xref: /linux/include/linux/mm_types.h (revision 32f51ead)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/maple_tree.h>
13 #include <linux/rwsem.h>
14 #include <linux/completion.h>
15 #include <linux/cpumask.h>
16 #include <linux/uprobes.h>
17 #include <linux/rcupdate.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/workqueue.h>
20 #include <linux/seqlock.h>
21 #include <linux/percpu_counter.h>
22 
23 #include <asm/mmu.h>
24 
25 #ifndef AT_VECTOR_SIZE_ARCH
26 #define AT_VECTOR_SIZE_ARCH 0
27 #endif
28 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29 
30 #define INIT_PASID	0
31 
32 struct address_space;
33 struct mem_cgroup;
34 
35 /*
36  * Each physical page in the system has a struct page associated with
37  * it to keep track of whatever it is we are using the page for at the
38  * moment. Note that we have no way to track which tasks are using
39  * a page, though if it is a pagecache page, rmap structures can tell us
40  * who is mapping it.
41  *
42  * If you allocate the page using alloc_pages(), you can use some of the
43  * space in struct page for your own purposes.  The five words in the main
44  * union are available, except for bit 0 of the first word which must be
45  * kept clear.  Many users use this word to store a pointer to an object
46  * which is guaranteed to be aligned.  If you use the same storage as
47  * page->mapping, you must restore it to NULL before freeing the page.
48  *
49  * The mapcount field must not be used for own purposes.
50  *
51  * If you want to use the refcount field, it must be used in such a way
52  * that other CPUs temporarily incrementing and then decrementing the
53  * refcount does not cause problems.  On receiving the page from
54  * alloc_pages(), the refcount will be positive.
55  *
56  * If you allocate pages of order > 0, you can use some of the fields
57  * in each subpage, but you may need to restore some of their values
58  * afterwards.
59  *
60  * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
61  * That requires that freelist & counters in struct slab be adjacent and
62  * double-word aligned. Because struct slab currently just reinterprets the
63  * bits of struct page, we align all struct pages to double-word boundaries,
64  * and ensure that 'freelist' is aligned within struct slab.
65  */
66 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
67 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
68 #else
69 #define _struct_page_alignment	__aligned(sizeof(unsigned long))
70 #endif
71 
72 struct page {
73 	unsigned long flags;		/* Atomic flags, some possibly
74 					 * updated asynchronously */
75 	/*
76 	 * Five words (20/40 bytes) are available in this union.
77 	 * WARNING: bit 0 of the first word is used for PageTail(). That
78 	 * means the other users of this union MUST NOT use the bit to
79 	 * avoid collision and false-positive PageTail().
80 	 */
81 	union {
82 		struct {	/* Page cache and anonymous pages */
83 			/**
84 			 * @lru: Pageout list, eg. active_list protected by
85 			 * lruvec->lru_lock.  Sometimes used as a generic list
86 			 * by the page owner.
87 			 */
88 			union {
89 				struct list_head lru;
90 
91 				/* Or, for the Unevictable "LRU list" slot */
92 				struct {
93 					/* Always even, to negate PageTail */
94 					void *__filler;
95 					/* Count page's or folio's mlocks */
96 					unsigned int mlock_count;
97 				};
98 
99 				/* Or, free page */
100 				struct list_head buddy_list;
101 				struct list_head pcp_list;
102 			};
103 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
104 			struct address_space *mapping;
105 			union {
106 				pgoff_t index;		/* Our offset within mapping. */
107 				unsigned long share;	/* share count for fsdax */
108 			};
109 			/**
110 			 * @private: Mapping-private opaque data.
111 			 * Usually used for buffer_heads if PagePrivate.
112 			 * Used for swp_entry_t if swapcache flag set.
113 			 * Indicates order in the buddy system if PageBuddy.
114 			 */
115 			unsigned long private;
116 		};
117 		struct {	/* page_pool used by netstack */
118 			/**
119 			 * @pp_magic: magic value to avoid recycling non
120 			 * page_pool allocated pages.
121 			 */
122 			unsigned long pp_magic;
123 			struct page_pool *pp;
124 			unsigned long _pp_mapping_pad;
125 			unsigned long dma_addr;
126 			atomic_long_t pp_ref_count;
127 		};
128 		struct {	/* Tail pages of compound page */
129 			unsigned long compound_head;	/* Bit zero is set */
130 		};
131 		struct {	/* ZONE_DEVICE pages */
132 			/** @pgmap: Points to the hosting device page map. */
133 			struct dev_pagemap *pgmap;
134 			void *zone_device_data;
135 			/*
136 			 * ZONE_DEVICE private pages are counted as being
137 			 * mapped so the next 3 words hold the mapping, index,
138 			 * and private fields from the source anonymous or
139 			 * page cache page while the page is migrated to device
140 			 * private memory.
141 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
142 			 * use the mapping, index, and private fields when
143 			 * pmem backed DAX files are mapped.
144 			 */
145 		};
146 
147 		/** @rcu_head: You can use this to free a page by RCU. */
148 		struct rcu_head rcu_head;
149 	};
150 
151 	union {		/* This union is 4 bytes in size. */
152 		/*
153 		 * For head pages of typed folios, the value stored here
154 		 * allows for determining what this page is used for. The
155 		 * tail pages of typed folios will not store a type
156 		 * (page_type == _mapcount == -1).
157 		 *
158 		 * See page-flags.h for a list of page types which are currently
159 		 * stored here.
160 		 *
161 		 * Owners of typed folios may reuse the lower 16 bit of the
162 		 * head page page_type field after setting the page type,
163 		 * but must reset these 16 bit to -1 before clearing the
164 		 * page type.
165 		 */
166 		unsigned int page_type;
167 
168 		/*
169 		 * For pages that are part of non-typed folios for which mappings
170 		 * are tracked via the RMAP, encodes the number of times this page
171 		 * is directly referenced by a page table.
172 		 *
173 		 * Note that the mapcount is always initialized to -1, so that
174 		 * transitions both from it and to it can be tracked, using
175 		 * atomic_inc_and_test() and atomic_add_negative(-1).
176 		 */
177 		atomic_t _mapcount;
178 	};
179 
180 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
181 	atomic_t _refcount;
182 
183 #ifdef CONFIG_MEMCG
184 	unsigned long memcg_data;
185 #elif defined(CONFIG_SLAB_OBJ_EXT)
186 	unsigned long _unused_slab_obj_exts;
187 #endif
188 
189 	/*
190 	 * On machines where all RAM is mapped into kernel address space,
191 	 * we can simply calculate the virtual address. On machines with
192 	 * highmem some memory is mapped into kernel virtual memory
193 	 * dynamically, so we need a place to store that address.
