 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4672 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4673
4674 out:
4675 return nr_populated;
4676
4677 failed_irq:
4678 pcp_trylock_finish(UP_flags);
4679
4680 failed:
4681 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4682 if (page) {
4683 if (page_list)
4684 list_add(&page->lru, page_list);
4685 else
4686 page_array[nr_populated] = page;
4687 nr_populated++;
4688 }
4689
4690 goto out;
4691 }
4692 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4693
4694 /*
4695 * This is the 'heart' of the zoned buddy allocator.
4696 */
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4697 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4698 int preferred_nid, nodemask_t *nodemask)
4699 {
4700 struct page *page;
4701 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4702 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4703 struct alloc_context ac = { };
4704
4705 /*
4706 * There are several places where we assume that the order value is sane
4707 * so bail out early if the request is out of bound.
4708 */
4709 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4710 return NULL;
4711
4712 gfp &= gfp_allowed_mask;
4713 /*
4714 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4715 * resp. GFP_NOIO which has to be inherited for all allocation requests
4716 * from a particular context which has been marked by
4717 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4718 * movable zones are not used during allocation.
4719 */
4720 gfp = current_gfp_context(gfp);
4721 alloc_gfp = gfp;
4722 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4723 &alloc_gfp, &alloc_flags))
4724 return NULL;
4725
4726 /*
4727 * Forbid the first pass from falling back to types that fragment
4728 * memory until all local zones are considered.
4729 */
4730 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4731
4732 /* First allocation attempt */
4733 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4734 if (likely(page))
4735 goto out;
4736
4737 alloc_gfp = gfp;
4738 ac.spread_dirty_pages = false;
4739
4740 /*
4741 * Restore the original nodemask if it was potentially replaced with
4742 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4743 */
4744 ac.nodemask = nodemask;
4745
4746 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4747
4748 out:
4749 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4750 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4751 __free_pages(page, order);
4752 page = NULL;
4753 }
4754
4755 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4756 kmsan_alloc_page(page, order, alloc_gfp);
4757
4758 return page;
4759 }
4760 EXPORT_SYMBOL(__alloc_pages_noprof);
4761
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4762 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4763 nodemask_t *nodemask)
4764 {
4765 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4766 preferred_nid, nodemask);
4767 return page_rmappable_folio(page);
4768 }
4769 EXPORT_SYMBOL(__folio_alloc_noprof);
4770
4771 /*
4772 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4773 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4774 * you need to access high mem.
4775 */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)4776 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4777 {
4778 struct page *page;
4779
4780 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4781 if (!page)
4782 return 0;
4783 return (unsigned long) page_address(page);
4784 }
4785 EXPORT_SYMBOL(get_free_pages_noprof);
4786
get_zeroed_page_noprof(gfp_t gfp_mask)4787 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4788 {
4789 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4790 }
4791 EXPORT_SYMBOL(get_zeroed_page_noprof);
4792
4793 /**
4794 * __free_pages - Free pages allocated with alloc_pages().
4795 * @page: The page pointer returned from alloc_pages().
4796 * @order: The order of the allocation.
4797 *
4798 * This function can free multi-page allocations that are not compound
4799 * pages. It does not check that the @order passed in matches that of
4800 * the allocation, so it is easy to leak memory. Freeing more memory
4801 * than was allocated will probably emit a warning.
4802 *
4803 * If the last reference to this page is speculative, it will be released
4804 * by put_page() which only frees the first page of a non-compound
4805 * allocation. To prevent the remaining pages from being leaked, we free
4806 * the subsequent pages here. If you want to use the page's reference
4807 * count to decide when to free the allocation, you should allocate a
4808 * compound page, and use put_page() instead of __free_pages().
4809 *
4810 * Context: May be called in interrupt context or while holding a normal
4811 * spinlock, but not in NMI context or while holding a raw spinlock.
4812 */
__free_pages(struct page * page,unsigned int order)4813 void __free_pages(struct page *page, unsigned int order)
4814 {
4815 /* get PageHead before we drop reference */
4816 int head = PageHead(page);
4817 struct alloc_tag *tag = pgalloc_tag_get(page);
4818
4819 if (put_page_testzero(page))
4820 free_unref_page(page, order);
4821 else if (!head) {
4822 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4823 while (order-- > 0)
4824 free_unref_page(page + (1 << order), order);
4825 }
4826 }
4827 EXPORT_SYMBOL(__free_pages);
4828
free_pages(unsigned long addr,unsigned int order)4829 void free_pages(unsigned long addr, unsigned int order)
4830 {
4831 if (addr != 0) {
4832 VM_BUG_ON(!virt_addr_valid((void *)addr));
4833 __free_pages(virt_to_page((void *)addr), order);
4834 }
4835 }
4836
4837 EXPORT_SYMBOL(free_pages);
4838
4839 /*
4840 * Page Fragment:
4841 * An arbitrary-length arbitrary-offset area of memory which resides
4842 * within a 0 or higher order page. Multiple fragments within that page
4843 * are individually refcounted, in the page's reference counter.
4844 *
4845 * The page_frag functions below provide a simple allocation framework for
4846 * page fragments. This is used by the network stack and network device
4847 * drivers to provide a backing region of memory for use as either an
4848 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4849 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4850 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4851 gfp_t gfp_mask)
4852 {
4853 struct page *page = NULL;
4854 gfp_t gfp = gfp_mask;
4855
4856 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4857 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP |
4858 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4859 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4860 PAGE_FRAG_CACHE_MAX_ORDER);
4861 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4862 #endif
4863 if (unlikely(!page))
4864 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4865
4866 nc->va = page ? page_address(page) : NULL;
4867
4868 return page;
4869 }
4870
page_frag_cache_drain(struct page_frag_cache * nc)4871 void page_frag_cache_drain(struct page_frag_cache *nc)
4872 {
4873 if (!nc->va)
4874 return;
4875
4876 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4877 nc->va = NULL;
4878 }
4879 EXPORT_SYMBOL(page_frag_cache_drain);
4880
__page_frag_cache_drain(struct page * page,unsigned int count)4881 void __page_frag_cache_drain(struct page *page, unsigned int count)
4882 {
4883 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4884
4885 if (page_ref_sub_and_test(page, count))
4886 free_unref_page(page, compound_order(page));
4887 }
4888 EXPORT_SYMBOL(__page_frag_cache_drain);
4889
__page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4890 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4891 unsigned int fragsz, gfp_t gfp_mask,
4892 unsigned int align_mask)
4893 {
4894 unsigned int size = PAGE_SIZE;
4895 struct page *page;
4896 int offset;
4897
4898 if (unlikely(!nc->va)) {
4899 refill:
4900 page = __page_frag_cache_refill(nc, gfp_mask);
4901 if (!page)
4902 return NULL;
4903
4904 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4905 /* if size can vary use size else just use PAGE_SIZE */
4906 size = nc->size;
4907 #endif
4908 /* Even if we own the page, we do not use atomic_set().
4909 * This would break get_page_unless_zero() users.
4910 */
4911 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4912
4913 /* reset page count bias and offset to start of new frag */
4914 nc->pfmemalloc = page_is_pfmemalloc(page);
4915 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4916 nc->offset = size;
4917 }
4918
4919 offset = nc->offset - fragsz;
4920 if (unlikely(offset < 0)) {
4921 page = virt_to_page(nc->va);
4922
4923 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4924 goto refill;
4925
4926 if (unlikely(nc->pfmemalloc)) {
4927 free_unref_page(page, compound_order(page));
4928 goto refill;
4929 }
4930
4931 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4932 /* if size can vary use size else just use PAGE_SIZE */
4933 size = nc->size;
4934 #endif
4935 /* OK, page count is 0, we can safely set it */
4936 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4937
4938 /* reset page count bias and offset to start of new frag */
4939 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4940 offset = size - fragsz;
4941 if (unlikely(offset < 0)) {
4942 /*
4943 * The caller is trying to allocate a fragment
4944 * with fragsz > PAGE_SIZE but the cache isn't big
4945 * enough to satisfy the request, this may
4946 * happen in low memory conditions.
4947 * We don't release the cache page because
4948 * it could make memory pressure worse
4949 * so we simply return NULL here.
4950 */
4951 return NULL;
4952 }
4953 }
4954
4955 nc->pagecnt_bias--;
4956 offset &= align_mask;
4957 nc->offset = offset;
4958
4959 return nc->va + offset;
4960 }
4961 EXPORT_SYMBOL(__page_frag_alloc_align);
4962
4963 /*
4964 * Frees a page fragment allocated out of either a compound or order 0 page.
4965 */
page_frag_free(void * addr)4966 void page_frag_free(void *addr)
4967 {
4968 struct page *page = virt_to_head_page(addr);
4969
4970 if (unlikely(put_page_testzero(page)))
4971 free_unref_page(page, compound_order(page));
4972 }
4973 EXPORT_SYMBOL(page_frag_free);
4974
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4975 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4976 size_t size)
4977 {
4978 if (addr) {
4979 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4980 struct page *page = virt_to_page((void *)addr);
4981 struct page *last = page + nr;
4982
4983 split_page_owner(page, order, 0);
4984 pgalloc_tag_split(page_folio(page), order, 0);
4985 split_page_memcg(page, order, 0);
4986 while (page < --last)
4987 set_page_refcounted(last);
4988
4989 last = page + (1UL << order);
4990 for (page += nr; page < last; page++)
4991 __free_pages_ok(page, 0, FPI_TO_TAIL);
4992 }
4993 return (void *)addr;
4994 }
4995
4996 /**
4997 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4998 * @size: the number of bytes to allocate
4999 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5000 *
5001 * This function is similar to alloc_pages(), except that it allocates the
5002 * minimum number of pages to satisfy the request. alloc_pages() can only
5003 * allocate memory in power-of-two pages.
