1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include <drm/drm_cache.h>
8 #include <linux/vmalloc.h>
9
10 #include "gt/intel_gt.h"
11 #include "gt/intel_tlb.h"
12
13 #include "i915_drv.h"
14 #include "i915_gem_object.h"
15 #include "i915_scatterlist.h"
16 #include "i915_gem_lmem.h"
17 #include "i915_gem_mman.h"
18
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)19 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
20 struct sg_table *pages)
21 {
22 struct drm_i915_private *i915 = to_i915(obj->base.dev);
23 unsigned long supported = RUNTIME_INFO(i915)->page_sizes;
24 bool shrinkable;
25 int i;
26
27 assert_object_held_shared(obj);
28
29 if (i915_gem_object_is_volatile(obj))
30 obj->mm.madv = I915_MADV_DONTNEED;
31
32 /* Make the pages coherent with the GPU (flushing any swapin). */
33 if (obj->cache_dirty) {
34 WARN_ON_ONCE(IS_DGFX(i915));
35 obj->write_domain = 0;
36 if (i915_gem_object_has_struct_page(obj))
37 drm_clflush_sg(pages);
38 obj->cache_dirty = false;
39 }
40
41 obj->mm.get_page.sg_pos = pages->sgl;
42 obj->mm.get_page.sg_idx = 0;
43 obj->mm.get_dma_page.sg_pos = pages->sgl;
44 obj->mm.get_dma_page.sg_idx = 0;
45
46 obj->mm.pages = pages;
47
48 obj->mm.page_sizes.phys = i915_sg_dma_sizes(pages->sgl);
49 GEM_BUG_ON(!obj->mm.page_sizes.phys);
50
51 /*
52 * Calculate the supported page-sizes which fit into the given
53 * sg_page_sizes. This will give us the page-sizes which we may be able
54 * to use opportunistically when later inserting into the GTT. For
55 * example if phys=2G, then in theory we should be able to use 1G, 2M,
56 * 64K or 4K pages, although in practice this will depend on a number of
57 * other factors.
58 */
59 obj->mm.page_sizes.sg = 0;
60 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
61 if (obj->mm.page_sizes.phys & ~0u << i)
62 obj->mm.page_sizes.sg |= BIT(i);
63 }
64 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
65
66 shrinkable = i915_gem_object_is_shrinkable(obj);
67
68 if (i915_gem_object_is_tiled(obj) &&
69 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
70 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
71 i915_gem_object_set_tiling_quirk(obj);
72 GEM_BUG_ON(!list_empty(&obj->mm.link));
73 atomic_inc(&obj->mm.shrink_pin);
74 shrinkable = false;
75 }
76
77 if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
78 struct list_head *list;
79 unsigned long flags;
80
81 assert_object_held(obj);
82 spin_lock_irqsave(&i915->mm.obj_lock, flags);
83
84 i915->mm.shrink_count++;
85 i915->mm.shrink_memory += obj->base.size;
86
87 if (obj->mm.madv != I915_MADV_WILLNEED)
88 list = &i915->mm.purge_list;
89 else
90 list = &i915->mm.shrink_list;
91 list_add_tail(&obj->mm.link, list);
92
93 atomic_set(&obj->mm.shrink_pin, 0);
94 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
95 }
96 }
97
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)98 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
99 {
100 struct drm_i915_private *i915 = to_i915(obj->base.dev);
101 int err;
102
103 assert_object_held_shared(obj);
104
105 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
106 drm_dbg(&i915->drm,
107 "Attempting to obtain a purgeable object\n");
108 return -EFAULT;
109 }
110
111 err = obj->ops->get_pages(obj);
112 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
113
114 return err;
115 }
116
117 /* Ensure that the associated pages are gathered from the backing storage
118 * and pinned into our object. i915_gem_object_pin_pages() may be called
119 * multiple times before they are released by a single call to
120 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
121 * either as a result of memory pressure (reaping pages under the shrinker)
122 * or as the object is itself released.
