1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
35 QualType ET,
36 const ObjCMethodDecl *Method,
37 RValue Result);
38
39 /// Given the address of a variable of pointer type, find the correct
40 /// null to store into it.
getNullForVariable(llvm::Value * addr)41 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
42 llvm::Type *type =
43 cast<llvm::PointerType>(addr->getType())->getElementType();
44 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
45 }
46
47 /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
49 {
50 llvm::Constant *C =
51 CGM.getObjCRuntime().GenerateConstantString(E->getString());
52 // FIXME: This bitcast should just be made an invariant on the Runtime.
53 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
54 }
55
56 /// EmitObjCBoxedExpr - This routine generates code to call
57 /// the appropriate expression boxing method. This will either be
58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
59 ///
60 llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
62 // Generate the correct selector for this literal's concrete type.
63 // Get the method.
64 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
65 assert(BoxingMethod && "BoxingMethod is null");
66 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67 Selector Sel = BoxingMethod->getSelector();
68
69 // Generate a reference to the class pointer, which will be the receiver.
70 // Assumes that the method was introduced in the class that should be
71 // messaged (avoids pulling it out of the result type).
72 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75
76 CallArgList Args;
77 EmitCallArgs(Args, BoxingMethod, E->arg_begin(), E->arg_end());
78
79 RValue result = Runtime.GenerateMessageSend(
80 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
81 Args, ClassDecl, BoxingMethod);
82 return Builder.CreateBitCast(result.getScalarVal(),
83 ConvertType(E->getType()));
84 }
85
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)86 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
87 const ObjCMethodDecl *MethodWithObjects) {
88 ASTContext &Context = CGM.getContext();
89 const ObjCDictionaryLiteral *DLE = nullptr;
90 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
91 if (!ALE)
92 DLE = cast<ObjCDictionaryLiteral>(E);
93
94 // Compute the type of the array we're initializing.
95 uint64_t NumElements =
96 ALE ? ALE->getNumElements() : DLE->getNumElements();
97 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
98 NumElements);
99 QualType ElementType = Context.getObjCIdType().withConst();
100 QualType ElementArrayType
101 = Context.getConstantArrayType(ElementType, APNumElements,
102 ArrayType::Normal, /*IndexTypeQuals=*/0);
103
104 // Allocate the temporary array(s).
105 llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
106 llvm::Value *Keys = nullptr;
107 if (DLE)
108 Keys = CreateMemTemp(ElementArrayType, "keys");
109
110 // In ARC, we may need to do extra work to keep all the keys and
111 // values alive until after the call.
112 SmallVector<llvm::Value *, 16> NeededObjects;
113 bool TrackNeededObjects =
114 (getLangOpts().ObjCAutoRefCount &&
115 CGM.getCodeGenOpts().OptimizationLevel != 0);
116
117 // Perform the actual initialialization of the array(s).
118 for (uint64_t i = 0; i < NumElements; i++) {
119 if (ALE) {
120 // Emit the element and store it to the appropriate array slot.
121 const Expr *Rhs = ALE->getElement(i);
122 LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
123 ElementType,
124 Context.getTypeAlignInChars(Rhs->getType()),
125 Context);
126
127 llvm::Value *value = EmitScalarExpr(Rhs);
128 EmitStoreThroughLValue(RValue::get(value), LV, true);
129 if (TrackNeededObjects) {
130 NeededObjects.push_back(value);
131 }
132 } else {
133 // Emit the key and store it to the appropriate array slot.
134 const Expr *Key = DLE->getKeyValueElement(i).Key;
135 LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
136 ElementType,
137 Context.getTypeAlignInChars(Key->getType()),
138 Context);
139 llvm::Value *keyValue = EmitScalarExpr(Key);
140 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
141
142 // Emit the value and store it to the appropriate array slot.
143 const Expr *Value = DLE->getKeyValueElement(i).Value;
144 LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
145 ElementType,
146 Context.getTypeAlignInChars(Value->getType()),
147 Context);
148 llvm::Value *valueValue = EmitScalarExpr(Value);
149 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
150 if (TrackNeededObjects) {
151 NeededObjects.push_back(keyValue);
152 NeededObjects.push_back(valueValue);
153 }
154 }
155 }
156
157 // Generate the argument list.
158 CallArgList Args;
159 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
160 const ParmVarDecl *argDecl = *PI++;
161 QualType ArgQT = argDecl->getType().getUnqualifiedType();
162 Args.add(RValue::get(Objects), ArgQT);
163 if (DLE) {
164 argDecl = *PI++;
165 ArgQT = argDecl->getType().getUnqualifiedType();
166 Args.add(RValue::get(Keys), ArgQT);
167 }
168 argDecl = *PI;
169 ArgQT = argDecl->getType().getUnqualifiedType();
170 llvm::Value *Count =
171 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
172 Args.add(RValue::get(Count), ArgQT);
173
174 // Generate a reference to the class pointer, which will be the receiver.
175 Selector Sel = MethodWithObjects->getSelector();
176 QualType ResultType = E->getType();
177 const ObjCObjectPointerType *InterfacePointerType
178 = ResultType->getAsObjCInterfacePointerType();
179 ObjCInterfaceDecl *Class
180 = InterfacePointerType->getObjectType()->getInterface();
181 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
182 llvm::Value *Receiver = Runtime.GetClass(*this, Class);
183
184 // Generate the message send.
185 RValue result = Runtime.GenerateMessageSend(
186 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
187 Receiver, Args, Class, MethodWithObjects);
188
189 // The above message send needs these objects, but in ARC they are
190 // passed in a buffer that is essentially __unsafe_unretained.
191 // Therefore we must prevent the optimizer from releasing them until
192 // after the call.
193 if (TrackNeededObjects) {
194 EmitARCIntrinsicUse(NeededObjects);
195 }
196
197 return Builder.CreateBitCast(result.getScalarVal(),
198 ConvertType(E->getType()));
199 }
200
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)201 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
202 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
203 }
204
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)205 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
206 const ObjCDictionaryLiteral *E) {
207 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
208 }
209
210 /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)211 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
212 // Untyped selector.
213 // Note that this implementation allows for non-constant strings to be passed
214 // as arguments to @selector(). Currently, the only thing preventing this
215 // behaviour is the type checking in the front end.
216 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
217 }
218
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)219 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
220 // FIXME: This should pass the Decl not the name.
221 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
222 }
223
224 /// \brief Adjust the type of the result of an Objective-C message send
225 /// expression when the method has a related result type.
AdjustRelatedResultType(CodeGenFunction & CGF,QualType ExpT,const ObjCMethodDecl * Method,RValue Result)226 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
227 QualType ExpT,
228 const ObjCMethodDecl *Method,
229 RValue Result) {
230 if (!Method)
231 return Result;
232
233 if (!Method->hasRelatedResultType() ||
234 CGF.getContext().hasSameType(ExpT, Method->getReturnType()) ||
235 !Result.isScalar())
236 return Result;
237
238 // We have applied a related result type. Cast the rvalue appropriately.
239 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
240 CGF.ConvertType(ExpT)));
241 }
242
243 /// Decide whether to extend the lifetime of the receiver of a
244 /// returns-inner-pointer message.
245 static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)246 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
247 switch (message->getReceiverKind()) {
248
249 // For a normal instance message, we should extend unless the
250 // receiver is loaded from a variable with precise lifetime.
251 case ObjCMessageExpr::Instance: {
252 const Expr *receiver = message->getInstanceReceiver();
253 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
254 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
255 receiver = ice->getSubExpr()->IgnoreParens();
256
257 // Only __strong variables.
258 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
259 return true;
260
261 // All ivars and fields have precise lifetime.
262 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
263 return false;
264
265 // Otherwise, check for variables.
266 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
267 if (!declRef) return true;
268 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
269 if (!var) return true;
270
271 // All variables have precise lifetime except local variables with
272 // automatic storage duration that aren't specially marked.
273 return (var->hasLocalStorage() &&
274 !var->hasAttr<ObjCPreciseLifetimeAttr>());
275 }
276
277 case ObjCMessageExpr::Class:
278 case ObjCMessageExpr::SuperClass:
279 // It's never necessary for class objects.
280 return false;
281
282 case ObjCMessageExpr::SuperInstance:
283 // We generally assume that 'self' lives throughout a method call.
284 return false;
285 }
286
287 llvm_unreachable("invalid receiver kind");
288 }
289
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)290 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
291 ReturnValueSlot Return) {
292 // Only the lookup mechanism and first two arguments of the method
293 // implementation vary between runtimes. We can get the receiver and
294 // arguments in generic code.
295
296 bool isDelegateInit = E->isDelegateInitCall();
297
298 const ObjCMethodDecl *method = E->getMethodDecl();
299
300 // We don't retain the receiver in delegate init calls, and this is
301 // safe because the receiver value is always loaded from 'self',
302 // which we zero out. We don't want to Block_copy block receivers,
303 // though.
304 bool retainSelf =
305 (!isDelegateInit &&
306 CGM.getLangOpts().ObjCAutoRefCount &&
307 method &&
308 method->hasAttr<NSConsumesSelfAttr>());
309
310 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
311 bool isSuperMessage = false;
312 bool isClassMessage = false;
313 ObjCInterfaceDecl *OID = nullptr;
314 // Find the receiver
315 QualType ReceiverType;
316 llvm::Value *Receiver = nullptr;
317 switch (E->getReceiverKind()) {
318 case ObjCMessageExpr::Instance:
319 ReceiverType = E->getInstanceReceiver()->getType();
320 if (retainSelf) {
321 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
322 E->getInstanceReceiver());
323 Receiver = ter.getPointer();
324 if (ter.getInt()) retainSelf = false;
325 } else
326 Receiver = EmitScalarExpr(E->getInstanceReceiver());
327 break;
328
329 case ObjCMessageExpr::Class: {
330 ReceiverType = E->getClassReceiver();
331 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
332 assert(ObjTy && "Invalid Objective-C class message send");
333 OID = ObjTy->getInterface();
334 assert(OID && "Invalid Objective-C class message send");
335 Receiver = Runtime.GetClass(*this, OID);
336 isClassMessage = true;
337 break;
338 }
339
340 case ObjCMessageExpr::SuperInstance:
341 ReceiverType = E->getSuperType();
342 Receiver = LoadObjCSelf();
343 isSuperMessage = true;
344 break;
345
346 case ObjCMessageExpr::SuperClass:
347 ReceiverType = E->getSuperType();
348 Receiver = LoadObjCSelf();
349 isSuperMessage = true;
350 isClassMessage = true;
351 break;
352 }
353
354 if (retainSelf)
355 Receiver = EmitARCRetainNonBlock(Receiver);
356
357 // In ARC, we sometimes want to "extend the lifetime"
358 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
359 // messages.
360 if (getLangOpts().ObjCAutoRefCount && method &&
361 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
362 shouldExtendReceiverForInnerPointerMessage(E))
363 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
364
365 QualType ResultType = method ? method->getReturnType() : E->getType();
366
367 CallArgList Args;
368 EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
369
370 // For delegate init calls in ARC, do an unsafe store of null into
371 // self. This represents the call taking direct ownership of that
372 // value. We have to do this after emitting the other call
373 // arguments because they might also reference self, but we don't
374 // have to worry about any of them modifying self because that would
375 // be an undefined read and write of an object in unordered
376 // expressions.
377 if (isDelegateInit) {
378 assert(getLangOpts().ObjCAutoRefCount &&
379 "delegate init calls should only be marked in ARC");
380
381 // Do an unsafe store of null into self.