5004 *
5005 * This function is also limited by MAX_PAGE_ORDER.
5006 *
5007 * Memory allocated by this function must be released by free_pages_exact().
5008 *
5009 * Return: pointer to the allocated area or %NULL in case of error.
5010 */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)5011 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5012 {
5013 unsigned int order = get_order(size);
5014 unsigned long addr;
5015
5016 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5017 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5018
5019 addr = get_free_pages_noprof(gfp_mask, order);
5020 return make_alloc_exact(addr, order, size);
5021 }
5022 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5023
5024 /**
5025 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5026 * pages on a node.
5027 * @nid: the preferred node ID where memory should be allocated
5028 * @size: the number of bytes to allocate
5029 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5030 *
5031 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5032 * back.
5033 *
5034 * Return: pointer to the allocated area or %NULL in case of error.
5035 */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)5036 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5037 {
5038 unsigned int order = get_order(size);
5039 struct page *p;
5040
5041 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5042 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5043
5044 p = alloc_pages_node_noprof(nid, gfp_mask, order);
5045 if (!p)
5046 return NULL;
5047 return make_alloc_exact((unsigned long)page_address(p), order, size);
5048 }
5049
5050 /**
5051 * free_pages_exact - release memory allocated via alloc_pages_exact()
5052 * @virt: the value returned by alloc_pages_exact.
5053 * @size: size of allocation, same value as passed to alloc_pages_exact().
5054 *
5055 * Release the memory allocated by a previous call to alloc_pages_exact.
5056 */
free_pages_exact(void * virt,size_t size)5057 void free_pages_exact(void *virt, size_t size)
5058 {
5059 unsigned long addr = (unsigned long)virt;
5060 unsigned long end = addr + PAGE_ALIGN(size);
5061
5062 while (addr < end) {
5063 free_page(addr);
5064 addr += PAGE_SIZE;
5065 }
5066 }
5067 EXPORT_SYMBOL(free_pages_exact);
5068
5069 /**
5070 * nr_free_zone_pages - count number of pages beyond high watermark
5071 * @offset: The zone index of the highest zone
5072 *
5073 * nr_free_zone_pages() counts the number of pages which are beyond the
5074 * high watermark within all zones at or below a given zone index. For each
5075 * zone, the number of pages is calculated as:
5076 *
5077 * nr_free_zone_pages = managed_pages - high_pages
5078 *
5079 * Return: number of pages beyond high watermark.
5080 */
nr_free_zone_pages(int offset)5081 static unsigned long nr_free_zone_pages(int offset)
5082 {
5083 struct zoneref *z;
5084 struct zone *zone;
5085
5086 /* Just pick one node, since fallback list is circular */
5087 unsigned long sum = 0;
5088
5089 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5090
5091 for_each_zone_zonelist(zone, z, zonelist, offset) {
5092 unsigned long size = zone_managed_pages(zone);
5093 unsigned long high = high_wmark_pages(zone);
5094 if (size > high)
5095 sum += size - high;
5096 }
5097
5098 return sum;
5099 }
5100
5101 /**
5102 * nr_free_buffer_pages - count number of pages beyond high watermark
5103 *
5104 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5105 * watermark within ZONE_DMA and ZONE_NORMAL.
5106 *
5107 * Return: number of pages beyond high watermark within ZONE_DMA and
5108 * ZONE_NORMAL.
5109 */
nr_free_buffer_pages(void)5110 unsigned long nr_free_buffer_pages(void)
5111 {
5112 return nr_free_zone_pages(gfp_zone(GFP_USER));
5113 }
5114 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5115
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5116 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5117 {
5118 zoneref->zone = zone;
5119 zoneref->zone_idx = zone_idx(zone);
5120 }
5121
5122 /*
5123 * Builds allocation fallback zone lists.
5124 *
5125 * Add all populated zones of a node to the zonelist.
5126 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5127 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5128 {
5129 struct zone *zone;
5130 enum zone_type zone_type = MAX_NR_ZONES;
5131 int nr_zones = 0;
5132
5133 do {
5134 zone_type--;
5135 zone = pgdat->node_zones + zone_type;
5136 if (populated_zone(zone)) {
5137 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5138 check_highest_zone(zone_type);
5139 }
5140 } while (zone_type);
5141
5142 return nr_zones;
5143 }
5144
5145 #ifdef CONFIG_NUMA
5146
__parse_numa_zonelist_order(char * s)5147 static int __parse_numa_zonelist_order(char *s)
5148 {
5149 /*
5150 * We used to support different zonelists modes but they turned
5151 * out to be just not useful. Let's keep the warning in place
5152 * if somebody still use the cmd line parameter so that we do
5153 * not fail it silently
5154 */
5155 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5156 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5157 return -EINVAL;
5158 }
5159 return 0;
5160 }
5161
5162 static char numa_zonelist_order[] = "Node";
5163 #define NUMA_ZONELIST_ORDER_LEN 16
5164 /*
5165 * sysctl handler for numa_zonelist_order
5166 */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5167 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5168 void *buffer, size_t *length, loff_t *ppos)
5169 {
5170 if (write)
5171 return __parse_numa_zonelist_order(buffer);
5172 return proc_dostring(table, write, buffer, length, ppos);
5173 }
5174
5175 static int node_load[MAX_NUMNODES];
5176
5177 /**
5178 * find_next_best_node - find the next node that should appear in a given node's fallback list
5179 * @node: node whose fallback list we're appending
5180 * @used_node_mask: nodemask_t of already used nodes
5181 *
5182 * We use a number of factors to determine which is the next node that should
5183 * appear on a given node's fallback list. The node should not have appeared
5184 * already in @node's fallback list, and it should be the next closest node
5185 * according to the distance array (which contains arbitrary distance values
5186 * from each node to each node in the system), and should also prefer nodes
5187 * with no CPUs, since presumably they'll have very little allocation pressure
5188 * on them otherwise.
5189 *
5190 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5191 */
find_next_best_node(int node,nodemask_t * used_node_mask)5192 int find_next_best_node(int node, nodemask_t *used_node_mask)
5193 {
5194 int n, val;
5195 int min_val = INT_MAX;
5196 int best_node = NUMA_NO_NODE;
5197
5198 /*
5199 * Use the local node if we haven't already, but for memoryless local
5200 * node, we should skip it and fall back to other nodes.
5201 */
5202 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5203 node_set(node, *used_node_mask);
5204 return node;
5205 }
5206
5207 for_each_node_state(n, N_MEMORY) {
5208
5209 /* Don't want a node to appear more than once */
5210 if (node_isset(n, *used_node_mask))
5211 continue;
5212
5213 /* Use the distance array to find the distance */
5214 val = node_distance(node, n);
5215
5216 /* Penalize nodes under us ("prefer the next node") */
5217 val += (n < node);
5218
5219 /* Give preference to headless and unused nodes */
5220 if (!cpumask_empty(cpumask_of_node(n)))
5221 val += PENALTY_FOR_NODE_WITH_CPUS;
5222
5223 /* Slight preference for less loaded node */
5224 val *= MAX_NUMNODES;
5225 val += node_load[n];
5226
5227 if (val < min_val) {
5228 min_val = val;
5229 best_node = n;
5230 }
5231 }
5232
5233 if (best_node >= 0)
5234 node_set(best_node, *used_node_mask);
5235
5236 return best_node;
5237 }
5238
5239
5240 /*
5241 * Build zonelists ordered by node and zones within node.
5242 * This results in maximum locality--normal zone overflows into local
5243 * DMA zone, if any--but risks exhausting DMA zone.
5244 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5245 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5246 unsigned nr_nodes)
5247 {
5248 struct zoneref *zonerefs;
5249 int i;
5250
5251 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5252
5253 for (i = 0; i < nr_nodes; i++) {
5254 int nr_zones;
5255
5256 pg_data_t *node = NODE_DATA(node_order[i]);
5257
5258 nr_zones = build_zonerefs_node(node, zonerefs);
5259 zonerefs += nr_zones;
5260 }
5261 zonerefs->zone = NULL;
5262 zonerefs->zone_idx = 0;
5263 }
5264
5265 /*
5266 * Build __GFP_THISNODE zonelists
5267 */
build_thisnode_zonelists(pg_data_t * pgdat)5268 static void build_thisnode_zonelists(pg_data_t *pgdat)
5269 {
5270 struct zoneref *zonerefs;
5271 int nr_zones;
5272
5273 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5274 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5275 zonerefs += nr_zones;
5276 zonerefs->zone = NULL;
5277 zonerefs->zone_idx = 0;
5278 }
5279
5280 /*
5281 * Build zonelists ordered by zone and nodes within zones.
5282 * This results in conserving DMA zone[s] until all Normal memory is
5283 * exhausted, but results in overflowing to remote node while memory
5284 * may still exist in local DMA zone.
5285 */
5286
build_zonelists(pg_data_t * pgdat)5287 static void build_zonelists(pg_data_t *pgdat)
5288 {
5289 static int node_order[MAX_NUMNODES];
5290 int node, nr_nodes = 0;
5291 nodemask_t used_mask = NODE_MASK_NONE;
5292 int local_node, prev_node;
5293
5294 /* NUMA-aware ordering of nodes */
5295 local_node = pgdat->node_id;
5296 prev_node = local_node;
5297
5298 memset(node_order, 0, sizeof(node_order));
5299 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5300 /*
5301 * We don't want to pressure a particular node.
5302 * So adding penalty to the first node in same
5303 * distance group to make it round-robin.
