1
2 /*******************************************************************************
3 MIT License
4 -----------
5
6 Copyright (c) 2002-2019 Advanced Micro Devices, Inc.
7
8 Permission is hereby granted, free of charge, to any person obtaining a copy
9 of this Software and associated documentaon files (the "Software"), to deal
10 in the Software without restriction, including without limitation the rights
11 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 copies of the Software, and to permit persons to whom the Software is
13 furnished to do so, subject to the following conditions:
14
15 The above copyright notice and this permission notice shall be included in
16 all copies or substantial portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 THE SOFTWARE.
25 *******************************************************************************/
26
27 #include "libm.h"
28 #include "libm_util.h"
29
30
31 /* Given positive argument x, reduce it to the range [-pi/4,pi/4] using
32 extra precision, and return the result in r, rr.
33 Return value "region" tells how many lots of pi/2 were subtracted
34 from x to put it in the range [-pi/4,pi/4], mod 4. */
__remainder_piby2(double x,double * r,double * rr,int * region)35 void __remainder_piby2(double x, double *r, double *rr, int *region)
36 {
37 /* This method simulates multi-precision floating-point
38 arithmetic and is accurate for all 1 <= x < infinity */
39 static const double
40 piby2_lead = 1.57079632679489655800e+00, /* 0x3ff921fb54442d18 */
41 piby2_part1 = 1.57079631090164184570e+00, /* 0x3ff921fb50000000 */
42 piby2_part2 = 1.58932547122958567343e-08, /* 0x3e5110b460000000 */
43 piby2_part3 = 6.12323399573676480327e-17; /* 0x3c91a62633145c06 */
44 const int bitsper = 10;
45 unsigned long long res[500];
46 unsigned long long ux, u, carry, mask, mant, highbitsrr;
47 int first, last, i, rexp, xexp, resexp, ltb, determ;
48 double xx, t;
49 static unsigned long long pibits[] =
50 {
51 0, 0, 0, 0, 0, 0,
52 162, 998, 54, 915, 580, 84, 671, 777, 855, 839,
53 851, 311, 448, 877, 553, 358, 316, 270, 260, 127,
54 593, 398, 701, 942, 965, 390, 882, 283, 570, 265,
55 221, 184, 6, 292, 750, 642, 465, 584, 463, 903,
56 491, 114, 786, 617, 830, 930, 35, 381, 302, 749,
57 72, 314, 412, 448, 619, 279, 894, 260, 921, 117,
58 569, 525, 307, 637, 156, 529, 504, 751, 505, 160,
59 945, 1022, 151, 1023, 480, 358, 15, 956, 753, 98,
60 858, 41, 721, 987, 310, 507, 242, 498, 777, 733,
61 244, 399, 870, 633, 510, 651, 373, 158, 940, 506,
62 997, 965, 947, 833, 825, 990, 165, 164, 746, 431,
63 949, 1004, 287, 565, 464, 533, 515, 193, 111, 798
64 };
65
66 GET_BITS_DP64(x, ux);
67
68
69 xexp = (int)(((ux & EXPBITS_DP64) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64);
70 ux = (ux & MANTBITS_DP64) | IMPBIT_DP64;
71
72 /* Now ux is the mantissa bit pattern of x as a long integer */
73 carry = 0;
74 mask = 1;
75 mask = (mask << bitsper) - 1;
76
77 /* Set first and last to the positions of the first
78 and last chunks of 2/pi that we need */
79 first = xexp / bitsper;
80 resexp = xexp - first * bitsper;
81 /* 180 is the theoretical maximum number of bits (actually
82 175 for IEEE double precision) that we need to extract
83 from the middle of 2/pi to compute the reduced argument
84 accurately enough for our purposes */
85 last = first + 180 / bitsper;
86
87 /* Do a long multiplication of the bits of 2/pi by the
88 integer mantissa */
89 #if 0
90 for (i = last; i >= first; i--)
91 {
92 u = pibits[i] * ux + carry;
93 res[i - first] = u & mask;
94 carry = u >> bitsper;
95 }
96 res[last - first + 1] = 0;
97 #else
98 /* Unroll the loop. This is only correct because we know
99 that bitsper is fixed as 10. */
100 res[19] = 0;
101 u = pibits[last] * ux;
102 res[18] = u & mask;
103 carry = u >> bitsper;
104 u = pibits[last-1] * ux + carry;
105 res[17] = u & mask;
106 carry = u >> bitsper;
