xref: /minix/lib/libc/db/hash/hash_page.c (revision 84d9c625)
1 /*	$NetBSD: hash_page.c,v 1.26 2013/12/01 00:22:48 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1990, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Margo Seltzer.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #if HAVE_NBTOOL_CONFIG_H
36 #include "nbtool_config.h"
37 #endif
38 
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: hash_page.c,v 1.26 2013/12/01 00:22:48 christos Exp $");
41 
42 /*
43  * PACKAGE:  hashing
44  *
45  * DESCRIPTION:
46  *	Page manipulation for hashing package.
47  *
48  * ROUTINES:
49  *
50  * External
51  *	__get_page
52  *	__add_ovflpage
53  * Internal
54  *	overflow_page
55  */
56 
57 #include "namespace.h"
58 
59 #include <sys/types.h>
60 
61 #include <errno.h>
62 #include <fcntl.h>
63 #include <signal.h>
64 #include <stdio.h>
65 #include <stdlib.h>
66 #include <string.h>
67 #include <unistd.h>
68 #include <paths.h>
69 #include <assert.h>
70 
71 #include <db.h>
72 #include "hash.h"
73 #include "page.h"
74 #include "extern.h"
75 
76 static uint32_t	*fetch_bitmap(HTAB *, int);
77 static uint32_t	 first_free(uint32_t);
78 static uint16_t	 overflow_page(HTAB *);
79 static void	 putpair(char *, const DBT *, const DBT *);
80 static void	 squeeze_key(uint16_t *, const DBT *, const DBT *);
81 static int	 ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int);
82 
83 #define	PAGE_INIT(P) { \
84 	((uint16_t *)(void *)(P))[0] = 0; \
85 	temp = 3 * sizeof(uint16_t); \
86 	_DIAGASSERT((size_t)hashp->BSIZE >= temp); \
87 	((uint16_t *)(void *)(P))[1] = (uint16_t)(hashp->BSIZE - temp); \
88 	((uint16_t *)(void *)(P))[2] = hashp->BSIZE; \
89 }
90 
91 /*
92  * This is called AFTER we have verified that there is room on the page for
93  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
94  * stuff on.
95  */
96 static void
putpair(char * p,const DBT * key,const DBT * val)97 putpair(char *p, const DBT *key, const DBT *val)
98 {
99 	uint16_t *bp, n, off;
100 	size_t temp;
101 
102 	bp = (uint16_t *)(void *)p;
103 
104 	/* Enter the key first. */
105 	n = bp[0];
106 
107 	temp = OFFSET(bp);
108 	_DIAGASSERT(temp >= key->size);
109 	off = (uint16_t)(temp - key->size);
110 	memmove(p + off, key->data, key->size);
111 	bp[++n] = off;
112 
113 	/* Now the data. */
114 	_DIAGASSERT(off >= val->size);
115 	off -= (uint16_t)val->size;
116 	memmove(p + off, val->data, val->size);
117 	bp[++n] = off;
118 
119 	/* Adjust page info. */
120 	bp[0] = n;
121 	temp = (n + 3) * sizeof(uint16_t);
122 	_DIAGASSERT(off >= temp);
123 	bp[n + 1] = (uint16_t)(off - temp);
124 	bp[n + 2] = off;
125 }
126 
127 /*
128  * Returns:
129  *	 0 OK
130  *	-1 error
131  */
132 int
__delpair(HTAB * hashp,BUFHEAD * bufp,int ndx)133 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
134 {
135 	uint16_t *bp, newoff;
136 	int n;
137 	uint16_t pairlen;
138 	size_t temp;
139 
140 	bp = (uint16_t *)(void *)bufp->page;
141 	n = bp[0];
142 
143 	if (bp[ndx + 1] < REAL_KEY)
144 		return (__big_delete(hashp, bufp));
145 	if (ndx != 1)
146 		newoff = bp[ndx - 1];
147 	else
148 		newoff = hashp->BSIZE;
149 	pairlen = newoff - bp[ndx + 1];
150 
151 	if (ndx != (n - 1)) {
152 		/* Hard Case -- need to shuffle keys */
153 		int i;
154 		char *src = bufp->page + (int)OFFSET(bp);
155 		char *dst = src + (int)pairlen;
156 		memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
157 
158 		/* Now adjust the pointers */
159 		for (i = ndx + 2; i <= n; i += 2) {