5304 */
5305 if (node_distance(local_node, node) !=
5306 node_distance(local_node, prev_node))
5307 node_load[node] += 1;
5308
5309 node_order[nr_nodes++] = node;
5310 prev_node = node;
5311 }
5312
5313 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5314 build_thisnode_zonelists(pgdat);
5315 pr_info("Fallback order for Node %d: ", local_node);
5316 for (node = 0; node < nr_nodes; node++)
5317 pr_cont("%d ", node_order[node]);
5318 pr_cont("\n");
5319 }
5320
5321 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5322 /*
5323 * Return node id of node used for "local" allocations.
5324 * I.e., first node id of first zone in arg node's generic zonelist.
5325 * Used for initializing percpu 'numa_mem', which is used primarily
5326 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5327 */
local_memory_node(int node)5328 int local_memory_node(int node)
5329 {
5330 struct zoneref *z;
5331
5332 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5333 gfp_zone(GFP_KERNEL),
5334 NULL);
5335 return zonelist_node_idx(z);
5336 }
5337 #endif
5338
5339 static void setup_min_unmapped_ratio(void);
5340 static void setup_min_slab_ratio(void);
5341 #else /* CONFIG_NUMA */
5342
build_zonelists(pg_data_t * pgdat)5343 static void build_zonelists(pg_data_t *pgdat)
5344 {
5345 struct zoneref *zonerefs;
5346 int nr_zones;
5347
5348 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5349 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5350 zonerefs += nr_zones;
5351
5352 zonerefs->zone = NULL;
5353 zonerefs->zone_idx = 0;
5354 }
5355
5356 #endif /* CONFIG_NUMA */
5357
5358 /*
5359 * Boot pageset table. One per cpu which is going to be used for all
5360 * zones and all nodes. The parameters will be set in such a way
5361 * that an item put on a list will immediately be handed over to
5362 * the buddy list. This is safe since pageset manipulation is done
5363 * with interrupts disabled.
5364 *
5365 * The boot_pagesets must be kept even after bootup is complete for
5366 * unused processors and/or zones. They do play a role for bootstrapping
5367 * hotplugged processors.
5368 *
5369 * zoneinfo_show() and maybe other functions do
5370 * not check if the processor is online before following the pageset pointer.
5371 * Other parts of the kernel may not check if the zone is available.
5372 */
5373 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5374 /* These effectively disable the pcplists in the boot pageset completely */
5375 #define BOOT_PAGESET_HIGH 0
5376 #define BOOT_PAGESET_BATCH 1
5377 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5378 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5379
__build_all_zonelists(void * data)5380 static void __build_all_zonelists(void *data)
5381 {
5382 int nid;
5383 int __maybe_unused cpu;
5384 pg_data_t *self = data;
5385 unsigned long flags;
5386
5387 /*
5388 * The zonelist_update_seq must be acquired with irqsave because the
5389 * reader can be invoked from IRQ with GFP_ATOMIC.
5390 */
5391 write_seqlock_irqsave(&zonelist_update_seq, flags);
5392 /*
5393 * Also disable synchronous printk() to prevent any printk() from
5394 * trying to hold port->lock, for
5395 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5396 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5397 */
5398 printk_deferred_enter();
5399
5400 #ifdef CONFIG_NUMA
5401 memset(node_load, 0, sizeof(node_load));
5402 #endif
5403
5404 /*
5405 * This node is hotadded and no memory is yet present. So just
5406 * building zonelists is fine - no need to touch other nodes.
5407 */
5408 if (self && !node_online(self->node_id)) {
5409 build_zonelists(self);
5410 } else {
5411 /*
5412 * All possible nodes have pgdat preallocated
5413 * in free_area_init
5414 */
5415 for_each_node(nid) {
5416 pg_data_t *pgdat = NODE_DATA(nid);
5417
5418 build_zonelists(pgdat);
5419 }
5420
5421 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5422 /*
5423 * We now know the "local memory node" for each node--
5424 * i.e., the node of the first zone in the generic zonelist.
5425 * Set up numa_mem percpu variable for on-line cpus. During
5426 * boot, only the boot cpu should be on-line; we'll init the
5427 * secondary cpus' numa_mem as they come on-line. During
5428 * node/memory hotplug, we'll fixup all on-line cpus.
5429 */
5430 for_each_online_cpu(cpu)
5431 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5432 #endif
5433 }
5434
5435 printk_deferred_exit();
5436 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5437 }
5438
5439 static noinline void __init
build_all_zonelists_init(void)5440 build_all_zonelists_init(void)
5441 {
5442 int cpu;
5443
5444 __build_all_zonelists(NULL);
5445
5446 /*
5447 * Initialize the boot_pagesets that are going to be used
5448 * for bootstrapping processors. The real pagesets for
5449 * each zone will be allocated later when the per cpu
5450 * allocator is available.
5451 *
5452 * boot_pagesets are used also for bootstrapping offline
5453 * cpus if the system is already booted because the pagesets
5454 * are needed to initialize allocators on a specific cpu too.
5455 * F.e. the percpu allocator needs the page allocator which
5456 * needs the percpu allocator in order to allocate its pagesets
5457 * (a chicken-egg dilemma).
5458 */
5459 for_each_possible_cpu(cpu)
5460 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5461
5462 mminit_verify_zonelist();
5463 cpuset_init_current_mems_allowed();
5464 }
5465
5466 /*
5467 * unless system_state == SYSTEM_BOOTING.
5468 *
5469 * __ref due to call of __init annotated helper build_all_zonelists_init
5470 * [protected by SYSTEM_BOOTING].
5471 */
build_all_zonelists(pg_data_t * pgdat)5472 void __ref build_all_zonelists(pg_data_t *pgdat)
5473 {
5474 unsigned long vm_total_pages;
5475
5476 if (system_state == SYSTEM_BOOTING) {
5477 build_all_zonelists_init();
5478 } else {
5479 __build_all_zonelists(pgdat);
5480 /* cpuset refresh routine should be here */
5481 }
5482 /* Get the number of free pages beyond high watermark in all zones. */
5483 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5484 /*
5485 * Disable grouping by mobility if the number of pages in the
5486 * system is too low to allow the mechanism to work. It would be
5487 * more accurate, but expensive to check per-zone. This check is
5488 * made on memory-hotadd so a system can start with mobility
5489 * disabled and enable it later
5490 */
5491 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5492 page_group_by_mobility_disabled = 1;
5493 else
5494 page_group_by_mobility_disabled = 0;
5495
5496 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5497 nr_online_nodes,
5498 page_group_by_mobility_disabled ? "off" : "on",
5499 vm_total_pages);
5500 #ifdef CONFIG_NUMA
5501 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5502 #endif
5503 }
5504
zone_batchsize(struct zone * zone)5505 static int zone_batchsize(struct zone *zone)
5506 {
5507 #ifdef CONFIG_MMU
5508 int batch;
5509
5510 /*
5511 * The number of pages to batch allocate is either ~0.1%
5512 * of the zone or 1MB, whichever is smaller. The batch
5513 * size is striking a balance between allocation latency
5514 * and zone lock contention.
5515 */
5516 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5517 batch /= 4; /* We effectively *= 4 below */
5518 if (batch < 1)
5519 batch = 1;
5520
5521 /*
5522 * Clamp the batch to a 2^n - 1 value. Having a power
5523 * of 2 value was found to be more likely to have
5524 * suboptimal cache aliasing properties in some cases.
5525 *
5526 * For example if 2 tasks are alternately allocating
5527 * batches of pages, one task can end up with a lot
5528 * of pages of one half of the possible page colors
5529 * and the other with pages of the other colors.
5530 */
5531 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5532
5533 return batch;
5534
5535 #else
5536 /* The deferral and batching of frees should be suppressed under NOMMU
5537 * conditions.
5538 *
5539 * The problem is that NOMMU needs to be able to allocate large chunks
5540 * of contiguous memory as there's no hardware page translation to
5541 * assemble apparent contiguous memory from discontiguous pages.
5542 *
5543 * Queueing large contiguous runs of pages for batching, however,
5544 * causes the pages to actually be freed in smaller chunks. As there
5545 * can be a significant delay between the individual batches being
5546 * recycled, this leads to the once large chunks of space being
5547 * fragmented and becoming unavailable for high-order allocations.
5548 */
5549 return 0;
5550 #endif
5551 }
5552
5553 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5554 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5555 int high_fraction)
5556 {
5557 #ifdef CONFIG_MMU
5558 int high;
5559 int nr_split_cpus;
5560 unsigned long total_pages;
5561
5562 if (!high_fraction) {
5563 /*
5564 * By default, the high value of the pcp is based on the zone
5565 * low watermark so that if they are full then background
5566 * reclaim will not be started prematurely.
5567 */
5568 total_pages = low_wmark_pages(zone);
5569 } else {
5570 /*
5571 * If percpu_pagelist_high_fraction is configured, the high
5572 * value is based on a fraction of the managed pages in the
5573 * zone.
5574 */
5575 total_pages = zone_managed_pages(zone) / high_fraction;
5576 }
5577
5578 /*
5579 * Split the high value across all online CPUs local to the zone. Note
5580 * that early in boot that CPUs may not be online yet and that during
5581 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5582 * onlined. For memory nodes that have no CPUs, split the high value
5583 * across all online CPUs to mitigate the risk that reclaim is triggered
5584 * prematurely due to pages stored on pcp lists.
5585 */
5586 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5587 if (!nr_split_cpus)
5588 nr_split_cpus = num_online_cpus();
5589 high = total_pages / nr_split_cpus;
5590
5591 /*
5592 * Ensure high is at least batch*4. The multiple is based on the
5593 * historical relationship between high and batch.
5594 */
5595 high = max(high, batch << 2);
5596
5597 return high;
5598 #else
5599 return 0;
5600 #endif
5601 }
5602
5603 /*
5604 * pcp->high and pcp->batch values are related and generally batch is lower
5605 * than high. They are also related to pcp->count such that count is lower
5606 * than high, and as soon as it reaches high, the pcplist is flushed.
