xref: /freebsd/sys/netpfil/ipfw/ip_fw_table.c (revision f0a0420d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004 Ruslan Ermilov and Vsevolod Lobko.
5  * Copyright (c) 2014 Yandex LLC
6  * Copyright (c) 2014 Alexander V. Chernikov
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 /*
32  * Lookup table support for ipfw.
33  *
34  * This file contains handlers for all generic tables' operations:
35  * add/del/flush entries, list/dump tables etc..
36  *
37  * Table data modification is protected by both UH and runtime lock
38  * while reading configuration/data is protected by UH lock.
39  *
40  * Lookup algorithms for all table types are located in ip_fw_table_algo.c
41  */
42 
43 #include "opt_ipfw.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/rwlock.h>
51 #include <sys/rmlock.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/queue.h>
55 #include <net/if.h>	/* ip_fw.h requires IFNAMSIZ */
56 
57 #include <netinet/in.h>
58 #include <netinet/ip_var.h>	/* struct ipfw_rule_ref */
59 #include <netinet/ip_fw.h>
60 
61 #include <netpfil/ipfw/ip_fw_private.h>
62 #include <netpfil/ipfw/ip_fw_table.h>
63 
64  /*
65  * Table has the following `type` concepts:
66  *
67  * `no.type` represents lookup key type (addr, ifp, uid, etc..)
68  * vmask represents bitmask of table values which are present at the moment.
69  * Special IPFW_VTYPE_LEGACY ( (uint32_t)-1 ) represents old
70  * single-value-for-all approach.
71  */
72 struct table_config {
73 	struct named_object	no;
74 	uint8_t		tflags;		/* type flags */
75 	uint8_t		locked;		/* 1 if locked from changes */
76 	uint8_t		linked;		/* 1 if already linked */
77 	uint8_t		ochanged;	/* used by set swapping */
78 	uint8_t		vshared;	/* 1 if using shared value array */
79 	uint8_t		spare[3];
80 	uint32_t	count;		/* Number of records */
81 	uint32_t	limit;		/* Max number of records */
82 	uint32_t	vmask;		/* bitmask with supported values */
83 	uint32_t	ocount;		/* used by set swapping */
84 	uint64_t	gencnt;		/* generation count */
85 	char		tablename[64];	/* table name */
86 	struct table_algo	*ta;	/* Callbacks for given algo */
87 	void		*astate;	/* algorithm state */
88 	struct table_info	ti_copy;	/* data to put to table_info */
89 	struct namedobj_instance	*vi;
90 };
91 
92 static int find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
93     struct table_config **tc);
94 static struct table_config *find_table(struct namedobj_instance *ni,
95     struct tid_info *ti);
96 static struct table_config *alloc_table_config(struct ip_fw_chain *ch,
97     struct tid_info *ti, struct table_algo *ta, char *adata, uint8_t tflags);
98 static void free_table_config(struct namedobj_instance *ni,
99     struct table_config *tc);
100 static int create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
101     char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int ref);
102 static void link_table(struct ip_fw_chain *ch, struct table_config *tc);
103 static void unlink_table(struct ip_fw_chain *ch, struct table_config *tc);
104 static int find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
105     struct tentry_info *tei, uint32_t count, int op, struct table_config **ptc);
106 #define	OP_ADD	1
107 #define	OP_DEL	0
108 static int export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
109     struct sockopt_data *sd);
110 static void export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
111     ipfw_xtable_info *i);
112 static int dump_table_tentry(void *e, void *arg);
113 static int dump_table_xentry(void *e, void *arg);
114 
115 static int swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
116     struct tid_info *b);
117 
118 static int check_table_name(const char *name);
119 static int check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
120     struct table_config *tc, struct table_info *ti, uint32_t count);
121 static int destroy_table(struct ip_fw_chain *ch, struct tid_info *ti);
122 
123 static struct table_algo *find_table_algo(struct tables_config *tableconf,
124     struct tid_info *ti, char *name);
125 
126 static void objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti);
127 static void ntlv_to_ti(struct _ipfw_obj_ntlv *ntlv, struct tid_info *ti);
128 
129 #define	CHAIN_TO_NI(chain)	(CHAIN_TO_TCFG(chain)->namehash)
130 #define	KIDX_TO_TI(ch, k)	(&(((struct table_info *)(ch)->tablestate)[k]))
131 
132 #define	TA_BUF_SZ	128	/* On-stack buffer for add/delete state */
133 
134 void
rollback_toperation_state(struct ip_fw_chain * ch,void * object)135 rollback_toperation_state(struct ip_fw_chain *ch, void *object)
136 {
137 	struct tables_config *tcfg;
138 	struct op_state *os;
139 
140 	tcfg = CHAIN_TO_TCFG(ch);
141 	TAILQ_FOREACH(os, &tcfg->state_list, next)
142 		os->func(object, os);
143 }
144 
145 void
add_toperation_state(struct ip_fw_chain * ch,struct tableop_state * ts)146 add_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
147 {
148 	struct tables_config *tcfg;
149 
150 	tcfg = CHAIN_TO_TCFG(ch);
151 	TAILQ_INSERT_HEAD(&tcfg->state_list, &ts->opstate, next);
152 }
153 
154 void
del_toperation_state(struct ip_fw_chain * ch,struct tableop_state * ts)155 del_toperation_state(struct ip_fw_chain *ch, struct tableop_state *ts)
156 {
157 	struct tables_config *tcfg;
158 
159 	tcfg = CHAIN_TO_TCFG(ch);
160 	TAILQ_REMOVE(&tcfg->state_list, &ts->opstate, next);
161 }
162 
163 void
tc_ref(struct table_config * tc)164 tc_ref(struct table_config *tc)
165 {
166 
167 	tc->no.refcnt++;
168 }
169 
170 void
tc_unref(struct table_config * tc)171 tc_unref(struct table_config *tc)
172 {
173 
174 	tc->no.refcnt--;
175 }
176 
177 static struct table_value *
get_table_value(struct ip_fw_chain * ch,struct table_config * tc,uint32_t kidx)178 get_table_value(struct ip_fw_chain *ch, struct table_config *tc, uint32_t kidx)
179 {
180 	struct table_value *pval;
181 
182 	pval = (struct table_value *)ch->valuestate;
183 
184 	return (&pval[kidx]);
185 }
186 
187 /*
188  * Checks if we're able to insert/update entry @tei into table
189  * w.r.t @tc limits.
190  * May alter @tei to indicate insertion error / insert
191  * options.
192  *
193  * Returns 0 if operation can be performed/
194  */
195 static int
check_table_limit(struct table_config * tc,struct tentry_info * tei)196 check_table_limit(struct table_config *tc, struct tentry_info *tei)
197 {
198 
199 	if (tc->limit == 0 || tc->count < tc->limit)
200 		return (0);
201 
202 	if ((tei->flags & TEI_FLAGS_UPDATE) == 0) {
203 		/* Notify userland on error cause */
204 		tei->flags |= TEI_FLAGS_LIMIT;
205 		return (EFBIG);
206 	}
207 
208 	/*
209 	 * We have UPDATE flag set.
210 	 * Permit updating record (if found),
211 	 * but restrict adding new one since we've
212 	 * already hit the limit.
213 	 */
214 	tei->flags |= TEI_FLAGS_DONTADD;
215 
216 	return (0);
217 }
218 
219 /*
220  * Convert algorithm callback return code into
221  * one of pre-defined states known by userland.
222  */
223 static void
store_tei_result(struct tentry_info * tei,int op,int error,uint32_t num)224 store_tei_result(struct tentry_info *tei, int op, int error, uint32_t num)
225 {
226 	int flag;
227 
228 	flag = 0;
229 
230 	switch (error) {
231 	case 0:
232 		if (op == OP_ADD && num != 0)
233 			flag = TEI_FLAGS_ADDED;
234 		if (op == OP_DEL)
235 			flag = TEI_FLAGS_DELETED;
236 		break;
237 	case ENOENT:
238 		flag = TEI_FLAGS_NOTFOUND;
239 		break;
240 	case EEXIST:
241 		flag = TEI_FLAGS_EXISTS;
242 		break;
243 	default:
244 		flag = TEI_FLAGS_ERROR;
245 	}
246 
247 	tei->flags |= flag;
248 }
249 
250 /*
251  * Creates and references table with default parameters.
252  * Saves table config, algo and allocated kidx info @ptc, @pta and
253  * @pkidx if non-zero.
254  * Used for table auto-creation to support old binaries.
255  *
256  * Returns 0 on success.
257  */
258 static int
create_table_compat(struct ip_fw_chain * ch,struct tid_info * ti,uint16_t * pkidx)259 create_table_compat(struct ip_fw_chain *ch, struct tid_info *ti,
260     uint16_t *pkidx)
261 {
262 	ipfw_xtable_info xi;
263 	int error;
264 
265 	memset(&xi, 0, sizeof(xi));
266 	/* Set default value mask for legacy clients */
267 	xi.vmask = IPFW_VTYPE_LEGACY;
268 
269 	error = create_table_internal(ch, ti, NULL, &xi, pkidx, 1);
270 	if (error != 0)
271 		return (error);
272 
273 	return (0);
274 }
275 
276 /*
277  * Find and reference existing table optionally
278  * creating new one.
279  *
280  * Saves found table config into @ptc.
281  * Note function may drop/acquire UH_WLOCK.
282  * Returns 0 if table was found/created and referenced
283  * or non-zero return code.
284  */
285 static int
find_ref_table(struct ip_fw_chain * ch,struct tid_info * ti,struct tentry_info * tei,uint32_t count,int op,struct table_config ** ptc)286 find_ref_table(struct ip_fw_chain *ch, struct tid_info *ti,
287     struct tentry_info *tei, uint32_t count, int op,
288     struct table_config **ptc)
289 {
290 	struct namedobj_instance *ni;
291 	struct table_config *tc;
292 	uint16_t kidx;
293 	int error;
294 
295 	IPFW_UH_WLOCK_ASSERT(ch);
296 
297 	ni = CHAIN_TO_NI(ch);
298 	tc = NULL;
299 	if ((tc = find_table(ni, ti)) != NULL) {
300 		/* check table type */
301 		if (tc->no.subtype != ti->type)
302 			return (EINVAL);
303 
304 		if (tc->locked != 0)
305 			return (EACCES);
306 
307 		/* Try to exit early on limit hit */
308 		if (op == OP_ADD && count == 1 &&
309 		    check_table_limit(tc, tei) != 0)
310 			return (EFBIG);
311 
312 		/* Reference and return */
313 		tc->no.refcnt++;
314 		*ptc = tc;
315 		return (0);
316 	}
317 
318 	if (op == OP_DEL)
319 		return (ESRCH);
320 
321 	/* Compatibility mode: create new table for old clients */
322 	if ((tei->flags & TEI_FLAGS_COMPAT) == 0)
323 		return (ESRCH);
324 
325 	IPFW_UH_WUNLOCK(ch);
326 	error = create_table_compat(ch, ti, &kidx);
327 	IPFW_UH_WLOCK(ch);
328 
329 	if (error != 0)
330 		return (error);
331 
332 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
333 	KASSERT(tc != NULL, ("create_table_compat returned bad idx %d", kidx));
334 
335 	/* OK, now we've got referenced table. */
336 	*ptc = tc;
337 	return (0);
338 }
339 
340 /*
341  * Rolls back already @added to @tc entries using state array @ta_buf_m.
342  * Assume the following layout:
343  * 1) ADD state (ta_buf_m[0] ... t_buf_m[added - 1]) for handling update cases
344  * 2) DEL state (ta_buf_m[count[ ... t_buf_m[count + added - 1])
345  *   for storing deleted state
346  */
347 static void
rollback_added_entries(struct ip_fw_chain * ch,struct table_config * tc,struct table_info * tinfo,struct tentry_info * tei,caddr_t ta_buf_m,uint32_t count,uint32_t added)348 rollback_added_entries(struct ip_fw_chain *ch, struct table_config *tc,
349     struct table_info *tinfo, struct tentry_info *tei, caddr_t ta_buf_m,
350     uint32_t count, uint32_t added)
351 {
352 	struct table_algo *ta;
353 	struct tentry_info *ptei;
354 	caddr_t v, vv;
355 	size_t ta_buf_sz;
356 	int error __diagused, i;
357 	uint32_t num;
358 
359 	IPFW_UH_WLOCK_ASSERT(ch);
360 
361 	ta = tc->ta;
362 	ta_buf_sz = ta->ta_buf_size;
363 	v = ta_buf_m;
364 	vv = v + count * ta_buf_sz;
365 	for (i = 0; i < added; i++, v += ta_buf_sz, vv += ta_buf_sz) {
366 		ptei = &tei[i];
367 		if ((ptei->flags & TEI_FLAGS_UPDATED) != 0) {
368 			/*
369 			 * We have old value stored by previous
370 			 * call in @ptei->value. Do add once again
371 			 * to restore it.
372 			 */
373 			error = ta->add(tc->astate, tinfo, ptei, v, &num);
374 			KASSERT(error == 0, ("rollback UPDATE fail"));
375 			KASSERT(num == 0, ("rollback UPDATE fail2"));
376 			continue;
377 		}
378 
379 		error = ta->prepare_del(ch, ptei, vv);
380 		KASSERT(error == 0, ("pre-rollback INSERT failed"));
381 		error = ta->del(tc->astate, tinfo, ptei, vv, &num);
382 		KASSERT(error == 0, ("rollback INSERT failed"));
383 		tc->count -= num;
384 	}
385 }
386 
387 /*
388  * Prepares add/del state for all @count entries in @tei.
389  * Uses either stack buffer (@ta_buf) or allocates a new one.
390  * Stores pointer to allocated buffer back to @ta_buf.
391  *
392  * Returns 0 on success.
393  */
394 static int
prepare_batch_buffer(struct ip_fw_chain * ch,struct table_algo * ta,struct tentry_info * tei,uint32_t count,int op,caddr_t * ta_buf)395 prepare_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
396     struct tentry_info *tei, uint32_t count, int op, caddr_t *ta_buf)
397 {
398 	caddr_t ta_buf_m, v;
399 	size_t ta_buf_sz, sz;
400 	struct tentry_info *ptei;
401 	int error, i;
402 
403 	error = 0;
404 	ta_buf_sz = ta->ta_buf_size;
405 	if (count == 1) {
406 		/* Single add/delete, use on-stack buffer */
407 		memset(*ta_buf, 0, TA_BUF_SZ);
408 		ta_buf_m = *ta_buf;
409 	} else {
410 		/*
411 		 * Multiple adds/deletes, allocate larger buffer
412 		 *
413 		 * Note we need 2xcount buffer for add case:
414 		 * we have hold both ADD state
415 		 * and DELETE state (this may be needed
416 		 * if we need to rollback all changes)
417 		 */
418 		sz = count * ta_buf_sz;
419 		ta_buf_m = malloc((op == OP_ADD) ? sz * 2 : sz, M_TEMP,
420 		    M_WAITOK | M_ZERO);
421 	}
422 
423 	v = ta_buf_m;
424 	for (i = 0; i < count; i++, v += ta_buf_sz) {
425 		ptei = &tei[i];
426 		error = (op == OP_ADD) ?
427 		    ta->prepare_add(ch, ptei, v) : ta->prepare_del(ch, ptei, v);
428 
429 		/*
430 		 * Some syntax error (incorrect mask, or address, or
431 		 * anything). Return error regardless of atomicity
432 		 * settings.
433 		 */
434 		if (error != 0)
435 			break;
436 	}
437 
438 	*ta_buf = ta_buf_m;
439 	return (error);
440 }
441 
442 /*
443  * Flushes allocated state for each @count entries in @tei.
444  * Frees @ta_buf_m if differs from stack buffer @ta_buf.
