1 /*-
2 * Copyright (c) 2009-2015 Kai Wang
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 #include <sys/param.h>
28 #include <sys/queue.h>
29
30 #include <ar.h>
31 #include <assert.h>
32 #include <capsicum_helpers.h>
33 #include <ctype.h>
34 #include <dwarf.h>
35 #include <err.h>
36 #include <fcntl.h>
37 #include <gelf.h>
38 #include <getopt.h>
39 #include <libdwarf.h>
40 #include <libelftc.h>
41 #include <libgen.h>
42 #include <stdarg.h>
43 #include <stdbool.h>
44 #include <stdint.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <string.h>
48 #include <time.h>
49 #include <unistd.h>
50 #include <zlib.h>
51
52 #include <libcasper.h>
53 #include <casper/cap_fileargs.h>
54
55 #include "_elftc.h"
56
57 ELFTC_VCSID("$Id: readelf.c 3769 2019-06-29 15:15:02Z emaste $");
58
59 /* Backwards compatability for older FreeBSD releases. */
60 #ifndef STB_GNU_UNIQUE
61 #define STB_GNU_UNIQUE 10
62 #endif
63 #ifndef STT_SPARC_REGISTER
64 #define STT_SPARC_REGISTER 13
65 #endif
66
67
68 /*
69 * readelf(1) options.
70 */
71 #define RE_AA 0x00000001
72 #define RE_C 0x00000002
73 #define RE_DD 0x00000004
74 #define RE_D 0x00000008
75 #define RE_G 0x00000010
76 #define RE_H 0x00000020
77 #define RE_II 0x00000040
78 #define RE_I 0x00000080
79 #define RE_L 0x00000100
80 #define RE_NN 0x00000200
81 #define RE_N 0x00000400
82 #define RE_P 0x00000800
83 #define RE_R 0x00001000
84 #define RE_SS 0x00002000
85 #define RE_S 0x00004000
86 #define RE_T 0x00008000
87 #define RE_U 0x00010000
88 #define RE_VV 0x00020000
89 #define RE_WW 0x00040000
90 #define RE_W 0x00080000
91 #define RE_X 0x00100000
92 #define RE_Z 0x00200000
93
94 /*
95 * dwarf dump options.
96 */
97 #define DW_A 0x00000001
98 #define DW_FF 0x00000002
99 #define DW_F 0x00000004
100 #define DW_I 0x00000008
101 #define DW_LL 0x00000010
102 #define DW_L 0x00000020
103 #define DW_M 0x00000040
104 #define DW_O 0x00000080
105 #define DW_P 0x00000100
106 #define DW_RR 0x00000200
107 #define DW_R 0x00000400
108 #define DW_S 0x00000800
109
110 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \
111 DW_R | DW_RR | DW_S)
112
113 /*
114 * readelf(1) run control flags.
115 */
116 #define DISPLAY_FILENAME 0x0001
117
118 /*
119 * Internal data structure for sections.
120 */
121 struct section {
122 const char *name; /* section name */
123 Elf_Scn *scn; /* section scn */
124 uint64_t off; /* section offset */
125 uint64_t sz; /* section size */
126 uint64_t entsize; /* section entsize */
127 uint64_t align; /* section alignment */
128 uint64_t type; /* section type */
129 uint64_t flags; /* section flags */
130 uint64_t addr; /* section virtual addr */
131 uint32_t link; /* section link ndx */
132 uint32_t info; /* section info ndx */
133 };
134
135 struct dumpop {
136 union {
137 size_t si; /* section index */
138 const char *sn; /* section name */
139 } u;
140 enum {
141 DUMP_BY_INDEX = 0,
142 DUMP_BY_NAME
143 } type; /* dump type */
144 #define HEX_DUMP 0x0001
145 #define STR_DUMP 0x0002
146 int op; /* dump operation */
147 STAILQ_ENTRY(dumpop) dumpop_list;
148 };
149
150 struct symver {
151 const char *name;
152 int type;
153 };
154
155 /*
156 * Structure encapsulates the global data for readelf(1).
157 */
158 struct readelf {
159 const char *filename; /* current processing file. */
160 int options; /* command line options. */
161 int flags; /* run control flags. */
162 int dop; /* dwarf dump options. */
163 Elf *elf; /* underlying ELF descriptor. */
164 Elf *ar; /* archive ELF descriptor. */
165 Dwarf_Debug dbg; /* DWARF handle. */
166 Dwarf_Half cu_psize; /* DWARF CU pointer size. */
167 Dwarf_Half cu_osize; /* DWARF CU offset size. */
168 Dwarf_Half cu_ver; /* DWARF CU version. */
169 GElf_Ehdr ehdr; /* ELF header. */
170 int ec; /* ELF class. */
171 size_t shnum; /* #sections. */
172 struct section *vd_s; /* Verdef section. */
173 struct section *vn_s; /* Verneed section. */
174 struct section *vs_s; /* Versym section. */
175 uint16_t *vs; /* Versym array. */
176 int vs_sz; /* Versym array size. */
177 struct symver *ver; /* Version array. */
178 int ver_sz; /* Size of version array. */
179 struct section *sl; /* list of sections. */
180 STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */
181 uint64_t (*dw_read)(Elf_Data *, uint64_t *, int);
182 uint64_t (*dw_decode)(uint8_t **, int);
183 };
184
185 enum options
186 {
187 OPTION_DEBUG_DUMP
188 };
189
190 static struct option longopts[] = {
191 {"all", no_argument, NULL, 'a'},
192 {"arch-specific", no_argument, NULL, 'A'},
193 {"archive-index", no_argument, NULL, 'c'},
194 {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP},
195 {"decompress", no_argument, 0, 'z'},
196 {"dynamic", no_argument, NULL, 'd'},
197 {"file-header", no_argument, NULL, 'h'},
198 {"full-section-name", no_argument, NULL, 'N'},
199 {"headers", no_argument, NULL, 'e'},
200 {"help", no_argument, 0, 'H'},
201 {"hex-dump", required_argument, NULL, 'x'},
202 {"histogram", no_argument, NULL, 'I'},
203 {"notes", no_argument, NULL, 'n'},
204 {"program-headers", no_argument, NULL, 'l'},
205 {"relocs", no_argument, NULL, 'r'},
206 {"sections", no_argument, NULL, 'S'},
207 {"section-headers", no_argument, NULL, 'S'},
208 {"section-groups", no_argument, NULL, 'g'},
209 {"section-details", no_argument, NULL, 't'},
210 {"segments", no_argument, NULL, 'l'},
211 {"string-dump", required_argument, NULL, 'p'},
212 {"symbols", no_argument, NULL, 's'},
213 {"syms", no_argument, NULL, 's'},
214 {"unwind", no_argument, NULL, 'u'},
215 {"use-dynamic", no_argument, NULL, 'D'},
216 {"version-info", no_argument, 0, 'V'},
217 {"version", no_argument, 0, 'v'},
218 {"wide", no_argument, 0, 'W'},
219 {NULL, 0, NULL, 0}
220 };
221
222 struct eflags_desc {
223 uint64_t flag;
224 const char *desc;
225 };
226
227 struct flag_desc {
228 uint64_t flag;
229 const char *desc;
230 };
231
232 struct flag_desc_list {
233 uint32_t type;
234 const char *desc_str;
235 struct flag_desc *desc;
236 };
237
238 struct mips_option {
239 uint64_t flag;
240 const char *desc;
241 };
242
243 struct loc_at {
244 Dwarf_Attribute la_at;
245 Dwarf_Unsigned la_off;
246 Dwarf_Unsigned la_lowpc;
247 Dwarf_Half la_cu_psize;
248 Dwarf_Half la_cu_osize;
249 Dwarf_Half la_cu_ver;
250 };
251
252 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op,
253 int t);
254 static const char *aeabi_adv_simd_arch(uint64_t simd);
255 static const char *aeabi_align_needed(uint64_t an);
256 static const char *aeabi_align_preserved(uint64_t ap);
257 static const char *aeabi_arm_isa(uint64_t ai);
258 static const char *aeabi_cpu_arch(uint64_t arch);
259 static const char *aeabi_cpu_arch_profile(uint64_t pf);
260 static const char *aeabi_div(uint64_t du);
261 static const char *aeabi_enum_size(uint64_t es);
262 static const char *aeabi_fp_16bit_format(uint64_t fp16);
263 static const char *aeabi_fp_arch(uint64_t fp);
264 static const char *aeabi_fp_denormal(uint64_t fd);
265 static const char *aeabi_fp_exceptions(uint64_t fe);
266 static const char *aeabi_fp_hpext(uint64_t fh);
267 static const char *aeabi_fp_number_model(uint64_t fn);
268 static const char *aeabi_fp_optm_goal(uint64_t fog);
269 static const char *aeabi_fp_rounding(uint64_t fr);
270 static const char *aeabi_hardfp(uint64_t hfp);
271 static const char *aeabi_mpext(uint64_t mp);
272 static const char *aeabi_optm_goal(uint64_t og);
273 static const char *aeabi_pcs_config(uint64_t pcs);
274 static const char *aeabi_pcs_got(uint64_t got);
275 static const char *aeabi_pcs_r9(uint64_t r9);
276 static const char *aeabi_pcs_ro(uint64_t ro);
277 static const char *aeabi_pcs_rw(uint64_t rw);
278 static const char *aeabi_pcs_wchar_t(uint64_t wt);
279 static const char *aeabi_t2ee(uint64_t t2ee);
280 static const char *aeabi_thumb_isa(uint64_t ti);
281 static const char *aeabi_fp_user_exceptions(uint64_t fu);
282 static const char *aeabi_unaligned_access(uint64_t ua);
283 static const char *aeabi_vfp_args(uint64_t va);
284 static const char *aeabi_virtual(uint64_t vt);
285 static const char *aeabi_wmmx_arch(uint64_t wmmx);
286 static const char *aeabi_wmmx_args(uint64_t wa);
287 static const char *elf_class(unsigned int class);
288 static const char *elf_endian(unsigned int endian);
289 static const char *elf_machine(unsigned int mach);
290 static const char *elf_osabi(unsigned int abi);
291 static const char *elf_type(unsigned int type);
292 static const char *elf_ver(unsigned int ver);
293 static const char *dt_type(unsigned int mach, unsigned int dtype);
294 static bool dump_ar(struct readelf *re, int);
295 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
296 static void dump_attributes(struct readelf *re);
297 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe);
298 static void dump_dwarf(struct readelf *re);
299 static void dump_dwarf_abbrev(struct readelf *re);
300 static void dump_dwarf_aranges(struct readelf *re);
301 static void dump_dwarf_block(struct readelf *re, uint8_t *b,
302 Dwarf_Unsigned len);
303 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level);
304 static void dump_dwarf_frame(struct readelf *re, int alt);
305 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie,
306 uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf,
307 Dwarf_Addr pc, Dwarf_Debug dbg);
308 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde,
309 Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra);
310 static void dump_dwarf_frame_section(struct readelf *re, struct section *s,
311 int alt);
312 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info);
313 static void dump_dwarf_macinfo(struct readelf *re);
314 static void dump_dwarf_line(struct readelf *re);
315 static void dump_dwarf_line_decoded(struct readelf *re);
316 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr);
317 static void dump_dwarf_loclist(struct readelf *re);
318 static void dump_dwarf_pubnames(struct readelf *re);
319 static void dump_dwarf_ranges(struct readelf *re);
320 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die,
321 Dwarf_Addr base);
322 static void dump_dwarf_str(struct readelf *re);
323 static void dump_eflags(struct readelf *re, uint64_t e_flags);
324 static bool dump_elf(struct readelf *re);
325 static void dump_flags(struct flag_desc *fd, uint64_t flags);
326 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab);
327 static void dump_dynamic(struct readelf *re);
328 static void dump_liblist(struct readelf *re);
329 static void dump_mips_abiflags(struct readelf *re, struct section *s);
330 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
331 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz);
332 static void dump_mips_options(struct readelf *re, struct section *s);
333 static void dump_mips_option_flags(const char *name, struct mips_option *opt,
334 uint64_t info);
335 static void dump_mips_reginfo(struct readelf *re, struct section *s);
336 static void dump_mips_specific_info(struct readelf *re);
337 static void dump_notes(struct readelf *re);
338 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz,
339 off_t off);
340 static void dump_notes_data(struct readelf *re, const char *name,
341 uint32_t type, const char *buf, size_t sz);
342 static void dump_svr4_hash(struct section *s);
343 static void dump_svr4_hash64(struct readelf *re, struct section *s);
344 static void dump_gnu_hash(struct readelf *re, struct section *s);
345 static void dump_gnu_property_type_0(struct readelf *re, const char *buf,
346 size_t sz);
347 static void dump_hash(struct readelf *re);
348 static void dump_phdr(struct readelf *re);
349 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe);
350 static void dump_section_groups(struct readelf *re);
351 static void dump_symtab(struct readelf *re, int i);
352 static void dump_symtabs(struct readelf *re);
353 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe);
354 static void dump_ver(struct readelf *re);
355 static void dump_verdef(struct readelf *re, int dump);
356 static void dump_verneed(struct readelf *re, int dump);
357 static void dump_versym(struct readelf *re);
358 static const char *dwarf_reg(unsigned int mach, unsigned int reg);
359 static const char *dwarf_regname(struct readelf *re, unsigned int num);
360 static struct dumpop *find_dumpop(struct readelf *re, size_t si,
361 const char *sn, int op, int t);
362 static int get_ent_count(struct section *s, int *ent_count);
363 static int get_mips_register_size(uint8_t flag);
364 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg,
365 Dwarf_Addr off);
366 static const char *get_string(struct readelf *re, int strtab, size_t off);
367 static const char *get_symbol_name(struct readelf *re, int symtab, int i);
368 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i);
369 static void load_sections(struct readelf *re);
370 static int loc_at_comparator(const void *la1, const void *la2);
371 static const char *mips_abi_fp(uint64_t fp);
372 static const char *note_type(const char *note_name, unsigned int et,
373 unsigned int nt);
374 static const char *note_type_freebsd(unsigned int nt);
375 static const char *note_type_freebsd_core(unsigned int nt);
376 static const char *note_type_go(unsigned int nt);
377 static const char *note_type_gnu(unsigned int nt);
378 static const char *note_type_linux_core(unsigned int nt);
379 static const char *note_type_netbsd(unsigned int nt);
380 static const char *note_type_openbsd(unsigned int nt);
381 static const char *note_type_unknown(unsigned int nt);
382 static const char *note_type_xen(unsigned int nt);
383 static const char *option_kind(uint8_t kind);
384 static const char *phdr_type(unsigned int mach, unsigned int ptype);
385 static const char *ppc_abi_fp(uint64_t fp);
386 static const char *ppc_abi_vector(uint64_t vec);
387 static void readelf_usage(int status);
388 static void readelf_version(void);
389 static void search_loclist_at(struct readelf *re, Dwarf_Die die,
390 Dwarf_Unsigned lowpc, struct loc_at **la_list,
391 size_t *la_list_len, size_t *la_list_cap);
392 static void search_ver(struct readelf *re);
393 static const char *section_type(unsigned int mach, unsigned int stype);
394 static void set_cu_context(struct readelf *re, Dwarf_Half psize,
395 Dwarf_Half osize, Dwarf_Half ver);
396 static const char *st_bind(unsigned int sbind);
397 static const char *st_shndx(unsigned int shndx);
398 static const char *st_type(unsigned int mach, unsigned int os,
399 unsigned int stype);
400 static const char *st_vis(unsigned int svis);
401 static const char *top_tag(unsigned int tag);
402 static void unload_sections(struct readelf *re);
403 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp,
404 int bytes_to_read);
405 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp,
406 int bytes_to_read);
407 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read);
408 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read);
409 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe);
410 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe);
411
412 static struct eflags_desc arm_eflags_desc[] = {
413 {EF_ARM_RELEXEC, "relocatable executable"},
414 {EF_ARM_HASENTRY, "has entry point"},
415 {EF_ARM_SYMSARESORTED, "sorted symbol tables"},
416 {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"},
417 {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"},
418 {EF_ARM_BE8, "BE8"},
419 {EF_ARM_LE8, "LE8"},
420 {EF_ARM_INTERWORK, "interworking enabled"},
421 {EF_ARM_APCS_26, "uses APCS/26"},
422 {EF_ARM_APCS_FLOAT, "uses APCS/float"},
423 {EF_ARM_PIC, "position independent"},
424 {EF_ARM_ALIGN8, "8 bit structure alignment"},
425 {EF_ARM_NEW_ABI, "uses new ABI"},
426 {EF_ARM_OLD_ABI, "uses old ABI"},
427 {EF_ARM_SOFT_FLOAT, "software FP"},
428 {EF_ARM_VFP_FLOAT, "VFP"},
429 {EF_ARM_MAVERICK_FLOAT, "Maverick FP"},
430 {0, NULL}
431 };
432
433 static struct eflags_desc mips_eflags_desc[] = {
434 {EF_MIPS_NOREORDER, "noreorder"},
435 {EF_MIPS_PIC, "pic"},
436 {EF_MIPS_CPIC, "cpic"},
437 {EF_MIPS_UCODE, "ugen_reserved"},
438 {EF_MIPS_ABI2, "abi2"},
439 {EF_MIPS_OPTIONS_FIRST, "odk first"},
440 {EF_MIPS_ARCH_ASE_MDMX, "mdmx"},
441 {EF_MIPS_ARCH_ASE_M16, "mips16"},
442 {0, NULL}
443 };
444
445 static struct eflags_desc powerpc_eflags_desc[] = {
446 {EF_PPC_EMB, "emb"},
447 {EF_PPC_RELOCATABLE, "relocatable"},
448 {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"},
449 {0, NULL}
450 };
451
452 static struct eflags_desc riscv_eflags_desc[] = {
453 {EF_RISCV_RVC, "RVC"},
454 {EF_RISCV_RVE, "RVE"},
455 {EF_RISCV_TSO, "TSO"},
456 {0, NULL}
457 };
458
459 static struct eflags_desc sparc_eflags_desc[] = {
460 {EF_SPARC_32PLUS, "v8+"},
461 {EF_SPARC_SUN_US1, "ultrasparcI"},
462 {EF_SPARC_HAL_R1, "halr1"},
463 {EF_SPARC_SUN_US3, "ultrasparcIII"},
464 {0, NULL}
465 };
466
467 static const char *
elf_osabi(unsigned int abi)468 elf_osabi(unsigned int abi)
469 {
470 static char s_abi[32];
471
472 switch(abi) {
473 case ELFOSABI_NONE: return "NONE";
474 case ELFOSABI_HPUX: return "HPUX";
475 case ELFOSABI_NETBSD: return "NetBSD";
476 case ELFOSABI_GNU: return "GNU";
477 case ELFOSABI_HURD: return "HURD";
478 case ELFOSABI_86OPEN: return "86OPEN";
479 case ELFOSABI_SOLARIS: return "Solaris";
480 case ELFOSABI_AIX: return "AIX";
481 case ELFOSABI_IRIX: return "IRIX";
482 case ELFOSABI_FREEBSD: return "FreeBSD";
483 case ELFOSABI_TRU64: return "TRU64";
484 case ELFOSABI_MODESTO: return "MODESTO";
485 case ELFOSABI_OPENBSD: return "OpenBSD";
486 case ELFOSABI_OPENVMS: return "OpenVMS";
487 case ELFOSABI_NSK: return "NSK";
488 case ELFOSABI_CLOUDABI: return "CloudABI";
489 case ELFOSABI_ARM_AEABI: return "ARM EABI";
490 case ELFOSABI_ARM: return "ARM";
491 case ELFOSABI_STANDALONE: return "StandAlone";
492 default:
493 snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi);
494 return (s_abi);
495 }
496 };
497
498 static const char *
elf_machine(unsigned int mach)499 elf_machine(unsigned int mach)
500 {
501 static char s_mach[32];
502
503 switch (mach) {
504 case EM_NONE: return "Unknown machine";
505 case EM_M32: return "AT&T WE32100";
506 case EM_SPARC: return "Sun SPARC";
507 case EM_386: return "Intel i386";
508 case EM_68K: return "Motorola 68000";
509 case EM_IAMCU: return "Intel MCU";
510 case EM_88K: return "Motorola 88000";
511 case EM_860: return "Intel i860";
512 case EM_MIPS: return "MIPS R3000 Big-Endian only";
513 case EM_S370: return "IBM System/370";
514 case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian";
515 case EM_PARISC: return "HP PA-RISC";
516 case EM_VPP500: return "Fujitsu VPP500";
517 case EM_SPARC32PLUS: return "SPARC v8plus";
518 case EM_960: return "Intel 80960";
519 case EM_PPC: return "PowerPC 32-bit";
520 case EM_PPC64: return "PowerPC 64-bit";
521 case EM_S390: return "IBM System/390";
522 case EM_V800: return "NEC V800";
523 case EM_FR20: return "Fujitsu FR20";
524 case EM_RH32: return "TRW RH-32";
525 case EM_RCE: return "Motorola RCE";
526 case EM_ARM: return "ARM";
527 case EM_SH: return "Hitachi SH";
528 case EM_SPARCV9: return "SPARC v9 64-bit";
529 case EM_TRICORE: return "Siemens TriCore embedded processor";
530 case EM_ARC: return "Argonaut RISC Core";
531 case EM_H8_300: return "Hitachi H8/300";
532 case EM_H8_300H: return "Hitachi H8/300H";
533 case EM_H8S: return "Hitachi H8S";
534 case EM_H8_500: return "Hitachi H8/500";
535 case EM_IA_64: return "Intel IA-64 Processor";
536 case EM_MIPS_X: return "Stanford MIPS-X";
537 case EM_COLDFIRE: return "Motorola ColdFire";
538 case EM_68HC12: return "Motorola M68HC12";
539 case EM_MMA: return "Fujitsu MMA";
540 case EM_PCP: return "Siemens PCP";
541 case EM_NCPU: return "Sony nCPU";
542 case EM_NDR1: return "Denso NDR1 microprocessor";
543 case EM_STARCORE: return "Motorola Star*Core processor";
544 case EM_ME16: return "Toyota ME16 processor";
545 case EM_ST100: return "STMicroelectronics ST100 processor";
546 case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor";
547 case EM_X86_64: return "Advanced Micro Devices x86-64";
548 case EM_PDSP: return "Sony DSP Processor";
549 case EM_FX66: return "Siemens FX66 microcontroller";
550 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller";
551 case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller";
552 case EM_68HC16: return "Motorola MC68HC16 microcontroller";
553 case EM_68HC11: return "Motorola MC68HC11 microcontroller";
554 case EM_68HC08: return "Motorola MC68HC08 microcontroller";
555 case EM_68HC05: return "Motorola MC68HC05 microcontroller";
556 case EM_SVX: return "Silicon Graphics SVx";
557 case EM_ST19: return "STMicroelectronics ST19 8-bit mc";
558 case EM_VAX: return "Digital VAX";
559 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
560 case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor";
561 case EM_FIREPATH: return "Element 14 64-bit DSP Processor";
562 case EM_ZSP: return "LSI Logic 16-bit DSP Processor";
563 case EM_MMIX: return "Donald Knuth's educational 64-bit proc";
564 case EM_HUANY: return "Harvard University MI object files";
565 case EM_PRISM: return "SiTera Prism";
566 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
567 case EM_FR30: return "Fujitsu FR30";
568 case EM_D10V: return "Mitsubishi D10V";
569 case EM_D30V: return "Mitsubishi D30V";
570 case EM_V850: return "NEC v850";
571 case EM_M32R: return "Mitsubishi M32R";
572 case EM_MN10300: return "Matsushita MN10300";
573 case EM_MN10200: return "Matsushita MN10200";
574 case EM_PJ: return "picoJava";
575 case EM_OPENRISC: return "OpenRISC 32-bit embedded processor";
576 case EM_ARC_A5: return "ARC Cores Tangent-A5";
577 case EM_XTENSA: return "Tensilica Xtensa Architecture";
578 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
579 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
580 case EM_NS32K: return "National Semiconductor 32000 series";
581 case EM_TPC: return "Tenor Network TPC processor";
582 case EM_SNP1K: return "Trebia SNP 1000 processor";
583 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
584 case EM_IP2K: return "Ubicom IP2xxx microcontroller family";
585 case EM_MAX: return "MAX Processor";
586 case EM_CR: return "National Semiconductor CompactRISC microprocessor";
587 case EM_F2MC16: return "Fujitsu F2MC16";
588 case EM_MSP430: return "TI embedded microcontroller msp430";
589 case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor";
590 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
591 case EM_SEP: return "Sharp embedded microprocessor";
592 case EM_ARCA: return "Arca RISC Microprocessor";
593 case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd";
594 case EM_AARCH64: return "AArch64";
595 case EM_RISCV: return "RISC-V";
596 default:
597 snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach);
598 return (s_mach);
599 }
600
601 }
602
603 static const char *
elf_class(unsigned int class)604 elf_class(unsigned int class)
605 {
606 static char s_class[32];
607
608 switch (class) {
609 case ELFCLASSNONE: return "none";
610 case ELFCLASS32: return "ELF32";
611 case ELFCLASS64: return "ELF64";
612 default:
613 snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class);
614 return (s_class);
615 }
616 }
617
618 static const char *
elf_endian(unsigned int endian)619 elf_endian(unsigned int endian)
620 {
621 static char s_endian[32];
622
623 switch (endian) {
624 case ELFDATANONE: return "none";
625 case ELFDATA2LSB: return "2's complement, little endian";
626 case ELFDATA2MSB: return "2's complement, big endian";
627 default:
628 snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian);
629 return (s_endian);
630 }
631 }
632
633 static const char *
elf_type(unsigned int type)634 elf_type(unsigned int type)
635 {
636 static char s_type[32];
637
638 switch (type) {
639 case ET_NONE: return "NONE (None)";
640 case ET_REL: return "REL (Relocatable file)";
641 case ET_EXEC: return "EXEC (Executable file)";
642 case ET_DYN: return "DYN (Shared object file)";
643 case ET_CORE: return "CORE (Core file)";
644 default:
645 if (type >= ET_LOPROC)
646 snprintf(s_type, sizeof(s_type), "<proc: %#x>", type);
647 else if (type >= ET_LOOS && type <= ET_HIOS)
648 snprintf(s_type, sizeof(s_type), "<os: %#x>", type);
649 else
650 snprintf(s_type, sizeof(s_type), "<unknown: %#x>",
651 type);
652 return (s_type);
653 }
654 }
655
656 static const char *
elf_ver(unsigned int ver)657 elf_ver(unsigned int ver)
658 {
659 static char s_ver[32];
660
661 switch (ver) {
662 case EV_CURRENT: return "(current)";
663 case EV_NONE: return "(none)";
664 default:
665 snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>",
666 ver);
667 return (s_ver);
668 }
669 }
670
671 static const char *
phdr_type(unsigned int mach,unsigned int ptype)672 phdr_type(unsigned int mach, unsigned int ptype)
673 {
674 static char s_ptype[32];
675
676 if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) {
677 switch (mach) {
678 case EM_ARM:
679 switch (ptype) {
680 case PT_ARM_ARCHEXT: return "ARM_ARCHEXT";
681 case PT_ARM_EXIDX: return "ARM_EXIDX";
682 }
683 break;
684 }
685 snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x",
686 ptype - PT_LOPROC);
687 return (s_ptype);
688 }
689
690 switch (ptype) {
691 case PT_NULL: return "NULL";
692 case PT_LOAD: return "LOAD";
693 case PT_DYNAMIC: return "DYNAMIC";
694 case PT_INTERP: return "INTERP";
695 case PT_NOTE: return "NOTE";
696 case PT_SHLIB: return "SHLIB";
697 case PT_PHDR: return "PHDR";
698 case PT_TLS: return "TLS";
699 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
700 case PT_GNU_STACK: return "GNU_STACK";
701 case PT_GNU_RELRO: return "GNU_RELRO";
702 case PT_OPENBSD_RANDOMIZE: return "OPENBSD_RANDOMIZE";
703 case PT_OPENBSD_WXNEEDED: return "OPENBSD_WXNEEDED";
704 case PT_OPENBSD_BOOTDATA: return "OPENBSD_BOOTDATA";
705 default:
706 if (ptype >= PT_LOOS && ptype <= PT_HIOS)
707 snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x",
708 ptype - PT_LOOS);
709 else
710 snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>",
711 ptype);
712 return (s_ptype);
713 }
714 }
715
716 static const char *
section_type(unsigned int mach,unsigned int stype)717 section_type(unsigned int mach, unsigned int stype)
718 {
719 static char s_stype[32];
720
721 if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) {
722 switch (mach) {
723 case EM_ARM:
724 switch (stype) {
725 case SHT_ARM_EXIDX: return "ARM_EXIDX";
726 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
727 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
728 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
729 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
730 }
731 break;
732 case EM_X86_64:
733 switch (stype) {
734 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
735 default:
736 break;
737 }
738 break;
739 case EM_MIPS:
740 case EM_MIPS_RS3_LE:
741 switch (stype) {
742 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
743 case SHT_MIPS_MSYM: return "MIPS_MSYM";
744 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
745 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
746 case SHT_MIPS_UCODE: return "MIPS_UCODE";
747 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
748 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
749 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
750 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
751 case SHT_MIPS_RELD: return "MIPS_RELD";
752 case SHT_MIPS_IFACE: return "MIPS_IFACE";
753 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
754 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
755 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
756 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
757 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
758 case SHT_MIPS_DWARF: return "MIPS_DWARF";
759 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
760 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
761 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
762 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
763 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
764 case SHT_MIPS_XLATE: return "MIPS_XLATE";
765 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
766 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
767 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
768 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
769 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
770 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
771 default:
772 break;
773 }
774 break;
775 default:
776 break;
777 }
778
779 snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x",
780 stype - SHT_LOPROC);
781 return (s_stype);
782 }
783
784 switch (stype) {
785 case SHT_NULL: return "NULL";
786 case SHT_PROGBITS: return "PROGBITS";
787 case SHT_SYMTAB: return "SYMTAB";
788 case SHT_STRTAB: return "STRTAB";
789 case SHT_RELA: return "RELA";
790 case SHT_HASH: return "HASH";
791 case SHT_DYNAMIC: return "DYNAMIC";
792 case SHT_NOTE: return "NOTE";
793 case SHT_NOBITS: return "NOBITS";
794 case SHT_REL: return "REL";
795 case SHT_SHLIB: return "SHLIB";
796 case SHT_DYNSYM: return "DYNSYM";
797 case SHT_INIT_ARRAY: return "INIT_ARRAY";
