xref: /netbsd/external/cddl/osnet/dist/uts/common/fs/zfs/vdev.c (revision 467c62a6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/metaslab.h>
40 #include <sys/metaslab_impl.h>
41 #include <sys/space_map.h>
42 #include <sys/space_reftree.h>
43 #include <sys/zio.h>
44 #include <sys/zap.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/arc.h>
47 #include <sys/zil.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/trim_map.h>
50 
51 SYSCTL_DECL(_vfs_zfs);
52 SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
53 
54 /*
55  * Virtual device management.
56  */
57 
58 /*
59  * The limit for ZFS to automatically increase a top-level vdev's ashift
60  * from logical ashift to physical ashift.
61  *
62  * Example: one or more 512B emulation child vdevs
63  *          child->vdev_ashift = 9 (512 bytes)
64  *          child->vdev_physical_ashift = 12 (4096 bytes)
65  *          zfs_max_auto_ashift = 11 (2048 bytes)
66  *          zfs_min_auto_ashift = 9 (512 bytes)
67  *
68  * On pool creation or the addition of a new top-level vdev, ZFS will
69  * increase the ashift of the top-level vdev to 2048 as limited by
70  * zfs_max_auto_ashift.
71  *
72  * Example: one or more 512B emulation child vdevs
73  *          child->vdev_ashift = 9 (512 bytes)
74  *          child->vdev_physical_ashift = 12 (4096 bytes)
75  *          zfs_max_auto_ashift = 13 (8192 bytes)
76  *          zfs_min_auto_ashift = 9 (512 bytes)
77  *
78  * On pool creation or the addition of a new top-level vdev, ZFS will
79  * increase the ashift of the top-level vdev to 4096 to match the
80  * max vdev_physical_ashift.
81  *
82  * Example: one or more 512B emulation child vdevs
83  *          child->vdev_ashift = 9 (512 bytes)
84  *          child->vdev_physical_ashift = 9 (512 bytes)
85  *          zfs_max_auto_ashift = 13 (8192 bytes)
86  *          zfs_min_auto_ashift = 12 (4096 bytes)
87  *
88  * On pool creation or the addition of a new top-level vdev, ZFS will
89  * increase the ashift of the top-level vdev to 4096 to match the
90  * zfs_min_auto_ashift.
91  */
92 static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
93 static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
94 
95 #ifdef __FreeBSD__
96 static int
sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)97 sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
98 {
99 	uint64_t val;
100 	int err;
101 
102 	val = zfs_max_auto_ashift;
103 	err = sysctl_handle_64(oidp, &val, 0, req);
104 	if (err != 0 || req->newptr == NULL)
105 		return (err);
106 
107 	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
108 		return (EINVAL);
109 
110 	zfs_max_auto_ashift = val;
111 
112 	return (0);
113 }
114 SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
115     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
116     sysctl_vfs_zfs_max_auto_ashift, "QU",
117     "Max ashift used when optimising for logical -> physical sectors size on "
118     "new top-level vdevs.");
119 
120 static int
sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)121 sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
122 {
123 	uint64_t val;
124 	int err;
125 
126 	val = zfs_min_auto_ashift;
127 	err = sysctl_handle_64(oidp, &val, 0, req);
128 	if (err != 0 || req->newptr == NULL)
129 		return (err);
130 
131 	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
132 		return (EINVAL);
133 
134 	zfs_min_auto_ashift = val;
135 
136 	return (0);
137 }
138 SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
139     CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
140     sysctl_vfs_zfs_min_auto_ashift, "QU",
141     "Min ashift used when creating new top-level vdevs.");
142 #endif
143 
144 static vdev_ops_t *vdev_ops_table[] = {
145 	&vdev_root_ops,
146 	&vdev_raidz_ops,
147 	&vdev_mirror_ops,
148 	&vdev_replacing_ops,
149 	&vdev_spare_ops,
150 #if defined(__FreeBSD__) && defined(_KERNEL)
151 	&vdev_geom_ops,
152 #else
153 	&vdev_disk_ops,
154 #endif
155 	&vdev_file_ops,
156 	&vdev_missing_ops,
157 	&vdev_hole_ops,
158 	NULL
159 };
160 
161 
162 /*
163  * When a vdev is added, it will be divided into approximately (but no
164  * more than) this number of metaslabs.
165  */
166 int metaslabs_per_vdev = 200;
167 SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
168     &metaslabs_per_vdev, 0,
169     "When a vdev is added, how many metaslabs the vdev should be divided into");
170 
171 /*
172  * Given a vdev type, return the appropriate ops vector.
173  */
174 static vdev_ops_t *
vdev_getops(const char * type)175 vdev_getops(const char *type)
176 {
177 	vdev_ops_t *ops, **opspp;
178 
179 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
180 		if (strcmp(ops->vdev_op_type, type) == 0)
181 			break;
182 
183 	return (ops);
184 }
185 
186 /*
187  * Default asize function: return the MAX of psize with the asize of
188  * all children.  This is what's used by anything other than RAID-Z.
189  */
190 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize)191 vdev_default_asize(vdev_t *vd, uint64_t psize)
192 {
193 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
194 	uint64_t csize;
195 
196 	for (int c = 0; c < vd->vdev_children; c++) {
197 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
198 		asize = MAX(asize, csize);
199 	}
200 
201 	return (asize);
202 }
203 
204 /*
205  * Get the minimum allocatable size. We define the allocatable size as
206  * the vdev's asize rounded to the nearest metaslab. This allows us to
207  * replace or attach devices which don't have the same physical size but
208  * can still satisfy the same number of allocations.
209  */
210 uint64_t
vdev_get_min_asize(vdev_t * vd)211 vdev_get_min_asize(vdev_t *vd)
212 {
213 	vdev_t *pvd = vd->vdev_parent;
214 
215 	/*
216 	 * If our parent is NULL (inactive spare or cache) or is the root,
217 	 * just return our own asize.
218 	 */
219 	if (pvd == NULL)
220 		return (vd->vdev_asize);
221 
222 	/*
223 	 * The top-level vdev just returns the allocatable size rounded
224 	 * to the nearest metaslab.
225 	 */
226 	if (vd == vd->vdev_top)
227 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
228 
229 	/*
230 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
231 	 * so each child must provide at least 1/Nth of its asize.
232 	 */
233 	if (pvd->vdev_ops == &vdev_raidz_ops)
234 		return (pvd->vdev_min_asize / pvd->vdev_children);
235 
236 	return (pvd->vdev_min_asize);
237 }
238 
239 void
vdev_set_min_asize(vdev_t * vd)240 vdev_set_min_asize(vdev_t *vd)
241 {
242 	vd->vdev_min_asize = vdev_get_min_asize(vd);
243 
244 	for (int c = 0; c < vd->vdev_children; c++)
245 		vdev_set_min_asize(vd->vdev_child[c]);
246 }
247 
248 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)249 vdev_lookup_top(spa_t *spa, uint64_t vdev)
250 {
251 	vdev_t *rvd = spa->spa_root_vdev;
252 
253 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
254 
255 	if (vdev < rvd->vdev_children) {
256 		ASSERT(rvd->vdev_child[vdev] != NULL);
257 		return (rvd->vdev_child[vdev]);
258 	}
259 
260 	return (NULL);
261 }
262 
263 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)264 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
265 {
266 	vdev_t *mvd;
267 
268 	if (vd->vdev_guid == guid)
269 		return (vd);
270 
271 	for (int c = 0; c < vd->vdev_children; c++)
272 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
273 		    NULL)
274 			return (mvd);
275 
276 	return (NULL);
277 }
278 
279 static int
vdev_count_leaves_impl(vdev_t * vd)280 vdev_count_leaves_impl(vdev_t *vd)
281 {
282 	int n = 0;
283 
284 	if (vd->vdev_ops->vdev_op_leaf)
285 		return (1);
286 
287 	for (int c = 0; c < vd->vdev_children; c++)
288 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
289 
290 	return (n);
291 }
292 
293 int
vdev_count_leaves(spa_t * spa)294 vdev_count_leaves(spa_t *spa)
295 {
296 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
297 }
298 
299 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)300 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
301 {
302 	size_t oldsize, newsize;
303 	uint64_t id = cvd->vdev_id;
304 	vdev_t **newchild;
305 	spa_t *spa = cvd->vdev_spa;
306 
307 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
308 	ASSERT(cvd->vdev_parent == NULL);
309 
310 	cvd->vdev_parent = pvd;
311 
312 	if (pvd == NULL)
313 		return;
314 
315 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
316 
317 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
318 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
319 	newsize = pvd->vdev_children * sizeof (vdev_t *);
320 
321 	newchild = kmem_zalloc(newsize, KM_SLEEP);
322 	if (pvd->vdev_child != NULL) {
323 		bcopy(pvd->vdev_child, newchild, oldsize);
324 		kmem_free(pvd->vdev_child, oldsize);
325 	}
326 
327 	pvd->vdev_child = newchild;
328 	pvd->vdev_child[id] = cvd;
329 
330 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
331 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
332 
333 	/*
334 	 * Walk up all ancestors to update guid sum.