445  */
446 static void
flush_batch_buffer(struct ip_fw_chain * ch,struct table_algo * ta,struct tentry_info * tei,uint32_t count,int rollback,caddr_t ta_buf_m,caddr_t ta_buf)447 flush_batch_buffer(struct ip_fw_chain *ch, struct table_algo *ta,
448     struct tentry_info *tei, uint32_t count, int rollback,
449     caddr_t ta_buf_m, caddr_t ta_buf)
450 {
451 	caddr_t v;
452 	struct tentry_info *ptei;
453 	size_t ta_buf_sz;
454 	int i;
455 
456 	ta_buf_sz = ta->ta_buf_size;
457 
458 	/* Run cleaning callback anyway */
459 	v = ta_buf_m;
460 	for (i = 0; i < count; i++, v += ta_buf_sz) {
461 		ptei = &tei[i];
462 		ta->flush_entry(ch, ptei, v);
463 		if (ptei->ptv != NULL) {
464 			free(ptei->ptv, M_IPFW);
465 			ptei->ptv = NULL;
466 		}
467 	}
468 
469 	/* Clean up "deleted" state in case of rollback */
470 	if (rollback != 0) {
471 		v = ta_buf_m + count * ta_buf_sz;
472 		for (i = 0; i < count; i++, v += ta_buf_sz)
473 			ta->flush_entry(ch, &tei[i], v);
474 	}
475 
476 	if (ta_buf_m != ta_buf)
477 		free(ta_buf_m, M_TEMP);
478 }
479 
480 static void
rollback_add_entry(void * object,struct op_state * _state)481 rollback_add_entry(void *object, struct op_state *_state)
482 {
483 	struct ip_fw_chain *ch __diagused;
484 	struct tableop_state *ts;
485 
486 	ts = (struct tableop_state *)_state;
487 
488 	if (ts->tc != object && ts->ch != object)
489 		return;
490 
491 	ch = ts->ch;
492 
493 	IPFW_UH_WLOCK_ASSERT(ch);
494 
495 	/* Call specifid unlockers */
496 	rollback_table_values(ts);
497 
498 	/* Indicate we've called */
499 	ts->modified = 1;
500 }
501 
502 /*
503  * Adds/updates one or more entries in table @ti.
504  *
505  * Function may drop/reacquire UH wlock multiple times due to
506  * items alloc, algorithm callbacks (check_space), value linkage
507  * (new values, value storage realloc), etc..
508  * Other processes like other adds (which may involve storage resize),
509  * table swaps (which changes table data and may change algo type),
510  * table modify (which may change value mask) may be executed
511  * simultaneously so we need to deal with it.
512  *
513  * The following approach was implemented:
514  * we have per-chain linked list, protected with UH lock.
515  * add_table_entry prepares special on-stack structure wthich is passed
516  * to its descendants. Users add this structure to this list before unlock.
517  * After performing needed operations and acquiring UH lock back, each user
518  * checks if structure has changed. If true, it rolls local state back and
519  * returns without error to the caller.
520  * add_table_entry() on its own checks if structure has changed and restarts
521  * its operation from the beginning (goto restart).
522  *
523  * Functions which are modifying fields of interest (currently
524  *   resize_shared_value_storage() and swap_tables() )
525  * traverses given list while holding UH lock immediately before
526  * performing their operations calling function provided be list entry
527  * ( currently rollback_add_entry  ) which performs rollback for all necessary
528  * state and sets appropriate values in structure indicating rollback
529  * has happened.
530  *
531  * Algo interaction:
532  * Function references @ti first to ensure table won't
533  * disappear or change its type.
534  * After that, prepare_add callback is called for each @tei entry.
535  * Next, we try to add each entry under UH+WHLOCK
536  * using add() callback.
537  * Finally, we free all state by calling flush_entry callback
538  * for each @tei.
539  *
540  * Returns 0 on success.
541  */
542 int
add_table_entry(struct ip_fw_chain * ch,struct tid_info * ti,struct tentry_info * tei,uint8_t flags,uint32_t count)543 add_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
544     struct tentry_info *tei, uint8_t flags, uint32_t count)
545 {
546 	struct table_config *tc;
547 	struct table_algo *ta;
548 	uint16_t kidx;
549 	int error, first_error, i, rollback;
550 	uint32_t num, numadd;
551 	struct tentry_info *ptei;
552 	struct tableop_state ts;
553 	char ta_buf[TA_BUF_SZ];
554 	caddr_t ta_buf_m, v;
555 
556 	memset(&ts, 0, sizeof(ts));
557 	ta = NULL;
558 	IPFW_UH_WLOCK(ch);
559 
560 	/*
561 	 * Find and reference existing table.
562 	 */
563 restart:
564 	if (ts.modified != 0) {
565 		IPFW_UH_WUNLOCK(ch);
566 		flush_batch_buffer(ch, ta, tei, count, rollback,
567 		    ta_buf_m, ta_buf);
568 		memset(&ts, 0, sizeof(ts));
569 		ta = NULL;
570 		IPFW_UH_WLOCK(ch);
571 	}
572 
573 	error = find_ref_table(ch, ti, tei, count, OP_ADD, &tc);
574 	if (error != 0) {
575 		IPFW_UH_WUNLOCK(ch);
576 		return (error);
577 	}
578 	ta = tc->ta;
579 
580 	/* Fill in tablestate */
581 	ts.ch = ch;
582 	ts.opstate.func = rollback_add_entry;
583 	ts.tc = tc;
584 	ts.vshared = tc->vshared;
585 	ts.vmask = tc->vmask;
586 	ts.ta = ta;
587 	ts.tei = tei;
588 	ts.count = count;
589 	rollback = 0;
590 	add_toperation_state(ch, &ts);
591 	IPFW_UH_WUNLOCK(ch);
592 
593 	/* Allocate memory and prepare record(s) */
594 	/* Pass stack buffer by default */
595 	ta_buf_m = ta_buf;
596 	error = prepare_batch_buffer(ch, ta, tei, count, OP_ADD, &ta_buf_m);
597 
598 	IPFW_UH_WLOCK(ch);
599 	del_toperation_state(ch, &ts);
600 	/* Drop reference we've used in first search */
601 	tc->no.refcnt--;
602 
603 	/* Check prepare_batch_buffer() error */
604 	if (error != 0)
605 		goto cleanup;
606 
607 	/*
608 	 * Check if table swap has happened.
609 	 * (so table algo might be changed).
610 	 * Restart operation to achieve consistent behavior.
611 	 */
612 	if (ts.modified != 0)
613 		goto restart;
614 
615 	/*
616 	 * Link all values values to shared/per-table value array.
617 	 *
618 	 * May release/reacquire UH_WLOCK.
619 	 */
620 	error = ipfw_link_table_values(ch, &ts, flags);
621 	if (error != 0)
622 		goto cleanup;
623 	if (ts.modified != 0)
624 		goto restart;
625 
626 	/*
627 	 * Ensure we are able to add all entries without additional
628 	 * memory allocations. May release/reacquire UH_WLOCK.
629 	 */
630 	kidx = tc->no.kidx;
631 	error = check_table_space(ch, &ts, tc, KIDX_TO_TI(ch, kidx), count);
632 	if (error != 0)
633 		goto cleanup;
634 	if (ts.modified != 0)
635 		goto restart;
636 
637 	/* We've got valid table in @tc. Let's try to add data */
638 	kidx = tc->no.kidx;
639 	ta = tc->ta;
640 	numadd = 0;
641 	first_error = 0;
642 
643 	IPFW_WLOCK(ch);
644 
645 	v = ta_buf_m;
646 	for (i = 0; i < count; i++, v += ta->ta_buf_size) {
647 		ptei = &tei[i];
648 		num = 0;
649 		/* check limit before adding */
650 		if ((error = check_table_limit(tc, ptei)) == 0) {
651 			/*
652 			 * It should be safe to insert a record w/o
653 			 * a properly-linked value if atomicity is
654 			 * not required.
655 			 *
656 			 * If the added item does not have a valid value
657 			 * index, it would get rejected by ta->add().
658 			 * */
659 			error = ta->add(tc->astate, KIDX_TO_TI(ch, kidx),
660 			    ptei, v, &num);
661 			/* Set status flag to inform userland */
662 			store_tei_result(ptei, OP_ADD, error, num);
663 		}
664 		if (error == 0) {
665 			/* Update number of records to ease limit checking */
666 			tc->count += num;
667 			numadd += num;
668 			continue;
669 		}
670 
671 		if (first_error == 0)
672 			first_error = error;
673 
674 		/*
675 		 * Some error have happened. Check our atomicity
676 		 * settings: continue if atomicity is not required,
677 		 * rollback changes otherwise.
678 		 */
679 		if ((flags & IPFW_CTF_ATOMIC) == 0)
680 			continue;
681 
682 		rollback_added_entries(ch, tc, KIDX_TO_TI(ch, kidx),
683 		    tei, ta_buf_m, count, i);
684 
685 		rollback = 1;
686 		break;
687 	}
688 
689 	IPFW_WUNLOCK(ch);
690 
691 	ipfw_garbage_table_values(ch, tc, tei, count, rollback);
692 
693 	/* Permit post-add algorithm grow/rehash. */
694 	if (numadd != 0)
695 		check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
696 
697 	/* Return first error to user, if any */
698 	error = first_error;
699 
700 cleanup:
701 	IPFW_UH_WUNLOCK(ch);
702 
703 	flush_batch_buffer(ch, ta, tei, count, rollback, ta_buf_m, ta_buf);
704 
705 	return (error);
706 }
707 
708 /*
709  * Deletes one or more entries in table @ti.
710  *
711  * Returns 0 on success.
712  */
713 int
del_table_entry(struct ip_fw_chain * ch,struct tid_info * ti,struct tentry_info * tei,uint8_t flags,uint32_t count)714 del_table_entry(struct ip_fw_chain *ch, struct tid_info *ti,
715     struct tentry_info *tei, uint8_t flags, uint32_t count)
716 {
717 	struct table_config *tc;
718 	struct table_algo *ta;
719 	struct tentry_info *ptei;
720 	uint16_t kidx;
721 	int error, first_error, i;
722 	uint32_t num, numdel;
723 	char ta_buf[TA_BUF_SZ];
724 	caddr_t ta_buf_m, v;
725 
726 	/*
727 	 * Find and reference existing table.
728 	 */
729 	IPFW_UH_WLOCK(ch);
730 	error = find_ref_table(ch, ti, tei, count, OP_DEL, &tc);
731 	if (error != 0) {
732 		IPFW_UH_WUNLOCK(ch);
733 		return (error);
734 	}
735 	ta = tc->ta;
736 	IPFW_UH_WUNLOCK(ch);
737 
738 	/* Allocate memory and prepare record(s) */
739 	/* Pass stack buffer by default */
740 	ta_buf_m = ta_buf;
741 	error = prepare_batch_buffer(ch, ta, tei, count, OP_DEL, &ta_buf_m);
742 	if (error != 0)
743 		goto cleanup;
744 
745 	IPFW_UH_WLOCK(ch);
746 
747 	/* Drop reference we've used in first search */
748 	tc->no.refcnt--;
749 
750 	/*
751 	 * Check if table algo is still the same.
752 	 * (changed ta may be the result of table swap).
753 	 */
754 	if (ta != tc->ta) {
755 		IPFW_UH_WUNLOCK(ch);
756 		error = EINVAL;
757 		goto cleanup;
758 	}
759 
760 	kidx = tc->no.kidx;
761 	numdel = 0;
762 	first_error = 0;
763 
764 	IPFW_WLOCK(ch);
765 	v = ta_buf_m;
766 	for (i = 0; i < count; i++, v += ta->ta_buf_size) {
767 		ptei = &tei[i];
768 		num = 0;
769 		error = ta->del(tc->astate, KIDX_TO_TI(ch, kidx), ptei, v,
770 		    &num);
771 		/* Save state for userland */
772 		store_tei_result(ptei, OP_DEL, error, num);
773 		if (error != 0 && first_error == 0)
774 			first_error = error;
775 		tc->count -= num;
776 		numdel += num;
777 	}
778 	IPFW_WUNLOCK(ch);
779 
780 	/* Unlink non-used values */
781 	ipfw_garbage_table_values(ch, tc, tei, count, 0);
782 
783 	if (numdel != 0) {
784 		/* Run post-del hook to permit shrinking */
785 		check_table_space(ch, NULL, tc, KIDX_TO_TI(ch, kidx), 0);
786 	}
787 
788 	IPFW_UH_WUNLOCK(ch);
789 
790 	/* Return first error to user, if any */
791 	error = first_error;
792 
793 cleanup:
794 	flush_batch_buffer(ch, ta, tei, count, 0, ta_buf_m, ta_buf);
795 
796 	return (error);
797 }
798 
799 /*
800  * Ensure that table @tc has enough space to add @count entries without
801  * need for reallocation.
802  *
803  * Callbacks order:
804  * 0) need_modify() (UH_WLOCK) - checks if @count items can be added w/o resize.
805  *
806  * 1) alloc_modify (no locks, M_WAITOK) - alloc new state based on @pflags.
807  * 2) prepare_modifyt (UH_WLOCK) - copy old data into new storage
808  * 3) modify (UH_WLOCK + WLOCK) - switch pointers
809  * 4) flush_modify (UH_WLOCK) - free state, if needed
810  *
811  * Returns 0 on success.
812  */
813 static int
check_table_space(struct ip_fw_chain * ch,struct tableop_state * ts,struct table_config * tc,struct table_info * ti,uint32_t count)814 check_table_space(struct ip_fw_chain *ch, struct tableop_state *ts,
815     struct table_config *tc, struct table_info *ti, uint32_t count)
816 {
817 	struct table_algo *ta;
818 	uint64_t pflags;
819 	char ta_buf[TA_BUF_SZ];
820 	int error;
821 
822 	IPFW_UH_WLOCK_ASSERT(ch);
823 
824 	error = 0;
825 	ta = tc->ta;
826 	if (ta->need_modify == NULL)
827 		return (0);
828 
829 	/* Acquire reference not to loose @tc between locks/unlocks */
830 	tc->no.refcnt++;
831 
832 	/*
833 	 * TODO: think about avoiding race between large add/large delete
834 	 * operation on algorithm which implements shrinking along with
835 	 * growing.
836 	 */
837 	while (true) {
838 		pflags = 0;
839 		if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
840 			error = 0;
841 			break;
842 		}
843 
844 		/* We have to shrink/grow table */
845 		if (ts != NULL)
846 			add_toperation_state(ch, ts);
847 		IPFW_UH_WUNLOCK(ch);
848 
849 		memset(&ta_buf, 0, sizeof(ta_buf));
850 		error = ta->prepare_mod(ta_buf, &pflags);
851 
852 		IPFW_UH_WLOCK(ch);
853 		if (ts != NULL)
854 			del_toperation_state(ch, ts);
855 
856 		if (error != 0)
857 			break;
858 
859 		if (ts != NULL && ts->modified != 0) {
860 			/*
861 			 * Swap operation has happened
862 			 * so we're currently operating on other
863 			 * table data. Stop doing this.
864 			 */
865 			ta->flush_mod(ta_buf);
866 			break;
867 		}
868 
869 		/* Check if we still need to alter table */
870 		ti = KIDX_TO_TI(ch, tc->no.kidx);
871 		if (ta->need_modify(tc->astate, ti, count, &pflags) == 0) {
872 			IPFW_UH_WUNLOCK(ch);
873 
874 			/*
875 			 * Other thread has already performed resize.
876 			 * Flush our state and return.
877 			 */
878 			ta->flush_mod(ta_buf);
879 			break;
880 		}
881 
882 		error = ta->fill_mod(tc->astate, ti, ta_buf, &pflags);
883 		if (error == 0) {
884 			/* Do actual modification */
885 			IPFW_WLOCK(ch);
886 			ta->modify(tc->astate, ti, ta_buf, pflags);
887 			IPFW_WUNLOCK(ch);
888 		}
889 
890 		/* Anyway, flush data and retry */
891 		ta->flush_mod(ta_buf);
892 	}
893 
894 	tc->no.refcnt--;
895 	return (error);
896 }
897 
898 /*
899  * Adds or deletes record in table.