5607 *
5608 * However, guaranteeing these relations at all times would require e.g. write
5609 * barriers here but also careful usage of read barriers at the read side, and
5610 * thus be prone to error and bad for performance. Thus the update only prevents
5611 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5612 * should ensure they can cope with those fields changing asynchronously, and
5613 * fully trust only the pcp->count field on the local CPU with interrupts
5614 * disabled.
5615 *
5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5617 * outside of boot time (or some other assurance that no concurrent updaters
5618 * exist).
5619 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5620 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5621 unsigned long high_max, unsigned long batch)
5622 {
5623 WRITE_ONCE(pcp->batch, batch);
5624 WRITE_ONCE(pcp->high_min, high_min);
5625 WRITE_ONCE(pcp->high_max, high_max);
5626 }
5627
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5628 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5629 {
5630 int pindex;
5631
5632 memset(pcp, 0, sizeof(*pcp));
5633 memset(pzstats, 0, sizeof(*pzstats));
5634
5635 spin_lock_init(&pcp->lock);
5636 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5637 INIT_LIST_HEAD(&pcp->lists[pindex]);
5638
5639 /*
5640 * Set batch and high values safe for a boot pageset. A true percpu
5641 * pageset's initialization will update them subsequently. Here we don't
5642 * need to be as careful as pageset_update() as nobody can access the
5643 * pageset yet.
5644 */
5645 pcp->high_min = BOOT_PAGESET_HIGH;
5646 pcp->high_max = BOOT_PAGESET_HIGH;
5647 pcp->batch = BOOT_PAGESET_BATCH;
5648 pcp->free_count = 0;
5649 }
5650
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5651 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5652 unsigned long high_max, unsigned long batch)
5653 {
5654 struct per_cpu_pages *pcp;
5655 int cpu;
5656
5657 for_each_possible_cpu(cpu) {
5658 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5659 pageset_update(pcp, high_min, high_max, batch);
5660 }
5661 }
5662
5663 /*
5664 * Calculate and set new high and batch values for all per-cpu pagesets of a
5665 * zone based on the zone's size.
5666 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5667 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5668 {
5669 int new_high_min, new_high_max, new_batch;
5670
5671 new_batch = max(1, zone_batchsize(zone));
5672 if (percpu_pagelist_high_fraction) {
5673 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5674 percpu_pagelist_high_fraction);
5675 /*
5676 * PCP high is tuned manually, disable auto-tuning via
5677 * setting high_min and high_max to the manual value.
5678 */
5679 new_high_max = new_high_min;
5680 } else {
5681 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5682 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5683 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5684 }
5685
5686 if (zone->pageset_high_min == new_high_min &&
5687 zone->pageset_high_max == new_high_max &&
5688 zone->pageset_batch == new_batch)
5689 return;
5690
5691 zone->pageset_high_min = new_high_min;
5692 zone->pageset_high_max = new_high_max;
5693 zone->pageset_batch = new_batch;
5694
5695 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5696 new_batch);
5697 }
5698
setup_zone_pageset(struct zone * zone)5699 void __meminit setup_zone_pageset(struct zone *zone)
5700 {
5701 int cpu;
5702
5703 /* Size may be 0 on !SMP && !NUMA */
5704 if (sizeof(struct per_cpu_zonestat) > 0)
5705 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5706
5707 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5708 for_each_possible_cpu(cpu) {
5709 struct per_cpu_pages *pcp;
5710 struct per_cpu_zonestat *pzstats;
5711
5712 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5713 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5714 per_cpu_pages_init(pcp, pzstats);
5715 }
5716
5717 zone_set_pageset_high_and_batch(zone, 0);
5718 }
5719
5720 /*
5721 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5722 * page high values need to be recalculated.
5723 */
zone_pcp_update(struct zone * zone,int cpu_online)5724 static void zone_pcp_update(struct zone *zone, int cpu_online)
5725 {
5726 mutex_lock(&pcp_batch_high_lock);
5727 zone_set_pageset_high_and_batch(zone, cpu_online);
5728 mutex_unlock(&pcp_batch_high_lock);
5729 }
5730
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)5731 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5732 {
5733 struct per_cpu_pages *pcp;
5734 struct cpu_cacheinfo *cci;
5735
5736 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5737 cci = get_cpu_cacheinfo(cpu);
5738 /*
5739 * If data cache slice of CPU is large enough, "pcp->batch"
5740 * pages can be preserved in PCP before draining PCP for
5741 * consecutive high-order pages freeing without allocation.
5742 * This can reduce zone lock contention without hurting
5743 * cache-hot pages sharing.
5744 */
5745 spin_lock(&pcp->lock);
5746 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5747 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5748 else
5749 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5750 spin_unlock(&pcp->lock);
5751 }
5752
setup_pcp_cacheinfo(unsigned int cpu)5753 void setup_pcp_cacheinfo(unsigned int cpu)
5754 {
5755 struct zone *zone;
5756
5757 for_each_populated_zone(zone)
5758 zone_pcp_update_cacheinfo(zone, cpu);
5759 }
5760
5761 /*
5762 * Allocate per cpu pagesets and initialize them.
5763 * Before this call only boot pagesets were available.
5764 */
setup_per_cpu_pageset(void)5765 void __init setup_per_cpu_pageset(void)
5766 {
5767 struct pglist_data *pgdat;
5768 struct zone *zone;
5769 int __maybe_unused cpu;
5770
5771 for_each_populated_zone(zone)
5772 setup_zone_pageset(zone);
5773
5774 #ifdef CONFIG_NUMA
5775 /*
5776 * Unpopulated zones continue using the boot pagesets.
5777 * The numa stats for these pagesets need to be reset.
5778 * Otherwise, they will end up skewing the stats of
5779 * the nodes these zones are associated with.
5780 */
5781 for_each_possible_cpu(cpu) {
5782 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5783 memset(pzstats->vm_numa_event, 0,
5784 sizeof(pzstats->vm_numa_event));
5785 }
5786 #endif
5787
5788 for_each_online_pgdat(pgdat)
5789 pgdat->per_cpu_nodestats =
5790 alloc_percpu(struct per_cpu_nodestat);
5791 }
5792
zone_pcp_init(struct zone * zone)5793 __meminit void zone_pcp_init(struct zone *zone)
5794 {
5795 /*
5796 * per cpu subsystem is not up at this point. The following code
5797 * relies on the ability of the linker to provide the
5798 * offset of a (static) per cpu variable into the per cpu area.
5799 */
5800 zone->per_cpu_pageset = &boot_pageset;
5801 zone->per_cpu_zonestats = &boot_zonestats;
5802 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5803 zone->pageset_high_max = BOOT_PAGESET_HIGH;
5804 zone->pageset_batch = BOOT_PAGESET_BATCH;
5805
5806 if (populated_zone(zone))
5807 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5808 zone->present_pages, zone_batchsize(zone));
5809 }
5810
adjust_managed_page_count(struct page * page,long count)5811 void adjust_managed_page_count(struct page *page, long count)
5812 {
5813 atomic_long_add(count, &page_zone(page)->managed_pages);
5814 totalram_pages_add(count);
5815 }
5816 EXPORT_SYMBOL(adjust_managed_page_count);
5817
free_reserved_area(void * start,void * end,int poison,const char * s)5818 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5819 {
5820 void *pos;
5821 unsigned long pages = 0;
5822
5823 start = (void *)PAGE_ALIGN((unsigned long)start);
5824 end = (void *)((unsigned long)end & PAGE_MASK);
5825 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5826 struct page *page = virt_to_page(pos);
5827 void *direct_map_addr;
5828
5829 /*
5830 * 'direct_map_addr' might be different from 'pos'
5831 * because some architectures' virt_to_page()
5832 * work with aliases. Getting the direct map
5833 * address ensures that we get a _writeable_
5834 * alias for the memset().
5835 */
5836 direct_map_addr = page_address(page);
5837 /*
5838 * Perform a kasan-unchecked memset() since this memory
5839 * has not been initialized.
5840 */
5841 direct_map_addr = kasan_reset_tag(direct_map_addr);
5842 if ((unsigned int)poison <= 0xFF)
5843 memset(direct_map_addr, poison, PAGE_SIZE);
5844
5845 free_reserved_page(page);
5846 }
5847
5848 if (pages && s)
5849 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5850
5851 return pages;
5852 }
5853
free_reserved_page(struct page * page)5854 void free_reserved_page(struct page *page)
5855 {
5856 clear_page_tag_ref(page);
5857 ClearPageReserved(page);
5858 init_page_count(page);
5859 __free_page(page);
5860 adjust_managed_page_count(page, 1);
5861 }
5862 EXPORT_SYMBOL(free_reserved_page);
5863
page_alloc_cpu_dead(unsigned int cpu)5864 static int page_alloc_cpu_dead(unsigned int cpu)
5865 {
5866 struct zone *zone;
5867
5868 lru_add_drain_cpu(cpu);
5869 mlock_drain_remote(cpu);
5870 drain_pages(cpu);
5871
5872 /*
5873 * Spill the event counters of the dead processor
5874 * into the current processors event counters.
5875 * This artificially elevates the count of the current
5876 * processor.
5877 */
5878 vm_events_fold_cpu(cpu);
5879
5880 /*
5881 * Zero the differential counters of the dead processor
5882 * so that the vm statistics are consistent.
5883 *
5884 * This is only okay since the processor is dead and cannot
5885 * race with what we are doing.
