1 /* $NetBSD: kvm_proc.c,v 1.98 2022/04/19 20:32:16 rillig Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1989, 1992, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * This code is derived from software developed by the Computer Systems
37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38 * BG 91-66 and contributed to Berkeley.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.98 2022/04/19 20:32:16 rillig Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73
74 /*
75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
76 * users of this code, so we've factored it out into a separate module.
77 * Thus, we keep this grunge out of the other kvm applications (i.e.,
78 * most other applications are interested only in open/close/read/nlist).
79 */
80
81 #include <sys/param.h>
82 #include <sys/lwp.h>
83 #include <sys/wait.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92 #include <sys/types.h>
93
94 #include <errno.h>
95 #include <stdlib.h>
96 #include <stddef.h>
97 #include <string.h>
98 #include <unistd.h>
99 #include <nlist.h>
100 #include <kvm.h>
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_param.h>
104 #include <uvm/uvm_amap.h>
105 #include <uvm/uvm_page.h>
106
107 #include <sys/sysctl.h>
108
109 #include <limits.h>
110 #include <db.h>
111 #include <paths.h>
112
113 #include "kvm_private.h"
114
115 /*
116 * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
117 */
118 struct miniproc {
119 struct vmspace *p_vmspace;
120 char p_stat;
121 vaddr_t p_psstrp;
122 struct proc *p_paddr;
123 pid_t p_pid;
124 };
125
126 /*
127 * Convert from struct proc and kinfo_proc{,2} to miniproc.
128 */
129 #define PTOMINI(kp, p) \
130 do { \
131 (p)->p_stat = (kp)->p_stat; \
132 (p)->p_pid = (kp)->p_pid; \
133 (p)->p_paddr = NULL; \
134 (p)->p_vmspace = (kp)->p_vmspace; \
135 (p)->p_psstrp = (kp)->p_psstrp; \
136 } while (0);
137
138 #define KPTOMINI(kp, p) \
139 do { \
140 (p)->p_stat = (kp)->kp_proc.p_stat; \
141 (p)->p_pid = (kp)->kp_proc.p_pid; \
142 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \
143 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
144 } while (0);
145
146 #define KP2TOMINI(kp, p) \
147 do { \
148 (p)->p_stat = (kp)->p_stat; \
149 (p)->p_pid = (kp)->p_pid; \
150 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \
151 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
152 } while (0);
153
154 /*
155 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
156 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
157 * kvm(3) so dumps can be read properly.
158 *
159 * Whenever NetBSD starts exporting credentials to userland consistently (using
160 * 'struct uucred', or something) this will have to be updated again.
161 */
162 struct kvm_kauth_cred {
163 u_int cr_refcnt; /* reference count */
164 #if COHERENCY_UNIT > 4
165 uint8_t cr_pad[COHERENCY_UNIT - 4];
166 #endif
167 uid_t cr_uid; /* user id */
168 uid_t cr_euid; /* effective user id */
169 uid_t cr_svuid; /* saved effective user id */
170 gid_t cr_gid; /* group id */
171 gid_t cr_egid; /* effective group id */
172 gid_t cr_svgid; /* saved effective group id */
173 u_int cr_ngroups; /* number of groups */
174 gid_t cr_groups[NGROUPS]; /* group memberships */
175 specificdata_reference cr_sd; /* specific data */
176 };
177
178 /* XXX: What uses these two functions? */
179 char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
180 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *,
181 size_t);
182
183 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
184 u_long *);
185 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
186 char *, size_t);
187
188 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
189 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
190 static char **kvm_doargv(kvm_t *, const struct miniproc *, int,
191 void (*)(struct ps_strings *, u_long *, int *));
192 static char **kvm_doargv2(kvm_t *, pid_t, int, int);
193 static int kvm_proclist(kvm_t *, int, int, struct proc *,
194 struct kinfo_proc *, int);
195 static int proc_verify(kvm_t *, u_long, const struct miniproc *);
196 static void ps_str_a(struct ps_strings *, u_long *, int *);
197 static void ps_str_e(struct ps_strings *, u_long *, int *);
198
199
200 static char *
_kvm_ureadm(kvm_t * kd,const struct miniproc * p,u_long va,u_long * cnt)201 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
202 {
203 u_long addr, head;
204 u_long offset;
205 struct vm_map_entry vme;
206 struct vm_amap amap;
207 struct vm_anon *anonp, anon;
208 struct vm_page pg;
209 u_long slot;
210
211 if (kd->swapspc == NULL) {
212 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
213 if (kd->swapspc == NULL)
214 return (NULL);
215 }
216
217 /*
218 * Look through the address map for the memory object
219 * that corresponds to the given virtual address.
220 * The header just has the entire valid range.