335 	 */
336 	for (; pvd != NULL; pvd = pvd->vdev_parent)
337 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
338 }
339 
340 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)341 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
342 {
343 	int c;
344 	uint_t id = cvd->vdev_id;
345 
346 	ASSERT(cvd->vdev_parent == pvd);
347 
348 	if (pvd == NULL)
349 		return;
350 
351 	ASSERT(id < pvd->vdev_children);
352 	ASSERT(pvd->vdev_child[id] == cvd);
353 
354 	pvd->vdev_child[id] = NULL;
355 	cvd->vdev_parent = NULL;
356 
357 	for (c = 0; c < pvd->vdev_children; c++)
358 		if (pvd->vdev_child[c])
359 			break;
360 
361 	if (c == pvd->vdev_children) {
362 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
363 		pvd->vdev_child = NULL;
364 		pvd->vdev_children = 0;
365 	}
366 
367 	/*
368 	 * Walk up all ancestors to update guid sum.
369 	 */
370 	for (; pvd != NULL; pvd = pvd->vdev_parent)
371 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
372 }
373 
374 /*
375  * Remove any holes in the child array.
376  */
377 void
vdev_compact_children(vdev_t * pvd)378 vdev_compact_children(vdev_t *pvd)
379 {
380 	vdev_t **newchild, *cvd;
381 	int oldc = pvd->vdev_children;
382 	int newc;
383 
384 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
385 
386 	for (int c = newc = 0; c < oldc; c++)
387 		if (pvd->vdev_child[c])
388 			newc++;
389 
390 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
391 
392 	for (int c = newc = 0; c < oldc; c++) {
393 		if ((cvd = pvd->vdev_child[c]) != NULL) {
394 			newchild[newc] = cvd;
395 			cvd->vdev_id = newc++;
396 		}
397 	}
398 
399 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
400 	pvd->vdev_child = newchild;
401 	pvd->vdev_children = newc;
402 }
403 
404 /*
405  * Allocate and minimally initialize a vdev_t.
406  */
407 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)408 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
409 {
410 	vdev_t *vd;
411 
412 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
413 
414 	if (spa->spa_root_vdev == NULL) {
415 		ASSERT(ops == &vdev_root_ops);
416 		spa->spa_root_vdev = vd;
417 		spa->spa_load_guid = spa_generate_guid(NULL);
418 	}
419 
420 	if (guid == 0 && ops != &vdev_hole_ops) {
421 		if (spa->spa_root_vdev == vd) {
422 			/*
423 			 * The root vdev's guid will also be the pool guid,
424 			 * which must be unique among all pools.
425 			 */
426 			guid = spa_generate_guid(NULL);
427 		} else {
428 			/*
429 			 * Any other vdev's guid must be unique within the pool.
430 			 */
431 			guid = spa_generate_guid(spa);
432 		}
433 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
434 	}
435 
436 	vd->vdev_spa = spa;
437 	vd->vdev_id = id;
438 	vd->vdev_guid = guid;
439 	vd->vdev_guid_sum = guid;
440 	vd->vdev_ops = ops;
441 	vd->vdev_state = VDEV_STATE_CLOSED;
442 	vd->vdev_ishole = (ops == &vdev_hole_ops);
443 
444 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
445 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
446 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
447 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
448 	for (int t = 0; t < DTL_TYPES; t++) {
449 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
450 		    &vd->vdev_dtl_lock);
451 	}
452 	txg_list_create(&vd->vdev_ms_list,
453 	    offsetof(struct metaslab, ms_txg_node));
454 	txg_list_create(&vd->vdev_dtl_list,
455 	    offsetof(struct vdev, vdev_dtl_node));
456 	vd->vdev_stat.vs_timestamp = gethrtime();
457 	vdev_queue_init(vd);
458 	vdev_cache_init(vd);
459 
460 	return (vd);
461 }
462 
463 /*
464  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
465  * creating a new vdev or loading an existing one - the behavior is slightly
466  * different for each case.
467  */
468 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)469 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
470     int alloctype)
471 {
472 	vdev_ops_t *ops;
473 	char *type;
474 	uint64_t guid = 0, islog, nparity;
475 	vdev_t *vd;
476 
477 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
478 
479 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
480 		return (SET_ERROR(EINVAL));
481 
482 	if ((ops = vdev_getops(type)) == NULL)
483 		return (SET_ERROR(EINVAL));
484 
485 	/*
486 	 * If this is a load, get the vdev guid from the nvlist.
487 	 * Otherwise, vdev_alloc_common() will generate one for us.
488 	 */
489 	if (alloctype == VDEV_ALLOC_LOAD) {
490 		uint64_t label_id;
491 
492 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
493 		    label_id != id)
494 			return (SET_ERROR(EINVAL));
495 
496 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
497 			return (SET_ERROR(EINVAL));
498 	} else if (alloctype == VDEV_ALLOC_SPARE) {
499 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
500 			return (SET_ERROR(EINVAL));
501 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
502 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
503 			return (SET_ERROR(EINVAL));
504 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
505 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
506 			return (SET_ERROR(EINVAL));
507 	}
508 
509 	/*
510 	 * The first allocated vdev must be of type 'root'.
511 	 */
512 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
513 		return (SET_ERROR(EINVAL));
514 
515 	/*
516 	 * Determine whether we're a log vdev.
517 	 */
518 	islog = 0;
519 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
520 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
521 		return (SET_ERROR(ENOTSUP));
522 
523 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
524 		return (SET_ERROR(ENOTSUP));
525 
526 	/*
527 	 * Set the nparity property for RAID-Z vdevs.
528 	 */
529 	nparity = -1ULL;
530 	if (ops == &vdev_raidz_ops) {
531 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
532 		    &nparity) == 0) {
533 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
534 				return (SET_ERROR(EINVAL));
535 			/*
536 			 * Previous versions could only support 1 or 2 parity
537 			 * device.
538 			 */
539 			if (nparity > 1 &&
540 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
541 				return (SET_ERROR(ENOTSUP));
542 			if (nparity > 2 &&
543 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
544 				return (SET_ERROR(ENOTSUP));
545 		} else {
546 			/*
547 			 * We require the parity to be specified for SPAs that
548 			 * support multiple parity levels.
549 			 */
550 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
551 				return (SET_ERROR(EINVAL));
552 			/*
553 			 * Otherwise, we default to 1 parity device for RAID-Z.