900  * Data layout (v0):
901  * Request: [ ip_fw3_opheader ipfw_table_xentry ]
902  *
903  * Returns 0 on success
904  */
905 static int
manage_table_ent_v0(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)906 manage_table_ent_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
907     struct sockopt_data *sd)
908 {
909 	ipfw_table_xentry *xent;
910 	struct tentry_info tei;
911 	struct tid_info ti;
912 	struct table_value v;
913 	int error, hdrlen, read;
914 
915 	hdrlen = offsetof(ipfw_table_xentry, k);
916 
917 	/* Check minimum header size */
918 	if (sd->valsize < (sizeof(*op3) + hdrlen))
919 		return (EINVAL);
920 
921 	read = sizeof(ip_fw3_opheader);
922 
923 	/* Check if xentry len field is valid */
924 	xent = (ipfw_table_xentry *)(op3 + 1);
925 	if (xent->len < hdrlen || xent->len + read > sd->valsize)
926 		return (EINVAL);
927 
928 	memset(&tei, 0, sizeof(tei));
929 	tei.paddr = &xent->k;
930 	tei.masklen = xent->masklen;
931 	ipfw_import_table_value_legacy(xent->value, &v);
932 	tei.pvalue = &v;
933 	/* Old requests compatibility */
934 	tei.flags = TEI_FLAGS_COMPAT;
935 	if (xent->type == IPFW_TABLE_ADDR) {
936 		if (xent->len - hdrlen == sizeof(in_addr_t))
937 			tei.subtype = AF_INET;
938 		else
939 			tei.subtype = AF_INET6;
940 	}
941 
942 	memset(&ti, 0, sizeof(ti));
943 	ti.uidx = xent->tbl;
944 	ti.type = xent->type;
945 
946 	error = (op3->opcode == IP_FW_TABLE_XADD) ?
947 	    add_table_entry(ch, &ti, &tei, 0, 1) :
948 	    del_table_entry(ch, &ti, &tei, 0, 1);
949 
950 	return (error);
951 }
952 
953 /*
954  * Adds or deletes record in table.
955  * Data layout (v1)(current):
956  * Request: [ ipfw_obj_header
957  *   ipfw_obj_ctlv(IPFW_TLV_TBLENT_LIST) [ ipfw_obj_tentry x N ]
958  * ]
959  *
960  * Returns 0 on success
961  */
962 static int
manage_table_ent_v1(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)963 manage_table_ent_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
964     struct sockopt_data *sd)
965 {
966 	ipfw_obj_tentry *tent, *ptent;
967 	ipfw_obj_ctlv *ctlv;
968 	ipfw_obj_header *oh;
969 	struct tentry_info *ptei, tei, *tei_buf;
970 	struct tid_info ti;
971 	int error, i, kidx, read;
972 
973 	/* Check minimum header size */
974 	if (sd->valsize < (sizeof(*oh) + sizeof(*ctlv)))
975 		return (EINVAL);
976 
977 	/* Check if passed data is too long */
978 	if (sd->valsize != sd->kavail)
979 		return (EINVAL);
980 
981 	oh = (ipfw_obj_header *)sd->kbuf;
982 
983 	/* Basic length checks for TLVs */
984 	if (oh->ntlv.head.length != sizeof(oh->ntlv))
985 		return (EINVAL);
986 
987 	read = sizeof(*oh);
988 
989 	ctlv = (ipfw_obj_ctlv *)(oh + 1);
990 	if (ctlv->head.length + read != sd->valsize)
991 		return (EINVAL);
992 
993 	read += sizeof(*ctlv);
994 	tent = (ipfw_obj_tentry *)(ctlv + 1);
995 	if (ctlv->count * sizeof(*tent) + read != sd->valsize)
996 		return (EINVAL);
997 
998 	if (ctlv->count == 0)
999 		return (0);
1000 
1001 	/*
1002 	 * Mark entire buffer as "read".
1003 	 * This instructs sopt api write it back
1004 	 * after function return.
1005 	 */
1006 	ipfw_get_sopt_header(sd, sd->valsize);
1007 
1008 	/* Perform basic checks for each entry */
1009 	ptent = tent;
1010 	kidx = tent->idx;
1011 	for (i = 0; i < ctlv->count; i++, ptent++) {
1012 		if (ptent->head.length != sizeof(*ptent))
1013 			return (EINVAL);
1014 		if (ptent->idx != kidx)
1015 			return (ENOTSUP);
1016 	}
1017 
1018 	/* Convert data into kernel request objects */
1019 	objheader_to_ti(oh, &ti);
1020 	ti.type = oh->ntlv.type;
1021 	ti.uidx = kidx;
1022 
1023 	/* Use on-stack buffer for single add/del */
1024 	if (ctlv->count == 1) {
1025 		memset(&tei, 0, sizeof(tei));
1026 		tei_buf = &tei;
1027 	} else
1028 		tei_buf = malloc(ctlv->count * sizeof(tei), M_TEMP,
1029 		    M_WAITOK | M_ZERO);
1030 
1031 	ptei = tei_buf;
1032 	ptent = tent;
1033 	for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1034 		ptei->paddr = &ptent->k;
1035 		ptei->subtype = ptent->subtype;
1036 		ptei->masklen = ptent->masklen;
1037 		if (ptent->head.flags & IPFW_TF_UPDATE)
1038 			ptei->flags |= TEI_FLAGS_UPDATE;
1039 
1040 		ipfw_import_table_value_v1(&ptent->v.value);
1041 		ptei->pvalue = (struct table_value *)&ptent->v.value;
1042 	}
1043 
1044 	error = (oh->opheader.opcode == IP_FW_TABLE_XADD) ?
1045 	    add_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count) :
1046 	    del_table_entry(ch, &ti, tei_buf, ctlv->flags, ctlv->count);
1047 
1048 	/* Translate result back to userland */
1049 	ptei = tei_buf;
1050 	ptent = tent;
1051 	for (i = 0; i < ctlv->count; i++, ptent++, ptei++) {
1052 		if (ptei->flags & TEI_FLAGS_ADDED)
1053 			ptent->result = IPFW_TR_ADDED;
1054 		else if (ptei->flags & TEI_FLAGS_DELETED)
1055 			ptent->result = IPFW_TR_DELETED;
1056 		else if (ptei->flags & TEI_FLAGS_UPDATED)
1057 			ptent->result = IPFW_TR_UPDATED;
1058 		else if (ptei->flags & TEI_FLAGS_LIMIT)
1059 			ptent->result = IPFW_TR_LIMIT;
1060 		else if (ptei->flags & TEI_FLAGS_ERROR)
1061 			ptent->result = IPFW_TR_ERROR;
1062 		else if (ptei->flags & TEI_FLAGS_NOTFOUND)
1063 			ptent->result = IPFW_TR_NOTFOUND;
1064 		else if (ptei->flags & TEI_FLAGS_EXISTS)
1065 			ptent->result = IPFW_TR_EXISTS;
1066 		ipfw_export_table_value_v1(ptei->pvalue, &ptent->v.value);
1067 	}
1068 
1069 	if (tei_buf != &tei)
1070 		free(tei_buf, M_TEMP);
1071 
1072 	return (error);
1073 }
1074 
1075 /*
1076  * Looks up an entry in given table.
1077  * Data layout (v0)(current):
1078  * Request: [ ipfw_obj_header ipfw_obj_tentry ]
1079  * Reply: [ ipfw_obj_header ipfw_obj_tentry ]
1080  *
1081  * Returns 0 on success
1082  */
1083 static int
find_table_entry(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1084 find_table_entry(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1085     struct sockopt_data *sd)
1086 {
1087 	ipfw_obj_tentry *tent;
1088 	ipfw_obj_header *oh;
1089 	struct tid_info ti;
1090 	struct table_config *tc;
1091 	struct table_algo *ta;
1092 	struct table_info *kti;
1093 	struct table_value *pval;
1094 	struct namedobj_instance *ni;
1095 	int error;
1096 	size_t sz;
1097 
1098 	/* Check minimum header size */
1099 	sz = sizeof(*oh) + sizeof(*tent);
1100 	if (sd->valsize != sz)
1101 		return (EINVAL);
1102 
1103 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1104 	tent = (ipfw_obj_tentry *)(oh + 1);
1105 
1106 	/* Basic length checks for TLVs */
1107 	if (oh->ntlv.head.length != sizeof(oh->ntlv))
1108 		return (EINVAL);
1109 
1110 	objheader_to_ti(oh, &ti);
1111 	ti.type = oh->ntlv.type;
1112 	ti.uidx = tent->idx;
1113 
1114 	IPFW_UH_RLOCK(ch);
1115 	ni = CHAIN_TO_NI(ch);
1116 
1117 	/*
1118 	 * Find existing table and check its type .
1119 	 */
1120 	ta = NULL;
1121 	if ((tc = find_table(ni, &ti)) == NULL) {
1122 		IPFW_UH_RUNLOCK(ch);
1123 		return (ESRCH);
1124 	}
1125 
1126 	/* check table type */
1127 	if (tc->no.subtype != ti.type) {
1128 		IPFW_UH_RUNLOCK(ch);
1129 		return (EINVAL);
1130 	}
1131 
1132 	kti = KIDX_TO_TI(ch, tc->no.kidx);
1133 	ta = tc->ta;
1134 
1135 	if (ta->find_tentry == NULL)
1136 		return (ENOTSUP);
1137 
1138 	error = ta->find_tentry(tc->astate, kti, tent);
1139 	if (error == 0) {
1140 		pval = get_table_value(ch, tc, tent->v.kidx);
1141 		ipfw_export_table_value_v1(pval, &tent->v.value);
1142 	}
1143 	IPFW_UH_RUNLOCK(ch);
1144 
1145 	return (error);
1146 }
1147 
1148 /*
1149  * Flushes all entries or destroys given table.
1150  * Data layout (v0)(current):
1151  * Request: [ ipfw_obj_header ]
1152  *
1153  * Returns 0 on success
1154  */
1155 static int
flush_table_v0(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1156 flush_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1157     struct sockopt_data *sd)
1158 {
1159 	int error;
1160 	struct _ipfw_obj_header *oh;
1161 	struct tid_info ti;
1162 
1163 	if (sd->valsize != sizeof(*oh))
1164 		return (EINVAL);
1165 
1166 	oh = (struct _ipfw_obj_header *)op3;
1167 	objheader_to_ti(oh, &ti);
1168 
1169 	if (op3->opcode == IP_FW_TABLE_XDESTROY)
1170 		error = destroy_table(ch, &ti);
1171 	else if (op3->opcode == IP_FW_TABLE_XFLUSH)
1172 		error = flush_table(ch, &ti);
1173 	else
1174 		return (ENOTSUP);
1175 
1176 	return (error);
1177 }
1178 
1179 static void
restart_flush(void * object,struct op_state * _state)1180 restart_flush(void *object, struct op_state *_state)
1181 {
1182 	struct tableop_state *ts;
1183 
1184 	ts = (struct tableop_state *)_state;
1185 
1186 	if (ts->tc != object)
1187 		return;
1188 
1189 	/* Indicate we've called */
1190 	ts->modified = 1;
1191 }
1192 
1193 /*
1194  * Flushes given table.
1195  *
1196  * Function create new table instance with the same
1197  * parameters, swaps it with old one and
1198  * flushes state without holding runtime WLOCK.
1199  *
1200  * Returns 0 on success.
1201  */
1202 int
flush_table(struct ip_fw_chain * ch,struct tid_info * ti)1203 flush_table(struct ip_fw_chain *ch, struct tid_info *ti)
1204 {
1205 	struct namedobj_instance *ni;
1206 	struct table_config *tc;
1207 	struct table_algo *ta;
1208 	struct table_info ti_old, ti_new, *tablestate;
1209 	void *astate_old, *astate_new;
1210 	char algostate[64], *pstate;
1211 	struct tableop_state ts;
1212 	int error, need_gc;
1213 	uint16_t kidx;
1214 	uint8_t tflags;
1215 
1216 	/*
1217 	 * Stage 1: save table algorithm.
1218 	 * Reference found table to ensure it won't disappear.
1219 	 */
1220 	IPFW_UH_WLOCK(ch);
1221 	ni = CHAIN_TO_NI(ch);
1222 	if ((tc = find_table(ni, ti)) == NULL) {
1223 		IPFW_UH_WUNLOCK(ch);
1224 		return (ESRCH);
1225 	}
1226 	need_gc = 0;
1227 	astate_new = NULL;
1228 	memset(&ti_new, 0, sizeof(ti_new));
1229 restart:
1230 	/* Set up swap handler */
1231 	memset(&ts, 0, sizeof(ts));
1232 	ts.opstate.func = restart_flush;
1233 	ts.tc = tc;
1234 
1235 	ta = tc->ta;
1236 	/* Do not flush readonly tables */
1237 	if ((ta->flags & TA_FLAG_READONLY) != 0) {
1238 		IPFW_UH_WUNLOCK(ch);
1239 		return (EACCES);
1240 	}
1241 	/* Save startup algo parameters */
1242 	if (ta->print_config != NULL) {
1243 		ta->print_config(tc->astate, KIDX_TO_TI(ch, tc->no.kidx),
1244 		    algostate, sizeof(algostate));
1245 		pstate = algostate;
1246 	} else
1247 		pstate = NULL;
1248 	tflags = tc->tflags;
1249 	tc->no.refcnt++;
1250 	add_toperation_state(ch, &ts);
1251 	IPFW_UH_WUNLOCK(ch);
1252 
1253 	/*
1254 	 * Stage 1.5: if this is not the first attempt, destroy previous state
1255 	 */
1256 	if (need_gc != 0) {
1257 		ta->destroy(astate_new, &ti_new);
1258 		need_gc = 0;
1259 	}
1260 
1261 	/*
1262 	 * Stage 2: allocate new table instance using same algo.
1263 	 */
1264 	memset(&ti_new, 0, sizeof(struct table_info));
1265 	error = ta->init(ch, &astate_new, &ti_new, pstate, tflags);
1266 
1267 	/*
1268 	 * Stage 3: swap old state pointers with newly-allocated ones.
1269 	 * Decrease refcount.
1270 	 */
1271 	IPFW_UH_WLOCK(ch);
1272 	tc->no.refcnt--;
1273 	del_toperation_state(ch, &ts);
1274 
1275 	if (error != 0) {
1276 		IPFW_UH_WUNLOCK(ch);
1277 		return (error);
1278 	}
1279 
1280 	/*
1281 	 * Restart operation if table swap has happened:
1282 	 * even if algo may be the same, algo init parameters
1283 	 * may change. Restart operation instead of doing
1284 	 * complex checks.
1285 	 */
1286 	if (ts.modified != 0) {
1287 		/* Delay destroying data since we're holding UH lock */
1288 		need_gc = 1;
1289 		goto restart;
1290 	}
1291 
1292 	ni = CHAIN_TO_NI(ch);
1293 	kidx = tc->no.kidx;
1294 	tablestate = (struct table_info *)ch->tablestate;
1295 
1296 	IPFW_WLOCK(ch);
1297 	ti_old = tablestate[kidx];
1298 	tablestate[kidx] = ti_new;
1299 	IPFW_WUNLOCK(ch);
1300 
1301 	astate_old = tc->astate;
1302 	tc->astate = astate_new;
1303 	tc->ti_copy = ti_new;
1304 	tc->count = 0;
1305 
1306 	/* Notify algo on real @ti address */
1307 	if (ta->change_ti != NULL)
1308 		ta->change_ti(tc->astate, &tablestate[kidx]);
1309 
1310 	/*
1311 	 * Stage 4: unref values.