798 case SHT_FINI_ARRAY: return "FINI_ARRAY";
799 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
800 case SHT_GROUP: return "GROUP";
801 case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
802 case SHT_SUNW_dof: return "SUNW_dof";
803 case SHT_SUNW_cap: return "SUNW_cap";
804 case SHT_GNU_HASH: return "GNU_HASH";
805 case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE";
806 case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR";
807 case SHT_SUNW_DEBUG: return "SUNW_DEBUG";
808 case SHT_SUNW_move: return "SUNW_move";
809 case SHT_SUNW_COMDAT: return "SUNW_COMDAT";
810 case SHT_SUNW_syminfo: return "SUNW_syminfo";
811 case SHT_SUNW_verdef: return "SUNW_verdef";
812 case SHT_SUNW_verneed: return "SUNW_verneed";
813 case SHT_SUNW_versym: return "SUNW_versym";
814 default:
815 if (stype >= SHT_LOOS && stype <= SHT_HIOS)
816 snprintf(s_stype, sizeof(s_stype), "LOOS+%#x",
817 stype - SHT_LOOS);
818 else if (stype >= SHT_LOUSER)
819 snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x",
820 stype - SHT_LOUSER);
821 else
822 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
823 stype);
824 return (s_stype);
825 }
826 }
827
828 static const char *
dt_type(unsigned int mach,unsigned int dtype)829 dt_type(unsigned int mach, unsigned int dtype)
830 {
831 static char s_dtype[32];
832
833 switch (dtype) {
834 case DT_NULL: return "NULL";
835 case DT_NEEDED: return "NEEDED";
836 case DT_PLTRELSZ: return "PLTRELSZ";
837 case DT_PLTGOT: return "PLTGOT";
838 case DT_HASH: return "HASH";
839 case DT_STRTAB: return "STRTAB";
840 case DT_SYMTAB: return "SYMTAB";
841 case DT_RELA: return "RELA";
842 case DT_RELASZ: return "RELASZ";
843 case DT_RELAENT: return "RELAENT";
844 case DT_STRSZ: return "STRSZ";
845 case DT_SYMENT: return "SYMENT";
846 case DT_INIT: return "INIT";
847 case DT_FINI: return "FINI";
848 case DT_SONAME: return "SONAME";
849 case DT_RPATH: return "RPATH";
850 case DT_SYMBOLIC: return "SYMBOLIC";
851 case DT_REL: return "REL";
852 case DT_RELSZ: return "RELSZ";
853 case DT_RELENT: return "RELENT";
854 case DT_PLTREL: return "PLTREL";
855 case DT_DEBUG: return "DEBUG";
856 case DT_TEXTREL: return "TEXTREL";
857 case DT_JMPREL: return "JMPREL";
858 case DT_BIND_NOW: return "BIND_NOW";
859 case DT_INIT_ARRAY: return "INIT_ARRAY";
860 case DT_FINI_ARRAY: return "FINI_ARRAY";
861 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
862 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
863 case DT_RUNPATH: return "RUNPATH";
864 case DT_FLAGS: return "FLAGS";
865 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
866 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
867 case DT_MAXPOSTAGS: return "MAXPOSTAGS";
868 case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY";
869 case DT_SUNW_RTLDINF: return "SUNW_RTLDINF";
870 case DT_SUNW_FILTER: return "SUNW_FILTER";
871 case DT_SUNW_CAP: return "SUNW_CAP";
872 case DT_SUNW_ASLR: return "SUNW_ASLR";
873 case DT_CHECKSUM: return "CHECKSUM";
874 case DT_PLTPADSZ: return "PLTPADSZ";
875 case DT_MOVEENT: return "MOVEENT";
876 case DT_MOVESZ: return "MOVESZ";
877 case DT_FEATURE: return "FEATURE";
878 case DT_POSFLAG_1: return "POSFLAG_1";
879 case DT_SYMINSZ: return "SYMINSZ";
880 case DT_SYMINENT: return "SYMINENT";
881 case DT_GNU_HASH: return "GNU_HASH";
882 case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT";
883 case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT";
884 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
885 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
886 case DT_CONFIG: return "CONFIG";
887 case DT_DEPAUDIT: return "DEPAUDIT";
888 case DT_AUDIT: return "AUDIT";
889 case DT_PLTPAD: return "PLTPAD";
890 case DT_MOVETAB: return "MOVETAB";
891 case DT_SYMINFO: return "SYMINFO";
892 case DT_VERSYM: return "VERSYM";
893 case DT_RELACOUNT: return "RELACOUNT";
894 case DT_RELCOUNT: return "RELCOUNT";
895 case DT_FLAGS_1: return "FLAGS_1";
896 case DT_VERDEF: return "VERDEF";
897 case DT_VERDEFNUM: return "VERDEFNUM";
898 case DT_VERNEED: return "VERNEED";
899 case DT_VERNEEDNUM: return "VERNEEDNUM";
900 case DT_AUXILIARY: return "AUXILIARY";
901 case DT_USED: return "USED";
902 case DT_FILTER: return "FILTER";
903 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
904 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
905 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
906 }
907
908 if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) {
909 switch (mach) {
910 case EM_ARM:
911 switch (dtype) {
912 case DT_ARM_SYMTABSZ:
913 return "ARM_SYMTABSZ";
914 default:
915 break;
916 }
917 break;
918 case EM_MIPS:
919 case EM_MIPS_RS3_LE:
920 switch (dtype) {
921 case DT_MIPS_RLD_VERSION:
922 return "MIPS_RLD_VERSION";
923 case DT_MIPS_TIME_STAMP:
924 return "MIPS_TIME_STAMP";
925 case DT_MIPS_ICHECKSUM:
926 return "MIPS_ICHECKSUM";
927 case DT_MIPS_IVERSION:
928 return "MIPS_IVERSION";
929 case DT_MIPS_FLAGS:
930 return "MIPS_FLAGS";
931 case DT_MIPS_BASE_ADDRESS:
932 return "MIPS_BASE_ADDRESS";
933 case DT_MIPS_CONFLICT:
934 return "MIPS_CONFLICT";
935 case DT_MIPS_LIBLIST:
936 return "MIPS_LIBLIST";
937 case DT_MIPS_LOCAL_GOTNO:
938 return "MIPS_LOCAL_GOTNO";
939 case DT_MIPS_CONFLICTNO:
940 return "MIPS_CONFLICTNO";
941 case DT_MIPS_LIBLISTNO:
942 return "MIPS_LIBLISTNO";
943 case DT_MIPS_SYMTABNO:
944 return "MIPS_SYMTABNO";
945 case DT_MIPS_UNREFEXTNO:
946 return "MIPS_UNREFEXTNO";
947 case DT_MIPS_GOTSYM:
948 return "MIPS_GOTSYM";
949 case DT_MIPS_HIPAGENO:
950 return "MIPS_HIPAGENO";
951 case DT_MIPS_RLD_MAP:
952 return "MIPS_RLD_MAP";
953 case DT_MIPS_DELTA_CLASS:
954 return "MIPS_DELTA_CLASS";
955 case DT_MIPS_DELTA_CLASS_NO:
956 return "MIPS_DELTA_CLASS_NO";
957 case DT_MIPS_DELTA_INSTANCE:
958 return "MIPS_DELTA_INSTANCE";
959 case DT_MIPS_DELTA_INSTANCE_NO:
960 return "MIPS_DELTA_INSTANCE_NO";
961 case DT_MIPS_DELTA_RELOC:
962 return "MIPS_DELTA_RELOC";
963 case DT_MIPS_DELTA_RELOC_NO:
964 return "MIPS_DELTA_RELOC_NO";
965 case DT_MIPS_DELTA_SYM:
966 return "MIPS_DELTA_SYM";
967 case DT_MIPS_DELTA_SYM_NO:
968 return "MIPS_DELTA_SYM_NO";
969 case DT_MIPS_DELTA_CLASSSYM:
970 return "MIPS_DELTA_CLASSSYM";
971 case DT_MIPS_DELTA_CLASSSYM_NO:
972 return "MIPS_DELTA_CLASSSYM_NO";
973 case DT_MIPS_CXX_FLAGS:
974 return "MIPS_CXX_FLAGS";
975 case DT_MIPS_PIXIE_INIT:
976 return "MIPS_PIXIE_INIT";
977 case DT_MIPS_SYMBOL_LIB:
978 return "MIPS_SYMBOL_LIB";
979 case DT_MIPS_LOCALPAGE_GOTIDX:
980 return "MIPS_LOCALPAGE_GOTIDX";
981 case DT_MIPS_LOCAL_GOTIDX:
982 return "MIPS_LOCAL_GOTIDX";
983 case DT_MIPS_HIDDEN_GOTIDX:
984 return "MIPS_HIDDEN_GOTIDX";
985 case DT_MIPS_PROTECTED_GOTIDX:
986 return "MIPS_PROTECTED_GOTIDX";
987 case DT_MIPS_OPTIONS:
988 return "MIPS_OPTIONS";
989 case DT_MIPS_INTERFACE:
990 return "MIPS_INTERFACE";
991 case DT_MIPS_DYNSTR_ALIGN:
992 return "MIPS_DYNSTR_ALIGN";
993 case DT_MIPS_INTERFACE_SIZE:
994 return "MIPS_INTERFACE_SIZE";
995 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
996 return "MIPS_RLD_TEXT_RESOLVE_ADDR";
997 case DT_MIPS_PERF_SUFFIX:
998 return "MIPS_PERF_SUFFIX";
999 case DT_MIPS_COMPACT_SIZE:
1000 return "MIPS_COMPACT_SIZE";
1001 case DT_MIPS_GP_VALUE:
1002 return "MIPS_GP_VALUE";
1003 case DT_MIPS_AUX_DYNAMIC:
1004 return "MIPS_AUX_DYNAMIC";
1005 case DT_MIPS_PLTGOT:
1006 return "MIPS_PLTGOT";
1007 case DT_MIPS_RLD_OBJ_UPDATE:
1008 return "MIPS_RLD_OBJ_UPDATE";
1009 case DT_MIPS_RWPLT:
1010 return "MIPS_RWPLT";
1011 default:
1012 break;
1013 }
1014 break;
1015 case EM_SPARC:
1016 case EM_SPARC32PLUS:
1017 case EM_SPARCV9:
1018 switch (dtype) {
1019 case DT_SPARC_REGISTER:
1020 return "DT_SPARC_REGISTER";
1021 default:
1022 break;
1023 }
1024 break;
1025 default:
1026 break;
1027 }
1028 }
1029
1030 snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype);
1031 return (s_dtype);
1032 }
1033
1034 static const char *
st_bind(unsigned int sbind)1035 st_bind(unsigned int sbind)
1036 {
1037 static char s_sbind[32];
1038
1039 switch (sbind) {
1040 case STB_LOCAL: return "LOCAL";
1041 case STB_GLOBAL: return "GLOBAL";
1042 case STB_WEAK: return "WEAK";
1043 case STB_GNU_UNIQUE: return "UNIQUE";
1044 default:
1045 if (sbind >= STB_LOOS && sbind <= STB_HIOS)
1046 return "OS";
1047 else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
1048 return "PROC";
1049 else
1050 snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>",
1051 sbind);
1052 return (s_sbind);
1053 }
1054 }
1055
1056 static const char *
st_type(unsigned int mach,unsigned int os,unsigned int stype)1057 st_type(unsigned int mach, unsigned int os, unsigned int stype)
1058 {
1059 static char s_stype[32];
1060
1061 switch (stype) {
1062 case STT_NOTYPE: return "NOTYPE";
1063 case STT_OBJECT: return "OBJECT";
1064 case STT_FUNC: return "FUNC";
1065 case STT_SECTION: return "SECTION";
1066 case STT_FILE: return "FILE";
1067 case STT_COMMON: return "COMMON";
1068 case STT_TLS: return "TLS";
1069 default:
1070 if (stype >= STT_LOOS && stype <= STT_HIOS) {
1071 if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) &&
1072 stype == STT_GNU_IFUNC)
1073 return "IFUNC";
1074 snprintf(s_stype, sizeof(s_stype), "OS+%#x",
1075 stype - STT_LOOS);
1076 } else if (stype >= STT_LOPROC && stype <= STT_HIPROC) {
1077 if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER)
1078 return "REGISTER";
1079 snprintf(s_stype, sizeof(s_stype), "PROC+%#x",
1080 stype - STT_LOPROC);
1081 } else
1082 snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
1083 stype);
1084 return (s_stype);
1085 }
1086 }
1087
1088 static const char *
st_vis(unsigned int svis)1089 st_vis(unsigned int svis)
1090 {
1091 static char s_svis[32];
1092
1093 switch(svis) {
1094 case STV_DEFAULT: return "DEFAULT";
1095 case STV_INTERNAL: return "INTERNAL";
1096 case STV_HIDDEN: return "HIDDEN";
1097 case STV_PROTECTED: return "PROTECTED";
1098 default:
1099 snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis);
1100 return (s_svis);
1101 }
1102 }
1103
1104 static const char *
st_shndx(unsigned int shndx)1105 st_shndx(unsigned int shndx)
1106 {
1107 static char s_shndx[32];
1108
1109 switch (shndx) {
1110 case SHN_UNDEF: return "UND";
1111 case SHN_ABS: return "ABS";
1112 case SHN_COMMON: return "COM";
1113 default:
1114 if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC)
1115 return "PRC";
1116 else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS)
1117 return "OS";
1118 else
1119 snprintf(s_shndx, sizeof(s_shndx), "%u", shndx);
1120 return (s_shndx);
1121 }
1122 }
1123
1124 static struct {
1125 const char *ln;
1126 char sn;
1127 int value;
1128 } section_flag[] = {
1129 {"WRITE", 'W', SHF_WRITE},
1130 {"ALLOC", 'A', SHF_ALLOC},
1131 {"EXEC", 'X', SHF_EXECINSTR},
1132 {"MERGE", 'M', SHF_MERGE},
1133 {"STRINGS", 'S', SHF_STRINGS},
1134 {"INFO LINK", 'I', SHF_INFO_LINK},
1135 {"OS NONCONF", 'O', SHF_OS_NONCONFORMING},
1136 {"GROUP", 'G', SHF_GROUP},
1137 {"TLS", 'T', SHF_TLS},
1138 {"COMPRESSED", 'C', SHF_COMPRESSED},
1139 {NULL, 0, 0}
1140 };
1141
1142 static const char *
note_type(const char * name,unsigned int et,unsigned int nt)1143 note_type(const char *name, unsigned int et, unsigned int nt)
1144 {
1145 if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) &&
1146 et == ET_CORE)
1147 return note_type_linux_core(nt);
1148 else if (strcmp(name, "FreeBSD") == 0)
1149 if (et == ET_CORE)
1150 return note_type_freebsd_core(nt);
1151 else
1152 return note_type_freebsd(nt);
1153 else if (strcmp(name, "GNU") == 0 && et != ET_CORE)
1154 return note_type_gnu(nt);
1155 else if (strcmp(name, "Go") == 0 && et != ET_CORE)
1156 return note_type_go(nt);
1157 else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE)
1158 return note_type_netbsd(nt);
1159 else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE)
1160 return note_type_openbsd(nt);
1161 else if (strcmp(name, "Xen") == 0 && et != ET_CORE)
1162 return note_type_xen(nt);
1163 return note_type_unknown(nt);
1164 }
1165
1166 static const char *
note_type_freebsd(unsigned int nt)1167 note_type_freebsd(unsigned int nt)
1168 {
1169 switch (nt) {
1170 case 1: return "NT_FREEBSD_ABI_TAG";
1171 case 2: return "NT_FREEBSD_NOINIT_TAG";
1172 case 3: return "NT_FREEBSD_ARCH_TAG";
1173 case 4: return "NT_FREEBSD_FEATURE_CTL";
1174 default: return (note_type_unknown(nt));
1175 }
1176 }
1177
1178 static const char *
note_type_freebsd_core(unsigned int nt)1179 note_type_freebsd_core(unsigned int nt)
1180 {
1181 switch (nt) {
1182 case 1: return "NT_PRSTATUS";
1183 case 2: return "NT_FPREGSET";
1184 case 3: return "NT_PRPSINFO";
1185 case 7: return "NT_THRMISC";
1186 case 8: return "NT_PROCSTAT_PROC";
1187 case 9: return "NT_PROCSTAT_FILES";
1188 case 10: return "NT_PROCSTAT_VMMAP";
1189 case 11: return "NT_PROCSTAT_GROUPS";
1190 case 12: return "NT_PROCSTAT_UMASK";
1191 case 13: return "NT_PROCSTAT_RLIMIT";
1192 case 14: return "NT_PROCSTAT_OSREL";
1193 case 15: return "NT_PROCSTAT_PSSTRINGS";
1194 case 16: return "NT_PROCSTAT_AUXV";
1195 case 17: return "NT_PTLWPINFO";
1196 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)";
1197 case 0x102: return "NT_PPC_VSX (ppc VSX registers)";
1198 case 0x200: return "NT_X86_SEGBASES (x86 segment base registers)";
1199 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
1200 case 0x400: return "NT_ARM_VFP (arm VFP registers)";
1201 case 0x401: return "NT_ARM_TLS (arm TLS register)";
1202 case 0x406: return "NT_ARM_ADDR_MASK (arm address mask)";
1203 default: return (note_type_unknown(nt));
1204 }
1205 }
1206
1207 static const char *
note_type_linux_core(unsigned int nt)1208 note_type_linux_core(unsigned int nt)
1209 {
1210 switch (nt) {
1211 case 1: return "NT_PRSTATUS (Process status)";
1212 case 2: return "NT_FPREGSET (Floating point information)";
1213 case 3: return "NT_PRPSINFO (Process information)";
1214 case 4: return "NT_TASKSTRUCT (Task structure)";
1215 case 6: return "NT_AUXV (Auxiliary vector)";
1216 case 10: return "NT_PSTATUS (Linux process status)";
1217 case 12: return "NT_FPREGS (Linux floating point regset)";
1218 case 13: return "NT_PSINFO (Linux process information)";
1219 case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)";
1220 case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)";
1221 case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)";
1222 case 0x100: return "NT_PPC_VMX (ppc Altivec registers)";
1223 case 0x102: return "NT_PPC_VSX (ppc VSX registers)";
1224 case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
1225 case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)";
1226 case 0x301: return "NT_S390_TIMER (s390 timer register)";
1227 case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)";
1228 case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)";
1229 case 0x304: return "NT_S390_CTRS (s390 control registers)";
1230 case 0x305: return "NT_S390_PREFIX (s390 prefix register)";
1231 case 0x400: return "NT_ARM_VFP (arm VFP registers)";
1232 case 0x401: return "NT_ARM_TLS (arm TLS register)";
1233 case 0x402: return "NT_ARM_HW_BREAK (arm hardware breakpoint registers)";
1234 case 0x403: return "NT_ARM_HW_WATCH (arm hardware watchpoint registers)";
1235 case 0x404: return "NT_ARM_SYSTEM_CALL (arm system call number)";
1236 case 0x405: return "NT_ARM_SVE (arm scalable vector extension registers)";
1237 case 0x406: return "NT_ARM_PAC_MASK (arm pointer authentication code mask)";
1238 case 0x407: return "NT_ARM_PACA_KEYS (arm pointer authentication address keys)";
1239 case 0x408: return "NT_ARM_PACG_KEYS (arm pointer authentication generic keys)";
1240 case 0x409: return "NT_ARM_TAGGED_ADDR_CTRL (arm64 tagged address control)";
1241 case 0x40a: return "NT_ARM_PAC_ENABLED_KEYS (arm64 ptr auth enabled keys)";
1242 case 0x46494c45UL: return "NT_FILE (mapped files)";
1243 case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)";
1244 case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)";
1245 default: return (note_type_unknown(nt));
1246 }
1247 }
1248
1249 static const char *
note_type_gnu(unsigned int nt)1250 note_type_gnu(unsigned int nt)
1251 {
1252 switch (nt) {
1253 case 1: return "NT_GNU_ABI_TAG";
1254 case 2: return "NT_GNU_HWCAP (Hardware capabilities)";
1255 case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))";
1256 case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)";
1257 case 5: return "NT_GNU_PROPERTY_TYPE_0";
1258 default: return (note_type_unknown(nt));
1259 }
1260 }
1261
1262 static const char *
note_type_go(unsigned int nt)1263 note_type_go(unsigned int nt)
1264 {
1265 switch (nt) {
1266 case 4: return "elfGoBuildIDTag";
1267 default: return (note_type_unknown(nt));
1268 }
1269 }
1270
1271 static const char *
note_type_netbsd(unsigned int nt)1272 note_type_netbsd(unsigned int nt)
1273 {
1274 switch (nt) {
1275 case 1: return "NT_NETBSD_IDENT";
1276 default: return (note_type_unknown(nt));
1277 }
1278 }
1279
1280 static const char *
note_type_openbsd(unsigned int nt)1281 note_type_openbsd(unsigned int nt)
1282 {
1283 switch (nt) {
1284 case 1: return "NT_OPENBSD_IDENT";
1285 default: return (note_type_unknown(nt));
1286 }
1287 }
1288
1289 static const char *
note_type_unknown(unsigned int nt)1290 note_type_unknown(unsigned int nt)
1291 {
1292 static char s_nt[32];
1293
1294 snprintf(s_nt, sizeof(s_nt),
1295 nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt);
1296 return (s_nt);
1297 }
1298
1299 static const char *
note_type_xen(unsigned int nt)1300 note_type_xen(unsigned int nt)
1301 {
1302 switch (nt) {
1303 case 0: return "XEN_ELFNOTE_INFO";
1304 case 1: return "XEN_ELFNOTE_ENTRY";
1305 case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE";
1306 case 3: return "XEN_ELFNOTE_VIRT_BASE";
1307 case 4: return "XEN_ELFNOTE_PADDR_OFFSET";
1308 case 5: return "XEN_ELFNOTE_XEN_VERSION";
1309 case 6: return "XEN_ELFNOTE_GUEST_OS";
1310 case 7: return "XEN_ELFNOTE_GUEST_VERSION";
1311 case 8: return "XEN_ELFNOTE_LOADER";
1312 case 9: return "XEN_ELFNOTE_PAE_MODE";
1313 case 10: return "XEN_ELFNOTE_FEATURES";
1314 case 11: return "XEN_ELFNOTE_BSD_SYMTAB";
1315 case 12: return "XEN_ELFNOTE_HV_START_LOW";
1316 case 13: return "XEN_ELFNOTE_L1_MFN_VALID";
1317 case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL";
1318 case 15: return "XEN_ELFNOTE_INIT_P2M";
1319 case 16: return "XEN_ELFNOTE_MOD_START_PFN";
1320 case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES";
1321 case 18: return "XEN_ELFNOTE_PHYS32_ENTRY";
1322 default: return (note_type_unknown(nt));
1323 }
1324 }
1325
1326 static struct {
1327 const char *name;
1328 int value;
1329 } l_flag[] = {
1330 {"EXACT_MATCH", LL_EXACT_MATCH},
1331 {"IGNORE_INT_VER", LL_IGNORE_INT_VER},
1332 {"REQUIRE_MINOR", LL_REQUIRE_MINOR},
1333 {"EXPORTS", LL_EXPORTS},
1334 {"DELAY_LOAD", LL_DELAY_LOAD},
1335 {"DELTA", LL_DELTA},
1336 {NULL, 0}
1337 };
1338
1339 static struct mips_option mips_exceptions_option[] = {
1340 {OEX_PAGE0, "PAGE0"},
1341 {OEX_SMM, "SMM"},
1342 {OEX_PRECISEFP, "PRECISEFP"},
1343 {OEX_DISMISS, "DISMISS"},
1344 {0, NULL}
1345 };
1346
1347 static struct mips_option mips_pad_option[] = {
1348 {OPAD_PREFIX, "PREFIX"},
1349 {OPAD_POSTFIX, "POSTFIX"},
1350 {OPAD_SYMBOL, "SYMBOL"},
1351 {0, NULL}
1352 };
1353
1354 static struct mips_option mips_hwpatch_option[] = {
1355 {OHW_R4KEOP, "R4KEOP"},
1356 {OHW_R8KPFETCH, "R8KPFETCH"},
1357 {OHW_R5KEOP, "R5KEOP"},
1358 {OHW_R5KCVTL, "R5KCVTL"},
1359 {0, NULL}
1360 };
1361
1362 static struct mips_option mips_hwa_option[] = {
1363 {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"},
1364 {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"},
1365 {0, NULL}
1366 };
1367
1368 static struct mips_option mips_hwo_option[] = {
1369 {OHWO0_FIXADE, "FIXADE"},
1370 {0, NULL}
1371 };
1372
1373 static const char *
option_kind(uint8_t kind)1374 option_kind(uint8_t kind)
1375 {
1376 static char s_kind[32];
1377
1378 switch (kind) {
1379 case ODK_NULL: return "NULL";
1380 case ODK_REGINFO: return "REGINFO";
1381 case ODK_EXCEPTIONS: return "EXCEPTIONS";
1382 case ODK_PAD: return "PAD";
1383 case ODK_HWPATCH: return "HWPATCH";
1384 case ODK_FILL: return "FILL";
1385 case ODK_TAGS: return "TAGS";
1386 case ODK_HWAND: return "HWAND";
1387 case ODK_HWOR: return "HWOR";
1388 case ODK_GP_GROUP: return "GP_GROUP";
1389 case ODK_IDENT: return "IDENT";
1390 default:
1391 snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind);
1392 return (s_kind);
1393 }
1394 }
1395
1396 static const char *
top_tag(unsigned int tag)1397 top_tag(unsigned int tag)
1398 {
1399 static char s_top_tag[32];
1400
1401 switch (tag) {
1402 case 1: return "File Attributes";
1403 case 2: return "Section Attributes";
1404 case 3: return "Symbol Attributes";
1405 default:
1406 snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag);
1407 return (s_top_tag);
1408 }
1409 }
1410
1411 static const char *
aeabi_cpu_arch(uint64_t arch)1412 aeabi_cpu_arch(uint64_t arch)
1413 {
1414 static char s_cpu_arch[32];
1415
1416 switch (arch) {
1417 case 0: return "Pre-V4";
1418 case 1: return "ARM v4";
1419 case 2: return "ARM v4T";
1420 case 3: return "ARM v5T";
1421 case 4: return "ARM v5TE";
1422 case 5: return "ARM v5TEJ";
1423 case 6: return "ARM v6";
1424 case 7: return "ARM v6KZ";
1425 case 8: return "ARM v6T2";
1426 case 9: return "ARM v6K";
1427 case 10: return "ARM v7";
1428 case 11: return "ARM v6-M";
1429 case 12: return "ARM v6S-M";
1430 case 13: return "ARM v7E-M";
1431 default:
1432 snprintf(s_cpu_arch, sizeof(s_cpu_arch),
1433 "Unknown (%ju)", (uintmax_t) arch);
1434 return (s_cpu_arch);
1435 }
1436 }
1437
1438 static const char *
aeabi_cpu_arch_profile(uint64_t pf)1439 aeabi_cpu_arch_profile(uint64_t pf)
1440 {
1441 static char s_arch_profile[32];
1442
1443 switch (pf) {
1444 case 0:
1445 return "Not applicable";
1446 case 0x41: /* 'A' */
1447 return "Application Profile";
1448 case 0x52: /* 'R' */
1449 return "Real-Time Profile";
1450 case 0x4D: /* 'M' */
1451 return "Microcontroller Profile";
1452 case 0x53: /* 'S' */
1453 return "Application or Real-Time Profile";
1454 default:
1455 snprintf(s_arch_profile, sizeof(s_arch_profile),
1456 "Unknown (%ju)\n", (uintmax_t) pf);
1457 return (s_arch_profile);
1458 }
1459 }
1460
1461 static const char *
aeabi_arm_isa(uint64_t ai)1462 aeabi_arm_isa(uint64_t ai)
1463 {
1464 static char s_ai[32];
1465
1466 switch (ai) {
1467 case 0: return "No";
1468 case 1: return "Yes";
1469 default:
1470 snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n",
1471 (uintmax_t) ai);
1472 return (s_ai);
1473 }
1474 }
1475
1476 static const char *
aeabi_thumb_isa(uint64_t ti)1477 aeabi_thumb_isa(uint64_t ti)
1478 {
1479 static char s_ti[32];
1480
1481 switch (ti) {
1482 case 0: return "No";
1483 case 1: return "16-bit Thumb";
1484 case 2: return "32-bit Thumb";
1485 default:
1486 snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n",
1487 (uintmax_t) ti);
1488 return (s_ti);
1489 }
1490 }
1491
1492 static const char *
aeabi_fp_arch(uint64_t fp)1493 aeabi_fp_arch(uint64_t fp)
1494 {
1495 static char s_fp_arch[32];
1496
1497 switch (fp) {
1498 case 0: return "No";
1499 case 1: return "VFPv1";
1500 case 2: return "VFPv2";
1501 case 3: return "VFPv3";
1502 case 4: return "VFPv3-D16";
1503 case 5: return "VFPv4";
1504 case 6: return "VFPv4-D16";
1505 default:
1506 snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)",
1507 (uintmax_t) fp);
1508 return (s_fp_arch);
1509 }
1510 }
1511
1512 static const char *
aeabi_wmmx_arch(uint64_t wmmx)1513 aeabi_wmmx_arch(uint64_t wmmx)
1514 {
1515 static char s_wmmx[32];
1516
1517 switch (wmmx) {
1518 case 0: return "No";
1519 case 1: return "WMMXv1";
1520 case 2: return "WMMXv2";
1521 default:
1522 snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)",
1523 (uintmax_t) wmmx);
1524 return (s_wmmx);
1525 }
1526 }
1527
1528 static const char *
aeabi_adv_simd_arch(uint64_t simd)1529 aeabi_adv_simd_arch(uint64_t simd)
1530 {
1531 static char s_simd[32];
1532
1533 switch (simd) {
1534 case 0: return "No";
1535 case 1: return "NEONv1";
1536 case 2: return "NEONv2";
1537 default:
1538 snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)",
1539 (uintmax_t) simd);
1540 return (s_simd);
1541 }
1542 }
1543
1544 static const char *
aeabi_pcs_config(uint64_t pcs)1545 aeabi_pcs_config(uint64_t pcs)
1546 {
1547 static char s_pcs[32];
1548
1549 switch (pcs) {
1550 case 0: return "None";
1551 case 1: return "Bare platform";
1552 case 2: return "Linux";
1553 case 3: return "Linux DSO";
1554 case 4: return "Palm OS 2004";
1555 case 5: return "Palm OS (future)";
1556 case 6: return "Symbian OS 2004";
1557 case 7: return "Symbian OS (future)";
1558 default:
1559 snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)",
1560 (uintmax_t) pcs);
1561 return (s_pcs);
1562 }
1563 }
1564
1565 static const char *
aeabi_pcs_r9(uint64_t r9)1566 aeabi_pcs_r9(uint64_t r9)
1567 {
1568 static char s_r9[32];
1569
1570 switch (r9) {
1571 case 0: return "V6";
1572 case 1: return "SB";
1573 case 2: return "TLS pointer";
1574 case 3: return "Unused";
1575 default:
1576 snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9);
1577 return (s_r9);
1578 }
1579 }
1580
1581 static const char *
aeabi_pcs_rw(uint64_t rw)1582 aeabi_pcs_rw(uint64_t rw)
1583 {
1584 static char s_rw[32];
1585
1586 switch (rw) {
1587 case 0: return "Absolute";
1588 case 1: return "PC-relative";
1589 case 2: return "SB-relative";
1590 case 3: return "None";
1591 default:
1592 snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw);
1593 return (s_rw);
1594 }
1595 }
1596
1597 static const char *
aeabi_pcs_ro(uint64_t ro)1598 aeabi_pcs_ro(uint64_t ro)
1599 {
1600 static char s_ro[32];
1601
1602 switch (ro) {
1603 case 0: return "Absolute";
1604 case 1: return "PC-relative";
1605 case 2: return "None";
1606 default:
1607 snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro);
1608 return (s_ro);
1609 }
1610 }
1611
1612 static const char *
aeabi_pcs_got(uint64_t got)1613 aeabi_pcs_got(uint64_t got)
1614 {
1615 static char s_got[32];
1616
1617 switch (got) {
1618 case 0: return "None";
1619 case 1: return "direct";
1620 case 2: return "indirect via GOT";
1621 default:
1622 snprintf(s_got, sizeof(s_got), "Unknown (%ju)",
1623 (uintmax_t) got);
1624 return (s_got);
1625 }
1626 }
1627
1628 static const char *
aeabi_pcs_wchar_t(uint64_t wt)1629 aeabi_pcs_wchar_t(uint64_t wt)
1630 {
1631 static char s_wt[32];
1632
1633 switch (wt) {
1634 case 0: return "None";
1635 case 2: return "wchar_t size 2";
1636 case 4: return "wchar_t size 4";
1637 default:
1638 snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt);
1639 return (s_wt);
1640 }
1641 }
1642
1643 static const char *
aeabi_enum_size(uint64_t es)1644 aeabi_enum_size(uint64_t es)
1645 {
1646 static char s_es[32];
1647
1648 switch (es) {
1649 case 0: return "None";
1650 case 1: return "smallest";
1651 case 2: return "32-bit";
1652 case 3: return "visible 32-bit";
1653 default:
1654 snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es);
1655 return (s_es);
1656 }
1657 }
1658
1659 static const char *
aeabi_align_needed(uint64_t an)1660 aeabi_align_needed(uint64_t an)
1661 {
1662 static char s_align_n[64];
1663
1664 switch (an) {
1665 case 0: return "No";
1666 case 1: return "8-byte align";
1667 case 2: return "4-byte align";
1668 case 3: return "Reserved";
1669 default:
1670 if (an >= 4 && an <= 12)
1671 snprintf(s_align_n, sizeof(s_align_n), "8-byte align"
1672 " and up to 2^%ju-byte extended align",
1673 (uintmax_t) an);
1674 else
1675 snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)",
1676 (uintmax_t) an);
1677 return (s_align_n);
1678 }
1679 }
1680
1681 static const char *
aeabi_align_preserved(uint64_t ap)1682 aeabi_align_preserved(uint64_t ap)
1683 {
1684 static char s_align_p[128];
1685
1686 switch (ap) {
1687 case 0: return "No";
1688 case 1: return "8-byte align";
1689 case 2: return "8-byte align and SP % 8 == 0";
1690 case 3: return "Reserved";
1691 default:
1692 if (ap >= 4 && ap <= 12)
1693 snprintf(s_align_p, sizeof(s_align_p), "8-byte align"
1694 " and SP %% 8 == 0 and up to 2^%ju-byte extended"
1695 " align", (uintmax_t) ap);
1696 else
1697 snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)",
1698 (uintmax_t) ap);
1699 return (s_align_p);
1700 }
1701 }
1702
1703 static const char *
aeabi_fp_rounding(uint64_t fr)1704 aeabi_fp_rounding(uint64_t fr)
1705 {
1706 static char s_fp_r[32];
1707
1708 switch (fr) {
1709 case 0: return "Unused";
1710 case 1: return "Needed";
1711 default:
1712 snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)",
1713 (uintmax_t) fr);
1714 return (s_fp_r);
1715 }
1716 }
1717
1718 static const char *
aeabi_fp_denormal(uint64_t fd)1719 aeabi_fp_denormal(uint64_t fd)
1720 {
1721 static char s_fp_d[32];
1722
1723 switch (fd) {
1724 case 0: return "Unused";
1725 case 1: return "Needed";
1726 case 2: return "Sign Only";
1727 default:
1728 snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)",
1729 (uintmax_t) fd);
1730 return (s_fp_d);
1731 }
1732 }
1733
1734 static const char *
aeabi_fp_exceptions(uint64_t fe)1735 aeabi_fp_exceptions(uint64_t fe)
1736 {
1737 static char s_fp_e[32];
1738
1739 switch (fe) {
