1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_engine_regs.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_reset.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_rps.h"
44
45 #include "i915_active.h"
46 #include "i915_config.h"
47 #include "i915_deps.h"
48 #include "i915_driver.h"
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51
52 struct execute_cb {
53 struct irq_work work;
54 struct i915_sw_fence *fence;
55 struct i915_request *signal;
56 };
57
58 static struct pool slab_requests;
59 static struct pool slab_execute_cbs;
60
i915_fence_get_driver_name(struct dma_fence * fence)61 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
62 {
63 return dev_name(to_request(fence)->i915->drm.dev);
64 }
65
i915_fence_get_timeline_name(struct dma_fence * fence)66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
67 {
68 const struct i915_gem_context *ctx;
69
70 /*
71 * The timeline struct (as part of the ppgtt underneath a context)
72 * may be freed when the request is no longer in use by the GPU.
73 * We could extend the life of a context to beyond that of all
74 * fences, possibly keeping the hw resource around indefinitely,
75 * or we just give them a false name. Since
76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
77 * lie seems justifiable.
78 */
79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
80 return "signaled";
81
82 ctx = i915_request_gem_context(to_request(fence));
83 if (!ctx)
84 return "[" DRIVER_NAME "]";
85
86 return ctx->name;
87 }
88
i915_fence_signaled(struct dma_fence * fence)89 static bool i915_fence_signaled(struct dma_fence *fence)
90 {
91 return i915_request_completed(to_request(fence));
92 }
93
i915_fence_enable_signaling(struct dma_fence * fence)94 static bool i915_fence_enable_signaling(struct dma_fence *fence)
95 {
96 return i915_request_enable_breadcrumb(to_request(fence));
97 }
98
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)99 static signed long i915_fence_wait(struct dma_fence *fence,
100 bool interruptible,
101 signed long timeout)
102 {
103 return i915_request_wait_timeout(to_request(fence),
104 interruptible | I915_WAIT_PRIORITY,
105 timeout);
106 }
107
108 #ifdef __linux__
i915_request_slab_cache(void)109 struct kmem_cache *i915_request_slab_cache(void)
110 {
111 return slab_requests;
112 }
113 #else
i915_request_slab_cache(void)114 struct pool *i915_request_slab_cache(void)
115 {
116 return &slab_requests;
117 }
118 #endif
119
i915_fence_release(struct dma_fence * fence)120 static void i915_fence_release(struct dma_fence *fence)
121 {
122 struct i915_request *rq = to_request(fence);
123
124 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
125 rq->guc_prio != GUC_PRIO_FINI);
126
127 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
128 if (rq->batch_res) {
129 i915_vma_resource_put(rq->batch_res);
130 rq->batch_res = NULL;
131 }
132
133 /*
134 * The request is put onto a RCU freelist (i.e. the address
135 * is immediately reused), mark the fences as being freed now.
136 * Otherwise the debugobjects for the fences are only marked as
137 * freed when the slab cache itself is freed, and so we would get
138 * caught trying to reuse dead objects.
139 */
140 i915_sw_fence_fini(&rq->submit);
141 i915_sw_fence_fini(&rq->semaphore);
142
143 /*
144 * Keep one request on each engine for reserved use under mempressure.
145 *
146 * We do not hold a reference to the engine here and so have to be
147 * very careful in what rq->engine we poke. The virtual engine is
148 * referenced via the rq->context and we released that ref during
149 * i915_request_retire(), ergo we must not dereference a virtual
150 * engine here. Not that we would want to, as the only consumer of
151 * the reserved engine->request_pool is the power management parking,
152 * which must-not-fail, and that is only run on the physical engines.
153 *
154 * Since the request must have been executed to be have completed,
155 * we know that it will have been processed by the HW and will
156 * not be unsubmitted again, so rq->engine and rq->execution_mask
157 * at this point is stable. rq->execution_mask will be a single
158 * bit if the last and _only_ engine it could execution on was a
159 * physical engine, if it's multiple bits then it started on and
160 * could still be on a virtual engine. Thus if the mask is not a
161 * power-of-two we assume that rq->engine may still be a virtual
162 * engine and so a dangling invalid pointer that we cannot dereference
163 *
164 * For example, consider the flow of a bonded request through a virtual
165 * engine. The request is created with a wide engine mask (all engines
166 * that we might execute on). On processing the bond, the request mask
167 * is reduced to one or more engines. If the request is subsequently
168 * bound to a single engine, it will then be constrained to only
169 * execute on that engine and never returned to the virtual engine
170 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
171 * know that if the rq->execution_mask is a single bit, rq->engine
172 * can be a physical engine with the exact corresponding mask.
173 */
174 if (is_power_of_2(rq->execution_mask) &&
175 !cmpxchg(&rq->engine->request_pool, NULL, rq))
176 return;
177
178 #ifdef __linux__
179 kmem_cache_free(slab_requests, rq);
180 #else
181 pool_put(&slab_requests, rq);
182 #endif
183 }
184
185 const struct dma_fence_ops i915_fence_ops = {
186 .get_driver_name = i915_fence_get_driver_name,
187 .get_timeline_name = i915_fence_get_timeline_name,
188 .enable_signaling = i915_fence_enable_signaling,
189 .signaled = i915_fence_signaled,
190 .wait = i915_fence_wait,
191 .release = i915_fence_release,
192 };
193
irq_execute_cb(struct irq_work * wrk)194 static void irq_execute_cb(struct irq_work *wrk)
195 {
196 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
197
198 i915_sw_fence_complete(cb->fence);
199 #ifdef __linux__
200 kmem_cache_free(slab_execute_cbs, cb);
201 #else
202 pool_put(&slab_execute_cbs, cb);
203 #endif
204 }
205
206 static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))207 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
208 {
209 struct execute_cb *cb, *cn;
210
211 if (llist_empty(&rq->execute_cb))
212 return;
213
214 llist_for_each_entry_safe(cb, cn,
215 llist_del_all(&rq->execute_cb),
216 work.node.llist)
217 fn(&cb->work);
218 }
219
__notify_execute_cb_irq(struct i915_request * rq)220 static void __notify_execute_cb_irq(struct i915_request *rq)
221 {
222 __notify_execute_cb(rq, irq_work_queue);
223 }
224
irq_work_imm(struct irq_work * wrk)225 static bool irq_work_imm(struct irq_work *wrk)
226 {
227 #ifdef __linux__
228 wrk->func(wrk);
229 #else
230 wrk->task.t_func(wrk);
231 #endif
232 return false;
233 }
234
i915_request_notify_execute_cb_imm(struct i915_request * rq)235 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
236 {
237 __notify_execute_cb(rq, irq_work_imm);
238 }
239
__i915_request_fill(struct i915_request * rq,u8 val)240 static void __i915_request_fill(struct i915_request *rq, u8 val)
241 {
242 void *vaddr = rq->ring->vaddr;
243 u32 head;
244
245 head = rq->infix;
246 if (rq->postfix < head) {
247 memset(vaddr + head, val, rq->ring->size - head);
248 head = 0;
249 }
250 memset(vaddr + head, val, rq->postfix - head);
251 }
252
253 /**
254 * i915_request_active_engine
255 * @rq: request to inspect
256 * @active: pointer in which to return the active engine
257 *
258 * Fills the currently active engine to the @active pointer if the request
259 * is active and still not completed.
260 *
261 * Returns true if request was active or false otherwise.
262 */
263 bool
i915_request_active_engine(struct i915_request * rq,struct intel_engine_cs ** active)264 i915_request_active_engine(struct i915_request *rq,
265 struct intel_engine_cs **active)
266 {
267 struct intel_engine_cs *engine, *locked;
268 bool ret = false;
269
270 /*
271 * Serialise with __i915_request_submit() so that it sees
272 * is-banned?, or we know the request is already inflight.
273 *
274 * Note that rq->engine is unstable, and so we double
275 * check that we have acquired the lock on the final engine.