5886 */
5887 cpu_vm_stats_fold(cpu);
5888
5889 for_each_populated_zone(zone)
5890 zone_pcp_update(zone, 0);
5891
5892 return 0;
5893 }
5894
page_alloc_cpu_online(unsigned int cpu)5895 static int page_alloc_cpu_online(unsigned int cpu)
5896 {
5897 struct zone *zone;
5898
5899 for_each_populated_zone(zone)
5900 zone_pcp_update(zone, 1);
5901 return 0;
5902 }
5903
page_alloc_init_cpuhp(void)5904 void __init page_alloc_init_cpuhp(void)
5905 {
5906 int ret;
5907
5908 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5909 "mm/page_alloc:pcp",
5910 page_alloc_cpu_online,
5911 page_alloc_cpu_dead);
5912 WARN_ON(ret < 0);
5913 }
5914
5915 /*
5916 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5917 * or min_free_kbytes changes.
5918 */
calculate_totalreserve_pages(void)5919 static void calculate_totalreserve_pages(void)
5920 {
5921 struct pglist_data *pgdat;
5922 unsigned long reserve_pages = 0;
5923 enum zone_type i, j;
5924
5925 for_each_online_pgdat(pgdat) {
5926
5927 pgdat->totalreserve_pages = 0;
5928
5929 for (i = 0; i < MAX_NR_ZONES; i++) {
5930 struct zone *zone = pgdat->node_zones + i;
5931 long max = 0;
5932 unsigned long managed_pages = zone_managed_pages(zone);
5933
5934 /* Find valid and maximum lowmem_reserve in the zone */
5935 for (j = i; j < MAX_NR_ZONES; j++) {
5936 if (zone->lowmem_reserve[j] > max)
5937 max = zone->lowmem_reserve[j];
5938 }
5939
5940 /* we treat the high watermark as reserved pages. */
5941 max += high_wmark_pages(zone);
5942
5943 if (max > managed_pages)
5944 max = managed_pages;
5945
5946 pgdat->totalreserve_pages += max;
5947
5948 reserve_pages += max;
5949 }
5950 }
5951 totalreserve_pages = reserve_pages;
5952 }
5953
5954 /*
5955 * setup_per_zone_lowmem_reserve - called whenever
5956 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5957 * has a correct pages reserved value, so an adequate number of
5958 * pages are left in the zone after a successful __alloc_pages().
5959 */
setup_per_zone_lowmem_reserve(void)5960 static void setup_per_zone_lowmem_reserve(void)
5961 {
5962 struct pglist_data *pgdat;
5963 enum zone_type i, j;
5964
5965 for_each_online_pgdat(pgdat) {
5966 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5967 struct zone *zone = &pgdat->node_zones[i];
5968 int ratio = sysctl_lowmem_reserve_ratio[i];
5969 bool clear = !ratio || !zone_managed_pages(zone);
5970 unsigned long managed_pages = 0;
5971
5972 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5973 struct zone *upper_zone = &pgdat->node_zones[j];
5974 bool empty = !zone_managed_pages(upper_zone);
5975
5976 managed_pages += zone_managed_pages(upper_zone);
5977
5978 if (clear || empty)
5979 zone->lowmem_reserve[j] = 0;
5980 else
5981 zone->lowmem_reserve[j] = managed_pages / ratio;
5982 }
5983 }
5984 }
5985
5986 /* update totalreserve_pages */
5987 calculate_totalreserve_pages();
5988 }
5989
__setup_per_zone_wmarks(void)5990 static void __setup_per_zone_wmarks(void)
5991 {
5992 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5993 unsigned long lowmem_pages = 0;
5994 struct zone *zone;
5995 unsigned long flags;
5996
5997 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5998 for_each_zone(zone) {
5999 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6000 lowmem_pages += zone_managed_pages(zone);
6001 }
6002
6003 for_each_zone(zone) {
6004 u64 tmp;
6005
6006 spin_lock_irqsave(&zone->lock, flags);
6007 tmp = (u64)pages_min * zone_managed_pages(zone);
6008 tmp = div64_ul(tmp, lowmem_pages);
6009 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6010 /*
6011 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6012 * need highmem and movable zones pages, so cap pages_min
6013 * to a small value here.
6014 *
6015 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6016 * deltas control async page reclaim, and so should
6017 * not be capped for highmem and movable zones.
6018 */
6019 unsigned long min_pages;
6020
6021 min_pages = zone_managed_pages(zone) / 1024;
6022 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6023 zone->_watermark[WMARK_MIN] = min_pages;
6024 } else {
6025 /*
6026 * If it's a lowmem zone, reserve a number of pages
6027 * proportionate to the zone's size.
6028 */
6029 zone->_watermark[WMARK_MIN] = tmp;
6030 }
6031
6032 /*
6033 * Set the kswapd watermarks distance according to the
6034 * scale factor in proportion to available memory, but
6035 * ensure a minimum size on small systems.
6036 */
6037 tmp = max_t(u64, tmp >> 2,
6038 mult_frac(zone_managed_pages(zone),
6039 watermark_scale_factor, 10000));
6040
6041 zone->watermark_boost = 0;
6042 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6043 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6044 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6045
6046 spin_unlock_irqrestore(&zone->lock, flags);
6047 }
6048
6049 /* update totalreserve_pages */
6050 calculate_totalreserve_pages();
6051 }
6052
6053 /**
6054 * setup_per_zone_wmarks - called when min_free_kbytes changes
6055 * or when memory is hot-{added|removed}
6056 *
6057 * Ensures that the watermark[min,low,high] values for each zone are set
6058 * correctly with respect to min_free_kbytes.
6059 */
setup_per_zone_wmarks(void)6060 void setup_per_zone_wmarks(void)
6061 {
6062 struct zone *zone;
6063 static DEFINE_SPINLOCK(lock);
6064
6065 spin_lock(&lock);
6066 __setup_per_zone_wmarks();
6067 spin_unlock(&lock);
6068
6069 /*
6070 * The watermark size have changed so update the pcpu batch
6071 * and high limits or the limits may be inappropriate.
6072 */
6073 for_each_zone(zone)
6074 zone_pcp_update(zone, 0);
6075 }
6076
6077 /*
6078 * Initialise min_free_kbytes.
6079 *
6080 * For small machines we want it small (128k min). For large machines
6081 * we want it large (256MB max). But it is not linear, because network
6082 * bandwidth does not increase linearly with machine size. We use
6083 *
6084 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6085 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6086 *
6087 * which yields
6088 *
6089 * 16MB: 512k
6090 * 32MB: 724k
6091 * 64MB: 1024k
6092 * 128MB: 1448k
6093 * 256MB: 2048k
6094 * 512MB: 2896k
6095 * 1024MB: 4096k
6096 * 2048MB: 5792k
6097 * 4096MB: 8192k
6098 * 8192MB: 11584k
6099 * 16384MB: 16384k
6100 */
calculate_min_free_kbytes(void)6101 void calculate_min_free_kbytes(void)
6102 {
6103 unsigned long lowmem_kbytes;
6104 int new_min_free_kbytes;
6105
6106 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6107 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6108
6109 if (new_min_free_kbytes > user_min_free_kbytes)
6110 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6111 else
6112 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6113 new_min_free_kbytes, user_min_free_kbytes);
6114
6115 }
6116
init_per_zone_wmark_min(void)6117 int __meminit init_per_zone_wmark_min(void)
6118 {
6119 calculate_min_free_kbytes();
6120 setup_per_zone_wmarks();
6121 refresh_zone_stat_thresholds();
6122 setup_per_zone_lowmem_reserve();
6123
6124 #ifdef CONFIG_NUMA
6125 setup_min_unmapped_ratio();
6126 setup_min_slab_ratio();
6127 #endif
6128
6129 khugepaged_min_free_kbytes_update();
6130
6131 return 0;
6132 }
postcore_initcall(init_per_zone_wmark_min)6133 postcore_initcall(init_per_zone_wmark_min)
6134
6135 /*
6136 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6137 * that we can call two helper functions whenever min_free_kbytes
6138 * changes.
6139 */
6140 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6141 void *buffer, size_t *length, loff_t *ppos)
6142 {
6143 int rc;
6144
6145 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6146 if (rc)
6147 return rc;
6148
6149 if (write) {
6150 user_min_free_kbytes = min_free_kbytes;
6151 setup_per_zone_wmarks();
6152 }
6153 return 0;
6154 }
6155
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6156 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6157 void *buffer, size_t *length, loff_t *ppos)
6158 {
6159 int rc;
6160
6161 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6162 if (rc)
6163 return rc;
6164
6165 if (write)
6166 setup_per_zone_wmarks();
6167
6168 return 0;
6169 }
6170
6171 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6172 static void setup_min_unmapped_ratio(void)
6173 {
6174 pg_data_t *pgdat;
6175 struct zone *zone;
6176
6177 for_each_online_pgdat(pgdat)
6178 pgdat->min_unmapped_pages = 0;
6179
6180 for_each_zone(zone)
6181 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6182 sysctl_min_unmapped_ratio) / 100;
6183 }
6184
6185
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6186 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6187 void *buffer, size_t *length, loff_t *ppos)
6188 {
6189 int rc;
6190
6191 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6192 if (rc)
6193 return rc;
6194
6195 setup_min_unmapped_ratio();
6196
6197 return 0;
6198 }
6199
setup_min_slab_ratio(void)6200 static void setup_min_slab_ratio(void)
6201 {
6202 pg_data_t *pgdat;
6203 struct zone *zone;
6204
6205 for_each_online_pgdat(pgdat)
6206 pgdat->min_slab_pages = 0;
6207
6208 for_each_zone(zone)
6209 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6210 sysctl_min_slab_ratio) / 100;
6211 }
6212
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6213 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6214 void *buffer, size_t *length, loff_t *ppos)
6215 {
6216 int rc;
6217
6218 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6219 if (rc)
6220 return rc;
6221
6222 setup_min_slab_ratio();
6223
6224 return 0;
6225 }
6226 #endif
6227
6228 /*
6229 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6230 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6231 * whenever sysctl_lowmem_reserve_ratio changes.
