xref: /openbsd/sys/dev/pci/drm/i915/i915_scheduler.c (revision ebc65071)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2018 Intel Corporation
5  */
6 
7 #include <linux/mutex.h>
8 
9 #include "i915_drv.h"
10 #include "i915_request.h"
11 #include "i915_scheduler.h"
12 
13 static struct pool slab_dependencies;
14 static struct pool slab_priorities;
15 
16 static DEFINE_SPINLOCK(schedule_lock);
17 
18 static const struct i915_request *
node_to_request(const struct i915_sched_node * node)19 node_to_request(const struct i915_sched_node *node)
20 {
21 	return container_of(node, const struct i915_request, sched);
22 }
23 
node_started(const struct i915_sched_node * node)24 static inline bool node_started(const struct i915_sched_node *node)
25 {
26 	return i915_request_started(node_to_request(node));
27 }
28 
node_signaled(const struct i915_sched_node * node)29 static inline bool node_signaled(const struct i915_sched_node *node)
30 {
31 	return i915_request_completed(node_to_request(node));
32 }
33 
to_priolist(struct rb_node * rb)34 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
35 {
36 	return rb_entry(rb, struct i915_priolist, node);
37 }
38 
assert_priolists(struct i915_sched_engine * const sched_engine)39 static void assert_priolists(struct i915_sched_engine * const sched_engine)
40 {
41 	struct rb_node *rb;
42 	long last_prio;
43 
44 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
45 		return;
46 
47 	GEM_BUG_ON(rb_first_cached(&sched_engine->queue) !=
48 		   rb_first(&sched_engine->queue.rb_root));
49 
50 	last_prio = INT_MAX;
51 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
52 		const struct i915_priolist *p = to_priolist(rb);
53 
54 		GEM_BUG_ON(p->priority > last_prio);
55 		last_prio = p->priority;
56 	}
57 }
58 
59 struct list_head *
i915_sched_lookup_priolist(struct i915_sched_engine * sched_engine,int prio)60 i915_sched_lookup_priolist(struct i915_sched_engine *sched_engine, int prio)
61 {
62 	struct i915_priolist *p;
63 	struct rb_node **parent, *rb;
64 	bool first = true;
65 
66 	lockdep_assert_held(&sched_engine->lock);
67 	assert_priolists(sched_engine);
68 
69 	if (unlikely(sched_engine->no_priolist))
70 		prio = I915_PRIORITY_NORMAL;
71 
72 find_priolist:
73 	/* most positive priority is scheduled first, equal priorities fifo */
74 	rb = NULL;
75 	parent = &sched_engine->queue.rb_root.rb_node;
76 	while (*parent) {
77 		rb = *parent;
78 		p = to_priolist(rb);
79 		if (prio > p->priority) {
80 			parent = &rb->rb_left;
81 		} else if (prio < p->priority) {
82 			parent = &rb->rb_right;
83 			first = false;
84 		} else {
85 			return &p->requests;
86 		}
87 	}
88 
89 	if (prio == I915_PRIORITY_NORMAL) {
90 		p = &sched_engine->default_priolist;
91 	} else {
92 #ifdef __linux__
93 		p = kmem_cache_alloc(slab_priorities, GFP_ATOMIC);
94 #else
95 		p = pool_get(&slab_priorities, PR_NOWAIT);
96 #endif
97 		/* Convert an allocation failure to a priority bump */
98 		if (unlikely(!p)) {
99 			prio = I915_PRIORITY_NORMAL; /* recurses just once */
100 
101 			/* To maintain ordering with all rendering, after an
102 			 * allocation failure we have to disable all scheduling.
103 			 * Requests will then be executed in fifo, and schedule
104 			 * will ensure that dependencies are emitted in fifo.
105 			 * There will be still some reordering with existing
106 			 * requests, so if userspace lied about their
107 			 * dependencies that reordering may be visible.