382 llvm::Value *selfAddr =
383 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
384 assert(selfAddr && "no self entry for a delegate init call?");
385
386 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
387 }
388
389 RValue result;
390 if (isSuperMessage) {
391 // super is only valid in an Objective-C method
392 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
393 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
394 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
395 E->getSelector(),
396 OMD->getClassInterface(),
397 isCategoryImpl,
398 Receiver,
399 isClassMessage,
400 Args,
401 method);
402 } else {
403 result = Runtime.GenerateMessageSend(*this, Return, ResultType,
404 E->getSelector(),
405 Receiver, Args, OID,
406 method);
407 }
408
409 // For delegate init calls in ARC, implicitly store the result of
410 // the call back into self. This takes ownership of the value.
411 if (isDelegateInit) {
412 llvm::Value *selfAddr =
413 LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
414 llvm::Value *newSelf = result.getScalarVal();
415
416 // The delegate return type isn't necessarily a matching type; in
417 // fact, it's quite likely to be 'id'.
418 llvm::Type *selfTy =
419 cast<llvm::PointerType>(selfAddr->getType())->getElementType();
420 newSelf = Builder.CreateBitCast(newSelf, selfTy);
421
422 Builder.CreateStore(newSelf, selfAddr);
423 }
424
425 return AdjustRelatedResultType(*this, E->getType(), method, result);
426 }
427
428 namespace {
429 struct FinishARCDealloc : EHScopeStack::Cleanup {
Emit__anon2ab49d910111::FinishARCDealloc430 void Emit(CodeGenFunction &CGF, Flags flags) override {
431 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
432
433 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
434 const ObjCInterfaceDecl *iface = impl->getClassInterface();
435 if (!iface->getSuperClass()) return;
436
437 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
438
439 // Call [super dealloc] if we have a superclass.
440 llvm::Value *self = CGF.LoadObjCSelf();
441
442 CallArgList args;
443 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
444 CGF.getContext().VoidTy,
445 method->getSelector(),
446 iface,
447 isCategory,
448 self,
449 /*is class msg*/ false,
450 args,
451 method);
452 }
453 };
454 }
455
456 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
457 /// the LLVM function and sets the other context used by
458 /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)459 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
460 const ObjCContainerDecl *CD) {
461 SourceLocation StartLoc = OMD->getLocStart();
462 FunctionArgList args;
463 // Check if we should generate debug info for this method.
464 if (OMD->hasAttr<NoDebugAttr>())
465 DebugInfo = nullptr; // disable debug info indefinitely for this function
466
467 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
468
469 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
470 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
471
472 args.push_back(OMD->getSelfDecl());
473 args.push_back(OMD->getCmdDecl());
474
475 for (const auto *PI : OMD->params())
476 args.push_back(PI);
477
478 CurGD = OMD;
479 CurEHLocation = OMD->getLocEnd();
480
481 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
482 OMD->getLocation(), StartLoc);
483
484 // In ARC, certain methods get an extra cleanup.
485 if (CGM.getLangOpts().ObjCAutoRefCount &&
486 OMD->isInstanceMethod() &&
487 OMD->getSelector().isUnarySelector()) {
488 const IdentifierInfo *ident =
489 OMD->getSelector().getIdentifierInfoForSlot(0);
490 if (ident->isStr("dealloc"))
491 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
492 }
493 }
494
495 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
496 LValue lvalue, QualType type);
497
498 /// Generate an Objective-C method. An Objective-C method is a C function with
499 /// its pointer, name, and types registered in the class struture.
GenerateObjCMethod(const ObjCMethodDecl * OMD)500 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
501 StartObjCMethod(OMD, OMD->getClassInterface());
502 PGO.assignRegionCounters(OMD, CurFn);
503 assert(isa<CompoundStmt>(OMD->getBody()));
504 RegionCounter Cnt = getPGORegionCounter(OMD->getBody());
505 Cnt.beginRegion(Builder);
506 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
507 FinishFunction(OMD->getBodyRBrace());
508 }
509
510 /// emitStructGetterCall - Call the runtime function to load a property
511 /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)512 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
513 bool isAtomic, bool hasStrong) {
514 ASTContext &Context = CGF.getContext();
515
516 llvm::Value *src =
517 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
518 ivar, 0).getAddress();
519
520 // objc_copyStruct (ReturnValue, &structIvar,
521 // sizeof (Type of Ivar), isAtomic, false);
522 CallArgList args;
523
524 llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
525 args.add(RValue::get(dest), Context.VoidPtrTy);
526
527 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
528 args.add(RValue::get(src), Context.VoidPtrTy);
529
530 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
531 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
532 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
533 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
534
535 llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
536 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
537 FunctionType::ExtInfo(),
538 RequiredArgs::All),
539 fn, ReturnValueSlot(), args);
540 }
541
542 /// Determine whether the given architecture supports unaligned atomic
543 /// accesses. They don't have to be fast, just faster than a function
544 /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)545 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
546 // FIXME: Allow unaligned atomic load/store on x86. (It is not
547 // currently supported by the backend.)
548 return 0;
549 }
550
551 /// Return the maximum size that permits atomic accesses for the given
552 /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)553 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
554 llvm::Triple::ArchType arch) {
555 // ARM has 8-byte atomic accesses, but it's not clear whether we
556 // want to rely on them here.
557
558 // In the default case, just assume that any size up to a pointer is
559 // fine given adequate alignment.
560 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
561 }
562
563 namespace {
564 class PropertyImplStrategy {
565 public:
566 enum StrategyKind {
567 /// The 'native' strategy is to use the architecture's provided
568 /// reads and writes.
569 Native,
570
571 /// Use objc_setProperty and objc_getProperty.
572 GetSetProperty,
573
574 /// Use objc_setProperty for the setter, but use expression
575 /// evaluation for the getter.
576 SetPropertyAndExpressionGet,
577
578 /// Use objc_copyStruct.
579 CopyStruct,
580
581 /// The 'expression' strategy is to emit normal assignment or
582 /// lvalue-to-rvalue expressions.
583 Expression
584 };
585
getKind() const586 StrategyKind getKind() const { return StrategyKind(Kind); }
587
hasStrongMember() const588 bool hasStrongMember() const { return HasStrong; }
isAtomic() const589 bool isAtomic() const { return IsAtomic; }
isCopy() const590 bool isCopy() const { return IsCopy; }
591
getIvarSize() const592 CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const593 CharUnits getIvarAlignment() const { return IvarAlignment; }
594
595 PropertyImplStrategy(CodeGenModule &CGM,
596 const ObjCPropertyImplDecl *propImpl);
597
598 private:
599 unsigned Kind : 8;
600 unsigned IsAtomic : 1;
601 unsigned IsCopy : 1;
602 unsigned HasStrong : 1;
603
604 CharUnits IvarSize;
605 CharUnits IvarAlignment;
606 };
607 }
608
609 /// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)610 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
611 const ObjCPropertyImplDecl *propImpl) {
612 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
613 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
614
615 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
616 IsAtomic = prop->isAtomic();
617 HasStrong = false; // doesn't matter here.
618
619 // Evaluate the ivar's size and alignment.
620 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
621 QualType ivarType = ivar->getType();
622 std::tie(IvarSize, IvarAlignment) =
623 CGM.getContext().getTypeInfoInChars(ivarType);
624
625 // If we have a copy property, we always have to use getProperty/setProperty.
626 // TODO: we could actually use setProperty and an expression for non-atomics.
627 if (IsCopy) {
628 Kind = GetSetProperty;
629 return;
630 }
631
632 // Handle retain.
633 if (setterKind == ObjCPropertyDecl::Retain) {
634 // In GC-only, there's nothing special that needs to be done.
635 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
636 // fallthrough
637
638 // In ARC, if the property is non-atomic, use expression emission,
639 // which translates to objc_storeStrong. This isn't required, but
640 // it's slightly nicer.
641 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
642 // Using standard expression emission for the setter is only
643 // acceptable if the ivar is __strong, which won't be true if
644 // the property is annotated with __attribute__((NSObject)).
645 // TODO: falling all the way back to objc_setProperty here is
646 // just laziness, though; we could still use objc_storeStrong
647 // if we hacked it right.
648 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
649 Kind = Expression;
650 else
651 Kind = SetPropertyAndExpressionGet;
652 return;
653
654 // Otherwise, we need to at least use setProperty. However, if
655 // the property isn't atomic, we can use normal expression
656 // emission for the getter.
657 } else if (!IsAtomic) {
658 Kind = SetPropertyAndExpressionGet;
659 return;
660
661 // Otherwise, we have to use both setProperty and getProperty.
662 } else {
663 Kind = GetSetProperty;
664 return;
665 }
666 }
667
668 // If we're not atomic, just use expression accesses.
669 if (!IsAtomic) {
670 Kind = Expression;
671 return;
672 }
673
674 // Properties on bitfield ivars need to be emitted using expression
675 // accesses even if they're nominally atomic.
676 if (ivar->isBitField()) {
677 Kind = Expression;
678 return;
679 }
680
681 // GC-qualified or ARC-qualified ivars need to be emitted as
682 // expressions. This actually works out to being atomic anyway,
683 // except for ARC __strong, but that should trigger the above code.
684 if (ivarType.hasNonTrivialObjCLifetime() ||
685 (CGM.getLangOpts().getGC() &&
686 CGM.getContext().getObjCGCAttrKind(ivarType))) {
687 Kind = Expression;
688 return;
689 }
690
691 // Compute whether the ivar has strong members.
692 if (CGM.getLangOpts().getGC())
693 if (const RecordType *recordType = ivarType->getAs<RecordType>())
694 HasStrong = recordType->getDecl()->hasObjectMember();
695
696 // We can never access structs with object members with a native
697 // access, because we need to use write barriers. This is what
698 // objc_copyStruct is for.
699 if (HasStrong) {
700 Kind = CopyStruct;
701 return;
702 }
703
704 // Otherwise, this is target-dependent and based on the size and
705 // alignment of the ivar.
706
707 // If the size of the ivar is not a power of two, give up. We don't
708 // want to get into the business of doing compare-and-swaps.
709 if (!IvarSize.isPowerOfTwo()) {
710 Kind = CopyStruct;
711 return;
712 }
713
714 llvm::Triple::ArchType arch =
715 CGM.getTarget().getTriple().getArch();
716
717 // Most architectures require memory to fit within a single cache
718 // line, so the alignment has to be at least the size of the access.
719 // Otherwise we have to grab a lock.
720 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
721 Kind = CopyStruct;
722 return;
723 }
724
725 // If the ivar's size exceeds the architecture's maximum atomic
726 // access size, we have to use CopyStruct.
727 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
728 Kind = CopyStruct;
729 return;
730 }
731
732 // Otherwise, we can use native loads and stores.
733 Kind = Native;
734 }
735
736 /// \brief Generate an Objective-C property getter function.
737 ///
738 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
739 /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)740 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
741 const ObjCPropertyImplDecl *PID) {
742 llvm::Constant *AtomicHelperFn =
743 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
744 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
745 ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
746 assert(OMD && "Invalid call to generate getter (empty method)");
747 StartObjCMethod(OMD, IMP->getClassInterface());
748
749 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
750
751 FinishFunction();
752 }
753
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)754 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
755 const Expr *getter = propImpl->getGetterCXXConstructor();
756 if (!getter) return true;
757
758 // Sema only makes only of these when the ivar has a C++ class type,
759 // so the form is pretty constrained.
760
761 // If the property has a reference type, we might just be binding a
762 // reference, in which case the result will be a gl-value. We should
763 // treat this as a non-trivial operation.
764 if (getter->isGLValue())
765 return false;
766
767 // If we selected a trivial copy-constructor, we're okay.
768 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
769 return (construct->getConstructor()->isTrivial());
770
771 // The constructor might require cleanups (in which case it's never
772 // trivial).
773 assert(isa<ExprWithCleanups>(getter));
774 return false;
775 }
776
777 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
778 /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)779 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
780 llvm::Value *returnAddr,
781 ObjCIvarDecl *ivar,
782 llvm::Constant *AtomicHelperFn) {
783 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
784 // AtomicHelperFn);
785 CallArgList args;
786
787 // The 1st argument is the return Slot.