276 */
277 locked = READ_ONCE(rq->engine);
278 spin_lock_irq(&locked->sched_engine->lock);
279 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
280 spin_unlock(&locked->sched_engine->lock);
281 locked = engine;
282 spin_lock(&locked->sched_engine->lock);
283 }
284
285 if (i915_request_is_active(rq)) {
286 if (!__i915_request_is_complete(rq))
287 *active = locked;
288 ret = true;
289 }
290
291 spin_unlock_irq(&locked->sched_engine->lock);
292
293 return ret;
294 }
295
__rq_init_watchdog(struct i915_request * rq)296 static void __rq_init_watchdog(struct i915_request *rq)
297 {
298 rq->watchdog.timer.to_func = NULL;
299 }
300
301 #ifdef __linux__
302
__rq_watchdog_expired(struct hrtimer * hrtimer)303 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
304 {
305 struct i915_request *rq =
306 container_of(hrtimer, struct i915_request, watchdog.timer);
307 struct intel_gt *gt = rq->engine->gt;
308
309 if (!i915_request_completed(rq)) {
310 if (llist_add(&rq->watchdog.link, >->watchdog.list))
311 queue_work(gt->i915->unordered_wq, >->watchdog.work);
312 } else {
313 i915_request_put(rq);
314 }
315
316 return HRTIMER_NORESTART;
317 }
318
319 #else
320
321 static void
__rq_watchdog_expired(void * arg)322 __rq_watchdog_expired(void *arg)
323 {
324 struct i915_request *rq = (struct i915_request *)arg;
325 struct intel_gt *gt = rq->engine->gt;
326
327 if (!i915_request_completed(rq)) {
328 if (llist_add(&rq->watchdog.link, >->watchdog.list))
329 schedule_work(>->watchdog.work);
330 } else {
331 i915_request_put(rq);
332 }
333 }
334
335 #endif
336
__rq_arm_watchdog(struct i915_request * rq)337 static void __rq_arm_watchdog(struct i915_request *rq)
338 {
339 struct i915_request_watchdog *wdg = &rq->watchdog;
340 struct intel_context *ce = rq->context;
341
342 if (!ce->watchdog.timeout_us)
343 return;
344
345 i915_request_get(rq);
346
347 #ifdef __linux__
348 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
349 wdg->timer.function = __rq_watchdog_expired;
350 hrtimer_start_range_ns(&wdg->timer,
351 ns_to_ktime(ce->watchdog.timeout_us *
352 NSEC_PER_USEC),
353 NSEC_PER_MSEC,
354 HRTIMER_MODE_REL);
355 #else
356 timeout_set(&wdg->timer, __rq_watchdog_expired, rq);
357 timeout_add_msec(&wdg->timer, 1);
358 #endif
359 }
360
__rq_cancel_watchdog(struct i915_request * rq)361 static void __rq_cancel_watchdog(struct i915_request *rq)
362 {
363 struct i915_request_watchdog *wdg = &rq->watchdog;
364
365 if (wdg->timer.to_func && hrtimer_try_to_cancel(&wdg->timer) > 0)
366 i915_request_put(rq);
367 }
368
369 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
370
371 /**
372 * i915_request_free_capture_list - Free a capture list
373 * @capture: Pointer to the first list item or NULL
374 *
375 */
i915_request_free_capture_list(struct i915_capture_list * capture)376 void i915_request_free_capture_list(struct i915_capture_list *capture)
377 {
378 while (capture) {
379 struct i915_capture_list *next = capture->next;
380
381 i915_vma_resource_put(capture->vma_res);
382 kfree(capture);
383 capture = next;
384 }
385 }
386
387 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
388
389 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
390
391 #else
392
393 #define i915_request_free_capture_list(_a) do {} while (0)
394
395 #define assert_capture_list_is_null(_a) do {} while (0)
396
397 #define clear_capture_list(_rq) do {} while (0)
398
399 #endif
400
i915_request_retire(struct i915_request * rq)401 bool i915_request_retire(struct i915_request *rq)
402 {
403 if (!__i915_request_is_complete(rq))
404 return false;
405
406 RQ_TRACE(rq, "\n");
407
408 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
409 trace_i915_request_retire(rq);
410 i915_request_mark_complete(rq);
411
412 __rq_cancel_watchdog(rq);
413
414 /*
415 * We know the GPU must have read the request to have
416 * sent us the seqno + interrupt, so use the position
417 * of tail of the request to update the last known position
418 * of the GPU head.
419 *
420 * Note this requires that we are always called in request
421 * completion order.
422 */
423 GEM_BUG_ON(!list_is_first(&rq->link,
424 &i915_request_timeline(rq)->requests));
425 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
426 /* Poison before we release our space in the ring */
427 __i915_request_fill(rq, POISON_FREE);
428 rq->ring->head = rq->postfix;
429
430 if (!i915_request_signaled(rq)) {
431 spin_lock_irq(&rq->lock);
432 dma_fence_signal_locked(&rq->fence);
433 spin_unlock_irq(&rq->lock);
434 }
435
436 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
437 intel_rps_dec_waiters(&rq->engine->gt->rps);
438
439 /*
440 * We only loosely track inflight requests across preemption,
441 * and so we may find ourselves attempting to retire a _completed_
442 * request that we have removed from the HW and put back on a run
443 * queue.
444 *
445 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
446 * after removing the breadcrumb and signaling it, so that we do not
447 * inadvertently attach the breadcrumb to a completed request.
448 */
449 rq->engine->remove_active_request(rq);
450 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
451
452 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
453
454 intel_context_exit(rq->context);
455 intel_context_unpin(rq->context);
456
457 i915_sched_node_fini(&rq->sched);
458 i915_request_put(rq);
459
460 return true;
461 }
462
i915_request_retire_upto(struct i915_request * rq)463 void i915_request_retire_upto(struct i915_request *rq)
464 {
465 struct intel_timeline * const tl = i915_request_timeline(rq);
466 struct i915_request *tmp;
467
468 RQ_TRACE(rq, "\n");
469 GEM_BUG_ON(!__i915_request_is_complete(rq));
470
471 do {
472 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
473 GEM_BUG_ON(!i915_request_completed(tmp));
474 } while (i915_request_retire(tmp) && tmp != rq);
475 }
476
477 static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)478 __engine_active(struct intel_engine_cs *engine)
479 {
480 return READ_ONCE(engine->execlists.active);
481 }
482
__request_in_flight(const struct i915_request * signal)483 static bool __request_in_flight(const struct i915_request *signal)
484 {
485 struct i915_request * const *port, *rq;
486 bool inflight = false;
487
488 if (!i915_request_is_ready(signal))
489 return false;
490
491 /*
492 * Even if we have unwound the request, it may still be on
493 * the GPU (preempt-to-busy). If that request is inside an
494 * unpreemptible critical section, it will not be removed. Some
495 * GPU functions may even be stuck waiting for the paired request
496 * (__await_execution) to be submitted and cannot be preempted
497 * until the bond is executing.
498 *
499 * As we know that there are always preemption points between
500 * requests, we know that only the currently executing request
501 * may be still active even though we have cleared the flag.
502 * However, we can't rely on our tracking of ELSP[0] to know
503 * which request is currently active and so maybe stuck, as
504 * the tracking maybe an event behind. Instead assume that
505 * if the context is still inflight, then it is still active
506 * even if the active flag has been cleared.
507 *
508 * To further complicate matters, if there a pending promotion, the HW
509 * may either perform a context switch to the second inflight execlists,
510 * or it may switch to the pending set of execlists. In the case of the
511 * latter, it may send the ACK and we process the event copying the
512 * pending[] over top of inflight[], _overwriting_ our *active. Since
513 * this implies the HW is arbitrating and not struck in *active, we do
514 * not worry about complete accuracy, but we do require no read/write
515 * tearing of the pointer [the read of the pointer must be valid, even
516 * as the array is being overwritten, for which we require the writes
517 * to avoid tearing.]
518 *
519 * Note that the read of *execlists->active may race with the promotion
520 * of execlists->pending[] to execlists->inflight[], overwritting
521 * the value at *execlists->active. This is fine. The promotion implies
522 * that we received an ACK from the HW, and so the context is not
523 * stuck -- if we do not see ourselves in *active, the inflight status
524 * is valid. If instead we see ourselves being copied into *active,
525 * we are inflight and may signal the callback.
526 */
527 if (!intel_context_inflight(signal->context))
528 return false;
529
530 rcu_read_lock();
531 for (port = __engine_active(signal->engine);
532 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
533 port++) {
534 if (rq->context == signal->context) {
535 inflight = i915_seqno_passed(rq->fence.seqno,
536 signal->fence.seqno);
537 break;
538 }
539 }
540 rcu_read_unlock();
541
542 return inflight;
543 }
544
545 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,gfp_t gfp)546 __await_execution(struct i915_request *rq,
547 struct i915_request *signal,
548 gfp_t gfp)
549 {
550 struct execute_cb *cb;
551
552 if (i915_request_is_active(signal))
553 return 0;
554
555 #ifdef __linux__
556 cb = kmem_cache_alloc(slab_execute_cbs, gfp);
557 #else
558 cb = pool_get(&slab_execute_cbs,
559 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
560 #endif
561 if (!cb)
562 return -ENOMEM;
563
564 cb->fence = &rq->submit;
565 i915_sw_fence_await(cb->fence);
566 init_irq_work(&cb->work, irq_execute_cb);
567
568 /*
569 * Register the callback first, then see if the signaler is already
570 * active. This ensures that if we race with the
571 * __notify_execute_cb from i915_request_submit() and we are not
572 * included in that list, we get a second bite of the cherry and
573 * execute it ourselves. After this point, a future
574 * i915_request_submit() will notify us.
575 *
576 * In i915_request_retire() we set the ACTIVE bit on a completed
577 * request (then flush the execute_cb). So by registering the
578 * callback first, then checking the ACTIVE bit, we serialise with
579 * the completed/retired request.
580 */
581 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
582 if (i915_request_is_active(signal) ||
583 __request_in_flight(signal))
584 i915_request_notify_execute_cb_imm(signal);
585 }
586
587 return 0;
588 }
589
fatal_error(int error)590 static bool fatal_error(int error)
591 {
592 switch (error) {
593 case 0: /* not an error! */
594 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
595 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
596 return false;
597 default:
598 return true;
599 }
600 }
601
__i915_request_skip(struct i915_request * rq)602 void __i915_request_skip(struct i915_request *rq)
603 {
604 GEM_BUG_ON(!fatal_error(rq->fence.error));
605
606 if (rq->infix == rq->postfix)
607 return;
608
609 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
610
611 /*
612 * As this request likely depends on state from the lost
613 * context, clear out all the user operations leaving the
614 * breadcrumb at the end (so we get the fence notifications).