123 */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)124 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
125 {
126 int err;
127
128 assert_object_held(obj);
129
130 assert_object_held_shared(obj);
131
132 if (unlikely(!i915_gem_object_has_pages(obj))) {
133 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
134
135 err = ____i915_gem_object_get_pages(obj);
136 if (err)
137 return err;
138
139 smp_mb__before_atomic();
140 }
141 atomic_inc(&obj->mm.pages_pin_count);
142
143 return 0;
144 }
145
i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object * obj)146 int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
147 {
148 struct i915_gem_ww_ctx ww;
149 int err;
150
151 i915_gem_ww_ctx_init(&ww, true);
152 retry:
153 err = i915_gem_object_lock(obj, &ww);
154 if (!err)
155 err = i915_gem_object_pin_pages(obj);
156
157 if (err == -EDEADLK) {
158 err = i915_gem_ww_ctx_backoff(&ww);
159 if (!err)
160 goto retry;
161 }
162 i915_gem_ww_ctx_fini(&ww);
163 return err;
164 }
165
166 /* Immediately discard the backing storage */
i915_gem_object_truncate(struct drm_i915_gem_object * obj)167 int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
168 {
169 if (obj->ops->truncate)
170 return obj->ops->truncate(obj);
171
172 return 0;
173 }
174
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)175 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
176 {
177 struct radix_tree_iter iter;
178 void __rcu **slot;
179
180 rcu_read_lock();
181 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
182 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
183 radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
184 radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
185 rcu_read_unlock();
186 }
187
unmap_object(struct drm_i915_gem_object * obj,void * ptr)188 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
189 {
190 if (is_vmalloc_addr(ptr))
191 vunmap(ptr);
192 }
193
flush_tlb_invalidate(struct drm_i915_gem_object * obj)194 static void flush_tlb_invalidate(struct drm_i915_gem_object *obj)
195 {
196 struct drm_i915_private *i915 = to_i915(obj->base.dev);
197 struct intel_gt *gt;
198 int id;
199
200 for_each_gt(gt, i915, id) {
201 if (!obj->mm.tlb[id])
202 continue;
203
204 intel_gt_invalidate_tlb_full(gt, obj->mm.tlb[id]);
205 obj->mm.tlb[id] = 0;
206 }
207 }
208
209 struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object * obj)210 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
211 {
212 struct sg_table *pages;
213
214 assert_object_held_shared(obj);
215
216 pages = fetch_and_zero(&obj->mm.pages);
217 if (IS_ERR_OR_NULL(pages))
218 return pages;
219
220 if (i915_gem_object_is_volatile(obj))
221 obj->mm.madv = I915_MADV_WILLNEED;
222
223 if (!i915_gem_object_has_self_managed_shrink_list(obj))
224 i915_gem_object_make_unshrinkable(obj);
225
226 if (obj->mm.mapping) {
227 unmap_object(obj, page_mask_bits(obj->mm.mapping));
228 obj->mm.mapping = NULL;
229 }
230
231 __i915_gem_object_reset_page_iter(obj);
232 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
233
234 flush_tlb_invalidate(obj);
235
236 return pages;
237 }
238
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj)239 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
240 {
241 struct sg_table *pages;
242
243 if (i915_gem_object_has_pinned_pages(obj))
244 return -EBUSY;
245
246 /* May be called by shrinker from within get_pages() (on another bo) */
247 assert_object_held_shared(obj);
248
249 i915_gem_object_release_mmap_offset(obj);
250
251 /*
252 * ->put_pages might need to allocate memory for the bit17 swizzle
253 * array, hence protect them from being reaped by removing them from gtt
254 * lists early.
255 */
256 pages = __i915_gem_object_unset_pages(obj);
257
258 /*
259 * XXX Temporary hijinx to avoid updating all backends to handle
260 * NULL pages. In the future, when we have more asynchronous
261 * get_pages backends we should be better able to handle the
262 * cancellation of the async task in a more uniform manner.