788 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
789
790 // The 2nd argument is the address of the ivar.
791 llvm::Value *ivarAddr =
792 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
793 CGF.LoadObjCSelf(), ivar, 0).getAddress();
794 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
795 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
796
797 // Third argument is the helper function.
798 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
799
800 llvm::Value *copyCppAtomicObjectFn =
801 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
802 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
803 args,
804 FunctionType::ExtInfo(),
805 RequiredArgs::All),
806 copyCppAtomicObjectFn, ReturnValueSlot(), args);
807 }
808
809 void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,const ObjCMethodDecl * GetterMethodDecl,llvm::Constant * AtomicHelperFn)810 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
811 const ObjCPropertyImplDecl *propImpl,
812 const ObjCMethodDecl *GetterMethodDecl,
813 llvm::Constant *AtomicHelperFn) {
814 // If there's a non-trivial 'get' expression, we just have to emit that.
815 if (!hasTrivialGetExpr(propImpl)) {
816 if (!AtomicHelperFn) {
817 ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
818 /*nrvo*/ nullptr);
819 EmitReturnStmt(ret);
820 }
821 else {
822 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
823 emitCPPObjectAtomicGetterCall(*this, ReturnValue,
824 ivar, AtomicHelperFn);
825 }
826 return;
827 }
828
829 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
830 QualType propType = prop->getType();
831 ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
832
833 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
834
835 // Pick an implementation strategy.
836 PropertyImplStrategy strategy(CGM, propImpl);
837 switch (strategy.getKind()) {
838 case PropertyImplStrategy::Native: {
839 // We don't need to do anything for a zero-size struct.
840 if (strategy.getIvarSize().isZero())
841 return;
842
843 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
844
845 // Currently, all atomic accesses have to be through integer
846 // types, so there's no point in trying to pick a prettier type.
847 llvm::Type *bitcastType =
848 llvm::Type::getIntNTy(getLLVMContext(),
849 getContext().toBits(strategy.getIvarSize()));
850 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
851
852 // Perform an atomic load. This does not impose ordering constraints.
853 llvm::Value *ivarAddr = LV.getAddress();
854 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
855 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
856 load->setAlignment(strategy.getIvarAlignment().getQuantity());
857 load->setAtomic(llvm::Unordered);
858
859 // Store that value into the return address. Doing this with a
860 // bitcast is likely to produce some pretty ugly IR, but it's not
861 // the *most* terrible thing in the world.
862 Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
863
864 // Make sure we don't do an autorelease.
865 AutoreleaseResult = false;
866 return;
867 }
868
869 case PropertyImplStrategy::GetSetProperty: {
870 llvm::Value *getPropertyFn =
871 CGM.getObjCRuntime().GetPropertyGetFunction();
872 if (!getPropertyFn) {
873 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
874 return;
875 }
876
877 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
878 // FIXME: Can't this be simpler? This might even be worse than the
879 // corresponding gcc code.
880 llvm::Value *cmd =
881 Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
882 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
883 llvm::Value *ivarOffset =
884 EmitIvarOffset(classImpl->getClassInterface(), ivar);
885
886 CallArgList args;
887 args.add(RValue::get(self), getContext().getObjCIdType());
888 args.add(RValue::get(cmd), getContext().getObjCSelType());
889 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
890 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
891 getContext().BoolTy);
892
893 // FIXME: We shouldn't need to get the function info here, the
894 // runtime already should have computed it to build the function.
895 llvm::Instruction *CallInstruction;
896 RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
897 FunctionType::ExtInfo(),
898 RequiredArgs::All),
899 getPropertyFn, ReturnValueSlot(), args, nullptr,
900 &CallInstruction);
901 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
902 call->setTailCall();
903
904 // We need to fix the type here. Ivars with copy & retain are
905 // always objects so we don't need to worry about complex or
906 // aggregates.
907 RV = RValue::get(Builder.CreateBitCast(
908 RV.getScalarVal(),
909 getTypes().ConvertType(getterMethod->getReturnType())));
910
911 EmitReturnOfRValue(RV, propType);
912
913 // objc_getProperty does an autorelease, so we should suppress ours.
914 AutoreleaseResult = false;
915
916 return;
917 }
918
919 case PropertyImplStrategy::CopyStruct:
920 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
921 strategy.hasStrongMember());
922 return;
923
924 case PropertyImplStrategy::Expression:
925 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
926 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
927
928 QualType ivarType = ivar->getType();
929 switch (getEvaluationKind(ivarType)) {
930 case TEK_Complex: {
931 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
932 EmitStoreOfComplex(pair,
933 MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
934 /*init*/ true);
935 return;
936 }
937 case TEK_Aggregate:
938 // The return value slot is guaranteed to not be aliased, but
939 // that's not necessarily the same as "on the stack", so
940 // we still potentially need objc_memmove_collectable.
941 EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
942 return;
943 case TEK_Scalar: {
944 llvm::Value *value;
945 if (propType->isReferenceType()) {
946 value = LV.getAddress();
947 } else {
948 // We want to load and autoreleaseReturnValue ARC __weak ivars.
949 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
950 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
951
952 // Otherwise we want to do a simple load, suppressing the
953 // final autorelease.
954 } else {
955 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
956 AutoreleaseResult = false;
957 }
958
959 value = Builder.CreateBitCast(value, ConvertType(propType));
960 value = Builder.CreateBitCast(
961 value, ConvertType(GetterMethodDecl->getReturnType()));
962 }
963
964 EmitReturnOfRValue(RValue::get(value), propType);
965 return;
966 }
967 }
968 llvm_unreachable("bad evaluation kind");
969 }
970
971 }
972 llvm_unreachable("bad @property implementation strategy!");
973 }
974
975 /// emitStructSetterCall - Call the runtime function to store the value
976 /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)977 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
978 ObjCIvarDecl *ivar) {
979 // objc_copyStruct (&structIvar, &Arg,
980 // sizeof (struct something), true, false);
981 CallArgList args;
982
983 // The first argument is the address of the ivar.
984 llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
985 CGF.LoadObjCSelf(), ivar, 0)
986 .getAddress();
987 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
988 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
989
990 // The second argument is the address of the parameter variable.
991 ParmVarDecl *argVar = *OMD->param_begin();
992 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
993 VK_LValue, SourceLocation());
994 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
995 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
996 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
997
998 // The third argument is the sizeof the type.
999 llvm::Value *size =
1000 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1001 args.add(RValue::get(size), CGF.getContext().getSizeType());
1002
1003 // The fourth argument is the 'isAtomic' flag.
1004 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1005
1006 // The fifth argument is the 'hasStrong' flag.
1007 // FIXME: should this really always be false?
1008 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1009
1010 llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1011 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1012 args,
1013 FunctionType::ExtInfo(),
1014 RequiredArgs::All),
1015 copyStructFn, ReturnValueSlot(), args);
1016 }
1017
1018 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1019 /// the value from the first formal parameter into the given ivar, using
1020 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1021 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1022 ObjCMethodDecl *OMD,
1023 ObjCIvarDecl *ivar,
1024 llvm::Constant *AtomicHelperFn) {
1025 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1026 // AtomicHelperFn);
1027 CallArgList args;
1028
1029 // The first argument is the address of the ivar.
1030 llvm::Value *ivarAddr =
1031 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1032 CGF.LoadObjCSelf(), ivar, 0).getAddress();
1033 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1034 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1035
1036 // The second argument is the address of the parameter variable.
1037 ParmVarDecl *argVar = *OMD->param_begin();
1038 DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1039 VK_LValue, SourceLocation());
1040 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1041 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1042 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1043
1044 // Third argument is the helper function.
1045 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1046
1047 llvm::Value *copyCppAtomicObjectFn =
1048 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1049 CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1050 args,
1051 FunctionType::ExtInfo(),
1052 RequiredArgs::All),
1053 copyCppAtomicObjectFn, ReturnValueSlot(), args);
1054 }
1055
1056
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1057 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1058 Expr *setter = PID->getSetterCXXAssignment();
1059 if (!setter) return true;
1060
1061 // Sema only makes only of these when the ivar has a C++ class type,
1062 // so the form is pretty constrained.
1063
1064 // An operator call is trivial if the function it calls is trivial.
1065 // This also implies that there's nothing non-trivial going on with
1066 // the arguments, because operator= can only be trivial if it's a
1067 // synthesized assignment operator and therefore both parameters are
1068 // references.
1069 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1070 if (const FunctionDecl *callee
1071 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1072 if (callee->isTrivial())
1073 return true;
1074 return false;
1075 }
1076
1077 assert(isa<ExprWithCleanups>(setter));
1078 return false;
1079 }
1080
UseOptimizedSetter(CodeGenModule & CGM)1081 static bool UseOptimizedSetter(CodeGenModule &CGM) {
1082 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1083 return false;
1084 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1085 }
1086
1087 void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1088 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1089 const ObjCPropertyImplDecl *propImpl,
1090 llvm::Constant *AtomicHelperFn) {
1091 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1092 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1093 ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1094
1095 // Just use the setter expression if Sema gave us one and it's
1096 // non-trivial.
1097 if (!hasTrivialSetExpr(propImpl)) {
1098 if (!AtomicHelperFn)
1099 // If non-atomic, assignment is called directly.
1100 EmitStmt(propImpl->getSetterCXXAssignment());
1101 else
1102 // If atomic, assignment is called via a locking api.
1103 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1104 AtomicHelperFn);
1105 return;
1106 }
1107
1108 PropertyImplStrategy strategy(CGM, propImpl);
1109 switch (strategy.getKind()) {
1110 case PropertyImplStrategy::Native: {
1111 // We don't need to do anything for a zero-size struct.
1112 if (strategy.getIvarSize().isZero())
1113 return;
1114
1115 llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1116
1117 LValue ivarLValue =
1118 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1119 llvm::Value *ivarAddr = ivarLValue.getAddress();
1120
1121 // Currently, all atomic accesses have to be through integer
1122 // types, so there's no point in trying to pick a prettier type.
1123 llvm::Type *bitcastType =
1124 llvm::Type::getIntNTy(getLLVMContext(),
1125 getContext().toBits(strategy.getIvarSize()));
1126 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1127
1128 // Cast both arguments to the chosen operation type.
1129 argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1130 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1131
1132 // This bitcast load is likely to cause some nasty IR.
1133 llvm::Value *load = Builder.CreateLoad(argAddr);
1134
1135 // Perform an atomic store. There are no memory ordering requirements.
1136 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1137 store->setAlignment(strategy.getIvarAlignment().getQuantity());
1138 store->setAtomic(llvm::Unordered);
1139 return;
1140 }
1141
1142 case PropertyImplStrategy::GetSetProperty:
1143 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1144
1145 llvm::Value *setOptimizedPropertyFn = nullptr;
1146 llvm::Value *setPropertyFn = nullptr;
1147 if (UseOptimizedSetter(CGM)) {
1148 // 10.8 and iOS 6.0 code and GC is off
1149 setOptimizedPropertyFn =
1150 CGM.getObjCRuntime()
1151 .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1152 strategy.isCopy());
1153 if (!setOptimizedPropertyFn) {
1154 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1155 return;
1156 }
1157 }
1158 else {
1159 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1160 if (!setPropertyFn) {
1161 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1162 return;
1163 }
1164 }
1165
1166 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1167 // <is-atomic>, <is-copy>).