554 			 */
555 			nparity = 1;
556 		}
557 	} else {
558 		nparity = 0;
559 	}
560 	ASSERT(nparity != -1ULL);
561 
562 	vd = vdev_alloc_common(spa, id, guid, ops);
563 
564 	vd->vdev_islog = islog;
565 	vd->vdev_nparity = nparity;
566 
567 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
568 		vd->vdev_path = spa_strdup(vd->vdev_path);
569 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
570 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
571 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
572 	    &vd->vdev_physpath) == 0)
573 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
574 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
575 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
576 
577 	/*
578 	 * Set the whole_disk property.  If it's not specified, leave the value
579 	 * as -1.
580 	 */
581 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
582 	    &vd->vdev_wholedisk) != 0)
583 		vd->vdev_wholedisk = -1ULL;
584 
585 	/*
586 	 * Look for the 'not present' flag.  This will only be set if the device
587 	 * was not present at the time of import.
588 	 */
589 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
590 	    &vd->vdev_not_present);
591 
592 	/*
593 	 * Get the alignment requirement.
594 	 */
595 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
596 
597 	/*
598 	 * Retrieve the vdev creation time.
599 	 */
600 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
601 	    &vd->vdev_crtxg);
602 
603 	/*
604 	 * If we're a top-level vdev, try to load the allocation parameters.
605 	 */
606 	if (parent && !parent->vdev_parent &&
607 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
608 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
609 		    &vd->vdev_ms_array);
610 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
611 		    &vd->vdev_ms_shift);
612 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
613 		    &vd->vdev_asize);
614 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
615 		    &vd->vdev_removing);
616 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
617 		    &vd->vdev_top_zap);
618 	} else {
619 		ASSERT0(vd->vdev_top_zap);
620 	}
621 
622 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
623 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
624 		    alloctype == VDEV_ALLOC_ADD ||
625 		    alloctype == VDEV_ALLOC_SPLIT ||
626 		    alloctype == VDEV_ALLOC_ROOTPOOL);
627 		vd->vdev_mg = metaslab_group_create(islog ?
628 		    spa_log_class(spa) : spa_normal_class(spa), vd);
629 	}
630 
631 	if (vd->vdev_ops->vdev_op_leaf &&
632 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
633 		(void) nvlist_lookup_uint64(nv,
634 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
635 	} else {
636 		ASSERT0(vd->vdev_leaf_zap);
637 	}
638 
639 	/*
640 	 * If we're a leaf vdev, try to load the DTL object and other state.
641 	 */
642 
643 	if (vd->vdev_ops->vdev_op_leaf &&
644 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
645 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
646 		if (alloctype == VDEV_ALLOC_LOAD) {
647 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
648 			    &vd->vdev_dtl_object);
649 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
650 			    &vd->vdev_unspare);
651 		}
652 
653 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
654 			uint64_t spare = 0;
655 
656 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
657 			    &spare) == 0 && spare)
658 				spa_spare_add(vd);
659 		}
660 
661 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
662 		    &vd->vdev_offline);
663 
664 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
665 		    &vd->vdev_resilver_txg);
666 
667 		/*
668 		 * When importing a pool, we want to ignore the persistent fault
669 		 * state, as the diagnosis made on another system may not be
670 		 * valid in the current context.  Local vdevs will
671 		 * remain in the faulted state.
672 		 */
673 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
674 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
675 			    &vd->vdev_faulted);
676 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
677 			    &vd->vdev_degraded);
678 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
679 			    &vd->vdev_removed);
680 
681 			if (vd->vdev_faulted || vd->vdev_degraded) {
682 				char *aux;
683 
684 				vd->vdev_label_aux =
685 				    VDEV_AUX_ERR_EXCEEDED;
686 				if (nvlist_lookup_string(nv,
687 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
688 				    strcmp(aux, "external") == 0)
689 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
690 			}
691 		}
692 	}
693 
694 	/*
695 	 * Add ourselves to the parent's list of children.
696 	 */
697 	vdev_add_child(parent, vd);
698 
699 	*vdp = vd;
700 
701 	return (0);
702 }
703 
704 void
vdev_free(vdev_t * vd)705 vdev_free(vdev_t *vd)
706 {
707 	spa_t *spa = vd->vdev_spa;
708 
709 	/*
710 	 * vdev_free() implies closing the vdev first.  This is simpler than
711 	 * trying to ensure complicated semantics for all callers.
712 	 */
713 	vdev_close(vd);
714 
715 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
716 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
717 
718 	/*
719 	 * Free all children.
720 	 */
721 	for (int c = 0; c < vd->vdev_children; c++)
722 		vdev_free(vd->vdev_child[c]);
723 
724 	ASSERT(vd->vdev_child == NULL);
725 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
726 
727 	/*
728 	 * Discard allocation state.
729 	 */
730 	if (vd->vdev_mg != NULL) {
731 		vdev_metaslab_fini(vd);
732 		metaslab_group_destroy(vd->vdev_mg);
733 	}
734 
735 	ASSERT0(vd->vdev_stat.vs_space);
736 	ASSERT0(vd->vdev_stat.vs_dspace);
737 	ASSERT0(vd->vdev_stat.vs_alloc);
738 
739 	/*
740 	 * Remove this vdev from its parent's child list.
741 	 */
742 	vdev_remove_child(vd->vdev_parent, vd);
743 
744 	ASSERT(vd->vdev_parent == NULL);
745 
746 	/*
747 	 * Clean up vdev structure.
748 	 */
749 	vdev_queue_fini(vd);
750 	vdev_cache_fini(vd);
751 
752 	if (vd->vdev_path)
753 		spa_strfree(vd->vdev_path);
754 	if (vd->vdev_devid)
755 		spa_strfree(vd->vdev_devid);
756 	if (vd->vdev_physpath)
757 		spa_strfree(vd->vdev_physpath);
758 	if (vd->vdev_fru)
759 		spa_strfree(vd->vdev_fru);
760 
761 	if (vd->vdev_isspare)
762 		spa_spare_remove(vd);
763 	if (vd->vdev_isl2cache)
764 		spa_l2cache_remove(vd);
765 
766 	txg_list_destroy(&vd->vdev_ms_list);
767 	txg_list_destroy(&vd->vdev_dtl_list);
768 
769 	mutex_enter(&vd->vdev_dtl_lock);
770 	space_map_close(vd->vdev_dtl_sm);
771 	for (int t = 0; t < DTL_TYPES; t++) {
772 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
773 		range_tree_destroy(vd->vdev_dtl[t]);
774 	}
775 	mutex_exit(&vd->vdev_dtl_lock);
776 
777 	mutex_destroy(&vd->vdev_queue_lock);
778 	mutex_destroy(&vd->vdev_dtl_lock);
779 	mutex_destroy(&vd->vdev_stat_lock);
780 	mutex_destroy(&vd->vdev_probe_lock);
781 
782 	if (vd == spa->spa_root_vdev)
783 		spa->spa_root_vdev = NULL;
784 
785 	kmem_free(vd, sizeof (vdev_t));
786 }
787 
788 /*
789  * Transfer top-level vdev state from svd to tvd.