108 			 */
109 			sched_engine->no_priolist = true;
110 			goto find_priolist;
111 		}
112 	}
113 
114 	p->priority = prio;
115 	INIT_LIST_HEAD(&p->requests);
116 
117 	rb_link_node(&p->node, rb, parent);
118 	rb_insert_color_cached(&p->node, &sched_engine->queue, first);
119 
120 	return &p->requests;
121 }
122 
__i915_priolist_free(struct i915_priolist * p)123 void __i915_priolist_free(struct i915_priolist *p)
124 {
125 #ifdef __linux__
126 	kmem_cache_free(slab_priorities, p);
127 #else
128 	pool_put(&slab_priorities, p);
129 #endif
130 }
131 
132 struct sched_cache {
133 	struct list_head *priolist;
134 };
135 
136 static struct i915_sched_engine *
lock_sched_engine(struct i915_sched_node * node,struct i915_sched_engine * locked,struct sched_cache * cache)137 lock_sched_engine(struct i915_sched_node *node,
138 		  struct i915_sched_engine *locked,
139 		  struct sched_cache *cache)
140 {
141 	const struct i915_request *rq = node_to_request(node);
142 	struct i915_sched_engine *sched_engine;
143 
144 	GEM_BUG_ON(!locked);
145 
146 	/*
147 	 * Virtual engines complicate acquiring the engine timeline lock,
148 	 * as their rq->engine pointer is not stable until under that
149 	 * engine lock. The simple ploy we use is to take the lock then
150 	 * check that the rq still belongs to the newly locked engine.
151 	 */
152 	while (locked != (sched_engine = READ_ONCE(rq->engine)->sched_engine)) {
153 		spin_unlock(&locked->lock);
154 		memset(cache, 0, sizeof(*cache));
155 		spin_lock(&sched_engine->lock);
156 		locked = sched_engine;
157 	}
158 
159 	GEM_BUG_ON(locked != sched_engine);
160 	return locked;
161 }
162 
__i915_schedule(struct i915_sched_node * node,const struct i915_sched_attr * attr)163 static void __i915_schedule(struct i915_sched_node *node,
164 			    const struct i915_sched_attr *attr)
165 {
166 	const int prio = max(attr->priority, node->attr.priority);
167 	struct i915_sched_engine *sched_engine;
168 	struct i915_dependency *dep, *p;
169 	struct i915_dependency stack;
170 	struct sched_cache cache;
171 	DRM_LIST_HEAD(dfs);
172 
173 	/* Needed in order to use the temporary link inside i915_dependency */
174 	lockdep_assert_held(&schedule_lock);
175 	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
176 
177 	if (node_signaled(node))
178 		return;
179 
180 	stack.signaler = node;
181 	list_add(&stack.dfs_link, &dfs);
182 
183 	/*
184 	 * Recursively bump all dependent priorities to match the new request.
185 	 *
186 	 * A naive approach would be to use recursion:
187 	 * static void update_priorities(struct i915_sched_node *node, prio) {
188 	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
189 	 *		update_priorities(dep->signal, prio)
190 	 *	queue_request(node);
191 	 * }
192 	 * but that may have unlimited recursion depth and so runs a very
193 	 * real risk of overunning the kernel stack. Instead, we build
194 	 * a flat list of all dependencies starting with the current request.
195 	 * As we walk the list of dependencies, we add all of its dependencies
196 	 * to the end of the list (this may include an already visited
197 	 * request) and continue to walk onwards onto the new dependencies. The
198 	 * end result is a topological list of requests in reverse order, the
199 	 * last element in the list is the request we must execute first.
200 	 */
201 	list_for_each_entry(dep, &dfs, dfs_link) {
202 		struct i915_sched_node *node = dep->signaler;
203 
204 		/* If we are already flying, we know we have no signalers */
205 		if (node_started(node))
206 			continue;
207 
208 		/*
209 		 * Within an engine, there can be no cycle, but we may
210 		 * refer to the same dependency chain multiple times
211 		 * (redundant dependencies are not eliminated) and across
212 		 * engines.