1168 llvm::Value *cmd =
1169 Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1170 llvm::Value *self =
1171 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1172 llvm::Value *ivarOffset =
1173 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1174 llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1175 arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1176
1177 CallArgList args;
1178 args.add(RValue::get(self), getContext().getObjCIdType());
1179 args.add(RValue::get(cmd), getContext().getObjCSelType());
1180 if (setOptimizedPropertyFn) {
1181 args.add(RValue::get(arg), getContext().getObjCIdType());
1182 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1183 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1184 FunctionType::ExtInfo(),
1185 RequiredArgs::All),
1186 setOptimizedPropertyFn, ReturnValueSlot(), args);
1187 } else {
1188 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1189 args.add(RValue::get(arg), getContext().getObjCIdType());
1190 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1191 getContext().BoolTy);
1192 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1193 getContext().BoolTy);
1194 // FIXME: We shouldn't need to get the function info here, the runtime
1195 // already should have computed it to build the function.
1196 EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1197 FunctionType::ExtInfo(),
1198 RequiredArgs::All),
1199 setPropertyFn, ReturnValueSlot(), args);
1200 }
1201
1202 return;
1203 }
1204
1205 case PropertyImplStrategy::CopyStruct:
1206 emitStructSetterCall(*this, setterMethod, ivar);
1207 return;
1208
1209 case PropertyImplStrategy::Expression:
1210 break;
1211 }
1212
1213 // Otherwise, fake up some ASTs and emit a normal assignment.
1214 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1215 DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1216 VK_LValue, SourceLocation());
1217 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1218 selfDecl->getType(), CK_LValueToRValue, &self,
1219 VK_RValue);
1220 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1221 SourceLocation(), SourceLocation(),
1222 &selfLoad, true, true);
1223
1224 ParmVarDecl *argDecl = *setterMethod->param_begin();
1225 QualType argType = argDecl->getType().getNonReferenceType();
1226 DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1227 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1228 argType.getUnqualifiedType(), CK_LValueToRValue,
1229 &arg, VK_RValue);
1230
1231 // The property type can differ from the ivar type in some situations with
1232 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1233 // The following absurdity is just to ensure well-formed IR.
1234 CastKind argCK = CK_NoOp;
1235 if (ivarRef.getType()->isObjCObjectPointerType()) {
1236 if (argLoad.getType()->isObjCObjectPointerType())
1237 argCK = CK_BitCast;
1238 else if (argLoad.getType()->isBlockPointerType())
1239 argCK = CK_BlockPointerToObjCPointerCast;
1240 else
1241 argCK = CK_CPointerToObjCPointerCast;
1242 } else if (ivarRef.getType()->isBlockPointerType()) {
1243 if (argLoad.getType()->isBlockPointerType())
1244 argCK = CK_BitCast;
1245 else
1246 argCK = CK_AnyPointerToBlockPointerCast;
1247 } else if (ivarRef.getType()->isPointerType()) {
1248 argCK = CK_BitCast;
1249 }
1250 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1251 ivarRef.getType(), argCK, &argLoad,
1252 VK_RValue);
1253 Expr *finalArg = &argLoad;
1254 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1255 argLoad.getType()))
1256 finalArg = &argCast;
1257
1258
1259 BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1260 ivarRef.getType(), VK_RValue, OK_Ordinary,
1261 SourceLocation(), false);
1262 EmitStmt(&assign);
1263 }
1264
1265 /// \brief Generate an Objective-C property setter function.
1266 ///
1267 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1268 /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1269 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1270 const ObjCPropertyImplDecl *PID) {
1271 llvm::Constant *AtomicHelperFn =
1272 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1273 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1274 ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1275 assert(OMD && "Invalid call to generate setter (empty method)");
1276 StartObjCMethod(OMD, IMP->getClassInterface());
1277
1278 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1279
1280 FinishFunction();
1281 }
1282
1283 namespace {
1284 struct DestroyIvar : EHScopeStack::Cleanup {
1285 private:
1286 llvm::Value *addr;
1287 const ObjCIvarDecl *ivar;
1288 CodeGenFunction::Destroyer *destroyer;
1289 bool useEHCleanupForArray;
1290 public:
DestroyIvar__anon2ab49d910311::DestroyIvar1291 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1292 CodeGenFunction::Destroyer *destroyer,
1293 bool useEHCleanupForArray)
1294 : addr(addr), ivar(ivar), destroyer(destroyer),
1295 useEHCleanupForArray(useEHCleanupForArray) {}
1296
Emit__anon2ab49d910311::DestroyIvar1297 void Emit(CodeGenFunction &CGF, Flags flags) override {
1298 LValue lvalue
1299 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1300 CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1301 flags.isForNormalCleanup() && useEHCleanupForArray);
1302 }
1303 };
1304 }
1305
1306 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,llvm::Value * addr,QualType type)1307 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1308 llvm::Value *addr,
1309 QualType type) {
1310 llvm::Value *null = getNullForVariable(addr);
1311 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1312 }
1313
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1314 static void emitCXXDestructMethod(CodeGenFunction &CGF,
1315 ObjCImplementationDecl *impl) {
1316 CodeGenFunction::RunCleanupsScope scope(CGF);
1317
1318 llvm::Value *self = CGF.LoadObjCSelf();
1319
1320 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1321 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1322 ivar; ivar = ivar->getNextIvar()) {
1323 QualType type = ivar->getType();
1324
1325 // Check whether the ivar is a destructible type.
1326 QualType::DestructionKind dtorKind = type.isDestructedType();
1327 if (!dtorKind) continue;
1328
1329 CodeGenFunction::Destroyer *destroyer = nullptr;
1330
1331 // Use a call to objc_storeStrong to destroy strong ivars, for the
1332 // general benefit of the tools.
1333 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1334 destroyer = destroyARCStrongWithStore;
1335
1336 // Otherwise use the default for the destruction kind.
1337 } else {
1338 destroyer = CGF.getDestroyer(dtorKind);
1339 }
1340
1341 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1342
1343 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1344 cleanupKind & EHCleanup);
1345 }
1346
1347 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1348 }
1349
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1350 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1351 ObjCMethodDecl *MD,
1352 bool ctor) {
1353 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1354 StartObjCMethod(MD, IMP->getClassInterface());
1355
1356 // Emit .cxx_construct.
1357 if (ctor) {
1358 // Suppress the final autorelease in ARC.
1359 AutoreleaseResult = false;
1360
1361 for (const auto *IvarInit : IMP->inits()) {
1362 FieldDecl *Field = IvarInit->getAnyMember();
1363 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1364 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1365 LoadObjCSelf(), Ivar, 0);
1366 EmitAggExpr(IvarInit->getInit(),
1367 AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1368 AggValueSlot::DoesNotNeedGCBarriers,
1369 AggValueSlot::IsNotAliased));
1370 }
1371 // constructor returns 'self'.
1372 CodeGenTypes &Types = CGM.getTypes();
1373 QualType IdTy(CGM.getContext().getObjCIdType());
1374 llvm::Value *SelfAsId =
1375 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1376 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1377
1378 // Emit .cxx_destruct.
1379 } else {
1380 emitCXXDestructMethod(*this, IMP);
1381 }
1382 FinishFunction();
1383 }
1384
IndirectObjCSetterArg(const CGFunctionInfo & FI)1385 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1386 CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1387 it++; it++;
1388 const ABIArgInfo &AI = it->info;
1389 // FIXME. Is this sufficient check?
1390 return (AI.getKind() == ABIArgInfo::Indirect);
1391 }
1392
IvarTypeWithAggrGCObjects(QualType Ty)1393 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1394 if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1395 return false;
1396 if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1397 return FDTTy->getDecl()->hasObjectMember();
1398 return false;
1399 }
1400
LoadObjCSelf()1401 llvm::Value *CodeGenFunction::LoadObjCSelf() {
1402 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1403 DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1404 Self->getType(), VK_LValue, SourceLocation());
1405 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1406 }
1407
TypeOfSelfObject()1408 QualType CodeGenFunction::TypeOfSelfObject() {
1409 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1410 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1411 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1412 getContext().getCanonicalType(selfDecl->getType()));
1413 return PTy->getPointeeType();
1414 }
1415
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1416 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1417 llvm::Constant *EnumerationMutationFn =
1418 CGM.getObjCRuntime().EnumerationMutationFunction();
1419
1420 if (!EnumerationMutationFn) {
1421 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1422 return;
1423 }
1424
1425 CGDebugInfo *DI = getDebugInfo();
1426 if (DI)
1427 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1428
1429 // The local variable comes into scope immediately.
1430 AutoVarEmission variable = AutoVarEmission::invalid();
1431 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1432 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1433
1434 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1435
1436 // Fast enumeration state.
1437 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1438 llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1439 EmitNullInitialization(StatePtr, StateTy);
1440
1441 // Number of elements in the items array.
1442 static const unsigned NumItems = 16;
1443
1444 // Fetch the countByEnumeratingWithState:objects:count: selector.
1445 IdentifierInfo *II[] = {
1446 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1447 &CGM.getContext().Idents.get("objects"),
1448 &CGM.getContext().Idents.get("count")
1449 };
1450 Selector FastEnumSel =
1451 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1452
1453 QualType ItemsTy =
1454 getContext().getConstantArrayType(getContext().getObjCIdType(),
1455 llvm::APInt(32, NumItems),
1456 ArrayType::Normal, 0);
1457 llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1458
1459 // Emit the collection pointer. In ARC, we do a retain.
1460 llvm::Value *Collection;
1461 if (getLangOpts().ObjCAutoRefCount) {
1462 Collection = EmitARCRetainScalarExpr(S.getCollection());
1463
1464 // Enter a cleanup to do the release.
1465 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1466 } else {
1467 Collection = EmitScalarExpr(S.getCollection());
1468 }
1469
1470 // The 'continue' label needs to appear within the cleanup for the
1471 // collection object.
1472 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1473
1474 // Send it our message:
1475 CallArgList Args;
1476
1477 // The first argument is a temporary of the enumeration-state type.
1478 Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1479
1480 // The second argument is a temporary array with space for NumItems
1481 // pointers. We'll actually be loading elements from the array
1482 // pointer written into the control state; this buffer is so that
1483 // collections that *aren't* backed by arrays can still queue up
1484 // batches of elements.
1485 Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1486
1487 // The third argument is the capacity of that temporary array.
1488 llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1489 llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1490 Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1491
1492 // Start the enumeration.
1493 RValue CountRV =
1494 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1495 getContext().UnsignedLongTy,
1496 FastEnumSel,
1497 Collection, Args);
1498
1499 // The initial number of objects that were returned in the buffer.
1500 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1501
1502 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1503 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1504
1505 llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1506
1507 // If the limit pointer was zero to begin with, the collection is
1508 // empty; skip all this. Set the branch weight assuming this has the same
1509 // probability of exiting the loop as any other loop exit.
1510 uint64_t EntryCount = PGO.getCurrentRegionCount();
1511 RegionCounter Cnt = getPGORegionCounter(&S);
1512 Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1513 EmptyBB, LoopInitBB,
1514 PGO.createBranchWeights(EntryCount, Cnt.getCount()));
1515
1516 // Otherwise, initialize the loop.
1517 EmitBlock(LoopInitBB);
1518
1519 // Save the initial mutations value. This is the value at an
1520 // address that was written into the state object by
1521 // countByEnumeratingWithState:objects:count:.
1522 llvm::Value *StateMutationsPtrPtr =
1523 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1524 llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1525 "mutationsptr");
1526
1527 llvm::Value *initialMutations =
1528 Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1529
1530 // Start looping. This is the point we return to whenever we have a
1531 // fresh, non-empty batch of objects.
1532 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1533 EmitBlock(LoopBodyBB);
1534
1535 // The current index into the buffer.
1536 llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1537 index->addIncoming(zero, LoopInitBB);
1538
1539 // The current buffer size.
1540 llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1541 count->addIncoming(initialBufferLimit, LoopInitBB);
1542
1543 Cnt.beginRegion(Builder);
1544
1545 // Check whether the mutations value has changed from where it was
1546 // at start. StateMutationsPtr should actually be invariant between
1547 // refreshes.