160 			if (bp[i + 1] == OVFLPAGE) {
161 				bp[i - 2] = bp[i];
162 				bp[i - 1] = bp[i + 1];
163 			} else {
164 				bp[i - 2] = bp[i] + pairlen;
165 				bp[i - 1] = bp[i + 1] + pairlen;
166 			}
167 		}
168 	}
169 	/* Finally adjust the page data */
170 	bp[n] = OFFSET(bp) + pairlen;
171 	temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t);
172 	_DIAGASSERT(temp <= 0xffff);
173 	bp[n - 1] = (uint16_t)temp;
174 	bp[0] = n - 2;
175 	hashp->NKEYS--;
176 
177 	bufp->flags |= BUF_MOD;
178 	return (0);
179 }
180 /*
181  * Returns:
182  *	 0 ==> OK
183  *	-1 ==> Error
184  */
185 int
__split_page(HTAB * hashp,uint32_t obucket,uint32_t nbucket)186 __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket)
187 {
188 	BUFHEAD *new_bufp, *old_bufp;
189 	uint16_t *ino;
190 	char *np;
191 	DBT key, val;
192 	int n, ndx, retval;
193 	uint16_t copyto, diff, off, moved;
194 	char *op;
195 	size_t temp;
196 
197 	copyto = (uint16_t)hashp->BSIZE;
198 	off = (uint16_t)hashp->BSIZE;
199 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
200 	if (old_bufp == NULL)
201 		return (-1);
202 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
203 	if (new_bufp == NULL)
204 		return (-1);
205 
206 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
207 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
208 
209 	ino = (uint16_t *)(void *)(op = old_bufp->page);
210 	np = new_bufp->page;
211 
212 	moved = 0;
213 
214 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
215 		if (ino[n + 1] < REAL_KEY) {
216 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
217 			    (int)copyto, (int)moved);
218 			old_bufp->flags &= ~BUF_PIN;
219 			new_bufp->flags &= ~BUF_PIN;
220 			return (retval);
221 
222 		}
223 		key.data = (uint8_t *)op + ino[n];
224 		key.size = off - ino[n];
225 
226 		if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
227 			/* Don't switch page */
228 			diff = copyto - off;
229 			if (diff) {
230 				copyto = ino[n + 1] + diff;
231 				memmove(op + copyto, op + ino[n + 1],
232 				    (size_t)(off - ino[n + 1]));
233 				ino[ndx] = copyto + ino[n] - ino[n + 1];
234 				ino[ndx + 1] = copyto;
235 			} else
236 				copyto = ino[n + 1];
237 			ndx += 2;
238 		} else {
239 			/* Switch page */
240 			val.data = (uint8_t *)op + ino[n + 1];
241 			val.size = ino[n] - ino[n + 1];
242 			putpair(np, &key, &val);
243 			moved += 2;
244 		}
245 
246 		off = ino[n + 1];
247 	}
248 
249 	/* Now clean up the page */
250 	ino[0] -= moved;
251 	temp = sizeof(uint16_t) * (ino[0] + 3);
252 	_DIAGASSERT(copyto >= temp);
253 	FREESPACE(ino) = (uint16_t)(copyto - temp);
254 	OFFSET(ino) = copyto;
255 
256 #ifdef DEBUG3
257 	(void)fprintf(stderr, "split %d/%d\n",
258 	    ((uint16_t *)np)[0] / 2,
259 	    ((uint16_t *)op)[0] / 2);
260 #endif
261 	/* unpin both pages */
262 	old_bufp->flags &= ~BUF_PIN;
263 	new_bufp->flags &= ~BUF_PIN;
264 	return (0);
265 }
266 
267 /*
268  * Called when we encounter an overflow or big key/data page during split
269  * handling.  This is special cased since we have to begin checking whether
270  * the key/data pairs fit on their respective pages and because we may need
271  * overflow pages for both the old and new pages.
272  *
273  * The first page might be a page with regular key/data pairs in which case
274  * we have a regular overflow condition and just need to go on to the next
275  * page or it might be a big key/data pair in which case we need to fix the
276  * big key/data pair.