1312 	 */
1313 	ipfw_unref_table_values(ch, tc, ta, astate_old, &ti_old);
1314 	IPFW_UH_WUNLOCK(ch);
1315 
1316 	/*
1317 	 * Stage 5: perform real flush/destroy.
1318 	 */
1319 	ta->destroy(astate_old, &ti_old);
1320 
1321 	return (0);
1322 }
1323 
1324 /*
1325  * Swaps two tables.
1326  * Data layout (v0)(current):
1327  * Request: [ ipfw_obj_header ipfw_obj_ntlv ]
1328  *
1329  * Returns 0 on success
1330  */
1331 static int
swap_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1332 swap_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1333     struct sockopt_data *sd)
1334 {
1335 	int error;
1336 	struct _ipfw_obj_header *oh;
1337 	struct tid_info ti_a, ti_b;
1338 
1339 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_obj_ntlv))
1340 		return (EINVAL);
1341 
1342 	oh = (struct _ipfw_obj_header *)op3;
1343 	ntlv_to_ti(&oh->ntlv, &ti_a);
1344 	ntlv_to_ti((ipfw_obj_ntlv *)(oh + 1), &ti_b);
1345 
1346 	error = swap_tables(ch, &ti_a, &ti_b);
1347 
1348 	return (error);
1349 }
1350 
1351 /*
1352  * Swaps two tables of the same type/valtype.
1353  *
1354  * Checks if tables are compatible and limits
1355  * permits swap, than actually perform swap.
1356  *
1357  * Each table consists of 2 different parts:
1358  * config:
1359  *   @tc (with name, set, kidx) and rule bindings, which is "stable".
1360  *   number of items
1361  *   table algo
1362  * runtime:
1363  *   runtime data @ti (ch->tablestate)
1364  *   runtime cache in @tc
1365  *   algo-specific data (@tc->astate)
1366  *
1367  * So we switch:
1368  *  all runtime data
1369  *   number of items
1370  *   table algo
1371  *
1372  * After that we call @ti change handler for each table.
1373  *
1374  * Note that referencing @tc won't protect tc->ta from change.
1375  * XXX: Do we need to restrict swap between locked tables?
1376  * XXX: Do we need to exchange ftype?
1377  *
1378  * Returns 0 on success.
1379  */
1380 static int
swap_tables(struct ip_fw_chain * ch,struct tid_info * a,struct tid_info * b)1381 swap_tables(struct ip_fw_chain *ch, struct tid_info *a,
1382     struct tid_info *b)
1383 {
1384 	struct namedobj_instance *ni;
1385 	struct table_config *tc_a, *tc_b;
1386 	struct table_algo *ta;
1387 	struct table_info ti, *tablestate;
1388 	void *astate;
1389 	uint32_t count;
1390 
1391 	/*
1392 	 * Stage 1: find both tables and ensure they are of
1393 	 * the same type.
1394 	 */
1395 	IPFW_UH_WLOCK(ch);
1396 	ni = CHAIN_TO_NI(ch);
1397 	if ((tc_a = find_table(ni, a)) == NULL) {
1398 		IPFW_UH_WUNLOCK(ch);
1399 		return (ESRCH);
1400 	}
1401 	if ((tc_b = find_table(ni, b)) == NULL) {
1402 		IPFW_UH_WUNLOCK(ch);
1403 		return (ESRCH);
1404 	}
1405 
1406 	/* It is very easy to swap between the same table */
1407 	if (tc_a == tc_b) {
1408 		IPFW_UH_WUNLOCK(ch);
1409 		return (0);
1410 	}
1411 
1412 	/* Check type and value are the same */
1413 	if (tc_a->no.subtype!=tc_b->no.subtype || tc_a->tflags!=tc_b->tflags) {
1414 		IPFW_UH_WUNLOCK(ch);
1415 		return (EINVAL);
1416 	}
1417 
1418 	/* Check limits before swap */
1419 	if ((tc_a->limit != 0 && tc_b->count > tc_a->limit) ||
1420 	    (tc_b->limit != 0 && tc_a->count > tc_b->limit)) {
1421 		IPFW_UH_WUNLOCK(ch);
1422 		return (EFBIG);
1423 	}
1424 
1425 	/* Check if one of the tables is readonly */
1426 	if (((tc_a->ta->flags | tc_b->ta->flags) & TA_FLAG_READONLY) != 0) {
1427 		IPFW_UH_WUNLOCK(ch);
1428 		return (EACCES);
1429 	}
1430 
1431 	/* Notify we're going to swap */
1432 	rollback_toperation_state(ch, tc_a);
1433 	rollback_toperation_state(ch, tc_b);
1434 
1435 	/* Everything is fine, prepare to swap */
1436 	tablestate = (struct table_info *)ch->tablestate;
1437 	ti = tablestate[tc_a->no.kidx];
1438 	ta = tc_a->ta;
1439 	astate = tc_a->astate;
1440 	count = tc_a->count;
1441 
1442 	IPFW_WLOCK(ch);
1443 	/* a <- b */
1444 	tablestate[tc_a->no.kidx] = tablestate[tc_b->no.kidx];
1445 	tc_a->ta = tc_b->ta;
1446 	tc_a->astate = tc_b->astate;
1447 	tc_a->count = tc_b->count;
1448 	/* b <- a */
1449 	tablestate[tc_b->no.kidx] = ti;
1450 	tc_b->ta = ta;
1451 	tc_b->astate = astate;
1452 	tc_b->count = count;
1453 	IPFW_WUNLOCK(ch);
1454 
1455 	/* Ensure tc.ti copies are in sync */
1456 	tc_a->ti_copy = tablestate[tc_a->no.kidx];
1457 	tc_b->ti_copy = tablestate[tc_b->no.kidx];
1458 
1459 	/* Notify both tables on @ti change */
1460 	if (tc_a->ta->change_ti != NULL)
1461 		tc_a->ta->change_ti(tc_a->astate, &tablestate[tc_a->no.kidx]);
1462 	if (tc_b->ta->change_ti != NULL)
1463 		tc_b->ta->change_ti(tc_b->astate, &tablestate[tc_b->no.kidx]);
1464 
1465 	IPFW_UH_WUNLOCK(ch);
1466 
1467 	return (0);
1468 }
1469 
1470 /*
1471  * Destroys table specified by @ti.
1472  * Data layout (v0)(current):
1473  * Request: [ ip_fw3_opheader ]
1474  *
1475  * Returns 0 on success
1476  */
1477 static int
destroy_table(struct ip_fw_chain * ch,struct tid_info * ti)1478 destroy_table(struct ip_fw_chain *ch, struct tid_info *ti)
1479 {
1480 	struct namedobj_instance *ni;
1481 	struct table_config *tc;
1482 
1483 	IPFW_UH_WLOCK(ch);
1484 
1485 	ni = CHAIN_TO_NI(ch);
1486 	if ((tc = find_table(ni, ti)) == NULL) {
1487 		IPFW_UH_WUNLOCK(ch);
1488 		return (ESRCH);
1489 	}
1490 
1491 	/* Do not permit destroying referenced tables */
1492 	if (tc->no.refcnt > 0) {
1493 		IPFW_UH_WUNLOCK(ch);
1494 		return (EBUSY);
1495 	}
1496 
1497 	IPFW_WLOCK(ch);
1498 	unlink_table(ch, tc);
1499 	IPFW_WUNLOCK(ch);
1500 
1501 	/* Free obj index */
1502 	if (ipfw_objhash_free_idx(ni, tc->no.kidx) != 0)
1503 		printf("Error unlinking kidx %d from table %s\n",
1504 		    tc->no.kidx, tc->tablename);
1505 
1506 	/* Unref values used in tables while holding UH lock */
1507 	ipfw_unref_table_values(ch, tc, tc->ta, tc->astate, &tc->ti_copy);
1508 	IPFW_UH_WUNLOCK(ch);
1509 
1510 	free_table_config(ni, tc);
1511 
1512 	return (0);
1513 }
1514 
1515 static uint32_t
roundup2p(uint32_t v)1516 roundup2p(uint32_t v)
1517 {
1518 
1519 	return (1 << fls(v - 1));
1520 }
1521 
1522 /*
1523  * Grow tables index.
1524  *
1525  * Returns 0 on success.
1526  */
1527 int
ipfw_resize_tables(struct ip_fw_chain * ch,unsigned int ntables)1528 ipfw_resize_tables(struct ip_fw_chain *ch, unsigned int ntables)
1529 {
1530 	unsigned int tbl;
1531 	struct namedobj_instance *ni;
1532 	void *new_idx, *old_tablestate, *tablestate;
1533 	struct table_info *ti;
1534 	struct table_config *tc;
1535 	int i, new_blocks;
1536 
1537 	/* Check new value for validity */
1538 	if (ntables == 0)
1539 		return (EINVAL);
1540 	if (ntables > IPFW_TABLES_MAX)
1541 		ntables = IPFW_TABLES_MAX;
1542 	/* Alight to nearest power of 2 */
1543 	ntables = (unsigned int)roundup2p(ntables);
1544 
1545 	/* Allocate new pointers */
1546 	tablestate = malloc(ntables * sizeof(struct table_info),
1547 	    M_IPFW, M_WAITOK | M_ZERO);
1548 
1549 	ipfw_objhash_bitmap_alloc(ntables, (void *)&new_idx, &new_blocks);
1550 
1551 	IPFW_UH_WLOCK(ch);
1552 
1553 	tbl = (ntables >= V_fw_tables_max) ? V_fw_tables_max : ntables;
1554 	ni = CHAIN_TO_NI(ch);
1555 
1556 	/* Temporary restrict decreasing max_tables */
1557 	if (ntables < V_fw_tables_max) {
1558 		/*
1559 		 * FIXME: Check if we really can shrink
1560 		 */
1561 		IPFW_UH_WUNLOCK(ch);
1562 		return (EINVAL);
1563 	}
1564 
1565 	/* Copy table info/indices */
1566 	memcpy(tablestate, ch->tablestate, sizeof(struct table_info) * tbl);
1567 	ipfw_objhash_bitmap_merge(ni, &new_idx, &new_blocks);
1568 
1569 	IPFW_WLOCK(ch);
1570 
1571 	/* Change pointers */
1572 	old_tablestate = ch->tablestate;
1573 	ch->tablestate = tablestate;
1574 	ipfw_objhash_bitmap_swap(ni, &new_idx, &new_blocks);
1575 
1576 	V_fw_tables_max = ntables;
1577 
1578 	IPFW_WUNLOCK(ch);
1579 
1580 	/* Notify all consumers that their @ti pointer has changed */
1581 	ti = (struct table_info *)ch->tablestate;
1582 	for (i = 0; i < tbl; i++, ti++) {
1583 		if (ti->lookup == NULL)
1584 			continue;
1585 		tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, i);
1586 		if (tc == NULL || tc->ta->change_ti == NULL)
1587 			continue;
1588 
1589 		tc->ta->change_ti(tc->astate, ti);
1590 	}
1591 
1592 	IPFW_UH_WUNLOCK(ch);
1593 
1594 	/* Free old pointers */
1595 	free(old_tablestate, M_IPFW);
1596 	ipfw_objhash_bitmap_free(new_idx, new_blocks);
1597 
1598 	return (0);
1599 }
1600 
1601 /*
1602  * Lookup table's named object by its @kidx.
1603  */
1604 struct named_object *
ipfw_objhash_lookup_table_kidx(struct ip_fw_chain * ch,uint16_t kidx)1605 ipfw_objhash_lookup_table_kidx(struct ip_fw_chain *ch, uint16_t kidx)
1606 {
1607 
1608 	return (ipfw_objhash_lookup_kidx(CHAIN_TO_NI(ch), kidx));
1609 }
1610 
1611 /*
1612  * Take reference to table specified in @ntlv.
1613  * On success return its @kidx.
1614  */
1615 int
ipfw_ref_table(struct ip_fw_chain * ch,ipfw_obj_ntlv * ntlv,uint16_t * kidx)1616 ipfw_ref_table(struct ip_fw_chain *ch, ipfw_obj_ntlv *ntlv, uint16_t *kidx)
1617 {
1618 	struct tid_info ti;
1619 	struct table_config *tc;
1620 	int error;
1621 
1622 	IPFW_UH_WLOCK_ASSERT(ch);
1623 
1624 	ntlv_to_ti(ntlv, &ti);
1625 	error = find_table_err(CHAIN_TO_NI(ch), &ti, &tc);
1626 	if (error != 0)
1627 		return (error);
1628 
1629 	if (tc == NULL)
1630 		return (ESRCH);
1631 
1632 	tc_ref(tc);
1633 	*kidx = tc->no.kidx;
1634 
1635 	return (0);
1636 }
1637 
1638 void
ipfw_unref_table(struct ip_fw_chain * ch,uint16_t kidx)1639 ipfw_unref_table(struct ip_fw_chain *ch, uint16_t kidx)
1640 {
1641 
1642 	struct namedobj_instance *ni;
1643 	struct named_object *no;
1644 
1645 	IPFW_UH_WLOCK_ASSERT(ch);
1646 	ni = CHAIN_TO_NI(ch);
1647 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1648 	KASSERT(no != NULL, ("Table with index %d not found", kidx));
1649 	no->refcnt--;
1650 }
1651 
1652 /*
1653  * Lookup an arbitrary key @paddr of length @plen in table @tbl.
1654  * Stores found value in @val.
1655  *
1656  * Returns 1 if key was found.
1657  */
1658 int
ipfw_lookup_table(struct ip_fw_chain * ch,uint16_t tbl,uint16_t plen,void * paddr,uint32_t * val)1659 ipfw_lookup_table(struct ip_fw_chain *ch, uint16_t tbl, uint16_t plen,
1660     void *paddr, uint32_t *val)
1661 {
1662 	struct table_info *ti;
1663 
1664 	ti = KIDX_TO_TI(ch, tbl);
1665 
1666 	return (ti->lookup(ti, paddr, plen, val));
1667 }
1668 
1669 /*
1670  * Info/List/dump support for tables.
1671  *
1672  */
1673 
1674 /*
1675  * High-level 'get' cmds sysctl handlers
1676  */
1677 
1678 /*
1679  * Lists all tables currently available in kernel.
1680  * Data layout (v0)(current):
1681  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
1682  * Reply: [ ipfw_obj_lheader ipfw_xtable_info x N ]
1683  *
1684  * Returns 0 on success
1685  */
1686 static int
list_tables(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1687 list_tables(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1688     struct sockopt_data *sd)
1689 {
1690 	struct _ipfw_obj_lheader *olh;
1691 	int error;
1692 
1693 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
1694 	if (olh == NULL)
1695 		return (EINVAL);
1696 	if (sd->valsize < olh->size)
1697 		return (EINVAL);
1698 
1699 	IPFW_UH_RLOCK(ch);
1700 	error = export_tables(ch, olh, sd);
1701 	IPFW_UH_RUNLOCK(ch);
1702 
1703 	return (error);
1704 }
1705 
1706 /*
1707  * Store table info to buffer provided by @sd.
1708  * Data layout (v0)(current):
1709  * Request: [ ipfw_obj_header ipfw_xtable_info(empty)]
1710  * Reply: [ ipfw_obj_header ipfw_xtable_info ]
1711  *
1712  * Returns 0 on success.
1713  */
1714 static int
describe_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1715 describe_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1716     struct sockopt_data *sd)
1717 {
1718 	struct _ipfw_obj_header *oh;
1719 	struct table_config *tc;
1720 	struct tid_info ti;
1721 	size_t sz;
1722 
1723 	sz = sizeof(*oh) + sizeof(ipfw_xtable_info);
1724 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
1725 	if (oh == NULL)
1726 		return (EINVAL);
1727 
1728 	objheader_to_ti(oh, &ti);
1729 
1730 	IPFW_UH_RLOCK(ch);
1731 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
1732 		IPFW_UH_RUNLOCK(ch);
1733 		return (ESRCH);
1734 	}
1735 
1736 	export_table_info(ch, tc, (ipfw_xtable_info *)(oh + 1));
1737 	IPFW_UH_RUNLOCK(ch);
1738 
1739 	return (0);
1740 }
1741 
1742 /*
1743  * Modifies existing table.
