1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The file defines the MachineFrameInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
14 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/Register.h"
18 #include "llvm/CodeGen/TargetFrameLowering.h"
19 #include "llvm/Support/Alignment.h"
20 #include <cassert>
21 #include <vector>
22 
23 namespace llvm {
24 class raw_ostream;
25 class MachineFunction;
26 class MachineBasicBlock;
27 class BitVector;
28 class AllocaInst;
29 
30 /// The CalleeSavedInfo class tracks the information need to locate where a
31 /// callee saved register is in the current frame.
32 /// Callee saved reg can also be saved to a different register rather than
33 /// on the stack by setting DstReg instead of FrameIdx.
34 class CalleeSavedInfo {
35   Register Reg;
36   union {
37     int FrameIdx;
38     unsigned DstReg;
39   };
40   /// Flag indicating whether the register is actually restored in the epilog.
41   /// In most cases, if a register is saved, it is also restored. There are
42   /// some situations, though, when this is not the case. For example, the
43   /// LR register on ARM is usually saved, but on exit from the function its
44   /// saved value may be loaded directly into PC. Since liveness tracking of
45   /// physical registers treats callee-saved registers are live outside of
46   /// the function, LR would be treated as live-on-exit, even though in these
47   /// scenarios it is not. This flag is added to indicate that the saved
48   /// register described by this object is not restored in the epilog.
49   /// The long-term solution is to model the liveness of callee-saved registers
50   /// by implicit uses on the return instructions, however, the required
51   /// changes in the ARM backend would be quite extensive.
52   bool Restored = true;
53   /// Flag indicating whether the register is spilled to stack or another
54   /// register.
55   bool SpilledToReg = false;
56 
57 public:
Reg(R)58   explicit CalleeSavedInfo(unsigned R, int FI = 0) : Reg(R), FrameIdx(FI) {}
59 
60   // Accessors.
getReg()61   Register getReg()                        const { return Reg; }
getFrameIdx()62   int getFrameIdx()                        const { return FrameIdx; }
getDstReg()63   unsigned getDstReg()                     const { return DstReg; }
setFrameIdx(int FI)64   void setFrameIdx(int FI) {
65     FrameIdx = FI;
66     SpilledToReg = false;
67   }
setDstReg(Register SpillReg)68   void setDstReg(Register SpillReg) {
69     DstReg = SpillReg;
70     SpilledToReg = true;
71   }
isRestored()72   bool isRestored()                        const { return Restored; }
setRestored(bool R)73   void setRestored(bool R)                       { Restored = R; }
isSpilledToReg()74   bool isSpilledToReg()                    const { return SpilledToReg; }
75 };
76 
77 /// The MachineFrameInfo class represents an abstract stack frame until
78 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
79 /// representation optimizations, such as frame pointer elimination.  It also
80 /// allows more mundane (but still important) optimizations, such as reordering
81 /// of abstract objects on the stack frame.
82 ///
83 /// To support this, the class assigns unique integer identifiers to stack
84 /// objects requested clients.  These identifiers are negative integers for
85 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
86 /// for objects that may be reordered.  Instructions which refer to stack
87 /// objects use a special MO_FrameIndex operand to represent these frame
88 /// indexes.
89 ///
90 /// Because this class keeps track of all references to the stack frame, it
91 /// knows when a variable sized object is allocated on the stack.  This is the
92 /// sole condition which prevents frame pointer elimination, which is an
93 /// important optimization on register-poor architectures.  Because original
94 /// variable sized alloca's in the source program are the only source of
95 /// variable sized stack objects, it is safe to decide whether there will be
96 /// any variable sized objects before all stack objects are known (for
97 /// example, register allocator spill code never needs variable sized
98 /// objects).
99 ///
100 /// When prolog/epilog code emission is performed, the final stack frame is
101 /// built and the machine instructions are modified to refer to the actual
102 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
103 /// the program.
104 ///
105 /// Abstract Stack Frame Information
106 class MachineFrameInfo {
107 public:
108   /// Stack Smashing Protection (SSP) rules require that vulnerable stack
109   /// allocations are located close the stack protector.
110   enum SSPLayoutKind {
111     SSPLK_None,       ///< Did not trigger a stack protector.  No effect on data
112                       ///< layout.
113     SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size.  Closest
114                       ///< to the stack protector.
115     SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest
116                       ///< to the stack protector.
117     SSPLK_AddrOf      ///< The address of this allocation is exposed and
118                       ///< triggered protection.  3rd closest to the protector.
