1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2018 Intel Corporation
5 */
6
7 #include <linux/mutex.h>
8
9 #include "i915_drv.h"
10 #include "i915_request.h"
11 #include "i915_scheduler.h"
12
13 static struct pool slab_dependencies;
14 static struct pool slab_priorities;
15
16 static DEFINE_SPINLOCK(schedule_lock);
17
18 static const struct i915_request *
node_to_request(const struct i915_sched_node * node)19 node_to_request(const struct i915_sched_node *node)
20 {
21 return container_of(node, const struct i915_request, sched);
22 }
23
node_started(const struct i915_sched_node * node)24 static inline bool node_started(const struct i915_sched_node *node)
25 {
26 return i915_request_started(node_to_request(node));
27 }
28
node_signaled(const struct i915_sched_node * node)29 static inline bool node_signaled(const struct i915_sched_node *node)
30 {
31 return i915_request_completed(node_to_request(node));
32 }
33
to_priolist(struct rb_node * rb)34 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
35 {
36 return rb_entry(rb, struct i915_priolist, node);
37 }
38
assert_priolists(struct i915_sched_engine * const sched_engine)39 static void assert_priolists(struct i915_sched_engine * const sched_engine)
40 {
41 struct rb_node *rb;
42 long last_prio;
43
44 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
45 return;
46
47 GEM_BUG_ON(rb_first_cached(&sched_engine->queue) !=
48 rb_first(&sched_engine->queue.rb_root));
49
50 last_prio = INT_MAX;
51 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
52 const struct i915_priolist *p = to_priolist(rb);
53
54 GEM_BUG_ON(p->priority > last_prio);
55 last_prio = p->priority;
56 }
57 }
58
59 struct list_head *
i915_sched_lookup_priolist(struct i915_sched_engine * sched_engine,int prio)60 i915_sched_lookup_priolist(struct i915_sched_engine *sched_engine, int prio)
61 {
62 struct i915_priolist *p;
63 struct rb_node **parent, *rb;
64 bool first = true;
65
66 lockdep_assert_held(&sched_engine->lock);
67 assert_priolists(sched_engine);
68
69 if (unlikely(sched_engine->no_priolist))
70 prio = I915_PRIORITY_NORMAL;
71
72 find_priolist:
73 /* most positive priority is scheduled first, equal priorities fifo */
74 rb = NULL;
75 parent = &sched_engine->queue.rb_root.rb_node;
76 while (*parent) {
77 rb = *parent;
78 p = to_priolist(rb);
79 if (prio > p->priority) {
80 parent = &rb->rb_left;
81 } else if (prio < p->priority) {
82 parent = &rb->rb_right;
83 first = false;
84 } else {
85 return &p->requests;
86 }
87 }
88
89 if (prio == I915_PRIORITY_NORMAL) {
90 p = &sched_engine->default_priolist;
91 } else {
92 #ifdef __linux__
93 p = kmem_cache_alloc(slab_priorities, GFP_ATOMIC);
94 #else
95 p = pool_get(&slab_priorities, PR_NOWAIT);
96 #endif
97 /* Convert an allocation failure to a priority bump */
98 if (unlikely(!p)) {
99 prio = I915_PRIORITY_NORMAL; /* recurses just once */
100
101 /* To maintain ordering with all rendering, after an
102 * allocation failure we have to disable all scheduling.
103 * Requests will then be executed in fifo, and schedule
104 * will ensure that dependencies are emitted in fifo.
105 * There will be still some reordering with existing
106 * requests, so if userspace lied about their
107 * dependencies that reordering may be visible.
108 */
109 sched_engine->no_priolist = true;
110 goto find_priolist;
111 }
112 }
113
114 p->priority = prio;
115 INIT_LIST_HEAD(&p->requests);
116
117 rb_link_node(&p->node, rb, parent);
118 rb_insert_color_cached(&p->node, &sched_engine->queue, first);
119
120 return &p->requests;
121 }
122
__i915_priolist_free(struct i915_priolist * p)123 void __i915_priolist_free(struct i915_priolist *p)
124 {
125 #ifdef __linux__
126 kmem_cache_free(slab_priorities, p);
127 #else
128 pool_put(&slab_priorities, p);
129 #endif
130 }
131
132 struct sched_cache {
133 struct list_head *priolist;
134 };
135
136 static struct i915_sched_engine *
lock_sched_engine(struct i915_sched_node * node,struct i915_sched_engine * locked,struct sched_cache * cache)137 lock_sched_engine(struct i915_sched_node *node,
138 struct i915_sched_engine *locked,
139 struct sched_cache *cache)
140 {
141 const struct i915_request *rq = node_to_request(node);
142 struct i915_sched_engine *sched_engine;
143
144 GEM_BUG_ON(!locked);
145
146 /*
147 * Virtual engines complicate acquiring the engine timeline lock,
148 * as their rq->engine pointer is not stable until under that
149 * engine lock. The simple ploy we use is to take the lock then
150 * check that the rq still belongs to the newly locked engine.
