xref: /netbsd/sys/dev/pci/agp.c (revision 2d52435a)
1 /*	$NetBSD: agp.c,v 1.88 2022/05/22 11:27:35 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.88 2022/05/22 11:27:35 andvar Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/agpvar.h>
85 #include <dev/pci/agpreg.h>
86 #include <dev/pci/pcidevs.h>
87 
88 #include <sys/bus.h>
89 
90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91 
92 /* Helper functions for implementing chipset mini drivers. */
93 /* XXXfvdl get rid of this one. */
94 
95 extern struct cfdriver agp_cd;
96 
97 static int agp_info_user(struct agp_softc *, agp_info *);
98 static int agp_setup_user(struct agp_softc *, agp_setup *);
99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 static int agp_deallocate_user(struct agp_softc *, int);
101 static int agp_bind_user(struct agp_softc *, agp_bind *);
102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 static int agp_generic_enable_v2(struct agp_softc *,
104     const struct pci_attach_args *, int, u_int32_t);
105 static int agp_generic_enable_v3(struct agp_softc *,
106     const struct pci_attach_args *, int, u_int32_t);
107 static int agpdev_match(const struct pci_attach_args *);
108 static bool agp_resume(device_t, const pmf_qual_t *);
109 
110 #include "agp_ali.h"
111 #include "agp_amd.h"
112 #include "agp_i810.h"
113 #include "agp_intel.h"
114 #include "agp_sis.h"
115 #include "agp_via.h"
116 #include "agp_amd64.h"
117 
118 const struct agp_product {
119 	uint32_t	ap_vendor;
120 	uint32_t	ap_product;
121 	int		(*ap_match)(const struct pci_attach_args *);
122 	int		(*ap_attach)(device_t, device_t, void *);
123 } agp_products[] = {
124 #if NAGP_AMD64 > 0
125 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
126 	  agp_amd64_match,	agp_amd64_attach },
127 #endif
128 
129 #if NAGP_ALI > 0
130 	{ PCI_VENDOR_ALI,	-1,
131 	  NULL,			agp_ali_attach },
132 #endif
133 
134 #if NAGP_AMD64 > 0
135 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
136 	  agp_amd64_match,	agp_amd64_attach },
137 #endif
138 
139 #if NAGP_AMD > 0
140 	{ PCI_VENDOR_AMD,	-1,
141 	  agp_amd_match,	agp_amd_attach },
142 #endif
143 
144 #if NAGP_I810 > 0
145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
146 	  NULL,			agp_i810_attach },
147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 	  NULL,			agp_i810_attach },
149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
150 	  NULL,			agp_i810_attach },
151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 	  NULL,			agp_i810_attach },
153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
154 	  NULL,			agp_i810_attach },
155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
156 	  NULL,			agp_i810_attach },
157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
158 	  NULL,			agp_i810_attach },
159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
160 	  NULL,			agp_i810_attach },
161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
162 	  NULL,			agp_i810_attach },
163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
164 	  NULL,			agp_i810_attach },
165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
166 	  NULL,			agp_i810_attach },
167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
168 	  NULL,			agp_i810_attach },
169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
170 	  NULL,			agp_i810_attach },
171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
172 	  NULL,			agp_i810_attach },
173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
174 	  NULL,			agp_i810_attach },
175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
176 	  NULL,			agp_i810_attach },
177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
178 	  NULL,			agp_i810_attach },
179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
180 	  NULL,			agp_i810_attach },
181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
182 	  NULL,			agp_i810_attach },
183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
184 	  NULL,			agp_i810_attach },
185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
186 	  NULL,			agp_i810_attach },
187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
188 	  NULL,			agp_i810_attach },
189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
190 	  NULL, 		agp_i810_attach },
191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
192 	  NULL, 		agp_i810_attach },
193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
194 	  NULL, 		agp_i810_attach },
195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
196 	  NULL, 		agp_i810_attach },
197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
198 	  NULL, 		agp_i810_attach },
199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
200 	  NULL, 		agp_i810_attach },
201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
202 	  NULL, 		agp_i810_attach },
203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
204 	  NULL, 		agp_i810_attach },
205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
206 	  NULL, 		agp_i810_attach },
207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
208 	  NULL, 		agp_i810_attach },
209 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
210 	  NULL, 		agp_i810_attach },
211 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