119   };
120 
121 private:
122   // Represent a single object allocated on the stack.
123   struct StackObject {
124     // The offset of this object from the stack pointer on entry to
125     // the function.  This field has no meaning for a variable sized element.
126     int64_t SPOffset;
127 
128     // The size of this object on the stack. 0 means a variable sized object,
129     // ~0ULL means a dead object.
130     uint64_t Size;
131 
132     // The required alignment of this stack slot.
133     Align Alignment;
134 
135     // If true, the value of the stack object is set before
136     // entering the function and is not modified inside the function. By
137     // default, fixed objects are immutable unless marked otherwise.
138     bool isImmutable;
139 
140     // If true the stack object is used as spill slot. It
141     // cannot alias any other memory objects.
142     bool isSpillSlot;
143 
144     /// If true, this stack slot is used to spill a value (could be deopt
145     /// and/or GC related) over a statepoint. We know that the address of the
146     /// slot can't alias any LLVM IR value.  This is very similar to a Spill
147     /// Slot, but is created by statepoint lowering is SelectionDAG, not the
148     /// register allocator.
149     bool isStatepointSpillSlot = false;
150 
151     /// Identifier for stack memory type analagous to address space. If this is
152     /// non-0, the meaning is target defined. Offsets cannot be directly
153     /// compared between objects with different stack IDs. The object may not
154     /// necessarily reside in the same contiguous memory block as other stack
155     /// objects. Objects with differing stack IDs should not be merged or
156     /// replaced substituted for each other.
157     //
158     /// It is assumed a target uses consecutive, increasing stack IDs starting
159     /// from 1.
160     uint8_t StackID;
161 
162     /// If this stack object is originated from an Alloca instruction
163     /// this value saves the original IR allocation. Can be NULL.
164     const AllocaInst *Alloca;
165 
166     // If true, the object was mapped into the local frame
167     // block and doesn't need additional handling for allocation beyond that.
168     bool PreAllocated = false;
169 
170     // If true, an LLVM IR value might point to this object.
171     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
172     // objects, but there are exceptions (on PowerPC, for example, some byval
173     // arguments have ABI-prescribed offsets).
174     bool isAliased;
175 
176     /// If true, the object has been zero-extended.
177     bool isZExt = false;
178 
179     /// If true, the object has been sign-extended.
180     bool isSExt = false;
181 
182     uint8_t SSPLayout = SSPLK_None;
183 
184     StackObject(uint64_t Size, Align Alignment, int64_t SPOffset,
185                 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
186                 bool IsAliased, uint8_t StackID = 0)
SPOffsetStackObject187         : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
188           isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), StackID(StackID),
189           Alloca(Alloca), isAliased(IsAliased) {}
190   };
191 
192   /// The alignment of the stack.
193   Align StackAlignment;
194 
195   /// Can the stack be realigned. This can be false if the target does not
196   /// support stack realignment, or if the user asks us not to realign the
197   /// stack. In this situation, overaligned allocas are all treated as dynamic
198   /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
199   /// lowering. All non-alloca stack objects have their alignment clamped to the
200   /// base ABI stack alignment.
201   /// FIXME: There is room for improvement in this case, in terms of
202   /// grouping overaligned allocas into a "secondary stack frame" and
203   /// then only use a single alloca to allocate this frame and only a
204   /// single virtual register to access it. Currently, without such an
205   /// optimization, each such alloca gets its own dynamic realignment.
206   bool StackRealignable;
207 
208   /// Whether the function has the \c alignstack attribute.
209   bool ForcedRealign;
210 
211   /// The list of stack objects allocated.
212   std::vector<StackObject> Objects;
213 
214   /// This contains the number of fixed objects contained on
215   /// the stack.  Because fixed objects are stored at a negative index in the
216   /// Objects list, this is also the index to the 0th object in the list.
217   unsigned NumFixedObjects = 0;
218 
219   /// This boolean keeps track of whether any variable
220   /// sized objects have been allocated yet.
221   bool HasVarSizedObjects = false;
222 
223   /// This boolean keeps track of whether there is a call
224   /// to builtin \@llvm.frameaddress.
225   bool FrameAddressTaken = false;
226 
227   /// This boolean keeps track of whether there is a call
228   /// to builtin \@llvm.returnaddress.
229   bool ReturnAddressTaken = false;
230 
231   /// This boolean keeps track of whether there is a call
232   /// to builtin \@llvm.experimental.stackmap.