615 */
616 __i915_request_fill(rq, 0);
617 rq->infix = rq->postfix;
618 }
619
i915_request_set_error_once(struct i915_request * rq,int error)620 bool i915_request_set_error_once(struct i915_request *rq, int error)
621 {
622 int old;
623
624 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
625
626 if (i915_request_signaled(rq))
627 return false;
628
629 old = READ_ONCE(rq->fence.error);
630 do {
631 if (fatal_error(old))
632 return false;
633 } while (!try_cmpxchg(&rq->fence.error, &old, error));
634
635 return true;
636 }
637
i915_request_mark_eio(struct i915_request * rq)638 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
639 {
640 if (__i915_request_is_complete(rq))
641 return NULL;
642
643 GEM_BUG_ON(i915_request_signaled(rq));
644
645 /* As soon as the request is completed, it may be retired */
646 rq = i915_request_get(rq);
647
648 i915_request_set_error_once(rq, -EIO);
649 i915_request_mark_complete(rq);
650
651 return rq;
652 }
653
__i915_request_submit(struct i915_request * request)654 bool __i915_request_submit(struct i915_request *request)
655 {
656 struct intel_engine_cs *engine = request->engine;
657 bool result = false;
658
659 RQ_TRACE(request, "\n");
660
661 GEM_BUG_ON(!irqs_disabled());
662 lockdep_assert_held(&engine->sched_engine->lock);
663
664 /*
665 * With the advent of preempt-to-busy, we frequently encounter
666 * requests that we have unsubmitted from HW, but left running
667 * until the next ack and so have completed in the meantime. On
668 * resubmission of that completed request, we can skip
669 * updating the payload, and execlists can even skip submitting
670 * the request.
671 *
672 * We must remove the request from the caller's priority queue,
673 * and the caller must only call us when the request is in their
674 * priority queue, under the sched_engine->lock. This ensures that the
675 * request has *not* yet been retired and we can safely move
676 * the request into the engine->active.list where it will be
677 * dropped upon retiring. (Otherwise if resubmit a *retired*
678 * request, this would be a horrible use-after-free.)
679 */
680 if (__i915_request_is_complete(request)) {
681 list_del_init(&request->sched.link);
682 goto active;
683 }
684
685 if (unlikely(!intel_context_is_schedulable(request->context)))
686 i915_request_set_error_once(request, -EIO);
687
688 if (unlikely(fatal_error(request->fence.error)))
689 __i915_request_skip(request);
690
691 /*
692 * Are we using semaphores when the gpu is already saturated?
693 *
694 * Using semaphores incurs a cost in having the GPU poll a
695 * memory location, busywaiting for it to change. The continual
696 * memory reads can have a noticeable impact on the rest of the
697 * system with the extra bus traffic, stalling the cpu as it too
698 * tries to access memory across the bus (perf stat -e bus-cycles).
699 *
700 * If we installed a semaphore on this request and we only submit
701 * the request after the signaler completed, that indicates the
702 * system is overloaded and using semaphores at this time only
703 * increases the amount of work we are doing. If so, we disable
704 * further use of semaphores until we are idle again, whence we
705 * optimistically try again.
706 */
707 if (request->sched.semaphores &&
708 i915_sw_fence_signaled(&request->semaphore))
709 engine->saturated |= request->sched.semaphores;
710
711 engine->emit_fini_breadcrumb(request,
712 request->ring->vaddr + request->postfix);
713
714 trace_i915_request_execute(request);
715 if (engine->bump_serial)
716 engine->bump_serial(engine);
717 else
718 engine->serial++;
719
720 result = true;
721
722 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
723 engine->add_active_request(request);
724 active:
725 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
726 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
727
728 /*
729 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
730 *
731 * In the future, perhaps when we have an active time-slicing scheduler,
732 * it will be interesting to unsubmit parallel execution and remove
733 * busywaits from the GPU until their master is restarted. This is
734 * quite hairy, we have to carefully rollback the fence and do a
735 * preempt-to-idle cycle on the target engine, all the while the
736 * master execute_cb may refire.
737 */
738 __notify_execute_cb_irq(request);
739
740 /* We may be recursing from the signal callback of another i915 fence */
741 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
742 i915_request_enable_breadcrumb(request);
743
744 return result;
745 }
746
i915_request_submit(struct i915_request * request)747 void i915_request_submit(struct i915_request *request)
748 {
749 struct intel_engine_cs *engine = request->engine;
750 unsigned long flags;
751
752 /* Will be called from irq-context when using foreign fences. */
753 spin_lock_irqsave(&engine->sched_engine->lock, flags);
754
755 __i915_request_submit(request);
756
757 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
758 }
759
__i915_request_unsubmit(struct i915_request * request)760 void __i915_request_unsubmit(struct i915_request *request)
761 {
762 struct intel_engine_cs *engine = request->engine;
763
764 /*
765 * Only unwind in reverse order, required so that the per-context list
766 * is kept in seqno/ring order.
767 */
768 RQ_TRACE(request, "\n");
769
770 GEM_BUG_ON(!irqs_disabled());
771 lockdep_assert_held(&engine->sched_engine->lock);
772
773 /*
774 * Before we remove this breadcrumb from the signal list, we have
775 * to ensure that a concurrent dma_fence_enable_signaling() does not
776 * attach itself. We first mark the request as no longer active and
777 * make sure that is visible to other cores, and then remove the
778 * breadcrumb if attached.
779 */
780 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
781 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
782 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
783 i915_request_cancel_breadcrumb(request);
784
785 /* We've already spun, don't charge on resubmitting. */
786 if (request->sched.semaphores && __i915_request_has_started(request))
787 request->sched.semaphores = 0;
788
789 /*
790 * We don't need to wake_up any waiters on request->execute, they
791 * will get woken by any other event or us re-adding this request
792 * to the engine timeline (__i915_request_submit()). The waiters
793 * should be quite adapt at finding that the request now has a new
794 * global_seqno to the one they went to sleep on.
795 */
796 }
797
i915_request_unsubmit(struct i915_request * request)798 void i915_request_unsubmit(struct i915_request *request)
799 {
800 struct intel_engine_cs *engine = request->engine;
801 unsigned long flags;
802
803 /* Will be called from irq-context when using foreign fences. */
804 spin_lock_irqsave(&engine->sched_engine->lock, flags);
805
806 __i915_request_unsubmit(request);
807
808 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
809 }
810
i915_request_cancel(struct i915_request * rq,int error)811 void i915_request_cancel(struct i915_request *rq, int error)
812 {
813 if (!i915_request_set_error_once(rq, error))
814 return;
815
816 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
817
818 intel_context_cancel_request(rq->context, rq);
819 }
820
821 static int
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)822 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
823 {
824 struct i915_request *request =
825 container_of(fence, typeof(*request), submit);
826
827 switch (state) {
828 case FENCE_COMPLETE:
829 trace_i915_request_submit(request);
830
831 if (unlikely(fence->error))
832 i915_request_set_error_once(request, fence->error);
833 else
834 __rq_arm_watchdog(request);
835
836 /*
837 * We need to serialize use of the submit_request() callback
838 * with its hotplugging performed during an emergency
839 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
840 * critical section in order to force i915_gem_set_wedged() to
841 * wait until the submit_request() is completed before
842 * proceeding.
843 */
844 rcu_read_lock();
845 request->engine->submit_request(request);
846 rcu_read_unlock();
847 break;
848
849 case FENCE_FREE:
850 i915_request_put(request);
851 break;
852 }
853
854 return NOTIFY_DONE;
855 }
856
857 static int
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)858 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
859 {
860 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
861
862 switch (state) {
863 case FENCE_COMPLETE:
864 break;
865
866 case FENCE_FREE:
867 i915_request_put(rq);
868 break;
869 }
870
871 return NOTIFY_DONE;
872 }
873
retire_requests(struct intel_timeline * tl)874 static void retire_requests(struct intel_timeline *tl)
875 {
876 struct i915_request *rq, *rn;
877
878 list_for_each_entry_safe(rq, rn, &tl->requests, link)
879 if (!i915_request_retire(rq))
880 break;
881 }
882
883 static void __i915_request_ctor(void *);
884
885 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)886 request_alloc_slow(struct intel_timeline *tl,
887 struct i915_request **rsvd,
888 gfp_t gfp)
889 {
890 struct i915_request *rq;
891
892 /* If we cannot wait, dip into our reserves */
893 if (!gfpflags_allow_blocking(gfp)) {
894 rq = xchg(rsvd, NULL);
895 if (!rq) /* Use the normal failure path for one final WARN */
896 goto out;
897
898 return rq;
899 }
900
901 if (list_empty(&tl->requests))
902 goto out;
903
904 /* Move our oldest request to the slab-cache (if not in use!) */
905 rq = list_first_entry(&tl->requests, typeof(*rq), link);
906 i915_request_retire(rq);
907
908 #ifdef __linux__
909 rq = kmem_cache_alloc(slab_requests,
910 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
911 #else
912 rq = pool_get(&slab_requests,
913 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
914 if (rq)
915 __i915_request_ctor(rq);
916 #endif
917 if (rq)
918 return rq;
919
920 /* Ratelimit ourselves to prevent oom from malicious clients */
921 rq = list_last_entry(&tl->requests, typeof(*rq), link);
922 cond_synchronize_rcu(rq->rcustate);
923
924 /* Retire our old requests in the hope that we free some */
925 retire_requests(tl);
926
927 out:
928 #ifdef __linux__
929 return kmem_cache_alloc(slab_requests, gfp);
930 #else
931 rq = pool_get(&slab_requests,
932 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
933 if (rq)
934 __i915_request_ctor(rq);
935 return rq;
936 #endif
937 }
938
__i915_request_ctor(void * arg)939 static void __i915_request_ctor(void *arg)
940 {
941 struct i915_request *rq = arg;
942
943 /*
944 * witness does not understand spin_lock_nested()
945 * order reversal in i915 with this lock
946 */
947 mtx_init_flags(&rq->lock, IPL_TTY, NULL, MTX_NOWITNESS);
948 i915_sched_node_init(&rq->sched);
949 i915_sw_fence_init(&rq->submit, submit_notify);
950 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
951
952 clear_capture_list(rq);
953 rq->batch_res = NULL;
954
955 init_llist_head(&rq->execute_cb);
956 }
957
958 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
959 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
960 #else
961 #define clear_batch_ptr(_a) do {} while (0)
962 #endif
963
964 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)965 __i915_request_create(struct intel_context *ce, gfp_t gfp)
966 {
967 struct intel_timeline *tl = ce->timeline;
968 struct i915_request *rq;
969 u32 seqno;
970 int ret;
971
972 might_alloc(gfp);
973
974 /* Check that the caller provided an already pinned context */
975 __intel_context_pin(ce);
976
977 /*
978 * Beware: Dragons be flying overhead.