212 	  NULL, 		agp_i810_attach },
213 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_HB,
214 	  NULL, 		agp_i810_attach },
215 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
216 	  NULL, 		agp_i810_attach },
217 #endif
218 
219 #if NAGP_INTEL > 0
220 	{ PCI_VENDOR_INTEL,	-1,
221 	  NULL,			agp_intel_attach },
222 #endif
223 
224 #if NAGP_AMD64 > 0
225 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
226 	  agp_amd64_match,	agp_amd64_attach },
227 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
228 	  agp_amd64_match,	agp_amd64_attach },
229 #endif
230 
231 #if NAGP_AMD64 > 0
232 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
233 	  agp_amd64_match,	agp_amd64_attach },
234 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
235 	  agp_amd64_match,	agp_amd64_attach },
236 #endif
237 
238 #if NAGP_SIS > 0
239 	{ PCI_VENDOR_SIS,	-1,
240 	  NULL,			agp_sis_attach },
241 #endif
242 
243 #if NAGP_AMD64 > 0
244 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
245 	  agp_amd64_match,	agp_amd64_attach },
246 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
247 	  agp_amd64_match,	agp_amd64_attach },
248 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
249 	  agp_amd64_match,	agp_amd64_attach },
250 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
251 	  agp_amd64_match,	agp_amd64_attach },
252 #endif
253 
254 #if NAGP_VIA > 0
255 	{ PCI_VENDOR_VIATECH,	-1,
256 	  NULL,			agp_via_attach },
257 #endif
258 
259 	{ 0,			0,
260 	  NULL,			NULL },
261 };
262 
263 static const struct agp_product *
agp_lookup(const struct pci_attach_args * pa)264 agp_lookup(const struct pci_attach_args *pa)
265 {
266 	const struct agp_product *ap;
267 
268 	/* First find the vendor. */
269 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
270 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
271 			break;
272 	}
273 
274 	if (ap->ap_attach == NULL)
275 		return (NULL);
276 
277 	/* Now find the product within the vendor's domain. */
278 	for (; ap->ap_attach != NULL; ap++) {
279 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
280 			/* Ran out of this vendor's section of the table. */
281 			return (NULL);
282 		}
283 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
284 			/* Exact match. */
285 			break;
286 		}
287 		if (ap->ap_product == (uint32_t) -1) {
288 			/* Wildcard match. */
289 			break;
290 		}
291 	}
292 
293 	if (ap->ap_attach == NULL)
294 		return (NULL);
295 
296 	/* Now let the product-specific driver filter the match. */
297 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
298 		return (NULL);
299 
300 	return (ap);
301 }
302 
303 static int
agpmatch(device_t parent,cfdata_t match,void * aux)304 agpmatch(device_t parent, cfdata_t match, void *aux)
305 {
306 	struct agpbus_attach_args *apa = aux;
307 	struct pci_attach_args *pa = &apa->apa_pci_args;
308 
309 	if (agp_lookup(pa) == NULL)
310 		return (0);
311 
312 	return (1);
313 }
314 
315 static const u_int agp_max[][2] = {
316 	{0,	0},
317 	{32,	4},
318 	{64,	28},
319 	{128,	96},
320 	{256,	204},
321 	{512,	440},
322 	{1024,	942},
323 	{2048,	1920},
324 	{4096,	3932}
325 };
326 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
327 
328 static void
agpattach(device_t parent,device_t self,void * aux)329 agpattach(device_t parent, device_t self, void *aux)
330 {
331 	struct agpbus_attach_args *apa = aux;
332 	struct pci_attach_args *pa = &apa->apa_pci_args;
333 	struct agp_softc *sc = device_private(self);
334 	const struct agp_product *ap;
335 	int ret;
336 	u_int memsize, i;
337 
338 	ap = agp_lookup(pa);
339 	KASSERT(ap != NULL);
340 
341 	aprint_naive(": AGP controller\n");
342 
343 	sc->as_dev = self;
344 	sc->as_dmat = pa->pa_dmat;
345 	sc->as_pc = pa->pa_pc;
346 	sc->as_tag = pa->pa_tag;
347 	sc->as_id = pa->pa_id;
348 
349 	/*
350 	 * Work out an upper bound for agp memory allocation. This
351 	 * uses a heuristic table from the Linux driver.
352 	 */
353 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
354 	for (i = 0; i < agp_max_size; i++) {
355 		if (memsize <= agp_max[i][0])
356 			break;
357 	}
358 	if (i == agp_max_size)
359 		i = agp_max_size - 1;
360 	sc->as_maxmem = agp_max[i][1] << 20U;
361 
362 	/*
363 	 * The mutex is used to prevent re-entry to
364 	 * agp_generic_bind_memory() since that function can sleep.
365 	 */
366 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
367 
368 	TAILQ_INIT(&sc->as_memory);
369 
370 	ret = (*ap->ap_attach)(parent, self, pa);
371 	if (ret == 0)
372 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
373 		    (unsigned long)sc->as_apaddr,
374 		    (unsigned long)AGP_GET_APERTURE(sc));
375 	else
376 		sc->as_chipc = NULL;
377 
378 	if (!pmf_device_register(self, NULL, agp_resume))
379 		aprint_error_dev(self, "couldn't establish power handler\n");
380 }
381 
382 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
383     agpmatch, agpattach, NULL, NULL);
384 
385 int
agp_map_aperture(struct pci_attach_args * pa,struct agp_softc * sc,int reg)386 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
387 {
388 	/*
389 	 * Find the aperture. Don't map it (yet), this would
390 	 * eat KVA.