233   bool HasStackMap = false;
234 
235   /// This boolean keeps track of whether there is a call
236   /// to builtin \@llvm.experimental.patchpoint.
237   bool HasPatchPoint = false;
238 
239   /// The prolog/epilog code inserter calculates the final stack
240   /// offsets for all of the fixed size objects, updating the Objects list
241   /// above.  It then updates StackSize to contain the number of bytes that need
242   /// to be allocated on entry to the function.
243   uint64_t StackSize = 0;
244 
245   /// The amount that a frame offset needs to be adjusted to
246   /// have the actual offset from the stack/frame pointer.  The exact usage of
247   /// this is target-dependent, but it is typically used to adjust between
248   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
249   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
250   /// to the distance between the initial SP and the value in FP.  For many
251   /// targets, this value is only used when generating debug info (via
252   /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
253   /// corresponding adjustments are performed directly.
254   int OffsetAdjustment = 0;
255 
256   /// The prolog/epilog code inserter may process objects that require greater
257   /// alignment than the default alignment the target provides.
258   /// To handle this, MaxAlignment is set to the maximum alignment
259   /// needed by the objects on the current frame.  If this is greater than the
260   /// native alignment maintained by the compiler, dynamic alignment code will
261   /// be needed.
262   ///
263   Align MaxAlignment;
264 
265   /// Set to true if this function adjusts the stack -- e.g.,
266   /// when calling another function. This is only valid during and after
267   /// prolog/epilog code insertion.
268   bool AdjustsStack = false;
269 
270   /// Set to true if this function has any function calls.
271   bool HasCalls = false;
272 
273   /// The frame index for the stack protector.
274   int StackProtectorIdx = -1;
275 
276   struct ReturnProtector {
277     /// The register to use for return protector calculations
278     unsigned Register = 0;
279     /// Set to true if this function needs return protectors
280     bool Needed = false;
281     /// Does the return protector cookie need to be stored in frame
282     bool NeedsStore = true;
283   } RPI;
284 
285   /// The frame index for the function context. Used for SjLj exceptions.
286   int FunctionContextIdx = -1;
287 
288   /// This contains the size of the largest call frame if the target uses frame
289   /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
290   /// class).  This information is important for frame pointer elimination.
291   /// It is only valid during and after prolog/epilog code insertion.
292   unsigned MaxCallFrameSize = ~0u;
293 
294   /// The number of bytes of callee saved registers that the target wants to
295   /// report for the current function in the CodeView S_FRAMEPROC record.
296   unsigned CVBytesOfCalleeSavedRegisters = 0;
297 
298   /// The prolog/epilog code inserter fills in this vector with each
299   /// callee saved register saved in either the frame or a different
300   /// register.  Beyond its use by the prolog/ epilog code inserter,
301   /// this data is used for debug info and exception handling.
302   std::vector<CalleeSavedInfo> CSInfo;
303 
304   /// Has CSInfo been set yet?
305   bool CSIValid = false;
306 
307   /// References to frame indices which are mapped
308   /// into the local frame allocation block. <FrameIdx, LocalOffset>
309   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
310 
311   /// Size of the pre-allocated local frame block.
312   int64_t LocalFrameSize = 0;
313 
314   /// Required alignment of the local object blob, which is the strictest
315   /// alignment of any object in it.
316   Align LocalFrameMaxAlign;
317 
318   /// Whether the local object blob needs to be allocated together. If not,
319   /// PEI should ignore the isPreAllocated flags on the stack objects and
320   /// just allocate them normally.
321   bool UseLocalStackAllocationBlock = false;
322 
323   /// True if the function dynamically adjusts the stack pointer through some
324   /// opaque mechanism like inline assembly or Win32 EH.
325   bool HasOpaqueSPAdjustment = false;
326 
327   /// True if the function contains operations which will lower down to
328   /// instructions which manipulate the stack pointer.
329   bool HasCopyImplyingStackAdjustment = false;
330 
331   /// True if the function contains a call to the llvm.vastart intrinsic.
332   bool HasVAStart = false;
333 
334   /// True if this is a varargs function that contains a musttail call.
335   bool HasMustTailInVarArgFunc = false;
336 
337   /// True if this function contains a tail call. If so immutable objects like
338   /// function arguments are no longer so. A tail call *can* override fixed
339   /// stack objects like arguments so we can't treat them as immutable.
340   bool HasTailCall = false;
341 
342   /// Not null, if shrink-wrapping found a better place for the prologue.