979 *
980 * We use RCU to look up requests in flight. The lookups may
981 * race with the request being allocated from the slab freelist.
982 * That is the request we are writing to here, may be in the process
983 * of being read by __i915_active_request_get_rcu(). As such,
984 * we have to be very careful when overwriting the contents. During
985 * the RCU lookup, we change chase the request->engine pointer,
986 * read the request->global_seqno and increment the reference count.
987 *
988 * The reference count is incremented atomically. If it is zero,
989 * the lookup knows the request is unallocated and complete. Otherwise,
990 * it is either still in use, or has been reallocated and reset
991 * with dma_fence_init(). This increment is safe for release as we
992 * check that the request we have a reference to and matches the active
993 * request.
994 *
995 * Before we increment the refcount, we chase the request->engine
996 * pointer. We must not call kmem_cache_zalloc() or else we set
997 * that pointer to NULL and cause a crash during the lookup. If
998 * we see the request is completed (based on the value of the
999 * old engine and seqno), the lookup is complete and reports NULL.
1000 * If we decide the request is not completed (new engine or seqno),
1001 * then we grab a reference and double check that it is still the
1002 * active request - which it won't be and restart the lookup.
1003 *
1004 * Do not use kmem_cache_zalloc() here!
1005 */
1006 #ifdef __linux__
1007 rq = kmem_cache_alloc(slab_requests,
1008 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1009 #else
1010 rq = pool_get(&slab_requests,
1011 (gfp & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK);
1012 if (rq)
1013 __i915_request_ctor(rq);
1014 #endif
1015 if (unlikely(!rq)) {
1016 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
1017 if (!rq) {
1018 ret = -ENOMEM;
1019 goto err_unreserve;
1020 }
1021 }
1022
1023 rq->context = ce;
1024 rq->engine = ce->engine;
1025 rq->ring = ce->ring;
1026 rq->execution_mask = ce->engine->mask;
1027 rq->i915 = ce->engine->i915;
1028
1029 ret = intel_timeline_get_seqno(tl, rq, &seqno);
1030 if (ret)
1031 goto err_free;
1032
1033 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
1034 tl->fence_context, seqno);
1035
1036 RCU_INIT_POINTER(rq->timeline, tl);
1037 rq->hwsp_seqno = tl->hwsp_seqno;
1038 GEM_BUG_ON(__i915_request_is_complete(rq));
1039
1040 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
1041
1042 rq->guc_prio = GUC_PRIO_INIT;
1043
1044 /* We bump the ref for the fence chain */
1045 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
1046 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
1047
1048 i915_sched_node_reinit(&rq->sched);
1049
1050 /* No zalloc, everything must be cleared after use */
1051 clear_batch_ptr(rq);
1052 __rq_init_watchdog(rq);
1053 assert_capture_list_is_null(rq);
1054 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
1055 GEM_BUG_ON(rq->batch_res);
1056
1057 /*
1058 * Reserve space in the ring buffer for all the commands required to
1059 * eventually emit this request. This is to guarantee that the
1060 * i915_request_add() call can't fail. Note that the reserve may need
1061 * to be redone if the request is not actually submitted straight
1062 * away, e.g. because a GPU scheduler has deferred it.
1063 *
1064 * Note that due to how we add reserved_space to intel_ring_begin()
1065 * we need to double our request to ensure that if we need to wrap
1066 * around inside i915_request_add() there is sufficient space at
1067 * the beginning of the ring as well.
1068 */
1069 rq->reserved_space =
1070 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
1071
1072 /*
1073 * Record the position of the start of the request so that
1074 * should we detect the updated seqno part-way through the
1075 * GPU processing the request, we never over-estimate the
1076 * position of the head.
1077 */
1078 rq->head = rq->ring->emit;
1079
1080 ret = rq->engine->request_alloc(rq);
1081 if (ret)
1082 goto err_unwind;
1083
1084 rq->infix = rq->ring->emit; /* end of header; start of user payload */
1085
1086 intel_context_mark_active(ce);
1087 list_add_tail_rcu(&rq->link, &tl->requests);
1088
1089 return rq;
1090
1091 err_unwind:
1092 ce->ring->emit = rq->head;
1093
1094 /* Make sure we didn't add ourselves to external state before freeing */
1095 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1096 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1097
1098 err_free:
1099 #ifdef __linux__
1100 kmem_cache_free(slab_requests, rq);
1101 #else
1102 pool_put(&slab_requests, rq);
1103 #endif
1104 err_unreserve:
1105 intel_context_unpin(ce);
1106 return ERR_PTR(ret);
1107 }
1108
1109 struct i915_request *
i915_request_create(struct intel_context * ce)1110 i915_request_create(struct intel_context *ce)
1111 {
1112 struct i915_request *rq;
1113 struct intel_timeline *tl;
1114
1115 tl = intel_context_timeline_lock(ce);
1116 if (IS_ERR(tl))
1117 return ERR_CAST(tl);
1118
1119 /* Move our oldest request to the slab-cache (if not in use!) */
1120 rq = list_first_entry(&tl->requests, typeof(*rq), link);
1121 if (!list_is_last(&rq->link, &tl->requests))
1122 i915_request_retire(rq);
1123
1124 intel_context_enter(ce);
1125 rq = __i915_request_create(ce, GFP_KERNEL);
1126 intel_context_exit(ce); /* active reference transferred to request */
1127 if (IS_ERR(rq))
1128 goto err_unlock;
1129
1130 /* Check that we do not interrupt ourselves with a new request */
1131 rq->cookie = lockdep_pin_lock(&tl->mutex);
1132
1133 return rq;
1134
1135 err_unlock:
1136 intel_context_timeline_unlock(tl);
1137 return rq;
1138 }
1139
1140 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)1141 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1142 {
1143 struct dma_fence *fence;
1144 int err;
1145
1146 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1147 return 0;
1148
1149 if (i915_request_started(signal))
1150 return 0;
1151
1152 /*
1153 * The caller holds a reference on @signal, but we do not serialise
1154 * against it being retired and removed from the lists.
1155 *
1156 * We do not hold a reference to the request before @signal, and
1157 * so must be very careful to ensure that it is not _recycled_ as
1158 * we follow the link backwards.
1159 */
1160 fence = NULL;
1161 rcu_read_lock();
1162 do {
1163 struct list_head *pos = READ_ONCE(signal->link.prev);
1164 struct i915_request *prev;
1165
1166 /* Confirm signal has not been retired, the link is valid */
1167 if (unlikely(__i915_request_has_started(signal)))
1168 break;
1169
1170 /* Is signal the earliest request on its timeline? */
1171 if (pos == &rcu_dereference(signal->timeline)->requests)
1172 break;
1173
1174 /*
1175 * Peek at the request before us in the timeline. That
1176 * request will only be valid before it is retired, so
1177 * after acquiring a reference to it, confirm that it is
1178 * still part of the signaler's timeline.
1179 */
1180 prev = list_entry(pos, typeof(*prev), link);
1181 if (!i915_request_get_rcu(prev))
1182 break;
1183
1184 /* After the strong barrier, confirm prev is still attached */
1185 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1186 i915_request_put(prev);
1187 break;
1188 }
1189
1190 fence = &prev->fence;
1191 } while (0);
1192 rcu_read_unlock();
1193 if (!fence)
1194 return 0;
1195
1196 err = 0;
1197 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1198 err = i915_sw_fence_await_dma_fence(&rq->submit,
1199 fence, 0,
1200 I915_FENCE_GFP);
1201 dma_fence_put(fence);
1202
1203 return err;
1204 }
1205
1206 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1207 already_busywaiting(struct i915_request *rq)
1208 {
1209 /*
1210 * Polling a semaphore causes bus traffic, delaying other users of
1211 * both the GPU and CPU. We want to limit the impact on others,
1212 * while taking advantage of early submission to reduce GPU
1213 * latency. Therefore we restrict ourselves to not using more
1214 * than one semaphore from each source, and not using a semaphore
1215 * if we have detected the engine is saturated (i.e. would not be
1216 * submitted early and cause bus traffic reading an already passed
1217 * semaphore).
1218 *
1219 * See the are-we-too-late? check in __i915_request_submit().
1220 */
1221 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1222 }
1223
1224 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1225 __emit_semaphore_wait(struct i915_request *to,
1226 struct i915_request *from,
1227 u32 seqno)
1228 {
1229 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1230 u32 hwsp_offset;
1231 int len, err;
1232 u32 *cs;
1233
1234 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1235 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1236
1237 /* We need to pin the signaler's HWSP until we are finished reading. */
1238 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1239 if (err)
1240 return err;
1241
1242 len = 4;
1243 if (has_token)
1244 len += 2;
1245
1246 cs = intel_ring_begin(to, len);
1247 if (IS_ERR(cs))
1248 return PTR_ERR(cs);
1249
1250 /*
1251 * Using greater-than-or-equal here means we have to worry
1252 * about seqno wraparound. To side step that issue, we swap
1253 * the timeline HWSP upon wrapping, so that everyone listening
1254 * for the old (pre-wrap) values do not see the much smaller
1255 * (post-wrap) values than they were expecting (and so wait
1256 * forever).