107 u = pibits[last-2] * ux + carry;
108 res[16] = u & mask;
109 carry = u >> bitsper;
110 u = pibits[last-3] * ux + carry;
111 res[15] = u & mask;
112 carry = u >> bitsper;
113 u = pibits[last-4] * ux + carry;
114 res[14] = u & mask;
115 carry = u >> bitsper;
116 u = pibits[last-5] * ux + carry;
117 res[13] = u & mask;
118 carry = u >> bitsper;
119 u = pibits[last-6] * ux + carry;
120 res[12] = u & mask;
121 carry = u >> bitsper;
122 u = pibits[last-7] * ux + carry;
123 res[11] = u & mask;
124 carry = u >> bitsper;
125 u = pibits[last-8] * ux + carry;
126 res[10] = u & mask;
127 carry = u >> bitsper;
128 u = pibits[last-9] * ux + carry;
129 res[9] = u & mask;
130 carry = u >> bitsper;
131 u = pibits[last-10] * ux + carry;
132 res[8] = u & mask;
133 carry = u >> bitsper;
134 u = pibits[last-11] * ux + carry;
135 res[7] = u & mask;
136 carry = u >> bitsper;
137 u = pibits[last-12] * ux + carry;
138 res[6] = u & mask;
139 carry = u >> bitsper;
140 u = pibits[last-13] * ux + carry;
141 res[5] = u & mask;
142 carry = u >> bitsper;
143 u = pibits[last-14] * ux + carry;
144 res[4] = u & mask;
145 carry = u >> bitsper;
146 u = pibits[last-15] * ux + carry;
147 res[3] = u & mask;
148 carry = u >> bitsper;
149 u = pibits[last-16] * ux + carry;
150 res[2] = u & mask;
151 carry = u >> bitsper;
152 u = pibits[last-17] * ux + carry;
153 res[1] = u & mask;
154 carry = u >> bitsper;
155 u = pibits[last-18] * ux + carry;
156 res[0] = u & mask;
157 #endif
158
159
160 /* Reconstruct the result */
161 ltb = (int)((((res[0] << bitsper) | res[1])
162 >> (bitsper - 1 - resexp)) & 7);
163
164 /* determ says whether the fractional part is >= 0.5 */
165 determ = ltb & 1;
166
167
168 i = 1;
169 if (determ)
170 {
171 /* The mantissa is >= 0.5. We want to subtract it
172 from 1.0 by negating all the bits */
173 *region = ((ltb >> 1) + 1) & 3;
174 mant = 1;
175 mant = ~(res[1]) & ((mant << (bitsper - resexp)) - 1);
176 while (mant < 0x0020000000000000)
177 {
178 i++;
179 mant = (mant << bitsper) | (~(res[i]) & mask);
180 }
181 highbitsrr = ~(res[i + 1]) << (64 - bitsper);
182 }
183 else
184 {
185 *region = (ltb >> 1);
186 mant = 1;
187 mant = res[1] & ((mant << (bitsper - resexp)) - 1);
188 while (mant < 0x0020000000000000)
189 {
190 i++;
191 mant = (mant << bitsper) | res[i];
192 }
193 highbitsrr = res[i + 1] << (64 - bitsper);
194 }
195
196 rexp = 52 + resexp - i * bitsper;
197
198 while (mant >= 0x0020000000000000)
199 {
200 rexp++;
201 highbitsrr = (highbitsrr >> 1) | ((mant & 1) << 63);
202 mant >>= 1;
203 }
204
205
206 /* Put the result exponent rexp onto the mantissa pattern */
207 u = ((unsigned long long)rexp + EXPBIAS_DP64) << EXPSHIFTBITS_DP64;
208 ux = (mant & MANTBITS_DP64) | u;
209 if (determ)
210 /* If we negated the mantissa we negate x too */
211 ux |= SIGNBIT_DP64;
212 PUT_BITS_DP64(ux, x);
213
214 /* Create the bit pattern for rr */
215 highbitsrr >>= 12; /* Note this is shifted one place too far */
216 u = ((unsigned long long)rexp + EXPBIAS_DP64 - 53) << EXPSHIFTBITS_DP64;
217 PUT_BITS_DP64(u, t);
218 u |= highbitsrr;
219 PUT_BITS_DP64(u, xx);
220
221 /* Subtract the implicit bit we accidentally added */
222 xx -= t;
223 /* Set the correct sign, and double to account for the
224 "one place too far" shift */
225 if (determ)
226 xx *= -2.0;
227 else
228 xx *= 2.0;
229
230
231 /* (x,xx) is an extra-precise version of the fractional part of
232 x * 2 / pi. Multiply (x,xx) by pi/2 in extra precision
233 to get the reduced argument (r,rr). */
234 {
235 double hx, tx, c, cc;
236 /* Split x into hx (head) and tx (tail) */
237 GET_BITS_DP64(x, ux);
238 ux &= 0xfffffffff8000000;
239 PUT_BITS_DP64(ux, hx);
240 tx = x - hx;
241
242 c = piby2_lead * x;
243 cc = ((((piby2_part1 * hx - c) + piby2_part1 * tx) +
244 piby2_part2 * hx) + piby2_part2 * tx) +
245 (piby2_lead * xx + piby2_part3 * x);
246 *r = c + cc;
247 *rr = (c - *r) + cc;
248 }
249
250 return;
251 }
252