221 */
222 head = (u_long)&p->p_vmspace->vm_map.header;
223 addr = head;
224 for (;;) {
225 if (KREAD(kd, addr, &vme))
226 return (NULL);
227
228 if (va >= vme.start && va < vme.end &&
229 vme.aref.ar_amap != NULL)
230 break;
231
232 addr = (u_long)vme.next;
233 if (addr == head)
234 return (NULL);
235 }
236
237 /*
238 * we found the map entry, now to find the object...
239 */
240 if (vme.aref.ar_amap == NULL)
241 return (NULL);
242
243 addr = (u_long)vme.aref.ar_amap;
244 if (KREAD(kd, addr, &amap))
245 return (NULL);
246
247 offset = va - vme.start;
248 slot = offset / kd->nbpg + vme.aref.ar_pageoff;
249 /* sanity-check slot number */
250 if (slot > amap.am_nslot)
251 return (NULL);
252
253 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
254 if (KREAD(kd, addr, &anonp))
255 return (NULL);
256
257 addr = (u_long)anonp;
258 if (KREAD(kd, addr, &anon))
259 return (NULL);
260
261 addr = (u_long)anon.an_page;
262 if (addr) {
263 if (KREAD(kd, addr, &pg))
264 return (NULL);
265
266 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
267 (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg)
268 return (NULL);
269 } else {
270 if (kd->swfd < 0 ||
271 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
272 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
273 return (NULL);
274 }
275
276 /* Found the page. */
277 offset %= kd->nbpg;
278 *cnt = kd->nbpg - offset;
279 return (&kd->swapspc[(size_t)offset]);
280 }
281
282 char *
_kvm_uread(kvm_t * kd,const struct proc * p,u_long va,u_long * cnt)283 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
284 {
285 struct miniproc mp;
286
287 PTOMINI(p, &mp);
288 return (_kvm_ureadm(kd, &mp, va, cnt));
289 }
290
291 /*
292 * Convert credentials located in kernel space address 'cred' and store
293 * them in the appropriate members of 'eproc'.
294 */
295 static int
_kvm_convertcred(kvm_t * kd,u_long cred,struct eproc * eproc)296 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
297 {
298 struct kvm_kauth_cred kauthcred;
299 struct ki_pcred *pc = &eproc->e_pcred;
300 struct ki_ucred *uc = &eproc->e_ucred;
301
302 if (KREAD(kd, cred, &kauthcred) != 0)
303 return (-1);
304
305 /* inlined version of kauth_cred_to_pcred, see kauth(9). */
306 pc->p_ruid = kauthcred.cr_uid;
307 pc->p_svuid = kauthcred.cr_svuid;
308 pc->p_rgid = kauthcred.cr_gid;
309 pc->p_svgid = kauthcred.cr_svgid;
310 pc->p_refcnt = kauthcred.cr_refcnt;
311 pc->p_pad = NULL;
312
313 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */
314 uc->cr_ref = kauthcred.cr_refcnt;
315 uc->cr_uid = kauthcred.cr_euid;
316 uc->cr_gid = kauthcred.cr_egid;
317 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
318 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
319 memcpy(uc->cr_groups, kauthcred.cr_groups,
320 uc->cr_ngroups * sizeof(uc->cr_groups[0]));
321
322 return (0);
323 }
324
325 /*
326 * Read proc's from memory file into buffer bp, which has space to hold
327 * at most maxcnt procs.
328 */
329 static int
kvm_proclist(kvm_t * kd,int what,int arg,struct proc * p,struct kinfo_proc * bp,int maxcnt)330 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
331 struct kinfo_proc *bp, int maxcnt)
332 {
333 int cnt = 0;
334 int nlwps;
335 struct kinfo_lwp *kl;
336 struct eproc eproc;
337 struct pgrp pgrp;
338 struct session sess;
339 struct tty tty;
340 struct proc proc;
341
342 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
343 if (KREAD(kd, (u_long)p, &proc)) {
344 _kvm_err(kd, kd->program, "can't read proc at %p", p);
345 return (-1);
346 }
347 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
348 _kvm_err(kd, kd->program,
349 "can't read proc credentials at %p", p);
350 return (-1);
351 }
352
353 switch (what) {
354
355 case KERN_PROC_PID:
356 if (proc.p_pid != (pid_t)arg)
357 continue;
358 break;
359
360 case KERN_PROC_UID:
361 if (eproc.e_ucred.cr_uid != (uid_t)arg)
362 continue;
363 break;
364
365 case KERN_PROC_RUID:
366 if (eproc.e_pcred.p_ruid != (uid_t)arg)
367 continue;
368 break;
369 }
370 /*
371 * We're going to add another proc to the set. If this
372 * will overflow the buffer, assume the reason is because
373 * nprocs (or the proc list) is corrupt and declare an error.