194 	 * Note that this field could be 16 bits on x86 ... ;)
195 	 *
196 	 * Architectures with slow multiplication can define
197 	 * WANT_PAGE_VIRTUAL in asm/page.h
198 	 */
199 #if defined(WANT_PAGE_VIRTUAL)
200 	void *virtual;			/* Kernel virtual address (NULL if
201 					   not kmapped, ie. highmem) */
202 #endif /* WANT_PAGE_VIRTUAL */
203 
204 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
205 	int _last_cpupid;
206 #endif
207 
208 #ifdef CONFIG_KMSAN
209 	/*
210 	 * KMSAN metadata for this page:
211 	 *  - shadow page: every bit indicates whether the corresponding
212 	 *    bit of the original page is initialized (0) or not (1);
213 	 *  - origin page: every 4 bytes contain an id of the stack trace
214 	 *    where the uninitialized value was created.
215 	 */
216 	struct page *kmsan_shadow;
217 	struct page *kmsan_origin;
218 #endif
219 } _struct_page_alignment;
220 
221 /*
222  * struct encoded_page - a nonexistent type marking this pointer
223  *
224  * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
225  * with the low bits of the pointer indicating extra context-dependent
226  * information. Only used in mmu_gather handling, and this acts as a type
227  * system check on that use.
228  *
229  * We only really have two guaranteed bits in general, although you could
230  * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
231  * for more.
232  *
233  * Use the supplied helper functions to endcode/decode the pointer and bits.
234  */
235 struct encoded_page;
236 
237 #define ENCODED_PAGE_BITS			3ul
238 
239 /* Perform rmap removal after we have flushed the TLB. */
240 #define ENCODED_PAGE_BIT_DELAY_RMAP		1ul
241 
242 /*
243  * The next item in an encoded_page array is the "nr_pages" argument, specifying
244  * the number of consecutive pages starting from this page, that all belong to
245  * the same folio. For example, "nr_pages" corresponds to the number of folio
246  * references that must be dropped. If this bit is not set, "nr_pages" is
247  * implicitly 1.
248  */
249 #define ENCODED_PAGE_BIT_NR_PAGES_NEXT		2ul
250 
encode_page(struct page * page,unsigned long flags)251 static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
252 {
253 	BUILD_BUG_ON(flags > ENCODED_PAGE_BITS);
254 	return (struct encoded_page *)(flags | (unsigned long)page);
255 }
256 
encoded_page_flags(struct encoded_page * page)257 static inline unsigned long encoded_page_flags(struct encoded_page *page)
258 {
259 	return ENCODED_PAGE_BITS & (unsigned long)page;
260 }
261 
encoded_page_ptr(struct encoded_page * page)262 static inline struct page *encoded_page_ptr(struct encoded_page *page)
263 {
264 	return (struct page *)(~ENCODED_PAGE_BITS & (unsigned long)page);
265 }
266 
encode_nr_pages(unsigned long nr)267 static __always_inline struct encoded_page *encode_nr_pages(unsigned long nr)
268 {
269 	VM_WARN_ON_ONCE((nr << 2) >> 2 != nr);
270 	return (struct encoded_page *)(nr << 2);
271 }
272 
encoded_nr_pages(struct encoded_page * page)273 static __always_inline unsigned long encoded_nr_pages(struct encoded_page *page)
274 {
275 	return ((unsigned long)page) >> 2;
276 }
277 
278 /*
279  * A swap entry has to fit into a "unsigned long", as the entry is hidden
280  * in the "index" field of the swapper address space.
281  */
282 typedef struct {
283 	unsigned long val;
284 } swp_entry_t;
285 
286 /**
287  * struct folio - Represents a contiguous set of bytes.
288  * @flags: Identical to the page flags.
289  * @lru: Least Recently Used list; tracks how recently this folio was used.
290  * @mlock_count: Number of times this folio has been pinned by mlock().
291  * @mapping: The file this page belongs to, or refers to the anon_vma for
292  *    anonymous memory.
293  * @index: Offset within the file, in units of pages.  For anonymous memory,
294  *    this is the index from the beginning of the mmap.
295  * @private: Filesystem per-folio data (see folio_attach_private()).
296  * @swap: Used for swp_entry_t if folio_test_swapcache().
297  * @_mapcount: Do not access this member directly.  Use folio_mapcount() to
298  *    find out how many times this folio is mapped by userspace.
299  * @_refcount: Do not access this member directly.  Use folio_ref_count()
300  *    to find how many references there are to this folio.
301  * @memcg_data: Memory Control Group data.
302  * @virtual: Virtual address in the kernel direct map.
303  * @_last_cpupid: IDs of last CPU and last process that accessed the folio.
304  * @_entire_mapcount: Do not use directly, call folio_entire_mapcount().
305  * @_large_mapcount: Do not use directly, call folio_mapcount().
306  * @_nr_pages_mapped: Do not use outside of rmap and debug code.
307  * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
308  * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
309  * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
310  * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
311  * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
312  * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
313  * @_deferred_list: Folios to be split under memory pressure.
314  * @_unused_slab_obj_exts: Placeholder to match obj_exts in struct slab.
315  *
316  * A folio is a physically, virtually and logically contiguous set
317  * of bytes.  It is a power-of-two in size, and it is aligned to that
318  * same power-of-two.  It is at least as large as %PAGE_SIZE.  If it is
319  * in the page cache, it is at a file offset which is a multiple of that
320  * power-of-two.  It may be mapped into userspace at an address which is
321  * at an arbitrary page offset, but its kernel virtual address is aligned
322  * to its size.