213 		 */
214 		list_for_each_entry(p, &node->signalers_list, signal_link) {
215 			GEM_BUG_ON(p == dep); /* no cycles! */
216 
217 			if (node_signaled(p->signaler))
218 				continue;
219 
220 			if (prio > READ_ONCE(p->signaler->attr.priority))
221 				list_move_tail(&p->dfs_link, &dfs);
222 		}
223 	}
224 
225 	/*
226 	 * If we didn't need to bump any existing priorities, and we haven't
227 	 * yet submitted this request (i.e. there is no potential race with
228 	 * execlists_submit_request()), we can set our own priority and skip
229 	 * acquiring the engine locks.
230 	 */
231 	if (node->attr.priority == I915_PRIORITY_INVALID) {
232 		GEM_BUG_ON(!list_empty(&node->link));
233 		node->attr = *attr;
234 
235 		if (stack.dfs_link.next == stack.dfs_link.prev)
236 			return;
237 
238 		__list_del_entry(&stack.dfs_link);
239 	}
240 
241 	memset(&cache, 0, sizeof(cache));
242 	sched_engine = node_to_request(node)->engine->sched_engine;
243 	spin_lock(&sched_engine->lock);
244 
245 	/* Fifo and depth-first replacement ensure our deps execute before us */
246 	sched_engine = lock_sched_engine(node, sched_engine, &cache);
247 	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
248 		struct i915_request *from = container_of(dep->signaler,
249 							 struct i915_request,
250 							 sched);
251 		INIT_LIST_HEAD(&dep->dfs_link);
252 
253 		node = dep->signaler;
254 		sched_engine = lock_sched_engine(node, sched_engine, &cache);
255 		lockdep_assert_held(&sched_engine->lock);
256 
257 		/* Recheck after acquiring the engine->timeline.lock */
258 		if (prio <= node->attr.priority || node_signaled(node))
259 			continue;
260 
261 		GEM_BUG_ON(node_to_request(node)->engine->sched_engine !=
262 			   sched_engine);
263 
264 		/* Must be called before changing the nodes priority */
265 		if (sched_engine->bump_inflight_request_prio)
266 			sched_engine->bump_inflight_request_prio(from, prio);
267 
268 		WRITE_ONCE(node->attr.priority, prio);
269 
270 		/*
271 		 * Once the request is ready, it will be placed into the
272 		 * priority lists and then onto the HW runlist. Before the
273 		 * request is ready, it does not contribute to our preemption
274 		 * decisions and we can safely ignore it, as it will, and
275 		 * any preemption required, be dealt with upon submission.
276 		 * See engine->submit_request()
277 		 */
278 		if (list_empty(&node->link))
279 			continue;
280 
281 		if (i915_request_in_priority_queue(node_to_request(node))) {
282 			if (!cache.priolist)
283 				cache.priolist =
284 					i915_sched_lookup_priolist(sched_engine,
285 								   prio);
286 			list_move_tail(&node->link, cache.priolist);
287 		}
288 
289 		/* Defer (tasklet) submission until after all of our updates. */
290 		if (sched_engine->kick_backend)
291 			sched_engine->kick_backend(node_to_request(node), prio);
292 	}
293 
294 	spin_unlock(&sched_engine->lock);
295 }
296 
i915_schedule(struct i915_request * rq,const struct i915_sched_attr * attr)297 void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
298 {
299 	spin_lock_irq(&schedule_lock);
300 	__i915_schedule(&rq->sched, attr);
301 	spin_unlock_irq(&schedule_lock);