277  *
278  * Returns:
279  *	 0 ==> success
280  *	-1 ==> failure
281  */
282 static int
ugly_split(HTAB * hashp,uint32_t obucket,BUFHEAD * old_bufp,BUFHEAD * new_bufp,int copyto,int moved)283 ugly_split(
284 	HTAB *hashp,
285 	uint32_t obucket,	/* Same as __split_page. */
286 	BUFHEAD *old_bufp,
287 	BUFHEAD *new_bufp,
288 	int copyto,	/* First byte on page which contains key/data values. */
289 	int moved	/* Number of pairs moved to new page. */
290 )
291 {
292 	BUFHEAD *bufp;	/* Buffer header for ino */
293 	uint16_t *ino;	/* Page keys come off of */
294 	uint16_t *np;	/* New page */
295 	uint16_t *op;	/* Page keys go on to if they aren't moving */
296 	size_t temp;
297 
298 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
299 	DBT key, val;
300 	SPLIT_RETURN ret;
301 	uint16_t n, off, ov_addr, scopyto;
302 	char *cino;		/* Character value of ino */
303 
304 	bufp = old_bufp;
305 	ino = (uint16_t *)(void *)old_bufp->page;
306 	np = (uint16_t *)(void *)new_bufp->page;
307 	op = (uint16_t *)(void *)old_bufp->page;
308 	last_bfp = NULL;
309 	scopyto = (uint16_t)copyto;	/* ANSI */
310 
311 	n = ino[0] - 1;
312 	while (n < ino[0]) {
313 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
314 			if (__big_split(hashp, old_bufp,
315 			    new_bufp, bufp, (int)bufp->addr, obucket, &ret))
316 				return (-1);
317 			old_bufp = ret.oldp;
318 			if (!old_bufp)
319 				return (-1);
320 			op = (uint16_t *)(void *)old_bufp->page;
321 			new_bufp = ret.newp;
322 			if (!new_bufp)
323 				return (-1);
324 			np = (uint16_t *)(void *)new_bufp->page;
325 			bufp = ret.nextp;
326 			if (!bufp)
327 				return (0);
328 			cino = (char *)bufp->page;
329 			ino = (uint16_t *)(void *)cino;
330 			last_bfp = ret.nextp;
331 		} else if (ino[n + 1] == OVFLPAGE) {
332 			ov_addr = ino[n];
333 			/*
334 			 * Fix up the old page -- the extra 2 are the fields
335 			 * which contained the overflow information.
336 			 */
337 			ino[0] -= (moved + 2);
338 			temp = sizeof(uint16_t) * (ino[0] + 3);
339 			_DIAGASSERT(scopyto >= temp);
340 			FREESPACE(ino) = (uint16_t)(scopyto - temp);
341 			OFFSET(ino) = scopyto;
342 
343 			bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
344 			if (!bufp)
345 				return (-1);
346 
347 			ino = (uint16_t *)(void *)bufp->page;
348 			n = 1;
349 			scopyto = hashp->BSIZE;
350 			moved = 0;
351 
352 			if (last_bfp)
353 				__free_ovflpage(hashp, last_bfp);
354 			last_bfp = bufp;
355 		}
356 		/* Move regular sized pairs of there are any */
357 		off = hashp->BSIZE;
358 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
359 			cino = (char *)(void *)ino;
360 			key.data = (uint8_t *)cino + ino[n];
361 			key.size = off - ino[n];
362 			val.data = (uint8_t *)cino + ino[n + 1];
363 			val.size = ino[n] - ino[n + 1];
364 			off = ino[n + 1];
365 
366 			if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
367 				/* Keep on old page */
368 				if (PAIRFITS(op, (&key), (&val)))
369 					putpair((char *)(void *)op, &key, &val);
370 				else {
371 					old_bufp =
372 					    __add_ovflpage(hashp, old_bufp);
373 					if (!old_bufp)
374 						return (-1);
375 					op = (uint16_t *)(void *)old_bufp->page;
376 					putpair((char *)(void *)op, &key, &val);
377 				}
378 				old_bufp->flags |= BUF_MOD;
379 			} else {
380 				/* Move to new page */
381 				if (PAIRFITS(np, (&key), (&val)))
382 					putpair((char *)(void *)np, &key, &val);
383 				else {
384 					new_bufp =
385 					    __add_ovflpage(hashp, new_bufp);
386 					if (!new_bufp)
387 						return (-1);