323  */
324 struct folio {
325 	/* private: don't document the anon union */
326 	union {
327 		struct {
328 	/* public: */
329 			unsigned long flags;
330 			union {
331 				struct list_head lru;
332 	/* private: avoid cluttering the output */
333 				struct {
334 					void *__filler;
335 	/* public: */
336 					unsigned int mlock_count;
337 	/* private: */
338 				};
339 	/* public: */
340 			};
341 			struct address_space *mapping;
342 			pgoff_t index;
343 			union {
344 				void *private;
345 				swp_entry_t swap;
346 			};
347 			atomic_t _mapcount;
348 			atomic_t _refcount;
349 #ifdef CONFIG_MEMCG
350 			unsigned long memcg_data;
351 #elif defined(CONFIG_SLAB_OBJ_EXT)
352 			unsigned long _unused_slab_obj_exts;
353 #endif
354 #if defined(WANT_PAGE_VIRTUAL)
355 			void *virtual;
356 #endif
357 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
358 			int _last_cpupid;
359 #endif
360 	/* private: the union with struct page is transitional */
361 		};
362 		struct page page;
363 	};
364 	union {
365 		struct {
366 			unsigned long _flags_1;
367 			unsigned long _head_1;
368 	/* public: */
369 			atomic_t _large_mapcount;
370 			atomic_t _entire_mapcount;
371 			atomic_t _nr_pages_mapped;
372 			atomic_t _pincount;
373 #ifdef CONFIG_64BIT
374 			unsigned int _folio_nr_pages;
375 #endif
376 	/* private: the union with struct page is transitional */
377 		};
378 		struct page __page_1;
379 	};
380 	union {
381 		struct {
382 			unsigned long _flags_2;
383 			unsigned long _head_2;
384 	/* public: */
385 			void *_hugetlb_subpool;
386 			void *_hugetlb_cgroup;
387 			void *_hugetlb_cgroup_rsvd;
388 			void *_hugetlb_hwpoison;
389 	/* private: the union with struct page is transitional */
390 		};
391 		struct {
392 			unsigned long _flags_2a;
393 			unsigned long _head_2a;
394 	/* public: */
395 			struct list_head _deferred_list;
396 	/* private: the union with struct page is transitional */
397 		};
398 		struct page __page_2;
399 	};
400 };
401 
402 #define FOLIO_MATCH(pg, fl)						\
403 	static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
404 FOLIO_MATCH(flags, flags);
405 FOLIO_MATCH(lru, lru);
406 FOLIO_MATCH(mapping, mapping);
407 FOLIO_MATCH(compound_head, lru);
408 FOLIO_MATCH(index, index);
409 FOLIO_MATCH(private, private);
410 FOLIO_MATCH(_mapcount, _mapcount);
411 FOLIO_MATCH(_refcount, _refcount);
412 #ifdef CONFIG_MEMCG
413 FOLIO_MATCH(memcg_data, memcg_data);
414 #endif
415 #if defined(WANT_PAGE_VIRTUAL)
416 FOLIO_MATCH(virtual, virtual);
417 #endif
418 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
419 FOLIO_MATCH(_last_cpupid, _last_cpupid);
420 #endif
421 #undef FOLIO_MATCH
422 #define FOLIO_MATCH(pg, fl)						\
423 	static_assert(offsetof(struct folio, fl) ==			\
424 			offsetof(struct page, pg) + sizeof(struct page))
425 FOLIO_MATCH(flags, _flags_1);
426 FOLIO_MATCH(compound_head, _head_1);
427 #undef FOLIO_MATCH
428 #define FOLIO_MATCH(pg, fl)						\
429 	static_assert(offsetof(struct folio, fl) ==			\
430 			offsetof(struct page, pg) + 2 * sizeof(struct page))
431 FOLIO_MATCH(flags, _flags_2);
432 FOLIO_MATCH(compound_head, _head_2);
433 FOLIO_MATCH(flags, _flags_2a);
434 FOLIO_MATCH(compound_head, _head_2a);
435 #undef FOLIO_MATCH
436 
437 /**
438  * struct ptdesc -    Memory descriptor for page tables.
439  * @__page_flags:     Same as page flags. Powerpc only.
440  * @pt_rcu_head:      For freeing page table pages.
441  * @pt_list:          List of used page tables. Used for s390 and x86.
442  * @_pt_pad_1:        Padding that aliases with page's compound head.
443  * @pmd_huge_pte:     Protected by ptdesc->ptl, used for THPs.
444  * @__page_mapping:   Aliases with page->mapping. Unused for page tables.
445  * @pt_index:         Used for s390 gmap.
446  * @pt_mm:            Used for x86 pgds.
447  * @pt_frag_refcount: For fragmented page table tracking. Powerpc only.
448  * @_pt_pad_2:        Padding to ensure proper alignment.
449  * @ptl:              Lock for the page table.
450  * @__page_type:      Same as page->page_type. Unused for page tables.
451  * @__page_refcount:  Same as page refcount.
452  * @pt_memcg_data:    Memcg data. Tracked for page tables here.
453  *
454  * This struct overlays struct page for now. Do not modify without a good
455  * understanding of the issues.
456  */
457 struct ptdesc {
458 	unsigned long __page_flags;
459 
460 	union {
461 		struct rcu_head pt_rcu_head;
462 		struct list_head pt_list;
463 		struct {
464 			unsigned long _pt_pad_1;
465 			pgtable_t pmd_huge_pte;
466 		};
467 	};
468 	unsigned long __page_mapping;
469 
470 	union {
471 		pgoff_t pt_index;
472 		struct mm_struct *pt_mm;
473 		atomic_t pt_frag_refcount;
474 	};
475 
476 	union {
477 		unsigned long _pt_pad_2;
478 #if ALLOC_SPLIT_PTLOCKS
479 		spinlock_t *ptl;
480 #else
481 		spinlock_t ptl;
482 #endif
483 	};
484 	unsigned int __page_type;
485 	atomic_t __page_refcount;
486 #ifdef CONFIG_MEMCG
487 	unsigned long pt_memcg_data;
488 #endif
489 };
490 
491 #define TABLE_MATCH(pg, pt)						\
492 	static_assert(offsetof(struct page, pg) == offsetof(struct ptdesc, pt))
493 TABLE_MATCH(flags, __page_flags);
494 TABLE_MATCH(compound_head, pt_list);
495 TABLE_MATCH(compound_head, _pt_pad_1);
496 TABLE_MATCH(mapping, __page_mapping);
497 TABLE_MATCH(index, pt_index);
498 TABLE_MATCH(rcu_head, pt_rcu_head);
499 TABLE_MATCH(page_type, __page_type);
500 TABLE_MATCH(_refcount, __page_refcount);
501 #ifdef CONFIG_MEMCG
502 TABLE_MATCH(memcg_data, pt_memcg_data);
503 #endif
504 #undef TABLE_MATCH
505 static_assert(sizeof(struct ptdesc) <= sizeof(struct page));
506 
507 #define ptdesc_page(pt)			(_Generic((pt),			\
508 	const struct ptdesc *:		(const struct page *)(pt),	\
509 	struct ptdesc *:		(struct page *)(pt)))
510 
511 #define ptdesc_folio(pt)		(_Generic((pt),			\
512 	const struct ptdesc *:		(const struct folio *)(pt),	\
513 	struct ptdesc *:		(struct folio *)(pt)))
514 
515 #define page_ptdesc(p)			(_Generic((p),			\
516 	const struct page *:		(const struct ptdesc *)(p),	\
517 	struct page *:			(struct ptdesc *)(p)))
518 
519 /*
520  * Used for sizing the vmemmap region on some architectures
521  */
522 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
523 
524 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
525 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
526 
527 /*
528  * page_private can be used on tail pages.  However, PagePrivate is only
529  * checked by the VM on the head page.  So page_private on the tail pages
530  * should be used for data that's ancillary to the head page (eg attaching
531  * buffer heads to tail pages after attaching buffer heads to the head page)
532  */
533 #define page_private(page)		((page)->private)
534 
set_page_private(struct page * page,unsigned long private)535 static inline void set_page_private(struct page *page, unsigned long private)
536 {
537 	page->private = private;
538 }
539 
folio_get_private(struct folio * folio)540 static inline void *folio_get_private(struct folio *folio)
541 {
542 	return folio->private;
543 }
544 
545 struct page_frag_cache {
546 	void * va;
547 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
548 	__u16 offset;
549 	__u16 size;
550 #else
551 	__u32 offset;
552 #endif
553 	/* we maintain a pagecount bias, so that we dont dirty cache line
554 	 * containing page->_refcount every time we allocate a fragment.