1257 */
1258 *cs++ = (MI_SEMAPHORE_WAIT |
1259 MI_SEMAPHORE_GLOBAL_GTT |
1260 MI_SEMAPHORE_POLL |
1261 MI_SEMAPHORE_SAD_GTE_SDD) +
1262 has_token;
1263 *cs++ = seqno;
1264 *cs++ = hwsp_offset;
1265 *cs++ = 0;
1266 if (has_token) {
1267 *cs++ = 0;
1268 *cs++ = MI_NOOP;
1269 }
1270
1271 intel_ring_advance(to, cs);
1272 return 0;
1273 }
1274
1275 static bool
can_use_semaphore_wait(struct i915_request * to,struct i915_request * from)1276 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1277 {
1278 return to->engine->gt->ggtt == from->engine->gt->ggtt;
1279 }
1280
1281 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1282 emit_semaphore_wait(struct i915_request *to,
1283 struct i915_request *from,
1284 gfp_t gfp)
1285 {
1286 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1287 struct i915_sw_fence *wait = &to->submit;
1288
1289 if (!can_use_semaphore_wait(to, from))
1290 goto await_fence;
1291
1292 if (!intel_context_use_semaphores(to->context))
1293 goto await_fence;
1294
1295 if (i915_request_has_initial_breadcrumb(to))
1296 goto await_fence;
1297
1298 /*
1299 * If this or its dependents are waiting on an external fence
1300 * that may fail catastrophically, then we want to avoid using
1301 * semaphores as they bypass the fence signaling metadata, and we
1302 * lose the fence->error propagation.
1303 */
1304 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1305 goto await_fence;
1306
1307 /* Just emit the first semaphore we see as request space is limited. */
1308 if (already_busywaiting(to) & mask)
1309 goto await_fence;
1310
1311 if (i915_request_await_start(to, from) < 0)
1312 goto await_fence;
1313
1314 /* Only submit our spinner after the signaler is running! */
1315 if (__await_execution(to, from, gfp))
1316 goto await_fence;
1317
1318 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1319 goto await_fence;
1320
1321 to->sched.semaphores |= mask;
1322 wait = &to->semaphore;
1323
1324 await_fence:
1325 return i915_sw_fence_await_dma_fence(wait,
1326 &from->fence, 0,
1327 I915_FENCE_GFP);
1328 }
1329
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1330 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1331 struct dma_fence *fence)
1332 {
1333 return __intel_timeline_sync_is_later(tl,
1334 fence->context,
1335 fence->seqno - 1);
1336 }
1337
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1338 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1339 const struct dma_fence *fence)
1340 {
1341 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1342 }
1343
1344 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from)1345 __i915_request_await_execution(struct i915_request *to,
1346 struct i915_request *from)
1347 {
1348 int err;
1349
1350 GEM_BUG_ON(intel_context_is_barrier(from->context));
1351
1352 /* Submit both requests at the same time */
1353 err = __await_execution(to, from, I915_FENCE_GFP);
1354 if (err)
1355 return err;
1356
1357 /* Squash repeated depenendices to the same timelines */
1358 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1359 &from->fence))
1360 return 0;
1361
1362 /*
1363 * Wait until the start of this request.
1364 *
1365 * The execution cb fires when we submit the request to HW. But in
1366 * many cases this may be long before the request itself is ready to
1367 * run (consider that we submit 2 requests for the same context, where
1368 * the request of interest is behind an indefinite spinner). So we hook
1369 * up to both to reduce our queues and keep the execution lag minimised
1370 * in the worst case, though we hope that the await_start is elided.
1371 */
1372 err = i915_request_await_start(to, from);
1373 if (err < 0)
1374 return err;
1375
1376 /*
1377 * Ensure both start together [after all semaphores in signal]
1378 *
1379 * Now that we are queued to the HW at roughly the same time (thanks
1380 * to the execute cb) and are ready to run at roughly the same time
1381 * (thanks to the await start), our signaler may still be indefinitely
1382 * delayed by waiting on a semaphore from a remote engine. If our
1383 * signaler depends on a semaphore, so indirectly do we, and we do not
1384 * want to start our payload until our signaler also starts theirs.
1385 * So we wait.
1386 *
1387 * However, there is also a second condition for which we need to wait
1388 * for the precise start of the signaler. Consider that the signaler
1389 * was submitted in a chain of requests following another context
1390 * (with just an ordinary intra-engine fence dependency between the
1391 * two). In this case the signaler is queued to HW, but not for
1392 * immediate execution, and so we must wait until it reaches the
1393 * active slot.
1394 */
1395 if (can_use_semaphore_wait(to, from) &&
1396 intel_engine_has_semaphores(to->engine) &&
1397 !i915_request_has_initial_breadcrumb(to)) {
1398 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1399 if (err < 0)
1400 return err;
1401 }
1402
1403 /* Couple the dependency tree for PI on this exposed to->fence */
1404 if (to->engine->sched_engine->schedule) {
1405 err = i915_sched_node_add_dependency(&to->sched,
1406 &from->sched,
1407 I915_DEPENDENCY_WEAK);
1408 if (err < 0)
1409 return err;
1410 }
1411
1412 return intel_timeline_sync_set_start(i915_request_timeline(to),
1413 &from->fence);
1414 }
1415
mark_external(struct i915_request * rq)1416 static void mark_external(struct i915_request *rq)
1417 {
1418 /*
1419 * The downside of using semaphores is that we lose metadata passing
1420 * along the signaling chain. This is particularly nasty when we
1421 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1422 * fatal errors we want to scrub the request before it is executed,
1423 * which means that we cannot preload the request onto HW and have
1424 * it wait upon a semaphore.
1425 */
1426 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1427 }
1428
1429 static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1430 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1431 {
1432 mark_external(rq);
1433 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1434 i915_fence_context_timeout(rq->i915,
1435 fence->context),
1436 I915_FENCE_GFP);
1437 }
1438
1439 static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1440 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1441 {
1442 struct dma_fence *iter;
1443 int err = 0;
1444
1445 if (!to_dma_fence_chain(fence))
1446 return __i915_request_await_external(rq, fence);
1447
1448 dma_fence_chain_for_each(iter, fence) {
1449 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1450
1451 if (!dma_fence_is_i915(chain->fence)) {
1452 err = __i915_request_await_external(rq, iter);
1453 break;
1454 }
1455
1456 err = i915_request_await_dma_fence(rq, chain->fence);
1457 if (err < 0)
1458 break;
1459 }
1460
1461 dma_fence_put(iter);
1462 return err;
1463 }
1464
is_parallel_rq(struct i915_request * rq)1465 static inline bool is_parallel_rq(struct i915_request *rq)
1466 {
1467 return intel_context_is_parallel(rq->context);
1468 }
1469
request_to_parent(struct i915_request * rq)1470 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1471 {
1472 return intel_context_to_parent(rq->context);
1473 }
1474
is_same_parallel_context(struct i915_request * to,struct i915_request * from)1475 static bool is_same_parallel_context(struct i915_request *to,
1476 struct i915_request *from)
1477 {
1478 if (is_parallel_rq(to))
1479 return request_to_parent(to) == request_to_parent(from);
1480
1481 return false;
1482 }
1483
1484 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence)1485 i915_request_await_execution(struct i915_request *rq,
1486 struct dma_fence *fence)
1487 {
1488 struct dma_fence **child = &fence;
1489 unsigned int nchild = 1;
1490 int ret;
1491
1492 if (dma_fence_is_array(fence)) {
1493 struct dma_fence_array *array = to_dma_fence_array(fence);
1494
1495 /* XXX Error for signal-on-any fence arrays */
1496
1497 child = array->fences;
1498 nchild = array->num_fences;
1499 GEM_BUG_ON(!nchild);
1500 }
1501
1502 do {
1503 fence = *child++;
1504 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1505 continue;
1506
1507 if (fence->context == rq->fence.context)
1508 continue;
1509
1510 /*
1511 * We don't squash repeated fence dependencies here as we
1512 * want to run our callback in all cases.
1513 */
1514
1515 if (dma_fence_is_i915(fence)) {
1516 if (is_same_parallel_context(rq, to_request(fence)))
1517 continue;
1518 ret = __i915_request_await_execution(rq,
1519 to_request(fence));
1520 } else {
1521 ret = i915_request_await_external(rq, fence);
1522 }
1523 if (ret < 0)
1524 return ret;
1525 } while (--nchild);
1526
1527 return 0;
1528 }
1529
1530 static int
await_request_submit(struct i915_request * to,struct i915_request * from)1531 await_request_submit(struct i915_request *to, struct i915_request *from)
1532 {
1533 /*
1534 * If we are waiting on a virtual engine, then it may be
1535 * constrained to execute on a single engine *prior* to submission.
1536 * When it is submitted, it will be first submitted to the virtual
1537 * engine and then passed to the physical engine. We cannot allow
1538 * the waiter to be submitted immediately to the physical engine
1539 * as it may then bypass the virtual request.