374 */
375 if (cnt >= maxcnt) {
376 _kvm_err(kd, kd->program, "nprocs corrupt");
377 return (-1);
378 }
379 /*
380 * gather eproc
381 */
382 eproc.e_paddr = p;
383 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
384 _kvm_err(kd, kd->program, "can't read pgrp at %p",
385 proc.p_pgrp);
386 return (-1);
387 }
388 eproc.e_sess = pgrp.pg_session;
389 eproc.e_pgid = pgrp.pg_id;
390 eproc.e_jobc = pgrp.pg_jobc;
391 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
392 _kvm_err(kd, kd->program, "can't read session at %p",
393 pgrp.pg_session);
394 return (-1);
395 }
396 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
397 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
398 _kvm_err(kd, kd->program,
399 "can't read tty at %p", sess.s_ttyp);
400 return (-1);
401 }
402 eproc.e_tdev = (uint32_t)tty.t_dev;
403 eproc.e_tsess = tty.t_session;
404 if (tty.t_pgrp != NULL) {
405 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
406 _kvm_err(kd, kd->program,
407 "can't read tpgrp at %p",
408 tty.t_pgrp);
409 return (-1);
410 }
411 eproc.e_tpgid = pgrp.pg_id;
412 } else
413 eproc.e_tpgid = -1;
414 } else
415 eproc.e_tdev = (uint32_t)NODEV;
416 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
417 eproc.e_sid = sess.s_sid;
418 if (sess.s_leader == p)
419 eproc.e_flag |= EPROC_SLEADER;
420 /*
421 * Fill in the old-style proc.p_wmesg by copying the wmesg
422 * from the first available LWP.
423 */
424 kl = kvm_getlwps(kd, proc.p_pid,
425 (u_long)PTRTOUINT64(eproc.e_paddr),
426 sizeof(struct kinfo_lwp), &nlwps);
427 if (kl) {
428 if (nlwps > 0) {
429 strcpy(eproc.e_wmesg, kl[0].l_wmesg);
430 }
431 }
432 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
433 sizeof(eproc.e_vm));
434
435 eproc.e_xsize = eproc.e_xrssize = 0;
436 eproc.e_xccount = eproc.e_xswrss = 0;
437
438 switch (what) {
439
440 case KERN_PROC_PGRP:
441 if (eproc.e_pgid != (pid_t)arg)
442 continue;
443 break;
444
445 case KERN_PROC_TTY:
446 if ((proc.p_lflag & PL_CONTROLT) == 0 ||
447 eproc.e_tdev != (dev_t)arg)
448 continue;
449 break;
450 }
451 memcpy(&bp->kp_proc, &proc, sizeof(proc));
452 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
453 ++bp;
454 ++cnt;
455 }
456 return (cnt);
457 }
458
459 /*
460 * Build proc info array by reading in proc list from a crash dump.
461 * Return number of procs read. maxcnt is the max we will read.
462 */
463 static int
kvm_deadprocs(kvm_t * kd,int what,int arg,u_long a_allproc,u_long a_zombproc,int maxcnt)464 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
465 u_long a_zombproc, int maxcnt)
466 {
467 struct kinfo_proc *bp = kd->procbase;
468 int acnt, zcnt;
469 struct proc *p;
470
471 if (KREAD(kd, a_allproc, &p)) {
472 _kvm_err(kd, kd->program, "cannot read allproc");
473 return (-1);
474 }
475 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
476 if (acnt < 0)
477 return (acnt);
478
479 if (KREAD(kd, a_zombproc, &p)) {
480 _kvm_err(kd, kd->program, "cannot read zombproc");
481 return (-1);
482 }
483 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
484 maxcnt - acnt);
485 if (zcnt < 0)
486 zcnt = 0;
487
488 return (acnt + zcnt);
489 }
490
491 struct kinfo_proc2 *
kvm_getproc2(kvm_t * kd,int op,int arg,size_t esize,int * cnt)492 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
493 {
494 size_t size;
495 int mib[6], st, nprocs;
496 struct pstats pstats;
497
498 if (ISSYSCTL(kd)) {
499 size = 0;
500 mib[0] = CTL_KERN;
501 mib[1] = KERN_PROC2;
502 mib[2] = op;
503 mib[3] = arg;
504 mib[4] = (int)esize;
505 again:
506 mib[5] = 0;
507 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
508 if (st == -1) {
509 _kvm_syserr(kd, kd->program, "kvm_getproc2");
510 return (NULL);
511 }
512
513 mib[5] = (int) (size / esize);
514 KVM_ALLOC(kd, procbase2, size);
515 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
516 if (st == -1) {
517 if (errno == ENOMEM) {
518 goto again;
519 }
520 _kvm_syserr(kd, kd->program, "kvm_getproc2");
521 return (NULL);
522 }
523 nprocs = (int) (size / esize);
524 } else {
525 char *kp2c;
526 struct kinfo_proc *kp;
527 struct kinfo_proc2 kp2, *kp2p;
528 struct kinfo_lwp *kl;
529 int i, nlwps;
530