790  */
791 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)792 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
793 {
794 	spa_t *spa = svd->vdev_spa;
795 	metaslab_t *msp;
796 	vdev_t *vd;
797 	int t;
798 
799 	ASSERT(tvd == tvd->vdev_top);
800 
801 	tvd->vdev_ms_array = svd->vdev_ms_array;
802 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
803 	tvd->vdev_ms_count = svd->vdev_ms_count;
804 	tvd->vdev_top_zap = svd->vdev_top_zap;
805 
806 	svd->vdev_ms_array = 0;
807 	svd->vdev_ms_shift = 0;
808 	svd->vdev_ms_count = 0;
809 	svd->vdev_top_zap = 0;
810 
811 	if (tvd->vdev_mg)
812 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
813 	tvd->vdev_mg = svd->vdev_mg;
814 	tvd->vdev_ms = svd->vdev_ms;
815 
816 	svd->vdev_mg = NULL;
817 	svd->vdev_ms = NULL;
818 
819 	if (tvd->vdev_mg != NULL)
820 		tvd->vdev_mg->mg_vd = tvd;
821 
822 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
823 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
824 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
825 
826 	svd->vdev_stat.vs_alloc = 0;
827 	svd->vdev_stat.vs_space = 0;
828 	svd->vdev_stat.vs_dspace = 0;
829 
830 	for (t = 0; t < TXG_SIZE; t++) {
831 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
832 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
833 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
834 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
835 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
836 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
837 	}
838 
839 	if (list_link_active(&svd->vdev_config_dirty_node)) {
840 		vdev_config_clean(svd);
841 		vdev_config_dirty(tvd);
842 	}
843 
844 	if (list_link_active(&svd->vdev_state_dirty_node)) {
845 		vdev_state_clean(svd);
846 		vdev_state_dirty(tvd);
847 	}
848 
849 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
850 	svd->vdev_deflate_ratio = 0;
851 
852 	tvd->vdev_islog = svd->vdev_islog;
853 	svd->vdev_islog = 0;
854 }
855 
856 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)857 vdev_top_update(vdev_t *tvd, vdev_t *vd)
858 {
859 	if (vd == NULL)
860 		return;
861 
862 	vd->vdev_top = tvd;
863 
864 	for (int c = 0; c < vd->vdev_children; c++)
865 		vdev_top_update(tvd, vd->vdev_child[c]);
866 }
867 
868 /*
869  * Add a mirror/replacing vdev above an existing vdev.
870  */
871 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)872 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
873 {
874 	spa_t *spa = cvd->vdev_spa;
875 	vdev_t *pvd = cvd->vdev_parent;
876 	vdev_t *mvd;
877 
878 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
879 
880 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
881 
882 	mvd->vdev_asize = cvd->vdev_asize;
883 	mvd->vdev_min_asize = cvd->vdev_min_asize;
884 	mvd->vdev_max_asize = cvd->vdev_max_asize;
885 	mvd->vdev_ashift = cvd->vdev_ashift;
886 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
887 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
888 	mvd->vdev_state = cvd->vdev_state;
889 	mvd->vdev_crtxg = cvd->vdev_crtxg;
890 
891 	vdev_remove_child(pvd, cvd);
892 	vdev_add_child(pvd, mvd);
893 	cvd->vdev_id = mvd->vdev_children;
894 	vdev_add_child(mvd, cvd);
895 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
896 
897 	if (mvd == mvd->vdev_top)
898 		vdev_top_transfer(cvd, mvd);
899 
900 	return (mvd);
901 }
902 
903 /*
904  * Remove a 1-way mirror/replacing vdev from the tree.
905  */
906 void
vdev_remove_parent(vdev_t * cvd)907 vdev_remove_parent(vdev_t *cvd)
908 {
909 	vdev_t *mvd = cvd->vdev_parent;
910 	vdev_t *pvd = mvd->vdev_parent;
911 
912 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
913 
914 	ASSERT(mvd->vdev_children == 1);
915 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
916 	    mvd->vdev_ops == &vdev_replacing_ops ||
917 	    mvd->vdev_ops == &vdev_spare_ops);
918 	cvd->vdev_ashift = mvd->vdev_ashift;
919 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
920 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
921 
922 	vdev_remove_child(mvd, cvd);
923 	vdev_remove_child(pvd, mvd);
924 
925 	/*
926 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
927 	 * Otherwise, we could have detached an offline device, and when we
928 	 * go to import the pool we'll think we have two top-level vdevs,
929 	 * instead of a different version of the same top-level vdev.
930 	 */
931 	if (mvd->vdev_top == mvd) {
932 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
933 		cvd->vdev_orig_guid = cvd->vdev_guid;
934 		cvd->vdev_guid += guid_delta;
935 		cvd->vdev_guid_sum += guid_delta;
936 	}
937 	cvd->vdev_id = mvd->vdev_id;
938 	vdev_add_child(pvd, cvd);
939 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
940 
941 	if (cvd == cvd->vdev_top)
942 		vdev_top_transfer(mvd, cvd);
943 
944 	ASSERT(mvd->vdev_children == 0);
945 	vdev_free(mvd);
946 }
947 
948 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)949 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
950 {
951 	spa_t *spa = vd->vdev_spa;
952 	objset_t *mos = spa->spa_meta_objset;
953 	uint64_t m;
954 	uint64_t oldc = vd->vdev_ms_count;
955 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
956 	metaslab_t **mspp;
957 	int error;
958 
959 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
960 
961 	/*
962 	 * This vdev is not being allocated from yet or is a hole.
963 	 */
964 	if (vd->vdev_ms_shift == 0)
965 		return (0);
966 
967 	ASSERT(!vd->vdev_ishole);
968 
969 	/*
970 	 * Compute the raidz-deflation ratio.  Note, we hard-code
971 	 * in 128k (1 << 17) because it is the "typical" blocksize.
972 	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
973 	 * otherwise it would inconsistently account for existing bp's.
974 	 */
975 	vd->vdev_deflate_ratio = (1 << 17) /
976 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
977 
978 	ASSERT(oldc <= newc);
979 
980 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
981 
982 	if (oldc != 0) {
983 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
984 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
985 	}
986 
987 	vd->vdev_ms = mspp;
988 	vd->vdev_ms_count = newc;
989 
990 	for (m = oldc; m < newc; m++) {
991 		uint64_t object = 0;
992 
993 		if (txg == 0) {
994 			error = dmu_read(mos, vd->vdev_ms_array,
995 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
996 			    DMU_READ_PREFETCH);
997 			if (error)
998 				return (error);
999 		}
1000 
1001 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1002 		    &(vd->vdev_ms[m]));
1003 		if (error)
1004 			return (error);
1005 	}
1006 
1007 	if (txg == 0)
1008 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1009 
1010 	/*
1011 	 * If the vdev is being removed we don't activate
1012 	 * the metaslabs since we want to ensure that no new
1013 	 * allocations are performed on this device.