1548 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1549 llvm::Value *currentMutations
1550 = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1551
1552 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1553 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1554
1555 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1556 WasNotMutatedBB, WasMutatedBB);
1557
1558 // If so, call the enumeration-mutation function.
1559 EmitBlock(WasMutatedBB);
1560 llvm::Value *V =
1561 Builder.CreateBitCast(Collection,
1562 ConvertType(getContext().getObjCIdType()));
1563 CallArgList Args2;
1564 Args2.add(RValue::get(V), getContext().getObjCIdType());
1565 // FIXME: We shouldn't need to get the function info here, the runtime already
1566 // should have computed it to build the function.
1567 EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1568 FunctionType::ExtInfo(),
1569 RequiredArgs::All),
1570 EnumerationMutationFn, ReturnValueSlot(), Args2);
1571
1572 // Otherwise, or if the mutation function returns, just continue.
1573 EmitBlock(WasNotMutatedBB);
1574
1575 // Initialize the element variable.
1576 RunCleanupsScope elementVariableScope(*this);
1577 bool elementIsVariable;
1578 LValue elementLValue;
1579 QualType elementType;
1580 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1581 // Initialize the variable, in case it's a __block variable or something.
1582 EmitAutoVarInit(variable);
1583
1584 const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1585 DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1586 VK_LValue, SourceLocation());
1587 elementLValue = EmitLValue(&tempDRE);
1588 elementType = D->getType();
1589 elementIsVariable = true;
1590
1591 if (D->isARCPseudoStrong())
1592 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1593 } else {
1594 elementLValue = LValue(); // suppress warning
1595 elementType = cast<Expr>(S.getElement())->getType();
1596 elementIsVariable = false;
1597 }
1598 llvm::Type *convertedElementType = ConvertType(elementType);
1599
1600 // Fetch the buffer out of the enumeration state.
1601 // TODO: this pointer should actually be invariant between
1602 // refreshes, which would help us do certain loop optimizations.
1603 llvm::Value *StateItemsPtr =
1604 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1605 llvm::Value *EnumStateItems =
1606 Builder.CreateLoad(StateItemsPtr, "stateitems");
1607
1608 // Fetch the value at the current index from the buffer.
1609 llvm::Value *CurrentItemPtr =
1610 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1611 llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1612
1613 // Cast that value to the right type.
1614 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1615 "currentitem");
1616
1617 // Make sure we have an l-value. Yes, this gets evaluated every
1618 // time through the loop.
1619 if (!elementIsVariable) {
1620 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1621 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1622 } else {
1623 EmitScalarInit(CurrentItem, elementLValue);
1624 }
1625
1626 // If we do have an element variable, this assignment is the end of
1627 // its initialization.
1628 if (elementIsVariable)
1629 EmitAutoVarCleanups(variable);
1630
1631 // Perform the loop body, setting up break and continue labels.
1632 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1633 {
1634 RunCleanupsScope Scope(*this);
1635 EmitStmt(S.getBody());
1636 }
1637 BreakContinueStack.pop_back();
1638
1639 // Destroy the element variable now.
1640 elementVariableScope.ForceCleanup();
1641
1642 // Check whether there are more elements.
1643 EmitBlock(AfterBody.getBlock());
1644
1645 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1646
1647 // First we check in the local buffer.
1648 llvm::Value *indexPlusOne
1649 = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1650
1651 // If we haven't overrun the buffer yet, we can continue.
1652 // Set the branch weights based on the simplifying assumption that this is
1653 // like a while-loop, i.e., ignoring that the false branch fetches more
1654 // elements and then returns to the loop.
1655 Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1656 LoopBodyBB, FetchMoreBB,
1657 PGO.createBranchWeights(Cnt.getCount(), EntryCount));
1658
1659 index->addIncoming(indexPlusOne, AfterBody.getBlock());
1660 count->addIncoming(count, AfterBody.getBlock());
1661
1662 // Otherwise, we have to fetch more elements.
1663 EmitBlock(FetchMoreBB);
1664
1665 CountRV =
1666 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1667 getContext().UnsignedLongTy,
1668 FastEnumSel,
1669 Collection, Args);
1670
1671 // If we got a zero count, we're done.
1672 llvm::Value *refetchCount = CountRV.getScalarVal();
1673
1674 // (note that the message send might split FetchMoreBB)
1675 index->addIncoming(zero, Builder.GetInsertBlock());
1676 count->addIncoming(refetchCount, Builder.GetInsertBlock());
1677
1678 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1679 EmptyBB, LoopBodyBB);
1680
1681 // No more elements.
1682 EmitBlock(EmptyBB);
1683
1684 if (!elementIsVariable) {
1685 // If the element was not a declaration, set it to be null.
1686
1687 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1688 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1689 EmitStoreThroughLValue(RValue::get(null), elementLValue);
1690 }
1691
1692 if (DI)
1693 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1694
1695 // Leave the cleanup we entered in ARC.
1696 if (getLangOpts().ObjCAutoRefCount)
1697 PopCleanupBlock();
1698
1699 EmitBlock(LoopEnd.getBlock());
1700 }
1701
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)1702 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1703 CGM.getObjCRuntime().EmitTryStmt(*this, S);
1704 }
1705
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)1706 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1707 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1708 }
1709
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)1710 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1711 const ObjCAtSynchronizedStmt &S) {
1712 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1713 }
1714
1715 /// Produce the code for a CK_ARCProduceObject. Just does a
1716 /// primitive retain.
EmitObjCProduceObject(QualType type,llvm::Value * value)1717 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1718 llvm::Value *value) {
1719 return EmitARCRetain(type, value);
1720 }
1721
1722 namespace {
1723 struct CallObjCRelease : EHScopeStack::Cleanup {
CallObjCRelease__anon2ab49d910411::CallObjCRelease1724 CallObjCRelease(llvm::Value *object) : object(object) {}
1725 llvm::Value *object;
1726
Emit__anon2ab49d910411::CallObjCRelease1727 void Emit(CodeGenFunction &CGF, Flags flags) override {
1728 // Releases at the end of the full-expression are imprecise.
1729 CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1730 }
1731 };
1732 }
1733
1734 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
1735 /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)1736 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1737 llvm::Value *object) {
1738 // If we're in a conditional branch, we need to make the cleanup
1739 // conditional.
1740 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1741 return object;
1742 }
1743
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)1744 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1745 llvm::Value *value) {
1746 return EmitARCRetainAutorelease(type, value);
1747 }
1748
1749 /// Given a number of pointers, inform the optimizer that they're
1750 /// being intrinsically used up until this point in the program.
EmitARCIntrinsicUse(ArrayRef<llvm::Value * > values)1751 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1752 llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1753 if (!fn) {
1754 llvm::FunctionType *fnType =
1755 llvm::FunctionType::get(CGM.VoidTy, None, true);
1756 fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1757 }
1758
1759 // This isn't really a "runtime" function, but as an intrinsic it
1760 // doesn't really matter as long as we align things up.
1761 EmitNounwindRuntimeCall(fn, values);
1762 }
1763
1764
createARCRuntimeFunction(CodeGenModule & CGM,llvm::FunctionType * type,StringRef fnName)1765 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1766 llvm::FunctionType *type,
1767 StringRef fnName) {
1768 llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1769
1770 if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1771 // If the target runtime doesn't naturally support ARC, emit weak
1772 // references to the runtime support library. We don't really
1773 // permit this to fail, but we need a particular relocation style.
1774 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1775 f->setLinkage(llvm::Function::ExternalWeakLinkage);
1776 } else if (fnName == "objc_retain" || fnName == "objc_release") {
1777 // If we have Native ARC, set nonlazybind attribute for these APIs for
1778 // performance.
1779 f->addFnAttr(llvm::Attribute::NonLazyBind);
1780 }
1781 }
1782
1783 return fn;
1784 }
1785
1786 /// Perform an operation having the signature
1787 /// i8* (i8*)
1788 /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool isTailCall=false)1789 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1790 llvm::Value *value,
1791 llvm::Constant *&fn,
1792 StringRef fnName,
1793 bool isTailCall = false) {
1794 if (isa<llvm::ConstantPointerNull>(value)) return value;
1795
1796 if (!fn) {
1797 llvm::FunctionType *fnType =
1798 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1799 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1800 }
1801
1802 // Cast the argument to 'id'.
1803 llvm::Type *origType = value->getType();
1804 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1805
1806 // Call the function.
1807 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1808 if (isTailCall)
1809 call->setTailCall();
1810
1811 // Cast the result back to the original type.
1812 return CGF.Builder.CreateBitCast(call, origType);
1813 }
1814
1815 /// Perform an operation having the following signature:
1816 /// i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,llvm::Value * addr,llvm::Constant * & fn,StringRef fnName)1817 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1818 llvm::Value *addr,
1819 llvm::Constant *&fn,
1820 StringRef fnName) {
1821 if (!fn) {
1822 llvm::FunctionType *fnType =
1823 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1824 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1825 }
1826
1827 // Cast the argument to 'id*'.
1828 llvm::Type *origType = addr->getType();
1829 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1830
1831 // Call the function.
1832 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1833
1834 // Cast the result back to a dereference of the original type.
1835 if (origType != CGF.Int8PtrPtrTy)
1836 result = CGF.Builder.CreateBitCast(result,
1837 cast<llvm::PointerType>(origType)->getElementType());
1838
1839 return result;
1840 }
1841
1842 /// Perform an operation having the following signature:
1843 /// i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,llvm::Value * addr,llvm::Value * value,llvm::Constant * & fn,StringRef fnName,bool ignored)1844 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1845 llvm::Value *addr,
1846 llvm::Value *value,
1847 llvm::Constant *&fn,
1848 StringRef fnName,
1849 bool ignored) {
1850 assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1851 == value->getType());
1852
1853 if (!fn) {
1854 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1855
1856 llvm::FunctionType *fnType
1857 = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1858 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1859 }
1860
1861 llvm::Type *origType = value->getType();
1862
1863 llvm::Value *args[] = {
1864 CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1865 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1866 };
1867 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1868
1869 if (ignored) return nullptr;
1870
1871 return CGF.Builder.CreateBitCast(result, origType);
1872 }
1873
1874 /// Perform an operation having the following signature:
1875 /// void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,llvm::Value * dst,llvm::Value * src,llvm::Constant * & fn,StringRef fnName)1876 static void emitARCCopyOperation(CodeGenFunction &CGF,
1877 llvm::Value *dst,
1878 llvm::Value *src,
1879 llvm::Constant *&fn,
1880 StringRef fnName) {
1881 assert(dst->getType() == src->getType());
1882
1883 if (!fn) {
1884 llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1885
1886 llvm::FunctionType *fnType
1887 = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1888 fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1889 }
1890
1891 llvm::Value *args[] = {
1892 CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1893 CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1894 };
1895 CGF.EmitNounwindRuntimeCall(fn, args);
1896 }
1897
1898 /// Produce the code to do a retain. Based on the type, calls one of:
1899 /// call i8* \@objc_retain(i8* %value)
1900 /// call i8* \@objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)1901 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1902 if (type->isBlockPointerType())
1903 return EmitARCRetainBlock(value, /*mandatory*/ false);
1904 else
1905 return EmitARCRetainNonBlock(value);
1906 }
1907
1908 /// Retain the given object, with normal retain semantics.
1909 /// call i8* \@objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)1910 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1911 return emitARCValueOperation(*this, value,
1912 CGM.getARCEntrypoints().objc_retain,
1913 "objc_retain");
1914 }
1915
1916 /// Retain the given block, with _Block_copy semantics.