6232 *
6233 * The reserve ratio obviously has absolutely no relation with the
6234 * minimum watermarks. The lowmem reserve ratio can only make sense
6235 * if in function of the boot time zone sizes.
6236 */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6237 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6238 int write, void *buffer, size_t *length, loff_t *ppos)
6239 {
6240 int i;
6241
6242 proc_dointvec_minmax(table, write, buffer, length, ppos);
6243
6244 for (i = 0; i < MAX_NR_ZONES; i++) {
6245 if (sysctl_lowmem_reserve_ratio[i] < 1)
6246 sysctl_lowmem_reserve_ratio[i] = 0;
6247 }
6248
6249 setup_per_zone_lowmem_reserve();
6250 return 0;
6251 }
6252
6253 /*
6254 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6255 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6256 * pagelist can have before it gets flushed back to buddy allocator.
6257 */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6258 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6259 int write, void *buffer, size_t *length, loff_t *ppos)
6260 {
6261 struct zone *zone;
6262 int old_percpu_pagelist_high_fraction;
6263 int ret;
6264
6265 mutex_lock(&pcp_batch_high_lock);
6266 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6267
6268 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6269 if (!write || ret < 0)
6270 goto out;
6271
6272 /* Sanity checking to avoid pcp imbalance */
6273 if (percpu_pagelist_high_fraction &&
6274 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6275 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6276 ret = -EINVAL;
6277 goto out;
6278 }
6279
6280 /* No change? */
6281 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6282 goto out;
6283
6284 for_each_populated_zone(zone)
6285 zone_set_pageset_high_and_batch(zone, 0);
6286 out:
6287 mutex_unlock(&pcp_batch_high_lock);
6288 return ret;
6289 }
6290
6291 static struct ctl_table page_alloc_sysctl_table[] = {
6292 {
6293 .procname = "min_free_kbytes",
6294 .data = &min_free_kbytes,
6295 .maxlen = sizeof(min_free_kbytes),
6296 .mode = 0644,
6297 .proc_handler = min_free_kbytes_sysctl_handler,
6298 .extra1 = SYSCTL_ZERO,
6299 },
6300 {
6301 .procname = "watermark_boost_factor",
6302 .data = &watermark_boost_factor,
6303 .maxlen = sizeof(watermark_boost_factor),
6304 .mode = 0644,
6305 .proc_handler = proc_dointvec_minmax,
6306 .extra1 = SYSCTL_ZERO,
6307 },
6308 {
6309 .procname = "watermark_scale_factor",
6310 .data = &watermark_scale_factor,
6311 .maxlen = sizeof(watermark_scale_factor),
6312 .mode = 0644,
6313 .proc_handler = watermark_scale_factor_sysctl_handler,
6314 .extra1 = SYSCTL_ONE,
6315 .extra2 = SYSCTL_THREE_THOUSAND,
6316 },
6317 {
6318 .procname = "percpu_pagelist_high_fraction",
6319 .data = &percpu_pagelist_high_fraction,
6320 .maxlen = sizeof(percpu_pagelist_high_fraction),
6321 .mode = 0644,
6322 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6323 .extra1 = SYSCTL_ZERO,
6324 },
6325 {
6326 .procname = "lowmem_reserve_ratio",
6327 .data = &sysctl_lowmem_reserve_ratio,
6328 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6329 .mode = 0644,
6330 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6331 },
6332 #ifdef CONFIG_NUMA
6333 {
6334 .procname = "numa_zonelist_order",
6335 .data = &numa_zonelist_order,
6336 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6337 .mode = 0644,
6338 .proc_handler = numa_zonelist_order_handler,
6339 },
6340 {
6341 .procname = "min_unmapped_ratio",
6342 .data = &sysctl_min_unmapped_ratio,
6343 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6344 .mode = 0644,
6345 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6346 .extra1 = SYSCTL_ZERO,
6347 .extra2 = SYSCTL_ONE_HUNDRED,
6348 },
6349 {
6350 .procname = "min_slab_ratio",
6351 .data = &sysctl_min_slab_ratio,
6352 .maxlen = sizeof(sysctl_min_slab_ratio),
6353 .mode = 0644,
6354 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6355 .extra1 = SYSCTL_ZERO,
6356 .extra2 = SYSCTL_ONE_HUNDRED,
6357 },
6358 #endif
6359 };
6360
page_alloc_sysctl_init(void)6361 void __init page_alloc_sysctl_init(void)
6362 {
6363 register_sysctl_init("vm", page_alloc_sysctl_table);
6364 }
6365
6366 #ifdef CONFIG_CONTIG_ALLOC
6367 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6368 static void alloc_contig_dump_pages(struct list_head *page_list)
6369 {
6370 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6371
6372 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6373 struct page *page;
6374
6375 dump_stack();
6376 list_for_each_entry(page, page_list, lru)
6377 dump_page(page, "migration failure");
6378 }
6379 }
6380
6381 /*
6382 * [start, end) must belong to a single zone.
6383 * @migratetype: using migratetype to filter the type of migration in
6384 * trace_mm_alloc_contig_migrate_range_info.
6385 */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6386 int __alloc_contig_migrate_range(struct compact_control *cc,
6387 unsigned long start, unsigned long end,
6388 int migratetype)
6389 {
6390 /* This function is based on compact_zone() from compaction.c. */
6391 unsigned int nr_reclaimed;
6392 unsigned long pfn = start;
6393 unsigned int tries = 0;
6394 int ret = 0;
6395 struct migration_target_control mtc = {
6396 .nid = zone_to_nid(cc->zone),
6397 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6398 .reason = MR_CONTIG_RANGE,
6399 };
6400 struct page *page;
6401 unsigned long total_mapped = 0;
6402 unsigned long total_migrated = 0;
6403 unsigned long total_reclaimed = 0;
6404
6405 lru_cache_disable();
6406
6407 while (pfn < end || !list_empty(&cc->migratepages)) {
6408 if (fatal_signal_pending(current)) {
6409 ret = -EINTR;
6410 break;
6411 }
6412
6413 if (list_empty(&cc->migratepages)) {
6414 cc->nr_migratepages = 0;
6415 ret = isolate_migratepages_range(cc, pfn, end);
6416 if (ret && ret != -EAGAIN)
6417 break;
6418 pfn = cc->migrate_pfn;
6419 tries = 0;
6420 } else if (++tries == 5) {
6421 ret = -EBUSY;
6422 break;
6423 }
6424
6425 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6426 &cc->migratepages);
6427 cc->nr_migratepages -= nr_reclaimed;
6428
6429 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6430 total_reclaimed += nr_reclaimed;
6431 list_for_each_entry(page, &cc->migratepages, lru) {
6432 struct folio *folio = page_folio(page);
6433
6434 total_mapped += folio_mapped(folio) *
6435 folio_nr_pages(folio);
6436 }
6437 }
6438
6439 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6440 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6441
6442 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6443 total_migrated += cc->nr_migratepages;
6444
6445 /*
6446 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6447 * to retry again over this error, so do the same here.
6448 */
6449 if (ret == -ENOMEM)
6450 break;
6451 }
6452
6453 lru_cache_enable();
6454 if (ret < 0) {
6455 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6456 alloc_contig_dump_pages(&cc->migratepages);
6457 putback_movable_pages(&cc->migratepages);
6458 }
6459
6460 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6461 total_migrated,
6462 total_reclaimed,
6463 total_mapped);
6464 return (ret < 0) ? ret : 0;
6465 }
6466
split_free_pages(struct list_head * list)6467 static void split_free_pages(struct list_head *list)
6468 {
6469 int order;
6470
6471 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6472 struct page *page, *next;
6473 int nr_pages = 1 << order;
6474
6475 list_for_each_entry_safe(page, next, &list[order], lru) {
6476 int i;
6477
6478 post_alloc_hook(page, order, __GFP_MOVABLE);
6479 if (!order)
6480 continue;
6481
6482 split_page(page, order);
6483
6484 /* Add all subpages to the order-0 head, in sequence. */
6485 list_del(&page->lru);
6486 for (i = 0; i < nr_pages; i++)
6487 list_add_tail(&page[i].lru, &list[0]);
6488 }
6489 }
6490 }
6491
6492 /**
6493 * alloc_contig_range() -- tries to allocate given range of pages
6494 * @start: start PFN to allocate
6495 * @end: one-past-the-last PFN to allocate
6496 * @migratetype: migratetype of the underlying pageblocks (either
6497 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6498 * in range must have the same migratetype and it must
6499 * be either of the two.
6500 * @gfp_mask: GFP mask to use during compaction
6501 *
6502 * The PFN range does not have to be pageblock aligned. The PFN range must
6503 * belong to a single zone.
6504 *
6505 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6506 * pageblocks in the range. Once isolated, the pageblocks should not
6507 * be modified by others.
6508 *
6509 * Return: zero on success or negative error code. On success all
6510 * pages which PFN is in [start, end) are allocated for the caller and
6511 * need to be freed with free_contig_range().
6512 */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6513 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6514 unsigned migratetype, gfp_t gfp_mask)
6515 {
6516 unsigned long outer_start, outer_end;
6517 int ret = 0;
6518
6519 struct compact_control cc = {
6520 .nr_migratepages = 0,
6521 .order = -1,
6522 .zone = page_zone(pfn_to_page(start)),
6523 .mode = MIGRATE_SYNC,
6524 .ignore_skip_hint = true,
6525 .no_set_skip_hint = true,
6526 .gfp_mask = current_gfp_context(gfp_mask),
6527 .alloc_contig = true,
6528 };
6529 INIT_LIST_HEAD(&cc.migratepages);
6530
6531 /*
6532 * What we do here is we mark all pageblocks in range as
6533 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6534 * have different sizes, and due to the way page allocator
6535 * work, start_isolate_page_range() has special handlings for this.