1014 	 */
1015 	if (oldc == 0 && !vd->vdev_removing)
1016 		metaslab_group_activate(vd->vdev_mg);
1017 
1018 	if (txg == 0)
1019 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1020 
1021 	return (0);
1022 }
1023 
1024 void
vdev_metaslab_fini(vdev_t * vd)1025 vdev_metaslab_fini(vdev_t *vd)
1026 {
1027 	uint64_t m;
1028 	uint64_t count = vd->vdev_ms_count;
1029 
1030 	if (vd->vdev_ms != NULL) {
1031 		metaslab_group_passivate(vd->vdev_mg);
1032 		for (m = 0; m < count; m++) {
1033 			metaslab_t *msp = vd->vdev_ms[m];
1034 
1035 			if (msp != NULL)
1036 				metaslab_fini(msp);
1037 		}
1038 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1039 		vd->vdev_ms = NULL;
1040 	}
1041 }
1042 
1043 typedef struct vdev_probe_stats {
1044 	boolean_t	vps_readable;
1045 	boolean_t	vps_writeable;
1046 	int		vps_flags;
1047 } vdev_probe_stats_t;
1048 
1049 static void
vdev_probe_done(zio_t * zio)1050 vdev_probe_done(zio_t *zio)
1051 {
1052 	spa_t *spa = zio->io_spa;
1053 	vdev_t *vd = zio->io_vd;
1054 	vdev_probe_stats_t *vps = zio->io_private;
1055 
1056 	ASSERT(vd->vdev_probe_zio != NULL);
1057 
1058 	if (zio->io_type == ZIO_TYPE_READ) {
1059 		if (zio->io_error == 0)
1060 			vps->vps_readable = 1;
1061 		if (zio->io_error == 0 && spa_writeable(spa)) {
1062 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1063 			    zio->io_offset, zio->io_size, zio->io_data,
1064 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1065 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1066 		} else {
1067 			zio_buf_free(zio->io_data, zio->io_size);
1068 		}
1069 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1070 		if (zio->io_error == 0)
1071 			vps->vps_writeable = 1;
1072 		zio_buf_free(zio->io_data, zio->io_size);
1073 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1074 		zio_t *pio;
1075 
1076 		vd->vdev_cant_read |= !vps->vps_readable;
1077 		vd->vdev_cant_write |= !vps->vps_writeable;
1078 
1079 		if (vdev_readable(vd) &&
1080 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1081 			zio->io_error = 0;
1082 		} else {
1083 			ASSERT(zio->io_error != 0);
1084 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1085 			    spa, vd, NULL, 0, 0);
1086 			zio->io_error = SET_ERROR(ENXIO);
1087 		}
1088 
1089 		mutex_enter(&vd->vdev_probe_lock);
1090 		ASSERT(vd->vdev_probe_zio == zio);
1091 		vd->vdev_probe_zio = NULL;
1092 		mutex_exit(&vd->vdev_probe_lock);
1093 
1094 		zio_link_t *zl = NULL;
1095 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1096 			if (!vdev_accessible(vd, pio))
1097 				pio->io_error = SET_ERROR(ENXIO);
1098 
1099 		kmem_free(vps, sizeof (*vps));
1100 	}
1101 }
1102 
1103 /*
1104  * Determine whether this device is accessible.
1105  *
1106  * Read and write to several known locations: the pad regions of each
1107  * vdev label but the first, which we leave alone in case it contains
1108  * a VTOC.
1109  */
1110 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1111 vdev_probe(vdev_t *vd, zio_t *zio)
1112 {
1113 	spa_t *spa = vd->vdev_spa;
1114 	vdev_probe_stats_t *vps = NULL;
1115 	zio_t *pio;
1116 
1117 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1118 
1119 	/*
1120 	 * Don't probe the probe.
1121 	 */
1122 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1123 		return (NULL);
1124 
1125 	/*
1126 	 * To prevent 'probe storms' when a device fails, we create
1127 	 * just one probe i/o at a time.  All zios that want to probe
1128 	 * this vdev will become parents of the probe io.
1129 	 */
1130 	mutex_enter(&vd->vdev_probe_lock);
1131 
1132 	if ((pio = vd->vdev_probe_zio) == NULL) {
1133 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1134 
1135 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1136 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1137 		    ZIO_FLAG_TRYHARD;
1138 
1139 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1140 			/*
1141 			 * vdev_cant_read and vdev_cant_write can only
1142 			 * transition from TRUE to FALSE when we have the
1143 			 * SCL_ZIO lock as writer; otherwise they can only
1144 			 * transition from FALSE to TRUE.  This ensures that
1145 			 * any zio looking at these values can assume that
1146 			 * failures persist for the life of the I/O.  That's
1147 			 * important because when a device has intermittent
1148 			 * connectivity problems, we want to ensure that
1149 			 * they're ascribed to the device (ENXIO) and not
1150 			 * the zio (EIO).
1151 			 *
1152 			 * Since we hold SCL_ZIO as writer here, clear both
1153 			 * values so the probe can reevaluate from first
1154 			 * principles.
1155 			 */
1156 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1157 			vd->vdev_cant_read = B_FALSE;
1158 			vd->vdev_cant_write = B_FALSE;
1159 		}
1160 
1161 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1162 		    vdev_probe_done, vps,
1163 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1164 
1165 		/*
1166 		 * We can't change the vdev state in this context, so we
1167 		 * kick off an async task to do it on our behalf.
1168 		 */
1169 		if (zio != NULL) {
1170 			vd->vdev_probe_wanted = B_TRUE;
1171 			spa_async_request(spa, SPA_ASYNC_PROBE);
1172 		}
1173 	}
1174 
1175 	if (zio != NULL)
1176 		zio_add_child(zio, pio);
1177 
1178 	mutex_exit(&vd->vdev_probe_lock);
1179 
1180 	if (vps == NULL) {
1181 		ASSERT(zio != NULL);
1182 		return (NULL);
1183 	}
1184 
1185 	for (int l = 1; l < VDEV_LABELS; l++) {
1186 		zio_nowait(zio_read_phys(pio, vd,
1187 		    vdev_label_offset(vd->vdev_psize, l,
1188 		    offsetof(vdev_label_t, vl_pad2)),
1189 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1190 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1191 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1192 	}
1193 
1194 	if (zio == NULL)
1195 		return (pio);
1196 
1197 	zio_nowait(pio);
1198 	return (NULL);
1199 }
1200 
1201 static void
vdev_open_child(void * arg)1202 vdev_open_child(void *arg)
1203 {
1204 	vdev_t *vd = arg;
1205 
1206 	vd->vdev_open_thread = curthread;
1207 	vd->vdev_open_error = vdev_open(vd);
1208 	vd->vdev_open_thread = NULL;
1209 }
1210 
1211 boolean_t
vdev_uses_zvols(vdev_t * vd)1212 vdev_uses_zvols(vdev_t *vd)
1213 {
1214 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1215 	    strlen(ZVOL_DIR)) == 0)
1216 		return (B_TRUE);
1217 	for (int c = 0; c < vd->vdev_children; c++)
1218 		if (vdev_uses_zvols(vd->vdev_child[c]))
1219 			return (B_TRUE);
1220 	return (B_FALSE);
1221 }
1222 
1223 void
vdev_open_children(vdev_t * vd)1224 vdev_open_children(vdev_t *vd)
1225 {
1226 	taskq_t *tq;
1227 	int children = vd->vdev_children;
1228 
1229 	/*
1230 	 * in order to handle pools on top of zvols, do the opens
1231 	 * in a single thread so that the same thread holds the
1232 	 * spa_namespace_lock
1233 	 */
1234 	if (B_TRUE || vdev_uses_zvols(vd)) {
1235 		for (int c = 0; c < children; c++)
1236 			vd->vdev_child[c]->vdev_open_error =
1237 			    vdev_open(vd->vdev_child[c]);
1238 		return;
1239 	}
1240 	tq = taskq_create("vdev_open", children, minclsyspri,
1241 	    children, children, TASKQ_PREPOPULATE);
1242 
1243 	for (int c = 0; c < children; c++)
1244 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1245 		    TQ_SLEEP) != 0);
1246 
1247 	taskq_destroy(tq);
1248 }
1249 
1250 /*
1251  * Prepare a virtual device for access.
1252  */
1253 int
vdev_open(vdev_t * vd)1254 vdev_open(vdev_t *vd)
1255 {
1256 	spa_t *spa = vd->vdev_spa;
1257 	int error;
1258 	uint64_t osize = 0;
1259 	uint64_t max_osize = 0;
1260 	uint64_t asize, max_asize, psize;
1261 	uint64_t logical_ashift = 0;
1262 	uint64_t physical_ashift = 0;
1263 
1264 	ASSERT(vd->vdev_open_thread == curthread ||
1265 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1266 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1267 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1268 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1269 
1270 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1271 	vd->vdev_cant_read = B_FALSE;
1272 	vd->vdev_cant_write = B_FALSE;
1273 	vd->vdev_notrim = B_FALSE;
1274 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1275 
1276 	/*
1277 	 * If this vdev is not removed, check its fault status.  If it's
1278 	 * faulted, bail out of the open.