1917 /// call i8* \@objc_retainBlock(i8* %value)
1918 ///
1919 /// \param mandatory - If false, emit the call with metadata
1920 /// indicating that it's okay for the optimizer to eliminate this call
1921 /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)1922 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1923 bool mandatory) {
1924 llvm::Value *result
1925 = emitARCValueOperation(*this, value,
1926 CGM.getARCEntrypoints().objc_retainBlock,
1927 "objc_retainBlock");
1928
1929 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1930 // tell the optimizer that it doesn't need to do this copy if the
1931 // block doesn't escape, where being passed as an argument doesn't
1932 // count as escaping.
1933 if (!mandatory && isa<llvm::Instruction>(result)) {
1934 llvm::CallInst *call
1935 = cast<llvm::CallInst>(result->stripPointerCasts());
1936 assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1937
1938 call->setMetadata("clang.arc.copy_on_escape",
1939 llvm::MDNode::get(Builder.getContext(), None));
1940 }
1941
1942 return result;
1943 }
1944
1945 /// Retain the given object which is the result of a function call.
1946 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1947 ///
1948 /// Yes, this function name is one character away from a different
1949 /// call with completely different semantics.
1950 llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)1951 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1952 // Fetch the void(void) inline asm which marks that we're going to
1953 // retain the autoreleased return value.
1954 llvm::InlineAsm *&marker
1955 = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1956 if (!marker) {
1957 StringRef assembly
1958 = CGM.getTargetCodeGenInfo()
1959 .getARCRetainAutoreleasedReturnValueMarker();
1960
1961 // If we have an empty assembly string, there's nothing to do.
1962 if (assembly.empty()) {
1963
1964 // Otherwise, at -O0, build an inline asm that we're going to call
1965 // in a moment.
1966 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1967 llvm::FunctionType *type =
1968 llvm::FunctionType::get(VoidTy, /*variadic*/false);
1969
1970 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1971
1972 // If we're at -O1 and above, we don't want to litter the code
1973 // with this marker yet, so leave a breadcrumb for the ARC
1974 // optimizer to pick up.
1975 } else {
1976 llvm::NamedMDNode *metadata =
1977 CGM.getModule().getOrInsertNamedMetadata(
1978 "clang.arc.retainAutoreleasedReturnValueMarker");
1979 assert(metadata->getNumOperands() <= 1);
1980 if (metadata->getNumOperands() == 0) {
1981 metadata->addOperand(llvm::MDNode::get(
1982 getLLVMContext(), llvm::MDString::get(getLLVMContext(), assembly)));
1983 }
1984 }
1985 }
1986
1987 // Call the marker asm if we made one, which we do only at -O0.
1988 if (marker) Builder.CreateCall(marker);
1989
1990 return emitARCValueOperation(*this, value,
1991 CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1992 "objc_retainAutoreleasedReturnValue");
1993 }
1994
1995 /// Release the given object.
1996 /// call void \@objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)1997 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1998 ARCPreciseLifetime_t precise) {
1999 if (isa<llvm::ConstantPointerNull>(value)) return;
2000
2001 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
2002 if (!fn) {
2003 llvm::FunctionType *fnType =
2004 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2005 fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2006 }
2007
2008 // Cast the argument to 'id'.
2009 value = Builder.CreateBitCast(value, Int8PtrTy);
2010
2011 // Call objc_release.
2012 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2013
2014 if (precise == ARCImpreciseLifetime) {
2015 call->setMetadata("clang.imprecise_release",
2016 llvm::MDNode::get(Builder.getContext(), None));
2017 }
2018 }
2019
2020 /// Destroy a __strong variable.
2021 ///
2022 /// At -O0, emit a call to store 'null' into the address;
2023 /// instrumenting tools prefer this because the address is exposed,
2024 /// but it's relatively cumbersome to optimize.
2025 ///
2026 /// At -O1 and above, just load and call objc_release.
2027 ///
2028 /// call void \@objc_storeStrong(i8** %addr, i8* null)
EmitARCDestroyStrong(llvm::Value * addr,ARCPreciseLifetime_t precise)2029 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2030 ARCPreciseLifetime_t precise) {
2031 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2032 llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2033 llvm::Value *null = llvm::ConstantPointerNull::get(
2034 cast<llvm::PointerType>(addrTy->getElementType()));
2035 EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2036 return;
2037 }
2038
2039 llvm::Value *value = Builder.CreateLoad(addr);
2040 EmitARCRelease(value, precise);
2041 }
2042
2043 /// Store into a strong object. Always calls this:
2044 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(llvm::Value * addr,llvm::Value * value,bool ignored)2045 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2046 llvm::Value *value,
2047 bool ignored) {
2048 assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2049 == value->getType());
2050
2051 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2052 if (!fn) {
2053 llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2054 llvm::FunctionType *fnType
2055 = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2056 fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2057 }
2058
2059 llvm::Value *args[] = {
2060 Builder.CreateBitCast(addr, Int8PtrPtrTy),
2061 Builder.CreateBitCast(value, Int8PtrTy)
2062 };
2063 EmitNounwindRuntimeCall(fn, args);
2064
2065 if (ignored) return nullptr;
2066 return value;
2067 }
2068
2069 /// Store into a strong object. Sometimes calls this:
2070 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2071 /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)2072 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2073 llvm::Value *newValue,
2074 bool ignored) {
2075 QualType type = dst.getType();
2076 bool isBlock = type->isBlockPointerType();
2077
2078 // Use a store barrier at -O0 unless this is a block type or the
2079 // lvalue is inadequately aligned.
2080 if (shouldUseFusedARCCalls() &&
2081 !isBlock &&
2082 (dst.getAlignment().isZero() ||
2083 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2084 return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2085 }
2086
2087 // Otherwise, split it out.
2088
2089 // Retain the new value.
2090 newValue = EmitARCRetain(type, newValue);
2091
2092 // Read the old value.
2093 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2094
2095 // Store. We do this before the release so that any deallocs won't
2096 // see the old value.
2097 EmitStoreOfScalar(newValue, dst);
2098
2099 // Finally, release the old value.
2100 EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2101
2102 return newValue;
2103 }
2104
2105 /// Autorelease the given object.
2106 /// call i8* \@objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)2107 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2108 return emitARCValueOperation(*this, value,
2109 CGM.getARCEntrypoints().objc_autorelease,
2110 "objc_autorelease");
2111 }
2112
2113 /// Autorelease the given object.
2114 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2115 llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2116 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2117 return emitARCValueOperation(*this, value,
2118 CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2119 "objc_autoreleaseReturnValue",
2120 /*isTailCall*/ true);
2121 }
2122
2123 /// Do a fused retain/autorelease of the given object.
2124 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2125 llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2126 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2127 return emitARCValueOperation(*this, value,
2128 CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2129 "objc_retainAutoreleaseReturnValue",
2130 /*isTailCall*/ true);
2131 }
2132
2133 /// Do a fused retain/autorelease of the given object.
2134 /// call i8* \@objc_retainAutorelease(i8* %value)
2135 /// or
2136 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2137 /// call i8* \@objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2138 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2139 llvm::Value *value) {
2140 if (!type->isBlockPointerType())
2141 return EmitARCRetainAutoreleaseNonBlock(value);
2142
2143 if (isa<llvm::ConstantPointerNull>(value)) return value;
2144
2145 llvm::Type *origType = value->getType();
2146 value = Builder.CreateBitCast(value, Int8PtrTy);
2147 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2148 value = EmitARCAutorelease(value);
2149 return Builder.CreateBitCast(value, origType);
2150 }
2151
2152 /// Do a fused retain/autorelease of the given object.
2153 /// call i8* \@objc_retainAutorelease(i8* %value)
2154 llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2155 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2156 return emitARCValueOperation(*this, value,
2157 CGM.getARCEntrypoints().objc_retainAutorelease,
2158 "objc_retainAutorelease");
2159 }
2160
2161 /// i8* \@objc_loadWeak(i8** %addr)
2162 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(llvm::Value * addr)2163 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2164 return emitARCLoadOperation(*this, addr,
2165 CGM.getARCEntrypoints().objc_loadWeak,
2166 "objc_loadWeak");
2167 }
2168
2169 /// i8* \@objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(llvm::Value * addr)2170 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2171 return emitARCLoadOperation(*this, addr,
2172 CGM.getARCEntrypoints().objc_loadWeakRetained,
2173 "objc_loadWeakRetained");
2174 }
2175
2176 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2177 /// Returns %value.
EmitARCStoreWeak(llvm::Value * addr,llvm::Value * value,bool ignored)2178 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2179 llvm::Value *value,
2180 bool ignored) {
2181 return emitARCStoreOperation(*this, addr, value,
2182 CGM.getARCEntrypoints().objc_storeWeak,
2183 "objc_storeWeak", ignored);
2184 }
2185
2186 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2187 /// Returns %value. %addr is known to not have a current weak entry.
2188 /// Essentially equivalent to:
2189 /// *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(llvm::Value * addr,llvm::Value * value)2190 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2191 // If we're initializing to null, just write null to memory; no need
2192 // to get the runtime involved. But don't do this if optimization
2193 // is enabled, because accounting for this would make the optimizer
2194 // much more complicated.
2195 if (isa<llvm::ConstantPointerNull>(value) &&
2196 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2197 Builder.CreateStore(value, addr);
2198 return;
2199 }
2200
2201 emitARCStoreOperation(*this, addr, value,
2202 CGM.getARCEntrypoints().objc_initWeak,
2203 "objc_initWeak", /*ignored*/ true);
2204 }
2205
2206 /// void \@objc_destroyWeak(i8** %addr)
2207 /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(llvm::Value * addr)2208 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2209 llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2210 if (!fn) {
2211 llvm::FunctionType *fnType =
2212 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2213 fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2214 }
2215
2216 // Cast the argument to 'id*'.
2217 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2218
2219 EmitNounwindRuntimeCall(fn, addr);
2220 }
2221
2222 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2223 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2224 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(llvm::Value * dst,llvm::Value * src)2225 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2226 emitARCCopyOperation(*this, dst, src,
2227 CGM.getARCEntrypoints().objc_moveWeak,
2228 "objc_moveWeak");
2229 }
2230
2231 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2232 /// Disregards the current value in %dest. Essentially
2233 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(llvm::Value * dst,llvm::Value * src)2234 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2235 emitARCCopyOperation(*this, dst, src,
2236 CGM.getARCEntrypoints().objc_copyWeak,
2237 "objc_copyWeak");
2238 }
2239
2240 /// Produce the code to do a objc_autoreleasepool_push.
2241 /// call i8* \@objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2242 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2243 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2244 if (!fn) {
2245 llvm::FunctionType *fnType =
2246 llvm::FunctionType::get(Int8PtrTy, false);
2247 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2248 }
2249
2250 return EmitNounwindRuntimeCall(fn);
2251 }
2252
2253 /// Produce the code to do a primitive release.
2254 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2255 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2256 assert(value->getType() == Int8PtrTy);
2257
2258 llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2259 if (!fn) {
2260 llvm::FunctionType *fnType =
2261 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2262
2263 // We don't want to use a weak import here; instead we should not
2264 // fall into this path.
2265 fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2266 }
2267
2268 // objc_autoreleasePoolPop can throw.
2269 EmitRuntimeCallOrInvoke(fn, value);
2270 }
2271
2272 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2273 /// Which is: [[NSAutoreleasePool alloc] init];
2274 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2275 /// init is declared as: - (id) init; in its NSObject super class.
2276 ///
EmitObjCMRRAutoreleasePoolPush()2277 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2278 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2279 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2280 // [NSAutoreleasePool alloc]
2281 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2282 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2283 CallArgList Args;
2284 RValue AllocRV =
2285 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2286 getContext().getObjCIdType(),
2287 AllocSel, Receiver, Args);
2288
2289 // [Receiver init]
2290 Receiver = AllocRV.getScalarVal();
2291 II = &CGM.getContext().Idents.get("init");
2292 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2293 RValue InitRV =
2294 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2295 getContext().getObjCIdType(),
2296 InitSel, Receiver, Args);
2297 return InitRV.getScalarVal();
2298 }
2299
2300 /// Produce the code to do a primitive release.