531 kp = kvm_getprocs(kd, op, arg, &nprocs);
532 if (kp == NULL)
533 return (NULL);
534
535 size = nprocs * esize;
536 KVM_ALLOC(kd, procbase2, size);
537 kp2c = (char *)(void *)kd->procbase2;
538 kp2p = &kp2;
539 for (i = 0; i < nprocs; i++, kp++) {
540 struct timeval tv;
541
542 kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
543 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
544 sizeof(struct kinfo_lwp), &nlwps);
545
546 if (kl == NULL) {
547 _kvm_syserr(kd, NULL,
548 "kvm_getlwps() failed on process %u\n",
549 kp->kp_proc.p_pid);
550 if (nlwps == 0)
551 return NULL;
552 else
553 continue;
554 }
555
556 /* We use kl[0] as the "representative" LWP */
557 memset(kp2p, 0, sizeof(kp2));
558 kp2p->p_forw = kl[0].l_forw;
559 kp2p->p_back = kl[0].l_back;
560 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
561 kp2p->p_addr = kl[0].l_addr;
562 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
563 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
564 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
565 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
566 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
567 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
568 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
569 kp2p->p_tsess = 0;
570 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
571 kp2p->p_ru = 0;
572 #else
573 kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
574 #endif
575
576 kp2p->p_eflag = 0;
577 kp2p->p_exitsig = kp->kp_proc.p_exitsig;
578 kp2p->p_flag = kp->kp_proc.p_flag;
579
580 kp2p->p_pid = kp->kp_proc.p_pid;
581
582 kp2p->p_ppid = kp->kp_eproc.e_ppid;
583 kp2p->p_sid = kp->kp_eproc.e_sid;
584 kp2p->p__pgid = kp->kp_eproc.e_pgid;
585
586 kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
587
588 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
589 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
590 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
591 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
592 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
593 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
594
595 /*CONSTCOND*/
596 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
597 MIN(sizeof(kp2p->p_groups),
598 sizeof(kp->kp_eproc.e_ucred.cr_groups)));
599 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
600
601 kp2p->p_jobc = kp->kp_eproc.e_jobc;
602 kp2p->p_tdev = kp->kp_eproc.e_tdev;
603 kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
604 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
605
606 kp2p->p_estcpu = 0;
607 bintime2timeval(&kp->kp_proc.p_rtime, &tv);
608 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
609 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
610 kp2p->p_cpticks = kl[0].l_cpticks;
611 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
612 kp2p->p_swtime = kl[0].l_swtime;
613 kp2p->p_slptime = kl[0].l_slptime;
614 #if 0 /* XXX thorpej */
615 kp2p->p_schedflags = kp->kp_proc.p_schedflags;
616 #else
617 kp2p->p_schedflags = 0;
618 #endif
619
620 kp2p->p_uticks = kp->kp_proc.p_uticks;
621 kp2p->p_sticks = kp->kp_proc.p_sticks;
622 kp2p->p_iticks = kp->kp_proc.p_iticks;
623
624 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
625 kp2p->p_traceflag = kp->kp_proc.p_traceflag;
626
627 kp2p->p_holdcnt = kl[0].l_holdcnt;
628
629 memcpy(&kp2p->p_siglist,
630 &kp->kp_proc.p_sigpend.sp_set,
631 sizeof(ki_sigset_t));
632 memset(&kp2p->p_sigmask, 0,
633 sizeof(ki_sigset_t));
634 memcpy(&kp2p->p_sigignore,
635 &kp->kp_proc.p_sigctx.ps_sigignore,
636 sizeof(ki_sigset_t));
637 memcpy(&kp2p->p_sigcatch,
638 &kp->kp_proc.p_sigctx.ps_sigcatch,
639 sizeof(ki_sigset_t));
640
641 kp2p->p_stat = kl[0].l_stat;
642 kp2p->p_priority = kl[0].l_priority;
643 kp2p->p_usrpri = kl[0].l_priority;
644 kp2p->p_nice = kp->kp_proc.p_nice;
645
646 kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc);
647 kp2p->p_acflag = kp->kp_proc.p_acflag;
648
649 /*CONSTCOND*/
650 strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
651 MIN(sizeof(kp2p->p_comm),
652 sizeof(kp->kp_proc.p_comm)));
653
654 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