151 */
152 while (locked != (sched_engine = READ_ONCE(rq->engine)->sched_engine)) {
153 spin_unlock(&locked->lock);
154 memset(cache, 0, sizeof(*cache));
155 spin_lock(&sched_engine->lock);
156 locked = sched_engine;
157 }
158
159 GEM_BUG_ON(locked != sched_engine);
160 return locked;
161 }
162
__i915_schedule(struct i915_sched_node * node,const struct i915_sched_attr * attr)163 static void __i915_schedule(struct i915_sched_node *node,
164 const struct i915_sched_attr *attr)
165 {
166 const int prio = max(attr->priority, node->attr.priority);
167 struct i915_sched_engine *sched_engine;
168 struct i915_dependency *dep, *p;
169 struct i915_dependency stack;
170 struct sched_cache cache;
171 DRM_LIST_HEAD(dfs);
172
173 /* Needed in order to use the temporary link inside i915_dependency */
174 lockdep_assert_held(&schedule_lock);
175 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
176
177 if (node_signaled(node))
178 return;
179
180 stack.signaler = node;
181 list_add(&stack.dfs_link, &dfs);
182
183 /*
184 * Recursively bump all dependent priorities to match the new request.
185 *
186 * A naive approach would be to use recursion:
187 * static void update_priorities(struct i915_sched_node *node, prio) {
188 * list_for_each_entry(dep, &node->signalers_list, signal_link)
189 * update_priorities(dep->signal, prio)
190 * queue_request(node);
191 * }
192 * but that may have unlimited recursion depth and so runs a very
193 * real risk of overunning the kernel stack. Instead, we build
194 * a flat list of all dependencies starting with the current request.
195 * As we walk the list of dependencies, we add all of its dependencies
196 * to the end of the list (this may include an already visited
197 * request) and continue to walk onwards onto the new dependencies. The
198 * end result is a topological list of requests in reverse order, the
199 * last element in the list is the request we must execute first.
200 */
201 list_for_each_entry(dep, &dfs, dfs_link) {
202 struct i915_sched_node *node = dep->signaler;
203
204 /* If we are already flying, we know we have no signalers */
205 if (node_started(node))
206 continue;
207
208 /*
209 * Within an engine, there can be no cycle, but we may
210 * refer to the same dependency chain multiple times
211 * (redundant dependencies are not eliminated) and across
212 * engines.
213 */
214 list_for_each_entry(p, &node->signalers_list, signal_link) {
215 GEM_BUG_ON(p == dep); /* no cycles! */
216
217 if (node_signaled(p->signaler))
218 continue;
219
220 if (prio > READ_ONCE(p->signaler->attr.priority))
221 list_move_tail(&p->dfs_link, &dfs);
222 }
223 }
224
225 /*
226 * If we didn't need to bump any existing priorities, and we haven't
227 * yet submitted this request (i.e. there is no potential race with
228 * execlists_submit_request()), we can set our own priority and skip
229 * acquiring the engine locks.
230 */
231 if (node->attr.priority == I915_PRIORITY_INVALID) {
232 GEM_BUG_ON(!list_empty(&node->link));
233 node->attr = *attr;
234
235 if (stack.dfs_link.next == stack.dfs_link.prev)
236 return;
237
238 __list_del_entry(&stack.dfs_link);
239 }
240
241 memset(&cache, 0, sizeof(cache));
242 sched_engine = node_to_request(node)->engine->sched_engine;
243 spin_lock(&sched_engine->lock);
244
245 /* Fifo and depth-first replacement ensure our deps execute before us */
246 sched_engine = lock_sched_engine(node, sched_engine, &cache);
247 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
248 struct i915_request *from = container_of(dep->signaler,
249 struct i915_request,
250 sched);
251 INIT_LIST_HEAD(&dep->dfs_link);
252
253 node = dep->signaler;
254 sched_engine = lock_sched_engine(node, sched_engine, &cache);
255 lockdep_assert_held(&sched_engine->lock);
256
257 /* Recheck after acquiring the engine->timeline.lock */
258 if (prio <= node->attr.priority || node_signaled(node))
259 continue;
260
261 GEM_BUG_ON(node_to_request(node)->engine->sched_engine !=
262 sched_engine);
263
264 /* Must be called before changing the nodes priority */
265 if (sched_engine->bump_inflight_request_prio)
266 sched_engine->bump_inflight_request_prio(from, prio);
267
268 WRITE_ONCE(node->attr.priority, prio);
269
270 /*
271 * Once the request is ready, it will be placed into the
272 * priority lists and then onto the HW runlist. Before the
273 * request is ready, it does not contribute to our preemption
274 * decisions and we can safely ignore it, as it will, and
275 * any preemption required, be dealt with upon submission.