2301 /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2302 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2303 IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2304 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2305 CallArgList Args;
2306 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2307 getContext().VoidTy, DrainSel, Arg, Args);
2308 }
2309
destroyARCStrongPrecise(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2310 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2311 llvm::Value *addr,
2312 QualType type) {
2313 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2314 }
2315
destroyARCStrongImprecise(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2316 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2317 llvm::Value *addr,
2318 QualType type) {
2319 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2320 }
2321
destroyARCWeak(CodeGenFunction & CGF,llvm::Value * addr,QualType type)2322 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2323 llvm::Value *addr,
2324 QualType type) {
2325 CGF.EmitARCDestroyWeak(addr);
2326 }
2327
2328 namespace {
2329 struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2330 llvm::Value *Token;
2331
CallObjCAutoreleasePoolObject__anon2ab49d910511::CallObjCAutoreleasePoolObject2332 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2333
Emit__anon2ab49d910511::CallObjCAutoreleasePoolObject2334 void Emit(CodeGenFunction &CGF, Flags flags) override {
2335 CGF.EmitObjCAutoreleasePoolPop(Token);
2336 }
2337 };
2338 struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2339 llvm::Value *Token;
2340
CallObjCMRRAutoreleasePoolObject__anon2ab49d910511::CallObjCMRRAutoreleasePoolObject2341 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2342
Emit__anon2ab49d910511::CallObjCMRRAutoreleasePoolObject2343 void Emit(CodeGenFunction &CGF, Flags flags) override {
2344 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2345 }
2346 };
2347 }
2348
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2349 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2350 if (CGM.getLangOpts().ObjCAutoRefCount)
2351 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2352 else
2353 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2354 }
2355
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2356 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2357 LValue lvalue,
2358 QualType type) {
2359 switch (type.getObjCLifetime()) {
2360 case Qualifiers::OCL_None:
2361 case Qualifiers::OCL_ExplicitNone:
2362 case Qualifiers::OCL_Strong:
2363 case Qualifiers::OCL_Autoreleasing:
2364 return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2365 SourceLocation()).getScalarVal(),
2366 false);
2367
2368 case Qualifiers::OCL_Weak:
2369 return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2370 true);
2371 }
2372
2373 llvm_unreachable("impossible lifetime!");
2374 }
2375
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2376 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2377 const Expr *e) {
2378 e = e->IgnoreParens();
2379 QualType type = e->getType();
2380
2381 // If we're loading retained from a __strong xvalue, we can avoid
2382 // an extra retain/release pair by zeroing out the source of this
2383 // "move" operation.
2384 if (e->isXValue() &&
2385 !type.isConstQualified() &&
2386 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2387 // Emit the lvalue.
2388 LValue lv = CGF.EmitLValue(e);
2389
2390 // Load the object pointer.
2391 llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2392 SourceLocation()).getScalarVal();
2393
2394 // Set the source pointer to NULL.
2395 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2396
2397 return TryEmitResult(result, true);
2398 }
2399
2400 // As a very special optimization, in ARC++, if the l-value is the
2401 // result of a non-volatile assignment, do a simple retain of the
2402 // result of the call to objc_storeWeak instead of reloading.
2403 if (CGF.getLangOpts().CPlusPlus &&
2404 !type.isVolatileQualified() &&
2405 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2406 isa<BinaryOperator>(e) &&
2407 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2408 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2409
2410 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2411 }
2412
2413 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2414 llvm::Value *value);
2415
2416 /// Given that the given expression is some sort of call (which does
2417 /// not return retained), emit a retain following it.
emitARCRetainCall(CodeGenFunction & CGF,const Expr * e)2418 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2419 llvm::Value *value = CGF.EmitScalarExpr(e);
2420 return emitARCRetainAfterCall(CGF, value);
2421 }
2422
emitARCRetainAfterCall(CodeGenFunction & CGF,llvm::Value * value)2423 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2424 llvm::Value *value) {
2425 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2426 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2427
2428 // Place the retain immediately following the call.
2429 CGF.Builder.SetInsertPoint(call->getParent(),
2430 ++llvm::BasicBlock::iterator(call));
2431 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2432
2433 CGF.Builder.restoreIP(ip);
2434 return value;
2435 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2436 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2437
2438 // Place the retain at the beginning of the normal destination block.
2439 llvm::BasicBlock *BB = invoke->getNormalDest();
2440 CGF.Builder.SetInsertPoint(BB, BB->begin());
2441 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2442
2443 CGF.Builder.restoreIP(ip);
2444 return value;
2445
2446 // Bitcasts can arise because of related-result returns. Rewrite
2447 // the operand.
2448 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2449 llvm::Value *operand = bitcast->getOperand(0);
2450 operand = emitARCRetainAfterCall(CGF, operand);
2451 bitcast->setOperand(0, operand);
2452 return bitcast;
2453
2454 // Generic fall-back case.
2455 } else {
2456 // Retain using the non-block variant: we never need to do a copy
2457 // of a block that's been returned to us.
2458 return CGF.EmitARCRetainNonBlock(value);
2459 }
2460 }
2461
2462 /// Determine whether it might be important to emit a separate
2463 /// objc_retain_block on the result of the given expression, or
2464 /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)2465 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2466 assert(e->getType()->isBlockPointerType());
2467 e = e->IgnoreParens();
2468
2469 // For future goodness, emit block expressions directly in +1
2470 // contexts if we can.
2471 if (isa<BlockExpr>(e))
2472 return false;
2473
2474 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2475 switch (cast->getCastKind()) {
2476 // Emitting these operations in +1 contexts is goodness.
2477 case CK_LValueToRValue:
2478 case CK_ARCReclaimReturnedObject:
2479 case CK_ARCConsumeObject:
2480 case CK_ARCProduceObject:
2481 return false;
2482
2483 // These operations preserve a block type.
2484 case CK_NoOp:
2485 case CK_BitCast:
2486 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2487
2488 // These operations are known to be bad (or haven't been considered).
2489 case CK_AnyPointerToBlockPointerCast:
2490 default:
2491 return true;
2492 }
2493 }
2494
2495 return true;
2496 }
2497
2498 /// Try to emit a PseudoObjectExpr at +1.
2499 ///
2500 /// This massively duplicates emitPseudoObjectRValue.
tryEmitARCRetainPseudoObject(CodeGenFunction & CGF,const PseudoObjectExpr * E)2501 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2502 const PseudoObjectExpr *E) {
2503 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2504
2505 // Find the result expression.
2506 const Expr *resultExpr = E->getResultExpr();
2507 assert(resultExpr);
2508 TryEmitResult result;
2509
2510 for (PseudoObjectExpr::const_semantics_iterator
2511 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2512 const Expr *semantic = *i;
2513
2514 // If this semantic expression is an opaque value, bind it
2515 // to the result of its source expression.
2516 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2517 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2518 OVMA opaqueData;
2519
2520 // If this semantic is the result of the pseudo-object
2521 // expression, try to evaluate the source as +1.
2522 if (ov == resultExpr) {
2523 assert(!OVMA::shouldBindAsLValue(ov));
2524 result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2525 opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2526
2527 // Otherwise, just bind it.
2528 } else {
2529 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2530 }
2531 opaques.push_back(opaqueData);
2532
2533 // Otherwise, if the expression is the result, evaluate it
2534 // and remember the result.
2535 } else if (semantic == resultExpr) {
2536 result = tryEmitARCRetainScalarExpr(CGF, semantic);
2537
2538 // Otherwise, evaluate the expression in an ignored context.
2539 } else {
2540 CGF.EmitIgnoredExpr(semantic);
2541 }
2542 }
2543
2544 // Unbind all the opaques now.
2545 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2546 opaques[i].unbind(CGF);
2547
2548 return result;
2549 }
2550
2551 static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)2552 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2553 // We should *never* see a nested full-expression here, because if
2554 // we fail to emit at +1, our caller must not retain after we close
2555 // out the full-expression.
2556 assert(!isa<ExprWithCleanups>(e));
2557
2558 // The desired result type, if it differs from the type of the
2559 // ultimate opaque expression.
2560 llvm::Type *resultType = nullptr;
2561
2562 while (true) {
2563 e = e->IgnoreParens();
2564
2565 // There's a break at the end of this if-chain; anything
2566 // that wants to keep looping has to explicitly continue.
2567 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2568 switch (ce->getCastKind()) {
2569 // No-op casts don't change the type, so we just ignore them.
2570 case CK_NoOp:
2571 e = ce->getSubExpr();
2572 continue;
2573
2574 case CK_LValueToRValue: {
2575 TryEmitResult loadResult
2576 = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2577 if (resultType) {
2578 llvm::Value *value = loadResult.getPointer();
2579 value = CGF.Builder.CreateBitCast(value, resultType);
2580 loadResult.setPointer(value);
2581 }
2582 return loadResult;
2583 }
2584
2585 // These casts can change the type, so remember that and
2586 // soldier on. We only need to remember the outermost such
2587 // cast, though.
2588 case CK_CPointerToObjCPointerCast:
2589 case CK_BlockPointerToObjCPointerCast:
2590 case CK_AnyPointerToBlockPointerCast:
2591 case CK_BitCast:
2592 if (!resultType)
2593 resultType = CGF.ConvertType(ce->getType());
2594 e = ce->getSubExpr();
2595 assert(e->getType()->hasPointerRepresentation());
2596 continue;
2597
2598 // For consumptions, just emit the subexpression and thus elide
2599 // the retain/release pair.
2600 case CK_ARCConsumeObject: {
2601 llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2602 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2603 return TryEmitResult(result, true);
2604 }
2605
2606 // Block extends are net +0. Naively, we could just recurse on
2607 // the subexpression, but actually we need to ensure that the
2608 // value is copied as a block, so there's a little filter here.
2609 case CK_ARCExtendBlockObject: {
2610 llvm::Value *result; // will be a +0 value
2611
2612 // If we can't safely assume the sub-expression will produce a
2613 // block-copied value, emit the sub-expression at +0.
2614 if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2615 result = CGF.EmitScalarExpr(ce->getSubExpr());
2616
2617 // Otherwise, try to emit the sub-expression at +1 recursively.
2618 } else {
2619 TryEmitResult subresult
2620 = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2621 result = subresult.getPointer();
2622
2623 // If that produced a retained value, just use that,
2624 // possibly casting down.
2625 if (subresult.getInt()) {
2626 if (resultType)
2627 result = CGF.Builder.CreateBitCast(result, resultType);
2628 return TryEmitResult(result, true);
2629 }
2630
2631 // Otherwise it's +0.
2632 }
2633
2634 // Retain the object as a block, then cast down.
2635 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2636 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2637 return TryEmitResult(result, true);
2638 }
2639
2640 // For reclaims, emit the subexpression as a retained call and
2641 // skip the consumption.
2642 case CK_ARCReclaimReturnedObject: {
2643 llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2644 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2645 return TryEmitResult(result, true);
2646 }
2647
2648 default:
2649 break;
2650 }
2651
2652 // Skip __extension__.
2653 } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2654 if (op->getOpcode() == UO_Extension) {
2655 e = op->getSubExpr();
2656 continue;
2657 }
2658
2659 // For calls and message sends, use the retained-call logic.
2660 // Delegate inits are a special case in that they're the only
2661 // returns-retained expression that *isn't* surrounded by
2662 // a consume.
2663 } else if (isa<CallExpr>(e) ||
2664 (isa<ObjCMessageExpr>(e) &&
2665 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2666 llvm::Value *result = emitARCRetainCall(CGF, e);
2667 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2668 return TryEmitResult(result, true);
2669
2670 // Look through pseudo-object expressions.