1279 	 */
1280 	if (!vd->vdev_removed && vd->vdev_faulted) {
1281 		ASSERT(vd->vdev_children == 0);
1282 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1283 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1284 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1285 		    vd->vdev_label_aux);
1286 		return (SET_ERROR(ENXIO));
1287 	} else if (vd->vdev_offline) {
1288 		ASSERT(vd->vdev_children == 0);
1289 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1290 		return (SET_ERROR(ENXIO));
1291 	}
1292 
1293 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1294 	    &logical_ashift, &physical_ashift);
1295 
1296 	/*
1297 	 * Reset the vdev_reopening flag so that we actually close
1298 	 * the vdev on error.
1299 	 */
1300 	vd->vdev_reopening = B_FALSE;
1301 	if (zio_injection_enabled && error == 0)
1302 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1303 
1304 	if (error) {
1305 		if (vd->vdev_removed &&
1306 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1307 			vd->vdev_removed = B_FALSE;
1308 
1309 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1310 		    vd->vdev_stat.vs_aux);
1311 		return (error);
1312 	}
1313 
1314 	vd->vdev_removed = B_FALSE;
1315 
1316 	/*
1317 	 * Recheck the faulted flag now that we have confirmed that
1318 	 * the vdev is accessible.  If we're faulted, bail.
1319 	 */
1320 	if (vd->vdev_faulted) {
1321 		ASSERT(vd->vdev_children == 0);
1322 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1323 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1324 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1325 		    vd->vdev_label_aux);
1326 		return (SET_ERROR(ENXIO));
1327 	}
1328 
1329 	if (vd->vdev_degraded) {
1330 		ASSERT(vd->vdev_children == 0);
1331 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1332 		    VDEV_AUX_ERR_EXCEEDED);
1333 	} else {
1334 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1335 	}
1336 
1337 	/*
1338 	 * For hole or missing vdevs we just return success.
1339 	 */
1340 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1341 		return (0);
1342 
1343 	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1344 		trim_map_create(vd);
1345 
1346 	for (int c = 0; c < vd->vdev_children; c++) {
1347 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1348 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1349 			    VDEV_AUX_NONE);
1350 			break;
1351 		}
1352 	}
1353 
1354 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1355 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1356 
1357 	if (vd->vdev_children == 0) {
1358 		if (osize < SPA_MINDEVSIZE) {
1359 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360 			    VDEV_AUX_TOO_SMALL);
1361 			return (SET_ERROR(EOVERFLOW));
1362 		}
1363 		psize = osize;
1364 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1365 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1366 		    VDEV_LABEL_END_SIZE);
1367 	} else {
1368 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1369 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1370 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1371 			    VDEV_AUX_TOO_SMALL);
1372 			return (SET_ERROR(EOVERFLOW));
1373 		}
1374 		psize = 0;
1375 		asize = osize;
1376 		max_asize = max_osize;
1377 	}
1378 
1379 	vd->vdev_psize = psize;
1380 
1381 	/*
1382 	 * Make sure the allocatable size hasn't shrunk.
1383 	 */
1384 	if (asize < vd->vdev_min_asize) {
1385 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1386 		    VDEV_AUX_BAD_LABEL);
1387 		return (SET_ERROR(EINVAL));
1388 	}
1389 
1390 	vd->vdev_physical_ashift =
1391 	    MAX(physical_ashift, vd->vdev_physical_ashift);
1392 	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1393 	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1394 
1395 	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1396 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1397 		    VDEV_AUX_ASHIFT_TOO_BIG);
1398 		return (EINVAL);
1399 	}
1400 
1401 	if (vd->vdev_asize == 0) {
1402 		/*
1403 		 * This is the first-ever open, so use the computed values.
1404 		 * For testing purposes, a higher ashift can be requested.
1405 		 */
1406 		vd->vdev_asize = asize;
1407 		vd->vdev_max_asize = max_asize;
1408 	} else {
1409 		/*
1410 		 * Make sure the alignment requirement hasn't increased.
1411 		 */
1412 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1413 		    vd->vdev_ops->vdev_op_leaf) {
1414 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1415 			    VDEV_AUX_BAD_LABEL);
1416 			return (EINVAL);
1417 		}
1418 		vd->vdev_max_asize = max_asize;
1419 	}
1420 
1421 	/*
1422 	 * If all children are healthy and the asize has increased,
1423 	 * then we've experienced dynamic LUN growth.  If automatic
1424 	 * expansion is enabled then use the additional space.
1425 	 */
1426 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1427 	    (vd->vdev_expanding || spa->spa_autoexpand))
1428 		vd->vdev_asize = asize;
1429 
1430 	vdev_set_min_asize(vd);
1431 
1432 	/*
1433 	 * Ensure we can issue some IO before declaring the
1434 	 * vdev open for business.
1435 	 */
1436 	if (vd->vdev_ops->vdev_op_leaf &&
1437 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1438 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1439 		    VDEV_AUX_ERR_EXCEEDED);
1440 		return (error);
1441 	}
1442 
1443 	/*
1444 	 * Track the min and max ashift values for normal data devices.
1445 	 */
1446 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1447 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1448 		if (vd->vdev_ashift > spa->spa_max_ashift)
1449 			spa->spa_max_ashift = vd->vdev_ashift;
1450 		if (vd->vdev_ashift < spa->spa_min_ashift)
1451 			spa->spa_min_ashift = vd->vdev_ashift;
1452 	}
1453 
1454 	/*
1455 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1456 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1457 	 * since this would just restart the scrub we are already doing.
1458 	 */
1459 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1460 	    vdev_resilver_needed(vd, NULL, NULL))
1461 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1462 
1463 	return (0);
1464 }
1465 
1466 /*
1467  * Called once the vdevs are all opened, this routine validates the label
1468  * contents.  This needs to be done before vdev_load() so that we don't
1469  * inadvertently do repair I/Os to the wrong device.
1470  *
1471  * If 'strict' is false ignore the spa guid check. This is necessary because
1472  * if the machine crashed during a re-guid the new guid might have been written
1473  * to all of the vdev labels, but not the cached config. The strict check
1474  * will be performed when the pool is opened again using the mos config.
1475  *
1476  * This function will only return failure if one of the vdevs indicates that it
1477  * has since been destroyed or exported.  This is only possible if
1478  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1479  * will be updated but the function will return 0.
1480  */
1481 int
vdev_validate(vdev_t * vd,boolean_t strict)1482 vdev_validate(vdev_t *vd, boolean_t strict)
1483 {
1484 	spa_t *spa = vd->vdev_spa;
1485 	nvlist_t *label;
1486 	uint64_t guid = 0, top_guid;
1487 	uint64_t state;
1488 
1489 	for (int c = 0; c < vd->vdev_children; c++)
1490 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1491 			return (SET_ERROR(EBADF));
1492 
1493 	/*
1494 	 * If the device has already failed, or was marked offline, don't do
1495 	 * any further validation.  Otherwise, label I/O will fail and we will
1496 	 * overwrite the previous state.
1497 	 */
1498 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1499 		uint64_t aux_guid = 0;
1500 		nvlist_t *nvl;
1501 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1502 		    spa_last_synced_txg(spa) : -1ULL;
1503 
1504 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1505 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1506 			    VDEV_AUX_BAD_LABEL);
1507 			return (0);
1508 		}
1509 
1510 		/*
1511 		 * Determine if this vdev has been split off into another
1512 		 * pool.  If so, then refuse to open it.