391 	 */
392 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
393 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
394 	    &sc->as_apflags) != 0)
395 		return ENXIO;
396 
397 	sc->as_apt = pa->pa_memt;
398 
399 	return 0;
400 }
401 
402 struct agp_gatt *
agp_alloc_gatt(struct agp_softc * sc)403 agp_alloc_gatt(struct agp_softc *sc)
404 {
405 	u_int32_t apsize = AGP_GET_APERTURE(sc);
406 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
407 	struct agp_gatt *gatt;
408 	void *virtual;
409 	int dummyseg;
410 
411 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_WAITOK);
412 	gatt->ag_entries = entries;
413 
414 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
415 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
416 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
417 		free(gatt, M_AGP);
418 		return NULL;
419 	}
420 	gatt->ag_virtual = (uint32_t *)virtual;
421 
422 	gatt->ag_size = entries * sizeof(u_int32_t);
423 	memset(gatt->ag_virtual, 0, gatt->ag_size);
424 	agp_flush_cache();
425 
426 	return gatt;
427 }
428 
429 void
agp_free_gatt(struct agp_softc * sc,struct agp_gatt * gatt)430 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
431 {
432 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
433 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
434 	free(gatt, M_AGP);
435 }
436 
437 
438 int
agp_generic_detach(struct agp_softc * sc)439 agp_generic_detach(struct agp_softc *sc)
440 {
441 	mutex_destroy(&sc->as_mtx);
442 	agp_flush_cache();
443 	return 0;
444 }
445 
446 static int
agpdev_match(const struct pci_attach_args * pa)447 agpdev_match(const struct pci_attach_args *pa)
448 {
449 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
450 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
451 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
452 		    NULL, NULL))
453 		return 1;
454 
455 	return 0;
456 }
457 
458 int
agp_generic_enable(struct agp_softc * sc,u_int32_t mode)459 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
460 {
461 	struct pci_attach_args pa;
462 	pcireg_t tstatus, mstatus;
463 	int capoff;
464 
465 	if (pci_find_device(&pa, agpdev_match) == 0 ||
466 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
467 	     &capoff, NULL) == 0) {
468 		aprint_error_dev(sc->as_dev, "can't find display\n");
469 		return ENXIO;
470 	}
471 
472 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
473 	    sc->as_capoff + PCI_AGP_STATUS);
474 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
475 	    capoff + PCI_AGP_STATUS);
476 
477 	if (AGP_MODE_GET_MODE_3(mode) &&
478 	    AGP_MODE_GET_MODE_3(tstatus) &&
479 	    AGP_MODE_GET_MODE_3(mstatus))
480 		return agp_generic_enable_v3(sc, &pa, capoff, mode);
481 	else
482 		return agp_generic_enable_v2(sc, &pa, capoff, mode);
483 }
484 
485 static int
agp_generic_enable_v2(struct agp_softc * sc,const struct pci_attach_args * pa,int capoff,u_int32_t mode)486 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
487     int capoff, u_int32_t mode)
488 {
489 	pcireg_t tstatus, mstatus;
490 	pcireg_t command;
491 	int rq, sba, fw, rate;
492 
493 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
494 	    sc->as_capoff + PCI_AGP_STATUS);
495 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
496 	    capoff + PCI_AGP_STATUS);
497 
498 	/* Set RQ to the min of mode, tstatus and mstatus */
499 	rq = AGP_MODE_GET_RQ(mode);
500 	if (AGP_MODE_GET_RQ(tstatus) < rq)
501 		rq = AGP_MODE_GET_RQ(tstatus);
502 	if (AGP_MODE_GET_RQ(mstatus) < rq)
503 		rq = AGP_MODE_GET_RQ(mstatus);
504 
505 	/* Set SBA if all three can deal with SBA */
506 	sba = (AGP_MODE_GET_SBA(tstatus)
507 	       & AGP_MODE_GET_SBA(mstatus)
508 	       & AGP_MODE_GET_SBA(mode));
509 
510 	/* Similar for FW */
511 	fw = (AGP_MODE_GET_FW(tstatus)
512 	       & AGP_MODE_GET_FW(mstatus)
513 	       & AGP_MODE_GET_FW(mode));
514 
515 	/* Figure out the max rate */
516 	rate = (AGP_MODE_GET_RATE(tstatus)
517 		& AGP_MODE_GET_RATE(mstatus)
518 		& AGP_MODE_GET_RATE(mode));
519 	if (rate & AGP_MODE_V2_RATE_4x)
520 		rate = AGP_MODE_V2_RATE_4x;
521 	else if (rate & AGP_MODE_V2_RATE_2x)
522 		rate = AGP_MODE_V2_RATE_2x;
523 	else
524 		rate = AGP_MODE_V2_RATE_1x;
525 
526 	/* Construct the new mode word and tell the hardware */
527 	command = AGP_MODE_SET_RQ(0, rq);
528 	command = AGP_MODE_SET_SBA(command, sba);
529 	command = AGP_MODE_SET_FW(command, fw);
530 	command = AGP_MODE_SET_RATE(command, rate);
531 	command = AGP_MODE_SET_AGP(command, 1);
532 	pci_conf_write(sc->as_pc, sc->as_tag,
533 	    sc->as_capoff + PCI_AGP_COMMAND, command);