555 	 */
556 	unsigned int		pagecnt_bias;
557 	bool pfmemalloc;
558 };
559 
560 typedef unsigned long vm_flags_t;
561 
562 /*
563  * A region containing a mapping of a non-memory backed file under NOMMU
564  * conditions.  These are held in a global tree and are pinned by the VMAs that
565  * map parts of them.
566  */
567 struct vm_region {
568 	struct rb_node	vm_rb;		/* link in global region tree */
569 	vm_flags_t	vm_flags;	/* VMA vm_flags */
570 	unsigned long	vm_start;	/* start address of region */
571 	unsigned long	vm_end;		/* region initialised to here */
572 	unsigned long	vm_top;		/* region allocated to here */
573 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
574 	struct file	*vm_file;	/* the backing file or NULL */
575 
576 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
577 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
578 						* this region */
579 };
580 
581 #ifdef CONFIG_USERFAULTFD
582 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
583 struct vm_userfaultfd_ctx {
584 	struct userfaultfd_ctx *ctx;
585 };
586 #else /* CONFIG_USERFAULTFD */
587 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
588 struct vm_userfaultfd_ctx {};
589 #endif /* CONFIG_USERFAULTFD */
590 
591 struct anon_vma_name {
592 	struct kref kref;
593 	/* The name needs to be at the end because it is dynamically sized. */
594 	char name[];
595 };
596 
597 #ifdef CONFIG_ANON_VMA_NAME
598 /*
599  * mmap_lock should be read-locked when calling anon_vma_name(). Caller should
600  * either keep holding the lock while using the returned pointer or it should
601  * raise anon_vma_name refcount before releasing the lock.
602  */
603 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma);
604 struct anon_vma_name *anon_vma_name_alloc(const char *name);
605 void anon_vma_name_free(struct kref *kref);
606 #else /* CONFIG_ANON_VMA_NAME */
anon_vma_name(struct vm_area_struct * vma)607 static inline struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
608 {
609 	return NULL;
610 }
611 
anon_vma_name_alloc(const char * name)612 static inline struct anon_vma_name *anon_vma_name_alloc(const char *name)
613 {
614 	return NULL;
615 }
616 #endif
617 
618 struct vma_lock {
619 	struct rw_semaphore lock;
620 };
621 
622 struct vma_numab_state {
623 	/*
624 	 * Initialised as time in 'jiffies' after which VMA
625 	 * should be scanned.  Delays first scan of new VMA by at
626 	 * least sysctl_numa_balancing_scan_delay:
627 	 */
628 	unsigned long next_scan;
629 
630 	/*
631 	 * Time in jiffies when pids_active[] is reset to
632 	 * detect phase change behaviour:
633 	 */
634 	unsigned long pids_active_reset;
635 
636 	/*
637 	 * Approximate tracking of PIDs that trapped a NUMA hinting
638 	 * fault. May produce false positives due to hash collisions.
639 	 *
640 	 *   [0] Previous PID tracking
641 	 *   [1] Current PID tracking
642 	 *
643 	 * Window moves after next_pid_reset has expired approximately
644 	 * every VMA_PID_RESET_PERIOD jiffies:
645 	 */
646 	unsigned long pids_active[2];
647 
648 	/* MM scan sequence ID when scan first started after VMA creation */
649 	int start_scan_seq;
650 
651 	/*
652 	 * MM scan sequence ID when the VMA was last completely scanned.
653 	 * A VMA is not eligible for scanning if prev_scan_seq == numa_scan_seq
654 	 */
655 	int prev_scan_seq;
656 };
657 
658 /*
659  * This struct describes a virtual memory area. There is one of these
660  * per VM-area/task. A VM area is any part of the process virtual memory
661  * space that has a special rule for the page-fault handlers (ie a shared
662  * library, the executable area etc).
663  *
664  * Only explicitly marked struct members may be accessed by RCU readers before
665  * getting a stable reference.
666  */
667 struct vm_area_struct {
668 	/* The first cache line has the info for VMA tree walking. */
669 
670 	union {
671 		struct {
672 			/* VMA covers [vm_start; vm_end) addresses within mm */
673 			unsigned long vm_start;
674 			unsigned long vm_end;
675 		};
676 #ifdef CONFIG_PER_VMA_LOCK
677 		struct rcu_head vm_rcu;	/* Used for deferred freeing. */
678 #endif
679 	};
680 
681 	/*
682 	 * The address space we belong to.
683 	 * Unstable RCU readers are allowed to read this.
684 	 */
685 	struct mm_struct *vm_mm;
686 	pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
687 
688 	/*
689 	 * Flags, see mm.h.
690 	 * To modify use vm_flags_{init|reset|set|clear|mod} functions.
691 	 */
692 	union {
693 		const vm_flags_t vm_flags;
694 		vm_flags_t __private __vm_flags;
695 	};
696 
697 #ifdef CONFIG_PER_VMA_LOCK
698 	/*
699 	 * Flag to indicate areas detached from the mm->mm_mt tree.
700 	 * Unstable RCU readers are allowed to read this.
701 	 */
702 	bool detached;
703 
704 	/*
705 	 * Can only be written (using WRITE_ONCE()) while holding both:
706 	 *  - mmap_lock (in write mode)
707 	 *  - vm_lock->lock (in write mode)
708 	 * Can be read reliably while holding one of:
709 	 *  - mmap_lock (in read or write mode)
710 	 *  - vm_lock->lock (in read or write mode)
711 	 * Can be read unreliably (using READ_ONCE()) for pessimistic bailout
712 	 * while holding nothing (except RCU to keep the VMA struct allocated).
713 	 *
714 	 * This sequence counter is explicitly allowed to overflow; sequence
715 	 * counter reuse can only lead to occasional unnecessary use of the
716 	 * slowpath.
717 	 */
718 	int vm_lock_seq;
719 	/* Unstable RCU readers are allowed to read this. */
720 	struct vma_lock *vm_lock;
721 #endif
722 
723 	/*
724 	 * For areas with an address space and backing store,
725 	 * linkage into the address_space->i_mmap interval tree.
726 	 *
727 	 */
728 	struct {
729 		struct rb_node rb;
730 		unsigned long rb_subtree_last;
731 	} shared;
732 
733 	/*
734 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
735 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
736 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
737 	 * or brk vma (with NULL file) can only be in an anon_vma list.