263 */
264 if (!IS_ERR_OR_NULL(pages))
265 obj->ops->put_pages(obj, pages);
266
267 return 0;
268 }
269
270 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map_page(struct drm_i915_gem_object * obj,enum i915_map_type type)271 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
272 enum i915_map_type type)
273 {
274 unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
275 struct page *stack[32], **pages = stack, *page;
276 struct sgt_iter iter;
277 pgprot_t pgprot;
278 void *vaddr;
279
280 switch (type) {
281 default:
282 MISSING_CASE(type);
283 fallthrough; /* to use PAGE_KERNEL anyway */
284 case I915_MAP_WB:
285 /*
286 * On 32b, highmem using a finite set of indirect PTE (i.e.
287 * vmap) to provide virtual mappings of the high pages.
288 * As these are finite, map_new_virtual() must wait for some
289 * other kmap() to finish when it runs out. If we map a large
290 * number of objects, there is no method for it to tell us
291 * to release the mappings, and we deadlock.
292 *
293 * However, if we make an explicit vmap of the page, that
294 * uses a larger vmalloc arena, and also has the ability
295 * to tell us to release unwanted mappings. Most importantly,
296 * it will fail and propagate an error instead of waiting
297 * forever.
298 *
299 * So if the page is beyond the 32b boundary, make an explicit
300 * vmap.
301 */
302 if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
303 return page_address(sg_page(obj->mm.pages->sgl));
304 pgprot = PAGE_KERNEL;
305 break;
306 case I915_MAP_WC:
307 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
308 break;
309 }
310
311 if (n_pages > ARRAY_SIZE(stack)) {
312 /* Too big for stack -- allocate temporary array instead */
313 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
314 if (!pages)
315 return ERR_PTR(-ENOMEM);
316 }
317
318 i = 0;
319 for_each_sgt_page(page, iter, obj->mm.pages)
320 pages[i++] = page;
321 vaddr = vmap(pages, n_pages, 0, pgprot);
322 if (pages != stack)
323 kvfree(pages);
324
325 return vaddr ?: ERR_PTR(-ENOMEM);
326 }
327
i915_gem_object_map_pfn(struct drm_i915_gem_object * obj,enum i915_map_type type)328 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
329 enum i915_map_type type)
330 {
331 resource_size_t iomap = obj->mm.region->iomap.base -
332 obj->mm.region->region.start;
333 unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
334 unsigned long stack[32], *pfns = stack, i;
335 struct sgt_iter iter;
336 dma_addr_t addr;
337 void *vaddr;
338
339 GEM_BUG_ON(type != I915_MAP_WC);
340
341 if (n_pfn > ARRAY_SIZE(stack)) {
342 /* Too big for stack -- allocate temporary array instead */
343 pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
344 if (!pfns)
345 return ERR_PTR(-ENOMEM);
346 }
347
348 i = 0;
349 for_each_sgt_daddr(addr, iter, obj->mm.pages)
350 pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
351 vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
352 if (pfns != stack)
353 kvfree(pfns);
354
355 return vaddr ?: ERR_PTR(-ENOMEM);
356 }
357
358 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)359 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
360 enum i915_map_type type)
361 {
362 enum i915_map_type has_type;
363 bool pinned;
364 void *ptr;
365 int err;
366
367 if (!i915_gem_object_has_struct_page(obj) &&
368 !i915_gem_object_has_iomem(obj))
369 return ERR_PTR(-ENXIO);
370
371 if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY))
372 return ERR_PTR(-EINVAL);
373
374 assert_object_held(obj);
375
376 pinned = !(type & I915_MAP_OVERRIDE);
377 type &= ~I915_MAP_OVERRIDE;
378
379 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
380 if (unlikely(!i915_gem_object_has_pages(obj))) {
381 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
382
383 err = ____i915_gem_object_get_pages(obj);
384 if (err)
385 return ERR_PTR(err);
386
387 smp_mb__before_atomic();
388 }
389 atomic_inc(&obj->mm.pages_pin_count);
390 pinned = false;
391 }
392 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
393
394 /*
395 * For discrete our CPU mappings needs to be consistent in order to
396 * function correctly on !x86. When mapping things through TTM, we use
397 * the same rules to determine the caching type.
398 *
399 * The caching rules, starting from DG1:
400 *
401 * - If the object can be placed in device local-memory, then the
402 * pages should be allocated and mapped as write-combined only.