1744  * Data layout (v0)(current):
1745  * Request: [ ipfw_obj_header ipfw_xtable_info ]
1746  *
1747  * Returns 0 on success
1748  */
1749 static int
modify_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1750 modify_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1751     struct sockopt_data *sd)
1752 {
1753 	struct _ipfw_obj_header *oh;
1754 	ipfw_xtable_info *i;
1755 	char *tname;
1756 	struct tid_info ti;
1757 	struct namedobj_instance *ni;
1758 	struct table_config *tc;
1759 
1760 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1761 		return (EINVAL);
1762 
1763 	oh = (struct _ipfw_obj_header *)sd->kbuf;
1764 	i = (ipfw_xtable_info *)(oh + 1);
1765 
1766 	/*
1767 	 * Verify user-supplied strings.
1768 	 * Check for null-terminated/zero-length strings/
1769 	 */
1770 	tname = oh->ntlv.name;
1771 	if (check_table_name(tname) != 0)
1772 		return (EINVAL);
1773 
1774 	objheader_to_ti(oh, &ti);
1775 	ti.type = i->type;
1776 
1777 	IPFW_UH_WLOCK(ch);
1778 	ni = CHAIN_TO_NI(ch);
1779 	if ((tc = find_table(ni, &ti)) == NULL) {
1780 		IPFW_UH_WUNLOCK(ch);
1781 		return (ESRCH);
1782 	}
1783 
1784 	/* Do not support any modifications for readonly tables */
1785 	if ((tc->ta->flags & TA_FLAG_READONLY) != 0) {
1786 		IPFW_UH_WUNLOCK(ch);
1787 		return (EACCES);
1788 	}
1789 
1790 	if ((i->mflags & IPFW_TMFLAGS_LIMIT) != 0)
1791 		tc->limit = i->limit;
1792 	if ((i->mflags & IPFW_TMFLAGS_LOCK) != 0)
1793 		tc->locked = ((i->flags & IPFW_TGFLAGS_LOCKED) != 0);
1794 	IPFW_UH_WUNLOCK(ch);
1795 
1796 	return (0);
1797 }
1798 
1799 /*
1800  * Creates new table.
1801  * Data layout (v0)(current):
1802  * Request: [ ipfw_obj_header ipfw_xtable_info ]
1803  *
1804  * Returns 0 on success
1805  */
1806 static int
create_table(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)1807 create_table(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
1808     struct sockopt_data *sd)
1809 {
1810 	struct _ipfw_obj_header *oh;
1811 	ipfw_xtable_info *i;
1812 	char *tname, *aname;
1813 	struct tid_info ti;
1814 	struct namedobj_instance *ni;
1815 
1816 	if (sd->valsize != sizeof(*oh) + sizeof(ipfw_xtable_info))
1817 		return (EINVAL);
1818 
1819 	oh = (struct _ipfw_obj_header *)sd->kbuf;
1820 	i = (ipfw_xtable_info *)(oh + 1);
1821 
1822 	/*
1823 	 * Verify user-supplied strings.
1824 	 * Check for null-terminated/zero-length strings/
1825 	 */
1826 	tname = oh->ntlv.name;
1827 	aname = i->algoname;
1828 	if (check_table_name(tname) != 0 ||
1829 	    strnlen(aname, sizeof(i->algoname)) == sizeof(i->algoname))
1830 		return (EINVAL);
1831 
1832 	if (aname[0] == '\0') {
1833 		/* Use default algorithm */
1834 		aname = NULL;
1835 	}
1836 
1837 	objheader_to_ti(oh, &ti);
1838 	ti.type = i->type;
1839 
1840 	ni = CHAIN_TO_NI(ch);
1841 
1842 	IPFW_UH_RLOCK(ch);
1843 	if (find_table(ni, &ti) != NULL) {
1844 		IPFW_UH_RUNLOCK(ch);
1845 		return (EEXIST);
1846 	}
1847 	IPFW_UH_RUNLOCK(ch);
1848 
1849 	return (create_table_internal(ch, &ti, aname, i, NULL, 0));
1850 }
1851 
1852 /*
1853  * Creates new table based on @ti and @aname.
1854  *
1855  * Assume @aname to be checked and valid.
1856  * Stores allocated table kidx inside @pkidx (if non-NULL).
1857  * Reference created table if @compat is non-zero.
1858  *
1859  * Returns 0 on success.
1860  */
1861 static int
create_table_internal(struct ip_fw_chain * ch,struct tid_info * ti,char * aname,ipfw_xtable_info * i,uint16_t * pkidx,int compat)1862 create_table_internal(struct ip_fw_chain *ch, struct tid_info *ti,
1863     char *aname, ipfw_xtable_info *i, uint16_t *pkidx, int compat)
1864 {
1865 	struct namedobj_instance *ni;
1866 	struct table_config *tc, *tc_new, *tmp;
1867 	struct table_algo *ta;
1868 	uint16_t kidx;
1869 
1870 	ni = CHAIN_TO_NI(ch);
1871 
1872 	ta = find_table_algo(CHAIN_TO_TCFG(ch), ti, aname);
1873 	if (ta == NULL)
1874 		return (ENOTSUP);
1875 
1876 	tc = alloc_table_config(ch, ti, ta, aname, i->tflags);
1877 	if (tc == NULL)
1878 		return (ENOMEM);
1879 
1880 	tc->vmask = i->vmask;
1881 	tc->limit = i->limit;
1882 	if (ta->flags & TA_FLAG_READONLY)
1883 		tc->locked = 1;
1884 	else
1885 		tc->locked = (i->flags & IPFW_TGFLAGS_LOCKED) != 0;
1886 
1887 	IPFW_UH_WLOCK(ch);
1888 
1889 	/* Check if table has been already created */
1890 	tc_new = find_table(ni, ti);
1891 	if (tc_new != NULL) {
1892 		/*
1893 		 * Compat: do not fail if we're
1894 		 * requesting to create existing table
1895 		 * which has the same type
1896 		 */
1897 		if (compat == 0 || tc_new->no.subtype != tc->no.subtype) {
1898 			IPFW_UH_WUNLOCK(ch);
1899 			free_table_config(ni, tc);
1900 			return (EEXIST);
1901 		}
1902 
1903 		/* Exchange tc and tc_new for proper refcounting & freeing */
1904 		tmp = tc;
1905 		tc = tc_new;
1906 		tc_new = tmp;
1907 	} else {
1908 		/* New table */
1909 		if (ipfw_objhash_alloc_idx(ni, &kidx) != 0) {
1910 			IPFW_UH_WUNLOCK(ch);
1911 			printf("Unable to allocate table index."
1912 			    " Consider increasing net.inet.ip.fw.tables_max");
1913 			free_table_config(ni, tc);
1914 			return (EBUSY);
1915 		}
1916 		tc->no.kidx = kidx;
1917 		tc->no.etlv = IPFW_TLV_TBL_NAME;
1918 
1919 		link_table(ch, tc);
1920 	}
1921 
1922 	if (compat != 0)
1923 		tc->no.refcnt++;
1924 	if (pkidx != NULL)
1925 		*pkidx = tc->no.kidx;
1926 
1927 	IPFW_UH_WUNLOCK(ch);
1928 
1929 	if (tc_new != NULL)
1930 		free_table_config(ni, tc_new);
1931 
1932 	return (0);
1933 }
1934 
1935 static void
ntlv_to_ti(ipfw_obj_ntlv * ntlv,struct tid_info * ti)1936 ntlv_to_ti(ipfw_obj_ntlv *ntlv, struct tid_info *ti)
1937 {
1938 
1939 	memset(ti, 0, sizeof(struct tid_info));
1940 	ti->set = ntlv->set;
1941 	ti->uidx = ntlv->idx;
1942 	ti->tlvs = ntlv;
1943 	ti->tlen = ntlv->head.length;
1944 }
1945 
1946 static void
objheader_to_ti(struct _ipfw_obj_header * oh,struct tid_info * ti)1947 objheader_to_ti(struct _ipfw_obj_header *oh, struct tid_info *ti)
1948 {
1949 
1950 	ntlv_to_ti(&oh->ntlv, ti);
1951 }
1952 
1953 struct namedobj_instance *
ipfw_get_table_objhash(struct ip_fw_chain * ch)1954 ipfw_get_table_objhash(struct ip_fw_chain *ch)
1955 {
1956 
1957 	return (CHAIN_TO_NI(ch));
1958 }
1959 
1960 /*
1961  * Exports basic table info as name TLV.
1962  * Used inside dump_static_rules() to provide info
1963  * about all tables referenced by current ruleset.
1964  *
1965  * Returns 0 on success.
1966  */
1967 int
ipfw_export_table_ntlv(struct ip_fw_chain * ch,uint16_t kidx,struct sockopt_data * sd)1968 ipfw_export_table_ntlv(struct ip_fw_chain *ch, uint16_t kidx,
1969     struct sockopt_data *sd)
1970 {
1971 	struct namedobj_instance *ni;
1972 	struct named_object *no;
1973 	ipfw_obj_ntlv *ntlv;
1974 
1975 	ni = CHAIN_TO_NI(ch);
1976 
1977 	no = ipfw_objhash_lookup_kidx(ni, kidx);
1978 	KASSERT(no != NULL, ("invalid table kidx passed"));
1979 
1980 	ntlv = (ipfw_obj_ntlv *)ipfw_get_sopt_space(sd, sizeof(*ntlv));
1981 	if (ntlv == NULL)
1982 		return (ENOMEM);
1983 
1984 	ntlv->head.type = IPFW_TLV_TBL_NAME;
1985 	ntlv->head.length = sizeof(*ntlv);
1986 	ntlv->idx = no->kidx;
1987 	strlcpy(ntlv->name, no->name, sizeof(ntlv->name));
1988 
1989 	return (0);
1990 }
1991 
1992 struct dump_args {
1993 	struct ip_fw_chain *ch;
1994 	struct table_info *ti;
1995 	struct table_config *tc;
1996 	struct sockopt_data *sd;
1997 	uint32_t cnt;
1998 	uint16_t uidx;
1999 	int error;
2000 	uint32_t size;
2001 	ipfw_table_entry *ent;
2002 	ta_foreach_f *f;
2003 	void *farg;
2004 	ipfw_obj_tentry tent;
2005 };
2006 
2007 static int
count_ext_entries(void * e,void * arg)2008 count_ext_entries(void *e, void *arg)
2009 {
2010 	struct dump_args *da;
2011 
2012 	da = (struct dump_args *)arg;
2013 	da->cnt++;
2014 
2015 	return (0);
2016 }
2017 
2018 /*
2019  * Gets number of items from table either using
2020  * internal counter or calling algo callback for
2021  * externally-managed tables.
2022  *
2023  * Returns number of records.
2024  */
2025 static uint32_t
table_get_count(struct ip_fw_chain * ch,struct table_config * tc)2026 table_get_count(struct ip_fw_chain *ch, struct table_config *tc)
2027 {
2028 	struct table_info *ti;
2029 	struct table_algo *ta;
2030 	struct dump_args da;
2031 
2032 	ti = KIDX_TO_TI(ch, tc->no.kidx);
2033 	ta = tc->ta;
2034 
2035 	/* Use internal counter for self-managed tables */
2036 	if ((ta->flags & TA_FLAG_READONLY) == 0)
2037 		return (tc->count);
2038 
2039 	/* Use callback to quickly get number of items */
2040 	if ((ta->flags & TA_FLAG_EXTCOUNTER) != 0)
2041 		return (ta->get_count(tc->astate, ti));
2042 
2043 	/* Count number of iterms ourselves */
2044 	memset(&da, 0, sizeof(da));
2045 	ta->foreach(tc->astate, ti, count_ext_entries, &da);
2046 
2047 	return (da.cnt);
2048 }
2049 
2050 /*
2051  * Exports table @tc info into standard ipfw_xtable_info format.
2052  */
2053 static void
export_table_info(struct ip_fw_chain * ch,struct table_config * tc,ipfw_xtable_info * i)2054 export_table_info(struct ip_fw_chain *ch, struct table_config *tc,
2055     ipfw_xtable_info *i)
2056 {
2057 	struct table_info *ti;
2058 	struct table_algo *ta;
2059 
2060 	i->type = tc->no.subtype;
2061 	i->tflags = tc->tflags;
2062 	i->vmask = tc->vmask;
2063 	i->set = tc->no.set;
2064 	i->kidx = tc->no.kidx;
2065 	i->refcnt = tc->no.refcnt;
2066 	i->count = table_get_count(ch, tc);
2067 	i->limit = tc->limit;
2068 	i->flags |= (tc->locked != 0) ? IPFW_TGFLAGS_LOCKED : 0;
2069 	i->size = i->count * sizeof(ipfw_obj_tentry);
2070 	i->size += sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2071 	strlcpy(i->tablename, tc->tablename, sizeof(i->tablename));
2072 	ti = KIDX_TO_TI(ch, tc->no.kidx);
2073 	ta = tc->ta;
2074 	if (ta->print_config != NULL) {
2075 		/* Use algo function to print table config to string */
2076 		ta->print_config(tc->astate, ti, i->algoname,
2077 		    sizeof(i->algoname));
2078 	} else
2079 		strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2080 	/* Dump algo-specific data, if possible */
2081 	if (ta->dump_tinfo != NULL) {
2082 		ta->dump_tinfo(tc->astate, ti, &i->ta_info);
2083 		i->ta_info.flags |= IPFW_TATFLAGS_DATA;
2084 	}
2085 }
2086 
2087 struct dump_table_args {
2088 	struct ip_fw_chain *ch;
2089 	struct sockopt_data *sd;
2090 };
2091 
2092 static int
export_table_internal(struct namedobj_instance * ni,struct named_object * no,void * arg)2093 export_table_internal(struct namedobj_instance *ni, struct named_object *no,
2094     void *arg)
2095 {
2096 	ipfw_xtable_info *i;
2097 	struct dump_table_args *dta;
2098 
2099 	dta = (struct dump_table_args *)arg;
2100 
2101 	i = (ipfw_xtable_info *)ipfw_get_sopt_space(dta->sd, sizeof(*i));
2102 	KASSERT(i != NULL, ("previously checked buffer is not enough"));
2103 
2104 	export_table_info(dta->ch, (struct table_config *)no, i);
2105 	return (0);
2106 }
2107 
2108 /*
2109  * Export all tables as ipfw_xtable_info structures to
2110  * storage provided by @sd.
2111  *
2112  * If supplied buffer is too small, fills in required size
2113  * and returns ENOMEM.
2114  * Returns 0 on success.