738 	 */
739 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
740 					  * page_table_lock */
741 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
742 
743 	/* Function pointers to deal with this struct. */
744 	const struct vm_operations_struct *vm_ops;
745 
746 	/* Information about our backing store: */
747 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
748 					   units */
749 	struct file * vm_file;		/* File we map to (can be NULL). */
750 	void * vm_private_data;		/* was vm_pte (shared mem) */
751 
752 #ifdef CONFIG_ANON_VMA_NAME
753 	/*
754 	 * For private and shared anonymous mappings, a pointer to a null
755 	 * terminated string containing the name given to the vma, or NULL if
756 	 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
757 	 */
758 	struct anon_vma_name *anon_name;
759 #endif
760 #ifdef CONFIG_SWAP
761 	atomic_long_t swap_readahead_info;
762 #endif
763 #ifndef CONFIG_MMU
764 	struct vm_region *vm_region;	/* NOMMU mapping region */
765 #endif
766 #ifdef CONFIG_NUMA
767 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
768 #endif
769 #ifdef CONFIG_NUMA_BALANCING
770 	struct vma_numab_state *numab_state;	/* NUMA Balancing state */
771 #endif
772 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
773 } __randomize_layout;
774 
775 #ifdef CONFIG_NUMA
776 #define vma_policy(vma) ((vma)->vm_policy)
777 #else
778 #define vma_policy(vma) NULL
779 #endif
780 
781 #ifdef CONFIG_SCHED_MM_CID
782 struct mm_cid {
783 	u64 time;
784 	int cid;
785 };
786 #endif
787 
788 struct kioctx_table;
789 struct iommu_mm_data;
790 struct mm_struct {
791 	struct {
792 		/*
793 		 * Fields which are often written to are placed in a separate
794 		 * cache line.
795 		 */
796 		struct {
797 			/**
798 			 * @mm_count: The number of references to &struct
799 			 * mm_struct (@mm_users count as 1).
800 			 *
801 			 * Use mmgrab()/mmdrop() to modify. When this drops to
802 			 * 0, the &struct mm_struct is freed.
803 			 */
804 			atomic_t mm_count;
805 		} ____cacheline_aligned_in_smp;
806 
807 		struct maple_tree mm_mt;
808 
809 		unsigned long mmap_base;	/* base of mmap area */
810 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
811 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
812 		/* Base addresses for compatible mmap() */
813 		unsigned long mmap_compat_base;
814 		unsigned long mmap_compat_legacy_base;
815 #endif
816 		unsigned long task_size;	/* size of task vm space */
817 		pgd_t * pgd;
818 
819 #ifdef CONFIG_MEMBARRIER
820 		/**
821 		 * @membarrier_state: Flags controlling membarrier behavior.
822 		 *
823 		 * This field is close to @pgd to hopefully fit in the same
824 		 * cache-line, which needs to be touched by switch_mm().
825 		 */
826 		atomic_t membarrier_state;
827 #endif
828 
829 		/**
830 		 * @mm_users: The number of users including userspace.
831 		 *
832 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
833 		 * drops to 0 (i.e. when the task exits and there are no other
834 		 * temporary reference holders), we also release a reference on
835 		 * @mm_count (which may then free the &struct mm_struct if
836 		 * @mm_count also drops to 0).
837 		 */
838 		atomic_t mm_users;
839 
840 #ifdef CONFIG_SCHED_MM_CID
841 		/**
842 		 * @pcpu_cid: Per-cpu current cid.
843 		 *
844 		 * Keep track of the currently allocated mm_cid for each cpu.
845 		 * The per-cpu mm_cid values are serialized by their respective
846 		 * runqueue locks.
847 		 */
848 		struct mm_cid __percpu *pcpu_cid;
849 		/*
850 		 * @mm_cid_next_scan: Next mm_cid scan (in jiffies).
851 		 *
852 		 * When the next mm_cid scan is due (in jiffies).
853 		 */
854 		unsigned long mm_cid_next_scan;
855 #endif
856 #ifdef CONFIG_MMU
857 		atomic_long_t pgtables_bytes;	/* size of all page tables */
858 #endif
859 		int map_count;			/* number of VMAs */
860 
861 		spinlock_t page_table_lock; /* Protects page tables and some
862 					     * counters
863 					     */
864 		/*
865 		 * With some kernel config, the current mmap_lock's offset
866 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
867 		 * its two hot fields 'count' and 'owner' sit in 2 different
868 		 * cachelines,  and when mmap_lock is highly contended, both
869 		 * of the 2 fields will be accessed frequently, current layout
870 		 * will help to reduce cache bouncing.
871 		 *
872 		 * So please be careful with adding new fields before
873 		 * mmap_lock, which can easily push the 2 fields into one
874 		 * cacheline.
875 		 */
876 		struct rw_semaphore mmap_lock;
877 
878 		struct list_head mmlist; /* List of maybe swapped mm's.	These
879 					  * are globally strung together off
880 					  * init_mm.mmlist, and are protected
881 					  * by mmlist_lock
882 					  */
883 #ifdef CONFIG_PER_VMA_LOCK
884 		/*
885 		 * This field has lock-like semantics, meaning it is sometimes
886 		 * accessed with ACQUIRE/RELEASE semantics.
887 		 * Roughly speaking, incrementing the sequence number is
888 		 * equivalent to releasing locks on VMAs; reading the sequence
889 		 * number can be part of taking a read lock on a VMA.
890 		 *
891 		 * Can be modified under write mmap_lock using RELEASE
892 		 * semantics.
893 		 * Can be read with no other protection when holding write
894 		 * mmap_lock.
895 		 * Can be read with ACQUIRE semantics if not holding write
896 		 * mmap_lock.
897 		 */
898 		int mm_lock_seq;
899 #endif
900 
901 
902 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
903 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
904 
905 		unsigned long total_vm;	   /* Total pages mapped */
906 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
907 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
908 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
909 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
910 		unsigned long stack_vm;	   /* VM_STACK */
911 		unsigned long def_flags;
912 
913 		/**
914 		 * @write_protect_seq: Locked when any thread is write
915 		 * protecting pages mapped by this mm to enforce a later COW,
916 		 * for instance during page table copying for fork().
917 		 */
918 		seqcount_t write_protect_seq;
919 
920 		spinlock_t arg_lock; /* protect the below fields */
921 
922 		unsigned long start_code, end_code, start_data, end_data;
923 		unsigned long start_brk, brk, start_stack;
924 		unsigned long arg_start, arg_end, env_start, env_end;
925 
926 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
927 
928 		struct percpu_counter rss_stat[NR_MM_COUNTERS];
929 
930 		struct linux_binfmt *binfmt;
931 
932 		/* Architecture-specific MM context */
933 		mm_context_t context;
934 
935 		unsigned long flags; /* Must use atomic bitops to access */
936 
937 #ifdef CONFIG_AIO
938 		spinlock_t			ioctx_lock;
939 		struct kioctx_table __rcu	*ioctx_table;
940 #endif
941 #ifdef CONFIG_MEMCG
942 		/*
943 		 * "owner" points to a task that is regarded as the canonical
944 		 * user/owner of this mm. All of the following must be true in
945 		 * order for it to be changed:
946 		 *
947 		 * current == mm->owner
948 		 * current->mm != mm
949 		 * new_owner->mm == mm
950 		 * new_owner->alloc_lock is held
951 		 */
952 		struct task_struct __rcu *owner;
953 #endif
954 		struct user_namespace *user_ns;
955 
956 		/* store ref to file /proc/<pid>/exe symlink points to */
957 		struct file __rcu *exe_file;
958 #ifdef CONFIG_MMU_NOTIFIER
959 		struct mmu_notifier_subscriptions *notifier_subscriptions;
960 #endif
961 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
962 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
963 #endif
964 #ifdef CONFIG_NUMA_BALANCING
965 		/*
966 		 * numa_next_scan is the next time that PTEs will be remapped
967 		 * PROT_NONE to trigger NUMA hinting faults; such faults gather
968 		 * statistics and migrate pages to new nodes if necessary.