534 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
535 		       command);
536 
537 	return 0;
538 }
539 
540 static int
agp_generic_enable_v3(struct agp_softc * sc,const struct pci_attach_args * pa,int capoff,u_int32_t mode)541 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
542     int capoff, u_int32_t mode)
543 {
544 	pcireg_t tstatus, mstatus;
545 	pcireg_t command;
546 	int rq, sba, fw, rate, arqsz, cal;
547 
548 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
549 	    sc->as_capoff + PCI_AGP_STATUS);
550 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
551 	    capoff + PCI_AGP_STATUS);
552 
553 	/* Set RQ to the min of mode, tstatus and mstatus */
554 	rq = AGP_MODE_GET_RQ(mode);
555 	if (AGP_MODE_GET_RQ(tstatus) < rq)
556 		rq = AGP_MODE_GET_RQ(tstatus);
557 	if (AGP_MODE_GET_RQ(mstatus) < rq)
558 		rq = AGP_MODE_GET_RQ(mstatus);
559 
560 	/*
561 	 * ARQSZ - Set the value to the maximum one.
562 	 * Don't allow the mode register to override values.
563 	 */
564 	arqsz = AGP_MODE_GET_ARQSZ(mode);
565 	if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
566 		arqsz = AGP_MODE_GET_ARQSZ(tstatus);
567 	if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
568 		arqsz = AGP_MODE_GET_ARQSZ(mstatus);
569 
570 	/* Calibration cycle - don't allow override by mode register */
571 	cal = AGP_MODE_GET_CAL(tstatus);
572 	if (AGP_MODE_GET_CAL(mstatus) < cal)
573 		cal = AGP_MODE_GET_CAL(mstatus);
574 
575 	/* SBA must be supported for AGP v3. */
576 	sba = 1;
577 
578 	/* Set FW if all three support it. */
579 	fw = (AGP_MODE_GET_FW(tstatus)
580 	       & AGP_MODE_GET_FW(mstatus)
581 	       & AGP_MODE_GET_FW(mode));
582 
583 	/* Figure out the max rate */
584 	rate = (AGP_MODE_GET_RATE(tstatus)
585 		& AGP_MODE_GET_RATE(mstatus)
586 		& AGP_MODE_GET_RATE(mode));
587 	if (rate & AGP_MODE_V3_RATE_8x)
588 		rate = AGP_MODE_V3_RATE_8x;
589 	else
590 		rate = AGP_MODE_V3_RATE_4x;
591 
592 	/* Construct the new mode word and tell the hardware */
593 	command = AGP_MODE_SET_RQ(0, rq);
594 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
595 	command = AGP_MODE_SET_CAL(command, cal);
596 	command = AGP_MODE_SET_SBA(command, sba);
597 	command = AGP_MODE_SET_FW(command, fw);
598 	command = AGP_MODE_SET_RATE(command, rate);
599 	command = AGP_MODE_SET_AGP(command, 1);
600 	pci_conf_write(sc->as_pc, sc->as_tag,
601 	    sc->as_capoff + PCI_AGP_COMMAND, command);
602 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
603 		       command);
604 
605 	return 0;
606 }
607 
608 struct agp_memory *
agp_generic_alloc_memory(struct agp_softc * sc,int type,vsize_t size)609 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
610 {
611 	struct agp_memory *mem;
612 
613 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
614 		return 0;
615 
616 	if (sc->as_allocated + size > sc->as_maxmem)
617 		return 0;
618 
619 	if (type != 0) {
620 		printf("agp_generic_alloc_memory: unsupported type %d\n",
621 		       type);
622 		return 0;
623 	}
624 
625 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
626 	if (mem == NULL)
627 		return NULL;
628 
629 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
630 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
631 		free(mem, M_AGP);
632 		return NULL;
633 	}
634 
635 	mem->am_id = sc->as_nextid++;
636 	mem->am_size = size;
637 	mem->am_type = 0;
638 	mem->am_physical = 0;
639 	mem->am_offset = 0;
640 	mem->am_is_bound = 0;
641 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
642 	sc->as_allocated += size;
643 
644 	return mem;
645 }
646 
647 int
agp_generic_free_memory(struct agp_softc * sc,struct agp_memory * mem)648 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
649 {
650 	if (mem->am_is_bound)
651 		return EBUSY;
652 
653 	sc->as_allocated -= mem->am_size;
654 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
655 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
656 	free(mem, M_AGP);
657 	return 0;
658 }
659 
660 int
agp_generic_bind_memory(struct agp_softc * sc,struct agp_memory * mem,off_t offset)661 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
662     off_t offset)
663 {
664 
665 	return agp_generic_bind_memory_bounded(sc, mem, offset,
666 	    0, AGP_GET_APERTURE(sc));
667 }
668 
669 int
agp_generic_bind_memory_bounded(struct agp_softc * sc,struct agp_memory * mem,off_t offset,off_t start,off_t end)670 agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem,
671     off_t offset, off_t start, off_t end)
672 {
673 	off_t i, k;
674 	bus_size_t done, j;
675 	int error;
676 	bus_dma_segment_t *segs, *seg;
677 	bus_addr_t pa;