2115  */
2116 static int
export_tables(struct ip_fw_chain * ch,ipfw_obj_lheader * olh,struct sockopt_data * sd)2117 export_tables(struct ip_fw_chain *ch, ipfw_obj_lheader *olh,
2118     struct sockopt_data *sd)
2119 {
2120 	uint32_t size;
2121 	uint32_t count;
2122 	struct dump_table_args dta;
2123 
2124 	count = ipfw_objhash_count(CHAIN_TO_NI(ch));
2125 	size = count * sizeof(ipfw_xtable_info) + sizeof(ipfw_obj_lheader);
2126 
2127 	/* Fill in header regadless of buffer size */
2128 	olh->count = count;
2129 	olh->objsize = sizeof(ipfw_xtable_info);
2130 
2131 	if (size > olh->size) {
2132 		olh->size = size;
2133 		return (ENOMEM);
2134 	}
2135 
2136 	olh->size = size;
2137 
2138 	dta.ch = ch;
2139 	dta.sd = sd;
2140 
2141 	ipfw_objhash_foreach(CHAIN_TO_NI(ch), export_table_internal, &dta);
2142 
2143 	return (0);
2144 }
2145 
2146 /*
2147  * Dumps all table data
2148  * Data layout (v1)(current):
2149  * Request: [ ipfw_obj_header ], size = ipfw_xtable_info.size
2150  * Reply: [ ipfw_obj_header ipfw_xtable_info ipfw_obj_tentry x N ]
2151  *
2152  * Returns 0 on success
2153  */
2154 static int
dump_table_v1(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2155 dump_table_v1(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2156     struct sockopt_data *sd)
2157 {
2158 	struct _ipfw_obj_header *oh;
2159 	ipfw_xtable_info *i;
2160 	struct tid_info ti;
2161 	struct table_config *tc;
2162 	struct table_algo *ta;
2163 	struct dump_args da;
2164 	uint32_t sz;
2165 
2166 	sz = sizeof(ipfw_obj_header) + sizeof(ipfw_xtable_info);
2167 	oh = (struct _ipfw_obj_header *)ipfw_get_sopt_header(sd, sz);
2168 	if (oh == NULL)
2169 		return (EINVAL);
2170 
2171 	i = (ipfw_xtable_info *)(oh + 1);
2172 	objheader_to_ti(oh, &ti);
2173 
2174 	IPFW_UH_RLOCK(ch);
2175 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2176 		IPFW_UH_RUNLOCK(ch);
2177 		return (ESRCH);
2178 	}
2179 	export_table_info(ch, tc, i);
2180 
2181 	if (sd->valsize < i->size) {
2182 		/*
2183 		 * Submitted buffer size is not enough.
2184 		 * WE've already filled in @i structure with
2185 		 * relevant table info including size, so we
2186 		 * can return. Buffer will be flushed automatically.
2187 		 */
2188 		IPFW_UH_RUNLOCK(ch);
2189 		return (ENOMEM);
2190 	}
2191 
2192 	/*
2193 	 * Do the actual dump in eXtended format
2194 	 */
2195 	memset(&da, 0, sizeof(da));
2196 	da.ch = ch;
2197 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2198 	da.tc = tc;
2199 	da.sd = sd;
2200 
2201 	ta = tc->ta;
2202 
2203 	ta->foreach(tc->astate, da.ti, dump_table_tentry, &da);
2204 	IPFW_UH_RUNLOCK(ch);
2205 
2206 	return (da.error);
2207 }
2208 
2209 /*
2210  * Dumps all table data
2211  * Data layout (version 0)(legacy):
2212  * Request: [ ipfw_xtable ], size = IP_FW_TABLE_XGETSIZE()
2213  * Reply: [ ipfw_xtable ipfw_table_xentry x N ]
2214  *
2215  * Returns 0 on success
2216  */
2217 static int
dump_table_v0(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2218 dump_table_v0(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2219     struct sockopt_data *sd)
2220 {
2221 	ipfw_xtable *xtbl;
2222 	struct tid_info ti;
2223 	struct table_config *tc;
2224 	struct table_algo *ta;
2225 	struct dump_args da;
2226 	size_t sz, count;
2227 
2228 	xtbl = (ipfw_xtable *)ipfw_get_sopt_header(sd, sizeof(ipfw_xtable));
2229 	if (xtbl == NULL)
2230 		return (EINVAL);
2231 
2232 	memset(&ti, 0, sizeof(ti));
2233 	ti.uidx = xtbl->tbl;
2234 
2235 	IPFW_UH_RLOCK(ch);
2236 	if ((tc = find_table(CHAIN_TO_NI(ch), &ti)) == NULL) {
2237 		IPFW_UH_RUNLOCK(ch);
2238 		return (0);
2239 	}
2240 	count = table_get_count(ch, tc);
2241 	sz = count * sizeof(ipfw_table_xentry) + sizeof(ipfw_xtable);
2242 
2243 	xtbl->cnt = count;
2244 	xtbl->size = sz;
2245 	xtbl->type = tc->no.subtype;
2246 	xtbl->tbl = ti.uidx;
2247 
2248 	if (sd->valsize < sz) {
2249 		/*
2250 		 * Submitted buffer size is not enough.
2251 		 * WE've already filled in @i structure with
2252 		 * relevant table info including size, so we
2253 		 * can return. Buffer will be flushed automatically.
2254 		 */
2255 		IPFW_UH_RUNLOCK(ch);
2256 		return (ENOMEM);
2257 	}
2258 
2259 	/* Do the actual dump in eXtended format */
2260 	memset(&da, 0, sizeof(da));
2261 	da.ch = ch;
2262 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2263 	da.tc = tc;
2264 	da.sd = sd;
2265 
2266 	ta = tc->ta;
2267 
2268 	ta->foreach(tc->astate, da.ti, dump_table_xentry, &da);
2269 	IPFW_UH_RUNLOCK(ch);
2270 
2271 	return (0);
2272 }
2273 
2274 /*
2275  * Legacy function to retrieve number of items in table.
2276  */
2277 static int
get_table_size(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2278 get_table_size(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2279     struct sockopt_data *sd)
2280 {
2281 	uint32_t *tbl;
2282 	struct tid_info ti;
2283 	size_t sz;
2284 	int error;
2285 
2286 	sz = sizeof(*op3) + sizeof(uint32_t);
2287 	op3 = (ip_fw3_opheader *)ipfw_get_sopt_header(sd, sz);
2288 	if (op3 == NULL)
2289 		return (EINVAL);
2290 
2291 	tbl = (uint32_t *)(op3 + 1);
2292 	memset(&ti, 0, sizeof(ti));
2293 	ti.uidx = *tbl;
2294 	IPFW_UH_RLOCK(ch);
2295 	error = ipfw_count_xtable(ch, &ti, tbl);
2296 	IPFW_UH_RUNLOCK(ch);
2297 	return (error);
2298 }
2299 
2300 /*
2301  * Legacy IP_FW_TABLE_GETSIZE handler
2302  */
2303 int
ipfw_count_table(struct ip_fw_chain * ch,struct tid_info * ti,uint32_t * cnt)2304 ipfw_count_table(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2305 {
2306 	struct table_config *tc;
2307 
2308 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2309 		return (ESRCH);
2310 	*cnt = table_get_count(ch, tc);
2311 	return (0);
2312 }
2313 
2314 /*
2315  * Legacy IP_FW_TABLE_XGETSIZE handler
2316  */
2317 int
ipfw_count_xtable(struct ip_fw_chain * ch,struct tid_info * ti,uint32_t * cnt)2318 ipfw_count_xtable(struct ip_fw_chain *ch, struct tid_info *ti, uint32_t *cnt)
2319 {
2320 	struct table_config *tc;
2321 	uint32_t count;
2322 
2323 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL) {
2324 		*cnt = 0;
2325 		return (0); /* 'table all list' requires success */
2326 	}
2327 
2328 	count = table_get_count(ch, tc);
2329 	*cnt = count * sizeof(ipfw_table_xentry);
2330 	if (count > 0)
2331 		*cnt += sizeof(ipfw_xtable);
2332 	return (0);
2333 }
2334 
2335 static int
dump_table_entry(void * e,void * arg)2336 dump_table_entry(void *e, void *arg)
2337 {
2338 	struct dump_args *da;
2339 	struct table_config *tc;
2340 	struct table_algo *ta;
2341 	ipfw_table_entry *ent;
2342 	struct table_value *pval;
2343 	int error;
2344 
2345 	da = (struct dump_args *)arg;
2346 
2347 	tc = da->tc;
2348 	ta = tc->ta;
2349 
2350 	/* Out of memory, returning */
2351 	if (da->cnt == da->size)
2352 		return (1);
2353 	ent = da->ent++;
2354 	ent->tbl = da->uidx;
2355 	da->cnt++;
2356 
2357 	error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2358 	if (error != 0)
2359 		return (error);
2360 
2361 	ent->addr = da->tent.k.addr.s_addr;
2362 	ent->masklen = da->tent.masklen;
2363 	pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2364 	ent->value = ipfw_export_table_value_legacy(pval);
2365 
2366 	return (0);
2367 }
2368 
2369 /*
2370  * Dumps table in pre-8.1 legacy format.
2371  */
2372 int
ipfw_dump_table_legacy(struct ip_fw_chain * ch,struct tid_info * ti,ipfw_table * tbl)2373 ipfw_dump_table_legacy(struct ip_fw_chain *ch, struct tid_info *ti,
2374     ipfw_table *tbl)
2375 {
2376 	struct table_config *tc;
2377 	struct table_algo *ta;
2378 	struct dump_args da;
2379 
2380 	tbl->cnt = 0;
2381 
2382 	if ((tc = find_table(CHAIN_TO_NI(ch), ti)) == NULL)
2383 		return (0);	/* XXX: We should return ESRCH */
2384 
2385 	ta = tc->ta;
2386 
2387 	/* This dump format supports IPv4 only */
2388 	if (tc->no.subtype != IPFW_TABLE_ADDR)
2389 		return (0);
2390 
2391 	memset(&da, 0, sizeof(da));
2392 	da.ch = ch;
2393 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2394 	da.tc = tc;
2395 	da.ent = &tbl->ent[0];
2396 	da.size = tbl->size;
2397 
2398 	tbl->cnt = 0;
2399 	ta->foreach(tc->astate, da.ti, dump_table_entry, &da);
2400 	tbl->cnt = da.cnt;
2401 
2402 	return (0);
2403 }
2404 
2405 /*
2406  * Dumps table entry in eXtended format (v1)(current).
2407  */
2408 static int
dump_table_tentry(void * e,void * arg)2409 dump_table_tentry(void *e, void *arg)
2410 {
2411 	struct dump_args *da;
2412 	struct table_config *tc;
2413 	struct table_algo *ta;
2414 	struct table_value *pval;
2415 	ipfw_obj_tentry *tent;
2416 	int error;
2417 
2418 	da = (struct dump_args *)arg;
2419 
2420 	tc = da->tc;
2421 	ta = tc->ta;
2422 
2423 	tent = (ipfw_obj_tentry *)ipfw_get_sopt_space(da->sd, sizeof(*tent));
2424 	/* Out of memory, returning */
2425 	if (tent == NULL) {
2426 		da->error = ENOMEM;
2427 		return (1);
2428 	}
2429 	tent->head.length = sizeof(ipfw_obj_tentry);
2430 	tent->idx = da->uidx;
2431 
2432 	error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2433 	if (error != 0)
2434 		return (error);
2435 
2436 	pval = get_table_value(da->ch, da->tc, tent->v.kidx);
2437 	ipfw_export_table_value_v1(pval, &tent->v.value);
2438 
2439 	return (0);
2440 }
2441 
2442 /*
2443  * Dumps table entry in eXtended format (v0).
2444  */
2445 static int
dump_table_xentry(void * e,void * arg)2446 dump_table_xentry(void *e, void *arg)
2447 {
2448 	struct dump_args *da;
2449 	struct table_config *tc;
2450 	struct table_algo *ta;
2451 	ipfw_table_xentry *xent;
2452 	ipfw_obj_tentry *tent;
2453 	struct table_value *pval;
2454 	int error;
2455 
2456 	da = (struct dump_args *)arg;
2457 
2458 	tc = da->tc;
2459 	ta = tc->ta;
2460 
2461 	xent = (ipfw_table_xentry *)ipfw_get_sopt_space(da->sd, sizeof(*xent));
2462 	/* Out of memory, returning */
2463 	if (xent == NULL)
2464 		return (1);
2465 	xent->len = sizeof(ipfw_table_xentry);
2466 	xent->tbl = da->uidx;
2467 
2468 	memset(&da->tent, 0, sizeof(da->tent));
2469 	tent = &da->tent;
2470 	error = ta->dump_tentry(tc->astate, da->ti, e, tent);
2471 	if (error != 0)
2472 		return (error);
2473 
2474 	/* Convert current format to previous one */
2475 	xent->masklen = tent->masklen;
2476 	pval = get_table_value(da->ch, da->tc, da->tent.v.kidx);
2477 	xent->value = ipfw_export_table_value_legacy(pval);
2478 	/* Apply some hacks */
2479 	if (tc->no.subtype == IPFW_TABLE_ADDR && tent->subtype == AF_INET) {
2480 		xent->k.addr6.s6_addr32[3] = tent->k.addr.s_addr;
2481 		xent->flags = IPFW_TCF_INET;
2482 	} else
2483 		memcpy(&xent->k, &tent->k, sizeof(xent->k));
2484 
2485 	return (0);
2486 }
2487 
2488 /*
2489  * Helper function to export table algo data
2490  * to tentry format before calling user function.
2491  *
2492  * Returns 0 on success.
2493  */
2494 static int
prepare_table_tentry(void * e,void * arg)2495 prepare_table_tentry(void *e, void *arg)
2496 {
2497 	struct dump_args *da;
2498 	struct table_config *tc;
2499 	struct table_algo *ta;
2500 	int error;
2501 
2502 	da = (struct dump_args *)arg;
2503 
2504 	tc = da->tc;
2505 	ta = tc->ta;
2506 
2507 	error = ta->dump_tentry(tc->astate, da->ti, e, &da->tent);
2508 	if (error != 0)
2509 		return (error);
2510 
2511 	da->f(&da->tent, da->farg);
2512 
2513 	return (0);
2514 }
2515 
2516 /*
2517  * Allow external consumers to read table entries in standard format.
2518  */
2519 int
ipfw_foreach_table_tentry(struct ip_fw_chain * ch,uint16_t kidx,ta_foreach_f * f,void * arg)2520 ipfw_foreach_table_tentry(struct ip_fw_chain *ch, uint16_t kidx,
2521     ta_foreach_f *f, void *arg)
2522 {
2523 	struct namedobj_instance *ni;
2524 	struct table_config *tc;
2525 	struct table_algo *ta;
2526 	struct dump_args da;
2527 
2528 	ni = CHAIN_TO_NI(ch);
2529 
2530 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, kidx);
2531 	if (tc == NULL)
2532 		return (ESRCH);
2533 
2534 	ta = tc->ta;
2535 
2536 	memset(&da, 0, sizeof(da));
2537 	da.ch = ch;
2538 	da.ti = KIDX_TO_TI(ch, tc->no.kidx);
2539 	da.tc = tc;
2540 	da.f = f;
2541 	da.farg = arg;
2542 
2543 	ta->foreach(tc->astate, da.ti, prepare_table_tentry, &da);
2544 
2545 	return (0);
2546 }
2547 
2548 /*
2549  * Table algorithms
2550  */
2551 
2552 /*
2553  * Finds algorithm by index, table type or supplied name.
2554  *
2555  * Returns pointer to algo or NULL.
2556  */
2557 static struct table_algo *
find_table_algo(struct tables_config * tcfg,struct tid_info * ti,char * name)2558 find_table_algo(struct tables_config *tcfg, struct tid_info *ti, char *name)
2559 {
2560 	int i, l;
2561 	struct table_algo *ta;
2562 
2563 	if (ti->type > IPFW_TABLE_MAXTYPE)
2564 		return (NULL);
2565 
2566 	/* Search by index */
2567 	if (ti->atype != 0) {
2568 		if (ti->atype > tcfg->algo_count)
2569 			return (NULL);
2570 		return (tcfg->algo[ti->atype]);
2571 	}
2572 
2573 	if (name == NULL) {
2574 		/* Return default algorithm for given type if set */
2575 		return (tcfg->def_algo[ti->type]);
2576 	}
2577 
2578 	/* Search by name */
2579 	/* TODO: better search */
2580 	for (i = 1; i <= tcfg->algo_count; i++) {
2581 		ta = tcfg->algo[i];
2582 
2583 		/*
2584 		 * One can supply additional algorithm
2585 		 * parameters so we compare only the first word
2586 		 * of supplied name:
2587 		 * 'addr:chash hsize=32'
2588 		 * '^^^^^^^^^'
2589 		 *
2590 		 */
2591 		l = strlen(ta->name);
2592 		if (strncmp(name, ta->name, l) != 0)
2593 			continue;
2594 		if (name[l] != '\0' && name[l] != ' ')
2595 			continue;
2596 		/* Check if we're requesting proper table type */
2597 		if (ti->type != 0 && ti->type != ta->type)
2598 			return (NULL);
2599 		return (ta);
2600 	}
2601 
2602 	return (NULL);
2603 }
2604 
2605 /*
2606  * Register new table algo @ta.