969 		 */
970 		unsigned long numa_next_scan;
971 
972 		/* Restart point for scanning and remapping PTEs. */
973 		unsigned long numa_scan_offset;
974 
975 		/* numa_scan_seq prevents two threads remapping PTEs. */
976 		int numa_scan_seq;
977 #endif
978 		/*
979 		 * An operation with batched TLB flushing is going on. Anything
980 		 * that can move process memory needs to flush the TLB when
981 		 * moving a PROT_NONE mapped page.
982 		 */
983 		atomic_t tlb_flush_pending;
984 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
985 		/* See flush_tlb_batched_pending() */
986 		atomic_t tlb_flush_batched;
987 #endif
988 		struct uprobes_state uprobes_state;
989 #ifdef CONFIG_PREEMPT_RT
990 		struct rcu_head delayed_drop;
991 #endif
992 #ifdef CONFIG_HUGETLB_PAGE
993 		atomic_long_t hugetlb_usage;
994 #endif
995 		struct work_struct async_put_work;
996 
997 #ifdef CONFIG_IOMMU_MM_DATA
998 		struct iommu_mm_data *iommu_mm;
999 #endif
1000 #ifdef CONFIG_KSM
1001 		/*
1002 		 * Represent how many pages of this process are involved in KSM
1003 		 * merging (not including ksm_zero_pages).
1004 		 */
1005 		unsigned long ksm_merging_pages;
1006 		/*
1007 		 * Represent how many pages are checked for ksm merging
1008 		 * including merged and not merged.
1009 		 */
1010 		unsigned long ksm_rmap_items;
1011 		/*
1012 		 * Represent how many empty pages are merged with kernel zero
1013 		 * pages when enabling KSM use_zero_pages.
1014 		 */
1015 		atomic_long_t ksm_zero_pages;
1016 #endif /* CONFIG_KSM */
1017 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1018 		struct {
1019 			/* this mm_struct is on lru_gen_mm_list */
1020 			struct list_head list;
1021 			/*
1022 			 * Set when switching to this mm_struct, as a hint of
1023 			 * whether it has been used since the last time per-node
1024 			 * page table walkers cleared the corresponding bits.
1025 			 */
1026 			unsigned long bitmap;
1027 #ifdef CONFIG_MEMCG
1028 			/* points to the memcg of "owner" above */
1029 			struct mem_cgroup *memcg;
1030 #endif
1031 		} lru_gen;
1032 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1033 	} __randomize_layout;
1034 
1035 	/*
1036 	 * The mm_cpumask needs to be at the end of mm_struct, because it
1037 	 * is dynamically sized based on nr_cpu_ids.
1038 	 */
1039 	unsigned long cpu_bitmap[];
1040 };
1041 
1042 #define MM_MT_FLAGS	(MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN | \
1043 			 MT_FLAGS_USE_RCU)
1044 extern struct mm_struct init_mm;
1045 
1046 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)1047 static inline void mm_init_cpumask(struct mm_struct *mm)
1048 {
1049 	unsigned long cpu_bitmap = (unsigned long)mm;
1050 
1051 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1052 	cpumask_clear((struct cpumask *)cpu_bitmap);
1053 }
1054 
1055 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)1056 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
1057 {
1058 	return (struct cpumask *)&mm->cpu_bitmap;
1059 }
1060 
1061 #ifdef CONFIG_LRU_GEN
1062 
1063 struct lru_gen_mm_list {
1064 	/* mm_struct list for page table walkers */
1065 	struct list_head fifo;
1066 	/* protects the list above */
1067 	spinlock_t lock;
1068 };
1069 
1070 #endif /* CONFIG_LRU_GEN */
1071 
1072 #ifdef CONFIG_LRU_GEN_WALKS_MMU
1073 
1074 void lru_gen_add_mm(struct mm_struct *mm);
1075 void lru_gen_del_mm(struct mm_struct *mm);
1076 void lru_gen_migrate_mm(struct mm_struct *mm);
1077 
lru_gen_init_mm(struct mm_struct * mm)1078 static inline void lru_gen_init_mm(struct mm_struct *mm)
1079 {
1080 	INIT_LIST_HEAD(&mm->lru_gen.list);
1081 	mm->lru_gen.bitmap = 0;
1082 #ifdef CONFIG_MEMCG
1083 	mm->lru_gen.memcg = NULL;
1084 #endif
1085 }
1086 
lru_gen_use_mm(struct mm_struct * mm)1087 static inline void lru_gen_use_mm(struct mm_struct *mm)
1088 {
1089 	/*
1090 	 * When the bitmap is set, page reclaim knows this mm_struct has been
1091 	 * used since the last time it cleared the bitmap. So it might be worth
1092 	 * walking the page tables of this mm_struct to clear the accessed bit.