1513 		 */
1514 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1515 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1516 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1517 			    VDEV_AUX_SPLIT_POOL);
1518 			nvlist_free(label);
1519 			return (0);
1520 		}
1521 
1522 		if (strict && (nvlist_lookup_uint64(label,
1523 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1524 		    guid != spa_guid(spa))) {
1525 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1526 			    VDEV_AUX_CORRUPT_DATA);
1527 			nvlist_free(label);
1528 			return (0);
1529 		}
1530 
1531 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1532 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1533 		    &aux_guid) != 0)
1534 			aux_guid = 0;
1535 
1536 		/*
1537 		 * If this vdev just became a top-level vdev because its
1538 		 * sibling was detached, it will have adopted the parent's
1539 		 * vdev guid -- but the label may or may not be on disk yet.
1540 		 * Fortunately, either version of the label will have the
1541 		 * same top guid, so if we're a top-level vdev, we can
1542 		 * safely compare to that instead.
1543 		 *
1544 		 * If we split this vdev off instead, then we also check the
1545 		 * original pool's guid.  We don't want to consider the vdev
1546 		 * corrupt if it is partway through a split operation.
1547 		 */
1548 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1549 		    &guid) != 0 ||
1550 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1551 		    &top_guid) != 0 ||
1552 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1553 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1554 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1555 			    VDEV_AUX_CORRUPT_DATA);
1556 			nvlist_free(label);
1557 			return (0);
1558 		}
1559 
1560 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1561 		    &state) != 0) {
1562 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1563 			    VDEV_AUX_CORRUPT_DATA);
1564 			nvlist_free(label);
1565 			return (0);
1566 		}
1567 
1568 		nvlist_free(label);
1569 
1570 		/*
1571 		 * If this is a verbatim import, no need to check the
1572 		 * state of the pool.
1573 		 */
1574 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1575 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1576 		    state != POOL_STATE_ACTIVE)
1577 			return (SET_ERROR(EBADF));
1578 
1579 		/*
1580 		 * If we were able to open and validate a vdev that was
1581 		 * previously marked permanently unavailable, clear that state
1582 		 * now.
1583 		 */
1584 		if (vd->vdev_not_present)
1585 			vd->vdev_not_present = 0;
1586 	}
1587 
1588 	return (0);
1589 }
1590 
1591 /*
1592  * Close a virtual device.
1593  */
1594 void
vdev_close(vdev_t * vd)1595 vdev_close(vdev_t *vd)
1596 {
1597 	spa_t *spa = vd->vdev_spa;
1598 	vdev_t *pvd = vd->vdev_parent;
1599 
1600 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1601 
1602 	/*
1603 	 * If our parent is reopening, then we are as well, unless we are
1604 	 * going offline.
1605 	 */
1606 	if (pvd != NULL && pvd->vdev_reopening)
1607 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1608 
1609 	vd->vdev_ops->vdev_op_close(vd);
1610 
1611 	vdev_cache_purge(vd);
1612 
1613 	if (vd->vdev_ops->vdev_op_leaf)
1614 		trim_map_destroy(vd);
1615 
1616 	/*
1617 	 * We record the previous state before we close it, so that if we are
1618 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1619 	 * it's still faulted.
1620 	 */
1621 	vd->vdev_prevstate = vd->vdev_state;
1622 
1623 	if (vd->vdev_offline)
1624 		vd->vdev_state = VDEV_STATE_OFFLINE;
1625 	else
1626 		vd->vdev_state = VDEV_STATE_CLOSED;
1627 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1628 }
1629 
1630 void
vdev_hold(vdev_t * vd)1631 vdev_hold(vdev_t *vd)
1632 {
1633 	spa_t *spa = vd->vdev_spa;
1634 
1635 	ASSERT(spa_is_root(spa));
1636 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1637 		return;
1638 
1639 	for (int c = 0; c < vd->vdev_children; c++)
1640 		vdev_hold(vd->vdev_child[c]);
1641 
1642 	if (vd->vdev_ops->vdev_op_leaf)
1643 		vd->vdev_ops->vdev_op_hold(vd);
1644 }
1645 
1646 void
vdev_rele(vdev_t * vd)1647 vdev_rele(vdev_t *vd)
1648 {
1649 	spa_t *spa = vd->vdev_spa;
1650 
1651 	ASSERT(spa_is_root(spa));
1652 	for (int c = 0; c < vd->vdev_children; c++)
1653 		vdev_rele(vd->vdev_child[c]);
1654 
1655 	if (vd->vdev_ops->vdev_op_leaf)
1656 		vd->vdev_ops->vdev_op_rele(vd);
1657 }
1658 
1659 /*
1660  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1661  * reopen leaf vdevs which had previously been opened as they might deadlock
1662  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1663  * If the leaf has never been opened then open it, as usual.
1664  */
1665 void
vdev_reopen(vdev_t * vd)1666 vdev_reopen(vdev_t *vd)
1667 {
1668 	spa_t *spa = vd->vdev_spa;
1669 
1670 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1671 
1672 	/* set the reopening flag unless we're taking the vdev offline */
1673 	vd->vdev_reopening = !vd->vdev_offline;
1674 	vdev_close(vd);
1675 	(void) vdev_open(vd);
1676 
1677 	/*
1678 	 * Call vdev_validate() here to make sure we have the same device.
1679 	 * Otherwise, a device with an invalid label could be successfully
1680 	 * opened in response to vdev_reopen().
1681 	 */
1682 	if (vd->vdev_aux) {
1683 		(void) vdev_validate_aux(vd);
1684 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1685 		    vd->vdev_aux == &spa->spa_l2cache &&
1686 		    !l2arc_vdev_present(vd))
1687 			l2arc_add_vdev(spa, vd);
1688 	} else {
1689 		(void) vdev_validate(vd, B_TRUE);
1690 	}
1691 
1692 	/*
1693 	 * Reassess parent vdev's health.
1694 	 */
1695 	vdev_propagate_state(vd);
1696 }
1697 
1698 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)1699 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1700 {
1701 	int error;
1702 
1703 	/*
1704 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1705 	 * For a create, however, we want to fail the request if
1706 	 * there are any components we can't open.
1707 	 */
1708 	error = vdev_open(vd);
1709 
1710 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1711 		vdev_close(vd);
1712 		return (error ? error : ENXIO);
1713 	}
1714 
1715 	/*
1716 	 * Recursively load DTLs and initialize all labels.
1717 	 */
1718 	if ((error = vdev_dtl_load(vd)) != 0 ||
1719 	    (error = vdev_label_init(vd, txg, isreplacing ?
1720 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1721 		vdev_close(vd);
1722 		return (error);
1723 	}
1724 
1725 	return (0);
1726 }
1727 
1728 void
vdev_metaslab_set_size(vdev_t * vd)1729 vdev_metaslab_set_size(vdev_t *vd)
1730 {
1731 	/*
1732 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1733 	 */
1734 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1735 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1736 }
1737 
1738 /*
1739  * Maximize performance by inflating the configured ashift for top level
1740  * vdevs to be as close to the physical ashift as possible while maintaining
1741  * administrator defined limits and ensuring it doesn't go below the
1742  * logical ashift.
1743  */
1744 void
vdev_ashift_optimize(vdev_t * vd)1745 vdev_ashift_optimize(vdev_t *vd)
1746 {
1747 	if (vd == vd->vdev_top) {
1748 		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1749 			vd->vdev_ashift = MIN(
1750 			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1751 			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1752 		} else {
1753 			/*
1754 			 * Unusual case where logical ashift > physical ashift
1755 			 * so we can't cap the calculated ashift based on max
1756 			 * ashift as that would cause failures.
1757 			 * We still check if we need to increase it to match
1758 			 * the min ashift.