2607  * Stores algo id inside @idx.
2608  *
2609  * Returns 0 on success.
2610  */
2611 int
ipfw_add_table_algo(struct ip_fw_chain * ch,struct table_algo * ta,size_t size,int * idx)2612 ipfw_add_table_algo(struct ip_fw_chain *ch, struct table_algo *ta, size_t size,
2613     int *idx)
2614 {
2615 	struct tables_config *tcfg;
2616 	struct table_algo *ta_new;
2617 	size_t sz;
2618 
2619 	if (size > sizeof(struct table_algo))
2620 		return (EINVAL);
2621 
2622 	/* Check for the required on-stack size for add/del */
2623 	sz = roundup2(ta->ta_buf_size, sizeof(void *));
2624 	if (sz > TA_BUF_SZ)
2625 		return (EINVAL);
2626 
2627 	KASSERT(ta->type <= IPFW_TABLE_MAXTYPE,("Increase IPFW_TABLE_MAXTYPE"));
2628 
2629 	/* Copy algorithm data to stable storage. */
2630 	ta_new = malloc(sizeof(struct table_algo), M_IPFW, M_WAITOK | M_ZERO);
2631 	memcpy(ta_new, ta, size);
2632 
2633 	tcfg = CHAIN_TO_TCFG(ch);
2634 
2635 	KASSERT(tcfg->algo_count < 255, ("Increase algo array size"));
2636 
2637 	tcfg->algo[++tcfg->algo_count] = ta_new;
2638 	ta_new->idx = tcfg->algo_count;
2639 
2640 	/* Set algorithm as default one for given type */
2641 	if ((ta_new->flags & TA_FLAG_DEFAULT) != 0 &&
2642 	    tcfg->def_algo[ta_new->type] == NULL)
2643 		tcfg->def_algo[ta_new->type] = ta_new;
2644 
2645 	*idx = ta_new->idx;
2646 
2647 	return (0);
2648 }
2649 
2650 /*
2651  * Unregisters table algo using @idx as id.
2652  * XXX: It is NOT safe to call this function in any place
2653  * other than ipfw instance destroy handler.
2654  */
2655 void
ipfw_del_table_algo(struct ip_fw_chain * ch,int idx)2656 ipfw_del_table_algo(struct ip_fw_chain *ch, int idx)
2657 {
2658 	struct tables_config *tcfg;
2659 	struct table_algo *ta;
2660 
2661 	tcfg = CHAIN_TO_TCFG(ch);
2662 
2663 	KASSERT(idx <= tcfg->algo_count, ("algo idx %d out of range 1..%d",
2664 	    idx, tcfg->algo_count));
2665 
2666 	ta = tcfg->algo[idx];
2667 	KASSERT(ta != NULL, ("algo idx %d is NULL", idx));
2668 
2669 	if (tcfg->def_algo[ta->type] == ta)
2670 		tcfg->def_algo[ta->type] = NULL;
2671 
2672 	free(ta, M_IPFW);
2673 }
2674 
2675 /*
2676  * Lists all table algorithms currently available.
2677  * Data layout (v0)(current):
2678  * Request: [ ipfw_obj_lheader ], size = ipfw_obj_lheader.size
2679  * Reply: [ ipfw_obj_lheader ipfw_ta_info x N ]
2680  *
2681  * Returns 0 on success
2682  */
2683 static int
list_table_algo(struct ip_fw_chain * ch,ip_fw3_opheader * op3,struct sockopt_data * sd)2684 list_table_algo(struct ip_fw_chain *ch, ip_fw3_opheader *op3,
2685     struct sockopt_data *sd)
2686 {
2687 	struct _ipfw_obj_lheader *olh;
2688 	struct tables_config *tcfg;
2689 	ipfw_ta_info *i;
2690 	struct table_algo *ta;
2691 	uint32_t count, n, size;
2692 
2693 	olh = (struct _ipfw_obj_lheader *)ipfw_get_sopt_header(sd,sizeof(*olh));
2694 	if (olh == NULL)
2695 		return (EINVAL);
2696 	if (sd->valsize < olh->size)
2697 		return (EINVAL);
2698 
2699 	IPFW_UH_RLOCK(ch);
2700 	tcfg = CHAIN_TO_TCFG(ch);
2701 	count = tcfg->algo_count;
2702 	size = count * sizeof(ipfw_ta_info) + sizeof(ipfw_obj_lheader);
2703 
2704 	/* Fill in header regadless of buffer size */
2705 	olh->count = count;
2706 	olh->objsize = sizeof(ipfw_ta_info);
2707 
2708 	if (size > olh->size) {
2709 		olh->size = size;
2710 		IPFW_UH_RUNLOCK(ch);
2711 		return (ENOMEM);
2712 	}
2713 	olh->size = size;
2714 
2715 	for (n = 1; n <= count; n++) {
2716 		i = (ipfw_ta_info *)ipfw_get_sopt_space(sd, sizeof(*i));
2717 		KASSERT(i != NULL, ("previously checked buffer is not enough"));
2718 		ta = tcfg->algo[n];
2719 		strlcpy(i->algoname, ta->name, sizeof(i->algoname));
2720 		i->type = ta->type;
2721 		i->refcnt = ta->refcnt;
2722 	}
2723 
2724 	IPFW_UH_RUNLOCK(ch);
2725 
2726 	return (0);
2727 }
2728 
2729 static int
classify_srcdst(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2730 classify_srcdst(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2731 {
2732 	/* Basic IPv4/IPv6 or u32 lookups */
2733 	*puidx = cmd->arg1;
2734 	/* Assume ADDR by default */
2735 	*ptype = IPFW_TABLE_ADDR;
2736 	int v;
2737 
2738 	if (F_LEN(cmd) > F_INSN_SIZE(ipfw_insn_u32)) {
2739 		/*
2740 		 * generic lookup. The key must be
2741 		 * in 32bit big-endian format.
2742 		 */
2743 		v = ((ipfw_insn_u32 *)cmd)->d[1];
2744 		switch (v) {
2745 		case LOOKUP_DST_IP:
2746 		case LOOKUP_SRC_IP:
2747 			break;
2748 		case LOOKUP_DST_PORT:
2749 		case LOOKUP_SRC_PORT:
2750 		case LOOKUP_UID:
2751 		case LOOKUP_JAIL:
2752 		case LOOKUP_DSCP:
2753 		case LOOKUP_MARK:
2754 			*ptype = IPFW_TABLE_NUMBER;
2755 			break;
2756 		case LOOKUP_DST_MAC:
2757 		case LOOKUP_SRC_MAC:
2758 			*ptype = IPFW_TABLE_MAC;
2759 			break;
2760 		}
2761 	}
2762 
2763 	return (0);
2764 }
2765 
2766 static int
classify_via(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2767 classify_via(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2768 {
2769 	ipfw_insn_if *cmdif;
2770 
2771 	/* Interface table, possibly */
2772 	cmdif = (ipfw_insn_if *)cmd;
2773 	if (cmdif->name[0] != '\1')
2774 		return (1);
2775 
2776 	*ptype = IPFW_TABLE_INTERFACE;
2777 	*puidx = cmdif->p.kidx;
2778 
2779 	return (0);
2780 }
2781 
2782 static int
classify_flow(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2783 classify_flow(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2784 {
2785 
2786 	*puidx = cmd->arg1;
2787 	*ptype = IPFW_TABLE_FLOW;
2788 
2789 	return (0);
2790 }
2791 
2792 static int
classify_mac_lookup(ipfw_insn * cmd,uint16_t * puidx,uint8_t * ptype)2793 classify_mac_lookup(ipfw_insn *cmd, uint16_t *puidx, uint8_t *ptype)
2794 {
2795 	*puidx = cmd->arg1;
2796 	*ptype = IPFW_TABLE_MAC;
2797 	return (0);
2798 }
2799 
2800 static void
update_arg1(ipfw_insn * cmd,uint16_t idx)2801 update_arg1(ipfw_insn *cmd, uint16_t idx)
2802 {
2803 
2804 	cmd->arg1 = idx;
2805 }
2806 
2807 static void
update_via(ipfw_insn * cmd,uint16_t idx)2808 update_via(ipfw_insn *cmd, uint16_t idx)
2809 {
2810 	ipfw_insn_if *cmdif;
2811 
2812 	cmdif = (ipfw_insn_if *)cmd;
2813 	cmdif->p.kidx = idx;
2814 }
2815 
2816 static int
table_findbyname(struct ip_fw_chain * ch,struct tid_info * ti,struct named_object ** pno)2817 table_findbyname(struct ip_fw_chain *ch, struct tid_info *ti,
2818     struct named_object **pno)
2819 {
2820 	struct table_config *tc;
2821 	int error;
2822 
2823 	IPFW_UH_WLOCK_ASSERT(ch);
2824 
2825 	error = find_table_err(CHAIN_TO_NI(ch), ti, &tc);
2826 	if (error != 0)
2827 		return (error);
2828 
2829 	*pno = &tc->no;
2830 	return (0);
2831 }
2832 
2833 /* XXX: sets-sets! */
2834 static struct named_object *
table_findbykidx(struct ip_fw_chain * ch,uint16_t idx)2835 table_findbykidx(struct ip_fw_chain *ch, uint16_t idx)
2836 {
2837 	struct namedobj_instance *ni;
2838 	struct table_config *tc;
2839 
2840 	IPFW_UH_WLOCK_ASSERT(ch);
2841 	ni = CHAIN_TO_NI(ch);
2842 	tc = (struct table_config *)ipfw_objhash_lookup_kidx(ni, idx);
2843 	KASSERT(tc != NULL, ("Table with index %d not found", idx));
2844 
2845 	return (&tc->no);
2846 }
2847 
2848 static int
table_manage_sets(struct ip_fw_chain * ch,uint16_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)2849 table_manage_sets(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2850     enum ipfw_sets_cmd cmd)
2851 {
2852 
2853 	switch (cmd) {
2854 	case SWAP_ALL:
2855 	case TEST_ALL:
2856 	case MOVE_ALL:
2857 		/*
2858 		 * Always return success, the real action and decision
2859 		 * should make table_manage_sets_all().
2860 		 */
2861 		return (0);
2862 	case TEST_ONE:
2863 	case MOVE_ONE:
2864 		/*
2865 		 * NOTE: we need to use ipfw_objhash_del/ipfw_objhash_add
2866 		 * if set number will be used in hash function. Currently
2867 		 * we can just use generic handler that replaces set value.
2868 		 */
2869 		if (V_fw_tables_sets == 0)
2870 			return (0);
2871 		break;
2872 	case COUNT_ONE:
2873 		/*
2874 		 * Return EOPNOTSUPP for COUNT_ONE when per-set sysctl is
2875 		 * disabled. This allow skip table's opcodes from additional
2876 		 * checks when specific rules moved to another set.
2877 		 */
2878 		if (V_fw_tables_sets == 0)
2879 			return (EOPNOTSUPP);
2880 	}
2881 	/* Use generic sets handler when per-set sysctl is enabled. */
2882 	return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2883 	    set, new_set, cmd));
2884 }
2885 
2886 /*
2887  * We register several opcode rewriters for lookup tables.
2888  * All tables opcodes have the same ETLV type, but different subtype.
2889  * To avoid invoking sets handler several times for XXX_ALL commands,
2890  * we use separate manage_sets handler. O_RECV has the lowest value,
2891  * so it should be called first.
2892  */
2893 static int
table_manage_sets_all(struct ip_fw_chain * ch,uint16_t set,uint8_t new_set,enum ipfw_sets_cmd cmd)2894 table_manage_sets_all(struct ip_fw_chain *ch, uint16_t set, uint8_t new_set,
2895     enum ipfw_sets_cmd cmd)
2896 {
2897 
2898 	switch (cmd) {
2899 	case SWAP_ALL:
2900 	case TEST_ALL:
2901 		/*
2902 		 * Return success for TEST_ALL, since nothing prevents
2903 		 * move rules from one set to another. All tables are
2904 		 * accessible from all sets when per-set tables sysctl
2905 		 * is disabled.
2906 		 */
2907 	case MOVE_ALL:
2908 		if (V_fw_tables_sets == 0)
2909 			return (0);
2910 		break;
2911 	default:
2912 		return (table_manage_sets(ch, set, new_set, cmd));
2913 	}
2914 	/* Use generic sets handler when per-set sysctl is enabled. */
2915 	return (ipfw_obj_manage_sets(CHAIN_TO_NI(ch), IPFW_TLV_TBL_NAME,
2916 	    set, new_set, cmd));
2917 }
2918 
2919 static struct opcode_obj_rewrite opcodes[] = {
2920 	{
2921 		.opcode = O_IP_SRC_LOOKUP,
2922 		.etlv = IPFW_TLV_TBL_NAME,
2923 		.classifier = classify_srcdst,
2924 		.update = update_arg1,
2925 		.find_byname = table_findbyname,
2926 		.find_bykidx = table_findbykidx,
2927 		.create_object = create_table_compat,
2928 		.manage_sets = table_manage_sets,
2929 	},
2930 	{
2931 		.opcode = O_IP_DST_LOOKUP,
2932 		.etlv = IPFW_TLV_TBL_NAME,
2933 		.classifier = classify_srcdst,
2934 		.update = update_arg1,
2935 		.find_byname = table_findbyname,
2936 		.find_bykidx = table_findbykidx,
2937 		.create_object = create_table_compat,
2938 		.manage_sets = table_manage_sets,
2939 	},
2940 	{
2941 		.opcode = O_IP_FLOW_LOOKUP,
2942 		.etlv = IPFW_TLV_TBL_NAME,
2943 		.classifier = classify_flow,
2944 		.update = update_arg1,
2945 		.find_byname = table_findbyname,
2946 		.find_bykidx = table_findbykidx,
2947 		.create_object = create_table_compat,
2948 		.manage_sets = table_manage_sets,
2949 	},
2950 	{
2951 		.opcode = O_MAC_SRC_LOOKUP,
2952 		.etlv = IPFW_TLV_TBL_NAME,
2953 		.classifier = classify_mac_lookup,
2954 		.update = update_arg1,
2955 		.find_byname = table_findbyname,
2956 		.find_bykidx = table_findbykidx,
2957 		.create_object = create_table_compat,
2958 		.manage_sets = table_manage_sets,
2959 	},
2960 	{
2961 		.opcode = O_MAC_DST_LOOKUP,
2962 		.etlv = IPFW_TLV_TBL_NAME,
2963 		.classifier = classify_mac_lookup,
2964 		.update = update_arg1,
2965 		.find_byname = table_findbyname,
2966 		.find_bykidx = table_findbykidx,
2967 		.create_object = create_table_compat,
2968 		.manage_sets = table_manage_sets,
2969 	},
2970 	{
2971 		.opcode = O_XMIT,
2972 		.etlv = IPFW_TLV_TBL_NAME,
2973 		.classifier = classify_via,
2974 		.update = update_via,
2975 		.find_byname = table_findbyname,
2976 		.find_bykidx = table_findbykidx,
2977 		.create_object = create_table_compat,
2978 		.manage_sets = table_manage_sets,
2979 	},
2980 	{
2981 		.opcode = O_RECV,
2982 		.etlv = IPFW_TLV_TBL_NAME,
2983 		.classifier = classify_via,
2984 		.update = update_via,
2985 		.find_byname = table_findbyname,
2986 		.find_bykidx = table_findbykidx,
2987 		.create_object = create_table_compat,
2988 		.manage_sets = table_manage_sets_all,
2989 	},
2990 	{
2991 		.opcode = O_VIA,
2992 		.etlv = IPFW_TLV_TBL_NAME,
2993 		.classifier = classify_via,
2994 		.update = update_via,
2995 		.find_byname = table_findbyname,
2996 		.find_bykidx = table_findbykidx,
2997 		.create_object = create_table_compat,
2998 		.manage_sets = table_manage_sets,
2999 	},
3000 };
3001 
3002 static int
test_sets_cb(struct namedobj_instance * ni __unused,struct named_object * no,void * arg __unused)3003 test_sets_cb(struct namedobj_instance *ni __unused, struct named_object *no,
3004     void *arg __unused)
3005 {
3006 
3007 	/* Check that there aren't any tables in not default set */
3008 	if (no->set != 0)
3009 		return (EBUSY);
3010 	return (0);
3011 }
3012 
3013 /*
3014  * Switch between "set 0" and "rule's set" table binding,
3015  * Check all ruleset bindings and permits changing
3016  * IFF each binding has both rule AND table in default set (set 0).