678 	int contigpages, nseg;
679 
680 	mutex_enter(&sc->as_mtx);
681 
682 	if (mem->am_is_bound) {
683 		aprint_error_dev(sc->as_dev, "memory already bound\n");
684 		mutex_exit(&sc->as_mtx);
685 		return EINVAL;
686 	}
687 
688 	if (offset < start
689 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
690 	    || offset > end
691 	    || mem->am_size > (end - offset)) {
692 		aprint_error_dev(sc->as_dev,
693 			      "binding memory at bad offset %#lx\n",
694 			      (unsigned long) offset);
695 		mutex_exit(&sc->as_mtx);
696 		return EINVAL;
697 	}
698 
699 	/*
700 	 * XXXfvdl
701 	 * The memory here needs to be directly accessible from the
702 	 * AGP video card, so it should be allocated using bus_dma.
703 	 * However, it need not be contiguous, since individual pages
704 	 * are translated using the GATT.
705 	 *
706 	 * Using a large chunk of contiguous memory may get in the way
707 	 * of other subsystems that may need one, so we try to be friendly
708 	 * and ask for allocation in chunks of a minimum of 8 pages
709 	 * of contiguous memory on average, falling back to 4, 2 and 1
710 	 * if really needed. Larger chunks are preferred, since allocating
711 	 * a bus_dma_segment per page would be overkill.
712 	 */
713 
714 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
715 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
716 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
717 		if (segs == NULL) {
718 			mutex_exit(&sc->as_mtx);
719 			return ENOMEM;
720 		}
721 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
722 				     segs, nseg, &mem->am_nseg,
723 				     contigpages > 1 ?
724 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
725 			free(segs, M_AGP);
726 			continue;
727 		}
728 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
729 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
730 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
731 			free(segs, M_AGP);
732 			continue;
733 		}
734 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
735 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
736 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
737 			    mem->am_size);
738 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
739 			free(segs, M_AGP);
740 			continue;
741 		}
742 		mem->am_dmaseg = segs;
743 		break;
744 	}
745 
746 	if (contigpages == 0) {
747 		mutex_exit(&sc->as_mtx);
748 		return ENOMEM;
749 	}
750 
751 
752 	/*
753 	 * Bind the individual pages and flush the chipset's
754 	 * TLB.
755 	 */
756 	done = 0;
757 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
758 		seg = &mem->am_dmamap->dm_segs[i];
759 		/*
760 		 * Install entries in the GATT, making sure that if
761 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
762 		 * aligned to PAGE_SIZE, we don't modify too many GATT
763 		 * entries.
764 		 */
765 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
766 		     j += AGP_PAGE_SIZE) {
767 			pa = seg->ds_addr + j;
768 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
769 				(unsigned long)(offset + done + j),
770 				(unsigned long)pa));
771 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
772 			if (error) {
773 				/*
774 				 * Bail out. Reverse all the mappings
775 				 * and unwire the pages.
776 				 */
777 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
778 					AGP_UNBIND_PAGE(sc, offset + k);
779 
780 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
781 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
782 						 mem->am_size);
783 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
784 						mem->am_nseg);
785 				free(mem->am_dmaseg, M_AGP);
786 				mutex_exit(&sc->as_mtx);
787 				return error;
788 			}
789 		}
790 		done += seg->ds_len;
791 	}
792 
793 	/*
794 	 * Flush the CPU cache since we are providing a new mapping
795 	 * for these pages.
796 	 */
797 	agp_flush_cache();
798 
799 	/*
800 	 * Make sure the chipset gets the new mappings.
801 	 */
802 	AGP_FLUSH_TLB(sc);
803 
804 	mem->am_offset = offset;
805 	mem->am_is_bound = 1;
806 
807 	mutex_exit(&sc->as_mtx);
808 
809 	return 0;
810 }
811 
812 int
agp_generic_unbind_memory(struct agp_softc * sc,struct agp_memory * mem)813 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
814 {
815 	int i;
816 
817 	mutex_enter(&sc->as_mtx);
818 
819 	if (!mem->am_is_bound) {
820 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
821 		mutex_exit(&sc->as_mtx);
822 		return EINVAL;
823 	}
824 
825 
826 	/*
827 	 * Unbind the individual pages and flush the chipset's
828 	 * TLB. Unwire the pages so they can be swapped.