2671 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2672 TryEmitResult result
2673 = tryEmitARCRetainPseudoObject(CGF, pseudo);
2674 if (resultType) {
2675 llvm::Value *value = result.getPointer();
2676 value = CGF.Builder.CreateBitCast(value, resultType);
2677 result.setPointer(value);
2678 }
2679 return result;
2680 }
2681
2682 // Conservatively halt the search at any other expression kind.
2683 break;
2684 }
2685
2686 // We didn't find an obvious production, so emit what we've got and
2687 // tell the caller that we didn't manage to retain.
2688 llvm::Value *result = CGF.EmitScalarExpr(e);
2689 if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2690 return TryEmitResult(result, false);
2691 }
2692
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2693 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2694 LValue lvalue,
2695 QualType type) {
2696 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2697 llvm::Value *value = result.getPointer();
2698 if (!result.getInt())
2699 value = CGF.EmitARCRetain(type, value);
2700 return value;
2701 }
2702
2703 /// EmitARCRetainScalarExpr - Semantically equivalent to
2704 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2705 /// best-effort attempt to peephole expressions that naturally produce
2706 /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)2707 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2708 // The retain needs to happen within the full-expression.
2709 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2710 enterFullExpression(cleanups);
2711 RunCleanupsScope scope(*this);
2712 return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2713 }
2714
2715 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2716 llvm::Value *value = result.getPointer();
2717 if (!result.getInt())
2718 value = EmitARCRetain(e->getType(), value);
2719 return value;
2720 }
2721
2722 llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)2723 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2724 // The retain needs to happen within the full-expression.
2725 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2726 enterFullExpression(cleanups);
2727 RunCleanupsScope scope(*this);
2728 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2729 }
2730
2731 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2732 llvm::Value *value = result.getPointer();
2733 if (result.getInt())
2734 value = EmitARCAutorelease(value);
2735 else
2736 value = EmitARCRetainAutorelease(e->getType(), value);
2737 return value;
2738 }
2739
EmitARCExtendBlockObject(const Expr * e)2740 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2741 llvm::Value *result;
2742 bool doRetain;
2743
2744 if (shouldEmitSeparateBlockRetain(e)) {
2745 result = EmitScalarExpr(e);
2746 doRetain = true;
2747 } else {
2748 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2749 result = subresult.getPointer();
2750 doRetain = !subresult.getInt();
2751 }
2752
2753 if (doRetain)
2754 result = EmitARCRetainBlock(result, /*mandatory*/ true);
2755 return EmitObjCConsumeObject(e->getType(), result);
2756 }
2757
EmitObjCThrowOperand(const Expr * expr)2758 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2759 // In ARC, retain and autorelease the expression.
2760 if (getLangOpts().ObjCAutoRefCount) {
2761 // Do so before running any cleanups for the full-expression.
2762 // EmitARCRetainAutoreleaseScalarExpr does this for us.
2763 return EmitARCRetainAutoreleaseScalarExpr(expr);
2764 }
2765
2766 // Otherwise, use the normal scalar-expression emission. The
2767 // exception machinery doesn't do anything special with the
2768 // exception like retaining it, so there's no safety associated with
2769 // only running cleanups after the throw has started, and when it
2770 // matters it tends to be substantially inferior code.
2771 return EmitScalarExpr(expr);
2772 }
2773
2774 std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)2775 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2776 bool ignored) {
2777 // Evaluate the RHS first.
2778 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2779 llvm::Value *value = result.getPointer();
2780
2781 bool hasImmediateRetain = result.getInt();
2782
2783 // If we didn't emit a retained object, and the l-value is of block
2784 // type, then we need to emit the block-retain immediately in case
2785 // it invalidates the l-value.
2786 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2787 value = EmitARCRetainBlock(value, /*mandatory*/ false);
2788 hasImmediateRetain = true;
2789 }
2790
2791 LValue lvalue = EmitLValue(e->getLHS());
2792
2793 // If the RHS was emitted retained, expand this.
2794 if (hasImmediateRetain) {
2795 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
2796 EmitStoreOfScalar(value, lvalue);
2797 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2798 } else {
2799 value = EmitARCStoreStrong(lvalue, value, ignored);
2800 }
2801
2802 return std::pair<LValue,llvm::Value*>(lvalue, value);
2803 }
2804
2805 std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)2806 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2807 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2808 LValue lvalue = EmitLValue(e->getLHS());
2809
2810 EmitStoreOfScalar(value, lvalue);
2811
2812 return std::pair<LValue,llvm::Value*>(lvalue, value);
2813 }
2814
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)2815 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2816 const ObjCAutoreleasePoolStmt &ARPS) {
2817 const Stmt *subStmt = ARPS.getSubStmt();
2818 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2819
2820 CGDebugInfo *DI = getDebugInfo();
2821 if (DI)
2822 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2823
2824 // Keep track of the current cleanup stack depth.
2825 RunCleanupsScope Scope(*this);
2826 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2827 llvm::Value *token = EmitObjCAutoreleasePoolPush();
2828 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2829 } else {
2830 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2831 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2832 }
2833
2834 for (const auto *I : S.body())
2835 EmitStmt(I);
2836
2837 if (DI)
2838 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2839 }
2840
2841 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2842 /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)2843 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2844 // We just use an inline assembly.
2845 llvm::FunctionType *extenderType
2846 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2847 llvm::Value *extender
2848 = llvm::InlineAsm::get(extenderType,
2849 /* assembly */ "",
2850 /* constraints */ "r",
2851 /* side effects */ true);
2852
2853 object = Builder.CreateBitCast(object, VoidPtrTy);
2854 EmitNounwindRuntimeCall(extender, object);
2855 }
2856
2857 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2858 /// non-trivial copy assignment function, produce following helper function.
2859 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2860 ///
2861 llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2862 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2863 const ObjCPropertyImplDecl *PID) {
2864 if (!getLangOpts().CPlusPlus ||
2865 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2866 return nullptr;
2867 QualType Ty = PID->getPropertyIvarDecl()->getType();
2868 if (!Ty->isRecordType())
2869 return nullptr;
2870 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2871 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2872 return nullptr;
2873 llvm::Constant *HelperFn = nullptr;
2874 if (hasTrivialSetExpr(PID))
2875 return nullptr;
2876 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2877 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2878 return HelperFn;
2879
2880 ASTContext &C = getContext();
2881 IdentifierInfo *II
2882 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2883 FunctionDecl *FD = FunctionDecl::Create(C,
2884 C.getTranslationUnitDecl(),
2885 SourceLocation(),
2886 SourceLocation(), II, C.VoidTy,
2887 nullptr, SC_Static,
2888 false,
2889 false);
2890
2891 QualType DestTy = C.getPointerType(Ty);
2892 QualType SrcTy = Ty;
2893 SrcTy.addConst();
2894 SrcTy = C.getPointerType(SrcTy);
2895
2896 FunctionArgList args;
2897 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2898 args.push_back(&dstDecl);
2899 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2900 args.push_back(&srcDecl);
2901
2902 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2903 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2904
2905 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2906
2907 llvm::Function *Fn =
2908 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2909 "__assign_helper_atomic_property_",
2910 &CGM.getModule());
2911
2912 StartFunction(FD, C.VoidTy, Fn, FI, args);
2913
2914 DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2915 VK_RValue, SourceLocation());
2916 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2917 VK_LValue, OK_Ordinary, SourceLocation());
2918
2919 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2920 VK_RValue, SourceLocation());
2921 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2922 VK_LValue, OK_Ordinary, SourceLocation());
2923
2924 Expr *Args[2] = { &DST, &SRC };
2925 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2926 CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2927 Args, DestTy->getPointeeType(),
2928 VK_LValue, SourceLocation(), false);
2929
2930 EmitStmt(&TheCall);
2931
2932 FinishFunction();
2933 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2934 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2935 return HelperFn;
2936 }
2937
2938 llvm::Constant *
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)2939 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2940 const ObjCPropertyImplDecl *PID) {
2941 if (!getLangOpts().CPlusPlus ||
2942 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2943 return nullptr;
2944 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2945 QualType Ty = PD->getType();
2946 if (!Ty->isRecordType())
2947 return nullptr;
2948 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2949 return nullptr;
2950 llvm::Constant *HelperFn = nullptr;
2951
2952 if (hasTrivialGetExpr(PID))
2953 return nullptr;
2954 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2955 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2956 return HelperFn;
2957
2958
2959 ASTContext &C = getContext();
2960 IdentifierInfo *II
2961 = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2962 FunctionDecl *FD = FunctionDecl::Create(C,
2963 C.getTranslationUnitDecl(),
2964 SourceLocation(),
2965 SourceLocation(), II, C.VoidTy,
2966 nullptr, SC_Static,
2967 false,
2968 false);
2969
2970 QualType DestTy = C.getPointerType(Ty);
2971 QualType SrcTy = Ty;
2972 SrcTy.addConst();
2973 SrcTy = C.getPointerType(SrcTy);
2974
2975 FunctionArgList args;
2976 ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
2977 args.push_back(&dstDecl);
2978 ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
2979 args.push_back(&srcDecl);
2980
2981 const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
2982 C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
2983
2984 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2985
2986 llvm::Function *Fn =
2987 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2988 "__copy_helper_atomic_property_", &CGM.getModule());
2989
2990 StartFunction(FD, C.VoidTy, Fn, FI, args);
2991
2992 DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2993 VK_RValue, SourceLocation());
2994
2995 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2996 VK_LValue, OK_Ordinary, SourceLocation());
2997
2998 CXXConstructExpr *CXXConstExpr =
2999 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3000
3001 SmallVector<Expr*, 4> ConstructorArgs;
3002 ConstructorArgs.push_back(&SRC);
3003 CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3004 ++A;
3005
3006 for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3007 A != AEnd; ++A)
3008 ConstructorArgs.push_back(*A);
3009
3010 CXXConstructExpr *TheCXXConstructExpr =
3011 CXXConstructExpr::Create(C, Ty, SourceLocation(),
3012 CXXConstExpr->getConstructor(),
3013 CXXConstExpr->isElidable(),
3014 ConstructorArgs,
3015 CXXConstExpr->hadMultipleCandidates(),
3016 CXXConstExpr->isListInitialization(),
3017 CXXConstExpr->isStdInitListInitialization(),
3018 CXXConstExpr->requiresZeroInitialization(),
3019 CXXConstExpr->getConstructionKind(),
3020 SourceRange());
3021
3022 DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3023 VK_RValue, SourceLocation());
3024
3025 RValue DV = EmitAnyExpr(&DstExpr);
3026 CharUnits Alignment
3027 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3028 EmitAggExpr(TheCXXConstructExpr,
3029 AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3030 AggValueSlot::IsDestructed,
3031 AggValueSlot::DoesNotNeedGCBarriers,
3032 AggValueSlot::IsNotAliased));
3033
3034 FinishFunction();
3035 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3036 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3037 return HelperFn;
3038 }
3039
3040 llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)3041 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3042 // Get selectors for retain/autorelease.
3043 IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3044 Selector CopySelector =
3045 getContext().Selectors.getNullarySelector(CopyID);
3046 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3047 Selector AutoreleaseSelector =
3048 getContext().Selectors.getNullarySelector(AutoreleaseID);
3049
3050 // Emit calls to retain/autorelease.
3051 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3052 llvm::Value *Val = Block;
3053 RValue Result;
3054 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3055 Ty, CopySelector,
3056 Val, CallArgList(), nullptr, nullptr);
3057 Val = Result.getScalarVal();
3058 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3059 Ty, AutoreleaseSelector,
3060 Val, CallArgList(), nullptr, nullptr);
3061 Val = Result.getScalarVal();
3062 return Val;
3063 }
3064
3065
~CGObjCRuntime()3066 CGObjCRuntime::~CGObjCRuntime() {}
3067