655 sizeof(kp2p->p_wmesg));
656 kp2p->p_wchan = kl[0].l_wchan;
657 strncpy(kp2p->p_login, kp->kp_eproc.e_login,
658 sizeof(kp2p->p_login));
659
660 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
661 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
662 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
663 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
664 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size
665 / kd->nbpg;
666 /* Adjust mapped size */
667 kp2p->p_vm_msize =
668 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
669 kp->kp_eproc.e_vm.vm_issize +
670 kp->kp_eproc.e_vm.vm_ssize;
671
672 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
673
674 kp2p->p_realflag = kp->kp_proc.p_flag;
675 kp2p->p_nlwps = kp->kp_proc.p_nlwps;
676 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
677 kp2p->p_realstat = kp->kp_proc.p_stat;
678
679 if (P_ZOMBIE(&kp->kp_proc) ||
680 kp->kp_proc.p_stats == NULL ||
681 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
682 kp2p->p_uvalid = 0;
683 } else {
684 kp2p->p_uvalid = 1;
685
686 kp2p->p_ustart_sec = (u_int32_t)
687 pstats.p_start.tv_sec;
688 kp2p->p_ustart_usec = (u_int32_t)
689 pstats.p_start.tv_usec;
690
691 kp2p->p_uutime_sec = (u_int32_t)
692 pstats.p_ru.ru_utime.tv_sec;
693 kp2p->p_uutime_usec = (u_int32_t)
694 pstats.p_ru.ru_utime.tv_usec;
695 kp2p->p_ustime_sec = (u_int32_t)
696 pstats.p_ru.ru_stime.tv_sec;
697 kp2p->p_ustime_usec = (u_int32_t)
698 pstats.p_ru.ru_stime.tv_usec;
699
700 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
701 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
702 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
703 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
704 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
705 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
706 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
707 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
708 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
709 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
710 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
711 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
712 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
713 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
714
715 kp2p->p_uctime_sec = (u_int32_t)
716 (pstats.p_cru.ru_utime.tv_sec +
717 pstats.p_cru.ru_stime.tv_sec);
718 kp2p->p_uctime_usec = (u_int32_t)
719 (pstats.p_cru.ru_utime.tv_usec +
720 pstats.p_cru.ru_stime.tv_usec);
721 }
722
723 memcpy(kp2c, &kp2, esize);
724 kp2c += esize;
725 }
726 }
727 *cnt = nprocs;
728 return (kd->procbase2);
729 }
730
731 struct kinfo_lwp *
kvm_getlwps(kvm_t * kd,int pid,u_long paddr,size_t esize,int * cnt)732 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
733 {
734 size_t size;
735 int mib[5], nlwps;
736 ssize_t st;
737 struct kinfo_lwp *kl;
738
739 if (ISSYSCTL(kd)) {
740 size = 0;
741 mib[0] = CTL_KERN;
742 mib[1] = KERN_LWP;
743 mib[2] = pid;
744 mib[3] = (int)esize;
745 mib[4] = 0;
746 again:
747 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
748 if (st == -1) {
749 switch (errno) {
750 case ESRCH: /* Treat this as a soft error; see kvm.c */
751 _kvm_syserr(kd, NULL, "kvm_getlwps");
752 return NULL;
753 default:
754 _kvm_syserr(kd, kd->program, "kvm_getlwps");
755 return NULL;
756 }
757 }
758 mib[4] = (int) (size / esize);
759 KVM_ALLOC(kd, lwpbase, size);
760 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
761 if (st == -1) {
762 switch (errno) {
763 case ESRCH: /* Treat this as a soft error; see kvm.c */
764 _kvm_syserr(kd, NULL, "kvm_getlwps");
765 return NULL;
766 case ENOMEM:
767 goto again;
768 default:
769 _kvm_syserr(kd, kd->program, "kvm_getlwps");
770 return NULL;
771 }
772 }
773 nlwps = (int) (size / esize);
774 } else {
775 /* grovel through the memory image */
776 struct proc p;
777 struct lwp l;
778 u_long laddr;
779 void *back;
780 int i;
781
782 st = kvm_read(kd, paddr, &p, sizeof(p));
783 if (st == -1) {
784 _kvm_syserr(kd, kd->program, "kvm_getlwps");
785 return (NULL);
786 }
787
788 nlwps = p.p_nlwps;
789 size = nlwps * sizeof(*kd->lwpbase);