343   MachineBasicBlock *Save = nullptr;
344   /// Not null, if shrink-wrapping found a better place for the epilogue.
345   MachineBasicBlock *Restore = nullptr;
346 
347   /// Size of the UnsafeStack Frame
348   uint64_t UnsafeStackSize = 0;
349 
350 public:
MachineFrameInfo(Align StackAlignment,bool StackRealignable,bool ForcedRealign)351   explicit MachineFrameInfo(Align StackAlignment, bool StackRealignable,
352                             bool ForcedRealign)
353       : StackAlignment(StackAlignment),
354         StackRealignable(StackRealignable), ForcedRealign(ForcedRealign) {}
355 
356   MachineFrameInfo(const MachineFrameInfo &) = delete;
357 
358   /// Return true if there are any stack objects in this function.
hasStackObjects()359   bool hasStackObjects() const { return !Objects.empty(); }
360 
361   /// This method may be called any time after instruction
362   /// selection is complete to determine if the stack frame for this function
363   /// contains any variable sized objects.
hasVarSizedObjects()364   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
365 
366   /// Return the index for the stack protector object.
getStackProtectorIndex()367   int getStackProtectorIndex() const { return StackProtectorIdx; }
setStackProtectorIndex(int I)368   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
hasStackProtectorIndex()369   bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
370 
371   /// Get / Set return protector calculation register
getReturnProtectorRegister()372   unsigned getReturnProtectorRegister() const { return RPI.Register; }
setReturnProtectorRegister(unsigned I)373   void setReturnProtectorRegister(unsigned I) { RPI.Register = I; }
hasReturnProtectorRegister()374   bool hasReturnProtectorRegister() const { return RPI.Register != 0; }
375   /// Get / Set if this frame needs a return protector
setReturnProtectorNeeded(bool I)376   void setReturnProtectorNeeded(bool I) { RPI.Needed = I; }
getReturnProtectorNeeded()377   bool getReturnProtectorNeeded() const { return RPI.Needed; }
378   /// Get / Set if the return protector cookie needs to be stored in frame
setReturnProtectorNeedsStore(bool I)379   void setReturnProtectorNeedsStore(bool I) { RPI.NeedsStore = I; }
getReturnProtectorNeedsStore()380   bool getReturnProtectorNeedsStore() const { return RPI.NeedsStore; }
381 
382   /// Return the index for the function context object.
383   /// This object is used for SjLj exceptions.
getFunctionContextIndex()384   int getFunctionContextIndex() const { return FunctionContextIdx; }
setFunctionContextIndex(int I)385   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
hasFunctionContextIndex()386   bool hasFunctionContextIndex() const { return FunctionContextIdx != -1; }
387 
388   /// This method may be called any time after instruction
389   /// selection is complete to determine if there is a call to
390   /// \@llvm.frameaddress in this function.
isFrameAddressTaken()391   bool isFrameAddressTaken() const { return FrameAddressTaken; }
setFrameAddressIsTaken(bool T)392   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
393 
394   /// This method may be called any time after
395   /// instruction selection is complete to determine if there is a call to
396   /// \@llvm.returnaddress in this function.
isReturnAddressTaken()397   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
setReturnAddressIsTaken(bool s)398   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
399 
400   /// This method may be called any time after instruction
401   /// selection is complete to determine if there is a call to builtin
402   /// \@llvm.experimental.stackmap.
hasStackMap()403   bool hasStackMap() const { return HasStackMap; }
404   void setHasStackMap(bool s = true) { HasStackMap = s; }
405 
406   /// This method may be called any time after instruction
407   /// selection is complete to determine if there is a call to builtin
408   /// \@llvm.experimental.patchpoint.
hasPatchPoint()409   bool hasPatchPoint() const { return HasPatchPoint; }
410   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
411 
412   /// Return true if this function requires a split stack prolog, even if it
413   /// uses no stack space. This is only meaningful for functions where
414   /// MachineFunction::shouldSplitStack() returns true.