829 	 */
830 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
831 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
832 
833 	agp_flush_cache();
834 	AGP_FLUSH_TLB(sc);
835 
836 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
837 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
838 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
839 
840 	free(mem->am_dmaseg, M_AGP);
841 
842 	mem->am_offset = 0;
843 	mem->am_is_bound = 0;
844 
845 	mutex_exit(&sc->as_mtx);
846 
847 	return 0;
848 }
849 
850 /* Helper functions for implementing user/kernel api */
851 
852 static int
agp_acquire_helper(struct agp_softc * sc,enum agp_acquire_state state)853 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
854 {
855 	if (sc->as_state != AGP_ACQUIRE_FREE)
856 		return EBUSY;
857 	sc->as_state = state;
858 
859 	return 0;
860 }
861 
862 static int
agp_release_helper(struct agp_softc * sc,enum agp_acquire_state state)863 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
864 {
865 
866 	if (sc->as_state == AGP_ACQUIRE_FREE)
867 		return 0;
868 
869 	if (sc->as_state != state)
870 		return EBUSY;
871 
872 	sc->as_state = AGP_ACQUIRE_FREE;
873 	return 0;
874 }
875 
876 static struct agp_memory *
agp_find_memory(struct agp_softc * sc,int id)877 agp_find_memory(struct agp_softc *sc, int id)
878 {
879 	struct agp_memory *mem;
880 
881 	AGP_DPF(("searching for memory block %d\n", id));
882 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
883 		AGP_DPF(("considering memory block %d\n", mem->am_id));
884 		if (mem->am_id == id)
885 			return mem;
886 	}
887 	return 0;
888 }
889 
890 /* Implementation of the userland ioctl api */
891 
892 static int
agp_info_user(struct agp_softc * sc,agp_info * info)893 agp_info_user(struct agp_softc *sc, agp_info *info)
894 {
895 	memset(info, 0, sizeof *info);
896 	info->bridge_id = sc->as_id;
897 	if (sc->as_capoff != 0)
898 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
899 					       sc->as_capoff + PCI_AGP_STATUS);
900 	else
901 		info->agp_mode = 0; /* i810 doesn't have real AGP */
902 	info->aper_base = sc->as_apaddr;
903 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
904 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
905 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
906 
907 	return 0;
908 }
909 
910 static int
agp_setup_user(struct agp_softc * sc,agp_setup * setup)911 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
912 {
913 	return AGP_ENABLE(sc, setup->agp_mode);
914 }
915 
916 static int
agp_allocate_user(struct agp_softc * sc,agp_allocate * alloc)917 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
918 {
919 	struct agp_memory *mem;
920 
921 	mem = AGP_ALLOC_MEMORY(sc,
922 			       alloc->type,
923 			       alloc->pg_count << AGP_PAGE_SHIFT);
924 	if (mem) {
925 		alloc->key = mem->am_id;
926 		alloc->physical = mem->am_physical;
927 		return 0;
928 	} else {
929 		return ENOMEM;
930 	}
931 }
932 
933 static int
agp_deallocate_user(struct agp_softc * sc,int id)934 agp_deallocate_user(struct agp_softc *sc, int id)
935 {
936 	struct agp_memory *mem = agp_find_memory(sc, id);
937 
938 	if (mem) {
939 		AGP_FREE_MEMORY(sc, mem);
940 		return 0;
941 	} else {
942 		return ENOENT;
943 	}
944 }
945 
946 static int
agp_bind_user(struct agp_softc * sc,agp_bind * bind)947 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
948 {
949 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
950 
951 	if (!mem)
952 		return ENOENT;
953 
954 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
955 }
956 
957 static int
agp_unbind_user(struct agp_softc * sc,agp_unbind * unbind)958 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
959 {
960 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
961 
962 	if (!mem)
963 		return ENOENT;
964 
965 	return AGP_UNBIND_MEMORY(sc, mem);
966 }
967 
968 static int
agpopen(dev_t dev,int oflags,int devtype,struct lwp * l)969 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
970 {
971 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
972 
973 	if (sc == NULL)
974 		return ENXIO;
975 
976 	if (sc->as_chipc == NULL)
977 		return ENXIO;
978 
979 	if (!sc->as_isopen)
980 		sc->as_isopen = 1;
981 	else
982 		return EBUSY;
983 
984 	return 0;
985 }
986 
987 static int
agpclose(dev_t dev,int fflag,int devtype,struct lwp * l)988 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
989 {
990 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
991 	struct agp_memory *mem;
992 
993 	if (sc == NULL)
994 		return ENODEV;
995 
996 	/*
997 	 * Clear the GATT and force release on last close
998 	 */
999 	if (sc->as_state == AGP_ACQUIRE_USER) {
1000 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
1001 			if (mem->am_is_bound) {
1002 				printf("agpclose: mem %d is bound\n",
1003 				       mem->am_id);
1004 				AGP_UNBIND_MEMORY(sc, mem);
1005 			}
1006 			/*
1007 			 * XXX it is not documented, but if the protocol allows
1008 			 * allocate->acquire->bind, it would be possible that
1009 			 * memory ranges are allocated by the kernel here,
1010 			 * which we shouldn't free. We'd have to keep track of
1011 			 * the memory range's owner.