276 * See engine->submit_request()
277 */
278 if (list_empty(&node->link))
279 continue;
280
281 if (i915_request_in_priority_queue(node_to_request(node))) {
282 if (!cache.priolist)
283 cache.priolist =
284 i915_sched_lookup_priolist(sched_engine,
285 prio);
286 list_move_tail(&node->link, cache.priolist);
287 }
288
289 /* Defer (tasklet) submission until after all of our updates. */
290 if (sched_engine->kick_backend)
291 sched_engine->kick_backend(node_to_request(node), prio);
292 }
293
294 spin_unlock(&sched_engine->lock);
295 }
296
i915_schedule(struct i915_request * rq,const struct i915_sched_attr * attr)297 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
298 {
299 spin_lock_irq(&schedule_lock);
300 __i915_schedule(&rq->sched, attr);
301 spin_unlock_irq(&schedule_lock);
302 }
303
i915_sched_node_init(struct i915_sched_node * node)304 void i915_sched_node_init(struct i915_sched_node *node)
305 {
306 INIT_LIST_HEAD(&node->signalers_list);
307 INIT_LIST_HEAD(&node->waiters_list);
308 INIT_LIST_HEAD(&node->link);
309
310 i915_sched_node_reinit(node);
311 }
312
i915_sched_node_reinit(struct i915_sched_node * node)313 void i915_sched_node_reinit(struct i915_sched_node *node)
314 {
315 node->attr.priority = I915_PRIORITY_INVALID;
316 node->semaphores = 0;
317 node->flags = 0;
318
319 GEM_BUG_ON(!list_empty(&node->signalers_list));
320 GEM_BUG_ON(!list_empty(&node->waiters_list));
321 GEM_BUG_ON(!list_empty(&node->link));
322 }
323
324 static struct i915_dependency *
i915_dependency_alloc(void)325 i915_dependency_alloc(void)
326 {
327 #ifdef __linux__
328 return kmem_cache_alloc(slab_dependencies, GFP_KERNEL);
329 #else
330 return pool_get(&slab_dependencies, PR_WAITOK);
331 #endif
332 }
333
334 static void
i915_dependency_free(struct i915_dependency * dep)335 i915_dependency_free(struct i915_dependency *dep)
336 {
337 #ifdef __linux__
338 kmem_cache_free(slab_dependencies, dep);
339 #else
340 pool_put(&slab_dependencies, dep);
341 #endif
342 }
343
__i915_sched_node_add_dependency(struct i915_sched_node * node,struct i915_sched_node * signal,struct i915_dependency * dep,unsigned long flags)344 bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
345 struct i915_sched_node *signal,
346 struct i915_dependency *dep,
347 unsigned long flags)
348 {
349 bool ret = false;
350
351 spin_lock_irq(&schedule_lock);
352
353 if (!node_signaled(signal)) {
354 INIT_LIST_HEAD(&dep->dfs_link);
355 dep->signaler = signal;
356 dep->waiter = node;
357 dep->flags = flags;
358
359 /* All set, now publish. Beware the lockless walkers. */
360 list_add_rcu(&dep->signal_link, &node->signalers_list);
361 list_add_rcu(&dep->wait_link, &signal->waiters_list);
362
363 /* Propagate the chains */
364 node->flags |= signal->flags;
365 ret = true;
366 }
367
368 spin_unlock_irq(&schedule_lock);
369
370 return ret;
371 }
372
i915_sched_node_add_dependency(struct i915_sched_node * node,struct i915_sched_node * signal,unsigned long flags)373 int i915_sched_node_add_dependency(struct i915_sched_node *node,
374 struct i915_sched_node *signal,
375 unsigned long flags)
376 {
377 struct i915_dependency *dep;
378
379 dep = i915_dependency_alloc();
380 if (!dep)
381 return -ENOMEM;
382
383 if (!__i915_sched_node_add_dependency(node, signal, dep,
384 flags | I915_DEPENDENCY_ALLOC))
385 i915_dependency_free(dep);
386
387 return 0;
388 }
389
i915_sched_node_fini(struct i915_sched_node * node)390 void i915_sched_node_fini(struct i915_sched_node *node)
391 {
392 struct i915_dependency *dep, *tmp;
393
394 spin_lock_irq(&schedule_lock);
395
396 /*
397 * Everyone we depended upon (the fences we wait to be signaled)
398 * should retire before us and remove themselves from our list.
399 * However, retirement is run independently on each timeline and
400 * so we may be called out-of-order.