415   //
416   // For non-leaf functions we have to allow for the possibility that the call
417   // is to a non-split function, as in PR37807. This function could also take
418   // the address of a non-split function. When the linker tries to adjust its
419   // non-existent prologue, it would fail with an error. Mark the object file so
420   // that such failures are not errors. See this Go language bug-report
421   // https://go-review.googlesource.com/c/go/+/148819/
needsSplitStackProlog()422   bool needsSplitStackProlog() const {
423     return getStackSize() != 0 || hasTailCall();
424   }
425 
426   /// Return the minimum frame object index.
getObjectIndexBegin()427   int getObjectIndexBegin() const { return -NumFixedObjects; }
428 
429   /// Return one past the maximum frame object index.
getObjectIndexEnd()430   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
431 
432   /// Return the number of fixed objects.
getNumFixedObjects()433   unsigned getNumFixedObjects() const { return NumFixedObjects; }
434 
435   /// Return the number of objects.
getNumObjects()436   unsigned getNumObjects() const { return Objects.size(); }
437 
438   /// Map a frame index into the local object block
mapLocalFrameObject(int ObjectIndex,int64_t Offset)439   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
440     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
441     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
442   }
443 
444   /// Get the local offset mapping for a for an object.
getLocalFrameObjectMap(int i)445   std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
446     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
447             "Invalid local object reference!");
448     return LocalFrameObjects[i];
449   }
450 
451   /// Return the number of objects allocated into the local object block.
getLocalFrameObjectCount()452   int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
453 
454   /// Set the size of the local object blob.
setLocalFrameSize(int64_t sz)455   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
456 
457   /// Get the size of the local object blob.
getLocalFrameSize()458   int64_t getLocalFrameSize() const { return LocalFrameSize; }
459 
460   /// Required alignment of the local object blob,
461   /// which is the strictest alignment of any object in it.
setLocalFrameMaxAlign(Align Alignment)462   void setLocalFrameMaxAlign(Align Alignment) {
463     LocalFrameMaxAlign = Alignment;
464   }
465 
466   /// Return the required alignment of the local object blob.
getLocalFrameMaxAlign()467   Align getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
468 
469   /// Get whether the local allocation blob should be allocated together or
470   /// let PEI allocate the locals in it directly.
getUseLocalStackAllocationBlock()471   bool getUseLocalStackAllocationBlock() const {
472     return UseLocalStackAllocationBlock;
473   }
474 
475   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
476   /// should be allocated together or let PEI allocate the locals in it
477   /// directly.
setUseLocalStackAllocationBlock(bool v)478   void setUseLocalStackAllocationBlock(bool v) {
479     UseLocalStackAllocationBlock = v;
480   }
481 
482   /// Return true if the object was pre-allocated into the local block.
isObjectPreAllocated(int ObjectIdx)483   bool isObjectPreAllocated(int ObjectIdx) const {
484     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
485            "Invalid Object Idx!");
486     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
487   }
488 
489   /// Return the size of the specified object.
getObjectSize(int ObjectIdx)490   int64_t getObjectSize(int ObjectIdx) const {
491     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
492            "Invalid Object Idx!");
493     return Objects[ObjectIdx+NumFixedObjects].Size;
494   }
495 
496   /// Change the size of the specified stack object.
setObjectSize(int ObjectIdx,int64_t Size)497   void setObjectSize(int ObjectIdx, int64_t Size) {
498     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
499            "Invalid Object Idx!");
500     Objects[ObjectIdx+NumFixedObjects].Size = Size;
501   }
502 
503   /// Return the alignment of the specified stack object.
getObjectAlign(int ObjectIdx)504   Align getObjectAlign(int ObjectIdx) const {
505     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
506            "Invalid Object Idx!");
507     return Objects[ObjectIdx + NumFixedObjects].Alignment;
508   }
509 
510   /// Should this stack ID be considered in MaxAlignment.
contributesToMaxAlignment(uint8_t StackID)511   bool contributesToMaxAlignment(uint8_t StackID) {
512     return StackID == TargetStackID::Default ||
513            StackID == TargetStackID::ScalableVector;
514   }
515 
516   /// setObjectAlignment - Change the alignment of the specified stack object.
setObjectAlignment(int ObjectIdx,Align Alignment)517   void setObjectAlignment(int ObjectIdx, Align Alignment) {
518     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
519            "Invalid Object Idx!");
520     Objects[ObjectIdx + NumFixedObjects].Alignment = Alignment;
521 
522     // Only ensure max alignment for the default and scalable vector stack.