1093 	 */
1094 	WRITE_ONCE(mm->lru_gen.bitmap, -1);
1095 }
1096 
1097 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
1098 
lru_gen_add_mm(struct mm_struct * mm)1099 static inline void lru_gen_add_mm(struct mm_struct *mm)
1100 {
1101 }
1102 
lru_gen_del_mm(struct mm_struct * mm)1103 static inline void lru_gen_del_mm(struct mm_struct *mm)
1104 {
1105 }
1106 
lru_gen_migrate_mm(struct mm_struct * mm)1107 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
1108 {
1109 }
1110 
lru_gen_init_mm(struct mm_struct * mm)1111 static inline void lru_gen_init_mm(struct mm_struct *mm)
1112 {
1113 }
1114 
lru_gen_use_mm(struct mm_struct * mm)1115 static inline void lru_gen_use_mm(struct mm_struct *mm)
1116 {
1117 }
1118 
1119 #endif /* CONFIG_LRU_GEN_WALKS_MMU */
1120 
1121 struct vma_iterator {
1122 	struct ma_state mas;
1123 };
1124 
1125 #define VMA_ITERATOR(name, __mm, __addr)				\
1126 	struct vma_iterator name = {					\
1127 		.mas = {						\
1128 			.tree = &(__mm)->mm_mt,				\
1129 			.index = __addr,				\
1130 			.node = NULL,					\
1131 			.status = ma_start,				\
1132 		},							\
1133 	}
1134 
vma_iter_init(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long addr)1135 static inline void vma_iter_init(struct vma_iterator *vmi,
1136 		struct mm_struct *mm, unsigned long addr)
1137 {
1138 	mas_init(&vmi->mas, &mm->mm_mt, addr);
1139 }
1140 
1141 #ifdef CONFIG_SCHED_MM_CID
1142 
1143 enum mm_cid_state {
1144 	MM_CID_UNSET = -1U,		/* Unset state has lazy_put flag set. */
1145 	MM_CID_LAZY_PUT = (1U << 31),
1146 };
1147 
mm_cid_is_unset(int cid)1148 static inline bool mm_cid_is_unset(int cid)
1149 {
1150 	return cid == MM_CID_UNSET;
1151 }
1152 
mm_cid_is_lazy_put(int cid)1153 static inline bool mm_cid_is_lazy_put(int cid)
1154 {
1155 	return !mm_cid_is_unset(cid) && (cid & MM_CID_LAZY_PUT);
1156 }
1157 
mm_cid_is_valid(int cid)1158 static inline bool mm_cid_is_valid(int cid)
1159 {
1160 	return !(cid & MM_CID_LAZY_PUT);
1161 }
1162 
mm_cid_set_lazy_put(int cid)1163 static inline int mm_cid_set_lazy_put(int cid)
1164 {
1165 	return cid | MM_CID_LAZY_PUT;
1166 }
1167 
mm_cid_clear_lazy_put(int cid)1168 static inline int mm_cid_clear_lazy_put(int cid)
1169 {
1170 	return cid & ~MM_CID_LAZY_PUT;
1171 }
1172 
1173 /* Accessor for struct mm_struct's cidmask. */
mm_cidmask(struct mm_struct * mm)1174 static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
1175 {
1176 	unsigned long cid_bitmap = (unsigned long)mm;
1177 
1178 	cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
1179 	/* Skip cpu_bitmap */
1180 	cid_bitmap += cpumask_size();
1181 	return (struct cpumask *)cid_bitmap;
1182 }
1183 
mm_init_cid(struct mm_struct * mm)1184 static inline void mm_init_cid(struct mm_struct *mm)
1185 {
1186 	int i;
1187 
1188 	for_each_possible_cpu(i) {
1189 		struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, i);
1190 
1191 		pcpu_cid->cid = MM_CID_UNSET;
1192 		pcpu_cid->time = 0;
1193 	}
1194 	cpumask_clear(mm_cidmask(mm));
1195 }
1196 
mm_alloc_cid_noprof(struct mm_struct * mm)1197 static inline int mm_alloc_cid_noprof(struct mm_struct *mm)
1198 {
1199 	mm->pcpu_cid = alloc_percpu_noprof(struct mm_cid);
1200 	if (!mm->pcpu_cid)
1201 		return -ENOMEM;
1202 	mm_init_cid(mm);
1203 	return 0;
1204 }
1205 #define mm_alloc_cid(...)	alloc_hooks(mm_alloc_cid_noprof(__VA_ARGS__))
1206 
mm_destroy_cid(struct mm_struct * mm)1207 static inline void mm_destroy_cid(struct mm_struct *mm)
1208 {
1209 	free_percpu(mm->pcpu_cid);
1210 	mm->pcpu_cid = NULL;
1211 }
1212 
mm_cid_size(void)1213 static inline unsigned int mm_cid_size(void)
1214 {
1215 	return cpumask_size();
1216 }
1217 #else /* CONFIG_SCHED_MM_CID */
mm_init_cid(struct mm_struct * mm)1218 static inline void mm_init_cid(struct mm_struct *mm) { }
mm_alloc_cid(struct mm_struct * mm)1219 static inline int mm_alloc_cid(struct mm_struct *mm) { return 0; }
mm_destroy_cid(struct mm_struct * mm)1220 static inline void mm_destroy_cid(struct mm_struct *mm) { }
mm_cid_size(void)1221 static inline unsigned int mm_cid_size(void)
1222 {
1223 	return 0;
1224 }
1225 #endif /* CONFIG_SCHED_MM_CID */
1226 
1227 struct mmu_gather;
1228 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
1229 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
1230 extern void tlb_finish_mmu(struct mmu_gather *tlb);
1231 
1232 struct vm_fault;
1233 
1234 /**
1235  * typedef vm_fault_t - Return type for page fault handlers.
1236  *
1237  * Page fault handlers return a bitmask of %VM_FAULT values.
1238  */
1239 typedef __bitwise unsigned int vm_fault_t;
1240 
1241 /**
1242  * enum vm_fault_reason - Page fault handlers return a bitmask of
1243  * these values to tell the core VM what happened when handling the
1244  * fault. Used to decide whether a process gets delivered SIGBUS or
1245  * just gets major/minor fault counters bumped up.
1246  *
1247  * @VM_FAULT_OOM:		Out Of Memory
1248  * @VM_FAULT_SIGBUS:		Bad access
1249  * @VM_FAULT_MAJOR:		Page read from storage
1250  * @VM_FAULT_HWPOISON:		Hit poisoned small page
1251  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
1252  *				in upper bits
1253  * @VM_FAULT_SIGSEGV:		segmentation fault
1254  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
1255  * @VM_FAULT_LOCKED:		->fault locked the returned page
1256  * @VM_FAULT_RETRY:		->fault blocked, must retry
1257  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
1258  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
1259  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
1260  *				fsync() to complete (for synchronous page faults
1261  *				in DAX)
1262  * @VM_FAULT_COMPLETED:		->fault completed, meanwhile mmap lock released
1263  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
1264  *
1265  */
1266 enum vm_fault_reason {
1267 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
1268 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
1269 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
1270 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
1271 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
1272 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
1273 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
1274 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
1275 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
1276 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
1277 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
1278 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
1279 	VM_FAULT_COMPLETED      = (__force vm_fault_t)0x004000,
1280 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
1281 };
1282 
1283 /* Encode hstate index for a hwpoisoned large page */
1284 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
1285 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
1286 
1287 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
1288 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
1289 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
1290 
1291 #define VM_FAULT_RESULT_TRACE \
1292 	{ VM_FAULT_OOM,                 "OOM" },	\
1293 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
1294 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
1295 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
1296 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
1297 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
1298 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
1299 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
1300 	{ VM_FAULT_RETRY,               "RETRY" },	\
1301 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
1302 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
1303 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" },	\
1304 	{ VM_FAULT_COMPLETED,           "COMPLETED" }
1305 
1306 struct vm_special_mapping {
1307 	const char *name;	/* The name, e.g. "[vdso]". */
1308 
1309 	/*
1310 	 * If .fault is not provided, this points to a
1311 	 * NULL-terminated array of pages that back the special mapping.
1312 	 *
1313 	 * This must not be NULL unless .fault is provided.
1314 	 */
1315 	struct page **pages;
1316 
1317 	/*
1318 	 * If non-NULL, then this is called to resolve page faults
1319 	 * on the special mapping.  If used, .pages is not checked.