403 *
404 * - Everything else is always allocated and mapped as write-back,
405 * with the guarantee that everything is also coherent with the
406 * GPU.
407 *
408 * Internal users of lmem are already expected to get this right, so no
409 * fudging needed there.
410 */
411 if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
412 if (type != I915_MAP_WC && !obj->mm.n_placements) {
413 ptr = ERR_PTR(-ENODEV);
414 goto err_unpin;
415 }
416
417 type = I915_MAP_WC;
418 } else if (IS_DGFX(to_i915(obj->base.dev))) {
419 type = I915_MAP_WB;
420 }
421
422 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
423 if (ptr && has_type != type) {
424 if (pinned) {
425 ptr = ERR_PTR(-EBUSY);
426 goto err_unpin;
427 }
428
429 unmap_object(obj, ptr);
430
431 ptr = obj->mm.mapping = NULL;
432 }
433
434 if (!ptr) {
435 err = i915_gem_object_wait_moving_fence(obj, true);
436 if (err) {
437 ptr = ERR_PTR(err);
438 goto err_unpin;
439 }
440
441 if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
442 ptr = ERR_PTR(-ENODEV);
443 else if (i915_gem_object_has_struct_page(obj))
444 ptr = i915_gem_object_map_page(obj, type);
445 else
446 ptr = i915_gem_object_map_pfn(obj, type);
447 if (IS_ERR(ptr))
448 goto err_unpin;
449
450 obj->mm.mapping = page_pack_bits(ptr, type);
451 }
452
453 return ptr;
454
455 err_unpin:
456 atomic_dec(&obj->mm.pages_pin_count);
457 return ptr;
458 }
459
i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object * obj,enum i915_map_type type)460 void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
461 enum i915_map_type type)
462 {
463 void *ret;
464
465 i915_gem_object_lock(obj, NULL);
466 ret = i915_gem_object_pin_map(obj, type);
467 i915_gem_object_unlock(obj);
468
469 return ret;
470 }
471
__i915_gem_object_flush_map(struct drm_i915_gem_object * obj,unsigned long offset,unsigned long size)472 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
473 unsigned long offset,
474 unsigned long size)
475 {
476 enum i915_map_type has_type;
477 void *ptr;
478
479 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
480 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
481 offset, size, obj->base.size));
482
483 wmb(); /* let all previous writes be visible to coherent partners */
484 obj->mm.dirty = true;
485
486 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
487 return;
488
489 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
490 if (has_type == I915_MAP_WC)
491 return;
492
493 drm_clflush_virt_range(ptr + offset, size);
494 if (size == obj->base.size) {
495 obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
496 obj->cache_dirty = false;
497 }
498 }
499
__i915_gem_object_release_map(struct drm_i915_gem_object * obj)500 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
501 {
502 GEM_BUG_ON(!obj->mm.mapping);
503
504 /*
505 * We allow removing the mapping from underneath pinned pages!
506 *
507 * Furthermore, since this is an unsafe operation reserved only
508 * for construction time manipulation, we ignore locking prudence.
509 */
510 unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
511
512 i915_gem_object_unpin_map(obj);
513 }
514
515 struct scatterlist *
__i915_gem_object_page_iter_get_sg(struct drm_i915_gem_object * obj,struct i915_gem_object_page_iter * iter,pgoff_t n,unsigned int * offset)516 __i915_gem_object_page_iter_get_sg(struct drm_i915_gem_object *obj,
517 struct i915_gem_object_page_iter *iter,
518 pgoff_t n,
519 unsigned int *offset)
520
521 {
522 const bool dma = iter == &obj->mm.get_dma_page ||
523 iter == &obj->ttm.get_io_page;
524 unsigned int idx, count;
525 struct scatterlist *sg;
526
527 might_sleep();
528 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
529 if (!i915_gem_object_has_pinned_pages(obj))
530 assert_object_held(obj);
531
532 /* As we iterate forward through the sg, we record each entry in a
533 * radixtree for quick repeated (backwards) lookups. If we have seen
534 * this index previously, we will have an entry for it.