3017  *
3018  * Returns 0 on success.
3019  */
3020 int
ipfw_switch_tables_namespace(struct ip_fw_chain * ch,unsigned int sets)3021 ipfw_switch_tables_namespace(struct ip_fw_chain *ch, unsigned int sets)
3022 {
3023 	struct opcode_obj_rewrite *rw;
3024 	struct namedobj_instance *ni;
3025 	struct named_object *no;
3026 	struct ip_fw *rule;
3027 	ipfw_insn *cmd;
3028 	int cmdlen, i, l;
3029 	uint16_t kidx;
3030 	uint8_t subtype;
3031 
3032 	IPFW_UH_WLOCK(ch);
3033 
3034 	if (V_fw_tables_sets == sets) {
3035 		IPFW_UH_WUNLOCK(ch);
3036 		return (0);
3037 	}
3038 	ni = CHAIN_TO_NI(ch);
3039 	if (sets == 0) {
3040 		/*
3041 		 * Prevent disabling sets support if we have some tables
3042 		 * in not default sets.
3043 		 */
3044 		if (ipfw_objhash_foreach_type(ni, test_sets_cb,
3045 		    NULL, IPFW_TLV_TBL_NAME) != 0) {
3046 			IPFW_UH_WUNLOCK(ch);
3047 			return (EBUSY);
3048 		}
3049 	}
3050 	/*
3051 	 * Scan all rules and examine tables opcodes.
3052 	 */
3053 	for (i = 0; i < ch->n_rules; i++) {
3054 		rule = ch->map[i];
3055 
3056 		l = rule->cmd_len;
3057 		cmd = rule->cmd;
3058 		cmdlen = 0;
3059 		for ( ;	l > 0 ; l -= cmdlen, cmd += cmdlen) {
3060 			cmdlen = F_LEN(cmd);
3061 			/* Check only tables opcodes */
3062 			for (kidx = 0, rw = opcodes;
3063 			    rw < opcodes + nitems(opcodes); rw++) {
3064 				if (rw->opcode != cmd->opcode)
3065 					continue;
3066 				if (rw->classifier(cmd, &kidx, &subtype) == 0)
3067 					break;
3068 			}
3069 			if (kidx == 0)
3070 				continue;
3071 			no = ipfw_objhash_lookup_kidx(ni, kidx);
3072 			/* Check if both table object and rule has the set 0 */
3073 			if (no->set != 0 || rule->set != 0) {
3074 				IPFW_UH_WUNLOCK(ch);
3075 				return (EBUSY);
3076 			}
3077 		}
3078 	}
3079 	V_fw_tables_sets = sets;
3080 	IPFW_UH_WUNLOCK(ch);
3081 	return (0);
3082 }
3083 
3084 /*
3085  * Checks table name for validity.
3086  * Enforce basic length checks, the rest
3087  * should be done in userland.
3088  *
3089  * Returns 0 if name is considered valid.
3090  */
3091 static int
check_table_name(const char * name)3092 check_table_name(const char *name)
3093 {
3094 
3095 	/*
3096 	 * TODO: do some more complicated checks
3097 	 */
3098 	return (ipfw_check_object_name_generic(name));
3099 }
3100 
3101 /*
3102  * Finds table config based on either legacy index
3103  * or name in ntlv.
3104  * Note @ti structure contains unchecked data from userland.
3105  *
3106  * Returns 0 in success and fills in @tc with found config
3107  */
3108 static int
find_table_err(struct namedobj_instance * ni,struct tid_info * ti,struct table_config ** tc)3109 find_table_err(struct namedobj_instance *ni, struct tid_info *ti,
3110     struct table_config **tc)
3111 {
3112 	char *name, bname[16];
3113 	struct named_object *no;
3114 	ipfw_obj_ntlv *ntlv;
3115 	uint32_t set;
3116 
3117 	if (ti->tlvs != NULL) {
3118 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3119 		    IPFW_TLV_TBL_NAME);
3120 		if (ntlv == NULL)
3121 			return (EINVAL);
3122 		name = ntlv->name;
3123 
3124 		/*
3125 		 * Use set provided by @ti instead of @ntlv one.
3126 		 * This is needed due to different sets behavior
3127 		 * controlled by V_fw_tables_sets.
3128 		 */
3129 		set = (V_fw_tables_sets != 0) ? ti->set : 0;
3130 	} else {
3131 		snprintf(bname, sizeof(bname), "%d", ti->uidx);
3132 		name = bname;
3133 		set = 0;
3134 	}
3135 
3136 	no = ipfw_objhash_lookup_name(ni, set, name);
3137 	*tc = (struct table_config *)no;
3138 
3139 	return (0);
3140 }
3141 
3142 /*
3143  * Finds table config based on either legacy index
3144  * or name in ntlv.
3145  * Note @ti structure contains unchecked data from userland.
3146  *
3147  * Returns pointer to table_config or NULL.
3148  */
3149 static struct table_config *
find_table(struct namedobj_instance * ni,struct tid_info * ti)3150 find_table(struct namedobj_instance *ni, struct tid_info *ti)
3151 {
3152 	struct table_config *tc;
3153 
3154 	if (find_table_err(ni, ti, &tc) != 0)
3155 		return (NULL);
3156 
3157 	return (tc);
3158 }
3159 
3160 /*
3161  * Allocate new table config structure using
3162  * specified @algo and @aname.
3163  *
3164  * Returns pointer to config or NULL.
3165  */
3166 static struct table_config *
alloc_table_config(struct ip_fw_chain * ch,struct tid_info * ti,struct table_algo * ta,char * aname,uint8_t tflags)3167 alloc_table_config(struct ip_fw_chain *ch, struct tid_info *ti,
3168     struct table_algo *ta, char *aname, uint8_t tflags)
3169 {
3170 	char *name, bname[16];
3171 	struct table_config *tc;
3172 	int error;
3173 	ipfw_obj_ntlv *ntlv;
3174 	uint32_t set;
3175 
3176 	if (ti->tlvs != NULL) {
3177 		ntlv = ipfw_find_name_tlv_type(ti->tlvs, ti->tlen, ti->uidx,
3178 		    IPFW_TLV_TBL_NAME);
3179 		if (ntlv == NULL)
3180 			return (NULL);
3181 		name = ntlv->name;
3182 		set = (V_fw_tables_sets == 0) ? 0 : ntlv->set;
3183 	} else {
3184 		/* Compat part: convert number to string representation */
3185 		snprintf(bname, sizeof(bname), "%d", ti->uidx);
3186 		name = bname;
3187 		set = 0;
3188 	}
3189 
3190 	tc = malloc(sizeof(struct table_config), M_IPFW, M_WAITOK | M_ZERO);
3191 	tc->no.name = tc->tablename;
3192 	tc->no.subtype = ta->type;
3193 	tc->no.set = set;
3194 	tc->tflags = tflags;
3195 	tc->ta = ta;
3196 	strlcpy(tc->tablename, name, sizeof(tc->tablename));
3197 	/* Set "shared" value type by default */
3198 	tc->vshared = 1;
3199 
3200 	/* Preallocate data structures for new tables */
3201 	error = ta->init(ch, &tc->astate, &tc->ti_copy, aname, tflags);
3202 	if (error != 0) {
3203 		free(tc, M_IPFW);
3204 		return (NULL);
3205 	}
3206 
3207 	return (tc);
3208 }
3209 
3210 /*
3211  * Destroys table state and config.
3212  */
3213 static void
free_table_config(struct namedobj_instance * ni,struct table_config * tc)3214 free_table_config(struct namedobj_instance *ni, struct table_config *tc)
3215 {
3216 
3217 	KASSERT(tc->linked == 0, ("free() on linked config"));
3218 	/* UH lock MUST NOT be held */
3219 
3220 	/*
3221 	 * We're using ta without any locking/referencing.
3222 	 * TODO: fix this if we're going to use unloadable algos.
3223 	 */
3224 	tc->ta->destroy(tc->astate, &tc->ti_copy);
3225 	free(tc, M_IPFW);
3226 }
3227 
3228 /*
3229  * Links @tc to @chain table named instance.
3230  * Sets appropriate type/states in @chain table info.
3231  */
3232 static void
link_table(struct ip_fw_chain * ch,struct table_config * tc)3233 link_table(struct ip_fw_chain *ch, struct table_config *tc)
3234 {
3235 	struct namedobj_instance *ni;
3236 	struct table_info *ti;
3237 	uint16_t kidx;
3238 
3239 	IPFW_UH_WLOCK_ASSERT(ch);
3240 
3241 	ni = CHAIN_TO_NI(ch);
3242 	kidx = tc->no.kidx;
3243 
3244 	ipfw_objhash_add(ni, &tc->no);
3245 
3246 	ti = KIDX_TO_TI(ch, kidx);
3247 	*ti = tc->ti_copy;
3248 
3249 	/* Notify algo on real @ti address */
3250 	if (tc->ta->change_ti != NULL)
3251 		tc->ta->change_ti(tc->astate, ti);
3252 
3253 	tc->linked = 1;
3254 	tc->ta->refcnt++;
3255 }
3256 
3257 /*
3258  * Unlinks @tc from @chain table named instance.
3259  * Zeroes states in @chain and stores them in @tc.
3260  */
3261 static void
unlink_table(struct ip_fw_chain * ch,struct table_config * tc)3262 unlink_table(struct ip_fw_chain *ch, struct table_config *tc)
3263 {
3264 	struct namedobj_instance *ni;
3265 	struct table_info *ti;
3266 	uint16_t kidx;
3267 
3268 	IPFW_UH_WLOCK_ASSERT(ch);
3269 	IPFW_WLOCK_ASSERT(ch);
3270 
3271 	ni = CHAIN_TO_NI(ch);
3272 	kidx = tc->no.kidx;
3273 
3274 	/* Clear state. @ti copy is already saved inside @tc */
3275 	ipfw_objhash_del(ni, &tc->no);
3276 	ti = KIDX_TO_TI(ch, kidx);
3277 	memset(ti, 0, sizeof(struct table_info));
3278 	tc->linked = 0;
3279 	tc->ta->refcnt--;
3280 
3281 	/* Notify algo on real @ti address */
3282 	if (tc->ta->change_ti != NULL)
3283 		tc->ta->change_ti(tc->astate, NULL);
3284 }
3285 
3286 static struct ipfw_sopt_handler	scodes[] = {
3287 	{ IP_FW_TABLE_XCREATE,	0,	HDIR_SET,	create_table },
3288 	{ IP_FW_TABLE_XDESTROY,	0,	HDIR_SET,	flush_table_v0 },
3289 	{ IP_FW_TABLE_XFLUSH,	0,	HDIR_SET,	flush_table_v0 },
3290 	{ IP_FW_TABLE_XMODIFY,	0,	HDIR_BOTH,	modify_table },
3291 	{ IP_FW_TABLE_XINFO,	0,	HDIR_GET,	describe_table },
3292 	{ IP_FW_TABLES_XLIST,	0,	HDIR_GET,	list_tables },
3293 	{ IP_FW_TABLE_XLIST,	0,	HDIR_GET,	dump_table_v0 },
3294 	{ IP_FW_TABLE_XLIST,	1,	HDIR_GET,	dump_table_v1 },
3295 	{ IP_FW_TABLE_XADD,	0,	HDIR_BOTH,	manage_table_ent_v0 },
3296 	{ IP_FW_TABLE_XADD,	1,	HDIR_BOTH,	manage_table_ent_v1 },
3297 	{ IP_FW_TABLE_XDEL,	0,	HDIR_BOTH,	manage_table_ent_v0 },
3298 	{ IP_FW_TABLE_XDEL,	1,	HDIR_BOTH,	manage_table_ent_v1 },
3299 	{ IP_FW_TABLE_XFIND,	0,	HDIR_GET,	find_table_entry },
3300 	{ IP_FW_TABLE_XSWAP,	0,	HDIR_SET,	swap_table },
3301 	{ IP_FW_TABLES_ALIST,	0,	HDIR_GET,	list_table_algo },
3302 	{ IP_FW_TABLE_XGETSIZE,	0,	HDIR_GET,	get_table_size },
3303 };
3304 
3305 static int
destroy_table_locked(struct namedobj_instance * ni,struct named_object * no,void * arg)3306 destroy_table_locked(struct namedobj_instance *ni, struct named_object *no,
3307     void *arg)
3308 {
3309 
3310 	unlink_table((struct ip_fw_chain *)arg, (struct table_config *)no);
3311 	if (ipfw_objhash_free_idx(ni, no->kidx) != 0)
3312 		printf("Error unlinking kidx %d from table %s\n",
3313 		    no->kidx, no->name);
3314 	free_table_config(ni, (struct table_config *)no);
3315 	return (0);
3316 }
3317 
3318 /*
3319  * Shuts tables module down.
3320  */
3321 void
ipfw_destroy_tables(struct ip_fw_chain * ch,int last)3322 ipfw_destroy_tables(struct ip_fw_chain *ch, int last)
3323 {
3324 
3325 	IPFW_DEL_SOPT_HANDLER(last, scodes);
3326 	IPFW_DEL_OBJ_REWRITER(last, opcodes);
3327 
3328 	/* Remove all tables from working set */
3329 	IPFW_UH_WLOCK(ch);
3330 	IPFW_WLOCK(ch);
3331 	ipfw_objhash_foreach(CHAIN_TO_NI(ch), destroy_table_locked, ch);
3332 	IPFW_WUNLOCK(ch);
3333 	IPFW_UH_WUNLOCK(ch);
3334 
3335 	/* Free pointers itself */
3336 	free(ch->tablestate, M_IPFW);
3337 
3338 	ipfw_table_value_destroy(ch, last);
3339 	ipfw_table_algo_destroy(ch);
3340 
3341 	ipfw_objhash_destroy(CHAIN_TO_NI(ch));
3342 	free(CHAIN_TO_TCFG(ch), M_IPFW);
3343 }
3344 
3345 /*
3346  * Starts tables module.
3347  */
3348 int
ipfw_init_tables(struct ip_fw_chain * ch,int first)3349 ipfw_init_tables(struct ip_fw_chain *ch, int first)
3350 {
3351 	struct tables_config *tcfg;
3352 
3353 	/* Allocate pointers */
3354 	ch->tablestate = malloc(V_fw_tables_max * sizeof(struct table_info),
3355 	    M_IPFW, M_WAITOK | M_ZERO);
3356 
3357 	tcfg = malloc(sizeof(struct tables_config), M_IPFW, M_WAITOK | M_ZERO);
3358 	tcfg->namehash = ipfw_objhash_create(V_fw_tables_max);
3359 	ch->tblcfg = tcfg;
3360 
3361 	ipfw_table_value_init(ch, first);
3362 	ipfw_table_algo_init(ch);
3363 
3364 	IPFW_ADD_OBJ_REWRITER(first, opcodes);
3365 	IPFW_ADD_SOPT_HANDLER(first, scodes);
3366 	return (0);
3367 }
3368