790 KVM_ALLOC(kd, lwpbase, size);
791 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
792 for (i = 0; (i < nlwps) && (laddr != 0); i++) {
793 st = kvm_read(kd, laddr, &l, sizeof(l));
794 if (st == -1) {
795 _kvm_syserr(kd, kd->program, "kvm_getlwps");
796 return (NULL);
797 }
798 kl = &kd->lwpbase[i];
799 kl->l_laddr = laddr;
800 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
801 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
802 st = kvm_read(kd, laddr, &back, sizeof(back));
803 if (st == -1) {
804 _kvm_syserr(kd, kd->program, "kvm_getlwps");
805 return (NULL);
806 }
807 kl->l_back = PTRTOUINT64(back);
808 kl->l_addr = PTRTOUINT64(l.l_addr);
809 kl->l_lid = l.l_lid;
810 kl->l_flag = l.l_flag;
811 kl->l_swtime = l.l_swtime;
812 kl->l_slptime = l.l_slptime;
813 kl->l_schedflags = 0; /* XXX */
814 kl->l_holdcnt = 0;
815 kl->l_priority = l.l_priority;
816 kl->l_usrpri = l.l_priority;
817 kl->l_stat = l.l_stat;
818 kl->l_wchan = PTRTOUINT64(l.l_wchan);
819 if (l.l_wmesg)
820 (void)kvm_read(kd, (u_long)l.l_wmesg,
821 kl->l_wmesg, (size_t)WMESGLEN);
822 kl->l_cpuid = KI_NOCPU;
823 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
824 }
825 }
826
827 *cnt = nlwps;
828 return (kd->lwpbase);
829 }
830
831 struct kinfo_proc *
kvm_getprocs(kvm_t * kd,int op,int arg,int * cnt)832 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
833 {
834 size_t size;
835 int mib[4], st, nprocs;
836
837 if (ISALIVE(kd)) {
838 size = 0;
839 mib[0] = CTL_KERN;
840 mib[1] = KERN_PROC;
841 mib[2] = op;
842 mib[3] = arg;
843 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
844 if (st == -1) {
845 _kvm_syserr(kd, kd->program, "kvm_getprocs");
846 return (NULL);
847 }
848 KVM_ALLOC(kd, procbase, size);
849 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
850 if (st == -1) {
851 _kvm_syserr(kd, kd->program, "kvm_getprocs");
852 return (NULL);
853 }
854 if (size % sizeof(struct kinfo_proc) != 0) {
855 _kvm_err(kd, kd->program,
856 "proc size mismatch (%lu total, %lu chunks)",
857 (u_long)size, (u_long)sizeof(struct kinfo_proc));
858 return (NULL);
859 }
860 nprocs = (int) (size / sizeof(struct kinfo_proc));
861 } else {
862 struct nlist nl[4], *p;
863
864 (void)memset(nl, 0, sizeof(nl));
865 nl[0].n_name = "_nprocs";
866 nl[1].n_name = "_allproc";
867 nl[2].n_name = "_zombproc";
868 nl[3].n_name = NULL;
869
870 if (kvm_nlist(kd, nl) != 0) {
871 for (p = nl; p->n_type != 0; ++p)
872 continue;
873 _kvm_err(kd, kd->program,
874 "%s: no such symbol", p->n_name);
875 return (NULL);
876 }
877 if (KREAD(kd, nl[0].n_value, &nprocs)) {
878 _kvm_err(kd, kd->program, "can't read nprocs");
879 return (NULL);
880 }
881 size = nprocs * sizeof(*kd->procbase);
882 KVM_ALLOC(kd, procbase, size);
883 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
884 nl[2].n_value, nprocs);
885 if (nprocs < 0)
886 return (NULL);
887 #ifdef notdef
888 size = nprocs * sizeof(struct kinfo_proc);
889 (void)realloc(kd->procbase, size);
890 #endif
891 }
892 *cnt = nprocs;
893 return (kd->procbase);
894 }
895
896 void *
_kvm_realloc(kvm_t * kd,void * p,size_t n)897 _kvm_realloc(kvm_t *kd, void *p, size_t n)
898 {
899 void *np = realloc(p, n);
900
901 if (np == NULL)
902 _kvm_err(kd, kd->program, "out of memory");
903 return (np);
904 }
905
906 /*
907 * Read in an argument vector from the user address space of process p.
908 * addr if the user-space base address of narg null-terminated contiguous
909 * strings. This is used to read in both the command arguments and
910 * environment strings. Read at most maxcnt characters of strings.
911 */
912 static char **
kvm_argv(kvm_t * kd,const struct miniproc * p,u_long addr,int narg,int maxcnt)913 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
914 int maxcnt)
915 {
916 char *np, *cp, *ep, *ap;
917 u_long oaddr = (u_long)~0L;
918 u_long len;
919 size_t cc;
920 char **argv;
921
922 /*
923 * Check that there aren't an unreasonable number of arguments,
924 * and that the address is in user space.
925 */
926 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
927 return (NULL);
928
929 if (kd->argv == NULL) {
930 /*
931 * Try to avoid reallocs.