302 }
303 
i915_sched_node_init(struct i915_sched_node * node)304 void i915_sched_node_init(struct i915_sched_node *node)
305 {
306 	INIT_LIST_HEAD(&node->signalers_list);
307 	INIT_LIST_HEAD(&node->waiters_list);
308 	INIT_LIST_HEAD(&node->link);
309 
310 	i915_sched_node_reinit(node);
311 }
312 
i915_sched_node_reinit(struct i915_sched_node * node)313 void i915_sched_node_reinit(struct i915_sched_node *node)
314 {
315 	node->attr.priority = I915_PRIORITY_INVALID;
316 	node->semaphores = 0;
317 	node->flags = 0;
318 
319 	GEM_BUG_ON(!list_empty(&node->signalers_list));
320 	GEM_BUG_ON(!list_empty(&node->waiters_list));
321 	GEM_BUG_ON(!list_empty(&node->link));
322 }
323 
324 static struct i915_dependency *
i915_dependency_alloc(void)325 i915_dependency_alloc(void)
326 {
327 #ifdef __linux__
328 	return kmem_cache_alloc(slab_dependencies, GFP_KERNEL);
329 #else
330 	return pool_get(&slab_dependencies, PR_WAITOK);
331 #endif
332 }
333 
334 static void
i915_dependency_free(struct i915_dependency * dep)335 i915_dependency_free(struct i915_dependency *dep)
336 {
337 #ifdef __linux__
338 	kmem_cache_free(slab_dependencies, dep);
339 #else
340 	pool_put(&slab_dependencies, dep);
341 #endif
342 }
343 
__i915_sched_node_add_dependency(struct i915_sched_node * node,struct i915_sched_node * signal,struct i915_dependency * dep,unsigned long flags)344 bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
345 				      struct i915_sched_node *signal,
346 				      struct i915_dependency *dep,
347 				      unsigned long flags)
348 {
349 	bool ret = false;
350 
351 	spin_lock_irq(&schedule_lock);
352 
353 	if (!node_signaled(signal)) {
354 		INIT_LIST_HEAD(&dep->dfs_link);
355 		dep->signaler = signal;
356 		dep->waiter = node;
357 		dep->flags = flags;
358 
359 		/* All set, now publish. Beware the lockless walkers. */
360 		list_add_rcu(&dep->signal_link, &node->signalers_list);
361 		list_add_rcu(&dep->wait_link, &signal->waiters_list);
362 
363 		/* Propagate the chains */
364 		node->flags |= signal->flags;
365 		ret = true;
366 	}
367 
368 	spin_unlock_irq(&schedule_lock);
369 
370 	return ret;
371 }
372 
i915_sched_node_add_dependency(struct i915_sched_node * node,struct i915_sched_node * signal,unsigned long flags)373 int i915_sched_node_add_dependency(struct i915_sched_node *node,
374 				   struct i915_sched_node *signal,
375 				   unsigned long flags)
376 {
377 	struct i915_dependency *dep;
378 
379 	dep = i915_dependency_alloc();
380 	if (!dep)
381 		return -ENOMEM;
382 
383 	if (!__i915_sched_node_add_dependency(node, signal, dep,
384 					      flags | I915_DEPENDENCY_ALLOC))
385 		i915_dependency_free(dep);
386 
387 	return 0;
388 }
389 
i915_sched_node_fini(struct i915_sched_node * node)390 void i915_sched_node_fini(struct i915_sched_node *node)
391 {
392 	struct i915_dependency *dep, *tmp;
393 
394 	spin_lock_irq(&schedule_lock);
395 
396 	/*
397 	 * Everyone we depended upon (the fences we wait to be signaled)
398 	 * should retire before us and remove themselves from our list.
399 	 * However, retirement is run independently on each timeline and
400 	 * so we may be called out-of-order.