388 					np = (uint16_t *)(void *)new_bufp->page;
389 					putpair((char *)(void *)np, &key, &val);
390 				}
391 				new_bufp->flags |= BUF_MOD;
392 			}
393 		}
394 	}
395 	if (last_bfp)
396 		__free_ovflpage(hashp, last_bfp);
397 	return (0);
398 }
399 
400 /*
401  * Add the given pair to the page
402  *
403  * Returns:
404  *	0 ==> OK
405  *	1 ==> failure
406  */
407 int
__addel(HTAB * hashp,BUFHEAD * bufp,const DBT * key,const DBT * val)408 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
409 {
410 	uint16_t *bp, *sop;
411 	int do_expand;
412 
413 	bp = (uint16_t *)(void *)bufp->page;
414 	do_expand = 0;
415 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
416 		/* Exception case */
417 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
418 			/* This is the last page of a big key/data pair
419 			   and we need to add another page */
420 			break;
421 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
422 			bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
423 			    0);
424 			if (!bufp)
425 				return (-1);
426 			bp = (uint16_t *)(void *)bufp->page;
427 		} else if (bp[bp[0]] != OVFLPAGE) {
428 			/* Short key/data pairs, no more pages */
429 			break;
430 		} else {
431 			/* Try to squeeze key on this page */
432 			if (bp[2] >= REAL_KEY &&
433 			    FREESPACE(bp) >= PAIRSIZE(key, val)) {
434 				squeeze_key(bp, key, val);
435 				goto stats;
436 			} else {
437 				bufp = __get_buf(hashp,
438 				    (uint32_t)bp[bp[0] - 1], bufp, 0);
439 				if (!bufp)
440 					return (-1);
441 				bp = (uint16_t *)(void *)bufp->page;
442 			}
443 		}
444 
445 	if (PAIRFITS(bp, key, val))
446 		putpair(bufp->page, key, val);
447 	else {
448 		do_expand = 1;
449 		bufp = __add_ovflpage(hashp, bufp);
450 		if (!bufp)
451 			return (-1);
452 		sop = (uint16_t *)(void *)bufp->page;
453 
454 		if (PAIRFITS(sop, key, val))
455 			putpair((char *)(void *)sop, key, val);
456 		else
457 			if (__big_insert(hashp, bufp, key, val))
458 				return (-1);
459 	}
460 stats:
461 	bufp->flags |= BUF_MOD;
462 	/*
463 	 * If the average number of keys per bucket exceeds the fill factor,
464 	 * expand the table.
465 	 */
466 	hashp->NKEYS++;
467 	if (do_expand ||
468 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
469 		return (__expand_table(hashp));
470 	return (0);
471 }
472 
473 /*
474  *
475  * Returns:
476  *	pointer on success
477  *	NULL on error
478  */
479 BUFHEAD *
__add_ovflpage(HTAB * hashp,BUFHEAD * bufp)480 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
481 {
482 	uint16_t *sp;
483 	uint16_t ndx, ovfl_num;
484 	size_t temp;
485 #ifdef DEBUG1
486 	int tmp1, tmp2;
487 #endif
488 	sp = (uint16_t *)(void *)bufp->page;
489 
490 	/* Check if we are dynamically determining the fill factor */
491 	if (hashp->FFACTOR == DEF_FFACTOR) {
492 		hashp->FFACTOR = (uint32_t)sp[0] >> 1;
493 		if (hashp->FFACTOR < MIN_FFACTOR)
494 			hashp->FFACTOR = MIN_FFACTOR;
495 	}
496 	bufp->flags |= BUF_MOD;
497 	ovfl_num = overflow_page(hashp);
498 #ifdef DEBUG1
499 	tmp1 = bufp->addr;
500 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
501 #endif
502 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num,
503 	    bufp, 1)))
504 		return (NULL);
505 	bufp->ovfl->flags |= BUF_MOD;
506 #ifdef DEBUG1
507 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
508 	    tmp1, tmp2, bufp->ovfl->addr);
509 #endif
510 	ndx = sp[0];
511 	/*
512 	 * Since a pair is allocated on a page only if there's room to add
513 	 * an overflow page, we know that the OVFL information will fit on
514 	 * the page.