932 */
933 kd->argc = MAX(narg + 1, 32);
934 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
935 if (kd->argv == NULL)
936 return (NULL);
937 } else if (narg + 1 > kd->argc) {
938 kd->argc = MAX(2 * kd->argc, narg + 1);
939 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
940 sizeof(*kd->argv));
941 if (kd->argv == NULL)
942 return (NULL);
943 }
944 if (kd->argspc == NULL) {
945 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
946 if (kd->argspc == NULL)
947 return (NULL);
948 kd->argspc_len = kd->nbpg;
949 }
950 if (kd->argbuf == NULL) {
951 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
952 if (kd->argbuf == NULL)
953 return (NULL);
954 }
955 cc = sizeof(char *) * narg;
956 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
957 return (NULL);
958 ap = np = kd->argspc;
959 argv = kd->argv;
960 len = 0;
961 /*
962 * Loop over pages, filling in the argument vector.
963 */
964 while (argv < kd->argv + narg && *argv != NULL) {
965 addr = (u_long)*argv & ~(kd->nbpg - 1);
966 if (addr != oaddr) {
967 if (kvm_ureadm(kd, p, addr, kd->argbuf,
968 (size_t)kd->nbpg) != kd->nbpg)
969 return (NULL);
970 oaddr = addr;
971 }
972 addr = (u_long)*argv & (kd->nbpg - 1);
973 cp = kd->argbuf + (size_t)addr;
974 cc = kd->nbpg - (size_t)addr;
975 if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
976 cc = (size_t)(maxcnt - len);
977 ep = memchr(cp, '\0', cc);
978 if (ep != NULL)
979 cc = ep - cp + 1;
980 if (len + cc > kd->argspc_len) {
981 ptrdiff_t off;
982 char **pp;
983 char *op = kd->argspc;
984
985 kd->argspc_len *= 2;
986 kd->argspc = _kvm_realloc(kd, kd->argspc,
987 kd->argspc_len);
988 if (kd->argspc == NULL)
989 return (NULL);
990 /*
991 * Adjust argv pointers in case realloc moved
992 * the string space.
993 */
994 off = kd->argspc - op;
995 for (pp = kd->argv; pp < argv; pp++)
996 *pp += off;
997 ap += off;
998 np += off;
999 }
1000 memcpy(np, cp, cc);
1001 np += cc;
1002 len += cc;
1003 if (ep != NULL) {
1004 *argv++ = ap;
1005 ap = np;
1006 } else
1007 *argv += cc;
1008 if (maxcnt > 0 && len >= maxcnt) {
1009 /*
1010 * We're stopping prematurely. Terminate the
1011 * current string.
1012 */
1013 if (ep == NULL) {
1014 *np = '\0';
1015 *argv++ = ap;
1016 }
1017 break;
1018 }
1019 }
1020 /* Make sure argv is terminated. */
1021 *argv = NULL;
1022 return (kd->argv);
1023 }
1024
1025 static void
ps_str_a(struct ps_strings * p,u_long * addr,int * n)1026 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
1027 {
1028
1029 *addr = (u_long)p->ps_argvstr;
1030 *n = p->ps_nargvstr;
1031 }
1032
1033 static void
ps_str_e(struct ps_strings * p,u_long * addr,int * n)1034 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
1035 {
1036
1037 *addr = (u_long)p->ps_envstr;
1038 *n = p->ps_nenvstr;
1039 }
1040
1041 /*
1042 * Determine if the proc indicated by p is still active.
1043 * This test is not 100% foolproof in theory, but chances of
1044 * being wrong are very low.
1045 */
1046 static int
proc_verify(kvm_t * kd,u_long kernp,const struct miniproc * p)1047 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
1048 {
1049 struct proc kernproc;
1050
1051 /*
1052 * Just read in the whole proc. It's not that big relative
1053 * to the cost of the read system call.
1054 */
1055 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1056 sizeof(kernproc))
1057 return (0);
1058 return (p->p_pid == kernproc.p_pid &&
1059 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1060 }
1061
1062 static char **
kvm_doargv(kvm_t * kd,const struct miniproc * p,int nchr,void (* info)(struct ps_strings *,u_long *,int *))1063 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
1064 void (*info)(struct ps_strings *, u_long *, int *))
1065 {
1066 char **ap;
1067 u_long addr;
1068 int cnt;
1069 struct ps_strings arginfo;
1070
1071 /*
1072 * Pointers are stored at the top of the user stack.
1073 */
1074 if (p->p_stat == SZOMB)
1075 return (NULL);
1076 cnt = (int)kvm_ureadm(kd, p, p->p_psstrp,
1077 (void *)&arginfo, sizeof(arginfo));
1078 if (cnt != sizeof(arginfo))
1079 return (NULL);
1080
1081 (*info)(&arginfo, &addr, &cnt);
1082 if (cnt == 0)
1083 return (NULL);
1084 ap = kvm_argv(kd, p, addr, cnt, nchr);
1085 /*
1086 * For live kernels, make sure this process didn't go away.
1087 */
1088 if (ap != NULL && ISALIVE(kd) &&
1089 !proc_verify(kd, (u_long)p->p_paddr, p))
1090 ap = NULL;
1091 return (ap);
1092 }
1093
1094 /*
1095 * Get the command args. This code is now machine independent.