6536 *
6537 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6538 * migrate the pages from an unaligned range (ie. pages that
6539 * we are interested in). This will put all the pages in
6540 * range back to page allocator as MIGRATE_ISOLATE.
6541 *
6542 * When this is done, we take the pages in range from page
6543 * allocator removing them from the buddy system. This way
6544 * page allocator will never consider using them.
6545 *
6546 * This lets us mark the pageblocks back as
6547 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6548 * aligned range but not in the unaligned, original range are
6549 * put back to page allocator so that buddy can use them.
6550 */
6551
6552 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6553 if (ret)
6554 goto done;
6555
6556 drain_all_pages(cc.zone);
6557
6558 /*
6559 * In case of -EBUSY, we'd like to know which page causes problem.
6560 * So, just fall through. test_pages_isolated() has a tracepoint
6561 * which will report the busy page.
6562 *
6563 * It is possible that busy pages could become available before
6564 * the call to test_pages_isolated, and the range will actually be
6565 * allocated. So, if we fall through be sure to clear ret so that
6566 * -EBUSY is not accidentally used or returned to caller.
6567 */
6568 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6569 if (ret && ret != -EBUSY)
6570 goto done;
6571 ret = 0;
6572
6573 /*
6574 * Pages from [start, end) are within a pageblock_nr_pages
6575 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6576 * more, all pages in [start, end) are free in page allocator.
6577 * What we are going to do is to allocate all pages from
6578 * [start, end) (that is remove them from page allocator).
6579 *
6580 * The only problem is that pages at the beginning and at the
6581 * end of interesting range may be not aligned with pages that
6582 * page allocator holds, ie. they can be part of higher order
6583 * pages. Because of this, we reserve the bigger range and
6584 * once this is done free the pages we are not interested in.
6585 *
6586 * We don't have to hold zone->lock here because the pages are
6587 * isolated thus they won't get removed from buddy.
6588 */
6589 outer_start = find_large_buddy(start);
6590
6591 /* Make sure the range is really isolated. */
6592 if (test_pages_isolated(outer_start, end, 0)) {
6593 ret = -EBUSY;
6594 goto done;
6595 }
6596
6597 /* Grab isolated pages from freelists. */
6598 outer_end = isolate_freepages_range(&cc, outer_start, end);
6599 if (!outer_end) {
6600 ret = -EBUSY;
6601 goto done;
6602 }
6603
6604 if (!(gfp_mask & __GFP_COMP)) {
6605 split_free_pages(cc.freepages);
6606
6607 /* Free head and tail (if any) */
6608 if (start != outer_start)
6609 free_contig_range(outer_start, start - outer_start);
6610 if (end != outer_end)
6611 free_contig_range(end, outer_end - end);
6612 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6613 struct page *head = pfn_to_page(start);
6614 int order = ilog2(end - start);
6615
6616 check_new_pages(head, order);
6617 prep_new_page(head, order, gfp_mask, 0);
6618 } else {
6619 ret = -EINVAL;
6620 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6621 start, end, outer_start, outer_end);
6622 }
6623 done:
6624 undo_isolate_page_range(start, end, migratetype);
6625 return ret;
6626 }
6627 EXPORT_SYMBOL(alloc_contig_range_noprof);
6628
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6629 static int __alloc_contig_pages(unsigned long start_pfn,
6630 unsigned long nr_pages, gfp_t gfp_mask)
6631 {
6632 unsigned long end_pfn = start_pfn + nr_pages;
6633
6634 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6635 gfp_mask);
6636 }
6637
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6638 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6639 unsigned long nr_pages)
6640 {
6641 unsigned long i, end_pfn = start_pfn + nr_pages;
6642 struct page *page;
6643
6644 for (i = start_pfn; i < end_pfn; i++) {
6645 page = pfn_to_online_page(i);
6646 if (!page)
6647 return false;
6648
6649 if (page_zone(page) != z)
6650 return false;
6651
6652 if (PageReserved(page))
6653 return false;
6654
6655 if (PageHuge(page))
6656 return false;
6657 }
6658 return true;
6659 }
6660
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6661 static bool zone_spans_last_pfn(const struct zone *zone,
6662 unsigned long start_pfn, unsigned long nr_pages)
6663 {
6664 unsigned long last_pfn = start_pfn + nr_pages - 1;
6665
6666 return zone_spans_pfn(zone, last_pfn);
6667 }
6668
6669 /**
6670 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6671 * @nr_pages: Number of contiguous pages to allocate
6672 * @gfp_mask: GFP mask to limit search and used during compaction
6673 * @nid: Target node
6674 * @nodemask: Mask for other possible nodes
6675 *
6676 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6677 * on an applicable zonelist to find a contiguous pfn range which can then be
6678 * tried for allocation with alloc_contig_range(). This routine is intended
6679 * for allocation requests which can not be fulfilled with the buddy allocator.
6680 *
6681 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6682 * power of two, then allocated range is also guaranteed to be aligned to same
6683 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6684 *
6685 * Allocated pages can be freed with free_contig_range() or by manually calling
6686 * __free_page() on each allocated page.
6687 *
6688 * Return: pointer to contiguous pages on success, or NULL if not successful.
6689 */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6690 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6691 int nid, nodemask_t *nodemask)
6692 {
6693 unsigned long ret, pfn, flags;
6694 struct zonelist *zonelist;
6695 struct zone *zone;
6696 struct zoneref *z;
6697
6698 zonelist = node_zonelist(nid, gfp_mask);
6699 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6700 gfp_zone(gfp_mask), nodemask) {
6701 spin_lock_irqsave(&zone->lock, flags);
6702
6703 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6704 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6705 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6706 /*
6707 * We release the zone lock here because
6708 * alloc_contig_range() will also lock the zone
6709 * at some point. If there's an allocation
6710 * spinning on this lock, it may win the race
6711 * and cause alloc_contig_range() to fail...
6712 */
6713 spin_unlock_irqrestore(&zone->lock, flags);
6714 ret = __alloc_contig_pages(pfn, nr_pages,
6715 gfp_mask);
6716 if (!ret)
6717 return pfn_to_page(pfn);
6718 spin_lock_irqsave(&zone->lock, flags);
6719 }
6720 pfn += nr_pages;
6721 }
6722 spin_unlock_irqrestore(&zone->lock, flags);
6723 }
6724 return NULL;
6725 }
6726 #endif /* CONFIG_CONTIG_ALLOC */
6727
free_contig_range(unsigned long pfn,unsigned long nr_pages)6728 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6729 {
6730 unsigned long count = 0;
6731 struct folio *folio = pfn_folio(pfn);
6732
6733 if (folio_test_large(folio)) {
6734 int expected = folio_nr_pages(folio);
6735
6736 if (nr_pages == expected)
6737 folio_put(folio);
6738 else
6739 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6740 pfn, nr_pages, expected);
6741 return;
6742 }
6743
6744 for (; nr_pages--; pfn++) {
6745 struct page *page = pfn_to_page(pfn);
6746
6747 count += page_count(page) != 1;
6748 __free_page(page);
6749 }
6750 WARN(count != 0, "%lu pages are still in use!\n", count);
6751 }
6752 EXPORT_SYMBOL(free_contig_range);
6753
6754 /*
6755 * Effectively disable pcplists for the zone by setting the high limit to 0
6756 * and draining all cpus. A concurrent page freeing on another CPU that's about
6757 * to put the page on pcplist will either finish before the drain and the page
6758 * will be drained, or observe the new high limit and skip the pcplist.
6759 *
6760 * Must be paired with a call to zone_pcp_enable().
6761 */
zone_pcp_disable(struct zone * zone)6762 void zone_pcp_disable(struct zone *zone)
6763 {
6764 mutex_lock(&pcp_batch_high_lock);
6765 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6766 __drain_all_pages(zone, true);
6767 }
6768
zone_pcp_enable(struct zone * zone)6769 void zone_pcp_enable(struct zone *zone)
6770 {
6771 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6772 zone->pageset_high_max, zone->pageset_batch);
6773 mutex_unlock(&pcp_batch_high_lock);
6774 }
6775
zone_pcp_reset(struct zone * zone)6776 void zone_pcp_reset(struct zone *zone)
6777 {
6778 int cpu;
6779 struct per_cpu_zonestat *pzstats;
6780
6781 if (zone->per_cpu_pageset != &boot_pageset) {
6782 for_each_online_cpu(cpu) {
6783 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6784 drain_zonestat(zone, pzstats);
6785 }
6786 free_percpu(zone->per_cpu_pageset);
6787 zone->per_cpu_pageset = &boot_pageset;
6788 if (zone->per_cpu_zonestats != &boot_zonestats) {
6789 free_percpu(zone->per_cpu_zonestats);
6790 zone->per_cpu_zonestats = &boot_zonestats;
6791 }
6792 }
6793 }
6794
6795 #ifdef CONFIG_MEMORY_HOTREMOVE
6796 /*
6797 * All pages in the range must be in a single zone, must not contain holes,
6798 * must span full sections, and must be isolated before calling this function.
6799 *
6800 * Returns the number of managed (non-PageOffline()) pages in the range: the
6801 * number of pages for which memory offlining code must adjust managed page
6802 * counters using adjust_managed_page_count().
6803 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6804 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6805 unsigned long end_pfn)
6806 {
6807 unsigned long already_offline = 0, flags;
6808 unsigned long pfn = start_pfn;
6809 struct page *page;
6810 struct zone *zone;
6811 unsigned int order;
6812
6813 offline_mem_sections(pfn, end_pfn);
6814 zone = page_zone(pfn_to_page(pfn));
6815 spin_lock_irqsave(&zone->lock, flags);
6816 while (pfn < end_pfn) {
6817 page = pfn_to_page(pfn);
6818 /*
6819 * The HWPoisoned page may be not in buddy system, and
6820 * page_count() is not 0.