1540 */
1541 if (to->engine == READ_ONCE(from->engine))
1542 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1543 &from->submit,
1544 I915_FENCE_GFP);
1545 else
1546 return __i915_request_await_execution(to, from);
1547 }
1548
1549 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1550 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1551 {
1552 int ret;
1553
1554 GEM_BUG_ON(to == from);
1555 GEM_BUG_ON(to->timeline == from->timeline);
1556
1557 if (i915_request_completed(from)) {
1558 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1559 return 0;
1560 }
1561
1562 if (to->engine->sched_engine->schedule) {
1563 ret = i915_sched_node_add_dependency(&to->sched,
1564 &from->sched,
1565 I915_DEPENDENCY_EXTERNAL);
1566 if (ret < 0)
1567 return ret;
1568 }
1569
1570 if (!intel_engine_uses_guc(to->engine) &&
1571 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1572 ret = await_request_submit(to, from);
1573 else
1574 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1575 if (ret < 0)
1576 return ret;
1577
1578 return 0;
1579 }
1580
1581 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1582 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1583 {
1584 struct dma_fence **child = &fence;
1585 unsigned int nchild = 1;
1586 int ret;
1587
1588 /*
1589 * Note that if the fence-array was created in signal-on-any mode,
1590 * we should *not* decompose it into its individual fences. However,
1591 * we don't currently store which mode the fence-array is operating
1592 * in. Fortunately, the only user of signal-on-any is private to
1593 * amdgpu and we should not see any incoming fence-array from
1594 * sync-file being in signal-on-any mode.
1595 */
1596 if (dma_fence_is_array(fence)) {
1597 struct dma_fence_array *array = to_dma_fence_array(fence);
1598
1599 child = array->fences;
1600 nchild = array->num_fences;
1601 GEM_BUG_ON(!nchild);
1602 }
1603
1604 do {
1605 fence = *child++;
1606 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1607 continue;
1608
1609 /*
1610 * Requests on the same timeline are explicitly ordered, along
1611 * with their dependencies, by i915_request_add() which ensures
1612 * that requests are submitted in-order through each ring.
1613 */
1614 if (fence->context == rq->fence.context)
1615 continue;
1616
1617 /* Squash repeated waits to the same timelines */
1618 if (fence->context &&
1619 intel_timeline_sync_is_later(i915_request_timeline(rq),
1620 fence))
1621 continue;
1622
1623 if (dma_fence_is_i915(fence)) {
1624 if (is_same_parallel_context(rq, to_request(fence)))
1625 continue;
1626 ret = i915_request_await_request(rq, to_request(fence));
1627 } else {
1628 ret = i915_request_await_external(rq, fence);
1629 }
1630 if (ret < 0)
1631 return ret;
1632
1633 /* Record the latest fence used against each timeline */
1634 if (fence->context)
1635 intel_timeline_sync_set(i915_request_timeline(rq),
1636 fence);
1637 } while (--nchild);
1638
1639 return 0;
1640 }
1641
1642 /**
1643 * i915_request_await_deps - set this request to (async) wait upon a struct
1644 * i915_deps dma_fence collection
1645 * @rq: request we are wishing to use
1646 * @deps: The struct i915_deps containing the dependencies.
1647 *
1648 * Returns 0 if successful, negative error code on error.
1649 */
i915_request_await_deps(struct i915_request * rq,const struct i915_deps * deps)1650 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1651 {
1652 int i, err;
1653
1654 for (i = 0; i < deps->num_deps; ++i) {
1655 err = i915_request_await_dma_fence(rq, deps->fences[i]);
1656 if (err)
1657 return err;
1658 }
1659
1660 return 0;
1661 }
1662
1663 /**
1664 * i915_request_await_object - set this request to (async) wait upon a bo
1665 * @to: request we are wishing to use
1666 * @obj: object which may be in use on another ring.
1667 * @write: whether the wait is on behalf of a writer
1668 *
1669 * This code is meant to abstract object synchronization with the GPU.
1670 * Conceptually we serialise writes between engines inside the GPU.
1671 * We only allow one engine to write into a buffer at any time, but
1672 * multiple readers. To ensure each has a coherent view of memory, we must:
1673 *
1674 * - If there is an outstanding write request to the object, the new
1675 * request must wait for it to complete (either CPU or in hw, requests
1676 * on the same ring will be naturally ordered).
1677 *
1678 * - If we are a write request (pending_write_domain is set), the new
1679 * request must wait for outstanding read requests to complete.
1680 *
1681 * Returns 0 if successful, else propagates up the lower layer error.
1682 */
1683 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1684 i915_request_await_object(struct i915_request *to,
1685 struct drm_i915_gem_object *obj,
1686 bool write)
1687 {
1688 struct dma_resv_iter cursor;
1689 struct dma_fence *fence;
1690 int ret = 0;
1691
1692 dma_resv_for_each_fence(&cursor, obj->base.resv,
1693 dma_resv_usage_rw(write), fence) {
1694 ret = i915_request_await_dma_fence(to, fence);
1695 if (ret)
1696 break;
1697 }
1698
1699 return ret;
1700 }
1701
i915_request_await_huc(struct i915_request * rq)1702 static void i915_request_await_huc(struct i915_request *rq)
1703 {
1704 struct intel_huc *huc = &rq->context->engine->gt->uc.huc;
1705
1706 /* don't stall kernel submissions! */
1707 if (!rcu_access_pointer(rq->context->gem_context))
1708 return;
1709
1710 if (intel_huc_wait_required(huc))
1711 i915_sw_fence_await_sw_fence(&rq->submit,
1712 &huc->delayed_load.fence,
1713 &rq->hucq);
1714 }
1715
1716 static struct i915_request *
__i915_request_ensure_parallel_ordering(struct i915_request * rq,struct intel_timeline * timeline)1717 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1718 struct intel_timeline *timeline)
1719 {
1720 struct i915_request *prev;
1721
1722 GEM_BUG_ON(!is_parallel_rq(rq));
1723
1724 prev = request_to_parent(rq)->parallel.last_rq;
1725 if (prev) {
1726 if (!__i915_request_is_complete(prev)) {
1727 i915_sw_fence_await_sw_fence(&rq->submit,
1728 &prev->submit,
1729 &rq->submitq);
1730
1731 if (rq->engine->sched_engine->schedule)
1732 __i915_sched_node_add_dependency(&rq->sched,
1733 &prev->sched,
1734 &rq->dep,
1735 0);
1736 }
1737 i915_request_put(prev);
1738 }
1739
1740 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1741
1742 /*
1743 * Users have to put a reference potentially got by
1744 * __i915_active_fence_set() to the returned request
1745 * when no longer needed
1746 */
1747 return to_request(__i915_active_fence_set(&timeline->last_request,
1748 &rq->fence));
1749 }
1750
1751 static struct i915_request *
__i915_request_ensure_ordering(struct i915_request * rq,struct intel_timeline * timeline)1752 __i915_request_ensure_ordering(struct i915_request *rq,
1753 struct intel_timeline *timeline)
1754 {
1755 struct i915_request *prev;
1756
1757 GEM_BUG_ON(is_parallel_rq(rq));
1758
1759 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1760 &rq->fence));
1761
1762 if (prev && !__i915_request_is_complete(prev)) {
1763 bool uses_guc = intel_engine_uses_guc(rq->engine);
1764 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1765 rq->engine->mask);
1766 bool same_context = prev->context == rq->context;
1767
1768 /*
1769 * The requests are supposed to be kept in order. However,
1770 * we need to be wary in case the timeline->last_request
1771 * is used as a barrier for external modification to this
1772 * context.
1773 */
1774 GEM_BUG_ON(same_context &&
1775 i915_seqno_passed(prev->fence.seqno,
1776 rq->fence.seqno));
1777
1778 if ((same_context && uses_guc) || (!uses_guc && pow2))
1779 i915_sw_fence_await_sw_fence(&rq->submit,
1780 &prev->submit,
1781 &rq->submitq);
1782 else
1783 __i915_sw_fence_await_dma_fence(&rq->submit,
1784 &prev->fence,
1785 &rq->dmaq);
1786 if (rq->engine->sched_engine->schedule)
1787 __i915_sched_node_add_dependency(&rq->sched,
1788 &prev->sched,
1789 &rq->dep,
1790 0);
1791 }
1792
1793 /*
1794 * Users have to put the reference to prev potentially got
1795 * by __i915_active_fence_set() when no longer needed
1796 */
1797 return prev;
1798 }
1799
1800 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1801 __i915_request_add_to_timeline(struct i915_request *rq)
1802 {
1803 struct intel_timeline *timeline = i915_request_timeline(rq);
1804 struct i915_request *prev;
1805
1806 /*
1807 * Media workloads may require HuC, so stall them until HuC loading is
1808 * complete. Note that HuC not being loaded when a user submission
1809 * arrives can only happen when HuC is loaded via GSC and in that case
1810 * we still expect the window between us starting to accept submissions
1811 * and HuC loading completion to be small (a few hundred ms).
1812 */
1813 if (rq->engine->class == VIDEO_DECODE_CLASS)
1814 i915_request_await_huc(rq);
1815
1816 /*
1817 * Dependency tracking and request ordering along the timeline
1818 * is special cased so that we can eliminate redundant ordering
1819 * operations while building the request (we know that the timeline
1820 * itself is ordered, and here we guarantee it).
1821 *
1822 * As we know we will need to emit tracking along the timeline,
1823 * we embed the hooks into our request struct -- at the cost of
1824 * having to have specialised no-allocation interfaces (which will
1825 * be beneficial elsewhere).
1826 *
1827 * A second benefit to open-coding i915_request_await_request is
1828 * that we can apply a slight variant of the rules specialised
1829 * for timelines that jump between engines (such as virtual engines).
1830 * If we consider the case of virtual engine, we must emit a dma-fence
1831 * to prevent scheduling of the second request until the first is
1832 * complete (to maximise our greedy late load balancing) and this
1833 * precludes optimising to use semaphores serialisation of a single
1834 * timeline across engines.