1740 case 0: return "Unused";
1741 case 1: return "Needed";
1742 default:
1743 snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)",
1744 (uintmax_t) fe);
1745 return (s_fp_e);
1746 }
1747 }
1748
1749 static const char *
aeabi_fp_user_exceptions(uint64_t fu)1750 aeabi_fp_user_exceptions(uint64_t fu)
1751 {
1752 static char s_fp_u[32];
1753
1754 switch (fu) {
1755 case 0: return "Unused";
1756 case 1: return "Needed";
1757 default:
1758 snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)",
1759 (uintmax_t) fu);
1760 return (s_fp_u);
1761 }
1762 }
1763
1764 static const char *
aeabi_fp_number_model(uint64_t fn)1765 aeabi_fp_number_model(uint64_t fn)
1766 {
1767 static char s_fp_n[32];
1768
1769 switch (fn) {
1770 case 0: return "Unused";
1771 case 1: return "IEEE 754 normal";
1772 case 2: return "RTABI";
1773 case 3: return "IEEE 754";
1774 default:
1775 snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)",
1776 (uintmax_t) fn);
1777 return (s_fp_n);
1778 }
1779 }
1780
1781 static const char *
aeabi_fp_16bit_format(uint64_t fp16)1782 aeabi_fp_16bit_format(uint64_t fp16)
1783 {
1784 static char s_fp_16[64];
1785
1786 switch (fp16) {
1787 case 0: return "None";
1788 case 1: return "IEEE 754";
1789 case 2: return "VFPv3/Advanced SIMD (alternative format)";
1790 default:
1791 snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)",
1792 (uintmax_t) fp16);
1793 return (s_fp_16);
1794 }
1795 }
1796
1797 static const char *
aeabi_mpext(uint64_t mp)1798 aeabi_mpext(uint64_t mp)
1799 {
1800 static char s_mp[32];
1801
1802 switch (mp) {
1803 case 0: return "Not allowed";
1804 case 1: return "Allowed";
1805 default:
1806 snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)",
1807 (uintmax_t) mp);
1808 return (s_mp);
1809 }
1810 }
1811
1812 static const char *
aeabi_div(uint64_t du)1813 aeabi_div(uint64_t du)
1814 {
1815 static char s_du[32];
1816
1817 switch (du) {
1818 case 0: return "Yes (V7-R/V7-M)";
1819 case 1: return "No";
1820 case 2: return "Yes (V7-A)";
1821 default:
1822 snprintf(s_du, sizeof(s_du), "Unknown (%ju)",
1823 (uintmax_t) du);
1824 return (s_du);
1825 }
1826 }
1827
1828 static const char *
aeabi_t2ee(uint64_t t2ee)1829 aeabi_t2ee(uint64_t t2ee)
1830 {
1831 static char s_t2ee[32];
1832
1833 switch (t2ee) {
1834 case 0: return "Not allowed";
1835 case 1: return "Allowed";
1836 default:
1837 snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)",
1838 (uintmax_t) t2ee);
1839 return (s_t2ee);
1840 }
1841
1842 }
1843
1844 static const char *
aeabi_hardfp(uint64_t hfp)1845 aeabi_hardfp(uint64_t hfp)
1846 {
1847 static char s_hfp[32];
1848
1849 switch (hfp) {
1850 case 0: return "Tag_FP_arch";
1851 case 1: return "only SP";
1852 case 2: return "only DP";
1853 case 3: return "both SP and DP";
1854 default:
1855 snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)",
1856 (uintmax_t) hfp);
1857 return (s_hfp);
1858 }
1859 }
1860
1861 static const char *
aeabi_vfp_args(uint64_t va)1862 aeabi_vfp_args(uint64_t va)
1863 {
1864 static char s_va[32];
1865
1866 switch (va) {
1867 case 0: return "AAPCS (base variant)";
1868 case 1: return "AAPCS (VFP variant)";
1869 case 2: return "toolchain-specific";
1870 default:
1871 snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va);
1872 return (s_va);
1873 }
1874 }
1875
1876 static const char *
aeabi_wmmx_args(uint64_t wa)1877 aeabi_wmmx_args(uint64_t wa)
1878 {
1879 static char s_wa[32];
1880
1881 switch (wa) {
1882 case 0: return "AAPCS (base variant)";
1883 case 1: return "Intel WMMX";
1884 case 2: return "toolchain-specific";
1885 default:
1886 snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa);
1887 return (s_wa);
1888 }
1889 }
1890
1891 static const char *
aeabi_unaligned_access(uint64_t ua)1892 aeabi_unaligned_access(uint64_t ua)
1893 {
1894 static char s_ua[32];
1895
1896 switch (ua) {
1897 case 0: return "Not allowed";
1898 case 1: return "Allowed";
1899 default:
1900 snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua);
1901 return (s_ua);
1902 }
1903 }
1904
1905 static const char *
aeabi_fp_hpext(uint64_t fh)1906 aeabi_fp_hpext(uint64_t fh)
1907 {
1908 static char s_fh[32];
1909
1910 switch (fh) {
1911 case 0: return "Not allowed";
1912 case 1: return "Allowed";
1913 default:
1914 snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh);
1915 return (s_fh);
1916 }
1917 }
1918
1919 static const char *
aeabi_optm_goal(uint64_t og)1920 aeabi_optm_goal(uint64_t og)
1921 {
1922 static char s_og[32];
1923
1924 switch (og) {
1925 case 0: return "None";
1926 case 1: return "Speed";
1927 case 2: return "Speed aggressive";
1928 case 3: return "Space";
1929 case 4: return "Space aggressive";
1930 case 5: return "Debugging";
1931 case 6: return "Best Debugging";
1932 default:
1933 snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og);
1934 return (s_og);
1935 }
1936 }
1937
1938 static const char *
aeabi_fp_optm_goal(uint64_t fog)1939 aeabi_fp_optm_goal(uint64_t fog)
1940 {
1941 static char s_fog[32];
1942
1943 switch (fog) {
1944 case 0: return "None";
1945 case 1: return "Speed";
1946 case 2: return "Speed aggressive";
1947 case 3: return "Space";
1948 case 4: return "Space aggressive";
1949 case 5: return "Accurary";
1950 case 6: return "Best Accurary";
1951 default:
1952 snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)",
1953 (uintmax_t) fog);
1954 return (s_fog);
1955 }
1956 }
1957
1958 static const char *
aeabi_virtual(uint64_t vt)1959 aeabi_virtual(uint64_t vt)
1960 {
1961 static char s_virtual[64];
1962
1963 switch (vt) {
1964 case 0: return "No";
1965 case 1: return "TrustZone";
1966 case 2: return "Virtualization extension";
1967 case 3: return "TrustZone and virtualization extension";
1968 default:
1969 snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)",
1970 (uintmax_t) vt);
1971 return (s_virtual);
1972 }
1973 }
1974
1975 static struct {
1976 uint64_t tag;
1977 const char *s_tag;
1978 const char *(*get_desc)(uint64_t val);
1979 } aeabi_tags[] = {
1980 {4, "Tag_CPU_raw_name", NULL},
1981 {5, "Tag_CPU_name", NULL},
1982 {6, "Tag_CPU_arch", aeabi_cpu_arch},
1983 {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile},
1984 {8, "Tag_ARM_ISA_use", aeabi_arm_isa},
1985 {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa},
1986 {10, "Tag_FP_arch", aeabi_fp_arch},
1987 {11, "Tag_WMMX_arch", aeabi_wmmx_arch},
1988 {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch},
1989 {13, "Tag_PCS_config", aeabi_pcs_config},
1990 {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9},
1991 {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw},
1992 {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro},
1993 {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got},
1994 {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t},
1995 {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding},
1996 {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal},
1997 {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions},
1998 {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions},
1999 {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model},
2000 {24, "Tag_ABI_align_needed", aeabi_align_needed},
2001 {25, "Tag_ABI_align_preserved", aeabi_align_preserved},
2002 {26, "Tag_ABI_enum_size", aeabi_enum_size},
2003 {27, "Tag_ABI_HardFP_use", aeabi_hardfp},
2004 {28, "Tag_ABI_VFP_args", aeabi_vfp_args},
2005 {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args},
2006 {30, "Tag_ABI_optimization_goals", aeabi_optm_goal},
2007 {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal},
2008 {32, "Tag_compatibility", NULL},
2009 {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access},
2010 {36, "Tag_FP_HP_extension", aeabi_fp_hpext},
2011 {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format},
2012 {42, "Tag_MPextension_use", aeabi_mpext},
2013 {44, "Tag_DIV_use", aeabi_div},
2014 {64, "Tag_nodefaults", NULL},
2015 {65, "Tag_also_compatible_with", NULL},
2016 {66, "Tag_T2EE_use", aeabi_t2ee},
2017 {67, "Tag_conformance", NULL},
2018 {68, "Tag_Virtualization_use", aeabi_virtual},
2019 {70, "Tag_MPextension_use", aeabi_mpext},
2020 };
2021
2022 static const char *
mips_abi_fp(uint64_t fp)2023 mips_abi_fp(uint64_t fp)
2024 {
2025 static char s_mips_abi_fp[64];
2026
2027 switch (fp) {
2028 case 0: return "N/A";
2029 case 1: return "Hard float (double precision)";
2030 case 2: return "Hard float (single precision)";
2031 case 3: return "Soft float";
2032 case 4: return "64-bit float (-mips32r2 -mfp64)";
2033 default:
2034 snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)",
2035 (uintmax_t) fp);
2036 return (s_mips_abi_fp);
2037 }
2038 }
2039
2040 static const char *
ppc_abi_fp(uint64_t fp)2041 ppc_abi_fp(uint64_t fp)
2042 {
2043 static char s_ppc_abi_fp[64];
2044
2045 switch (fp) {
2046 case 0: return "N/A";
2047 case 1: return "Hard float (double precision)";
2048 case 2: return "Soft float";
2049 case 3: return "Hard float (single precision)";
2050 default:
2051 snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)",
2052 (uintmax_t) fp);
2053 return (s_ppc_abi_fp);
2054 }
2055 }
2056
2057 static const char *
ppc_abi_vector(uint64_t vec)2058 ppc_abi_vector(uint64_t vec)
2059 {
2060 static char s_vec[64];
2061
2062 switch (vec) {
2063 case 0: return "N/A";
2064 case 1: return "Generic purpose registers";
2065 case 2: return "AltiVec registers";
2066 case 3: return "SPE registers";
2067 default:
2068 snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec);
2069 return (s_vec);
2070 }
2071 }
2072
2073 static const char *
dwarf_reg(unsigned int mach,unsigned int reg)2074 dwarf_reg(unsigned int mach, unsigned int reg)
2075 {
2076
2077 switch (mach) {
2078 case EM_386:
2079 case EM_IAMCU:
2080 switch (reg) {
2081 case 0: return "eax";
2082 case 1: return "ecx";
2083 case 2: return "edx";
2084 case 3: return "ebx";
2085 case 4: return "esp";
2086 case 5: return "ebp";
2087 case 6: return "esi";
2088 case 7: return "edi";
2089 case 8: return "eip";
2090 case 9: return "eflags";
2091 case 11: return "st0";
2092 case 12: return "st1";
2093 case 13: return "st2";
2094 case 14: return "st3";
2095 case 15: return "st4";
2096 case 16: return "st5";
2097 case 17: return "st6";
2098 case 18: return "st7";
2099 case 21: return "xmm0";
2100 case 22: return "xmm1";
2101 case 23: return "xmm2";
2102 case 24: return "xmm3";
2103 case 25: return "xmm4";
2104 case 26: return "xmm5";
2105 case 27: return "xmm6";
2106 case 28: return "xmm7";
2107 case 29: return "mm0";
2108 case 30: return "mm1";
2109 case 31: return "mm2";
2110 case 32: return "mm3";
2111 case 33: return "mm4";
2112 case 34: return "mm5";
2113 case 35: return "mm6";
2114 case 36: return "mm7";
2115 case 37: return "fcw";
2116 case 38: return "fsw";
2117 case 39: return "mxcsr";
2118 case 40: return "es";
2119 case 41: return "cs";
2120 case 42: return "ss";
2121 case 43: return "ds";
2122 case 44: return "fs";
2123 case 45: return "gs";
2124 case 48: return "tr";
2125 case 49: return "ldtr";
2126 default: return (NULL);
2127 }
2128 case EM_RISCV:
2129 switch (reg) {
2130 case 0: return "zero";
2131 case 1: return "ra";
2132 case 2: return "sp";
2133 case 3: return "gp";
2134 case 4: return "tp";
2135 case 5: return "t0";
2136 case 6: return "t1";
2137 case 7: return "t2";
2138 case 8: return "s0";
2139 case 9: return "s1";
2140 case 10: return "a0";
2141 case 11: return "a1";
2142 case 12: return "a2";
2143 case 13: return "a3";
2144 case 14: return "a4";
2145 case 15: return "a5";
2146 case 16: return "a6";
2147 case 17: return "a7";
2148 case 18: return "s2";
2149 case 19: return "s3";
2150 case 20: return "s4";
2151 case 21: return "s5";
2152 case 22: return "s6";
2153 case 23: return "s7";
2154 case 24: return "s8";
2155 case 25: return "s9";
2156 case 26: return "s10";
2157 case 27: return "s11";
2158 case 28: return "t3";
2159 case 29: return "t4";
2160 case 30: return "t5";
2161 case 31: return "t6";
2162 case 32: return "ft0";
2163 case 33: return "ft1";
2164 case 34: return "ft2";
2165 case 35: return "ft3";
2166 case 36: return "ft4";
2167 case 37: return "ft5";
2168 case 38: return "ft6";
2169 case 39: return "ft7";
2170 case 40: return "fs0";
2171 case 41: return "fs1";
2172 case 42: return "fa0";
2173 case 43: return "fa1";
2174 case 44: return "fa2";
2175 case 45: return "fa3";
2176 case 46: return "fa4";
2177 case 47: return "fa5";
2178 case 48: return "fa6";
2179 case 49: return "fa7";
2180 case 50: return "fs2";
2181 case 51: return "fs3";
2182 case 52: return "fs4";
2183 case 53: return "fs5";
2184 case 54: return "fs6";
2185 case 55: return "fs7";
2186 case 56: return "fs8";
2187 case 57: return "fs9";
2188 case 58: return "fs10";
2189 case 59: return "fs11";
2190 case 60: return "ft8";
2191 case 61: return "ft9";
2192 case 62: return "ft10";
2193 case 63: return "ft11";
2194 default: return (NULL);
2195 }
2196 case EM_X86_64:
2197 switch (reg) {
2198 case 0: return "rax";
2199 case 1: return "rdx";
2200 case 2: return "rcx";
2201 case 3: return "rbx";
2202 case 4: return "rsi";
2203 case 5: return "rdi";
2204 case 6: return "rbp";
2205 case 7: return "rsp";
2206 case 16: return "rip";
2207 case 17: return "xmm0";
2208 case 18: return "xmm1";
2209 case 19: return "xmm2";
2210 case 20: return "xmm3";
2211 case 21: return "xmm4";
2212 case 22: return "xmm5";
2213 case 23: return "xmm6";
2214 case 24: return "xmm7";
2215 case 25: return "xmm8";
2216 case 26: return "xmm9";
2217 case 27: return "xmm10";
2218 case 28: return "xmm11";
2219 case 29: return "xmm12";
2220 case 30: return "xmm13";
2221 case 31: return "xmm14";
2222 case 32: return "xmm15";
2223 case 33: return "st0";
2224 case 34: return "st1";
2225 case 35: return "st2";
2226 case 36: return "st3";
2227 case 37: return "st4";
2228 case 38: return "st5";
2229 case 39: return "st6";
2230 case 40: return "st7";
2231 case 41: return "mm0";
2232 case 42: return "mm1";
2233 case 43: return "mm2";
2234 case 44: return "mm3";
2235 case 45: return "mm4";
2236 case 46: return "mm5";
2237 case 47: return "mm6";
2238 case 48: return "mm7";
2239 case 49: return "rflags";
2240 case 50: return "es";
2241 case 51: return "cs";
2242 case 52: return "ss";
2243 case 53: return "ds";
2244 case 54: return "fs";
2245 case 55: return "gs";
2246 case 58: return "fs.base";
2247 case 59: return "gs.base";
2248 case 62: return "tr";
2249 case 63: return "ldtr";
2250 case 64: return "mxcsr";
2251 case 65: return "fcw";
2252 case 66: return "fsw";
2253 default: return (NULL);
2254 }
2255 default:
2256 return (NULL);
2257 }
2258 }
2259
2260 static void
dump_ehdr(struct readelf * re)2261 dump_ehdr(struct readelf *re)
2262 {
2263 size_t phnum, shnum, shstrndx;
2264 int i;
2265
2266 printf("ELF Header:\n");
2267
2268 /* e_ident[]. */
2269 printf(" Magic: ");
2270 for (i = 0; i < EI_NIDENT; i++)
2271 printf("%.2x ", re->ehdr.e_ident[i]);
2272 putchar('\n');
2273
2274 /* EI_CLASS. */
2275 printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS]));
2276
2277 /* EI_DATA. */
2278 printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA]));
2279
2280 /* EI_VERSION. */
2281 printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION],
2282 elf_ver(re->ehdr.e_ident[EI_VERSION]));
2283
2284 /* EI_OSABI. */
2285 printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI]));
2286
2287 /* EI_ABIVERSION. */
2288 printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]);
2289
2290 /* e_type. */
2291 printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type));
2292
2293 /* e_machine. */
2294 printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine));
2295
2296 /* e_version. */
2297 printf("%-37s%#x\n", " Version:", re->ehdr.e_version);
2298
2299 /* e_entry. */
2300 printf("%-37s%#jx\n", " Entry point address:",
2301 (uintmax_t)re->ehdr.e_entry);
2302
2303 /* e_phoff. */
2304 printf("%-37s%ju (bytes into file)\n", " Start of program headers:",
2305 (uintmax_t)re->ehdr.e_phoff);
2306
2307 /* e_shoff. */
2308 printf("%-37s%ju (bytes into file)\n", " Start of section headers:",
2309 (uintmax_t)re->ehdr.e_shoff);
2310
2311 /* e_flags. */
2312 printf("%-37s%#x", " Flags:", re->ehdr.e_flags);
2313 dump_eflags(re, re->ehdr.e_flags);
2314 putchar('\n');
2315
2316 /* e_ehsize. */
2317 printf("%-37s%u (bytes)\n", " Size of this header:",
2318 re->ehdr.e_ehsize);
2319
2320 /* e_phentsize. */
2321 printf("%-37s%u (bytes)\n", " Size of program headers:",
2322 re->ehdr.e_phentsize);
2323
2324 /* e_phnum. */
2325 printf("%-37s%u", " Number of program headers:", re->ehdr.e_phnum);
2326 if (re->ehdr.e_phnum == PN_XNUM) {
2327 /* Extended program header numbering is in use. */
2328 if (elf_getphnum(re->elf, &phnum))
2329 printf(" (%zu)", phnum);
2330 }
2331 putchar('\n');
2332
2333 /* e_shentsize. */
2334 printf("%-37s%u (bytes)\n", " Size of section headers:",
2335 re->ehdr.e_shentsize);
2336
2337 /* e_shnum. */
2338 printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum);
2339 if (re->ehdr.e_shnum == SHN_UNDEF) {
2340 /* Extended section numbering is in use. */
2341 if (elf_getshnum(re->elf, &shnum))
2342 printf(" (%ju)", (uintmax_t)shnum);
2343 }
2344 putchar('\n');
2345
2346 /* e_shstrndx. */
2347 printf("%-37s%u", " Section header string table index:",
2348 re->ehdr.e_shstrndx);
2349 if (re->ehdr.e_shstrndx == SHN_XINDEX) {
2350 /* Extended section numbering is in use. */
2351 if (elf_getshstrndx(re->elf, &shstrndx))
2352 printf(" (%ju)", (uintmax_t)shstrndx);
2353 }
2354 putchar('\n');
2355 }
2356
2357 static void
dump_eflags(struct readelf * re,uint64_t e_flags)2358 dump_eflags(struct readelf *re, uint64_t e_flags)
2359 {
2360 struct eflags_desc *edesc;
2361 int arm_eabi;
2362
2363 edesc = NULL;
2364 switch (re->ehdr.e_machine) {
2365 case EM_ARM:
2366 arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24;
2367 if (arm_eabi == 0)
2368 printf(", GNU EABI");
2369 else if (arm_eabi <= 5)
2370 printf(", Version%d EABI", arm_eabi);
2371 edesc = arm_eflags_desc;
2372 break;
2373 case EM_MIPS:
2374 case EM_MIPS_RS3_LE:
2375 switch ((e_flags & EF_MIPS_ARCH) >> 28) {
2376 case 0: printf(", mips1"); break;
2377 case 1: printf(", mips2"); break;
2378 case 2: printf(", mips3"); break;
2379 case 3: printf(", mips4"); break;
2380 case 4: printf(", mips5"); break;
2381 case 5: printf(", mips32"); break;
2382 case 6: printf(", mips64"); break;
2383 case 7: printf(", mips32r2"); break;
2384 case 8: printf(", mips64r2"); break;
2385 default: break;
2386 }
2387 switch ((e_flags & 0x00FF0000) >> 16) {
2388 case 0x81: printf(", 3900"); break;
2389 case 0x82: printf(", 4010"); break;
2390 case 0x83: printf(", 4100"); break;
2391 case 0x85: printf(", 4650"); break;
2392 case 0x87: printf(", 4120"); break;
2393 case 0x88: printf(", 4111"); break;
2394 case 0x8a: printf(", sb1"); break;
2395 case 0x8b: printf(", octeon"); break;
2396 case 0x8c: printf(", xlr"); break;
2397 case 0x91: printf(", 5400"); break;
2398 case 0x98: printf(", 5500"); break;
2399 case 0x99: printf(", 9000"); break;
2400 case 0xa0: printf(", loongson-2e"); break;
2401 case 0xa1: printf(", loongson-2f"); break;
2402 default: break;
2403 }
2404 switch ((e_flags & 0x0000F000) >> 12) {
2405 case 1: printf(", o32"); break;
2406 case 2: printf(", o64"); break;
2407 case 3: printf(", eabi32"); break;
2408 case 4: printf(", eabi64"); break;
2409 default: break;
2410 }
2411 edesc = mips_eflags_desc;
2412 break;
2413 case EM_PPC64:
2414 switch (e_flags) {
2415 case 0: printf(", Unspecified or Power ELF V1 ABI"); break;
2416 case 1: printf(", Power ELF V1 ABI"); break;
2417 case 2: printf(", OpenPOWER ELF V2 ABI"); break;
2418 default: break;
2419 }
2420 /* FALLTHROUGH */
2421 case EM_PPC:
2422 edesc = powerpc_eflags_desc;
2423 break;
2424 case EM_RISCV:
2425 switch (e_flags & EF_RISCV_FLOAT_ABI_MASK) {
2426 case EF_RISCV_FLOAT_ABI_SOFT:
2427 printf(", soft-float ABI");
2428 break;
2429 case EF_RISCV_FLOAT_ABI_SINGLE:
2430 printf(", single-float ABI");
2431 break;
2432 case EF_RISCV_FLOAT_ABI_DOUBLE:
2433 printf(", double-float ABI");
2434 break;
2435 case EF_RISCV_FLOAT_ABI_QUAD:
2436 printf(", quad-float ABI");
2437 break;
2438 }
2439 edesc = riscv_eflags_desc;
2440 break;
2441 case EM_SPARC:
2442 case EM_SPARC32PLUS:
2443 case EM_SPARCV9:
2444 switch ((e_flags & EF_SPARCV9_MM)) {
2445 case EF_SPARCV9_TSO: printf(", tso"); break;
2446 case EF_SPARCV9_PSO: printf(", pso"); break;
2447 case EF_SPARCV9_MM: printf(", rmo"); break;
2448 default: break;
2449 }
2450 edesc = sparc_eflags_desc;
2451 break;
2452 default:
2453 break;
2454 }
2455
2456 if (edesc != NULL) {
2457 while (edesc->desc != NULL) {
2458 if (e_flags & edesc->flag)
2459 printf(", %s", edesc->desc);
2460 edesc++;
2461 }
2462 }
2463 }
2464
2465 static void
dump_phdr(struct readelf * re)2466 dump_phdr(struct readelf *re)
2467 {
2468 const char *rawfile;
2469 GElf_Phdr phdr;
2470 size_t phnum, size;
2471 int i, j;
2472
2473 #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \
2474 "MemSiz", "Flg", "Align"
2475 #define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \
2476 (uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \
2477 (uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \
2478 (uintmax_t)phdr.p_memsz, \
2479 phdr.p_flags & PF_R ? 'R' : ' ', \
2480 phdr.p_flags & PF_W ? 'W' : ' ', \
2481 phdr.p_flags & PF_X ? 'E' : ' ', \
2482 (uintmax_t)phdr.p_align
2483
2484 if (elf_getphnum(re->elf, &phnum) == 0) {
2485 warnx("elf_getphnum failed: %s", elf_errmsg(-1));
2486 return;
2487 }
2488 if (phnum == 0) {
2489 printf("\nThere are no program headers in this file.\n");
2490 return;
2491 }
2492
2493 printf("\nElf file type is %s", elf_type(re->ehdr.e_type));
2494 printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry);
2495 printf("There are %ju program headers, starting at offset %ju\n",
2496 (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff);
2497
2498 /* Dump program headers. */
2499 printf("\nProgram Headers:\n");
2500 if (re->ec == ELFCLASS32)
2501 printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR);
2502 else if (re->options & RE_WW)
2503 printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR);
2504 else
2505 printf(" %-15s%-19s%-19s%s\n %-19s%-20s"
2506 "%-7s%s\n", PH_HDR);
2507 for (i = 0; (size_t) i < phnum; i++) {
2508 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2509 warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2510 continue;
2511 }
2512 /* TODO: Add arch-specific segment type dump. */
2513 if (re->ec == ELFCLASS32)
2514 printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx "
2515 "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT);
2516 else if (re->options & RE_WW)
2517 printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx "
2518 "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT);
2519 else
2520 printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n"
2521 " 0x%16.16jx 0x%16.16jx %c%c%c"
2522 " %#jx\n", PH_CT);
2523 if (phdr.p_type == PT_INTERP) {
2524 if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) {
2525 warnx("elf_rawfile failed: %s", elf_errmsg(-1));
2526 continue;
2527 }
2528 if (phdr.p_offset >= size) {
2529 warnx("invalid program header offset");
2530 continue;
2531 }
2532 printf(" [Requesting program interpreter: %s]\n",
2533 rawfile + phdr.p_offset);
2534 }
2535 }
2536
2537 /* Dump section to segment mapping. */
2538 if (re->shnum == 0)
2539 return;
2540 printf("\n Section to Segment mapping:\n");
2541 printf(" Segment Sections...\n");
2542 for (i = 0; (size_t)i < phnum; i++) {
2543 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2544 warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2545 continue;
2546 }
2547 printf(" %2.2d ", i);
2548 /* skip NULL section. */
2549 for (j = 1; (size_t)j < re->shnum; j++) {
2550 if (re->sl[j].off < phdr.p_offset)
2551 continue;
2552 if (re->sl[j].off + re->sl[j].sz >
2553 phdr.p_offset + phdr.p_filesz &&
2554 re->sl[j].type != SHT_NOBITS)
2555 continue;
2556 if (re->sl[j].addr < phdr.p_vaddr ||
2557 re->sl[j].addr + re->sl[j].sz >
2558 phdr.p_vaddr + phdr.p_memsz)
2559 continue;
2560 if (phdr.p_type == PT_TLS &&
2561 (re->sl[j].flags & SHF_TLS) == 0)
2562 continue;
2563 printf("%s ", re->sl[j].name);
2564 }
2565 printf("\n");
2566 }
2567 #undef PH_HDR
2568 #undef PH_CT
2569 }
2570
2571 static char *
section_flags(struct readelf * re,struct section * s)2572 section_flags(struct readelf *re, struct section *s)
2573 {
2574 #define BUF_SZ 256
2575 static char buf[BUF_SZ];
2576 int i, p, nb;
2577
2578 p = 0;
2579 nb = re->ec == ELFCLASS32 ? 8 : 16;
2580 if (re->options & RE_T) {
2581 snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb,
2582 (uintmax_t)s->flags);
2583 p += nb + 4;
2584 }
2585 for (i = 0; section_flag[i].ln != NULL; i++) {
2586 if ((s->flags & section_flag[i].value) == 0)
2587 continue;
2588 if (re->options & RE_T) {
2589 snprintf(&buf[p], BUF_SZ - p, "%s, ",
2590 section_flag[i].ln);
2591 p += strlen(section_flag[i].ln) + 2;
2592 } else
2593 buf[p++] = section_flag[i].sn;
2594 }
2595 if (re->options & RE_T && p > nb + 4)
2596 p -= 2;
2597 buf[p] = '\0';
2598
2599 return (buf);
2600 }
2601
2602 static void
dump_shdr(struct readelf * re)2603 dump_shdr(struct readelf *re)
2604 {
2605 struct section *s;
2606 int i;
2607
2608 #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \
2609 "Flg", "Lk", "Inf", "Al"
2610 #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \
2611 "EntSize", "Flags", "Link", "Info", "Align"
2612 #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \
2613 "Lk", "Inf", "Al", "Flags"
2614 #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \
2615 "Size", "EntSize", "Info", "Align", "Flags"
2616 #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \
2617 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2618 (uintmax_t)s->entsize, section_flags(re, s), \
2619 s->link, s->info, (uintmax_t)s->align
2620 #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \
2621 (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2622 (uintmax_t)s->entsize, s->link, s->info, \
2623 (uintmax_t)s->align, section_flags(re, s)
2624 #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \
2625 (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \
2626 (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \
2627 (uintmax_t)s->align, section_flags(re, s)
2628
2629 if (re->shnum == 0) {
2630 printf("\nThere are no sections in this file.\n");
2631 return;
2632 }
2633 printf("There are %ju section headers, starting at offset 0x%jx:\n",
2634 (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff);
2635 printf("\nSection Headers:\n");
2636 if (re->ec == ELFCLASS32) {
2637 if (re->options & RE_T)
2638 printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n"
2639 "%12s\n", ST_HDR);
2640 else
2641 printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2642 S_HDR);
2643 } else if (re->options & RE_WW) {
2644 if (re->options & RE_T)
2645 printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n"
2646 "%12s\n", ST_HDR);
2647 else
2648 printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2649 S_HDR);
2650 } else {
2651 if (re->options & RE_T)
2652 printf(" %s\n %-18s%-17s%-18s%s\n %-18s"
2653 "%-17s%-18s%s\n%12s\n", ST_HDRL);
2654 else
2655 printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%"
2656 "-6s%-6s%s\n", S_HDRL);
2657 }
2658 for (i = 0; (size_t)i < re->shnum; i++) {
2659 s = &re->sl[i];
2660 if (re->ec == ELFCLASS32) {
2661 if (re->options & RE_T)
2662 printf(" [%2d] %s\n %-15.15s %8.8jx"
2663 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n"
2664 " %s\n", ST_CT);
2665 else
2666 if (re->options & RE_WW)
2667 printf(" [%2d] %-17s %-15.15s "
2668 "%8.8jx %6.6jx %6.6jx %2.2jx %3s "
2669 "%2u %3u %2ju\n", S_CT);
2670 else
2671 printf(" [%2d] %-17.17s %-15.15s "
2672 "%8.8jx %6.6jx %6.6jx %2.2jx %3s "
2673 "%2u %3u %2ju\n", S_CT);
2674 } else if (re->options & RE_WW) {
2675 if (re->options & RE_T)
2676 printf(" [%2d] %s\n %-15.15s %16.16jx"
2677 " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n"
2678 " %s\n", ST_CT);
2679 else
2680 printf(" [%2d] %-17s %-15.15s %16.16jx"
2681 " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
2682 S_CT);
2683 } else {
2684 if (re->options & RE_T)
2685 printf(" [%2d] %s\n %-15.15s %16.16jx"
2686 " %16.16jx %u\n %16.16jx %16.16jx"
2687 " %-16u %ju\n %s\n", ST_CTL);
2688 else
2689 printf(" [%2d] %-17.17s %-15.15s %16.16jx"
2690 " %8.8jx\n %16.16jx %16.16jx "
2691 "%3s %2u %3u %ju\n", S_CT);
2692 }
2693 }
2694 if ((re->options & RE_T) == 0)
2695 printf("Key to Flags:\n W (write), A (alloc),"
2696 " X (execute), M (merge), S (strings)\n"
2697 " I (info), L (link order), G (group), x (unknown)\n"
2698 " O (extra OS processing required)"
2699 " o (OS specific), p (processor specific)\n");
2700
2701 #undef S_HDR
2702 #undef S_HDRL
2703 #undef ST_HDR
2704 #undef ST_HDRL
2705 #undef S_CT
2706 #undef ST_CT
2707 #undef ST_CTL
2708 }
2709
2710 /*
2711 * Return number of entries in the given section. We'd prefer ent_count be a
2712 * size_t *, but libelf APIs already use int for section indices.