6821 */
6822 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6823 pfn++;
6824 continue;
6825 }
6826 /*
6827 * At this point all remaining PageOffline() pages have a
6828 * reference count of 0 and can simply be skipped.
6829 */
6830 if (PageOffline(page)) {
6831 BUG_ON(page_count(page));
6832 BUG_ON(PageBuddy(page));
6833 already_offline++;
6834 pfn++;
6835 continue;
6836 }
6837
6838 BUG_ON(page_count(page));
6839 BUG_ON(!PageBuddy(page));
6840 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6841 order = buddy_order(page);
6842 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6843 pfn += (1 << order);
6844 }
6845 spin_unlock_irqrestore(&zone->lock, flags);
6846
6847 return end_pfn - start_pfn - already_offline;
6848 }
6849 #endif
6850
6851 /*
6852 * This function returns a stable result only if called under zone lock.
6853 */
is_free_buddy_page(const struct page * page)6854 bool is_free_buddy_page(const struct page *page)
6855 {
6856 unsigned long pfn = page_to_pfn(page);
6857 unsigned int order;
6858
6859 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6860 const struct page *head = page - (pfn & ((1 << order) - 1));
6861
6862 if (PageBuddy(head) &&
6863 buddy_order_unsafe(head) >= order)
6864 break;
6865 }
6866
6867 return order <= MAX_PAGE_ORDER;
6868 }
6869 EXPORT_SYMBOL(is_free_buddy_page);
6870
6871 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)6872 static inline void add_to_free_list(struct page *page, struct zone *zone,
6873 unsigned int order, int migratetype,
6874 bool tail)
6875 {
6876 __add_to_free_list(page, zone, order, migratetype, tail);
6877 account_freepages(zone, 1 << order, migratetype);
6878 }
6879
6880 /*
6881 * Break down a higher-order page in sub-pages, and keep our target out of
6882 * buddy allocator.
6883 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6884 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6885 struct page *target, int low, int high,
6886 int migratetype)
6887 {
6888 unsigned long size = 1 << high;
6889 struct page *current_buddy;
6890
6891 while (high > low) {
6892 high--;
6893 size >>= 1;
6894
6895 if (target >= &page[size]) {
6896 current_buddy = page;
6897 page = page + size;
6898 } else {
6899 current_buddy = page + size;
6900 }
6901
6902 if (set_page_guard(zone, current_buddy, high))
6903 continue;
6904
6905 add_to_free_list(current_buddy, zone, high, migratetype, false);
6906 set_buddy_order(current_buddy, high);
6907 }
6908 }
6909
6910 /*
6911 * Take a page that will be marked as poisoned off the buddy allocator.
6912 */
take_page_off_buddy(struct page * page)6913 bool take_page_off_buddy(struct page *page)
6914 {
6915 struct zone *zone = page_zone(page);
6916 unsigned long pfn = page_to_pfn(page);
6917 unsigned long flags;
6918 unsigned int order;
6919 bool ret = false;
6920
6921 spin_lock_irqsave(&zone->lock, flags);
6922 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6923 struct page *page_head = page - (pfn & ((1 << order) - 1));
6924 int page_order = buddy_order(page_head);
6925
6926 if (PageBuddy(page_head) && page_order >= order) {
6927 unsigned long pfn_head = page_to_pfn(page_head);
6928 int migratetype = get_pfnblock_migratetype(page_head,
6929 pfn_head);
6930
6931 del_page_from_free_list(page_head, zone, page_order,
6932 migratetype);
6933 break_down_buddy_pages(zone, page_head, page, 0,
6934 page_order, migratetype);
6935 SetPageHWPoisonTakenOff(page);
6936 ret = true;
6937 break;
6938 }
6939 if (page_count(page_head) > 0)
6940 break;
6941 }
6942 spin_unlock_irqrestore(&zone->lock, flags);
6943 return ret;
6944 }
6945
6946 /*
6947 * Cancel takeoff done by take_page_off_buddy().
6948 */
put_page_back_buddy(struct page * page)6949 bool put_page_back_buddy(struct page *page)
6950 {
6951 struct zone *zone = page_zone(page);
6952 unsigned long flags;
6953 bool ret = false;
6954
6955 spin_lock_irqsave(&zone->lock, flags);
6956 if (put_page_testzero(page)) {
6957 unsigned long pfn = page_to_pfn(page);
6958 int migratetype = get_pfnblock_migratetype(page, pfn);
6959
6960 ClearPageHWPoisonTakenOff(page);
6961 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6962 if (TestClearPageHWPoison(page)) {
6963 ret = true;
6964 }
6965 }
6966 spin_unlock_irqrestore(&zone->lock, flags);
6967
6968 return ret;
6969 }
6970 #endif
6971
6972 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6973 bool has_managed_dma(void)
6974 {
6975 struct pglist_data *pgdat;
6976
6977 for_each_online_pgdat(pgdat) {
6978 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6979
6980 if (managed_zone(zone))
6981 return true;
6982 }
6983 return false;
6984 }
6985 #endif /* CONFIG_ZONE_DMA */
6986
6987 #ifdef CONFIG_UNACCEPTED_MEMORY
6988
6989 /* Counts number of zones with unaccepted pages. */
6990 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6991
6992 static bool lazy_accept = true;
6993
accept_memory_parse(char * p)6994 static int __init accept_memory_parse(char *p)
6995 {
6996 if (!strcmp(p, "lazy")) {
6997 lazy_accept = true;
6998 return 0;
6999 } else if (!strcmp(p, "eager")) {
7000 lazy_accept = false;
7001 return 0;
7002 } else {
7003 return -EINVAL;
7004 }
7005 }
7006 early_param("accept_memory", accept_memory_parse);
7007
page_contains_unaccepted(struct page * page,unsigned int order)7008 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7009 {
7010 phys_addr_t start = page_to_phys(page);
7011
7012 return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7013 }
7014
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)7015 static void __accept_page(struct zone *zone, unsigned long *flags,
7016 struct page *page)
7017 {
7018 bool last;
7019
7020 list_del(&page->lru);
7021 last = list_empty(&zone->unaccepted_pages);
7022
7023 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7024 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7025 __ClearPageUnaccepted(page);
7026 spin_unlock_irqrestore(&zone->lock, *flags);
7027
7028 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7029
7030 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7031
7032 if (last)
7033 static_branch_dec(&zones_with_unaccepted_pages);
7034 }
7035
accept_page(struct page * page)7036 void accept_page(struct page *page)
7037 {
7038 struct zone *zone = page_zone(page);
7039 unsigned long flags;
7040
7041 spin_lock_irqsave(&zone->lock, flags);
7042 if (!PageUnaccepted(page)) {
7043 spin_unlock_irqrestore(&zone->lock, flags);
7044 return;
7045 }
7046
7047 /* Unlocks zone->lock */
7048 __accept_page(zone, &flags, page);
7049 }
7050
try_to_accept_memory_one(struct zone * zone)7051 static bool try_to_accept_memory_one(struct zone *zone)
7052 {
7053 unsigned long flags;
7054 struct page *page;
7055
7056 spin_lock_irqsave(&zone->lock, flags);
7057 page = list_first_entry_or_null(&zone->unaccepted_pages,
7058 struct page, lru);
7059 if (!page) {
7060 spin_unlock_irqrestore(&zone->lock, flags);
7061 return false;
7062 }
7063
7064 /* Unlocks zone->lock */
7065 __accept_page(zone, &flags, page);
7066
7067 return true;
7068 }
7069
has_unaccepted_memory(void)7070 static inline bool has_unaccepted_memory(void)
7071 {
7072 return static_branch_unlikely(&zones_with_unaccepted_pages);
7073 }
7074
cond_accept_memory(struct zone * zone,unsigned int order)7075 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7076 {
7077 long to_accept;
7078 bool ret = false;
7079
7080 if (!has_unaccepted_memory())
7081 return false;
7082
7083 if (list_empty(&zone->unaccepted_pages))
7084 return false;
7085
7086 /* How much to accept to get to promo watermark? */
7087 to_accept = promo_wmark_pages(zone) -
7088 (zone_page_state(zone, NR_FREE_PAGES) -
7089 __zone_watermark_unusable_free(zone, order, 0) -
7090 zone_page_state(zone, NR_UNACCEPTED));
7091
7092 while (to_accept > 0) {
7093 if (!try_to_accept_memory_one(zone))
7094 break;
7095 ret = true;
7096 to_accept -= MAX_ORDER_NR_PAGES;
7097 }
7098
7099 return ret;
7100 }
7101
__free_unaccepted(struct page * page)7102 static bool __free_unaccepted(struct page *page)
7103 {
7104 struct zone *zone = page_zone(page);
7105 unsigned long flags;
7106 bool first = false;
7107
7108 if (!lazy_accept)
7109 return false;
7110
7111 spin_lock_irqsave(&zone->lock, flags);
7112 first = list_empty(&zone->unaccepted_pages);
7113 list_add_tail(&page->lru, &zone->unaccepted_pages);
7114 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7115 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7116 __SetPageUnaccepted(page);
7117 spin_unlock_irqrestore(&zone->lock, flags);
7118
7119 if (first)
7120 static_branch_inc(&zones_with_unaccepted_pages);
7121
7122 return true;
7123 }
7124
7125 #else
7126
page_contains_unaccepted(struct page * page,unsigned int order)7127 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7128 {
7129 return false;
7130 }
7131
cond_accept_memory(struct zone * zone,unsigned int order)7132 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7133 {
7134 return false;
7135 }
7136
__free_unaccepted(struct page * page)7137 static bool __free_unaccepted(struct page *page)
7138 {
7139 BUILD_BUG();
7140 return false;
7141 }
7142
7143 #endif /* CONFIG_UNACCEPTED_MEMORY */
7144