401 	 */
402 	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
403 		GEM_BUG_ON(!list_empty(&dep->dfs_link));
404 
405 		list_del_rcu(&dep->wait_link);
406 		if (dep->flags & I915_DEPENDENCY_ALLOC)
407 			i915_dependency_free(dep);
408 	}
409 	INIT_LIST_HEAD(&node->signalers_list);
410 
411 	/* Remove ourselves from everyone who depends upon us */
412 	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
413 		GEM_BUG_ON(dep->signaler != node);
414 		GEM_BUG_ON(!list_empty(&dep->dfs_link));
415 
416 		list_del_rcu(&dep->signal_link);
417 		if (dep->flags & I915_DEPENDENCY_ALLOC)
418 			i915_dependency_free(dep);
419 	}
420 	INIT_LIST_HEAD(&node->waiters_list);
421 
422 	spin_unlock_irq(&schedule_lock);
423 }
424 
i915_request_show_with_schedule(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)425 void i915_request_show_with_schedule(struct drm_printer *m,
426 				     const struct i915_request *rq,
427 				     const char *prefix,
428 				     int indent)
429 {
430 	struct i915_dependency *dep;
431 
432 	i915_request_show(m, rq, prefix, indent);
433 	if (i915_request_completed(rq))
434 		return;
435 
436 	rcu_read_lock();
437 	for_each_signaler(dep, rq) {
438 		const struct i915_request *signaler =
439 			node_to_request(dep->signaler);
440 
441 		/* Dependencies along the same timeline are expected. */
442 		if (signaler->timeline == rq->timeline)
443 			continue;
444 
445 		if (__i915_request_is_complete(signaler))
446 			continue;
447 
448 		i915_request_show(m, signaler, prefix, indent + 2);
449 	}
450 	rcu_read_unlock();
451 }
452 
default_destroy(struct kref * kref)453 static void default_destroy(struct kref *kref)
454 {
455 	struct i915_sched_engine *sched_engine =
456 		container_of(kref, typeof(*sched_engine), ref);
457 
458 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
459 	kfree(sched_engine);
460 }
461 
default_disabled(struct i915_sched_engine * sched_engine)462 static bool default_disabled(struct i915_sched_engine *sched_engine)
463 {
464 	return false;
465 }
466 
467 struct i915_sched_engine *
i915_sched_engine_create(unsigned int subclass)468 i915_sched_engine_create(unsigned int subclass)
469 {
470 	struct i915_sched_engine *sched_engine;
471 
472 	sched_engine = kzalloc(sizeof(*sched_engine), GFP_KERNEL);
473 	if (!sched_engine)
474 		return NULL;
475 
476 	kref_init(&sched_engine->ref);
477 
478 	sched_engine->queue = RB_ROOT_CACHED;
479 	sched_engine->queue_priority_hint = INT_MIN;
480 	sched_engine->destroy = default_destroy;
481 	sched_engine->disabled = default_disabled;
482 
483 	INIT_LIST_HEAD(&sched_engine->requests);
484 	INIT_LIST_HEAD(&sched_engine->hold);
485 
486 	mtx_init(&sched_engine->lock, IPL_TTY);
487 	lockdep_set_subclass(&sched_engine->lock, subclass);
488 
489 	/*
490 	 * Due to an interesting quirk in lockdep's internal debug tracking,
491 	 * after setting a subclass we must ensure the lock is used. Otherwise,
492 	 * nr_unused_locks is incremented once too often.
493 	 */
494 #ifdef CONFIG_DEBUG_LOCK_ALLOC
495 	local_irq_disable();
496 	lock_map_acquire(&sched_engine->lock.dep_map);
497 	lock_map_release(&sched_engine->lock.dep_map);
498 	local_irq_enable();
499 #endif
500 
501 	return sched_engine;
502 }
503 
i915_scheduler_module_exit(void)504 void i915_scheduler_module_exit(void)
505 {
506 #ifdef __linux__
507 	kmem_cache_destroy(slab_dependencies);
508 	kmem_cache_destroy(slab_priorities);
509 #else
510 	pool_destroy(&slab_dependencies);
511 	pool_destroy(&slab_priorities);
512 #endif
513 }
514 
i915_scheduler_module_init(void)515 int __init i915_scheduler_module_init(void)
516 {
517 #ifdef __linux__
518 	slab_dependencies = KMEM_CACHE(i915_dependency,
519 					      SLAB_HWCACHE_ALIGN |
520 					      SLAB_TYPESAFE_BY_RCU);
521 	if (!slab_dependencies)
522 		return -ENOMEM;
523 
524 	slab_priorities = KMEM_CACHE(i915_priolist, 0);
525 	if (!slab_priorities)
526 		goto err_priorities;
527 
528 	return 0;
529 
530 err_priorities:
531 	kmem_cache_destroy(slab_priorities);
532 	return -ENOMEM;
533 #else
534 	pool_init(&slab_dependencies, sizeof(struct i915_dependency),
535 	    CACHELINESIZE, IPL_TTY, 0, "gsdep", NULL);
536 	pool_init(&slab_priorities, sizeof(struct i915_priolist),
537 	    CACHELINESIZE, IPL_TTY, 0, "gspri", NULL);
538 
539 	return 0;
540 #endif
541 }
542