2713 */
2714 static int
get_ent_count(struct section * s,int * ent_count)2715 get_ent_count(struct section *s, int *ent_count)
2716 {
2717 if (s->entsize == 0) {
2718 warnx("section %s has entry size 0", s->name);
2719 return (0);
2720 } else if (s->sz / s->entsize > INT_MAX) {
2721 warnx("section %s has invalid section count", s->name);
2722 return (0);
2723 }
2724 *ent_count = (int)(s->sz / s->entsize);
2725 return (1);
2726 }
2727
2728 static void
dump_dynamic(struct readelf * re)2729 dump_dynamic(struct readelf *re)
2730 {
2731 GElf_Dyn dyn;
2732 Elf_Data *d;
2733 struct section *s;
2734 int elferr, i, is_dynamic, j, jmax, nentries;
2735
2736 is_dynamic = 0;
2737
2738 for (i = 0; (size_t)i < re->shnum; i++) {
2739 s = &re->sl[i];
2740 if (s->type != SHT_DYNAMIC)
2741 continue;
2742 (void) elf_errno();
2743 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
2744 elferr = elf_errno();
2745 if (elferr != 0)
2746 warnx("elf_getdata failed: %s", elf_errmsg(-1));
2747 continue;
2748 }
2749 if (d->d_size <= 0)
2750 continue;
2751
2752 is_dynamic = 1;
2753
2754 /* Determine the actual number of table entries. */
2755 nentries = 0;
2756 if (!get_ent_count(s, &jmax))
2757 continue;
2758 for (j = 0; j < jmax; j++) {
2759 if (gelf_getdyn(d, j, &dyn) != &dyn) {
2760 warnx("gelf_getdyn failed: %s",
2761 elf_errmsg(-1));
2762 continue;
2763 }
2764 nentries ++;
2765 if (dyn.d_tag == DT_NULL)
2766 break;
2767 }
2768
2769 printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off);
2770 printf(" contains %u entries:\n", nentries);
2771
2772 if (re->ec == ELFCLASS32)
2773 printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value");
2774 else
2775 printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value");
2776
2777 for (j = 0; j < nentries; j++) {
2778 if (gelf_getdyn(d, j, &dyn) != &dyn)
2779 continue;
2780 /* Dump dynamic entry type. */
2781 if (re->ec == ELFCLASS32)
2782 printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag);
2783 else
2784 printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag);
2785 printf(" %-20s", dt_type(re->ehdr.e_machine,
2786 dyn.d_tag));
2787 /* Dump dynamic entry value. */
2788 dump_dyn_val(re, &dyn, s->link);
2789 }
2790 }
2791
2792 if (!is_dynamic)
2793 printf("\nThere is no dynamic section in this file.\n");
2794 }
2795
2796 static char *
timestamp(time_t ti)2797 timestamp(time_t ti)
2798 {
2799 static char ts[32];
2800 struct tm *t;
2801
2802 t = gmtime(&ti);
2803 snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d",
2804 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour,
2805 t->tm_min, t->tm_sec);
2806
2807 return (ts);
2808 }
2809
2810 static const char *
dyn_str(struct readelf * re,uint32_t stab,uint64_t d_val)2811 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val)
2812 {
2813 const char *name;
2814
2815 if (stab == SHN_UNDEF)
2816 name = "ERROR";
2817 else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) {
2818 (void) elf_errno(); /* clear error */
2819 name = "ERROR";
2820 }
2821
2822 return (name);
2823 }
2824
2825 static void
dump_arch_dyn_val(struct readelf * re,GElf_Dyn * dyn)2826 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn)
2827 {
2828 switch (re->ehdr.e_machine) {
2829 case EM_MIPS:
2830 case EM_MIPS_RS3_LE:
2831 switch (dyn->d_tag) {
2832 case DT_MIPS_RLD_VERSION:
2833 case DT_MIPS_LOCAL_GOTNO:
2834 case DT_MIPS_CONFLICTNO:
2835 case DT_MIPS_LIBLISTNO:
2836 case DT_MIPS_SYMTABNO:
2837 case DT_MIPS_UNREFEXTNO:
2838 case DT_MIPS_GOTSYM:
2839 case DT_MIPS_HIPAGENO:
2840 case DT_MIPS_DELTA_CLASS_NO:
2841 case DT_MIPS_DELTA_INSTANCE_NO:
2842 case DT_MIPS_DELTA_RELOC_NO:
2843 case DT_MIPS_DELTA_SYM_NO:
2844 case DT_MIPS_DELTA_CLASSSYM_NO:
2845 case DT_MIPS_LOCALPAGE_GOTIDX:
2846 case DT_MIPS_LOCAL_GOTIDX:
2847 case DT_MIPS_HIDDEN_GOTIDX:
2848 case DT_MIPS_PROTECTED_GOTIDX:
2849 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
2850 break;
2851 case DT_MIPS_ICHECKSUM:
2852 case DT_MIPS_FLAGS:
2853 case DT_MIPS_BASE_ADDRESS:
2854 case DT_MIPS_CONFLICT:
2855 case DT_MIPS_LIBLIST:
2856 case DT_MIPS_RLD_MAP:
2857 case DT_MIPS_DELTA_CLASS:
2858 case DT_MIPS_DELTA_INSTANCE:
2859 case DT_MIPS_DELTA_RELOC:
2860 case DT_MIPS_DELTA_SYM:
2861 case DT_MIPS_DELTA_CLASSSYM:
2862 case DT_MIPS_CXX_FLAGS:
2863 case DT_MIPS_PIXIE_INIT:
2864 case DT_MIPS_SYMBOL_LIB:
2865 case DT_MIPS_OPTIONS:
2866 case DT_MIPS_INTERFACE:
2867 case DT_MIPS_DYNSTR_ALIGN:
2868 case DT_MIPS_INTERFACE_SIZE:
2869 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2870 case DT_MIPS_COMPACT_SIZE:
2871 case DT_MIPS_GP_VALUE:
2872 case DT_MIPS_AUX_DYNAMIC:
2873 case DT_MIPS_PLTGOT:
2874 case DT_MIPS_RLD_OBJ_UPDATE:
2875 case DT_MIPS_RWPLT:
2876 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
2877 break;
2878 case DT_MIPS_IVERSION:
2879 case DT_MIPS_PERF_SUFFIX:
2880 case DT_MIPS_TIME_STAMP:
2881 printf(" %s\n", timestamp(dyn->d_un.d_val));
2882 break;
2883 default:
2884 printf("\n");
2885 break;
2886 }
2887 break;
2888 default:
2889 printf("\n");
2890 break;
2891 }
2892 }
2893
2894 static void
dump_flags(struct flag_desc * desc,uint64_t val)2895 dump_flags(struct flag_desc *desc, uint64_t val)
2896 {
2897 struct flag_desc *fd;
2898
2899 for (fd = desc; fd->flag != 0; fd++) {
2900 if (val & fd->flag) {
2901 val &= ~fd->flag;
2902 printf(" %s", fd->desc);
2903 }
2904 }
2905 if (val != 0)
2906 printf(" unknown (0x%jx)", (uintmax_t)val);
2907 printf("\n");
2908 }
2909
2910 static struct flag_desc dt_flags[] = {
2911 { DF_ORIGIN, "ORIGIN" },
2912 { DF_SYMBOLIC, "SYMBOLIC" },
2913 { DF_TEXTREL, "TEXTREL" },
2914 { DF_BIND_NOW, "BIND_NOW" },
2915 { DF_STATIC_TLS, "STATIC_TLS" },
2916 { 0, NULL }
2917 };
2918
2919 static struct flag_desc dt_flags_1[] = {
2920 { DF_1_BIND_NOW, "NOW" },
2921 { DF_1_GLOBAL, "GLOBAL" },
2922 { 0x4, "GROUP" },
2923 { DF_1_NODELETE, "NODELETE" },
2924 { DF_1_LOADFLTR, "LOADFLTR" },
2925 { 0x20, "INITFIRST" },
2926 { DF_1_NOOPEN, "NOOPEN" },
2927 { DF_1_ORIGIN, "ORIGIN" },
2928 { 0x100, "DIRECT" },
2929 { DF_1_INTERPOSE, "INTERPOSE" },
2930 { DF_1_NODEFLIB, "NODEFLIB" },
2931 { 0x1000, "NODUMP" },
2932 { 0x2000, "CONFALT" },
2933 { 0x4000, "ENDFILTEE" },
2934 { 0x8000, "DISPRELDNE" },
2935 { 0x10000, "DISPRELPND" },
2936 { 0x20000, "NODIRECT" },
2937 { 0x40000, "IGNMULDEF" },
2938 { 0x80000, "NOKSYMS" },
2939 { 0x100000, "NOHDR" },
2940 { 0x200000, "EDITED" },
2941 { 0x400000, "NORELOC" },
2942 { 0x800000, "SYMINTPOSE" },
2943 { 0x1000000, "GLOBAUDIT" },
2944 { 0x02000000, "SINGLETON" },
2945 { 0x04000000, "STUB" },
2946 { DF_1_PIE, "PIE" },
2947 { 0, NULL }
2948 };
2949
2950 static void
dump_dyn_val(struct readelf * re,GElf_Dyn * dyn,uint32_t stab)2951 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab)
2952 {
2953 const char *name;
2954
2955 if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC &&
2956 dyn->d_tag != DT_AUXILIARY && dyn->d_tag != DT_FILTER) {
2957 dump_arch_dyn_val(re, dyn);
2958 return;
2959 }
2960
2961 /* These entry values are index into the string table. */
2962 name = NULL;
2963 if (dyn->d_tag == DT_AUXILIARY || dyn->d_tag == DT_FILTER ||
2964 dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME ||
2965 dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH)
2966 name = dyn_str(re, stab, dyn->d_un.d_val);
2967
2968 switch(dyn->d_tag) {
2969 case DT_NULL:
2970 case DT_PLTGOT:
2971 case DT_HASH:
2972 case DT_STRTAB:
2973 case DT_SYMTAB:
2974 case DT_RELA:
2975 case DT_INIT:
2976 case DT_SYMBOLIC:
2977 case DT_REL:
2978 case DT_DEBUG:
2979 case DT_TEXTREL:
2980 case DT_JMPREL:
2981 case DT_FINI:
2982 case DT_VERDEF:
2983 case DT_VERNEED:
2984 case DT_VERSYM:
2985 case DT_GNU_HASH:
2986 case DT_GNU_LIBLIST:
2987 case DT_GNU_CONFLICT:
2988 printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
2989 break;
2990 case DT_PLTRELSZ:
2991 case DT_RELASZ:
2992 case DT_RELAENT:
2993 case DT_STRSZ:
2994 case DT_SYMENT:
2995 case DT_RELSZ:
2996 case DT_RELENT:
2997 case DT_PREINIT_ARRAYSZ:
2998 case DT_INIT_ARRAYSZ:
2999 case DT_FINI_ARRAYSZ:
3000 case DT_GNU_CONFLICTSZ:
3001 case DT_GNU_LIBLISTSZ:
3002 printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val);
3003 break;
3004 case DT_RELACOUNT:
3005 case DT_RELCOUNT:
3006 case DT_VERDEFNUM:
3007 case DT_VERNEEDNUM:
3008 printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
3009 break;
3010 case DT_AUXILIARY:
3011 printf(" Auxiliary library: [%s]\n", name);
3012 break;
3013 case DT_FILTER:
3014 printf(" Filter library: [%s]\n", name);
3015 break;
3016 case DT_NEEDED:
3017 printf(" Shared library: [%s]\n", name);
3018 break;
3019 case DT_SONAME:
3020 printf(" Library soname: [%s]\n", name);
3021 break;
3022 case DT_RPATH:
3023 printf(" Library rpath: [%s]\n", name);
3024 break;
3025 case DT_RUNPATH:
3026 printf(" Library runpath: [%s]\n", name);
3027 break;
3028 case DT_PLTREL:
3029 printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val));
3030 break;
3031 case DT_GNU_PRELINKED:
3032 printf(" %s\n", timestamp(dyn->d_un.d_val));
3033 break;
3034 case DT_FLAGS:
3035 dump_flags(dt_flags, dyn->d_un.d_val);
3036 break;
3037 case DT_FLAGS_1:
3038 dump_flags(dt_flags_1, dyn->d_un.d_val);
3039 break;
3040 default:
3041 printf("\n");
3042 }
3043 }
3044
3045 static void
dump_rel(struct readelf * re,struct section * s,Elf_Data * d)3046 dump_rel(struct readelf *re, struct section *s, Elf_Data *d)
3047 {
3048 GElf_Rel r;
3049 const char *symname;
3050 uint64_t symval;
3051 int i, len;
3052 uint32_t type;
3053 uint8_t type2, type3;
3054
3055 if (s->link >= re->shnum)
3056 return;
3057
3058 #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name"
3059 #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \
3060 elftc_reloc_type_str(re->ehdr.e_machine, \
3061 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname
3062 #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \
3063 elftc_reloc_type_str(re->ehdr.e_machine, type), \
3064 (uintmax_t)symval, symname
3065
3066 printf("\nRelocation section (%s):\n", s->name);
3067 if (re->ec == ELFCLASS32)
3068 printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR);
3069 else {
3070 if (re->options & RE_WW)
3071 printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR);
3072 else
3073 printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR);
3074 }
3075 assert(d->d_size == s->sz);
3076 if (!get_ent_count(s, &len))
3077 return;
3078 for (i = 0; i < len; i++) {
3079 if (gelf_getrel(d, i, &r) != &r) {
3080 warnx("gelf_getrel failed: %s", elf_errmsg(-1));
3081 continue;
3082 }
3083 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
3084 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
3085 if (re->ec == ELFCLASS32) {
3086 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
3087 ELF64_R_TYPE(r.r_info));
3088 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32);
3089 } else {
3090 type = ELF64_R_TYPE(r.r_info);
3091 if (re->ehdr.e_machine == EM_MIPS) {
3092 type2 = (type >> 8) & 0xFF;
3093 type3 = (type >> 16) & 0xFF;
3094 type = type & 0xFF;
3095 } else {
3096 type2 = type3 = 0;
3097 }
3098 if (re->options & RE_WW)
3099 printf("%16.16jx %16.16jx %-24.24s"
3100 " %16.16jx %s\n", REL_CT64);
3101 else
3102 printf("%12.12jx %12.12jx %-19.19s"
3103 " %16.16jx %s\n", REL_CT64);
3104 if (re->ehdr.e_machine == EM_MIPS) {
3105 if (re->options & RE_WW) {
3106 printf("%32s: %s\n", "Type2",
3107 elftc_reloc_type_str(EM_MIPS,
3108 type2));
3109 printf("%32s: %s\n", "Type3",
3110 elftc_reloc_type_str(EM_MIPS,
3111 type3));
3112 } else {
3113 printf("%24s: %s\n", "Type2",
3114 elftc_reloc_type_str(EM_MIPS,
3115 type2));
3116 printf("%24s: %s\n", "Type3",
3117 elftc_reloc_type_str(EM_MIPS,
3118 type3));
3119 }
3120 }
3121 }
3122 }
3123
3124 #undef REL_HDR
3125 #undef REL_CT
3126 }
3127
3128 static void
dump_rela(struct readelf * re,struct section * s,Elf_Data * d)3129 dump_rela(struct readelf *re, struct section *s, Elf_Data *d)
3130 {
3131 GElf_Rela r;
3132 const char *symname;
3133 uint64_t symval;
3134 int i, len;
3135 uint32_t type;
3136 uint8_t type2, type3;
3137
3138 if (s->link >= re->shnum)
3139 return;
3140
3141 #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \
3142 "st_name + r_addend"
3143 #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \
3144 elftc_reloc_type_str(re->ehdr.e_machine, \
3145 ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname
3146 #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \
3147 elftc_reloc_type_str(re->ehdr.e_machine, type), \
3148 (uintmax_t)symval, symname
3149
3150 printf("\nRelocation section with addend (%s):\n", s->name);
3151 if (re->ec == ELFCLASS32)
3152 printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR);
3153 else {
3154 if (re->options & RE_WW)
3155 printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR);
3156 else
3157 printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR);
3158 }
3159 assert(d->d_size == s->sz);
3160 if (!get_ent_count(s, &len))
3161 return;
3162 for (i = 0; i < len; i++) {
3163 if (gelf_getrela(d, i, &r) != &r) {
3164 warnx("gelf_getrel failed: %s", elf_errmsg(-1));
3165 continue;
3166 }
3167 symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
3168 symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
3169 if (re->ec == ELFCLASS32) {
3170 r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
3171 ELF64_R_TYPE(r.r_info));
3172 printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32);
3173 printf(" + %x\n", (uint32_t) r.r_addend);
3174 } else {
3175 type = ELF64_R_TYPE(r.r_info);
3176 if (re->ehdr.e_machine == EM_MIPS) {
3177 type2 = (type >> 8) & 0xFF;
3178 type3 = (type >> 16) & 0xFF;
3179 type = type & 0xFF;
3180 } else {
3181 type2 = type3 = 0;
3182 }
3183 if (re->options & RE_WW)
3184 printf("%16.16jx %16.16jx %-24.24s"
3185 " %16.16jx %s", RELA_CT64);
3186 else
3187 printf("%12.12jx %12.12jx %-19.19s"
3188 " %16.16jx %s", RELA_CT64);
3189 printf(" + %jx\n", (uintmax_t) r.r_addend);
3190 if (re->ehdr.e_machine == EM_MIPS) {
3191 if (re->options & RE_WW) {
3192 printf("%32s: %s\n", "Type2",
3193 elftc_reloc_type_str(EM_MIPS,
3194 type2));
3195 printf("%32s: %s\n", "Type3",
3196 elftc_reloc_type_str(EM_MIPS,
3197 type3));
3198 } else {
3199 printf("%24s: %s\n", "Type2",
3200 elftc_reloc_type_str(EM_MIPS,
3201 type2));
3202 printf("%24s: %s\n", "Type3",
3203 elftc_reloc_type_str(EM_MIPS,
3204 type3));
3205 }
3206 }
3207 }
3208 }
3209
3210 #undef RELA_HDR
3211 #undef RELA_CT
3212 }
3213
3214 static void
dump_reloc(struct readelf * re)3215 dump_reloc(struct readelf *re)
3216 {
3217 struct section *s;
3218 Elf_Data *d;
3219 int i, elferr;
3220
3221 for (i = 0; (size_t)i < re->shnum; i++) {
3222 s = &re->sl[i];
3223 if (s->type == SHT_REL || s->type == SHT_RELA) {
3224 (void) elf_errno();
3225 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3226 elferr = elf_errno();
3227 if (elferr != 0)
3228 warnx("elf_getdata failed: %s",
3229 elf_errmsg(elferr));
3230 continue;
3231 }
3232 if (s->type == SHT_REL)
3233 dump_rel(re, s, d);
3234 else
3235 dump_rela(re, s, d);
3236 }
3237 }
3238 }
3239
3240 static void
dump_symtab(struct readelf * re,int i)3241 dump_symtab(struct readelf *re, int i)
3242 {
3243 struct section *s;
3244 Elf_Data *d;
3245 GElf_Sym sym;
3246 const char *name;
3247 uint32_t stab;
3248 int elferr, j, len;
3249 uint16_t vs;
3250
3251 s = &re->sl[i];
3252 if (s->link >= re->shnum)
3253 return;
3254 stab = s->link;
3255 (void) elf_errno();
3256 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3257 elferr = elf_errno();
3258 if (elferr != 0)
3259 warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3260 return;
3261 }
3262 if (d->d_size <= 0)
3263 return;
3264 if (!get_ent_count(s, &len))
3265 return;
3266 printf("\nSymbol table '%s' contains %d entries:\n", s->name, len);
3267 printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type",
3268 "Bind", "Vis", "Ndx", "Name");
3269
3270 for (j = 0; j < len; j++) {
3271 if (gelf_getsym(d, j, &sym) != &sym) {
3272 warnx("gelf_getsym failed: %s", elf_errmsg(-1));
3273 continue;
3274 }
3275 printf("%6d:", j);
3276 printf(" %16.16jx", (uintmax_t) sym.st_value);
3277 printf(" %5ju", (uintmax_t) sym.st_size);
3278 printf(" %-7s", st_type(re->ehdr.e_machine,
3279 re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info)));
3280 printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info)));
3281 printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other)));
3282 printf(" %3s", st_shndx(sym.st_shndx));
3283 if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL)
3284 printf(" %s", name);
3285 /* Append symbol version string for SHT_DYNSYM symbol table. */
3286 if (s->type == SHT_DYNSYM && re->ver != NULL &&
3287 re->vs != NULL && re->vs[j] > 1) {
3288 vs = re->vs[j] & VERSYM_VERSION;
3289 if (vs >= re->ver_sz || re->ver[vs].name == NULL) {
3290 warnx("invalid versym version index %u", vs);
3291 break;
3292 }
3293 if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0)
3294 printf("@%s (%d)", re->ver[vs].name, vs);
3295 else
3296 printf("@@%s (%d)", re->ver[vs].name, vs);
3297 }
3298 putchar('\n');
3299 }
3300
3301 }
3302
3303 static void
dump_symtabs(struct readelf * re)3304 dump_symtabs(struct readelf *re)
3305 {
3306 GElf_Dyn dyn;
3307 Elf_Data *d;
3308 struct section *s;
3309 uint64_t dyn_off;
3310 int elferr, i, len;
3311
3312 /*
3313 * If -D is specified, only dump the symbol table specified by
3314 * the DT_SYMTAB entry in the .dynamic section.
3315 */
3316 dyn_off = 0;
3317 if (re->options & RE_DD) {
3318 s = NULL;
3319 for (i = 0; (size_t)i < re->shnum; i++)
3320 if (re->sl[i].type == SHT_DYNAMIC) {
3321 s = &re->sl[i];
3322 break;
3323 }
3324 if (s == NULL)
3325 return;
3326 (void) elf_errno();
3327 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3328 elferr = elf_errno();
3329 if (elferr != 0)
3330 warnx("elf_getdata failed: %s", elf_errmsg(-1));
3331 return;
3332 }
3333 if (d->d_size <= 0)
3334 return;
3335 if (!get_ent_count(s, &len))
3336 return;
3337
3338 for (i = 0; i < len; i++) {
3339 if (gelf_getdyn(d, i, &dyn) != &dyn) {
3340 warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
3341 continue;
3342 }
3343 if (dyn.d_tag == DT_SYMTAB) {
3344 dyn_off = dyn.d_un.d_val;
3345 break;
3346 }
3347 }
3348 }
3349
3350 /* Find and dump symbol tables. */
3351 for (i = 0; (size_t)i < re->shnum; i++) {
3352 s = &re->sl[i];
3353 if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) {
3354 if (re->options & RE_DD) {
3355 if (dyn_off == s->addr) {
3356 dump_symtab(re, i);
3357 break;
3358 }
3359 } else
3360 dump_symtab(re, i);
3361 }
3362 }
3363 }
3364
3365 static void
dump_svr4_hash(struct section * s)3366 dump_svr4_hash(struct section *s)
3367 {
3368 Elf_Data *d;
3369 uint32_t *buf;
3370 uint32_t nbucket, nchain;
3371 uint32_t *bucket, *chain;
3372 uint32_t *bl, *c, maxl, total;
3373 int elferr, i, j;
3374
3375 /* Read and parse the content of .hash section. */
3376 (void) elf_errno();
3377 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3378 elferr = elf_errno();
3379 if (elferr != 0)
3380 warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3381 return;
3382 }
3383 if (d->d_size < 2 * sizeof(uint32_t)) {
3384 warnx(".hash section too small");
3385 return;
3386 }
3387 buf = d->d_buf;
3388 nbucket = buf[0];
3389 nchain = buf[1];
3390 if (nbucket <= 0 || nchain <= 0) {
3391 warnx("Malformed .hash section");
3392 return;
3393 }
3394 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3395 warnx("Malformed .hash section");
3396 return;
3397 }
3398 bucket = &buf[2];
3399 chain = &buf[2 + nbucket];
3400
3401 maxl = 0;
3402 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3403 errx(EXIT_FAILURE, "calloc failed");
3404 for (i = 0; (uint32_t)i < nbucket; i++)
3405 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3406 if (++bl[i] > maxl)
3407 maxl = bl[i];
3408 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3409 errx(EXIT_FAILURE, "calloc failed");
3410 for (i = 0; (uint32_t)i < nbucket; i++)
3411 c[bl[i]]++;
3412 printf("\nHistogram for bucket list length (total of %u buckets):\n",
3413 nbucket);
3414 printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3415 total = 0;
3416 for (i = 0; (uint32_t)i <= maxl; i++) {
3417 total += c[i] * i;
3418 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3419 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3420 }
3421 free(c);
3422 free(bl);
3423 }
3424
3425 static void
dump_svr4_hash64(struct readelf * re,struct section * s)3426 dump_svr4_hash64(struct readelf *re, struct section *s)
3427 {
3428 Elf_Data *d, dst;
3429 uint64_t *buf;
3430 uint64_t nbucket, nchain;
3431 uint64_t *bucket, *chain;
3432 uint64_t *bl, *c, maxl, total;
3433 int elferr, i, j;
3434
3435 /*
3436 * ALPHA uses 64-bit hash entries. Since libelf assumes that
3437 * .hash section contains only 32-bit entry, an explicit
3438 * gelf_xlatetom is needed here.
3439 */
3440 (void) elf_errno();
3441 if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
3442 elferr = elf_errno();
3443 if (elferr != 0)
3444 warnx("elf_rawdata failed: %s",
3445 elf_errmsg(elferr));
3446 return;
3447 }
3448 d->d_type = ELF_T_XWORD;
3449 memcpy(&dst, d, sizeof(Elf_Data));
3450 if (gelf_xlatetom(re->elf, &dst, d,
3451 re->ehdr.e_ident[EI_DATA]) != &dst) {
3452 warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
3453 return;
3454 }
3455 if (dst.d_size < 2 * sizeof(uint64_t)) {
3456 warnx(".hash section too small");
3457 return;
3458 }
3459 buf = dst.d_buf;
3460 nbucket = buf[0];
3461 nchain = buf[1];
3462 if (nbucket <= 0 || nchain <= 0) {
3463 warnx("Malformed .hash section");
3464 return;
3465 }
3466 if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3467 warnx("Malformed .hash section");
3468 return;
3469 }
3470 bucket = &buf[2];
3471 chain = &buf[2 + nbucket];
3472
3473 maxl = 0;
3474 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3475 errx(EXIT_FAILURE, "calloc failed");
3476 for (i = 0; (uint32_t)i < nbucket; i++)
3477 for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3478 if (++bl[i] > maxl)
3479 maxl = bl[i];
3480 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3481 errx(EXIT_FAILURE, "calloc failed");
3482 for (i = 0; (uint64_t)i < nbucket; i++)
3483 c[bl[i]]++;
3484 printf("Histogram for bucket list length (total of %ju buckets):\n",
3485 (uintmax_t)nbucket);
3486 printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3487 total = 0;
3488 for (i = 0; (uint64_t)i <= maxl; i++) {
3489 total += c[i] * i;
3490 printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i],
3491 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3492 }
3493 free(c);
3494 free(bl);
3495 }
3496
3497 static void
dump_gnu_hash(struct readelf * re,struct section * s)3498 dump_gnu_hash(struct readelf *re, struct section *s)
3499 {
3500 struct section *ds;
3501 Elf_Data *d;
3502 uint32_t *buf;
3503 uint32_t *bucket, *chain;
3504 uint32_t nbucket, nchain, symndx, maskwords;
3505 uint32_t *bl, *c, maxl, total;
3506 int elferr, dynsymcount, i, j;
3507
3508 (void) elf_errno();
3509 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3510 elferr = elf_errno();
3511 if (elferr != 0)
3512 warnx("elf_getdata failed: %s",
3513 elf_errmsg(elferr));
3514 return;
3515 }
3516 if (d->d_size < 4 * sizeof(uint32_t)) {
3517 warnx(".gnu.hash section too small");
3518 return;
3519 }
3520 buf = d->d_buf;
3521 nbucket = buf[0];
3522 symndx = buf[1];
3523 maskwords = buf[2];
3524 buf += 4;
3525 if (s->link >= re->shnum)
3526 return;
3527 ds = &re->sl[s->link];
3528 if (!get_ent_count(ds, &dynsymcount))
3529 return;
3530 if (symndx >= (uint32_t)dynsymcount) {
3531 warnx("Malformed .gnu.hash section (symndx out of range)");
3532 return;
3533 }
3534 nchain = dynsymcount - symndx;
3535 if (d->d_size != 4 * sizeof(uint32_t) + maskwords *
3536 (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
3537 (nbucket + nchain) * sizeof(uint32_t)) {
3538 warnx("Malformed .gnu.hash section");
3539 return;
3540 }
3541 bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2);
3542 chain = bucket + nbucket;
3543
3544 maxl = 0;
3545 if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3546 errx(EXIT_FAILURE, "calloc failed");
3547 for (i = 0; (uint32_t)i < nbucket; i++)
3548 for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain;
3549 j++) {
3550 if (++bl[i] > maxl)
3551 maxl = bl[i];
3552 if (chain[j - symndx] & 1)
3553 break;
3554 }
3555 if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3556 errx(EXIT_FAILURE, "calloc failed");
3557 for (i = 0; (uint32_t)i < nbucket; i++)
3558 c[bl[i]]++;
3559 printf("Histogram for bucket list length (total of %u buckets):\n",
3560 nbucket);
3561 printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3562 total = 0;
3563 for (i = 0; (uint32_t)i <= maxl; i++) {
3564 total += c[i] * i;
3565 printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3566 c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3567 }
3568 free(c);
3569 free(bl);
3570 }
3571
3572 static struct flag_desc gnu_property_aarch64_feature_1_and_bits[] = {
3573 { GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI" },
3574 { GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC" },
3575 { 0, NULL }
3576 };
3577
3578 static struct flag_desc_list gnu_property_aarch64[] = {
3579 {
3580 GNU_PROPERTY_AARCH64_FEATURE_1_AND,
3581 "AArch64 features",
3582 gnu_property_aarch64_feature_1_and_bits
3583 },
3584 { 0, NULL, NULL }
3585 };
3586
3587 static struct flag_desc gnu_property_x86_feature_1_and_bits[] = {
3588 { GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT" },
3589 { GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK" },
3590 { 0, NULL }
3591 };
3592
3593 static struct flag_desc_list gnu_property_x86[] = {
3594 {
3595 GNU_PROPERTY_X86_FEATURE_1_AND,
3596 "x64 features",
3597 gnu_property_x86_feature_1_and_bits
3598 },
3599 { 0, NULL, NULL }
3600 };
3601
3602 static struct {
3603 unsigned int emachine;
3604 struct flag_desc_list *flag_list;
3605 } gnu_property_archs[] = {
3606 { EM_AARCH64, gnu_property_aarch64 },
3607 { EM_X86_64, gnu_property_x86 },
3608 { 0, NULL }
3609 };
3610
3611 static void
dump_gnu_property_type_0(struct readelf * re,const char * buf,size_t sz)3612 dump_gnu_property_type_0(struct readelf *re, const char *buf, size_t sz)
3613 {
3614 struct flag_desc_list *desc_list;
3615 struct flag_desc *desc;
3616 size_t i;
3617 uint32_t type, prop_sz;
3618
3619 printf(" Properties: ");
3620 while (sz > 0) {
3621 if (sz < 8)
3622 goto bad;
3623
3624 type = *(const uint32_t *)(const void *)buf;
3625 prop_sz = *(const uint32_t *)(const void *)(buf + 4);
3626 buf += 8;
3627 sz -= 8;
3628
3629 if (prop_sz > sz)
3630 goto bad;
3631
3632 if (type >= GNU_PROPERTY_LOPROC &&
3633 type <= GNU_PROPERTY_HIPROC) {
3634 desc_list = NULL;
3635 for (i = 0; gnu_property_archs[i].flag_list != NULL;
3636 i++) {
3637 if (gnu_property_archs[i].emachine ==
3638 re->ehdr.e_machine) {
3639 desc_list =
3640 gnu_property_archs[i].flag_list;
3641 break;
3642 }
3643 }
3644 if (desc_list == NULL) {
3645 printf("machine type %x unknown\n",
3646 re->ehdr.e_machine);
3647 goto unknown;
3648 }
3649
3650 desc = NULL;
3651 for (i = 0; desc_list[i].desc != NULL; i++) {
3652 if (desc_list[i].type == type) {
3653 desc = desc_list[i].desc;
3654 break;
3655 }
3656 }
3657 if (desc != NULL) {
3658 printf("%s:", desc_list[i].desc_str);
3659 if (prop_sz != 4)
3660 goto bad;
3661 dump_flags(desc,
3662 *(const uint32_t *)(const void *)buf);
3663 }
3664 }
3665
3666 buf += roundup2(prop_sz, 8);
3667 sz -= roundup2(prop_sz, 8);
3668 }
3669 return;
3670 bad:
3671 printf("corrupt GNU property\n");
3672 unknown:
3673 printf("remaining description data:");
3674 for (i = 0; i < sz; i++)
3675 printf(" %02x", (unsigned char)buf[i]);
3676 printf("\n");
3677 }
3678
3679 static void
dump_hash(struct readelf * re)3680 dump_hash(struct readelf *re)
3681 {
3682 struct section *s;
3683 int i;
3684
3685 for (i = 0; (size_t) i < re->shnum; i++) {
3686 s = &re->sl[i];
3687 if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) {
3688 if (s->type == SHT_GNU_HASH)
3689 dump_gnu_hash(re, s);
3690 else if (re->ehdr.e_machine == EM_ALPHA &&
3691 s->entsize == 8)
3692 dump_svr4_hash64(re, s);
3693 else
3694 dump_svr4_hash(s);
3695 }
3696 }
3697 }
3698
3699 static void
dump_notes(struct readelf * re)3700 dump_notes(struct readelf *re)
3701 {
3702 struct section *s;
3703 const char *rawfile;
3704 GElf_Phdr phdr;
3705 Elf_Data *d;
3706 size_t filesize, phnum;
3707 int i, elferr;
3708
3709 if (re->ehdr.e_type == ET_CORE) {
3710 /*
3711 * Search program headers in the core file for
3712 * PT_NOTE entry.
3713 */
3714 if (elf_getphnum(re->elf, &phnum) == 0) {
3715 warnx("elf_getphnum failed: %s", elf_errmsg(-1));
3716 return;
3717 }
3718 if (phnum == 0)
3719 return;
3720 if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) {
3721 warnx("elf_rawfile failed: %s", elf_errmsg(-1));
3722 return;
3723 }
3724 for (i = 0; (size_t) i < phnum; i++) {
3725 if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
3726 warnx("gelf_getphdr failed: %s",
3727 elf_errmsg(-1));
3728 continue;
3729 }
3730 if (phdr.p_type == PT_NOTE) {
3731 if (phdr.p_offset >= filesize ||
3732 phdr.p_filesz > filesize - phdr.p_offset) {
3733 warnx("invalid PHDR offset");
3734 continue;
3735 }
3736 dump_notes_content(re, rawfile + phdr.p_offset,
3737 phdr.p_filesz, phdr.p_offset);
3738 }
3739 }
3740
3741 } else {
3742 /*
3743 * For objects other than core files, Search for
3744 * SHT_NOTE sections.
3745 */
3746 for (i = 0; (size_t) i < re->shnum; i++) {
3747 s = &re->sl[i];
3748 if (s->type == SHT_NOTE) {
3749 (void) elf_errno();
3750 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3751 elferr = elf_errno();
3752 if (elferr != 0)
3753 warnx("elf_getdata failed: %s",
3754 elf_errmsg(elferr));
3755 continue;
3756 }
3757 dump_notes_content(re, d->d_buf, d->d_size,
3758 s->off);
3759 }
3760 }
3761 }
3762 }
3763
3764 static struct flag_desc note_feature_ctl_flags[] = {
3765 { NT_FREEBSD_FCTL_ASLR_DISABLE, "ASLR_DISABLE" },
3766 { NT_FREEBSD_FCTL_PROTMAX_DISABLE, "PROTMAX_DISABLE" },
3767 { NT_FREEBSD_FCTL_STKGAP_DISABLE, "STKGAP_DISABLE" },
3768 { NT_FREEBSD_FCTL_WXNEEDED, "WXNEEDED" },
3769 { NT_FREEBSD_FCTL_LA48, "LA48" },
3770 { 0, NULL }
3771 };
3772
3773 static bool
dump_note_string(const char * description,const char * s,size_t len)3774 dump_note_string(const char *description, const char *s, size_t len)
3775 {
3776 size_t i;
3777
3778 if (len == 0 || s[--len] != '\0') {
3779 return (false);
3780 } else {
3781 for (i = 0; i < len; i++)
3782 if (!isprint(s[i]))
3783 return (false);
3784 }
3785
3786 printf(" %s: %s\n", description, s);
3787 return (true);
3788 }
3789
3790 struct note_desc {
3791 uint32_t type;
3792 const char *description;
3793 bool (*fp)(const char *, const char *, size_t);
3794 };
3795
3796 static struct note_desc xen_notes[] = {
3797 { 5, "Xen version", dump_note_string },
3798 { 6, "Guest OS", dump_note_string },
3799 { 7, "Guest version", dump_note_string },
3800 { 8, "Loader", dump_note_string },
3801 { 9, "PAE mode", dump_note_string },
3802 { 10, "Features", dump_note_string },
3803 { 11, "BSD symtab", dump_note_string },
3804 { 0, NULL, NULL }
3805 };
3806
3807 static void
dump_notes_data(struct readelf * re,const char * name,uint32_t type,const char * buf,size_t sz)3808 dump_notes_data(struct readelf *re, const char *name, uint32_t type,
3809 const char *buf, size_t sz)
3810 {
3811 struct note_desc *nd;
3812 size_t i;
3813 const uint32_t *ubuf;
3814
3815 /* Note data is at least 4-byte aligned. */
3816 if (((uintptr_t)buf & 3) != 0) {
3817 warnx("bad note data alignment");
3818 goto unknown;
3819 }
3820 ubuf = (const uint32_t *)(const void *)buf;
3821
3822 if (strcmp(name, "FreeBSD") == 0) {
3823 switch (type) {
3824 case NT_FREEBSD_ABI_TAG:
3825 if (sz != 4)
3826 goto unknown;
3827 printf(" ABI tag: %u\n", ubuf[0]);
3828 return;
3829 /* NT_FREEBSD_NOINIT_TAG carries no data, treat as unknown. */
3830 case NT_FREEBSD_ARCH_TAG:
3831 printf(" Arch tag: %s\n", buf);
3832 return;
3833 case NT_FREEBSD_FEATURE_CTL:
3834 if (sz != 4)
3835 goto unknown;
3836 printf(" Features:");
3837 dump_flags(note_feature_ctl_flags, ubuf[0]);
3838 return;
3839 }
3840 } else if (strcmp(name, "Go") == 0) {
3841 if (type == 4) {
3842 printf(" Build ID: ");
3843 for (i = 0; i < sz; i++) {
3844 printf(isprint(buf[i]) ? "%c" : "<%02x>",
3845 buf[i]);
3846 }
3847 printf("\n");
3848 return;
3849 }
3850 } else if (strcmp(name, "GNU") == 0) {
3851 switch (type) {
3852 case NT_GNU_PROPERTY_TYPE_0:
3853 dump_gnu_property_type_0(re, buf, sz);
3854 return;
3855 case NT_GNU_BUILD_ID:
3856 printf(" Build ID: ");
3857 for (i = 0; i < sz; i++)
3858 printf("%02x", (unsigned char)buf[i]);
3859 printf("\n");
3860 return;
3861 }
3862 } else if (strcmp(name, "Xen") == 0) {
3863 for (nd = xen_notes; nd->description != NULL; nd++) {
3864 if (nd->type == type) {
3865 if (nd->fp(nd->description, buf, sz))
3866 return;
3867 else
3868 break;
3869 }
3870 }
3871 }
3872 unknown:
3873 printf(" description data:");
3874 for (i = 0; i < sz; i++)
3875 printf(" %02x", (unsigned char)buf[i]);
3876 printf("\n");
3877 }
3878
3879 static void
dump_notes_content(struct readelf * re,const char * buf,size_t sz,off_t off)3880 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off)
3881 {
3882 Elf_Note *note;
3883 const char *end, *name;
3884 uint32_t namesz, descsz;
3885
3886 printf("\nNotes at offset %#010jx with length %#010jx:\n",
3887 (uintmax_t) off, (uintmax_t) sz);
3888 printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description");
3889 end = buf + sz;
3890 while (buf < end) {
3891 if (buf + sizeof(*note) > end) {
3892 warnx("invalid note header");
3893 return;
3894 }
3895 note = (Elf_Note *)(uintptr_t) buf;
3896 namesz = roundup2(note->n_namesz, 4);
3897 descsz = roundup2(note->n_descsz, 4);
3898 if (namesz < note->n_namesz || descsz < note->n_descsz ||
3899 buf + namesz + descsz > end) {
3900 warnx("invalid note header");
3901 return;
3902 }
3903 buf += sizeof(Elf_Note);
3904 name = buf;
3905 buf += namesz;
3906 /*
3907 * The name field is required to be nul-terminated, and
3908 * n_namesz includes the terminating nul in observed
3909 * implementations (contrary to the ELF-64 spec). A special
3910 * case is needed for cores generated by some older Linux
3911 * versions, which write a note named "CORE" without a nul
3912 * terminator and n_namesz = 4.