1012 			 * The kernel API is unsed yet, so we get away with
1013 			 * freeing all.
1014 			 */
1015 			AGP_FREE_MEMORY(sc, mem);
1016 		}
1017 		agp_release_helper(sc, AGP_ACQUIRE_USER);
1018 	}
1019 	sc->as_isopen = 0;
1020 
1021 	return 0;
1022 }
1023 
1024 static int
agpioctl(dev_t dev,u_long cmd,void * data,int fflag,struct lwp * l)1025 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
1026 {
1027 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1028 
1029 	if (sc == NULL)
1030 		return ENODEV;
1031 
1032 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
1033 		return EPERM;
1034 
1035 	switch (cmd) {
1036 	case AGPIOC_INFO:
1037 		return agp_info_user(sc, (agp_info *) data);
1038 
1039 	case AGPIOC_ACQUIRE:
1040 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
1041 
1042 	case AGPIOC_RELEASE:
1043 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
1044 
1045 	case AGPIOC_SETUP:
1046 		return agp_setup_user(sc, (agp_setup *)data);
1047 
1048 #ifdef __x86_64__
1049 {
1050 	/*
1051 	 * Handle paddr_t change from 32 bit for non PAE kernels
1052 	 * to 64 bit.
1053 	 */
1054 #define AGPIOC_OALLOCATE  _IOWR(AGPIOC_BASE, 6, agp_oallocate)
1055 
1056 	typedef struct _agp_oallocate {
1057 		int key;		/* tag of allocation            */
1058 		size_t pg_count;	/* number of pages              */
1059 		uint32_t type;		/* 0 == normal, other devspec   */
1060 		u_long physical;	/* device specific (some devices
1061 					 * need a phys address of the
1062 					 * actual page behind the gatt
1063 					 * table)                        */
1064 	} agp_oallocate;
1065 
1066 	case AGPIOC_OALLOCATE: {
1067 		int ret;
1068 		agp_allocate aga;
1069 		agp_oallocate *oaga = data;
1070 
1071 		aga.type = oaga->type;
1072 		aga.pg_count = oaga->pg_count;
1073 
1074 		if ((ret = agp_allocate_user(sc, &aga)) == 0) {
1075 			oaga->key = aga.key;
1076 			oaga->physical = (u_long)aga.physical;
1077 		}
1078 
1079 		return ret;
1080 	}
1081 }
1082 #endif
1083 	case AGPIOC_ALLOCATE:
1084 		return agp_allocate_user(sc, (agp_allocate *)data);
1085 
1086 	case AGPIOC_DEALLOCATE:
1087 		return agp_deallocate_user(sc, *(int *) data);
1088 
1089 	case AGPIOC_BIND:
1090 		return agp_bind_user(sc, (agp_bind *)data);
1091 
1092 	case AGPIOC_UNBIND:
1093 		return agp_unbind_user(sc, (agp_unbind *)data);
1094 
1095 	}
1096 
1097 	return EINVAL;
1098 }
1099 
1100 static paddr_t
agpmmap(dev_t dev,off_t offset,int prot)1101 agpmmap(dev_t dev, off_t offset, int prot)
1102 {
1103 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1104 
1105 	if (sc == NULL)
1106 		return ENODEV;
1107 
1108 	if (offset > AGP_GET_APERTURE(sc))
1109 		return -1;
1110 
1111 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1112 	    BUS_SPACE_MAP_LINEAR));
1113 }
1114 
1115 const struct cdevsw agp_cdevsw = {
1116 	.d_open = agpopen,
1117 	.d_close = agpclose,
1118 	.d_read = noread,
1119 	.d_write = nowrite,
1120 	.d_ioctl = agpioctl,
1121 	.d_stop = nostop,
1122 	.d_tty = notty,
1123 	.d_poll = nopoll,
1124 	.d_mmap = agpmmap,
1125 	.d_kqfilter = nokqfilter,
1126 	.d_discard = nodiscard,
1127 	.d_flag = D_OTHER
1128 };
1129 
1130 /* Implementation of the kernel api */
1131 
1132 void *
agp_find_device(int unit)1133 agp_find_device(int unit)
1134 {
1135 	return device_lookup_private(&agp_cd, unit);
1136 }
1137 
1138 enum agp_acquire_state
agp_state(void * devcookie)1139 agp_state(void *devcookie)
1140 {
1141 	struct agp_softc *sc = devcookie;
1142 
1143 	return sc->as_state;
1144 }
1145 
1146 void
agp_get_info(void * devcookie,struct agp_info * info)1147 agp_get_info(void *devcookie, struct agp_info *info)
1148 {
1149 	struct agp_softc *sc = devcookie;
1150 
1151 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1152 	    sc->as_capoff + PCI_AGP_STATUS);
1153 	info->ai_aperture_base = sc->as_apaddr;
1154 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