1835 *
1836 * We do not order parallel submission requests on the timeline as each
1837 * parallel submission context has its own timeline and the ordering
1838 * rules for parallel requests are that they must be submitted in the
1839 * order received from the execbuf IOCTL. So rather than using the
1840 * timeline we store a pointer to last request submitted in the
1841 * relationship in the gem context and insert a submission fence
1842 * between that request and request passed into this function or
1843 * alternatively we use completion fence if gem context has a single
1844 * timeline and this is the first submission of an execbuf IOCTL.
1845 */
1846 if (likely(!is_parallel_rq(rq)))
1847 prev = __i915_request_ensure_ordering(rq, timeline);
1848 else
1849 prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1850 if (prev)
1851 i915_request_put(prev);
1852
1853 /*
1854 * Make sure that no request gazumped us - if it was allocated after
1855 * our i915_request_alloc() and called __i915_request_add() before
1856 * us, the timeline will hold its seqno which is later than ours.
1857 */
1858 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1859
1860 return prev;
1861 }
1862
1863 /*
1864 * NB: This function is not allowed to fail. Doing so would mean the the
1865 * request is not being tracked for completion but the work itself is
1866 * going to happen on the hardware. This would be a Bad Thing(tm).
1867 */
__i915_request_commit(struct i915_request * rq)1868 struct i915_request *__i915_request_commit(struct i915_request *rq)
1869 {
1870 struct intel_engine_cs *engine = rq->engine;
1871 struct intel_ring *ring = rq->ring;
1872 u32 *cs;
1873
1874 RQ_TRACE(rq, "\n");
1875
1876 /*
1877 * To ensure that this call will not fail, space for its emissions
1878 * should already have been reserved in the ring buffer. Let the ring
1879 * know that it is time to use that space up.
1880 */
1881 GEM_BUG_ON(rq->reserved_space > ring->space);
1882 rq->reserved_space = 0;
1883 rq->emitted_jiffies = jiffies;
1884
1885 /*
1886 * Record the position of the start of the breadcrumb so that
1887 * should we detect the updated seqno part-way through the
1888 * GPU processing the request, we never over-estimate the
1889 * position of the ring's HEAD.
1890 */
1891 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1892 GEM_BUG_ON(IS_ERR(cs));
1893 rq->postfix = intel_ring_offset(rq, cs);
1894
1895 return __i915_request_add_to_timeline(rq);
1896 }
1897
__i915_request_queue_bh(struct i915_request * rq)1898 void __i915_request_queue_bh(struct i915_request *rq)
1899 {
1900 i915_sw_fence_commit(&rq->semaphore);
1901 i915_sw_fence_commit(&rq->submit);
1902 }
1903
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1904 void __i915_request_queue(struct i915_request *rq,
1905 const struct i915_sched_attr *attr)
1906 {
1907 /*
1908 * Let the backend know a new request has arrived that may need
1909 * to adjust the existing execution schedule due to a high priority
1910 * request - i.e. we may want to preempt the current request in order
1911 * to run a high priority dependency chain *before* we can execute this
1912 * request.
1913 *
1914 * This is called before the request is ready to run so that we can
1915 * decide whether to preempt the entire chain so that it is ready to
1916 * run at the earliest possible convenience.
1917 */
1918 if (attr && rq->engine->sched_engine->schedule)
1919 rq->engine->sched_engine->schedule(rq, attr);
1920
1921 local_bh_disable();
1922 __i915_request_queue_bh(rq);
1923 local_bh_enable(); /* kick tasklets */
1924 }
1925
i915_request_add(struct i915_request * rq)1926 void i915_request_add(struct i915_request *rq)
1927 {
1928 struct intel_timeline * const tl = i915_request_timeline(rq);
1929 struct i915_sched_attr attr = {};
1930 struct i915_gem_context *ctx;
1931
1932 lockdep_assert_held(&tl->mutex);
1933 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1934
1935 trace_i915_request_add(rq);
1936 __i915_request_commit(rq);
1937
1938 /* XXX placeholder for selftests */
1939 rcu_read_lock();
1940 ctx = rcu_dereference(rq->context->gem_context);
1941 if (ctx)
1942 attr = ctx->sched;
1943 rcu_read_unlock();
1944
1945 __i915_request_queue(rq, &attr);
1946
1947 mutex_unlock(&tl->mutex);
1948 }
1949
local_clock_ns(unsigned int * cpu)1950 static unsigned long local_clock_ns(unsigned int *cpu)
1951 {
1952 unsigned long t;
1953
1954 /*
1955 * Cheaply and approximately convert from nanoseconds to microseconds.
1956 * The result and subsequent calculations are also defined in the same
1957 * approximate microseconds units. The principal source of timing
1958 * error here is from the simple truncation.
1959 *
1960 * Note that local_clock() is only defined wrt to the current CPU;
1961 * the comparisons are no longer valid if we switch CPUs. Instead of
1962 * blocking preemption for the entire busywait, we can detect the CPU
1963 * switch and use that as indicator of system load and a reason to
1964 * stop busywaiting, see busywait_stop().
1965 */
1966 *cpu = get_cpu();
1967 t = local_clock();
1968 put_cpu();
1969
1970 return t;
1971 }
1972
busywait_stop(unsigned long timeout,unsigned int cpu)1973 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1974 {
1975 unsigned int this_cpu;
1976
1977 if (time_after(local_clock_ns(&this_cpu), timeout))
1978 return true;
1979
1980 return this_cpu != cpu;
1981 }
1982
__i915_spin_request(struct i915_request * const rq,int state)1983 static bool __i915_spin_request(struct i915_request * const rq, int state)
1984 {
1985 unsigned long timeout_ns;
1986 unsigned int cpu;
1987
1988 /*
1989 * Only wait for the request if we know it is likely to complete.
1990 *
1991 * We don't track the timestamps around requests, nor the average
1992 * request length, so we do not have a good indicator that this
1993 * request will complete within the timeout. What we do know is the
1994 * order in which requests are executed by the context and so we can
1995 * tell if the request has been started. If the request is not even
1996 * running yet, it is a fair assumption that it will not complete
1997 * within our relatively short timeout.
1998 */
1999 if (!i915_request_is_running(rq))
2000 return false;
2001
2002 /*
2003 * When waiting for high frequency requests, e.g. during synchronous
2004 * rendering split between the CPU and GPU, the finite amount of time
2005 * required to set up the irq and wait upon it limits the response
2006 * rate. By busywaiting on the request completion for a short while we
2007 * can service the high frequency waits as quick as possible. However,
2008 * if it is a slow request, we want to sleep as quickly as possible.
2009 * The tradeoff between waiting and sleeping is roughly the time it
2010 * takes to sleep on a request, on the order of a microsecond.
2011 */
2012
2013 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
2014 timeout_ns += local_clock_ns(&cpu);
2015 do {
2016 if (dma_fence_is_signaled(&rq->fence))
2017 return true;
2018
2019 if (signal_pending_state(state, current))
2020 break;
2021
2022 if (busywait_stop(timeout_ns, cpu))
2023 break;
2024
2025 cpu_relax();
2026 } while (!drm_need_resched());
2027
2028 return false;
2029 }
2030
2031 struct request_wait {
2032 struct dma_fence_cb cb;
2033 #ifdef __linux__
2034 struct task_struct *tsk;
2035 #else
2036 struct proc *tsk;
2037 #endif
2038 };
2039
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)2040 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
2041 {
2042 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
2043
2044 wake_up_process(fetch_and_zero(&wait->tsk));
2045 }
2046
2047 /**
2048 * i915_request_wait_timeout - wait until execution of request has finished
2049 * @rq: the request to wait upon
2050 * @flags: how to wait
2051 * @timeout: how long to wait in jiffies
2052 *
2053 * i915_request_wait_timeout() waits for the request to be completed, for a
2054 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2055 * unbounded wait).
2056 *
2057 * Returns the remaining time (in jiffies) if the request completed, which may
2058 * be zero if the request is unfinished after the timeout expires.
2059 * If the timeout is 0, it will return 1 if the fence is signaled.
2060 *
2061 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2062 * pending before the request completes.
2063 *
2064 * NOTE: This function has the same wait semantics as dma-fence.
2065 */
i915_request_wait_timeout(struct i915_request * rq,unsigned int flags,long timeout)2066 long i915_request_wait_timeout(struct i915_request *rq,
2067 unsigned int flags,
2068 long timeout)
2069 {
2070 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
2071 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
2072 struct request_wait wait;
2073
2074 might_sleep();
2075 GEM_BUG_ON(timeout < 0);
2076
2077 if (dma_fence_is_signaled(&rq->fence))
2078 return timeout ?: 1;
2079
2080 if (!timeout)
2081 return -ETIME;
2082
2083 trace_i915_request_wait_begin(rq, flags);
2084
2085 /*
2086 * We must never wait on the GPU while holding a lock as we
2087 * may need to perform a GPU reset. So while we don't need to
2088 * serialise wait/reset with an explicit lock, we do want
2089 * lockdep to detect potential dependency cycles.
2090 */
2091 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
2092
2093 /*
2094 * Optimistic spin before touching IRQs.
2095 *
2096 * We may use a rather large value here to offset the penalty of
2097 * switching away from the active task. Frequently, the client will
2098 * wait upon an old swapbuffer to throttle itself to remain within a
2099 * frame of the gpu. If the client is running in lockstep with the gpu,
2100 * then it should not be waiting long at all, and a sleep now will incur
2101 * extra scheduler latency in producing the next frame. To try to
2102 * avoid adding the cost of enabling/disabling the interrupt to the
2103 * short wait, we first spin to see if the request would have completed
2104 * in the time taken to setup the interrupt.
2105 *
2106 * We need upto 5us to enable the irq, and upto 20us to hide the
2107 * scheduler latency of a context switch, ignoring the secondary
2108 * impacts from a context switch such as cache eviction.