515 	 */
516 	sp[ndx + 4] = OFFSET(sp);
517 	temp = FREESPACE(sp);
518 	_DIAGASSERT(temp >= OVFLSIZE);
519 	sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE);
520 	sp[ndx + 1] = ovfl_num;
521 	sp[ndx + 2] = OVFLPAGE;
522 	sp[0] = ndx + 2;
523 #ifdef HASH_STATISTICS
524 	hash_overflows++;
525 #endif
526 	return (bufp->ovfl);
527 }
528 
529 /*
530  * Returns:
531  *	 0 indicates SUCCESS
532  *	-1 indicates FAILURE
533  */
534 int
__get_page(HTAB * hashp,char * p,uint32_t bucket,int is_bucket,int is_disk,int is_bitmap)535 __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk,
536     int is_bitmap)
537 {
538 	int fd, page, size;
539 	ssize_t rsize;
540 	uint16_t *bp;
541 	size_t temp;
542 
543 	fd = hashp->fp;
544 	size = hashp->BSIZE;
545 
546 	if ((fd == -1) || !is_disk) {
547 		PAGE_INIT(p);
548 		return (0);
549 	}
550 	if (is_bucket)
551 		page = BUCKET_TO_PAGE(bucket);
552 	else
553 		page = OADDR_TO_PAGE(bucket);
554 	if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
555 		return (-1);
556 	bp = (uint16_t *)(void *)p;
557 	if (!rsize)
558 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
559 	else
560 		if (rsize != size) {
561 			errno = EFTYPE;
562 			return (-1);
563 		}
564 	if (!is_bitmap && !bp[0]) {
565 		PAGE_INIT(p);
566 	} else
567 		if (hashp->LORDER != BYTE_ORDER) {
568 			int i, max;
569 
570 			if (is_bitmap) {
571 				max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
572 				for (i = 0; i < max; i++)
573 					M_32_SWAP(((int *)(void *)p)[i]);
574 			} else {
575 				M_16_SWAP(bp[0]);
576 				max = bp[0] + 2;
577 				for (i = 1; i <= max; i++)
578 					M_16_SWAP(bp[i]);
579 			}
580 		}
581 	return (0);
582 }
583 
584 /*
585  * Write page p to disk
586  *
587  * Returns:
588  *	 0 ==> OK
589  *	-1 ==>failure
590  */
591 int
__put_page(HTAB * hashp,char * p,uint32_t bucket,int is_bucket,int is_bitmap)592 __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap)
593 {
594 	int fd, page, size;
595 	ssize_t wsize;
596 
597 	size = hashp->BSIZE;
598 	if ((hashp->fp == -1) && (hashp->fp = __dbtemp("_hash", NULL)) == -1)
599 		return (-1);
600 	fd = hashp->fp;
601 
602 	if (hashp->LORDER != BYTE_ORDER) {
603 		int i;
604 		int max;
605 
606 		if (is_bitmap) {
607 			max = (uint32_t)hashp->BSIZE >> 2;	/* divide by 4 */
608 			for (i = 0; i < max; i++)
609 				M_32_SWAP(((int *)(void *)p)[i]);
610 		} else {
611 			max = ((uint16_t *)(void *)p)[0] + 2;
612 			for (i = 0; i <= max; i++)
613 				M_16_SWAP(((uint16_t *)(void *)p)[i]);
614 		}
615 	}
616 	if (is_bucket)
617 		page = BUCKET_TO_PAGE(bucket);
618 	else
619 		page = OADDR_TO_PAGE(bucket);
620 	if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
621 		/* Errno is set */
622 		return (-1);
623 	if (wsize != size) {
624 		errno = EFTYPE;
625 		return (-1);
626 	}
627 	return (0);
628 }
629 
630 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
631 /*
632  * Initialize a new bitmap page.  Bitmap pages are left in memory
633  * once they are read in.