523     uint8_t StackID = getStackID(ObjectIdx);
524     if (contributesToMaxAlignment(StackID))
525       ensureMaxAlignment(Alignment);
526   }
527 
528   /// Return the underlying Alloca of the specified
529   /// stack object if it exists. Returns 0 if none exists.
getObjectAllocation(int ObjectIdx)530   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
531     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
532            "Invalid Object Idx!");
533     return Objects[ObjectIdx+NumFixedObjects].Alloca;
534   }
535 
536   /// Remove the underlying Alloca of the specified stack object if it
537   /// exists. This generally should not be used and is for reduction tooling.
clearObjectAllocation(int ObjectIdx)538   void clearObjectAllocation(int ObjectIdx) {
539     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
540            "Invalid Object Idx!");
541     Objects[ObjectIdx + NumFixedObjects].Alloca = nullptr;
542   }
543 
544   /// Return the assigned stack offset of the specified object
545   /// from the incoming stack pointer.
getObjectOffset(int ObjectIdx)546   int64_t getObjectOffset(int ObjectIdx) const {
547     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
548            "Invalid Object Idx!");
549     assert(!isDeadObjectIndex(ObjectIdx) &&
550            "Getting frame offset for a dead object?");
551     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
552   }
553 
isObjectZExt(int ObjectIdx)554   bool isObjectZExt(int ObjectIdx) const {
555     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
556            "Invalid Object Idx!");
557     return Objects[ObjectIdx+NumFixedObjects].isZExt;
558   }
559 
setObjectZExt(int ObjectIdx,bool IsZExt)560   void setObjectZExt(int ObjectIdx, bool IsZExt) {
561     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
562            "Invalid Object Idx!");
563     Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
564   }
565 
isObjectSExt(int ObjectIdx)566   bool isObjectSExt(int ObjectIdx) const {
567     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
568            "Invalid Object Idx!");
569     return Objects[ObjectIdx+NumFixedObjects].isSExt;
570   }
571 
setObjectSExt(int ObjectIdx,bool IsSExt)572   void setObjectSExt(int ObjectIdx, bool IsSExt) {
573     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
574            "Invalid Object Idx!");
575     Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
576   }
577 
578   /// Set the stack frame offset of the specified object. The
579   /// offset is relative to the stack pointer on entry to the function.
setObjectOffset(int ObjectIdx,int64_t SPOffset)580   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
581     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
582            "Invalid Object Idx!");
583     assert(!isDeadObjectIndex(ObjectIdx) &&
584            "Setting frame offset for a dead object?");
585     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
586   }
587 
getObjectSSPLayout(int ObjectIdx)588   SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const {
589     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
590            "Invalid Object Idx!");
591     return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout;
592   }
593 
setObjectSSPLayout(int ObjectIdx,SSPLayoutKind Kind)594   void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) {
595     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
596            "Invalid Object Idx!");
597     assert(!isDeadObjectIndex(ObjectIdx) &&
598            "Setting SSP layout for a dead object?");
599     Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind;
600   }
601 
602   /// Return the number of bytes that must be allocated to hold
603   /// all of the fixed size frame objects.  This is only valid after
604   /// Prolog/Epilog code insertion has finalized the stack frame layout.
getStackSize()605   uint64_t getStackSize() const { return StackSize; }
606 
607   /// Set the size of the stack.
setStackSize(uint64_t Size)608   void setStackSize(uint64_t Size) { StackSize = Size; }
609 
610   /// Estimate and return the size of the stack frame.
611   uint64_t estimateStackSize(const MachineFunction &MF) const;
612 
613   /// Return the correction for frame offsets.
getOffsetAdjustment()614   int getOffsetAdjustment() const { return OffsetAdjustment; }
615 
616   /// Set the correction for frame offsets.
setOffsetAdjustment(int Adj)617   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
618 
619   /// Return the alignment in bytes that this function must be aligned to,
620   /// which is greater than the default stack alignment provided by the target.
getMaxAlign()621   Align getMaxAlign() const { return MaxAlignment; }
622 
623   /// Make sure the function is at least Align bytes aligned.
624   void ensureMaxAlignment(Align Alignment);
625 
626   /// Return true if this function adjusts the stack -- e.g.,
627   /// when calling another function. This is only valid during and after
628   /// prolog/epilog code insertion.
adjustsStack()629   bool adjustsStack() const { return AdjustsStack; }
setAdjustsStack(bool V)630   void setAdjustsStack(bool V) { AdjustsStack = V; }
631 
632   /// Return true if the current function has any function calls.
hasCalls()633   bool hasCalls() const { return HasCalls; }
setHasCalls(bool V)634   void setHasCalls(bool V) { HasCalls = V; }
635 
636   /// Returns true if the function contains opaque dynamic stack adjustments.