2109 *
2110 * The scheme used for low-latency IO is called "hybrid interrupt
2111 * polling". The suggestion there is to sleep until just before you
2112 * expect to be woken by the device interrupt and then poll for its
2113 * completion. That requires having a good predictor for the request
2114 * duration, which we currently lack.
2115 */
2116 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2117 __i915_spin_request(rq, state))
2118 goto out;
2119
2120 /*
2121 * This client is about to stall waiting for the GPU. In many cases
2122 * this is undesirable and limits the throughput of the system, as
2123 * many clients cannot continue processing user input/output whilst
2124 * blocked. RPS autotuning may take tens of milliseconds to respond
2125 * to the GPU load and thus incurs additional latency for the client.
2126 * We can circumvent that by promoting the GPU frequency to maximum
2127 * before we sleep. This makes the GPU throttle up much more quickly
2128 * (good for benchmarks and user experience, e.g. window animations),
2129 * but at a cost of spending more power processing the workload
2130 * (bad for battery).
2131 */
2132 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2133 intel_rps_boost(rq);
2134
2135 #ifdef __linux__
2136 wait.tsk = current;
2137 #else
2138 wait.tsk = curproc;
2139 #endif
2140 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2141 goto out;
2142
2143 /*
2144 * Flush the submission tasklet, but only if it may help this request.
2145 *
2146 * We sometimes experience some latency between the HW interrupts and
2147 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2148 * be due to lazy CS events), so lets run the tasklet manually if there
2149 * is a chance it may submit this request. If the request is not ready
2150 * to run, as it is waiting for other fences to be signaled, flushing
2151 * the tasklet is busy work without any advantage for this client.
2152 *
2153 * If the HW is being lazy, this is the last chance before we go to
2154 * sleep to catch any pending events. We will check periodically in
2155 * the heartbeat to flush the submission tasklets as a last resort
2156 * for unhappy HW.
2157 */
2158 if (i915_request_is_ready(rq))
2159 __intel_engine_flush_submission(rq->engine, false);
2160
2161 for (;;) {
2162 set_current_state(state);
2163
2164 if (dma_fence_is_signaled(&rq->fence))
2165 break;
2166
2167 if (signal_pending_state(state, current)) {
2168 timeout = -ERESTARTSYS;
2169 break;
2170 }
2171
2172 if (!timeout) {
2173 timeout = -ETIME;
2174 break;
2175 }
2176
2177 timeout = io_schedule_timeout(timeout);
2178 }
2179 __set_current_state(TASK_RUNNING);
2180
2181 if (READ_ONCE(wait.tsk))
2182 dma_fence_remove_callback(&rq->fence, &wait.cb);
2183 GEM_BUG_ON(!list_empty(&wait.cb.node));
2184
2185 out:
2186 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2187 trace_i915_request_wait_end(rq);
2188 return timeout;
2189 }
2190
2191 /**
2192 * i915_request_wait - wait until execution of request has finished
2193 * @rq: the request to wait upon
2194 * @flags: how to wait
2195 * @timeout: how long to wait in jiffies
2196 *
2197 * i915_request_wait() waits for the request to be completed, for a
2198 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2199 * unbounded wait).
2200 *
2201 * Returns the remaining time (in jiffies) if the request completed, which may
2202 * be zero or -ETIME if the request is unfinished after the timeout expires.
2203 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2204 * pending before the request completes.
2205 *
2206 * NOTE: This function behaves differently from dma-fence wait semantics for
2207 * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2208 */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)2209 long i915_request_wait(struct i915_request *rq,
2210 unsigned int flags,
2211 long timeout)
2212 {
2213 long ret = i915_request_wait_timeout(rq, flags, timeout);
2214
2215 if (!ret)
2216 return -ETIME;
2217
2218 if (ret > 0 && !timeout)
2219 return 0;
2220
2221 return ret;
2222 }
2223
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)2224 static int print_sched_attr(const struct i915_sched_attr *attr,
2225 char *buf, int x, int len)
2226 {
2227 if (attr->priority == I915_PRIORITY_INVALID)
2228 return x;
2229
2230 x += snprintf(buf + x, len - x,
2231 " prio=%d", attr->priority);
2232
2233 return x;
2234 }
2235
queue_status(const struct i915_request * rq)2236 static char queue_status(const struct i915_request *rq)
2237 {
2238 if (i915_request_is_active(rq))
2239 return 'E';
2240
2241 if (i915_request_is_ready(rq))
2242 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2243
2244 return 'U';
2245 }
2246
run_status(const struct i915_request * rq)2247 static const char *run_status(const struct i915_request *rq)
2248 {
2249 if (__i915_request_is_complete(rq))
2250 return "!";
2251
2252 if (__i915_request_has_started(rq))
2253 return "*";
2254
2255 if (!i915_sw_fence_signaled(&rq->semaphore))
2256 return "&";
2257
2258 return "";
2259 }
2260
fence_status(const struct i915_request * rq)2261 static const char *fence_status(const struct i915_request *rq)
2262 {
2263 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2264 return "+";
2265
2266 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2267 return "-";
2268
2269 return "";
2270 }
2271
i915_request_show(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)2272 void i915_request_show(struct drm_printer *m,
2273 const struct i915_request *rq,
2274 const char *prefix,
2275 int indent)
2276 {
2277 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2278 char buf[80] = "";
2279 int x = 0;
2280
2281 /*
2282 * The prefix is used to show the queue status, for which we use
2283 * the following flags:
2284 *
2285 * U [Unready]
2286 * - initial status upon being submitted by the user
2287 *
2288 * - the request is not ready for execution as it is waiting
2289 * for external fences
2290 *
2291 * R [Ready]
2292 * - all fences the request was waiting on have been signaled,
2293 * and the request is now ready for execution and will be
2294 * in a backend queue
2295 *
2296 * - a ready request may still need to wait on semaphores
2297 * [internal fences]
2298 *
2299 * V [Ready/virtual]
2300 * - same as ready, but queued over multiple backends
2301 *
2302 * E [Executing]
2303 * - the request has been transferred from the backend queue and
2304 * submitted for execution on HW
2305 *
2306 * - a completed request may still be regarded as executing, its
2307 * status may not be updated until it is retired and removed
2308 * from the lists
2309 */
2310
2311 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2312
2313 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2314 prefix, indent, " ",
2315 queue_status(rq),
2316 rq->fence.context, rq->fence.seqno,
2317 run_status(rq),
2318 fence_status(rq),
2319 buf,
2320 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2321 name);
2322 }
2323
engine_match_ring(struct intel_engine_cs * engine,struct i915_request * rq)2324 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2325 {
2326 u32 ring = ENGINE_READ(engine, RING_START);
2327
2328 return ring == i915_ggtt_offset(rq->ring->vma);
2329 }
2330
match_ring(struct i915_request * rq)2331 static bool match_ring(struct i915_request *rq)
2332 {
2333 struct intel_engine_cs *engine;
2334 bool found;
2335 int i;
2336
2337 if (!intel_engine_is_virtual(rq->engine))
2338 return engine_match_ring(rq->engine, rq);
2339
2340 found = false;
2341 i = 0;
2342 while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2343 found = engine_match_ring(engine, rq);
2344 if (found)
2345 break;
2346 }
2347
2348 return found;
2349 }
2350
i915_test_request_state(struct i915_request * rq)2351 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2352 {
2353 if (i915_request_completed(rq))
2354 return I915_REQUEST_COMPLETE;
2355
2356 if (!i915_request_started(rq))
2357 return I915_REQUEST_PENDING;
2358
2359 if (match_ring(rq))
2360 return I915_REQUEST_ACTIVE;
2361
2362 return I915_REQUEST_QUEUED;
2363 }
2364
2365 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2366 #include "selftests/mock_request.c"
2367 #include "selftests/i915_request.c"
2368 #endif
2369
i915_request_module_exit(void)2370 void i915_request_module_exit(void)
2371 {
2372 #ifdef __linux__
2373 kmem_cache_destroy(slab_execute_cbs);
2374 kmem_cache_destroy(slab_requests);
2375 #else
2376 pool_destroy(&slab_execute_cbs);
2377 pool_destroy(&slab_requests);
2378 #endif
2379 }
2380
i915_request_module_init(void)2381 int __init i915_request_module_init(void)
2382 {
2383 #ifdef __linux__
2384 slab_requests =
2385 kmem_cache_create("i915_request",
2386 sizeof(struct i915_request),
2387 __alignof__(struct i915_request),
2388 SLAB_HWCACHE_ALIGN |
2389 SLAB_RECLAIM_ACCOUNT |
2390 SLAB_TYPESAFE_BY_RCU,
2391 __i915_request_ctor);
2392 if (!slab_requests)
2393 return -ENOMEM;
2394
2395 slab_execute_cbs = KMEM_CACHE(execute_cb,
2396 SLAB_HWCACHE_ALIGN |
2397 SLAB_RECLAIM_ACCOUNT |
2398 SLAB_TYPESAFE_BY_RCU);
2399 if (!slab_execute_cbs)
2400 goto err_requests;
2401 #else
2402 pool_init(&slab_requests, sizeof(struct i915_request),
2403 CACHELINESIZE, IPL_TTY, 0, "i915_request", NULL);
2404 pool_init(&slab_execute_cbs, sizeof(struct execute_cb),
2405 CACHELINESIZE, IPL_TTY, 0, "i915_exec", NULL);
2406 #endif
2407
2408 return 0;
2409
2410 #ifdef __linux__
2411 err_requests:
2412 kmem_cache_destroy(slab_requests);
2413 return -ENOMEM;
2414 #endif
2415 }
2416