3913 */
3914 if (note->n_namesz == 0)
3915 name = "";
3916 else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0)
3917 name = "CORE";
3918 else if (strnlen(name, note->n_namesz) >= note->n_namesz)
3919 name = "<invalid>";
3920 printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz);
3921 printf(" %s\n", note_type(name, re->ehdr.e_type,
3922 note->n_type));
3923 dump_notes_data(re, name, note->n_type, buf, note->n_descsz);
3924 buf += descsz;
3925 }
3926 }
3927
3928 /*
3929 * Symbol versioning sections are the same for 32bit and 64bit
3930 * ELF objects.
3931 */
3932 #define Elf_Verdef Elf32_Verdef
3933 #define Elf_Verdaux Elf32_Verdaux
3934 #define Elf_Verneed Elf32_Verneed
3935 #define Elf_Vernaux Elf32_Vernaux
3936
3937 #define SAVE_VERSION_NAME(x, n, t) \
3938 do { \
3939 while (x >= re->ver_sz) { \
3940 nv = realloc(re->ver, \
3941 sizeof(*re->ver) * re->ver_sz * 2); \
3942 if (nv == NULL) { \
3943 warn("realloc failed"); \
3944 free(re->ver); \
3945 return; \
3946 } \
3947 re->ver = nv; \
3948 for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \
3949 re->ver[i].name = NULL; \
3950 re->ver[i].type = 0; \
3951 } \
3952 re->ver_sz *= 2; \
3953 } \
3954 if (x > 1) { \
3955 re->ver[x].name = n; \
3956 re->ver[x].type = t; \
3957 } \
3958 } while (0)
3959
3960
3961 static void
dump_verdef(struct readelf * re,int dump)3962 dump_verdef(struct readelf *re, int dump)
3963 {
3964 struct section *s;
3965 struct symver *nv;
3966 Elf_Data *d;
3967 Elf_Verdef *vd;
3968 Elf_Verdaux *vda;
3969 uint8_t *buf, *end, *buf2;
3970 const char *name;
3971 int elferr, i, j;
3972
3973 if ((s = re->vd_s) == NULL)
3974 return;
3975 if (s->link >= re->shnum)
3976 return;
3977
3978 if (re->ver == NULL) {
3979 re->ver_sz = 16;
3980 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
3981 NULL) {
3982 warn("calloc failed");
3983 return;
3984 }
3985 re->ver[0].name = "*local*";
3986 re->ver[1].name = "*global*";
3987 }
3988
3989 if (dump)
3990 printf("\nVersion definition section (%s):\n", s->name);
3991 (void) elf_errno();
3992 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3993 elferr = elf_errno();
3994 if (elferr != 0)
3995 warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3996 return;
3997 }
3998 if (d->d_size == 0)
3999 return;
4000
4001 buf = d->d_buf;
4002 end = buf + d->d_size;
4003 while (buf + sizeof(Elf_Verdef) <= end) {
4004 vd = (Elf_Verdef *) (uintptr_t) buf;
4005 if (dump) {
4006 printf(" 0x%4.4lx", (unsigned long)
4007 (buf - (uint8_t *)d->d_buf));
4008 printf(" vd_version: %u vd_flags: %d"
4009 " vd_ndx: %u vd_cnt: %u", vd->vd_version,
4010 vd->vd_flags, vd->vd_ndx, vd->vd_cnt);
4011 }
4012 buf2 = buf + vd->vd_aux;
4013 j = 0;
4014 while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) {
4015 vda = (Elf_Verdaux *) (uintptr_t) buf2;
4016 name = get_string(re, s->link, vda->vda_name);
4017 if (j == 0) {
4018 if (dump)
4019 printf(" vda_name: %s\n", name);
4020 SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1);
4021 } else if (dump)
4022 printf(" 0x%4.4lx parent: %s\n",
4023 (unsigned long) (buf2 -
4024 (uint8_t *)d->d_buf), name);
4025 if (vda->vda_next == 0)
4026 break;
4027 buf2 += vda->vda_next;
4028 j++;
4029 }
4030 if (vd->vd_next == 0)
4031 break;
4032 buf += vd->vd_next;
4033 }
4034 }
4035
4036 static void
dump_verneed(struct readelf * re,int dump)4037 dump_verneed(struct readelf *re, int dump)
4038 {
4039 struct section *s;
4040 struct symver *nv;
4041 Elf_Data *d;
4042 Elf_Verneed *vn;
4043 Elf_Vernaux *vna;
4044 uint8_t *buf, *end, *buf2;
4045 const char *name;
4046 int elferr, i, j;
4047
4048 if ((s = re->vn_s) == NULL)
4049 return;
4050 if (s->link >= re->shnum)
4051 return;
4052
4053 if (re->ver == NULL) {
4054 re->ver_sz = 16;
4055 if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
4056 NULL) {
4057 warn("calloc failed");
4058 return;
4059 }
4060 re->ver[0].name = "*local*";
4061 re->ver[1].name = "*global*";
4062 }
4063
4064 if (dump)
4065 printf("\nVersion needed section (%s):\n", s->name);
4066 (void) elf_errno();
4067 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4068 elferr = elf_errno();
4069 if (elferr != 0)
4070 warnx("elf_getdata failed: %s", elf_errmsg(elferr));
4071 return;
4072 }
4073 if (d->d_size == 0)
4074 return;
4075
4076 buf = d->d_buf;
4077 end = buf + d->d_size;
4078 while (buf + sizeof(Elf_Verneed) <= end) {
4079 vn = (Elf_Verneed *) (uintptr_t) buf;
4080 if (dump) {
4081 printf(" 0x%4.4lx", (unsigned long)
4082 (buf - (uint8_t *)d->d_buf));
4083 printf(" vn_version: %u vn_file: %s vn_cnt: %u\n",
4084 vn->vn_version,
4085 get_string(re, s->link, vn->vn_file),
4086 vn->vn_cnt);
4087 }
4088 buf2 = buf + vn->vn_aux;
4089 j = 0;
4090 while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) {
4091 vna = (Elf32_Vernaux *) (uintptr_t) buf2;
4092 if (dump)
4093 printf(" 0x%4.4lx", (unsigned long)
4094 (buf2 - (uint8_t *)d->d_buf));
4095 name = get_string(re, s->link, vna->vna_name);
4096 if (dump)
4097 printf(" vna_name: %s vna_flags: %u"
4098 " vna_other: %u\n", name,
4099 vna->vna_flags, vna->vna_other);
4100 SAVE_VERSION_NAME((int)vna->vna_other, name, 0);
4101 if (vna->vna_next == 0)
4102 break;
4103 buf2 += vna->vna_next;
4104 j++;
4105 }
4106 if (vn->vn_next == 0)
4107 break;
4108 buf += vn->vn_next;
4109 }
4110 }
4111
4112 static void
dump_versym(struct readelf * re)4113 dump_versym(struct readelf *re)
4114 {
4115 int i;
4116 uint16_t vs;
4117
4118 if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL)
4119 return;
4120 printf("\nVersion symbol section (%s):\n", re->vs_s->name);
4121 for (i = 0; i < re->vs_sz; i++) {
4122 if ((i & 3) == 0) {
4123 if (i > 0)
4124 putchar('\n');
4125 printf(" %03x:", i);
4126 }
4127 vs = re->vs[i] & VERSYM_VERSION;
4128 if (vs >= re->ver_sz || re->ver[vs].name == NULL) {
4129 warnx("invalid versym version index %u", re->vs[i]);
4130 break;
4131 }
4132 if (re->vs[i] & VERSYM_HIDDEN)
4133 printf(" %3xh %-12s ", vs,
4134 re->ver[re->vs[i] & VERSYM_VERSION].name);
4135 else
4136 printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name);
4137 }
4138 putchar('\n');
4139 }
4140
4141 static void
dump_ver(struct readelf * re)4142 dump_ver(struct readelf *re)
4143 {
4144
4145 if (re->vs_s && re->ver && re->vs)
4146 dump_versym(re);
4147 if (re->vd_s)
4148 dump_verdef(re, 1);
4149 if (re->vn_s)
4150 dump_verneed(re, 1);
4151 }
4152
4153 static void
search_ver(struct readelf * re)4154 search_ver(struct readelf *re)
4155 {
4156 struct section *s;
4157 Elf_Data *d;
4158 int elferr, i;
4159
4160 for (i = 0; (size_t) i < re->shnum; i++) {
4161 s = &re->sl[i];
4162 if (s->type == SHT_SUNW_versym)
4163 re->vs_s = s;
4164 if (s->type == SHT_SUNW_verneed)
4165 re->vn_s = s;
4166 if (s->type == SHT_SUNW_verdef)
4167 re->vd_s = s;
4168 }
4169 if (re->vd_s)
4170 dump_verdef(re, 0);
4171 if (re->vn_s)
4172 dump_verneed(re, 0);
4173 if (re->vs_s && re->ver != NULL) {
4174 (void) elf_errno();
4175 if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) {
4176 elferr = elf_errno();
4177 if (elferr != 0)
4178 warnx("elf_getdata failed: %s",
4179 elf_errmsg(elferr));
4180 return;
4181 }
4182 if (d->d_size == 0)
4183 return;
4184 re->vs = d->d_buf;
4185 re->vs_sz = d->d_size / sizeof(Elf32_Half);
4186 }
4187 }
4188
4189 #undef Elf_Verdef
4190 #undef Elf_Verdaux
4191 #undef Elf_Verneed
4192 #undef Elf_Vernaux
4193 #undef SAVE_VERSION_NAME
4194
4195 /*
4196 * Elf32_Lib and Elf64_Lib are identical.
4197 */
4198 #define Elf_Lib Elf32_Lib
4199
4200 static void
dump_liblist(struct readelf * re)4201 dump_liblist(struct readelf *re)
4202 {
4203 struct section *s;
4204 struct tm *t;
4205 time_t ti;
4206 char tbuf[20];
4207 Elf_Data *d;
4208 Elf_Lib *lib;
4209 int i, j, k, elferr, first, len;
4210
4211 for (i = 0; (size_t) i < re->shnum; i++) {
4212 s = &re->sl[i];
4213 if (s->type != SHT_GNU_LIBLIST)
4214 continue;
4215 if (s->link >= re->shnum)
4216 continue;
4217 (void) elf_errno();
4218 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4219 elferr = elf_errno();
4220 if (elferr != 0)
4221 warnx("elf_getdata failed: %s",
4222 elf_errmsg(elferr));
4223 continue;
4224 }
4225 if (d->d_size <= 0)
4226 continue;
4227 lib = d->d_buf;
4228 if (!get_ent_count(s, &len))
4229 continue;
4230 printf("\nLibrary list section '%s' ", s->name);
4231 printf("contains %d entries:\n", len);
4232 printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp",
4233 "Checksum", "Version", "Flags");
4234 for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) {
4235 printf("%3d: ", j);
4236 printf("%-20.20s ",
4237 get_string(re, s->link, lib->l_name));
4238 ti = lib->l_time_stamp;
4239 t = gmtime(&ti);
4240 snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d"
4241 ":%2d", t->tm_year + 1900, t->tm_mon + 1,
4242 t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
4243 printf("%-19.19s ", tbuf);
4244 printf("0x%08x ", lib->l_checksum);
4245 printf("%-7d %#x", lib->l_version, lib->l_flags);
4246 if (lib->l_flags != 0) {
4247 first = 1;
4248 putchar('(');
4249 for (k = 0; l_flag[k].name != NULL; k++) {
4250 if ((l_flag[k].value & lib->l_flags) ==
4251 0)
4252 continue;
4253 if (!first)
4254 putchar(',');
4255 else
4256 first = 0;
4257 printf("%s", l_flag[k].name);
4258 }
4259 putchar(')');
4260 }
4261 putchar('\n');
4262 lib++;
4263 }
4264 }
4265 }
4266
4267 #undef Elf_Lib
4268
4269 static void
dump_section_groups(struct readelf * re)4270 dump_section_groups(struct readelf *re)
4271 {
4272 struct section *s;
4273 const char *symname;
4274 Elf_Data *d;
4275 uint32_t *w;
4276 int i, j, elferr;
4277 size_t n;
4278
4279 for (i = 0; (size_t) i < re->shnum; i++) {
4280 s = &re->sl[i];
4281 if (s->type != SHT_GROUP)
4282 continue;
4283 if (s->link >= re->shnum)
4284 continue;
4285 (void) elf_errno();
4286 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4287 elferr = elf_errno();
4288 if (elferr != 0)
4289 warnx("elf_getdata failed: %s",
4290 elf_errmsg(elferr));
4291 continue;
4292 }
4293 if (d->d_size <= 0)
4294 continue;
4295
4296 w = d->d_buf;
4297
4298 /* We only support COMDAT section. */
4299 #ifndef GRP_COMDAT
4300 #define GRP_COMDAT 0x1
4301 #endif
4302 if ((*w++ & GRP_COMDAT) == 0)
4303 return;
4304
4305 if (s->entsize == 0)
4306 s->entsize = 4;
4307
4308 symname = get_symbol_name(re, s->link, s->info);
4309 n = s->sz / s->entsize;
4310 if (n-- < 1)
4311 return;
4312
4313 printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju"
4314 " sections:\n", i, s->name, symname, (uintmax_t)n);
4315 printf(" %-10.10s %s\n", "[Index]", "Name");
4316 for (j = 0; (size_t) j < n; j++, w++) {
4317 if (*w >= re->shnum) {
4318 warnx("invalid section index: %u", *w);
4319 continue;
4320 }
4321 printf(" [%5u] %s\n", *w, re->sl[*w].name);
4322 }
4323 }
4324 }
4325
4326 static uint8_t *
dump_unknown_tag(uint64_t tag,uint8_t * p,uint8_t * pe)4327 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe)
4328 {
4329 uint64_t val;
4330
4331 /*
4332 * According to ARM EABI: For tags > 32, even numbered tags have
4333 * a ULEB128 param and odd numbered ones have NUL-terminated
4334 * string param. This rule probably also applies for tags <= 32
4335 * if the object arch is not ARM.
4336 */
4337
4338 printf(" Tag_unknown_%ju: ", (uintmax_t) tag);
4339
4340 if (tag & 1) {
4341 printf("%s\n", (char *) p);
4342 p += strlen((char *) p) + 1;
4343 } else {
4344 val = _decode_uleb128(&p, pe);
4345 printf("%ju\n", (uintmax_t) val);
4346 }
4347
4348 return (p);
4349 }
4350
4351 static uint8_t *
dump_compatibility_tag(uint8_t * p,uint8_t * pe)4352 dump_compatibility_tag(uint8_t *p, uint8_t *pe)
4353 {
4354 uint64_t val;
4355
4356 val = _decode_uleb128(&p, pe);
4357 printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p);
4358 p += strlen((char *) p) + 1;
4359
4360 return (p);
4361 }
4362
4363 static void
dump_arm_attributes(struct readelf * re,uint8_t * p,uint8_t * pe)4364 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
4365 {
4366 uint64_t tag, val;
4367 size_t i;
4368 int found, desc;
4369
4370 (void) re;
4371
4372 while (p < pe) {
4373 tag = _decode_uleb128(&p, pe);
4374 found = desc = 0;
4375 for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]);
4376 i++) {
4377 if (tag == aeabi_tags[i].tag) {
4378 found = 1;
4379 printf(" %s: ", aeabi_tags[i].s_tag);
4380 if (aeabi_tags[i].get_desc) {
4381 desc = 1;
4382 val = _decode_uleb128(&p, pe);
4383 printf("%s\n",
4384 aeabi_tags[i].get_desc(val));
4385 }
4386 break;
4387 }
4388 if (tag < aeabi_tags[i].tag)
4389 break;
4390 }
4391 if (!found) {
4392 p = dump_unknown_tag(tag, p, pe);
4393 continue;
4394 }
4395 if (desc)
4396 continue;
4397
4398 switch (tag) {
4399 case 4: /* Tag_CPU_raw_name */
4400 case 5: /* Tag_CPU_name */
4401 case 67: /* Tag_conformance */
4402 printf("%s\n", (char *) p);
4403 p += strlen((char *) p) + 1;
4404 break;
4405 case 32: /* Tag_compatibility */
4406 p = dump_compatibility_tag(p, pe);
4407 break;
4408 case 64: /* Tag_nodefaults */
4409 /* ignored, written as 0. */
4410 (void) _decode_uleb128(&p, pe);
4411 printf("True\n");
4412 break;
4413 case 65: /* Tag_also_compatible_with */
4414 val = _decode_uleb128(&p, pe);
4415 /* Must be Tag_CPU_arch */
4416 if (val != 6) {
4417 printf("unknown\n");
4418 break;
4419 }
4420 val = _decode_uleb128(&p, pe);
4421 printf("%s\n", aeabi_cpu_arch(val));
4422 /* Skip NUL terminator. */
4423 p++;
4424 break;
4425 default:
4426 putchar('\n');
4427 break;
4428 }
4429 }
4430 }
4431
4432 #ifndef Tag_GNU_MIPS_ABI_FP
4433 #define Tag_GNU_MIPS_ABI_FP 4
4434 #endif
4435
4436 static void
dump_mips_attributes(struct readelf * re,uint8_t * p,uint8_t * pe)4437 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
4438 {
4439 uint64_t tag, val;
4440
4441 (void) re;
4442
4443 while (p < pe) {
4444 tag = _decode_uleb128(&p, pe);
4445 switch (tag) {
4446 case Tag_GNU_MIPS_ABI_FP:
4447 val = _decode_uleb128(&p, pe);
4448 printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val));
4449 break;
4450 case 32: /* Tag_compatibility */
4451 p = dump_compatibility_tag(p, pe);
4452 break;
4453 default:
4454 p = dump_unknown_tag(tag, p, pe);
4455 break;
4456 }
4457 }
4458 }
4459
4460 #ifndef Tag_GNU_Power_ABI_FP
4461 #define Tag_GNU_Power_ABI_FP 4
4462 #endif
4463
4464 #ifndef Tag_GNU_Power_ABI_Vector
4465 #define Tag_GNU_Power_ABI_Vector 8
4466 #endif
4467
4468 static void
dump_ppc_attributes(uint8_t * p,uint8_t * pe)4469 dump_ppc_attributes(uint8_t *p, uint8_t *pe)
4470 {
4471 uint64_t tag, val;
4472
4473 while (p < pe) {
4474 tag = _decode_uleb128(&p, pe);
4475 switch (tag) {
4476 case Tag_GNU_Power_ABI_FP:
4477 val = _decode_uleb128(&p, pe);
4478 printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val));
4479 break;
4480 case Tag_GNU_Power_ABI_Vector:
4481 val = _decode_uleb128(&p, pe);
4482 printf(" Tag_GNU_Power_ABI_Vector: %s\n",
4483 ppc_abi_vector(val));
4484 break;
4485 case 32: /* Tag_compatibility */
4486 p = dump_compatibility_tag(p, pe);
4487 break;
4488 default:
4489 p = dump_unknown_tag(tag, p, pe);
4490 break;
4491 }
4492 }
4493 }
4494
4495 static void
dump_attributes(struct readelf * re)4496 dump_attributes(struct readelf *re)
4497 {
4498 struct section *s;
4499 Elf_Data *d;
4500 uint8_t *p, *pe, *sp;
4501 size_t len, seclen, nlen, sublen;
4502 uint64_t val;
4503 int tag, i, elferr;
4504
4505 for (i = 0; (size_t) i < re->shnum; i++) {
4506 s = &re->sl[i];
4507 if (s->type != SHT_GNU_ATTRIBUTES &&
4508 (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3))
4509 continue;
4510 (void) elf_errno();
4511 if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4512 elferr = elf_errno();
4513 if (elferr != 0)
4514 warnx("elf_rawdata failed: %s",
4515 elf_errmsg(elferr));
4516 continue;
4517 }
4518 if (d->d_size <= 0)
4519 continue;
4520 p = d->d_buf;
4521 pe = p + d->d_size;
4522 if (*p != 'A') {
4523 printf("Unknown Attribute Section Format: %c\n",
4524 (char) *p);
4525 continue;
4526 }
4527 len = d->d_size - 1;
4528 p++;
4529 while (len > 0) {
4530 if (len < 4) {
4531 warnx("truncated attribute section length");
4532 return;
4533 }
4534 seclen = re->dw_decode(&p, 4);
4535 if (seclen > len) {
4536 warnx("invalid attribute section length");
4537 return;
4538 }
4539 len -= seclen;
4540 nlen = strlen((char *) p) + 1;
4541 if (nlen + 4 > seclen) {
4542 warnx("invalid attribute section name");
4543 return;
4544 }
4545 printf("Attribute Section: %s\n", (char *) p);
4546 p += nlen;
4547 seclen -= nlen + 4;
4548 while (seclen > 0) {
4549 sp = p;
4550 tag = *p++;
4551 sublen = re->dw_decode(&p, 4);
4552 if (sublen > seclen) {
4553 warnx("invalid attribute sub-section"
4554 " length");
4555 return;
4556 }
4557 seclen -= sublen;
4558 printf("%s", top_tag(tag));
4559 if (tag == 2 || tag == 3) {
4560 putchar(':');
4561 for (;;) {
4562 val = _decode_uleb128(&p, pe);
4563 if (val == 0)
4564 break;
4565 printf(" %ju", (uintmax_t) val);
4566 }
4567 }
4568 putchar('\n');
4569 if (re->ehdr.e_machine == EM_ARM &&
4570 s->type == SHT_LOPROC + 3)
4571 dump_arm_attributes(re, p, sp + sublen);
4572 else if (re->ehdr.e_machine == EM_MIPS ||
4573 re->ehdr.e_machine == EM_MIPS_RS3_LE)
4574 dump_mips_attributes(re, p,
4575 sp + sublen);
4576 else if (re->ehdr.e_machine == EM_PPC)
4577 dump_ppc_attributes(p, sp + sublen);
4578 p = sp + sublen;
4579 }
4580 }
4581 }
4582 }
4583
4584 static void
dump_mips_specific_info(struct readelf * re)4585 dump_mips_specific_info(struct readelf *re)
4586 {
4587 struct section *s;
4588 int i;
4589
4590 s = NULL;
4591 for (i = 0; (size_t) i < re->shnum; i++) {
4592 s = &re->sl[i];
4593 if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") ||
4594 (s->type == SHT_MIPS_OPTIONS))) {
4595 dump_mips_options(re, s);
4596 }
4597 }
4598
4599 if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") ||
4600 (s->type == SHT_MIPS_ABIFLAGS)))
4601 dump_mips_abiflags(re, s);
4602
4603 /*
4604 * Dump .reginfo if present (although it will be ignored by an OS if a
4605 * .MIPS.options section is present, according to SGI mips64 spec).
4606 */
4607 for (i = 0; (size_t) i < re->shnum; i++) {
4608 s = &re->sl[i];
4609 if (s->name != NULL && (!strcmp(s->name, ".reginfo") ||
4610 (s->type == SHT_MIPS_REGINFO)))
4611 dump_mips_reginfo(re, s);
4612 }
4613 }
4614
4615 static void
dump_mips_abiflags(struct readelf * re,struct section * s)4616 dump_mips_abiflags(struct readelf *re, struct section *s)
4617 {
4618 Elf_Data *d;
4619 uint8_t *p;
4620 int elferr;
4621 uint32_t isa_ext, ases, flags1, flags2;
4622 uint16_t version;
4623 uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi;
4624
4625 if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4626 elferr = elf_errno();
4627 if (elferr != 0)
4628 warnx("elf_rawdata failed: %s",
4629 elf_errmsg(elferr));
4630 return;
4631 }
4632 if (d->d_size != 24) {
4633 warnx("invalid MIPS abiflags section size");
4634 return;
4635 }
4636
4637 p = d->d_buf;
4638 version = re->dw_decode(&p, 2);
4639 printf("MIPS ABI Flags Version: %u", version);
4640 if (version != 0) {
4641 printf(" (unknown)\n\n");
4642 return;
4643 }
4644 printf("\n\n");
4645
4646 isa_level = re->dw_decode(&p, 1);
4647 isa_rev = re->dw_decode(&p, 1);
4648 gpr_size = re->dw_decode(&p, 1);
4649 cpr1_size = re->dw_decode(&p, 1);
4650 cpr2_size = re->dw_decode(&p, 1);
4651 fp_abi = re->dw_decode(&p, 1);
4652 isa_ext = re->dw_decode(&p, 4);
4653 ases = re->dw_decode(&p, 4);
4654 flags1 = re->dw_decode(&p, 4);
4655 flags2 = re->dw_decode(&p, 4);
4656
4657 printf("ISA: ");
4658 if (isa_rev <= 1)
4659 printf("MIPS%u\n", isa_level);
4660 else
4661 printf("MIPS%ur%u\n", isa_level, isa_rev);
4662 printf("GPR size: %d\n", get_mips_register_size(gpr_size));
4663 printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size));
4664 printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size));
4665 printf("FP ABI: ");
4666 switch (fp_abi) {
4667 case 3:
4668 printf("Soft float");
4669 break;
4670 default:
4671 printf("%u", fp_abi);
4672 break;
4673 }
4674 printf("\nISA Extension: %u\n", isa_ext);
4675 printf("ASEs: %u\n", ases);
4676 printf("FLAGS 1: %08x\n", flags1);
4677 printf("FLAGS 2: %08x\n", flags2);
4678 }
4679
4680 static int
get_mips_register_size(uint8_t flag)4681 get_mips_register_size(uint8_t flag)
4682 {
4683 switch (flag) {
4684 case 0: return 0;
4685 case 1: return 32;
4686 case 2: return 64;
4687 case 3: return 128;
4688 default: return -1;
4689 }
4690 }
4691 static void
dump_mips_reginfo(struct readelf * re,struct section * s)4692 dump_mips_reginfo(struct readelf *re, struct section *s)
4693 {
4694 Elf_Data *d;
4695 int elferr, len;
4696
4697 (void) elf_errno();
4698 if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4699 elferr = elf_errno();
4700 if (elferr != 0)
4701 warnx("elf_rawdata failed: %s",
4702 elf_errmsg(elferr));
4703 return;
4704 }
4705 if (d->d_size <= 0)
4706 return;
4707 if (!get_ent_count(s, &len))
4708 return;
4709
4710 printf("\nSection '%s' contains %d entries:\n", s->name, len);
4711 dump_mips_odk_reginfo(re, d->d_buf, d->d_size);
4712 }
4713
4714 static void
dump_mips_options(struct readelf * re,struct section * s)4715 dump_mips_options(struct readelf *re, struct section *s)
4716 {
4717 Elf_Data *d;
4718 uint32_t info;
4719 uint16_t sndx;
4720 uint8_t *p, *pe;
4721 uint8_t kind, size;
4722 int elferr;
4723
4724 (void) elf_errno();
4725 if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4726 elferr = elf_errno();
4727 if (elferr != 0)
4728 warnx("elf_rawdata failed: %s",
4729 elf_errmsg(elferr));
4730 return;
4731 }
4732 if (d->d_size == 0)
4733 return;
4734
4735 printf("\nSection %s contains:\n", s->name);
4736 p = d->d_buf;
4737 pe = p + d->d_size;
4738 while (p < pe) {
4739 if (pe - p < 8) {
4740 warnx("Truncated MIPS option header");
4741 return;
4742 }
4743 kind = re->dw_decode(&p, 1);
4744 size = re->dw_decode(&p, 1);
4745 sndx = re->dw_decode(&p, 2);
4746 info = re->dw_decode(&p, 4);
4747 if (size < 8 || size - 8 > pe - p) {
4748 warnx("Malformed MIPS option header");
4749 return;
4750 }
4751 size -= 8;
4752 switch (kind) {
4753 case ODK_REGINFO:
4754 dump_mips_odk_reginfo(re, p, size);
4755 break;
4756 case ODK_EXCEPTIONS:
4757 printf(" EXCEPTIONS FPU_MIN: %#x\n",
4758 info & OEX_FPU_MIN);
4759 printf("%11.11s FPU_MAX: %#x\n", "",
4760 info & OEX_FPU_MAX);
4761 dump_mips_option_flags("", mips_exceptions_option,
4762 info);
4763 break;
4764 case ODK_PAD:
4765 printf(" %-10.10s section: %ju\n", "OPAD",
4766 (uintmax_t) sndx);
4767 dump_mips_option_flags("", mips_pad_option, info);
4768 break;
4769 case ODK_HWPATCH:
4770 dump_mips_option_flags("HWPATCH", mips_hwpatch_option,
4771 info);
4772 break;
4773 case ODK_HWAND:
4774 dump_mips_option_flags("HWAND", mips_hwa_option, info);
4775 break;
4776 case ODK_HWOR:
4777 dump_mips_option_flags("HWOR", mips_hwo_option, info);
4778 break;
4779 case ODK_FILL:
4780 printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info);
4781 break;
4782 case ODK_TAGS:
4783 printf(" %-10.10s\n", "TAGS");
4784 break;
4785 case ODK_GP_GROUP:
4786 printf(" %-10.10s GP group number: %#x\n", "GP_GROUP",
4787 info & 0xFFFF);
4788 if (info & 0x10000)
4789 printf(" %-10.10s GP group is "
4790 "self-contained\n", "");
4791 break;
4792 case ODK_IDENT:
4793 printf(" %-10.10s default GP group number: %#x\n",
4794 "IDENT", info & 0xFFFF);
4795 if (info & 0x10000)
4796 printf(" %-10.10s default GP group is "
4797 "self-contained\n", "");
4798 break;
4799 case ODK_PAGESIZE:
4800 printf(" %-10.10s\n", "PAGESIZE");
4801 break;
4802 default:
4803 break;
4804 }
4805 p += size;
4806 }
4807 }
4808
4809 static void
dump_mips_option_flags(const char * name,struct mips_option * opt,uint64_t info)4810 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info)
4811 {
4812 int first;
4813
4814 first = 1;
4815 for (; opt->desc != NULL; opt++) {
4816 if (info & opt->flag) {
4817 printf(" %-10.10s %s\n", first ? name : "",
4818 opt->desc);
4819 first = 0;
4820 }
4821 }
4822 }
4823
4824 static void
dump_mips_odk_reginfo(struct readelf * re,uint8_t * p,size_t sz)4825 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz)
4826 {
4827 uint32_t ri_gprmask;
4828 uint32_t ri_cprmask[4];
4829 uint64_t ri_gp_value;
4830 uint8_t *pe;
4831 int i;
4832
4833 pe = p + sz;
4834 while (p < pe) {
4835 ri_gprmask = re->dw_decode(&p, 4);
4836 /* Skip ri_pad padding field for mips64. */
4837 if (re->ec == ELFCLASS64)
4838 re->dw_decode(&p, 4);
4839 for (i = 0; i < 4; i++)
4840 ri_cprmask[i] = re->dw_decode(&p, 4);
4841 if (re->ec == ELFCLASS32)
4842 ri_gp_value = re->dw_decode(&p, 4);
4843 else
4844 ri_gp_value = re->dw_decode(&p, 8);
4845 printf(" %s ", option_kind(ODK_REGINFO));
4846 printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask);
4847 for (i = 0; i < 4; i++)
4848 printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i,
4849 (uintmax_t) ri_cprmask[i]);
4850 printf("%12.12s", "");
4851 printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value);
4852 }
4853 }
4854
4855 static void
dump_arch_specific_info(struct readelf * re)4856 dump_arch_specific_info(struct readelf *re)
4857 {
4858
4859 dump_liblist(re);
4860 dump_attributes(re);
4861
4862 switch (re->ehdr.e_machine) {
4863 case EM_MIPS:
4864 case EM_MIPS_RS3_LE:
4865 dump_mips_specific_info(re);
4866 default:
4867 break;
4868 }
4869 }
4870
4871 static const char *
dwarf_regname(struct readelf * re,unsigned int num)4872 dwarf_regname(struct readelf *re, unsigned int num)
4873 {
4874 static char rx[32];
4875 const char *rn;
4876
4877 if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL)
4878 return (rn);
4879
4880 snprintf(rx, sizeof(rx), "r%u", num);
4881
4882 return (rx);
4883 }
4884
4885 static void
dump_dwarf_line(struct readelf * re)4886 dump_dwarf_line(struct readelf *re)
4887 {
4888 struct section *s;
4889 Dwarf_Die die;
4890 Dwarf_Error de;
4891 Dwarf_Half tag, version, pointer_size;
4892 Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize;
4893 Dwarf_Small minlen, defstmt, lrange, opbase, oplen;
4894 Elf_Data *d;
4895 char *pn;
4896 uint64_t address, file, line, column, isa, opsize, udelta;
4897 int64_t sdelta;
4898 uint8_t *p, *pe;
4899 int8_t lbase;
4900 int i, is_stmt, dwarf_size, elferr, ret;
4901
4902 printf("\nDump of debug contents of section .debug_line:\n");
4903
4904 s = NULL;
4905 for (i = 0; (size_t) i < re->shnum; i++) {
4906 s = &re->sl[i];
4907 if (s->name != NULL && !strcmp(s->name, ".debug_line"))
4908 break;
4909 }
4910 if ((size_t) i >= re->shnum)
4911 return;
4912
4913 (void) elf_errno();
4914 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4915 elferr = elf_errno();
4916 if (elferr != 0)
4917 warnx("elf_getdata failed: %s", elf_errmsg(-1));
4918 return;
4919 }
4920 if (d->d_size <= 0)
4921 return;
4922
4923 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
4924 NULL, &de)) == DW_DLV_OK) {
4925 die = NULL;
4926 while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) {
4927 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
4928 warnx("dwarf_tag failed: %s",
4929 dwarf_errmsg(de));
4930 return;
4931 }
4932 /* XXX: What about DW_TAG_partial_unit? */
4933 if (tag == DW_TAG_compile_unit)
4934 break;
4935 }
4936 if (die == NULL) {
4937 warnx("could not find DW_TAG_compile_unit die");
4938 return;
4939 }
4940 if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset,
4941 &de) != DW_DLV_OK) {
4942 dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
4943 continue;
4944 }
4945
4946 length = re->dw_read(d, &offset, 4);
4947 if (length == 0xffffffff) {
4948 dwarf_size = 8;
4949 length = re->dw_read(d, &offset, 8);
4950 } else
4951 dwarf_size = 4;
4952
4953 if (length > d->d_size - offset) {
4954 warnx("invalid .dwarf_line section");
4955 dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
4956 continue;
4957 }
4958
4959 endoff = offset + length;
4960 pe = (uint8_t *) d->d_buf + endoff;
4961 version = re->dw_read(d, &offset, 2);
4962 hdrlen = re->dw_read(d, &offset, dwarf_size);
4963 minlen = re->dw_read(d, &offset, 1);
4964 defstmt = re->dw_read(d, &offset, 1);
4965 lbase = re->dw_read(d, &offset, 1);
4966 lrange = re->dw_read(d, &offset, 1);
4967 opbase = re->dw_read(d, &offset, 1);
4968
4969 printf("\n");
4970 printf(" Length:\t\t\t%ju\n", (uintmax_t) length);
4971 printf(" DWARF version:\t\t%u\n", version);
4972 printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen);
4973 printf(" Minimum Instruction Length:\t%u\n", minlen);
4974 printf(" Initial value of 'is_stmt':\t%u\n", defstmt);
4975 printf(" Line Base:\t\t\t%d\n", lbase);
4976 printf(" Line Range:\t\t\t%u\n", lrange);
4977 printf(" Opcode Base:\t\t\t%u\n", opbase);
4978 (void) dwarf_get_address_size(re->dbg, &pointer_size, &de);
4979 printf(" (Pointer size:\t\t%u)\n", pointer_size);
4980
4981 printf("\n");
4982 printf(" Opcodes:\n");
4983 for (i = 1; i < opbase; i++) {
4984 oplen = re->dw_read(d, &offset, 1);
4985 printf(" Opcode %d has %u args\n", i, oplen);
4986 }
4987
4988 printf("\n");
4989 printf(" The Directory Table:\n");
4990 p = (uint8_t *) d->d_buf + offset;
4991 while (*p != '\0') {
4992 printf(" %s\n", (char *) p);
4993 p += strlen((char *) p) + 1;
4994 }
4995
4996 p++;
4997 printf("\n");
4998 printf(" The File Name Table:\n");
4999 printf(" Entry\tDir\tTime\tSize\tName\n");
5000 i = 0;
5001 while (*p != '\0') {
5002 i++;
5003 pn = (char *) p;
5004 p += strlen(pn) + 1;
5005 dirndx = _decode_uleb128(&p, pe);
5006 mtime = _decode_uleb128(&p, pe);
5007 fsize = _decode_uleb128(&p, pe);
5008 printf(" %d\t%ju\t%ju\t%ju\t%s\n", i,
5009 (uintmax_t) dirndx, (uintmax_t) mtime,
5010 (uintmax_t) fsize, pn);
5011 }
5012
5013 #define RESET_REGISTERS \
5014 do { \
5015 address = 0; \
5016 file = 1; \
5017 line = 1; \
5018 column = 0; \
5019 is_stmt = defstmt; \
5020 } while(0)
5021
5022 #define LINE(x) (lbase + (((x) - opbase) % lrange))
5023 #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen)
5024
5025 p++;
5026 printf("\n");
5027 printf(" Line Number Statements:\n");
5028
5029 RESET_REGISTERS;
5030
5031 while (p < pe) {
5032
5033 if (*p == 0) {
5034 /*
5035 * Extended Opcodes.