hasOpaqueSPAdjustment()637   bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
setHasOpaqueSPAdjustment(bool B)638   void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
639 
640   /// Returns true if the function contains operations which will lower down to
641   /// instructions which manipulate the stack pointer.
hasCopyImplyingStackAdjustment()642   bool hasCopyImplyingStackAdjustment() const {
643     return HasCopyImplyingStackAdjustment;
644   }
setHasCopyImplyingStackAdjustment(bool B)645   void setHasCopyImplyingStackAdjustment(bool B) {
646     HasCopyImplyingStackAdjustment = B;
647   }
648 
649   /// Returns true if the function calls the llvm.va_start intrinsic.
hasVAStart()650   bool hasVAStart() const { return HasVAStart; }
setHasVAStart(bool B)651   void setHasVAStart(bool B) { HasVAStart = B; }
652 
653   /// Returns true if the function is variadic and contains a musttail call.
hasMustTailInVarArgFunc()654   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
setHasMustTailInVarArgFunc(bool B)655   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
656 
657   /// Returns true if the function contains a tail call.
hasTailCall()658   bool hasTailCall() const { return HasTailCall; }
659   void setHasTailCall(bool V = true) { HasTailCall = V; }
660 
661   /// Computes the maximum size of a callframe and the AdjustsStack property.
662   /// This only works for targets defining
663   /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
664   /// and getFrameSize().
665   /// This is usually computed by the prologue epilogue inserter but some
666   /// targets may call this to compute it earlier.
667   void computeMaxCallFrameSize(const MachineFunction &MF);
668 
669   /// Return the maximum size of a call frame that must be
670   /// allocated for an outgoing function call.  This is only available if
671   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
672   /// then only during or after prolog/epilog code insertion.
673   ///
getMaxCallFrameSize()674   unsigned getMaxCallFrameSize() const {
675     // TODO: Enable this assert when targets are fixed.
676     //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
677     if (!isMaxCallFrameSizeComputed())
678       return 0;
679     return MaxCallFrameSize;
680   }
isMaxCallFrameSizeComputed()681   bool isMaxCallFrameSizeComputed() const {
682     return MaxCallFrameSize != ~0u;
683   }
setMaxCallFrameSize(unsigned S)684   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
685 
686   /// Returns how many bytes of callee-saved registers the target pushed in the
687   /// prologue. Only used for debug info.
getCVBytesOfCalleeSavedRegisters()688   unsigned getCVBytesOfCalleeSavedRegisters() const {
689     return CVBytesOfCalleeSavedRegisters;
690   }
setCVBytesOfCalleeSavedRegisters(unsigned S)691   void setCVBytesOfCalleeSavedRegisters(unsigned S) {
692     CVBytesOfCalleeSavedRegisters = S;
693   }
694 
695   /// Create a new object at a fixed location on the stack.
696   /// All fixed objects should be created before other objects are created for
697   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
698   /// values. This returns an index with a negative value.
699   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
700                         bool isAliased = false);
701 
702   /// Create a spill slot at a fixed location on the stack.
703   /// Returns an index with a negative value.
704   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
705                                   bool IsImmutable = false);
706 
707   /// Returns true if the specified index corresponds to a fixed stack object.
isFixedObjectIndex(int ObjectIdx)708   bool isFixedObjectIndex(int ObjectIdx) const {
709     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
710   }
711 
712   /// Returns true if the specified index corresponds
713   /// to an object that might be pointed to by an LLVM IR value.
isAliasedObjectIndex(int ObjectIdx)714   bool isAliasedObjectIndex(int ObjectIdx) const {
715     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
716            "Invalid Object Idx!");
717     return Objects[ObjectIdx+NumFixedObjects].isAliased;
718   }
719 
720   /// Returns true if the specified index corresponds to an immutable object.
isImmutableObjectIndex(int ObjectIdx)721   bool isImmutableObjectIndex(int ObjectIdx) const {
722     // Tail calling functions can clobber their function arguments.