401 */
402 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
403 GEM_BUG_ON(!list_empty(&dep->dfs_link));
404
405 list_del_rcu(&dep->wait_link);
406 if (dep->flags & I915_DEPENDENCY_ALLOC)
407 i915_dependency_free(dep);
408 }
409 INIT_LIST_HEAD(&node->signalers_list);
410
411 /* Remove ourselves from everyone who depends upon us */
412 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
413 GEM_BUG_ON(dep->signaler != node);
414 GEM_BUG_ON(!list_empty(&dep->dfs_link));
415
416 list_del_rcu(&dep->signal_link);
417 if (dep->flags & I915_DEPENDENCY_ALLOC)
418 i915_dependency_free(dep);
419 }
420 INIT_LIST_HEAD(&node->waiters_list);
421
422 spin_unlock_irq(&schedule_lock);
423 }
424
i915_request_show_with_schedule(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)425 void i915_request_show_with_schedule(struct drm_printer *m,
426 const struct i915_request *rq,
427 const char *prefix,
428 int indent)
429 {
430 struct i915_dependency *dep;
431
432 i915_request_show(m, rq, prefix, indent);
433 if (i915_request_completed(rq))
434 return;
435
436 rcu_read_lock();
437 for_each_signaler(dep, rq) {
438 const struct i915_request *signaler =
439 node_to_request(dep->signaler);
440
441 /* Dependencies along the same timeline are expected. */
442 if (signaler->timeline == rq->timeline)
443 continue;
444
445 if (__i915_request_is_complete(signaler))
446 continue;
447
448 i915_request_show(m, signaler, prefix, indent + 2);
449 }
450 rcu_read_unlock();
451 }
452
default_destroy(struct kref * kref)453 static void default_destroy(struct kref *kref)
454 {
455 struct i915_sched_engine *sched_engine =
456 container_of(kref, typeof(*sched_engine), ref);
457
458 tasklet_kill(&sched_engine->tasklet); /* flush the callback */
459 kfree(sched_engine);
460 }
461
default_disabled(struct i915_sched_engine * sched_engine)462 static bool default_disabled(struct i915_sched_engine *sched_engine)
463 {
464 return false;
465 }
466
467 struct i915_sched_engine *
i915_sched_engine_create(unsigned int subclass)468 i915_sched_engine_create(unsigned int subclass)
469 {
470 struct i915_sched_engine *sched_engine;
471
472 sched_engine = kzalloc(sizeof(*sched_engine), GFP_KERNEL);
473 if (!sched_engine)
474 return NULL;
475
476 kref_init(&sched_engine->ref);
477
478 sched_engine->queue = RB_ROOT_CACHED;
479 sched_engine->queue_priority_hint = INT_MIN;
480 sched_engine->destroy = default_destroy;
481 sched_engine->disabled = default_disabled;
482
483 INIT_LIST_HEAD(&sched_engine->requests);
484 INIT_LIST_HEAD(&sched_engine->hold);
485
486 mtx_init(&sched_engine->lock, IPL_TTY);
487 lockdep_set_subclass(&sched_engine->lock, subclass);
488
489 /*
490 * Due to an interesting quirk in lockdep's internal debug tracking,
491 * after setting a subclass we must ensure the lock is used. Otherwise,
492 * nr_unused_locks is incremented once too often.
493 */
494 #ifdef CONFIG_DEBUG_LOCK_ALLOC
495 local_irq_disable();
496 lock_map_acquire(&sched_engine->lock.dep_map);
497 lock_map_release(&sched_engine->lock.dep_map);
498 local_irq_enable();
499 #endif
500
501 return sched_engine;
502 }
503
i915_scheduler_module_exit(void)504 void i915_scheduler_module_exit(void)
505 {
506 #ifdef __linux__
507 kmem_cache_destroy(slab_dependencies);
508 kmem_cache_destroy(slab_priorities);
509 #else
510 pool_destroy(&slab_dependencies);
511 pool_destroy(&slab_priorities);
512 #endif
513 }
514
i915_scheduler_module_init(void)515 int __init i915_scheduler_module_init(void)
516 {
517 #ifdef __linux__
518 slab_dependencies = KMEM_CACHE(i915_dependency,
519 SLAB_HWCACHE_ALIGN |
520 SLAB_TYPESAFE_BY_RCU);
521 if (!slab_dependencies)
522 return -ENOMEM;
523
524 slab_priorities = KMEM_CACHE(i915_priolist, 0);
525 if (!slab_priorities)
526 goto err_priorities;
527
528 return 0;
529
530 err_priorities:
531 kmem_cache_destroy(slab_priorities);
532 return -ENOMEM;
533 #else
534 pool_init(&slab_dependencies, sizeof(struct i915_dependency),
535 CACHELINESIZE, IPL_TTY, 0, "gsdep", NULL);
536 pool_init(&slab_priorities, sizeof(struct i915_priolist),
537 CACHELINESIZE, IPL_TTY, 0, "gspri", NULL);
538
539 return 0;
540 #endif
541 }
542