634  */
635 int
__ibitmap(HTAB * hashp,int pnum,int nbits,int ndx)636 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
637 {
638 	uint32_t *ip;
639 	int clearbytes, clearints;
640 
641 	if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
642 		return (1);
643 	hashp->nmaps++;
644 	clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
645 	clearbytes = clearints << INT_TO_BYTE;
646 	(void)memset(ip, 0, (size_t)clearbytes);
647 	(void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
648 	    (size_t)(hashp->BSIZE - clearbytes));
649 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
650 	SETBIT(ip, 0);
651 	hashp->BITMAPS[ndx] = (uint16_t)pnum;
652 	hashp->mapp[ndx] = ip;
653 	return (0);
654 }
655 
656 static uint32_t
first_free(uint32_t map)657 first_free(uint32_t map)
658 {
659 	uint32_t i, mask;
660 
661 	mask = 0x1;
662 	for (i = 0; i < BITS_PER_MAP; i++) {
663 		if (!(mask & map))
664 			return (i);
665 		mask = mask << 1;
666 	}
667 	return (i);
668 }
669 
670 static uint16_t
overflow_page(HTAB * hashp)671 overflow_page(HTAB *hashp)
672 {
673 	uint32_t *freep = NULL;
674 	int max_free, offset, splitnum;
675 	uint16_t addr;
676 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
677 #ifdef DEBUG2
678 	int tmp1, tmp2;
679 #endif
680 	splitnum = hashp->OVFL_POINT;
681 	max_free = hashp->SPARES[splitnum];
682 
683 	free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
684 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
685 
686 	/* Look through all the free maps to find the first free block */
687 	first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
688 	for ( i = first_page; i <= free_page; i++ ) {
689 		if (!(freep = (uint32_t *)hashp->mapp[i]) &&
690 		    !(freep = fetch_bitmap(hashp, i)))
691 			return (0);
692 		if (i == free_page)
693 			in_use_bits = free_bit;
694 		else
695 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
696 
697 		if (i == first_page) {
698 			bit = hashp->LAST_FREED &
699 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
700 			j = bit / BITS_PER_MAP;
701 			bit = bit & ~(BITS_PER_MAP - 1);
702 		} else {
703 			bit = 0;
704 			j = 0;
705 		}
706 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
707 			if (freep[j] != ALL_SET)
708 				goto found;
709 	}
710 
711 	/* No Free Page Found */
712 	hashp->LAST_FREED = hashp->SPARES[splitnum];
713 	hashp->SPARES[splitnum]++;
714 	offset = hashp->SPARES[splitnum] -
715 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
716 
717 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
718 	if (offset > SPLITMASK) {
719 		if (++splitnum >= NCACHED) {
720 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
721 			errno = EFBIG;
722 			return (0);
723 		}
724 		hashp->OVFL_POINT = splitnum;
725 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
726 		hashp->SPARES[splitnum-1]--;
727 		offset = 1;
728 	}
729 
730 	/* Check if we need to allocate a new bitmap page */
731 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
732 		free_page++;
733 		if (free_page >= NCACHED) {
734 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
735 			errno = EFBIG;
736 			return (0);
737 		}
738 		/*
739 		 * This is tricky.  The 1 indicates that you want the new page
740 		 * allocated with 1 clear bit.  Actually, you are going to
741 		 * allocate 2 pages from this map.  The first is going to be
742 		 * the map page, the second is the overflow page we were
743 		 * looking for.  The init_bitmap routine automatically, sets
744 		 * the first bit of itself to indicate that the bitmap itself
745 		 * is in use.  We would explicitly set the second bit, but
746 		 * don't have to if we tell init_bitmap not to leave it clear
747 		 * in the first place.
748 		 */
749 		if (__ibitmap(hashp,
750 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
751 			return (0);
752 		hashp->SPARES[splitnum]++;
753 #ifdef DEBUG2
754 		free_bit = 2;
755 #endif
756 		offset++;
757 		if (offset > SPLITMASK) {
758 			if (++splitnum >= NCACHED) {
759 				(void)write(STDERR_FILENO, OVMSG,
760 				    sizeof(OVMSG) - 1);
761 				errno = EFBIG;
762 				return (0);
763 			}
764 			hashp->OVFL_POINT = splitnum;
765 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
766 			hashp->SPARES[splitnum-1]--;
767 			offset = 0;
768 		}
769 	} else {
770 		/*
771 		 * Free_bit addresses the last used bit.  Bump it to address
772 		 * the first available bit.
773 		 */
774 		free_bit++;
775 		SETBIT(freep, free_bit);
776 	}
777 
778 	/* Calculate address of the new overflow page */
779 	addr = OADDR_OF(splitnum, offset);
780 #ifdef DEBUG2
781 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
782 	    addr, free_bit, free_page);
783 #endif
784 	return (addr);
785 
786 found:
787 	bit = bit + first_free(freep[j]);
788 	SETBIT(freep, bit);
789 #ifdef DEBUG2
790 	tmp1 = bit;
791 	tmp2 = i;
792 #endif
793 	/*
794 	 * Bits are addressed starting with 0, but overflow pages are addressed
795 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
796 	 * it to convert it to a page number.