723     if (HasTailCall)
724       return false;
725     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
726            "Invalid Object Idx!");
727     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
728   }
729 
730   /// Marks the immutability of an object.
setIsImmutableObjectIndex(int ObjectIdx,bool IsImmutable)731   void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
732     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
733            "Invalid Object Idx!");
734     Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
735   }
736 
737   /// Returns true if the specified index corresponds to a spill slot.
isSpillSlotObjectIndex(int ObjectIdx)738   bool isSpillSlotObjectIndex(int ObjectIdx) const {
739     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
740            "Invalid Object Idx!");
741     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
742   }
743 
isStatepointSpillSlotObjectIndex(int ObjectIdx)744   bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
745     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
746            "Invalid Object Idx!");
747     return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
748   }
749 
750   /// \see StackID
getStackID(int ObjectIdx)751   uint8_t getStackID(int ObjectIdx) const {
752     return Objects[ObjectIdx+NumFixedObjects].StackID;
753   }
754 
755   /// \see StackID
setStackID(int ObjectIdx,uint8_t ID)756   void setStackID(int ObjectIdx, uint8_t ID) {
757     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
758            "Invalid Object Idx!");
759     Objects[ObjectIdx+NumFixedObjects].StackID = ID;
760     // If ID > 0, MaxAlignment may now be overly conservative.
761     // If ID == 0, MaxAlignment will need to be updated separately.
762   }
763 
764   /// Returns true if the specified index corresponds to a dead object.
isDeadObjectIndex(int ObjectIdx)765   bool isDeadObjectIndex(int ObjectIdx) const {
766     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
767            "Invalid Object Idx!");
768     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
769   }
770 
771   /// Returns true if the specified index corresponds to a variable sized
772   /// object.
isVariableSizedObjectIndex(int ObjectIdx)773   bool isVariableSizedObjectIndex(int ObjectIdx) const {
774     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
775            "Invalid Object Idx!");
776     return Objects[ObjectIdx + NumFixedObjects].Size == 0;
777   }
778 
markAsStatepointSpillSlotObjectIndex(int ObjectIdx)779   void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
780     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
781            "Invalid Object Idx!");
782     Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
783     assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
784   }
785 
786   /// Create a new statically sized stack object, returning
787   /// a nonnegative identifier to represent it.
788   int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot,
789                         const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
790 
791   /// Create a new statically sized stack object that represents a spill slot,
792   /// returning a nonnegative identifier to represent it.
793   int CreateSpillStackObject(uint64_t Size, Align Alignment);
794 
795   /// Remove or mark dead a statically sized stack object.
RemoveStackObject(int ObjectIdx)796   void RemoveStackObject(int ObjectIdx) {
797     // Mark it dead.
798     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
799   }
800 
801   /// Notify the MachineFrameInfo object that a variable sized object has been
802   /// created.  This must be created whenever a variable sized object is
803   /// created, whether or not the index returned is actually used.
804   int CreateVariableSizedObject(Align Alignment, const AllocaInst *Alloca);
805 
806   /// Returns a reference to call saved info vector for the current function.
getCalleeSavedInfo()807   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
808     return CSInfo;
809   }
810   /// \copydoc getCalleeSavedInfo()
getCalleeSavedInfo()811   std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
812 
813   /// Used by prolog/epilog inserter to set the function's callee saved
814   /// information.
setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI)815   void setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI) {
816     CSInfo = std::move(CSI);
817   }
818 
819   /// Has the callee saved info been calculated yet?
isCalleeSavedInfoValid()820   bool isCalleeSavedInfoValid() const { return CSIValid; }
821 
setCalleeSavedInfoValid(bool v)822   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
823 
getSavePoint()824   MachineBasicBlock *getSavePoint() const { return Save; }
setSavePoint(MachineBasicBlock * NewSave)825   void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
getRestorePoint()826   MachineBasicBlock *getRestorePoint() const { return Restore; }
setRestorePoint(MachineBasicBlock * NewRestore)827   void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
828 
getUnsafeStackSize()829   uint64_t getUnsafeStackSize() const { return UnsafeStackSize; }
setUnsafeStackSize(uint64_t Size)830   void setUnsafeStackSize(uint64_t Size) { UnsafeStackSize = Size; }
831 
832   /// Return a set of physical registers that are pristine.
833   ///
834   /// Pristine registers hold a value that is useless to the current function,
835   /// but that must be preserved - they are callee saved registers that are not
836   /// saved.
837   ///
838   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
839   /// method always returns an empty set.
840   BitVector getPristineRegs(const MachineFunction &MF) const;
841 
842   /// Used by the MachineFunction printer to print information about
843   /// stack objects. Implemented in MachineFunction.cpp.
844   void print(const MachineFunction &MF, raw_ostream &OS) const;
845 
846   /// dump - Print the function to stderr.
847   void dump(const MachineFunction &MF) const;
848 };
849 
850 } // End llvm namespace
851 
852 #endif
853