1096 */
1097 char **
kvm_getargv(kvm_t * kd,const struct kinfo_proc * kp,int nchr)1098 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1099 {
1100 struct miniproc p;
1101
1102 KPTOMINI(kp, &p);
1103 return (kvm_doargv(kd, &p, nchr, ps_str_a));
1104 }
1105
1106 char **
kvm_getenvv(kvm_t * kd,const struct kinfo_proc * kp,int nchr)1107 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1108 {
1109 struct miniproc p;
1110
1111 KPTOMINI(kp, &p);
1112 return (kvm_doargv(kd, &p, nchr, ps_str_e));
1113 }
1114
1115 static char **
kvm_doargv2(kvm_t * kd,pid_t pid,int type,int nchr)1116 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
1117 {
1118 size_t bufs;
1119 int narg, mib[4];
1120 size_t newargspc_len;
1121 char **ap, *bp, *endp;
1122
1123 /*
1124 * Check that there aren't an unreasonable number of arguments.
1125 */
1126 if (nchr > ARG_MAX)
1127 return (NULL);
1128
1129 if (nchr == 0)
1130 nchr = ARG_MAX;
1131
1132 /* Get number of strings in argv */
1133 mib[0] = CTL_KERN;
1134 mib[1] = KERN_PROC_ARGS;
1135 mib[2] = pid;
1136 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1137 bufs = sizeof(narg);
1138 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1139 return (NULL);
1140
1141 if (kd->argv == NULL) {
1142 /*
1143 * Try to avoid reallocs.
1144 */
1145 kd->argc = MAX(narg + 1, 32);
1146 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1147 if (kd->argv == NULL)
1148 return (NULL);
1149 } else if (narg + 1 > kd->argc) {
1150 kd->argc = MAX(2 * kd->argc, narg + 1);
1151 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1152 sizeof(*kd->argv));
1153 if (kd->argv == NULL)
1154 return (NULL);
1155 }
1156
1157 newargspc_len = MIN(nchr, ARG_MAX);
1158 KVM_ALLOC(kd, argspc, newargspc_len);
1159 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */
1160
1161 mib[0] = CTL_KERN;
1162 mib[1] = KERN_PROC_ARGS;
1163 mib[2] = pid;
1164 mib[3] = type;
1165 bufs = kd->argspc_len;
1166 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1167 return (NULL);
1168
1169 bp = kd->argspc;
1170 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */
1171 ap = kd->argv;
1172 endp = bp + MIN(nchr, bufs);
1173
1174 while (bp < endp) {
1175 *ap++ = bp;
1176 /*
1177 * XXX: don't need following anymore, or stick check
1178 * for max argc in above while loop?
1179 */
1180 if (ap >= kd->argv + kd->argc) {
1181 kd->argc *= 2;
1182 kd->argv = _kvm_realloc(kd, kd->argv,
1183 kd->argc * sizeof(*kd->argv));
1184 ap = kd->argv;
1185 }
1186 bp += strlen(bp) + 1;
1187 }
1188 *ap = NULL;
1189
1190 return (kd->argv);
1191 }
1192
1193 char **
kvm_getargv2(kvm_t * kd,const struct kinfo_proc2 * kp,int nchr)1194 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1195 {
1196
1197 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1198 }
1199
1200 char **
kvm_getenvv2(kvm_t * kd,const struct kinfo_proc2 * kp,int nchr)1201 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1202 {
1203
1204 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1205 }
1206
1207 /*
1208 * Read from user space. The user context is given by p.
1209 */
1210 static ssize_t
kvm_ureadm(kvm_t * kd,const struct miniproc * p,u_long uva,char * buf,size_t len)1211 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
1212 char *buf, size_t len)
1213 {
1214 char *cp;
1215
1216 cp = buf;
1217 while (len > 0) {
1218 size_t cc;
1219 char *dp;
1220 u_long cnt;
1221
1222 dp = _kvm_ureadm(kd, p, uva, &cnt);
1223 if (dp == NULL) {
1224 _kvm_err(kd, 0, "invalid address (%lx)", uva);
1225 return (0);
1226 }
1227 cc = (size_t)MIN(cnt, len);
1228 memcpy(cp, dp, cc);
1229 cp += cc;
1230 uva += cc;
1231 len -= cc;
1232 }
1233 return (ssize_t)(cp - buf);
1234 }
1235
1236 ssize_t
kvm_uread(kvm_t * kd,const struct proc * p,u_long uva,char * buf,size_t len)1237 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
1238 {
1239 struct miniproc mp;
1240
1241 PTOMINI(p, &mp);
1242 return (kvm_ureadm(kd, &mp, uva, buf, len));
1243 }
1244