5036 */
5037 p++;
5038 opsize = _decode_uleb128(&p, pe);
5039 printf(" Extended opcode %u: ", *p);
5040 switch (*p) {
5041 case DW_LNE_end_sequence:
5042 p++;
5043 RESET_REGISTERS;
5044 printf("End of Sequence\n");
5045 break;
5046 case DW_LNE_set_address:
5047 p++;
5048 address = re->dw_decode(&p,
5049 pointer_size);
5050 printf("set Address to %#jx\n",
5051 (uintmax_t) address);
5052 break;
5053 case DW_LNE_define_file:
5054 p++;
5055 pn = (char *) p;
5056 p += strlen(pn) + 1;
5057 dirndx = _decode_uleb128(&p, pe);
5058 mtime = _decode_uleb128(&p, pe);
5059 fsize = _decode_uleb128(&p, pe);
5060 printf("define new file: %s\n", pn);
5061 break;
5062 default:
5063 /* Unrecognized extened opcodes. */
5064 p += opsize;
5065 printf("unknown opcode\n");
5066 }
5067 } else if (*p > 0 && *p < opbase) {
5068 /*
5069 * Standard Opcodes.
5070 */
5071 switch(*p++) {
5072 case DW_LNS_copy:
5073 printf(" Copy\n");
5074 break;
5075 case DW_LNS_advance_pc:
5076 udelta = _decode_uleb128(&p, pe) *
5077 minlen;
5078 address += udelta;
5079 printf(" Advance PC by %ju to %#jx\n",
5080 (uintmax_t) udelta,
5081 (uintmax_t) address);
5082 break;
5083 case DW_LNS_advance_line:
5084 sdelta = _decode_sleb128(&p, pe);
5085 line += sdelta;
5086 printf(" Advance Line by %jd to %ju\n",
5087 (intmax_t) sdelta,
5088 (uintmax_t) line);
5089 break;
5090 case DW_LNS_set_file:
5091 file = _decode_uleb128(&p, pe);
5092 printf(" Set File to %ju\n",
5093 (uintmax_t) file);
5094 break;
5095 case DW_LNS_set_column:
5096 column = _decode_uleb128(&p, pe);
5097 printf(" Set Column to %ju\n",
5098 (uintmax_t) column);
5099 break;
5100 case DW_LNS_negate_stmt:
5101 is_stmt = !is_stmt;
5102 printf(" Set is_stmt to %d\n", is_stmt);
5103 break;
5104 case DW_LNS_set_basic_block:
5105 printf(" Set basic block flag\n");
5106 break;
5107 case DW_LNS_const_add_pc:
5108 address += ADDRESS(255);
5109 printf(" Advance PC by constant %ju"
5110 " to %#jx\n",
5111 (uintmax_t) ADDRESS(255),
5112 (uintmax_t) address);
5113 break;
5114 case DW_LNS_fixed_advance_pc:
5115 udelta = re->dw_decode(&p, 2);
5116 address += udelta;
5117 printf(" Advance PC by fixed value "
5118 "%ju to %#jx\n",
5119 (uintmax_t) udelta,
5120 (uintmax_t) address);
5121 break;
5122 case DW_LNS_set_prologue_end:
5123 printf(" Set prologue end flag\n");
5124 break;
5125 case DW_LNS_set_epilogue_begin:
5126 printf(" Set epilogue begin flag\n");
5127 break;
5128 case DW_LNS_set_isa:
5129 isa = _decode_uleb128(&p, pe);
5130 printf(" Set isa to %ju\n",
5131 (uintmax_t) isa);
5132 break;
5133 default:
5134 /* Unrecognized extended opcodes. */
5135 printf(" Unknown extended opcode %u\n",
5136 *(p - 1));
5137 break;
5138 }
5139
5140 } else {
5141 /*
5142 * Special Opcodes.
5143 */
5144 line += LINE(*p);
5145 address += ADDRESS(*p);
5146 printf(" Special opcode %u: advance Address "
5147 "by %ju to %#jx and Line by %jd to %ju\n",
5148 *p - opbase, (uintmax_t) ADDRESS(*p),
5149 (uintmax_t) address, (intmax_t) LINE(*p),
5150 (uintmax_t) line);
5151 p++;
5152 }
5153 }
5154 dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5155 }
5156 if (ret == DW_DLV_ERROR)
5157 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5158
5159 #undef RESET_REGISTERS
5160 #undef LINE
5161 #undef ADDRESS
5162 }
5163
5164 static void
dump_dwarf_line_decoded(struct readelf * re)5165 dump_dwarf_line_decoded(struct readelf *re)
5166 {
5167 Dwarf_Die die;
5168 Dwarf_Line *linebuf, ln;
5169 Dwarf_Addr lineaddr;
5170 Dwarf_Signed linecount, srccount;
5171 Dwarf_Unsigned lineno, fn;
5172 Dwarf_Error de;
5173 const char *dir, *file;
5174 char **srcfiles;
5175 int i, ret;
5176
5177 printf("Decoded dump of debug contents of section .debug_line:\n\n");
5178 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
5179 NULL, &de)) == DW_DLV_OK) {
5180 if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK)
5181 continue;
5182 if (dwarf_attrval_string(die, DW_AT_name, &file, &de) !=
5183 DW_DLV_OK)
5184 file = NULL;
5185 if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) !=
5186 DW_DLV_OK)
5187 dir = NULL;
5188 printf("CU: ");
5189 if (dir && file && file[0] != '/')
5190 printf("%s/", dir);
5191 if (file)
5192 printf("%s", file);
5193 putchar('\n');
5194 printf("%-37s %11s %s\n", "Filename", "Line Number",
5195 "Starting Address");
5196 if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK)
5197 goto done;
5198 if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK)
5199 goto done;
5200 for (i = 0; i < linecount; i++) {
5201 ln = linebuf[i];
5202 if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK)
5203 continue;
5204 if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK)
5205 continue;
5206 if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK)
5207 continue;
5208 printf("%-37s %11ju %#18jx\n",
5209 basename(srcfiles[fn - 1]), (uintmax_t) lineno,
5210 (uintmax_t) lineaddr);
5211 }
5212 putchar('\n');
5213 done:
5214 dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5215 }
5216 }
5217
5218 static void
dump_dwarf_die(struct readelf * re,Dwarf_Die die,int level)5219 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level)
5220 {
5221 Dwarf_Attribute *attr_list;
5222 Dwarf_Die ret_die;
5223 Dwarf_Off dieoff, cuoff, culen, attroff;
5224 Dwarf_Unsigned ate, lang, v_udata, v_sig;
5225 Dwarf_Signed attr_count, v_sdata;
5226 Dwarf_Off v_off;
5227 Dwarf_Addr v_addr;
5228 Dwarf_Half tag, attr, form;
5229 Dwarf_Block *v_block;
5230 Dwarf_Bool v_bool, is_info;
5231 Dwarf_Sig8 v_sig8;
5232 Dwarf_Error de;
5233 Dwarf_Ptr v_expr;
5234 const char *tag_str, *attr_str, *ate_str, *lang_str;
5235 char unk_tag[32], unk_attr[32];
5236 char *v_str;
5237 uint8_t *b, *p;
5238 int i, j, abc, ret;
5239
5240 if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) {
5241 warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de));
5242 goto cont_search;
5243 }
5244
5245 printf(" <%d><%jx>: ", level, (uintmax_t) dieoff);
5246
5247 if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) {
5248 warnx("dwarf_die_CU_offset_range failed: %s",
5249 dwarf_errmsg(de));
5250 cuoff = 0;
5251 }
5252
5253 abc = dwarf_die_abbrev_code(die);
5254 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5255 warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
5256 goto cont_search;
5257 }
5258 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
5259 snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag);
5260 tag_str = unk_tag;
5261 }
5262
5263 printf("Abbrev Number: %d (%s)\n", abc, tag_str);
5264
5265 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
5266 DW_DLV_OK) {
5267 if (ret == DW_DLV_ERROR)
5268 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
5269 goto cont_search;
5270 }
5271
5272 for (i = 0; i < attr_count; i++) {
5273 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
5274 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
5275 continue;
5276 }
5277 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
5278 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
5279 continue;
5280 }
5281 if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) {
5282 snprintf(unk_attr, sizeof(unk_attr),
5283 "[Unknown AT: %#x]", attr);
5284 attr_str = unk_attr;
5285 }
5286 if (dwarf_attroffset(attr_list[i], &attroff, &de) !=
5287 DW_DLV_OK) {
5288 warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de));
5289 attroff = 0;
5290 }
5291 printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str);
5292 switch (form) {
5293 case DW_FORM_ref_addr:
5294 case DW_FORM_sec_offset:
5295 if (dwarf_global_formref(attr_list[i], &v_off, &de) !=
5296 DW_DLV_OK) {
5297 warnx("dwarf_global_formref failed: %s",
5298 dwarf_errmsg(de));
5299 continue;
5300 }
5301 if (form == DW_FORM_ref_addr)
5302 printf("<0x%jx>", (uintmax_t) v_off);
5303 else
5304 printf("0x%jx", (uintmax_t) v_off);
5305 break;
5306
5307 case DW_FORM_ref1:
5308 case DW_FORM_ref2:
5309 case DW_FORM_ref4:
5310 case DW_FORM_ref8:
5311 case DW_FORM_ref_udata:
5312 if (dwarf_formref(attr_list[i], &v_off, &de) !=
5313 DW_DLV_OK) {
5314 warnx("dwarf_formref failed: %s",
5315 dwarf_errmsg(de));
5316 continue;
5317 }
5318 v_off += cuoff;
5319 printf("<0x%jx>", (uintmax_t) v_off);
5320 break;
5321
5322 case DW_FORM_addr:
5323 if (dwarf_formaddr(attr_list[i], &v_addr, &de) !=
5324 DW_DLV_OK) {
5325 warnx("dwarf_formaddr failed: %s",
5326 dwarf_errmsg(de));
5327 continue;
5328 }
5329 printf("%#jx", (uintmax_t) v_addr);
5330 break;
5331
5332 case DW_FORM_data1:
5333 case DW_FORM_data2:
5334 case DW_FORM_data4:
5335 case DW_FORM_data8:
5336 case DW_FORM_udata:
5337 if (dwarf_formudata(attr_list[i], &v_udata, &de) !=
5338 DW_DLV_OK) {
5339 warnx("dwarf_formudata failed: %s",
5340 dwarf_errmsg(de));
5341 continue;
5342 }
5343 if (attr == DW_AT_high_pc)
5344 printf("0x%jx", (uintmax_t) v_udata);
5345 else
5346 printf("%ju", (uintmax_t) v_udata);
5347 break;
5348
5349 case DW_FORM_sdata:
5350 if (dwarf_formsdata(attr_list[i], &v_sdata, &de) !=
5351 DW_DLV_OK) {
5352 warnx("dwarf_formudata failed: %s",
5353 dwarf_errmsg(de));
5354 continue;
5355 }
5356 printf("%jd", (intmax_t) v_sdata);
5357 break;
5358
5359 case DW_FORM_flag:
5360 if (dwarf_formflag(attr_list[i], &v_bool, &de) !=
5361 DW_DLV_OK) {
5362 warnx("dwarf_formflag failed: %s",
5363 dwarf_errmsg(de));
5364 continue;
5365 }
5366 printf("%jd", (intmax_t) v_bool);
5367 break;
5368
5369 case DW_FORM_flag_present:
5370 putchar('1');
5371 break;
5372
5373 case DW_FORM_string:
5374 case DW_FORM_strp:
5375 if (dwarf_formstring(attr_list[i], &v_str, &de) !=
5376 DW_DLV_OK) {
5377 warnx("dwarf_formstring failed: %s",
5378 dwarf_errmsg(de));
5379 continue;
5380 }
5381 if (form == DW_FORM_string)
5382 printf("%s", v_str);
5383 else
5384 printf("(indirect string) %s", v_str);
5385 break;
5386
5387 case DW_FORM_block:
5388 case DW_FORM_block1:
5389 case DW_FORM_block2:
5390 case DW_FORM_block4:
5391 if (dwarf_formblock(attr_list[i], &v_block, &de) !=
5392 DW_DLV_OK) {
5393 warnx("dwarf_formblock failed: %s",
5394 dwarf_errmsg(de));
5395 continue;
5396 }
5397 printf("%ju byte block:", (uintmax_t) v_block->bl_len);
5398 b = v_block->bl_data;
5399 for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++)
5400 printf(" %x", b[j]);
5401 printf("\t(");
5402 dump_dwarf_block(re, v_block->bl_data, v_block->bl_len);
5403 putchar(')');
5404 break;
5405
5406 case DW_FORM_exprloc:
5407 if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr,
5408 &de) != DW_DLV_OK) {
5409 warnx("dwarf_formexprloc failed: %s",
5410 dwarf_errmsg(de));
5411 continue;
5412 }
5413 printf("%ju byte block:", (uintmax_t) v_udata);
5414 b = v_expr;
5415 for (j = 0; (Dwarf_Unsigned) j < v_udata; j++)
5416 printf(" %x", b[j]);
5417 printf("\t(");
5418 dump_dwarf_block(re, v_expr, v_udata);
5419 putchar(')');
5420 break;
5421
5422 case DW_FORM_ref_sig8:
5423 if (dwarf_formsig8(attr_list[i], &v_sig8, &de) !=
5424 DW_DLV_OK) {
5425 warnx("dwarf_formsig8 failed: %s",
5426 dwarf_errmsg(de));
5427 continue;
5428 }
5429 p = (uint8_t *)(uintptr_t) &v_sig8.signature[0];
5430 v_sig = re->dw_decode(&p, 8);
5431 printf("signature: 0x%jx", (uintmax_t) v_sig);
5432 }
5433 switch (attr) {
5434 case DW_AT_encoding:
5435 if (dwarf_attrval_unsigned(die, attr, &ate, &de) !=
5436 DW_DLV_OK)
5437 break;
5438 if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK)
5439 ate_str = "DW_ATE_UNKNOWN";
5440 printf("\t(%s)", &ate_str[strlen("DW_ATE_")]);
5441 break;
5442
5443 case DW_AT_language:
5444 if (dwarf_attrval_unsigned(die, attr, &lang, &de) !=
5445 DW_DLV_OK)
5446 break;
5447 if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK)
5448 break;
5449 printf("\t(%s)", &lang_str[strlen("DW_LANG_")]);
5450 break;
5451
5452 case DW_AT_location:
5453 case DW_AT_string_length:
5454 case DW_AT_return_addr:
5455 case DW_AT_data_member_location:
5456 case DW_AT_frame_base:
5457 case DW_AT_segment:
5458 case DW_AT_static_link:
5459 case DW_AT_use_location:
5460 case DW_AT_vtable_elem_location:
5461 switch (form) {
5462 case DW_FORM_data4:
5463 case DW_FORM_data8:
5464 case DW_FORM_sec_offset:
5465 printf("\t(location list)");
5466 break;
5467 default:
5468 break;
5469 }
5470
5471 default:
5472 break;
5473 }
5474 putchar('\n');
5475 }
5476
5477
5478 cont_search:
5479 /* Search children. */
5480 ret = dwarf_child(die, &ret_die, &de);
5481 if (ret == DW_DLV_ERROR)
5482 warnx("dwarf_child: %s", dwarf_errmsg(de));
5483 else if (ret == DW_DLV_OK)
5484 dump_dwarf_die(re, ret_die, level + 1);
5485
5486 /* Search sibling. */
5487 is_info = dwarf_get_die_infotypes_flag(die);
5488 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
5489 if (ret == DW_DLV_ERROR)
5490 warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5491 else if (ret == DW_DLV_OK)
5492 dump_dwarf_die(re, ret_die, level);
5493
5494 dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5495 }
5496
5497 static void
set_cu_context(struct readelf * re,Dwarf_Half psize,Dwarf_Half osize,Dwarf_Half ver)5498 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize,
5499 Dwarf_Half ver)
5500 {
5501
5502 re->cu_psize = psize;
5503 re->cu_osize = osize;
5504 re->cu_ver = ver;
5505 }
5506
5507 static void
dump_dwarf_info(struct readelf * re,Dwarf_Bool is_info)5508 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info)
5509 {
5510 struct section *s;
5511 Dwarf_Die die;
5512 Dwarf_Error de;
5513 Dwarf_Half tag, version, pointer_size, off_size;
5514 Dwarf_Off cu_offset, cu_length;
5515 Dwarf_Off aboff;
5516 Dwarf_Unsigned typeoff;
5517 Dwarf_Sig8 sig8;
5518 Dwarf_Unsigned sig;
5519 uint8_t *p;
5520 const char *sn;
5521 int i, ret;
5522
5523 sn = is_info ? ".debug_info" : ".debug_types";
5524
5525 s = NULL;
5526 for (i = 0; (size_t) i < re->shnum; i++) {
5527 s = &re->sl[i];
5528 if (s->name != NULL && !strcmp(s->name, sn))
5529 break;
5530 }
5531 if ((size_t) i >= re->shnum)
5532 return;
5533
5534 do {
5535 printf("\nDump of debug contents of section %s:\n", sn);
5536
5537 while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL,
5538 &version, &aboff, &pointer_size, &off_size, NULL, &sig8,
5539 &typeoff, NULL, &de)) == DW_DLV_OK) {
5540 set_cu_context(re, pointer_size, off_size, version);
5541 die = NULL;
5542 while (dwarf_siblingof_b(re->dbg, die, &die, is_info,
5543 &de) == DW_DLV_OK) {
5544 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5545 warnx("dwarf_tag failed: %s",
5546 dwarf_errmsg(de));
5547 continue;
5548 }
5549 /* XXX: What about DW_TAG_partial_unit? */
5550 if ((is_info && tag == DW_TAG_compile_unit) ||
5551 (!is_info && tag == DW_TAG_type_unit))
5552 break;
5553 }
5554 if (die == NULL && is_info) {
5555 warnx("could not find DW_TAG_compile_unit "
5556 "die");
5557 continue;
5558 } else if (die == NULL && !is_info) {
5559 warnx("could not find DW_TAG_type_unit die");
5560 continue;
5561 }
5562
5563 if (dwarf_die_CU_offset_range(die, &cu_offset,
5564 &cu_length, &de) != DW_DLV_OK) {
5565 warnx("dwarf_die_CU_offset failed: %s",
5566 dwarf_errmsg(de));
5567 continue;
5568 }
5569
5570 cu_length -= off_size == 4 ? 4 : 12;
5571
5572 sig = 0;
5573 if (!is_info) {
5574 p = (uint8_t *)(uintptr_t) &sig8.signature[0];
5575 sig = re->dw_decode(&p, 8);
5576 }
5577
5578 printf("\n Type Unit @ offset 0x%jx:\n",
5579 (uintmax_t) cu_offset);
5580 printf(" Length:\t\t%#jx (%d-bit)\n",
5581 (uintmax_t) cu_length, off_size == 4 ? 32 : 64);
5582 printf(" Version:\t\t%u\n", version);
5583 printf(" Abbrev Offset:\t0x%jx\n",
5584 (uintmax_t) aboff);
5585 printf(" Pointer Size:\t%u\n", pointer_size);
5586 if (!is_info) {
5587 printf(" Signature:\t\t0x%016jx\n",
5588 (uintmax_t) sig);
5589 printf(" Type Offset:\t0x%jx\n",
5590 (uintmax_t) typeoff);
5591 }
5592
5593 dump_dwarf_die(re, die, 0);
5594 }
5595 if (ret == DW_DLV_ERROR)
5596 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5597 if (is_info)
5598 break;
5599 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
5600 }
5601
5602 static void
dump_dwarf_abbrev(struct readelf * re)5603 dump_dwarf_abbrev(struct readelf *re)
5604 {
5605 Dwarf_Abbrev ab;
5606 Dwarf_Off aboff, atoff;
5607 Dwarf_Unsigned length, attr_count;
5608 Dwarf_Signed flag, form;
5609 Dwarf_Half tag, attr;
5610 Dwarf_Error de;
5611 const char *tag_str, *attr_str, *form_str;
5612 char unk_tag[32], unk_attr[32], unk_form[32];
5613 int i, j, ret;
5614
5615 printf("\nContents of section .debug_abbrev:\n\n");
5616
5617 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff,
5618 NULL, NULL, &de)) == DW_DLV_OK) {
5619 printf(" Number TAG\n");
5620 i = 0;
5621 while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length,
5622 &attr_count, &de)) == DW_DLV_OK) {
5623 if (length == 1) {
5624 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5625 break;
5626 }
5627 aboff += length;
5628 printf("%4d", ++i);
5629 if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) {
5630 warnx("dwarf_get_abbrev_tag failed: %s",
5631 dwarf_errmsg(de));
5632 goto next_abbrev;
5633 }
5634 if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
5635 snprintf(unk_tag, sizeof(unk_tag),
5636 "[Unknown Tag: %#x]", tag);
5637 tag_str = unk_tag;
5638 }
5639 if (dwarf_get_abbrev_children_flag(ab, &flag, &de) !=
5640 DW_DLV_OK) {
5641 warnx("dwarf_get_abbrev_children_flag failed:"
5642 " %s", dwarf_errmsg(de));
5643 goto next_abbrev;
5644 }
5645 printf(" %s %s\n", tag_str,
5646 flag ? "[has children]" : "[no children]");
5647 for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) {
5648 if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j,
5649 &attr, &form, &atoff, &de) != DW_DLV_OK) {
5650 warnx("dwarf_get_abbrev_entry failed:"
5651 " %s", dwarf_errmsg(de));
5652 continue;
5653 }
5654 if (dwarf_get_AT_name(attr, &attr_str) !=
5655 DW_DLV_OK) {
5656 snprintf(unk_attr, sizeof(unk_attr),
5657 "[Unknown AT: %#x]", attr);
5658 attr_str = unk_attr;
5659 }
5660 if (dwarf_get_FORM_name(form, &form_str) !=
5661 DW_DLV_OK) {
5662 snprintf(unk_form, sizeof(unk_form),
5663 "[Unknown Form: %#x]",
5664 (Dwarf_Half) form);
5665 form_str = unk_form;
5666 }
5667 printf(" %-18s %s\n", attr_str, form_str);
5668 }
5669 next_abbrev:
5670 dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5671 }
5672 if (ret != DW_DLV_OK)
5673 warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de));
5674 }
5675 if (ret == DW_DLV_ERROR)
5676 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5677 }
5678
5679 static void
dump_dwarf_pubnames(struct readelf * re)5680 dump_dwarf_pubnames(struct readelf *re)
5681 {
5682 struct section *s;
5683 Dwarf_Off die_off;
5684 Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length;
5685 Dwarf_Signed cnt;
5686 Dwarf_Global *globs;
5687 Dwarf_Half nt_version;
5688 Dwarf_Error de;
5689 Elf_Data *d;
5690 char *glob_name;
5691 int i, dwarf_size, elferr;
5692
5693 printf("\nContents of the .debug_pubnames section:\n");
5694
5695 s = NULL;
5696 for (i = 0; (size_t) i < re->shnum; i++) {
5697 s = &re->sl[i];
5698 if (s->name != NULL && !strcmp(s->name, ".debug_pubnames"))
5699 break;
5700 }
5701 if ((size_t) i >= re->shnum)
5702 return;
5703
5704 (void) elf_errno();
5705 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5706 elferr = elf_errno();
5707 if (elferr != 0)
5708 warnx("elf_getdata failed: %s", elf_errmsg(-1));
5709 return;
5710 }
5711 if (d->d_size <= 0)
5712 return;
5713
5714 /* Read in .debug_pubnames section table header. */
5715 offset = 0;
5716 length = re->dw_read(d, &offset, 4);
5717 if (length == 0xffffffff) {
5718 dwarf_size = 8;
5719 length = re->dw_read(d, &offset, 8);
5720 } else
5721 dwarf_size = 4;
5722
5723 if (length > d->d_size - offset) {
5724 warnx("invalid .dwarf_pubnames section");
5725 return;
5726 }
5727
5728 nt_version = re->dw_read(d, &offset, 2);
5729 nt_cu_offset = re->dw_read(d, &offset, dwarf_size);
5730 nt_cu_length = re->dw_read(d, &offset, dwarf_size);
5731 printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length);
5732 printf(" Version:\t\t\t\t%u\n", nt_version);
5733 printf(" Offset into .debug_info section:\t%ju\n",
5734 (uintmax_t) nt_cu_offset);
5735 printf(" Size of area in .debug_info section:\t%ju\n",
5736 (uintmax_t) nt_cu_length);
5737
5738 if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) {
5739 warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de));
5740 return;
5741 }
5742
5743 printf("\n Offset Name\n");
5744 for (i = 0; i < cnt; i++) {
5745 if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) {
5746 warnx("dwarf_globname failed: %s", dwarf_errmsg(de));
5747 continue;
5748 }
5749 if (dwarf_global_die_offset(globs[i], &die_off, &de) !=
5750 DW_DLV_OK) {
5751 warnx("dwarf_global_die_offset failed: %s",
5752 dwarf_errmsg(de));
5753 continue;
5754 }
5755 printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name);
5756 }
5757 }
5758
5759 static void
dump_dwarf_aranges(struct readelf * re)5760 dump_dwarf_aranges(struct readelf *re)
5761 {
5762 struct section *s;
5763 Dwarf_Arange *aranges;
5764 Dwarf_Addr start;
5765 Dwarf_Unsigned offset, length, as_cu_offset;
5766 Dwarf_Off die_off;
5767 Dwarf_Signed cnt;
5768 Dwarf_Half as_version, as_addrsz, as_segsz;
5769 Dwarf_Error de;
5770 Elf_Data *d;
5771 int i, dwarf_size, elferr;
5772
5773 printf("\nContents of section .debug_aranges:\n");
5774
5775 s = NULL;
5776 for (i = 0; (size_t) i < re->shnum; i++) {
5777 s = &re->sl[i];
5778 if (s->name != NULL && !strcmp(s->name, ".debug_aranges"))
5779 break;
5780 }
5781 if ((size_t) i >= re->shnum)
5782 return;
5783
5784 (void) elf_errno();
5785 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5786 elferr = elf_errno();
5787 if (elferr != 0)
5788 warnx("elf_getdata failed: %s", elf_errmsg(-1));
5789 return;
5790 }
5791 if (d->d_size <= 0)
5792 return;
5793
5794 /* Read in the .debug_aranges section table header. */
5795 offset = 0;
5796 length = re->dw_read(d, &offset, 4);
5797 if (length == 0xffffffff) {
5798 dwarf_size = 8;
5799 length = re->dw_read(d, &offset, 8);
5800 } else
5801 dwarf_size = 4;
5802
5803 if (length > d->d_size - offset) {
5804 warnx("invalid .dwarf_aranges section");
5805 return;
5806 }
5807
5808 as_version = re->dw_read(d, &offset, 2);
5809 as_cu_offset = re->dw_read(d, &offset, dwarf_size);
5810 as_addrsz = re->dw_read(d, &offset, 1);
5811 as_segsz = re->dw_read(d, &offset, 1);
5812
5813 printf(" Length:\t\t\t%ju\n", (uintmax_t) length);
5814 printf(" Version:\t\t\t%u\n", as_version);
5815 printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset);
5816 printf(" Pointer Size:\t\t\t%u\n", as_addrsz);
5817 printf(" Segment Size:\t\t\t%u\n", as_segsz);
5818
5819 if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) {
5820 warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de));
5821 return;
5822 }
5823
5824 printf("\n Address Length\n");
5825 for (i = 0; i < cnt; i++) {
5826 if (dwarf_get_arange_info(aranges[i], &start, &length,
5827 &die_off, &de) != DW_DLV_OK) {
5828 warnx("dwarf_get_arange_info failed: %s",
5829 dwarf_errmsg(de));
5830 continue;
5831 }
5832 printf(" %08jx %ju\n", (uintmax_t) start,
5833 (uintmax_t) length);
5834 }
5835 }
5836
5837 static void
dump_dwarf_ranges_foreach(struct readelf * re,Dwarf_Die die,Dwarf_Addr base)5838 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base)
5839 {
5840 Dwarf_Attribute *attr_list;
5841 Dwarf_Ranges *ranges;
5842 Dwarf_Die ret_die;
5843 Dwarf_Error de;
5844 Dwarf_Addr base0;
5845 Dwarf_Half attr;
5846 Dwarf_Signed attr_count, cnt;
5847 Dwarf_Unsigned bytecnt;
5848 Dwarf_Off off;
5849 int i, j, ret;
5850
5851 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
5852 DW_DLV_OK) {
5853 if (ret == DW_DLV_ERROR)
5854 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
5855 goto cont_search;
5856 }
5857
5858 for (i = 0; i < attr_count; i++) {
5859 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
5860 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
5861 continue;
5862 }
5863 if (attr != DW_AT_ranges)
5864 continue;
5865 if (dwarf_global_formref(attr_list[i], &off, &de) != DW_DLV_OK) {
5866 warnx("dwarf_global_formref failed: %s",
5867 dwarf_errmsg(de));
5868 continue;
5869 }
5870 if (dwarf_get_ranges(re->dbg, off, &ranges, &cnt,
5871 &bytecnt, &de) != DW_DLV_OK)
5872 continue;
5873 base0 = base;
5874 for (j = 0; j < cnt; j++) {
5875 printf(" %08jx ", (uintmax_t) off);
5876 if (ranges[j].dwr_type == DW_RANGES_END) {
5877 printf("%s\n", "<End of list>");
5878 continue;
5879 } else if (ranges[j].dwr_type ==
5880 DW_RANGES_ADDRESS_SELECTION) {
5881 base0 = ranges[j].dwr_addr2;
5882 continue;
5883 }
5884 if (re->ec == ELFCLASS32)
5885 printf("%08jx %08jx\n",
5886 (uintmax_t) (ranges[j].dwr_addr1 + base0),
5887 (uintmax_t) (ranges[j].dwr_addr2 + base0));
5888 else
5889 printf("%016jx %016jx\n",
5890 (uintmax_t) (ranges[j].dwr_addr1 + base0),
5891 (uintmax_t) (ranges[j].dwr_addr2 + base0));
5892 }
5893 }
5894
5895 cont_search:
5896 /* Search children. */
5897 ret = dwarf_child(die, &ret_die, &de);
5898 if (ret == DW_DLV_ERROR)
5899 warnx("dwarf_child: %s", dwarf_errmsg(de));
5900 else if (ret == DW_DLV_OK)
5901 dump_dwarf_ranges_foreach(re, ret_die, base);
5902
5903 /* Search sibling. */
5904 ret = dwarf_siblingof(re->dbg, die, &ret_die, &de);
5905 if (ret == DW_DLV_ERROR)
5906 warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5907 else if (ret == DW_DLV_OK)
5908 dump_dwarf_ranges_foreach(re, ret_die, base);
5909
5910 dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5911 }
5912
5913 static void
dump_dwarf_ranges(struct readelf * re)5914 dump_dwarf_ranges(struct readelf *re)
5915 {
5916 Dwarf_Ranges *ranges;
5917 Dwarf_Die die;
5918 Dwarf_Signed cnt;
5919 Dwarf_Unsigned bytecnt;
5920 Dwarf_Half tag;
5921 Dwarf_Error de;
5922 Dwarf_Unsigned lowpc;
5923 int ret;
5924
5925 if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) !=
5926 DW_DLV_OK)
5927 return;
5928
5929 printf("Contents of the .debug_ranges section:\n\n");
5930 if (re->ec == ELFCLASS32)
5931 printf(" %-8s %-8s %s\n", "Offset", "Begin", "End");
5932 else
5933 printf(" %-8s %-16s %s\n", "Offset", "Begin", "End");
5934
5935 while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
5936 NULL, &de)) == DW_DLV_OK) {
5937 die = NULL;
5938 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
5939 continue;
5940 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5941 warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
5942 continue;
5943 }
5944 /* XXX: What about DW_TAG_partial_unit? */
5945 lowpc = 0;
5946 if (tag == DW_TAG_compile_unit) {
5947 if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc,
5948 &de) != DW_DLV_OK)
5949 lowpc = 0;
5950 }
5951
5952 dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc);
5953 }
5954 putchar('\n');
5955 }
5956
5957 static void
dump_dwarf_macinfo(struct readelf * re)5958 dump_dwarf_macinfo(struct readelf *re)
5959 {
5960 Dwarf_Unsigned offset;
5961 Dwarf_Signed cnt;
5962 Dwarf_Macro_Details *md;
5963 Dwarf_Error de;
5964 const char *mi_str;
5965 char unk_mi[32];
5966 int i;
5967
5968 #define _MAX_MACINFO_ENTRY 65535
5969
5970 printf("\nContents of section .debug_macinfo:\n\n");
5971
5972 offset = 0;
5973 while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY,
5974 &cnt, &md, &de) == DW_DLV_OK) {
5975 for (i = 0; i < cnt; i++) {
5976 offset = md[i].dmd_offset + 1;
5977 if (md[i].dmd_type == 0)
5978 break;
5979 if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) !=
5980 DW_DLV_OK) {
5981 snprintf(unk_mi, sizeof(unk_mi),
5982 "[Unknown MACINFO: %#x]", md[i].dmd_type);
5983 mi_str = unk_mi;
5984 }
5985 printf(" %s", mi_str);
5986 switch (md[i].dmd_type) {
5987 case DW_MACINFO_define:
5988 case DW_MACINFO_undef:
5989 printf(" - lineno : %jd macro : %s\n",
5990 (intmax_t) md[i].dmd_lineno,
5991 md[i].dmd_macro);
5992 break;
5993 case DW_MACINFO_start_file:
5994 printf(" - lineno : %jd filenum : %jd\n",
5995 (intmax_t) md[i].dmd_lineno,
5996 (intmax_t) md[i].dmd_fileindex);
5997 break;
5998 default:
5999 putchar('\n');
6000 break;
6001 }
6002 }
6003 }
6004
6005 #undef _MAX_MACINFO_ENTRY
6006 }
6007
6008 static void
dump_dwarf_frame_inst(struct readelf * re,Dwarf_Cie cie,uint8_t * insts,Dwarf_Unsigned len,Dwarf_Unsigned caf,Dwarf_Signed daf,Dwarf_Addr pc,Dwarf_Debug dbg)6009 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts,
6010 Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc,
6011 Dwarf_Debug dbg)
6012 {
6013 Dwarf_Frame_Op *oplist;
6014 Dwarf_Signed opcnt, delta;
6015 Dwarf_Small op;
6016 Dwarf_Error de;
6017 const char *op_str;
6018 char unk_op[32];
6019 int i;
6020
6021 if (dwarf_expand_frame_instructions(cie, insts, len, &oplist,
6022 &opcnt, &de) != DW_DLV_OK) {
6023 warnx("dwarf_expand_frame_instructions failed: %s",
6024 dwarf_errmsg(de));
6025 return;
6026 }
6027
6028 for (i = 0; i < opcnt; i++) {
6029 if (oplist[i].fp_base_op != 0)
6030 op = oplist[i].fp_base_op << 6;
6031 else
6032 op = oplist[i].fp_extended_op;
6033 if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) {
6034 snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]",
6035 op);
6036 op_str = unk_op;
6037 }
6038 printf(" %s", op_str);
6039 switch (op) {
6040 case DW_CFA_advance_loc:
6041 delta = oplist[i].fp_offset * caf;
6042 pc += delta;
6043 printf(": %ju to %08jx", (uintmax_t) delta,
6044 (uintmax_t) pc);
6045 break;
6046 case DW_CFA_offset:
6047 case DW_CFA_offset_extended:
6048 case DW_CFA_offset_extended_sf:
6049 delta = oplist[i].fp_offset * daf;
6050 printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register,
6051 dwarf_regname(re, oplist[i].fp_register),
6052 (intmax_t) delta);
6053 break;
6054 case DW_CFA_restore:
6055 printf(": r%u (%s)", oplist[i].fp_register,
6056 dwarf_regname(re, oplist[i].fp_register));
6057 break;
6058 case DW_CFA_set_loc:
6059 pc = oplist[i].fp_offset;
6060 printf(": to %08jx", (uintmax_t) pc);
6061 break;
6062 case DW_CFA_advance_loc1:
6063 case DW_CFA_advance_loc2:
6064 case DW_CFA_advance_loc4:
6065 pc += oplist[i].fp_offset;
6066 printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset,
6067 (uintmax_t) pc);
6068 break;
6069 case DW_CFA_def_cfa:
6070 printf(": r%u (%s) ofs %ju", oplist[i].fp_register,
6071 dwarf_regname(re, oplist[i].fp_register),
6072 (uintmax_t) oplist[i].fp_offset);
6073 break;
6074 case DW_CFA_def_cfa_sf:
6075 printf(": r%u (%s) ofs %jd", oplist[i].fp_register,
6076 dwarf_regname(re, oplist[i].fp_register),
6077 (intmax_t) (oplist[i].fp_offset * daf));
6078 break;
6079 case DW_CFA_def_cfa_register:
6080 printf(": r%u (%s)", oplist[i].fp_register,
6081 dwarf_regname(re, oplist[i].fp_register));
6082 break;
6083 case DW_CFA_def_cfa_offset:
6084 printf(": %ju", (uintmax_t) oplist[i].fp_offset);
6085 break;
6086 case DW_CFA_def_cfa_offset_sf:
6087 printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf));
6088 break;
6089 default:
6090 break;
6091 }
6092 putchar('\n');
6093 }
6094
6095 dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK);
6096 }
6097
6098 static char *
get_regoff_str(struct readelf * re,Dwarf_Half reg,Dwarf_Addr off)6099 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off)
6100 {
6101 static char rs[16];
6102
6103 if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE)
6104 snprintf(rs, sizeof(rs), "%c", 'u');
6105 else if (reg == DW_FRAME_CFA_COL)
6106 snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off);
6107 else
6108 snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg),
6109 (intmax_t) off);
6110
6111 return (rs);
6112 }
6113
6114 static int
dump_dwarf_frame_regtable(struct readelf * re,Dwarf_Fde fde,Dwarf_Addr pc,Dwarf_Unsigned func_len,Dwarf_Half cie_ra)6115 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc,
6116 Dwarf_Unsigned func_len, Dwarf_Half cie_ra)
6117 {
6118 Dwarf_Regtable rt;
6119 Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc;
6120 Dwarf_Error de;
6121 char *vec;
6122 int i;
6123
6124 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7))
6125 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7)))
6126 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7)))
6127 #define RT(x) rt.rules[(x)]
6128
6129 vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1);
6130 if (vec == NULL)
6131 err(EXIT_FAILURE, "calloc failed");
6132
6133 pre_pc = ~((Dwarf_Addr) 0);
6134 cur_pc = pc;
6135 end_pc = pc + func_len;
6136 for (; cur_pc < end_pc; cur_pc++) {
6137 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
6138 &de) != DW_DLV_OK) {
6139 free(vec);
6140 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
6141 dwarf_errmsg(de));
6142 return (-1);
6143 }
6144 if (row_pc == pre_pc)
6145 continue;
6146 pre_pc = row_pc;
6147 for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
6148 if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE)
6149 BIT_SET(vec, i);
6150 }
6151 }
6152
6153 printf(" LOC CFA ");
6154 for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
6155 if (BIT_ISSET(vec, i)) {
6156 if ((Dwarf_Half) i == cie_ra)
6157 printf("ra ");
6158 else
6159 printf("%-5s",
6160 dwarf_regname(re, (unsigned int) i));
6161 }
6162 }
6163 putchar('\n');
6164
6165 pre_pc = ~((Dwarf_Addr) 0);
6166 cur_pc = pc;
6167 end_pc = pc + func_len;
6168 for (; cur_pc < end_pc; cur_pc++) {
6169 if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
6170 &de) != DW_DLV_OK) {
6171 free(vec);
6172 warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
6173 dwarf_errmsg(de));
6174 return (-1);
6175 }
6176 if (row_pc == pre_pc)
6177 continue;
6178 pre_pc = row_pc;
6179 printf("%08jx ", (uintmax_t) row_pc);
6180 printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum,
6181 RT(0).dw_offset));
6182 for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
6183 if (BIT_ISSET(vec, i)) {
6184 printf("%-5s", get_regoff_str(re,
6185 RT(i).dw_regnum, RT(i).dw_offset));
6186 }
6187 }
6188 putchar('\n');
6189 }
6190
6191 free(vec);
6192
6193 return (0);
6194
6195 #undef BIT_SET
6196 #undef BIT_CLR
6197 #undef BIT_ISSET
6198 #undef RT
6199 }
6200
6201 static void
dump_dwarf_frame_section(struct readelf * re,struct section * s,int alt)6202 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt)
6203 {
6204 Dwarf_Cie *cie_list, cie, pre_cie;
6205 Dwarf_Fde *fde_list, fde;
6206 Dwarf_Off cie_offset, fde_offset;
6207 Dwarf_Unsigned cie_length, fde_instlen;
6208 Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length;
6209 Dwarf_Signed cie_count, fde_count, cie_index;
6210 Dwarf_Addr low_pc;
6211 Dwarf_Half cie_ra;
6212 Dwarf_Small cie_version;
6213 Dwarf_Ptr fde_addr, fde_inst, cie_inst;
6214 char *cie_aug, c;
6215 int i, ret, eh_frame;
6216 Dwarf_Error de;
6217
6218 printf("\nThe section %s contains:\n\n", s->name);
6219
6220 if (!strcmp(s->name, ".debug_frame")) {
6221 eh_frame = 0;
6222 if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count,
6223 &fde_list, &fde_count, &de) != DW_DLV_OK) {
6224 warnx("dwarf_get_fde_list failed: %s",
6225 dwarf_errmsg(de));
6226 return;
6227 }
6228 } else if (!strcmp(s->name, ".eh_frame")) {
6229 eh_frame = 1;
6230 ret = dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count,
6231 &fde_list, &fde_count, &de);
6232 if (ret != DW_DLV_OK) {
6233 if (ret == DW_DLV_ERROR) {
6234 warnx("dwarf_get_fde_list_eh failed: %s",
6235 dwarf_errmsg(de));
6236 }
6237 return;
6238 }
6239 } else
6240 return;
6241
6242 pre_cie = NULL;
6243 for (i = 0; i < fde_count; i++) {
6244 if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) {
6245 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
6246 continue;
6247 }
6248 if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) {
6249 warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
6250 continue;
6251 }
6252 if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr,
6253 &fde_length, &cie_offset, &cie_index, &fde_offset,
6254 &de) != DW_DLV_OK) {
6255 warnx("dwarf_get_fde_range failed: %s",
6256 dwarf_errmsg(de));
6257 continue;
6258 }
6259 if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen,
6260 &de) != DW_DLV_OK) {
6261 warnx("dwarf_get_fde_instr_bytes failed: %s",
6262 dwarf_errmsg(de));
6263 continue;
6264 }
6265 if (pre_cie == NULL || cie != pre_cie) {
6266 pre_cie = cie;
6267 if (dwarf_get_cie_info(cie, &cie_length, &cie_version,
6268 &cie_aug, &cie_caf, &cie_daf, &cie_ra,
6269 &cie_inst, &cie_instlen, &de) != DW_DLV_OK) {
6270 warnx("dwarf_get_cie_info failed: %s",
6271 dwarf_errmsg(de));
6272 continue;
6273 }
6274 printf("%08jx %08jx %8.8jx CIE",
6275 (uintmax_t) cie_offset,
6276 (uintmax_t) cie_length,
6277 (uintmax_t) (eh_frame ? 0 : ~0U));
6278 if (!alt) {
6279 putchar('\n');
6280 printf(" Version:\t\t\t%u\n", cie_version);
6281 printf(" Augmentation:\t\t\t\"");
6282 while ((c = *cie_aug++) != '\0')
6283 putchar(c);
6284 printf("\"\n");
6285 printf(" Code alignment factor:\t%ju\n",
6286 (uintmax_t) cie_caf);
6287 printf(" Data alignment factor:\t%jd\n",
6288 (intmax_t) cie_daf);
6289 printf(" Return address column:\t%ju\n",
6290 (uintmax_t) cie_ra);
6291 putchar('\n');
6292 dump_dwarf_frame_inst(re, cie, cie_inst,
6293 cie_instlen, cie_caf, cie_daf, 0,
6294 re->dbg);
6295 putchar('\n');
6296 } else {
6297 printf(" \"");
6298 while ((c = *cie_aug++) != '\0')
6299 putchar(c);
6300 putchar('"');
6301 printf(" cf=%ju df=%jd ra=%ju\n",
6302 (uintmax_t) cie_caf,
6303 (uintmax_t) cie_daf,
6304 (uintmax_t) cie_ra);
6305 dump_dwarf_frame_regtable(re, fde, low_pc, 1,
6306 cie_ra);
6307 putchar('\n');
6308 }
6309 }
6310 printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n",
6311 (uintmax_t) fde_offset, (uintmax_t) fde_length,
6312 (uintmax_t) cie_offset,
6313 (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset :
6314 cie_offset),
6315 (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len));
6316 if (!alt)
6317 dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen,
6318 cie_caf, cie_daf, low_pc, re->dbg);
6319 else
6320 dump_dwarf_frame_regtable(re, fde, low_pc, func_len,
6321 cie_ra);
6322 putchar('\n');
6323 }
6324 }
6325
6326 static void
dump_dwarf_frame(struct readelf * re,int alt)6327 dump_dwarf_frame(struct readelf *re, int alt)
6328 {
6329 struct section *s;
6330 int i;
6331
6332 (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL);
6333
6334 for (i = 0; (size_t) i < re->shnum; i++) {
6335 s = &re->sl[i];
6336 if (s->name != NULL && (!strcmp(s->name, ".debug_frame") ||
6337 !strcmp(s->name, ".eh_frame")))
6338 dump_dwarf_frame_section(re, s, alt);
6339 }
6340 }
6341
6342 static void
dump_dwarf_str(struct readelf * re)6343 dump_dwarf_str(struct readelf *re)
6344 {
6345 struct section *s;
6346 Elf_Data *d;
6347 unsigned char *p;
6348 int elferr, end, i, j;
6349
6350 printf("\nContents of section .debug_str:\n");
6351
6352 s = NULL;
6353 for (i = 0; (size_t) i < re->shnum; i++) {
6354 s = &re->sl[i];
6355 if (s->name != NULL && !strcmp(s->name, ".debug_str"))
6356 break;
6357 }
6358 if ((size_t) i >= re->shnum)
6359 return;
6360
6361 (void) elf_errno();
6362 if ((d = elf_getdata(s->scn, NULL)) == NULL) {
6363 elferr = elf_errno();
6364 if (elferr != 0)
6365 warnx("elf_getdata failed: %s", elf_errmsg(-1));
6366 return;
6367 }
6368 if (d->d_size <= 0)
6369 return;
6370
6371 for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) {
6372 printf(" 0x%08x", (unsigned int) i);
6373 if ((size_t) i + 16 > d->d_size)
6374 end = d->d_size;
6375 else
6376 end = i + 16;
6377 for (j = i; j < i + 16; j++) {
6378 if ((j - i) % 4 == 0)
6379 putchar(' ');
6380 if (j >= end) {
6381 printf(" ");
6382 continue;
6383 }
6384 printf("%02x", (uint8_t) p[j]);
6385 }
6386 putchar(' ');
6387 for (j = i; j < end; j++) {
6388 if (isprint(p[j]))
6389 putchar(p[j]);
6390 else if (p[j] == 0)
6391 putchar('.');
6392 else
6393 putchar(' ');
6394 }
6395 putchar('\n');
6396 }
6397 }
6398
6399 static int
loc_at_comparator(const void * la1,const void * la2)6400 loc_at_comparator(const void *la1, const void *la2)
6401 {
6402 const struct loc_at *left, *right;
6403
6404 left = (const struct loc_at *)la1;
6405 right = (const struct loc_at *)la2;
6406
6407 if (left->la_off > right->la_off)
6408 return (1);
6409 else if (left->la_off < right->la_off)
6410 return (-1);
6411 else
6412 return (0);
6413 }
6414
6415 static void
search_loclist_at(struct readelf * re,Dwarf_Die die,Dwarf_Unsigned lowpc,struct loc_at ** la_list,size_t * la_list_len,size_t * la_list_cap)6416 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc,
6417 struct loc_at **la_list, size_t *la_list_len, size_t *la_list_cap)
6418 {
6419 struct loc_at *la;
6420 Dwarf_Attribute *attr_list;
6421 Dwarf_Die ret_die;
6422 Dwarf_Unsigned off;
6423 Dwarf_Off ref;
6424 Dwarf_Signed attr_count;
6425 Dwarf_Half attr, form;
6426 Dwarf_Bool is_info;
6427 Dwarf_Error de;
6428 int i, ret;
6429
6430 is_info = dwarf_get_die_infotypes_flag(die);
6431
6432 if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
6433 DW_DLV_OK) {
6434 if (ret == DW_DLV_ERROR)
6435 warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
6436 goto cont_search;
6437 }
6438 for (i = 0; i < attr_count; i++) {
6439 if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
6440 warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
6441 continue;
6442 }
6443 if (attr != DW_AT_location &&
6444 attr != DW_AT_string_length &&
6445 attr != DW_AT_return_addr &&
6446 attr != DW_AT_data_member_location &&
6447 attr != DW_AT_frame_base &&
6448 attr != DW_AT_segment &&
6449 attr != DW_AT_static_link &&
6450 attr != DW_AT_use_location &&
6451 attr != DW_AT_vtable_elem_location)
6452 continue;
6453 if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
6454 warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
6455 continue;
6456 }
6457 if (form == DW_FORM_data4 || form == DW_FORM_data8) {
6458 if (dwarf_formudata(attr_list[i], &off, &de) !=
6459 DW_DLV_OK) {
6460 warnx("dwarf_formudata failed: %s",
6461 dwarf_errmsg(de));
6462 continue;
6463 }
6464 } else if (form == DW_FORM_sec_offset) {
6465 if (dwarf_global_formref(attr_list[i], &ref, &de) !=
6466 DW_DLV_OK) {
6467 warnx("dwarf_global_formref failed: %s",
6468 dwarf_errmsg(de));
6469 continue;
6470 }
6471 off = ref;
6472 } else
6473 continue;
6474
6475 if (*la_list_cap == *la_list_len) {
6476 *la_list = realloc(*la_list,
6477 *la_list_cap * 2 * sizeof(**la_list));
6478 if (*la_list == NULL)
6479 err(EXIT_FAILURE, "realloc failed");
6480 *la_list_cap *= 2;
6481 }
6482 la = &((*la_list)[*la_list_len]);
6483 la->la_at = attr_list[i];
6484 la->la_off = off;
6485 la->la_lowpc = lowpc;
6486 la->la_cu_psize = re->cu_psize;
6487 la->la_cu_osize = re->cu_osize;
6488 la->la_cu_ver = re->cu_ver;
6489 (*la_list_len)++;
6490 }
6491
6492 cont_search:
6493 /* Search children. */
6494 ret = dwarf_child(die, &ret_die, &de);
6495 if (ret == DW_DLV_ERROR)
6496 warnx("dwarf_child: %s", dwarf_errmsg(de));
6497 else if (ret == DW_DLV_OK)
6498 search_loclist_at(re, ret_die, lowpc, la_list,
6499 la_list_len, la_list_cap);
6500
6501 /* Search sibling. */
6502 ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
6503 if (ret == DW_DLV_ERROR)
6504 warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
6505 else if (ret == DW_DLV_OK)
6506 search_loclist_at(re, ret_die, lowpc, la_list,
6507 la_list_len, la_list_cap);
6508 }
6509
6510 static void
dump_dwarf_loc(struct readelf * re,Dwarf_Loc * lr)6511 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr)
6512 {
6513 const char *op_str;
6514 char unk_op[32];
6515 uint8_t *b, n;
6516 int i;
6517
6518 if (dwarf_get_OP_name(lr->lr_atom, &op_str) !=
6519 DW_DLV_OK) {
6520 snprintf(unk_op, sizeof(unk_op),
6521 "[Unknown OP: %#x]", lr->lr_atom);
6522 op_str = unk_op;
6523 }
6524
6525 printf("%s", op_str);
6526
6527 switch (lr->lr_atom) {
6528 case DW_OP_reg0:
6529 case DW_OP_reg1:
6530 case DW_OP_reg2:
6531 case DW_OP_reg3:
6532 case DW_OP_reg4:
6533 case DW_OP_reg5:
6534 case DW_OP_reg6:
6535 case DW_OP_reg7:
6536 case DW_OP_reg8:
6537 case DW_OP_reg9:
6538 case DW_OP_reg10:
6539 case DW_OP_reg11:
6540 case DW_OP_reg12:
6541 case DW_OP_reg13:
6542 case DW_OP_reg14:
6543 case DW_OP_reg15:
6544 case DW_OP_reg16:
6545 case DW_OP_reg17:
6546 case DW_OP_reg18:
6547 case DW_OP_reg19:
6548 case DW_OP_reg20:
6549 case DW_OP_reg21:
6550 case DW_OP_reg22:
6551 case DW_OP_reg23:
6552 case DW_OP_reg24:
6553 case DW_OP_reg25:
6554 case DW_OP_reg26:
6555 case DW_OP_reg27:
6556 case DW_OP_reg28:
6557 case DW_OP_reg29:
6558 case DW_OP_reg30:
6559 case DW_OP_reg31:
6560 printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0));
6561 break;
6562
6563 case DW_OP_deref:
6564 case DW_OP_lit0:
6565 case DW_OP_lit1:
6566 case DW_OP_lit2:
6567 case DW_OP_lit3:
6568 case DW_OP_lit4:
6569 case DW_OP_lit5:
6570 case DW_OP_lit6:
6571 case DW_OP_lit7:
6572 case DW_OP_lit8:
6573 case DW_OP_lit9:
6574 case DW_OP_lit10:
6575 case DW_OP_lit11:
6576 case DW_OP_lit12:
6577 case DW_OP_lit13:
6578 case DW_OP_lit14:
6579 case DW_OP_lit15:
6580 case DW_OP_lit16:
6581 case DW_OP_lit17:
6582 case DW_OP_lit18:
6583 case DW_OP_lit19:
6584 case DW_OP_lit20:
6585 case DW_OP_lit21:
6586 case DW_OP_lit22:
6587 case DW_OP_lit23:
6588 case DW_OP_lit24:
6589 case DW_OP_lit25:
6590 case DW_OP_lit26:
6591 case DW_OP_lit27:
6592 case DW_OP_lit28:
6593 case DW_OP_lit29:
6594 case DW_OP_lit30:
6595 case DW_OP_lit31:
6596 case DW_OP_dup:
6597 case DW_OP_drop:
6598 case DW_OP_over:
6599 case DW_OP_swap:
6600 case DW_OP_rot:
6601 case DW_OP_xderef:
6602 case DW_OP_abs:
6603 case DW_OP_and:
6604 case DW_OP_div:
6605 case DW_OP_minus:
6606 case DW_OP_mod:
6607 case DW_OP_mul:
6608 case DW_OP_neg:
6609 case DW_OP_not:
6610 case DW_OP_or:
6611 case DW_OP_plus:
6612 case DW_OP_shl:
6613 case DW_OP_shr:
6614 case DW_OP_shra:
6615 case DW_OP_xor:
6616 case DW_OP_eq:
6617 case DW_OP_ge:
6618 case DW_OP_gt:
6619 case DW_OP_le:
6620 case DW_OP_lt:
6621 case DW_OP_ne:
6622 case DW_OP_nop:
6623 case DW_OP_push_object_address:
6624 case DW_OP_form_tls_address:
6625 case DW_OP_call_frame_cfa:
6626 case DW_OP_stack_value:
6627 case DW_OP_GNU_push_tls_address:
6628 case DW_OP_GNU_uninit:
6629 break;
6630
6631 case DW_OP_const1u:
6632 case DW_OP_pick:
6633 case DW_OP_deref_size:
6634 case DW_OP_xderef_size:
6635 case DW_OP_const2u:
6636 case DW_OP_bra:
6637 case DW_OP_skip:
6638 case DW_OP_const4u:
6639 case DW_OP_const8u:
6640 case DW_OP_constu:
6641 case DW_OP_plus_uconst:
6642 case DW_OP_regx:
6643 case DW_OP_piece:
6644 printf(": %ju", (uintmax_t)
6645 lr->lr_number);
6646 break;
6647
6648 case DW_OP_const1s:
6649 case DW_OP_const2s:
6650 case DW_OP_const4s:
6651 case DW_OP_const8s:
6652 case DW_OP_consts:
6653 printf(": %jd", (intmax_t)
6654 lr->lr_number);
6655 break;
6656
6657 case DW_OP_breg0:
6658 case DW_OP_breg1:
6659 case DW_OP_breg2:
6660 case DW_OP_breg3:
6661 case DW_OP_breg4:
6662 case DW_OP_breg5:
6663 case DW_OP_breg6:
6664 case DW_OP_breg7:
6665 case DW_OP_breg8:
6666 case DW_OP_breg9:
6667 case DW_OP_breg10:
6668 case DW_OP_breg11:
6669 case DW_OP_breg12:
6670 case DW_OP_breg13:
6671 case DW_OP_breg14:
6672 case DW_OP_breg15:
6673 case DW_OP_breg16:
6674 case DW_OP_breg17:
6675 case DW_OP_breg18:
6676 case DW_OP_breg19:
6677 case DW_OP_breg20:
6678 case DW_OP_breg21:
6679 case DW_OP_breg22:
6680 case DW_OP_breg23:
6681 case DW_OP_breg24:
6682 case DW_OP_breg25:
6683 case DW_OP_breg26:
6684 case DW_OP_breg27:
6685 case DW_OP_breg28:
6686 case DW_OP_breg29:
6687 case DW_OP_breg30:
6688 case DW_OP_breg31:
6689 printf(" (%s): %jd",
6690 dwarf_regname(re, lr->lr_atom - DW_OP_breg0),
6691 (intmax_t) lr->lr_number);
6692 break;
6693
6694 case DW_OP_fbreg:
6695 printf(": %jd", (intmax_t)
6696 lr->lr_number);
6697 break;
6698
6699 case DW_OP_bregx:
6700 printf(": %ju (%s) %jd",
6701 (uintmax_t) lr->lr_number,
6702 dwarf_regname(re, (unsigned int) lr->lr_number),
6703 (intmax_t) lr->lr_number2);
6704 break;
6705
6706 case DW_OP_addr:
6707 case DW_OP_GNU_encoded_addr:
6708 printf(": %#jx", (uintmax_t)
6709 lr->lr_number);
6710 break;
6711
6712 case DW_OP_GNU_implicit_pointer:
6713 printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number,
6714 (intmax_t) lr->lr_number2);
6715 break;
6716
6717 case DW_OP_implicit_value:
6718 printf(": %ju byte block:", (uintmax_t) lr->lr_number);
6719 b = (uint8_t *)(uintptr_t) lr->lr_number2;
6720 for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++)
6721 printf(" %x", b[i]);
6722 break;
6723
6724 case DW_OP_GNU_entry_value:
6725 printf(": (");
6726 dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2,
6727 lr->lr_number);
6728 putchar(')');
6729 break;
6730
6731 case DW_OP_GNU_const_type:
6732 printf(": <0x%jx> ", (uintmax_t) lr->lr_number);
6733 b = (uint8_t *)(uintptr_t) lr->lr_number2;
6734 n = *b;
6735 for (i = 1; (uint8_t) i < n; i++)
6736 printf(" %x", b[i]);
6737 break;
6738
6739 case DW_OP_GNU_regval_type:
6740 printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number,
6741 dwarf_regname(re, (unsigned int) lr->lr_number),
6742 (uintmax_t) lr->lr_number2);
6743 break;
6744
6745 case DW_OP_GNU_convert:
6746 case DW_OP_GNU_deref_type:
6747 case DW_OP_GNU_parameter_ref:
6748 case DW_OP_GNU_reinterpret:
6749 printf(": <0x%jx>", (uintmax_t) lr->lr_number);
6750 break;
6751
6752 default:
6753 break;
6754 }
6755 }
6756
6757 static void
dump_dwarf_block(struct readelf * re,uint8_t * b,Dwarf_Unsigned len)6758 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len)
6759 {
6760 Dwarf_Locdesc *llbuf;
6761 Dwarf_Signed lcnt;
6762 Dwarf_Error de;
6763 int i;
6764
6765 if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize,
6766 re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) {
6767 warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de));
6768 return;
6769 }
6770
6771 for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) {
6772 dump_dwarf_loc(re, &llbuf->ld_s[i]);
6773 if (i < llbuf->ld_cents - 1)
6774 printf("; ");
6775 }
6776
6777 dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
6778 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC);
6779 }
6780
6781 static void
dump_dwarf_loclist(struct readelf * re)6782 dump_dwarf_loclist(struct readelf *re)
6783 {
6784 Dwarf_Die die;
6785 Dwarf_Locdesc **llbuf;
6786 Dwarf_Unsigned lowpc;
6787 Dwarf_Signed lcnt;
6788 Dwarf_Half tag, version, pointer_size, off_size;
6789 Dwarf_Error de;
6790 struct loc_at *la_list, *left, *right, *la;
6791 size_t la_list_len, la_list_cap;
6792 unsigned int duplicates, k;
6793 int i, j, ret, has_content;
6794
6795 la_list_len = 0;
6796 la_list_cap = 200;
6797 if ((la_list = calloc(la_list_cap, sizeof(struct loc_at))) == NULL)
6798 errx(EXIT_FAILURE, "calloc failed");
6799 /* Search .debug_info section. */
6800 while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL,
6801 &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) {
6802 set_cu_context(re, pointer_size, off_size, version);
6803 die = NULL;
6804 if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
6805 continue;
6806 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6807 warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
6808 continue;
6809 }
6810 /* XXX: What about DW_TAG_partial_unit? */
6811 lowpc = 0;
6812 if (tag == DW_TAG_compile_unit) {
6813 if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6814 &lowpc, &de) != DW_DLV_OK)
6815 lowpc = 0;
6816 }
6817
6818 /* Search attributes for reference to .debug_loc section. */
6819 search_loclist_at(re, die, lowpc, &la_list,
6820 &la_list_len, &la_list_cap);
6821 }
6822 if (ret == DW_DLV_ERROR)
6823 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6824
6825 /* Search .debug_types section. */
6826 do {
6827 while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL,
6828 &version, NULL, &pointer_size, &off_size, NULL, NULL,
6829 NULL, NULL, &de)) == DW_DLV_OK) {
6830 set_cu_context(re, pointer_size, off_size, version);
6831 die = NULL;
6832 if (dwarf_siblingof(re->dbg, die, &die, &de) !=
6833 DW_DLV_OK)
6834 continue;
6835 if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6836 warnx("dwarf_tag failed: %s",
6837 dwarf_errmsg(de));
6838 continue;
6839 }
6840
6841 lowpc = 0;
6842 if (tag == DW_TAG_type_unit) {
6843 if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6844 &lowpc, &de) != DW_DLV_OK)
6845 lowpc = 0;
6846 }
6847
6848 /*
6849 * Search attributes for reference to .debug_loc
6850 * section.
6851 */
6852 search_loclist_at(re, die, lowpc, &la_list,
6853 &la_list_len, &la_list_cap);
6854 }
6855 if (ret == DW_DLV_ERROR)
6856 warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6857 } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
6858
6859 if (la_list_len == 0) {
6860 free(la_list);
6861 return;
6862 }
6863
6864 /* Sort la_list using loc_at_comparator. */
6865 qsort(la_list, la_list_len, sizeof(struct loc_at), loc_at_comparator);
6866
6867 /* Get rid of the duplicates in la_list. */
6868 duplicates = 0;
6869 for (k = 1; k < la_list_len; ++k) {
6870 left = &la_list[k - 1 - duplicates];
6871 right = &la_list[k];
6872
6873 if (left->la_off == right->la_off)
6874 duplicates++;
6875 else
6876 la_list[k - duplicates] = *right;
6877 }
6878 la_list_len -= duplicates;
6879
6880 has_content = 0;
6881 for (k = 0; k < la_list_len; ++k) {
6882 la = &la_list[k];
6883 if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) !=
6884 DW_DLV_OK) {
6885 if (ret != DW_DLV_NO_ENTRY)
6886 warnx("dwarf_loclist_n failed: %s",
6887 dwarf_errmsg(de));
6888 continue;
6889 }
6890 if (!has_content) {
6891 has_content = 1;
6892 printf("\nContents of section .debug_loc:\n");
6893 printf(" Offset Begin End Expression\n");
6894 }
6895 set_cu_context(re, la->la_cu_psize, la->la_cu_osize,
6896 la->la_cu_ver);
6897 for (i = 0; i < lcnt; i++) {
6898 printf(" %8.8jx ", (uintmax_t) la->la_off);
6899 if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) {
6900 printf("<End of list>\n");
6901 continue;
6902 }
6903
6904 /* TODO: handle base selection entry. */
6905
6906 printf("%8.8jx %8.8jx ",
6907 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc),
6908 (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc));
6909
6910 putchar('(');
6911 for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) {
6912 dump_dwarf_loc(re, &llbuf[i]->ld_s[j]);
6913 if (j < llbuf[i]->ld_cents - 1)
6914 printf("; ");
6915 }
6916 putchar(')');
6917
6918 if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc)
6919 printf(" (start == end)");
6920 putchar('\n');
6921 }
6922 for (i = 0; i < lcnt; i++) {
6923 dwarf_dealloc(re->dbg, llbuf[i]->ld_s,
6924 DW_DLA_LOC_BLOCK);
6925 dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC);
6926 }
6927 dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST);
6928 }
6929
6930 if (!has_content)
6931 printf("\nSection '.debug_loc' has no debugging data.\n");
6932
6933 free(la_list);
6934 }
6935
6936 /*
6937 * Retrieve a string using string table section index and the string offset.
6938 */
6939 static const char*
get_string(struct readelf * re,int strtab,size_t off)6940 get_string(struct readelf *re, int strtab, size_t off)
6941 {
6942 const char *name;
6943
6944 if ((name = elf_strptr(re->elf, strtab, off)) == NULL)
6945 return ("");
6946
6947 return (name);
6948 }
6949
6950 /*
6951 * Retrieve the name of a symbol using the section index of the symbol
6952 * table and the index of the symbol within that table.