797 	 */
798 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
799 	if (bit >= hashp->LAST_FREED)
800 		hashp->LAST_FREED = bit - 1;
801 
802 	/* Calculate the split number for this page */
803 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
804 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
805 	if (offset >= SPLITMASK) {
806 		(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
807 		errno = EFBIG;
808 		return (0);	/* Out of overflow pages */
809 	}
810 	addr = OADDR_OF(i, offset);
811 #ifdef DEBUG2
812 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
813 	    addr, tmp1, tmp2);
814 #endif
815 
816 	/* Allocate and return the overflow page */
817 	return (addr);
818 }
819 
820 /*
821  * Mark this overflow page as free.
822  */
823 void
__free_ovflpage(HTAB * hashp,BUFHEAD * obufp)824 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
825 {
826 	uint16_t addr;
827 	uint32_t *freep;
828 	int bit_address, free_page, free_bit;
829 	uint16_t ndx;
830 
831 	addr = obufp->addr;
832 #ifdef DEBUG1
833 	(void)fprintf(stderr, "Freeing %d\n", addr);
834 #endif
835 	ndx = (((uint32_t)addr) >> SPLITSHIFT);
836 	bit_address =
837 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
838 	 if (bit_address < hashp->LAST_FREED)
839 		hashp->LAST_FREED = bit_address;
840 	free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
841 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
842 
843 	if (!(freep = hashp->mapp[free_page]))
844 		freep = fetch_bitmap(hashp, free_page);
845 	/*
846 	 * This had better never happen.  It means we tried to read a bitmap
847 	 * that has already had overflow pages allocated off it, and we
848 	 * failed to read it from the file.
849 	 */
850 	_DIAGASSERT(freep != NULL);
851 	CLRBIT(freep, free_bit);
852 #ifdef DEBUG2
853 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
854 	    obufp->addr, free_bit, free_page);
855 #endif
856 	__reclaim_buf(hashp, obufp);
857 }
858 
859 /*
860  * We have to know that the key will fit, but the last entry on the page is
861  * an overflow pair, so we need to shift things.
862  */
863 static void
squeeze_key(uint16_t * sp,const DBT * key,const DBT * val)864 squeeze_key(uint16_t *sp, const DBT *key, const DBT *val)
865 {
866 	char *p;
867 	uint16_t free_space, n, off, pageno;
868 	size_t temp;
869 
870 	p = (char *)(void *)sp;
871 	n = sp[0];
872 	free_space = FREESPACE(sp);
873 	off = OFFSET(sp);
874 
875 	pageno = sp[n - 1];
876 	_DIAGASSERT(off >= key->size);
877 	off -= (uint16_t)key->size;
878 	sp[n - 1] = off;
879 	memmove(p + off, key->data, key->size);
880 	_DIAGASSERT(off >= val->size);
881 	off -= (uint16_t)val->size;
882 	sp[n] = off;
883 	memmove(p + off, val->data, val->size);
884 	sp[0] = n + 2;
885 	sp[n + 1] = pageno;
886 	sp[n + 2] = OVFLPAGE;
887 	temp = PAIRSIZE(key, val);
888 	_DIAGASSERT(free_space >= temp);
889 	FREESPACE(sp) = (uint16_t)(free_space - temp);
890 	OFFSET(sp) = off;
891 }
892 
893 static uint32_t *
fetch_bitmap(HTAB * hashp,int ndx)894 fetch_bitmap(HTAB *hashp, int ndx)
895 {
896 	if (ndx >= hashp->nmaps)
897 		return (NULL);
898 	if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
899 		return (NULL);
900 	if (__get_page(hashp,
901 	    (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
902 		free(hashp->mapp[ndx]);
903 		return (NULL);
904 	}
905 	return (hashp->mapp[ndx]);
906 }
907 
908 #ifdef DEBUG4
909 void print_chain(HTAB *, uint32_t);
910 void
print_chain(HTAB * hashp,uint32_t addr)911 print_chain(HTAB *hashp, uint32_t addr)
912 {
913 	BUFHEAD *bufp;
914 	uint16_t *bp, oaddr;
915 
916 	(void)fprintf(stderr, "%d ", addr);
917 	bufp = __get_buf(hashp, addr, NULL, 0);
918 	bp = (uint16_t *)bufp->page;
919 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
920 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
921 		oaddr = bp[bp[0] - 1];
922 		(void)fprintf(stderr, "%d ", (int)oaddr);
923 		bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0);
924 		bp = (uint16_t *)bufp->page;
925 	}
926 	(void)fprintf(stderr, "\n");
927 }
928 #endif
929