1155 	info->ai_memory_allowed = sc->as_maxmem;
1156 	info->ai_memory_used = sc->as_allocated;
1157 	info->ai_devid = sc->as_id;
1158 }
1159 
1160 int
agp_acquire(void * dev)1161 agp_acquire(void *dev)
1162 {
1163 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1164 }
1165 
1166 int
agp_release(void * dev)1167 agp_release(void *dev)
1168 {
1169 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1170 }
1171 
1172 int
agp_enable(void * dev,u_int32_t mode)1173 agp_enable(void *dev, u_int32_t mode)
1174 {
1175 	struct agp_softc *sc = dev;
1176 
1177 	return AGP_ENABLE(sc, mode);
1178 }
1179 
1180 void *
agp_alloc_memory(void * dev,int type,vsize_t bytes)1181 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1182 {
1183 	struct agp_softc *sc = dev;
1184 
1185 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1186 }
1187 
1188 void
agp_free_memory(void * dev,void * handle)1189 agp_free_memory(void *dev, void *handle)
1190 {
1191 	struct agp_softc *sc = dev;
1192 	struct agp_memory *mem = handle;
1193 
1194 	AGP_FREE_MEMORY(sc, mem);
1195 }
1196 
1197 int
agp_bind_memory(void * dev,void * handle,off_t offset)1198 agp_bind_memory(void *dev, void *handle, off_t offset)
1199 {
1200 	struct agp_softc *sc = dev;
1201 	struct agp_memory *mem = handle;
1202 
1203 	return AGP_BIND_MEMORY(sc, mem, offset);
1204 }
1205 
1206 int
agp_unbind_memory(void * dev,void * handle)1207 agp_unbind_memory(void *dev, void *handle)
1208 {
1209 	struct agp_softc *sc = dev;
1210 	struct agp_memory *mem = handle;
1211 
1212 	return AGP_UNBIND_MEMORY(sc, mem);
1213 }
1214 
1215 void
agp_memory_info(void * dev,void * handle,struct agp_memory_info * mi)1216 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1217 {
1218 	struct agp_memory *mem = handle;
1219 
1220 	mi->ami_size = mem->am_size;
1221 	mi->ami_physical = mem->am_physical;
1222 	mi->ami_offset = mem->am_offset;
1223 	mi->ami_is_bound = mem->am_is_bound;
1224 }
1225 
1226 int
agp_alloc_dmamem(bus_dma_tag_t tag,size_t size,int flags,bus_dmamap_t * mapp,void ** vaddr,bus_addr_t * baddr,bus_dma_segment_t * seg,int nseg,int * rseg)1227 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1228 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1229 		 bus_dma_segment_t *seg, int nseg, int *rseg)
1230 
1231 {
1232 	int error, level = 0;
1233 
1234 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1235 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1236 		goto out;
1237 	level++;
1238 
1239 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1240 			BUS_DMA_NOWAIT | flags)) != 0)
1241 		goto out;
1242 	level++;
1243 
1244 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1245 			BUS_DMA_NOWAIT, mapp)) != 0)
1246 		goto out;
1247 	level++;
1248 
1249 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1250 			BUS_DMA_NOWAIT)) != 0)
1251 		goto out;
1252 
1253 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1254 
1255 	return 0;
1256 out:
1257 	switch (level) {
1258 	case 3:
1259 		bus_dmamap_destroy(tag, *mapp);
1260 		/* FALLTHROUGH */
1261 	case 2:
1262 		bus_dmamem_unmap(tag, *vaddr, size);
1263 		/* FALLTHROUGH */
1264 	case 1:
1265 		bus_dmamem_free(tag, seg, *rseg);
1266 		break;
1267 	default:
1268 		break;
1269 	}
1270 
1271 	return error;
1272 }
1273 
1274 void
agp_free_dmamem(bus_dma_tag_t tag,size_t size,bus_dmamap_t map,void * vaddr,bus_dma_segment_t * seg,int nseg)1275 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1276 		void *vaddr, bus_dma_segment_t *seg, int nseg)
1277 {
1278 	bus_dmamap_unload(tag, map);
1279 	bus_dmamap_destroy(tag, map);
1280 	bus_dmamem_unmap(tag, vaddr, size);
1281 	bus_dmamem_free(tag, seg, nseg);
1282 }
1283 
1284 static bool
agp_resume(device_t dv,const pmf_qual_t * qual)1285 agp_resume(device_t dv, const pmf_qual_t *qual)
1286 {
1287 	agp_flush_cache();
1288 
1289 	return true;
1290 }
1291