6953 */
6954 static const char *
get_symbol_name(struct readelf * re,int symtab,int i)6955 get_symbol_name(struct readelf *re, int symtab, int i)
6956 {
6957 struct section *s;
6958 const char *name;
6959 GElf_Sym sym;
6960 Elf_Data *data;
6961 int elferr;
6962
6963 s = &re->sl[symtab];
6964 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6965 return ("");
6966 (void) elf_errno();
6967 if ((data = elf_getdata(s->scn, NULL)) == NULL) {
6968 elferr = elf_errno();
6969 if (elferr != 0)
6970 warnx("elf_getdata failed: %s", elf_errmsg(elferr));
6971 return ("");
6972 }
6973 if (gelf_getsym(data, i, &sym) != &sym)
6974 return ("");
6975 /* Return section name for STT_SECTION symbol. */
6976 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) {
6977 if (sym.st_shndx < re->shnum &&
6978 re->sl[sym.st_shndx].name != NULL)
6979 return (re->sl[sym.st_shndx].name);
6980 return ("");
6981 }
6982 if (s->link >= re->shnum ||
6983 (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL)
6984 return ("");
6985
6986 return (name);
6987 }
6988
6989 static uint64_t
get_symbol_value(struct readelf * re,int symtab,int i)6990 get_symbol_value(struct readelf *re, int symtab, int i)
6991 {
6992 struct section *s;
6993 GElf_Sym sym;
6994 Elf_Data *data;
6995 int elferr;
6996
6997 s = &re->sl[symtab];
6998 if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6999 return (0);
7000 (void) elf_errno();
7001 if ((data = elf_getdata(s->scn, NULL)) == NULL) {
7002 elferr = elf_errno();
7003 if (elferr != 0)
7004 warnx("elf_getdata failed: %s", elf_errmsg(elferr));
7005 return (0);
7006 }
7007 if (gelf_getsym(data, i, &sym) != &sym)
7008 return (0);
7009
7010 return (sym.st_value);
7011 }
7012
7013 /*
7014 * Decompress a data section if needed (using ZLIB).
7015 * Returns true if sucessful, false otherwise.
7016 */
decompress_section(struct section * s,unsigned char * compressed_data_buffer,size_t compressed_size,unsigned char ** ret_buf,size_t * ret_sz)7017 static bool decompress_section(struct section *s,
7018 unsigned char *compressed_data_buffer, size_t compressed_size,
7019 unsigned char **ret_buf, size_t *ret_sz)
7020 {
7021 GElf_Shdr sh;
7022
7023 if (gelf_getshdr(s->scn, &sh) == NULL)
7024 errx(EXIT_FAILURE, "gelf_getshdr() failed: %s", elf_errmsg(-1));
7025
7026 if (sh.sh_flags & SHF_COMPRESSED) {
7027 int ret;
7028 GElf_Chdr chdr;
7029 Elf64_Xword inflated_size;
7030 unsigned char *uncompressed_data_buffer = NULL;
7031 Elf64_Xword uncompressed_size;
7032 z_stream strm;
7033
7034 if (gelf_getchdr(s->scn, &chdr) == NULL)
7035 errx(EXIT_FAILURE, "gelf_getchdr() failed: %s", elf_errmsg(-1));
7036 if (chdr.ch_type != ELFCOMPRESS_ZLIB) {
7037 warnx("unknown compression type: %d", chdr.ch_type);
7038 return (false);
7039 }
7040
7041 inflated_size = 0;
7042 uncompressed_size = chdr.ch_size;
7043 uncompressed_data_buffer = malloc(uncompressed_size);
7044 compressed_data_buffer += sizeof(chdr);
7045 compressed_size -= sizeof(chdr);
7046
7047 strm.zalloc = Z_NULL;
7048 strm.zfree = Z_NULL;
7049 strm.opaque = Z_NULL;
7050 strm.avail_in = compressed_size;
7051 strm.avail_out = uncompressed_size;
7052 ret = inflateInit(&strm);
7053
7054 if (ret != Z_OK)
7055 goto fail;
7056 /*
7057 * The section can contain several compressed buffers,
7058 * so decompress in a loop until all data is inflated.
7059 */
7060 while (inflated_size < compressed_size) {
7061 strm.next_in = compressed_data_buffer + inflated_size;
7062 strm.next_out = uncompressed_data_buffer + inflated_size;
7063 ret = inflate(&strm, Z_FINISH);
7064 if (ret != Z_STREAM_END)
7065 goto fail;
7066 inflated_size = uncompressed_size - strm.avail_out;
7067 ret = inflateReset(&strm);
7068 if (ret != Z_OK)
7069 goto fail;
7070 }
7071 if (strm.avail_out != 0)
7072 warnx("Warning: wrong info in compression header.");
7073 ret = inflateEnd(&strm);
7074 if (ret != Z_OK)
7075 goto fail;
7076 *ret_buf = uncompressed_data_buffer;
7077 *ret_sz = uncompressed_size;
7078 return (true);
7079 fail:
7080 inflateEnd(&strm);
7081 if (strm.msg)
7082 warnx("%s", strm.msg);
7083 else
7084 warnx("ZLIB error: %d", ret);
7085 free(uncompressed_data_buffer);
7086 return (false);
7087 }
7088 return (false);
7089 }
7090
7091 static void
hex_dump(struct readelf * re)7092 hex_dump(struct readelf *re)
7093 {
7094 struct section *s;
7095 Elf_Data *d;
7096 uint8_t *buf, *new_buf;
7097 size_t sz, nbytes;
7098 uint64_t addr;
7099 int elferr, i, j;
7100
7101 for (i = 1; (size_t) i < re->shnum; i++) {
7102 new_buf = NULL;
7103 s = &re->sl[i];
7104 if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL)
7105 continue;
7106 (void) elf_errno();
7107 if ((d = elf_getdata(s->scn, NULL)) == NULL &&
7108 (d = elf_rawdata(s->scn, NULL)) == NULL) {
7109 elferr = elf_errno();
7110 if (elferr != 0)
7111 warnx("elf_getdata failed: %s",
7112 elf_errmsg(elferr));
7113 continue;
7114 }
7115 (void) elf_errno();
7116 if (d->d_size <= 0 || d->d_buf == NULL) {
7117 printf("\nSection '%s' has no data to dump.\n",
7118 s->name);
7119 continue;
7120 }
7121 buf = d->d_buf;
7122 sz = d->d_size;
7123 addr = s->addr;
7124 if (re->options & RE_Z) {
7125 if (decompress_section(s, d->d_buf, d->d_size,
7126 &new_buf, &sz))
7127 buf = new_buf;
7128 }
7129 printf("\nHex dump of section '%s':\n", s->name);
7130 while (sz > 0) {
7131 printf(" 0x%8.8jx ", (uintmax_t)addr);
7132 nbytes = sz > 16? 16 : sz;
7133 for (j = 0; j < 16; j++) {
7134 if ((size_t)j < nbytes)
7135 printf("%2.2x", buf[j]);
7136 else
7137 printf(" ");
7138 if ((j & 3) == 3)
7139 printf(" ");
7140 }
7141 for (j = 0; (size_t)j < nbytes; j++) {
7142 if (isprint(buf[j]))
7143 printf("%c", buf[j]);
7144 else
7145 printf(".");
7146 }
7147 printf("\n");
7148 buf += nbytes;
7149 addr += nbytes;
7150 sz -= nbytes;
7151 }
7152 free(new_buf);
7153 }
7154 }
7155
7156 static void
str_dump(struct readelf * re)7157 str_dump(struct readelf *re)
7158 {
7159 struct section *s;
7160 Elf_Data *d;
7161 unsigned char *start, *end, *buf_end, *new_buf;
7162 unsigned int len;
7163 size_t sz;
7164 int i, j, elferr, found;
7165
7166 for (i = 1; (size_t) i < re->shnum; i++) {
7167 new_buf = NULL;
7168 s = &re->sl[i];
7169 if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL)
7170 continue;
7171 (void) elf_errno();
7172 if ((d = elf_getdata(s->scn, NULL)) == NULL &&
7173 (d = elf_rawdata(s->scn, NULL)) == NULL) {
7174 elferr = elf_errno();
7175 if (elferr != 0)
7176 warnx("elf_getdata failed: %s",
7177 elf_errmsg(elferr));
7178 continue;
7179 }
7180 (void) elf_errno();
7181 if (d->d_size <= 0 || d->d_buf == NULL) {
7182 printf("\nSection '%s' has no data to dump.\n",
7183 s->name);
7184 continue;
7185 }
7186 found = 0;
7187 start = d->d_buf;
7188 sz = d->d_size;
7189 if (re->options & RE_Z) {
7190 if (decompress_section(s, d->d_buf, d->d_size,
7191 &new_buf, &sz))
7192 start = new_buf;
7193 }
7194 buf_end = start + sz;
7195 printf("\nString dump of section '%s':\n", s->name);
7196 for (;;) {
7197 while (start < buf_end && !isprint(*start))
7198 start++;
7199 if (start >= buf_end)
7200 break;
7201 end = start + 1;
7202 while (end < buf_end && isprint(*end))
7203 end++;
7204 printf(" [%6lx] ",
7205 (long) (start - (unsigned char *) d->d_buf));
7206 len = end - start;
7207 for (j = 0; (unsigned int) j < len; j++)
7208 putchar(start[j]);
7209 putchar('\n');
7210 found = 1;
7211 if (end >= buf_end)
7212 break;
7213 start = end + 1;
7214 }
7215 free(new_buf);
7216 if (!found)
7217 printf(" No strings found in this section.");
7218 putchar('\n');
7219 }
7220 }
7221
7222 static void
load_sections(struct readelf * re)7223 load_sections(struct readelf *re)
7224 {
7225 struct section *s;
7226 const char *name;
7227 Elf_Scn *scn;
7228 GElf_Shdr sh;
7229 size_t shstrndx, ndx;
7230 int elferr;
7231
7232 /* Allocate storage for internal section list. */
7233 if (!elf_getshnum(re->elf, &re->shnum)) {
7234 warnx("elf_getshnum failed: %s", elf_errmsg(-1));
7235 return;
7236 }
7237 if (re->sl != NULL)
7238 free(re->sl);
7239 if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL)
7240 err(EXIT_FAILURE, "calloc failed");
7241
7242 /* Get the index of .shstrtab section. */
7243 if (!elf_getshstrndx(re->elf, &shstrndx)) {
7244 warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
7245 return;
7246 }
7247
7248 if ((scn = elf_getscn(re->elf, 0)) == NULL)
7249 return;
7250
7251 (void) elf_errno();
7252 do {
7253 if (gelf_getshdr(scn, &sh) == NULL) {
7254 warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
7255 (void) elf_errno();
7256 continue;
7257 }
7258 if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) {
7259 (void) elf_errno();
7260 name = "<no-name>";
7261 }
7262 if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) {
7263 if ((elferr = elf_errno()) != 0) {
7264 warnx("elf_ndxscn failed: %s",
7265 elf_errmsg(elferr));
7266 continue;
7267 }
7268 }
7269 if (ndx >= re->shnum) {
7270 warnx("section index of '%s' out of range", name);
7271 continue;
7272 }
7273 if (sh.sh_link >= re->shnum)
7274 warnx("section link %llu of '%s' out of range",
7275 (unsigned long long)sh.sh_link, name);
7276 s = &re->sl[ndx];
7277 s->name = name;
7278 s->scn = scn;
7279 s->off = sh.sh_offset;
7280 s->sz = sh.sh_size;
7281 s->entsize = sh.sh_entsize;
7282 s->align = sh.sh_addralign;
7283 s->type = sh.sh_type;
7284 s->flags = sh.sh_flags;
7285 s->addr = sh.sh_addr;
7286 s->link = sh.sh_link;
7287 s->info = sh.sh_info;
7288 } while ((scn = elf_nextscn(re->elf, scn)) != NULL);
7289 elferr = elf_errno();
7290 if (elferr != 0)
7291 warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
7292 }
7293
7294 static void
unload_sections(struct readelf * re)7295 unload_sections(struct readelf *re)
7296 {
7297
7298 if (re->sl != NULL) {
7299 free(re->sl);
7300 re->sl = NULL;
7301 }
7302 re->shnum = 0;
7303 re->vd_s = NULL;
7304 re->vn_s = NULL;
7305 re->vs_s = NULL;
7306 re->vs = NULL;
7307 re->vs_sz = 0;
7308 if (re->ver != NULL) {
7309 free(re->ver);
7310 re->ver = NULL;
7311 re->ver_sz = 0;
7312 }
7313 }
7314
7315 static bool
dump_elf(struct readelf * re)7316 dump_elf(struct readelf *re)
7317 {
7318
7319 /* Fetch ELF header. No need to continue if it fails. */
7320 if (gelf_getehdr(re->elf, &re->ehdr) == NULL) {
7321 warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
7322 return (false);
7323 }
7324 if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) {
7325 warnx("gelf_getclass failed: %s", elf_errmsg(-1));
7326 return (false);
7327 }
7328 if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
7329 re->dw_read = _read_msb;
7330 re->dw_decode = _decode_msb;
7331 } else {
7332 re->dw_read = _read_lsb;
7333 re->dw_decode = _decode_lsb;
7334 }
7335
7336 if (re->options & ~RE_H)
7337 load_sections(re);
7338 if ((re->options & RE_VV) || (re->options & RE_S))
7339 search_ver(re);
7340 if (re->options & RE_H)
7341 dump_ehdr(re);
7342 if (re->options & RE_L)
7343 dump_phdr(re);
7344 if (re->options & RE_SS)
7345 dump_shdr(re);
7346 if (re->options & RE_G)
7347 dump_section_groups(re);
7348 if (re->options & RE_D)
7349 dump_dynamic(re);
7350 if (re->options & RE_R)
7351 dump_reloc(re);
7352 if (re->options & RE_S)
7353 dump_symtabs(re);
7354 if (re->options & RE_N)
7355 dump_notes(re);
7356 if (re->options & RE_II)
7357 dump_hash(re);
7358 if (re->options & RE_X)
7359 hex_dump(re);
7360 if (re->options & RE_P)
7361 str_dump(re);
7362 if (re->options & RE_VV)
7363 dump_ver(re);
7364 if (re->options & RE_AA)
7365 dump_arch_specific_info(re);
7366 if (re->options & RE_W)
7367 dump_dwarf(re);
7368 if (re->options & ~RE_H)
7369 unload_sections(re);
7370 return (true);
7371 }
7372
7373 static void
dump_dwarf(struct readelf * re)7374 dump_dwarf(struct readelf *re)
7375 {
7376 Dwarf_Error de;
7377 int error;
7378
7379 if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) {
7380 if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL)
7381 errx(EXIT_FAILURE, "dwarf_elf_init failed: %s",
7382 dwarf_errmsg(de));
7383 return;
7384 }
7385
7386 if (re->dop & DW_A)
7387 dump_dwarf_abbrev(re);
7388 if (re->dop & DW_L)
7389 dump_dwarf_line(re);
7390 if (re->dop & DW_LL)
7391 dump_dwarf_line_decoded(re);
7392 if (re->dop & DW_I) {
7393 dump_dwarf_info(re, 0);
7394 dump_dwarf_info(re, 1);
7395 }
7396 if (re->dop & DW_P)
7397 dump_dwarf_pubnames(re);
7398 if (re->dop & DW_R)
7399 dump_dwarf_aranges(re);
7400 if (re->dop & DW_RR)
7401 dump_dwarf_ranges(re);
7402 if (re->dop & DW_M)
7403 dump_dwarf_macinfo(re);
7404 if (re->dop & DW_F)
7405 dump_dwarf_frame(re, 0);
7406 else if (re->dop & DW_FF)
7407 dump_dwarf_frame(re, 1);
7408 if (re->dop & DW_S)
7409 dump_dwarf_str(re);
7410 if (re->dop & DW_O)
7411 dump_dwarf_loclist(re);
7412
7413 dwarf_finish(re->dbg, &de);
7414 }
7415
7416 static bool
dump_ar(struct readelf * re,int fd)7417 dump_ar(struct readelf *re, int fd)
7418 {
7419 Elf_Arsym *arsym;
7420 Elf_Arhdr *arhdr;
7421 Elf_Cmd cmd;
7422 Elf *e;
7423 size_t sz;
7424 off_t off;
7425 int i;
7426
7427 re->ar = re->elf;
7428
7429 if (re->options & RE_C) {
7430 if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) {
7431 warnx("elf_getarsym() failed: %s", elf_errmsg(-1));
7432 goto process_members;
7433 }
7434 printf("Index of archive %s: (%ju entries)\n", re->filename,
7435 (uintmax_t) sz - 1);
7436 off = 0;
7437 for (i = 0; (size_t) i < sz; i++) {
7438 if (arsym[i].as_name == NULL)
7439 break;
7440 if (arsym[i].as_off != off) {
7441 off = arsym[i].as_off;
7442 if (elf_rand(re->ar, off) != off) {
7443 warnx("elf_rand() failed: %s",
7444 elf_errmsg(-1));
7445 continue;
7446 }
7447 if ((e = elf_begin(fd, ELF_C_READ, re->ar)) ==
7448 NULL) {
7449 warnx("elf_begin() failed: %s",
7450 elf_errmsg(-1));
7451 continue;
7452 }
7453 if ((arhdr = elf_getarhdr(e)) == NULL) {
7454 warnx("elf_getarhdr() failed: %s",
7455 elf_errmsg(-1));
7456 elf_end(e);
7457 continue;
7458 }
7459 printf("Binary %s(%s) contains:\n",
7460 re->filename, arhdr->ar_name);
7461 elf_end(e);
7462 }
7463 printf("\t%s\n", arsym[i].as_name);
7464 }
7465 if (elf_rand(re->ar, SARMAG) != SARMAG) {
7466 warnx("elf_rand() failed: %s", elf_errmsg(-1));
7467 return (false);
7468 }
7469 }
7470
7471 process_members:
7472
7473 if ((re->options & ~RE_C) == 0)
7474 return (true);
7475
7476 cmd = ELF_C_READ;
7477 while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) {
7478 if ((arhdr = elf_getarhdr(re->elf)) == NULL) {
7479 warnx("elf_getarhdr() failed: %s", elf_errmsg(-1));
7480 goto next_member;
7481 }
7482 if (strcmp(arhdr->ar_name, "/") == 0 ||
7483 strcmp(arhdr->ar_name, "//") == 0 ||
7484 strcmp(arhdr->ar_name, "__.SYMDEF") == 0)
7485 goto next_member;
7486 printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name);
7487 dump_elf(re);
7488
7489 next_member:
7490 cmd = elf_next(re->elf);
7491 elf_end(re->elf);
7492 }
7493 re->elf = re->ar;
7494 return (true);
7495 }
7496
7497 static bool
dump_object(struct readelf * re,int fd)7498 dump_object(struct readelf *re, int fd)
7499 {
7500 bool rv = false;
7501
7502 if ((re->flags & DISPLAY_FILENAME) != 0)
7503 printf("\nFile: %s\n", re->filename);
7504
7505 if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
7506 warnx("elf_begin() failed: %s", elf_errmsg(-1));
7507 goto done;
7508 }
7509
7510 switch (elf_kind(re->elf)) {
7511 case ELF_K_NONE:
7512 warnx("Not an ELF file.");
7513 goto done;
7514 case ELF_K_ELF:
7515 rv = dump_elf(re);
7516 break;
7517 case ELF_K_AR:
7518 rv = dump_ar(re, fd);
7519 break;
7520 default:
7521 warnx("Internal: libelf returned unknown elf kind.");
7522 }
7523
7524 done:
7525 elf_end(re->elf);
7526 return (rv);
7527 }
7528
7529 static void
add_dumpop(struct readelf * re,size_t si,const char * sn,int op,int t)7530 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
7531 {
7532 struct dumpop *d;
7533
7534 if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) {
7535 if ((d = calloc(1, sizeof(*d))) == NULL)
7536 err(EXIT_FAILURE, "calloc failed");
7537 if (t == DUMP_BY_INDEX)
7538 d->u.si = si;
7539 else
7540 d->u.sn = sn;
7541 d->type = t;
7542 d->op = op;
7543 STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list);
7544 } else
7545 d->op |= op;
7546 }
7547
7548 static struct dumpop *
find_dumpop(struct readelf * re,size_t si,const char * sn,int op,int t)7549 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
7550 {
7551 struct dumpop *d;
7552
7553 STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) {
7554 if ((op == -1 || op & d->op) &&
7555 (t == -1 || (unsigned) t == d->type)) {
7556 if ((d->type == DUMP_BY_INDEX && d->u.si == si) ||
7557 (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn)))
7558 return (d);
7559 }
7560 }
7561
7562 return (NULL);
7563 }
7564
7565 static struct {
7566 const char *ln;
7567 char sn;
7568 int value;
7569 } dwarf_op[] = {
7570 {"rawline", 'l', DW_L},
7571 {"decodedline", 'L', DW_LL},
7572 {"info", 'i', DW_I},
7573 {"abbrev", 'a', DW_A},
7574 {"pubnames", 'p', DW_P},
7575 {"aranges", 'r', DW_R},
7576 {"ranges", 'r', DW_R},
7577 {"Ranges", 'R', DW_RR},
7578 {"macro", 'm', DW_M},
7579 {"frames", 'f', DW_F},
7580 {"frames-interp", 'F', DW_FF},
7581 {"str", 's', DW_S},
7582 {"loc", 'o', DW_O},
7583 {NULL, 0, 0}
7584 };
7585
7586 static void
parse_dwarf_op_short(struct readelf * re,const char * op)7587 parse_dwarf_op_short(struct readelf *re, const char *op)
7588 {
7589 int i;
7590
7591 if (op == NULL) {
7592 re->dop |= DW_DEFAULT_OPTIONS;
7593 return;
7594 }
7595
7596 for (; *op != '\0'; op++) {
7597 for (i = 0; dwarf_op[i].ln != NULL; i++) {
7598 if (dwarf_op[i].sn == *op) {
7599 re->dop |= dwarf_op[i].value;
7600 break;
7601 }
7602 }
7603 }
7604 }
7605
7606 static void
parse_dwarf_op_long(struct readelf * re,const char * op)7607 parse_dwarf_op_long(struct readelf *re, const char *op)
7608 {
7609 char *p, *token, *bp;
7610 int i;
7611
7612 if (op == NULL) {
7613 re->dop |= DW_DEFAULT_OPTIONS;
7614 return;
7615 }
7616
7617 if ((p = strdup(op)) == NULL)
7618 err(EXIT_FAILURE, "strdup failed");
7619 bp = p;
7620
7621 while ((token = strsep(&p, ",")) != NULL) {
7622 for (i = 0; dwarf_op[i].ln != NULL; i++) {
7623 if (!strcmp(token, dwarf_op[i].ln)) {
7624 re->dop |= dwarf_op[i].value;
7625 break;
7626 }
7627 }
7628 }
7629
7630 free(bp);
7631 }
7632
7633 static uint64_t
_read_lsb(Elf_Data * d,uint64_t * offsetp,int bytes_to_read)7634 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7635 {
7636 uint64_t ret;
7637 uint8_t *src;
7638
7639 src = (uint8_t *) d->d_buf + *offsetp;
7640
7641 ret = 0;
7642 switch (bytes_to_read) {
7643 case 8:
7644 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7645 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7646 /* FALLTHROUGH */
7647 case 4:
7648 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7649 /* FALLTHROUGH */
7650 case 2:
7651 ret |= ((uint64_t) src[1]) << 8;
7652 /* FALLTHROUGH */
7653 case 1:
7654 ret |= src[0];
7655 break;
7656 default:
7657 return (0);
7658 }
7659
7660 *offsetp += bytes_to_read;
7661
7662 return (ret);
7663 }
7664
7665 static uint64_t
_read_msb(Elf_Data * d,uint64_t * offsetp,int bytes_to_read)7666 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7667 {
7668 uint64_t ret;
7669 uint8_t *src;
7670
7671 src = (uint8_t *) d->d_buf + *offsetp;
7672
7673 switch (bytes_to_read) {
7674 case 1:
7675 ret = src[0];
7676 break;
7677 case 2:
7678 ret = src[1] | ((uint64_t) src[0]) << 8;
7679 break;
7680 case 4:
7681 ret = src[3] | ((uint64_t) src[2]) << 8;
7682 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7683 break;
7684 case 8:
7685 ret = src[7] | ((uint64_t) src[6]) << 8;
7686 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7687 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7688 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7689 break;
7690 default:
7691 return (0);
7692 }
7693
7694 *offsetp += bytes_to_read;
7695
7696 return (ret);
7697 }
7698
7699 static uint64_t
_decode_lsb(uint8_t ** data,int bytes_to_read)7700 _decode_lsb(uint8_t **data, int bytes_to_read)
7701 {
7702 uint64_t ret;
7703 uint8_t *src;
7704
7705 src = *data;
7706
7707 ret = 0;
7708 switch (bytes_to_read) {
7709 case 8:
7710 ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7711 ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7712 /* FALLTHROUGH */
7713 case 4:
7714 ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7715 /* FALLTHROUGH */
7716 case 2:
7717 ret |= ((uint64_t) src[1]) << 8;
7718 /* FALLTHROUGH */
7719 case 1:
7720 ret |= src[0];
7721 break;
7722 default:
7723 return (0);
7724 }
7725
7726 *data += bytes_to_read;
7727
7728 return (ret);
7729 }
7730
7731 static uint64_t
_decode_msb(uint8_t ** data,int bytes_to_read)7732 _decode_msb(uint8_t **data, int bytes_to_read)
7733 {
7734 uint64_t ret;
7735 uint8_t *src;
7736
7737 src = *data;
7738
7739 ret = 0;
7740 switch (bytes_to_read) {
7741 case 1:
7742 ret = src[0];
7743 break;
7744 case 2:
7745 ret = src[1] | ((uint64_t) src[0]) << 8;
7746 break;
7747 case 4:
7748 ret = src[3] | ((uint64_t) src[2]) << 8;
7749 ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7750 break;
7751 case 8:
7752 ret = src[7] | ((uint64_t) src[6]) << 8;
7753 ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7754 ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7755 ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7756 break;
7757 default:
7758 return (0);
7759 break;
7760 }
7761
7762 *data += bytes_to_read;
7763
7764 return (ret);
7765 }
7766
7767 static int64_t
_decode_sleb128(uint8_t ** dp,uint8_t * dpe)7768 _decode_sleb128(uint8_t **dp, uint8_t *dpe)
7769 {
7770 int64_t ret = 0;
7771 uint8_t b = 0;
7772 int shift = 0;
7773
7774 uint8_t *src = *dp;
7775
7776 do {
7777 if (src >= dpe)
7778 break;
7779 b = *src++;
7780 ret |= ((b & 0x7f) << shift);
7781 shift += 7;
7782 } while ((b & 0x80) != 0);
7783
7784 if (shift < 32 && (b & 0x40) != 0)
7785 ret |= (-1 << shift);
7786
7787 *dp = src;
7788
7789 return (ret);
7790 }
7791
7792 static uint64_t
_decode_uleb128(uint8_t ** dp,uint8_t * dpe)7793 _decode_uleb128(uint8_t **dp, uint8_t *dpe)
7794 {
7795 uint64_t ret = 0;
7796 uint8_t b;
7797 int shift = 0;
7798
7799 uint8_t *src = *dp;
7800
7801 do {
7802 if (src >= dpe)
7803 break;
7804 b = *src++;
7805 ret |= ((b & 0x7f) << shift);
7806 shift += 7;
7807 } while ((b & 0x80) != 0);
7808
7809 *dp = src;
7810
7811 return (ret);
7812 }
7813
7814 static void
readelf_version(void)7815 readelf_version(void)
7816 {
7817 (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
7818 elftc_version());
7819 exit(EXIT_SUCCESS);
7820 }
7821
7822 #define USAGE_MESSAGE "\
7823 Usage: %s [options] file...\n\
7824 Display information about ELF objects and ar(1) archives.\n\n\
7825 Options:\n\
7826 -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\
7827 -c | --archive-index Print the archive symbol table for archives.\n\
7828 -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\
7829 -e | --headers Print all headers in the object.\n\
7830 -g | --section-groups Print the contents of the section groups.\n\
7831 -h | --file-header Print the file header for the object.\n\
7832 -l | --program-headers Print the PHDR table for the object.\n\
7833 -n | --notes Print the contents of SHT_NOTE sections.\n\
7834 -p INDEX | --string-dump=INDEX\n\
7835 Print the contents of section at index INDEX.\n\
7836 -r | --relocs Print relocation information.\n\
7837 -s | --syms | --symbols Print symbol tables.\n\
7838 -t | --section-details Print additional information about sections.\n\
7839 -v | --version Print a version identifier and exit.\n\
7840 -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\
7841 frames-interp,info,loc,macro,pubnames,\n\
7842 ranges,Ranges,rawline,str}\n\
7843 Display DWARF information.\n\
7844 -x INDEX | --hex-dump=INDEX\n\
7845 Display contents of a section as hexadecimal.\n\
7846 -z | --decompress Decompress the contents of a section before displaying it.\n\
7847 -A | --arch-specific (accepted, but ignored)\n\
7848 -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\
7849 entry in the \".dynamic\" section.\n\
7850 -H | --help Print a help message.\n\
7851 -I | --histogram Print information on bucket list lengths for \n\
7852 hash sections.\n\
7853 -N | --full-section-name (accepted, but ignored)\n\
7854 -S | --sections | --section-headers\n\
7855 Print information about section headers.\n\
7856 -V | --version-info Print symbol versoning information.\n\
7857 -W | --wide Print information without wrapping long lines.\n"
7858
7859
7860 static void
readelf_usage(int status)7861 readelf_usage(int status)
7862 {
7863 fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
7864 exit(status);
7865 }
7866
7867 int
main(int argc,char ** argv)7868 main(int argc, char **argv)
7869 {
7870 cap_rights_t rights;
7871 fileargs_t *fa;
7872 struct readelf *re, re_storage;
7873 unsigned long si;
7874 int fd, opt, i, exit_code;
7875 char *ep;
7876
7877 re = &re_storage;
7878 memset(re, 0, sizeof(*re));
7879 STAILQ_INIT(&re->v_dumpop);
7880
7881 while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:z",
7882 longopts, NULL)) != -1) {
7883 switch(opt) {
7884 case '?':
7885 readelf_usage(EXIT_SUCCESS);
7886 break;
7887 case 'A':
7888 re->options |= RE_AA;
7889 break;
7890 case 'a':
7891 re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II |
7892 RE_L | RE_N | RE_R | RE_SS | RE_S | RE_U | RE_VV;
7893 break;
7894 case 'c':
7895 re->options |= RE_C;
7896 break;
7897 case 'D':
7898 re->options |= RE_DD;
7899 break;
7900 case 'd':
7901 re->options |= RE_D;
7902 break;
7903 case 'e':
7904 re->options |= RE_H | RE_L | RE_SS;
7905 break;
7906 case 'g':
7907 re->options |= RE_G;
7908 break;
7909 case 'H':
7910 readelf_usage(EXIT_SUCCESS);
7911 break;
7912 case 'h':
7913 re->options |= RE_H;
7914 break;
7915 case 'I':
7916 re->options |= RE_II;
7917 break;
7918 case 'i':
7919 /* Not implemented yet. */
7920 break;
7921 case 'l':
7922 re->options |= RE_L;
7923 break;
7924 case 'N':
7925 re->options |= RE_NN;
7926 break;
7927 case 'n':
7928 re->options |= RE_N;
7929 break;
7930 case 'p':
7931 re->options |= RE_P;
7932 si = strtoul(optarg, &ep, 10);
7933 if (*ep == '\0')
7934 add_dumpop(re, (size_t) si, NULL, STR_DUMP,
7935 DUMP_BY_INDEX);
7936 else
7937 add_dumpop(re, 0, optarg, STR_DUMP,
7938 DUMP_BY_NAME);
7939 break;
7940 case 'r':
7941 re->options |= RE_R;
7942 break;
7943 case 'S':
7944 re->options |= RE_SS;
7945 break;
7946 case 's':
7947 re->options |= RE_S;
7948 break;
7949 case 't':
7950 re->options |= RE_SS | RE_T;
7951 break;
7952 case 'u':
7953 re->options |= RE_U;
7954 break;
7955 case 'V':
7956 re->options |= RE_VV;
7957 break;
7958 case 'v':
7959 readelf_version();
7960 break;
7961 case 'W':
7962 re->options |= RE_WW;
7963 break;
7964 case 'w':
7965 re->options |= RE_W;
7966 parse_dwarf_op_short(re, optarg);
7967 break;
7968 case 'x':
7969 re->options |= RE_X;
7970 si = strtoul(optarg, &ep, 10);
7971 if (*ep == '\0')
7972 add_dumpop(re, (size_t) si, NULL, HEX_DUMP,
7973 DUMP_BY_INDEX);
7974 else
7975 add_dumpop(re, 0, optarg, HEX_DUMP,
7976 DUMP_BY_NAME);
7977 break;
7978 case 'z':
7979 re->options |= RE_Z;
7980 break;
7981 case OPTION_DEBUG_DUMP:
7982 re->options |= RE_W;
7983 parse_dwarf_op_long(re, optarg);
7984 }
7985 }
7986
7987 argv += optind;
7988 argc -= optind;
7989
7990 if (argc == 0 || re->options == 0)
7991 readelf_usage(EXIT_FAILURE);
7992
7993 if (argc > 1)
7994 re->flags |= DISPLAY_FILENAME;
7995
7996 if (elf_version(EV_CURRENT) == EV_NONE)
7997 errx(EXIT_FAILURE, "ELF library initialization failed: %s",
7998 elf_errmsg(-1));
7999
8000 cap_rights_init(&rights, CAP_FCNTL, CAP_FSTAT, CAP_MMAP_R, CAP_SEEK);
8001 fa = fileargs_init(argc, argv, O_RDONLY, 0, &rights, FA_OPEN);
8002 if (fa == NULL)
8003 err(1, "Unable to initialize casper fileargs");
8004
8005 caph_cache_catpages();
8006 if (caph_limit_stdio() < 0) {
8007 fileargs_free(fa);
8008 err(1, "Unable to limit stdio rights");
8009 }
8010 if (caph_enter_casper() < 0) {
8011 fileargs_free(fa);
8012 err(1, "Unable to enter capability mode");
8013 }
8014
8015 exit_code = EXIT_SUCCESS;
8016 for (i = 0; i < argc; i++) {
8017 re->filename = argv[i];
8018 fd = fileargs_open(fa, re->filename);
8019 if (fd < 0) {
8020 warn("open %s failed", re->filename);
8021 exit_code = EXIT_FAILURE;
8022 } else {
8023 if (!dump_object(re, fd))
8024 exit_code = EXIT_FAILURE;
8025 close(fd);
8026 }
8027 }
8028
8029 exit(exit_code);
8030 }
8031