1320 	 */
1321 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1322 				struct vm_area_struct *vma,
1323 				struct vm_fault *vmf);
1324 
1325 	int (*mremap)(const struct vm_special_mapping *sm,
1326 		     struct vm_area_struct *new_vma);
1327 
1328 	void (*close)(const struct vm_special_mapping *sm,
1329 		      struct vm_area_struct *vma);
1330 };
1331 
1332 enum tlb_flush_reason {
1333 	TLB_FLUSH_ON_TASK_SWITCH,
1334 	TLB_REMOTE_SHOOTDOWN,
1335 	TLB_LOCAL_SHOOTDOWN,
1336 	TLB_LOCAL_MM_SHOOTDOWN,
1337 	TLB_REMOTE_SEND_IPI,
1338 	NR_TLB_FLUSH_REASONS,
1339 };
1340 
1341 /**
1342  * enum fault_flag - Fault flag definitions.
1343  * @FAULT_FLAG_WRITE: Fault was a write fault.
1344  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1345  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1346  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1347  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1348  * @FAULT_FLAG_TRIED: The fault has been tried once.
1349  * @FAULT_FLAG_USER: The fault originated in userspace.
1350  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1351  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1352  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1353  * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1354  *                      COW mapping, making sure that an exclusive anon page is
1355  *                      mapped after the fault.
1356  * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1357  *                        We should only access orig_pte if this flag set.
1358  * @FAULT_FLAG_VMA_LOCK: The fault is handled under VMA lock.
1359  *
1360  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1361  * whether we would allow page faults to retry by specifying these two
1362  * fault flags correctly.  Currently there can be three legal combinations:
1363  *
1364  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
1365  *                              this is the first try
1366  *
1367  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
1368  *                              we've already tried at least once
1369  *
1370  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1371  *
1372  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1373  * be used.  Note that page faults can be allowed to retry for multiple times,
1374  * in which case we'll have an initial fault with flags (a) then later on
1375  * continuous faults with flags (b).  We should always try to detect pending
1376  * signals before a retry to make sure the continuous page faults can still be
1377  * interrupted if necessary.
1378  *
1379  * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1380  * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1381  * applied to mappings that are not COW mappings.
1382  */
1383 enum fault_flag {
1384 	FAULT_FLAG_WRITE =		1 << 0,
1385 	FAULT_FLAG_MKWRITE =		1 << 1,
1386 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
1387 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
1388 	FAULT_FLAG_KILLABLE =		1 << 4,
1389 	FAULT_FLAG_TRIED = 		1 << 5,
1390 	FAULT_FLAG_USER =		1 << 6,
1391 	FAULT_FLAG_REMOTE =		1 << 7,
1392 	FAULT_FLAG_INSTRUCTION =	1 << 8,
1393 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
1394 	FAULT_FLAG_UNSHARE =		1 << 10,
1395 	FAULT_FLAG_ORIG_PTE_VALID =	1 << 11,
1396 	FAULT_FLAG_VMA_LOCK =		1 << 12,
1397 };
1398 
1399 typedef unsigned int __bitwise zap_flags_t;
1400 
1401 /* Flags for clear_young_dirty_ptes(). */
1402 typedef int __bitwise cydp_t;
1403 
1404 /* Clear the access bit */
1405 #define CYDP_CLEAR_YOUNG		((__force cydp_t)BIT(0))
1406 
1407 /* Clear the dirty bit */
1408 #define CYDP_CLEAR_DIRTY		((__force cydp_t)BIT(1))
1409 
1410 /*
1411  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
1412  * other. Here is what they mean, and how to use them:
1413  *
1414  *
1415  * FIXME: For pages which are part of a filesystem, mappings are subject to the
1416  * lifetime enforced by the filesystem and we need guarantees that longterm
1417  * users like RDMA and V4L2 only establish mappings which coordinate usage with
1418  * the filesystem.  Ideas for this coordination include revoking the longterm
1419  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
1420  * added after the problem with filesystems was found FS DAX VMAs are
1421  * specifically failed.  Filesystem pages are still subject to bugs and use of
1422  * FOLL_LONGTERM should be avoided on those pages.
1423  *
1424  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
1425  * that region.  And so, CMA attempts to migrate the page before pinning, when
1426  * FOLL_LONGTERM is specified.
1427  *
1428  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
1429  * but an additional pin counting system) will be invoked. This is intended for
1430  * anything that gets a page reference and then touches page data (for example,
1431  * Direct IO). This lets the filesystem know that some non-file-system entity is
1432  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
1433  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
1434  * a call to unpin_user_page().
1435  *
1436  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
1437  * and separate refcounting mechanisms, however, and that means that each has
1438  * its own acquire and release mechanisms:
1439  *
1440  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
1441  *
1442  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
1443  *
1444  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
1445  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
1446  * calls applied to them, and that's perfectly OK. This is a constraint on the
1447  * callers, not on the pages.)
1448  *
1449  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
1450  * directly by the caller. That's in order to help avoid mismatches when
1451  * releasing pages: get_user_pages*() pages must be released via put_page(),
1452  * while pin_user_pages*() pages must be released via unpin_user_page().
1453  *
1454  * Please see Documentation/core-api/pin_user_pages.rst for more information.
1455  */
1456 
1457 enum {
1458 	/* check pte is writable */
1459 	FOLL_WRITE = 1 << 0,
1460 	/* do get_page on page */
1461 	FOLL_GET = 1 << 1,
1462 	/* give error on hole if it would be zero */
1463 	FOLL_DUMP = 1 << 2,
1464 	/* get_user_pages read/write w/o permission */
1465 	FOLL_FORCE = 1 << 3,
1466 	/*
1467 	 * if a disk transfer is needed, start the IO and return without waiting
1468 	 * upon it
1469 	 */
1470 	FOLL_NOWAIT = 1 << 4,
1471 	/* do not fault in pages */
1472 	FOLL_NOFAULT = 1 << 5,
1473 	/* check page is hwpoisoned */
1474 	FOLL_HWPOISON = 1 << 6,
1475 	/* don't do file mappings */
1476 	FOLL_ANON = 1 << 7,
1477 	/*
1478 	 * FOLL_LONGTERM indicates that the page will be held for an indefinite
1479 	 * time period _often_ under userspace control.  This is in contrast to
1480 	 * iov_iter_get_pages(), whose usages are transient.
1481 	 */
1482 	FOLL_LONGTERM = 1 << 8,
1483 	/* split huge pmd before returning */
1484 	FOLL_SPLIT_PMD = 1 << 9,
1485 	/* allow returning PCI P2PDMA pages */
1486 	FOLL_PCI_P2PDMA = 1 << 10,
1487 	/* allow interrupts from generic signals */
1488 	FOLL_INTERRUPTIBLE = 1 << 11,
1489 	/*
1490 	 * Always honor (trigger) NUMA hinting faults.
1491 	 *
1492 	 * FOLL_WRITE implicitly honors NUMA hinting faults because a
1493 	 * PROT_NONE-mapped page is not writable (exceptions with FOLL_FORCE
1494 	 * apply). get_user_pages_fast_only() always implicitly honors NUMA
1495 	 * hinting faults.
1496 	 */
1497 	FOLL_HONOR_NUMA_FAULT = 1 << 12,
1498 
1499 	/* See also internal only FOLL flags in mm/internal.h */
1500 };
1501 
1502 #endif /* _LINUX_MM_TYPES_H */
1503