535 *
536 * Initial lookup is O(N), but this is amortized to O(1) for
537 * sequential page access (where each new request is consecutive
538 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
539 * i.e. O(1) with a large constant!
540 */
541 if (n < READ_ONCE(iter->sg_idx))
542 goto lookup;
543
544 mutex_lock(&iter->lock);
545
546 /* We prefer to reuse the last sg so that repeated lookup of this
547 * (or the subsequent) sg are fast - comparing against the last
548 * sg is faster than going through the radixtree.
549 */
550
551 sg = iter->sg_pos;
552 idx = iter->sg_idx;
553 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
554
555 while (idx + count <= n) {
556 void *entry;
557 unsigned long i;
558 int ret;
559
560 /* If we cannot allocate and insert this entry, or the
561 * individual pages from this range, cancel updating the
562 * sg_idx so that on this lookup we are forced to linearly
563 * scan onwards, but on future lookups we will try the
564 * insertion again (in which case we need to be careful of
565 * the error return reporting that we have already inserted
566 * this index).
567 */
568 ret = radix_tree_insert(&iter->radix, idx, sg);
569 if (ret && ret != -EEXIST)
570 goto scan;
571
572 entry = xa_mk_value(idx);
573 for (i = 1; i < count; i++) {
574 ret = radix_tree_insert(&iter->radix, idx + i, entry);
575 if (ret && ret != -EEXIST)
576 goto scan;
577 }
578
579 idx += count;
580 sg = ____sg_next(sg);
581 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
582 }
583
584 scan:
585 iter->sg_pos = sg;
586 iter->sg_idx = idx;
587
588 mutex_unlock(&iter->lock);
589
590 if (unlikely(n < idx)) /* insertion completed by another thread */
591 goto lookup;
592
593 /* In case we failed to insert the entry into the radixtree, we need
594 * to look beyond the current sg.
595 */
596 while (idx + count <= n) {
597 idx += count;
598 sg = ____sg_next(sg);
599 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
600 }
601
602 *offset = n - idx;
603 return sg;
604
605 lookup:
606 rcu_read_lock();
607
608 sg = radix_tree_lookup(&iter->radix, n);
609 GEM_BUG_ON(!sg);
610
611 /* If this index is in the middle of multi-page sg entry,
612 * the radix tree will contain a value entry that points
613 * to the start of that range. We will return the pointer to
614 * the base page and the offset of this page within the
615 * sg entry's range.
616 */
617 *offset = 0;
618 if (unlikely(xa_is_value(sg))) {
619 unsigned long base = xa_to_value(sg);
620
621 sg = radix_tree_lookup(&iter->radix, base);
622 GEM_BUG_ON(!sg);
623
624 *offset = n - base;
625 }
626
627 rcu_read_unlock();
628
629 return sg;
630 }
631
632 struct page *
__i915_gem_object_get_page(struct drm_i915_gem_object * obj,pgoff_t n)633 __i915_gem_object_get_page(struct drm_i915_gem_object *obj, pgoff_t n)
634 {
635 struct scatterlist *sg;
636 unsigned int offset;
637
638 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
639
640 sg = i915_gem_object_get_sg(obj, n, &offset);
641 return nth_page(sg_page(sg), offset);
642 }
643
644 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
645 struct page *
__i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,pgoff_t n)646 __i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, pgoff_t n)
647 {
648 struct page *page;
649
650 page = i915_gem_object_get_page(obj, n);
651 if (!obj->mm.dirty)
652 set_page_dirty(page);
653
654 return page;
655 }
656
657 dma_addr_t
__i915_gem_object_get_dma_address_len(struct drm_i915_gem_object * obj,pgoff_t n,unsigned int * len)658 __i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
659 pgoff_t n, unsigned int *len)
660 {
661 struct scatterlist *sg;
662 unsigned int offset;
663
664 sg = i915_gem_object_get_sg_dma(obj, n, &offset);
665
666 if (len)
667 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
668
669 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
670 }
671
672 dma_addr_t
__i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,pgoff_t n)673 __i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, pgoff_t n)
674 {
675 return i915_gem_object_get_dma_address_len(obj, n, NULL);
676 }
677