1759 			 */
1760 			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1761 			    vd->vdev_ashift);
1762 		}
1763 	}
1764 }
1765 
1766 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)1767 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1768 {
1769 	ASSERT(vd == vd->vdev_top);
1770 	ASSERT(!vd->vdev_ishole);
1771 	ASSERT(ISP2(flags));
1772 	ASSERT(spa_writeable(vd->vdev_spa));
1773 
1774 	if (flags & VDD_METASLAB)
1775 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1776 
1777 	if (flags & VDD_DTL)
1778 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1779 
1780 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1781 }
1782 
1783 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)1784 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1785 {
1786 	for (int c = 0; c < vd->vdev_children; c++)
1787 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1788 
1789 	if (vd->vdev_ops->vdev_op_leaf)
1790 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1791 }
1792 
1793 /*
1794  * DTLs.
1795  *
1796  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1797  * the vdev has less than perfect replication.  There are four kinds of DTL:
1798  *
1799  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1800  *
1801  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1802  *
1803  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1804  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1805  *	txgs that was scrubbed.
1806  *
1807  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1808  *	persistent errors or just some device being offline.
1809  *	Unlike the other three, the DTL_OUTAGE map is not generally
1810  *	maintained; it's only computed when needed, typically to
1811  *	determine whether a device can be detached.
1812  *
1813  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1814  * either has the data or it doesn't.
1815  *
1816  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1817  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1818  * if any child is less than fully replicated, then so is its parent.
1819  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1820  * comprising only those txgs which appear in 'maxfaults' or more children;
1821  * those are the txgs we don't have enough replication to read.  For example,
1822  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1823  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1824  * two child DTL_MISSING maps.
1825  *
1826  * It should be clear from the above that to compute the DTLs and outage maps
1827  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1828  * Therefore, that is all we keep on disk.  When loading the pool, or after
1829  * a configuration change, we generate all other DTLs from first principles.
1830  */
1831 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)1832 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1833 {
1834 	range_tree_t *rt = vd->vdev_dtl[t];
1835 
1836 	ASSERT(t < DTL_TYPES);
1837 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1838 	ASSERT(spa_writeable(vd->vdev_spa));
1839 
1840 	mutex_enter(rt->rt_lock);
1841 	if (!range_tree_contains(rt, txg, size))
1842 		range_tree_add(rt, txg, size);
1843 	mutex_exit(rt->rt_lock);
1844 }
1845 
1846 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)1847 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1848 {
1849 	range_tree_t *rt = vd->vdev_dtl[t];
1850 	boolean_t dirty = B_FALSE;
1851 
1852 	ASSERT(t < DTL_TYPES);
1853 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1854 
1855 	mutex_enter(rt->rt_lock);
1856 	if (range_tree_space(rt) != 0)
1857 		dirty = range_tree_contains(rt, txg, size);
1858 	mutex_exit(rt->rt_lock);
1859 
1860 	return (dirty);
1861 }
1862 
1863 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)1864 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1865 {
1866 	range_tree_t *rt = vd->vdev_dtl[t];
1867 	boolean_t empty;
1868 
1869 	mutex_enter(rt->rt_lock);
1870 	empty = (range_tree_space(rt) == 0);
1871 	mutex_exit(rt->rt_lock);
1872 
1873 	return (empty);
1874 }
1875 
1876 /*
1877  * Returns the lowest txg in the DTL range.
1878  */
1879 static uint64_t
vdev_dtl_min(vdev_t * vd)1880 vdev_dtl_min(vdev_t *vd)
1881 {
1882 	range_seg_t *rs;
1883 
1884 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1885 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1886 	ASSERT0(vd->vdev_children);
1887 
1888 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1889 	return (rs->rs_start - 1);
1890 }
1891 
1892 /*
1893  * Returns the highest txg in the DTL.
1894  */
1895 static uint64_t
vdev_dtl_max(vdev_t * vd)1896 vdev_dtl_max(vdev_t *vd)
1897 {
1898 	range_seg_t *rs;
1899 
1900 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1901 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1902 	ASSERT0(vd->vdev_children);
1903 
1904 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1905 	return (rs->rs_end);
1906 }
1907 
1908 /*
1909  * Determine if a resilvering vdev should remove any DTL entries from
1910  * its range. If the vdev was resilvering for the entire duration of the
1911  * scan then it should excise that range from its DTLs. Otherwise, this
1912  * vdev is considered partially resilvered and should leave its DTL
1913  * entries intact. The comment in vdev_dtl_reassess() describes how we
1914  * excise the DTLs.
1915  */
1916 static boolean_t
vdev_dtl_should_excise(vdev_t * vd)1917 vdev_dtl_should_excise(vdev_t *vd)
1918 {
1919 	spa_t *spa = vd->vdev_spa;
1920 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1921 
1922 	ASSERT0(scn->scn_phys.scn_errors);
1923 	ASSERT0(vd->vdev_children);
1924 
1925 	if (vd->vdev_resilver_txg == 0 ||
1926 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1927 		return (B_TRUE);
1928 
1929 	/*
1930 	 * When a resilver is initiated the scan will assign the scn_max_txg
1931 	 * value to the highest txg value that exists in all DTLs. If this
1932 	 * device's max DTL is not part of this scan (i.e. it is not in
1933 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1934 	 * for excision.
1935 	 */
1936 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1937 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1938 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1939 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1940 		return (B_TRUE);
1941 	}
1942 	return (B_FALSE);
1943 }
1944 
1945 /*
1946  * Reassess DTLs after a config change or scrub completion.
1947  */
1948 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,int scrub_done)1949 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1950 {
1951 	spa_t *spa = vd->vdev_spa;
1952 	avl_tree_t reftree;
1953 	int minref;
1954 
1955 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1956 
1957 	for (int c = 0; c < vd->vdev_children; c++)
1958 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1959 		    scrub_txg, scrub_done);
1960 
1961 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1962 		return;
1963 
1964 	if (vd->vdev_ops->vdev_op_leaf) {
1965 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1966 
1967 		mutex_enter(&vd->vdev_dtl_lock);
1968 
1969 		/*
1970 		 * If we've completed a scan cleanly then determine
1971 		 * if this vdev should remove any DTLs. We only want to
1972 		 * excise regions on vdevs that were available during
1973 		 * the entire duration of this scan.
1974 		 */
1975 		if (scrub_txg != 0 &&
1976 		    (spa->spa_scrub_started ||
1977 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1978 		    vdev_dtl_should_excise(vd)) {
1979 			/*
1980 			 * We completed a scrub up to scrub_txg.  If we
1981 			 * did it without rebooting, then the scrub dtl
1982 			 * will be valid, so excise the old region and
1983 			 * fold in the scrub dtl.  Otherwise, leave the
1984 			 * dtl as-is if there was an error.
1985 			 *
1986 			 * There's little trick here: to excise the beginning
1987 			 * of the DTL_MISSING map, we put it into a reference
1988 			 * tree and then add a segment with refcnt -1 that
1989 			 * covers the range [0, scrub_txg).  This means
1990 			 * that each txg in that range has refcnt -1 or 0.
1991 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1992 			 * entries in the range [0, scrub_txg) will have a
1993 			 * positive refcnt -- either 1 or 2.  We then convert
1994 			 * the reference tree into the new DTL_MISSING map.
1995 			 */
1996 			space_reftree_create(&reftree);
1997 			space_reftree_add_map(&reftree,
1998 			    vd->vdev_dtl[DTL_MISSING], 1);
1999 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2000 			space_reftree_add_map(&reftree,
2001 			    vd->vdev_dtl[DTL_SCRUB], 2);
2002 			space_reftree_generate_map(&reftree,
2003 			    vd->vdev_dtl[DTL_MISSING], 1);
2004 			space_reftree_destroy(&reftree);
2005 		}
2006 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2007 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2008 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2009 		if (scrub_done)
2010 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2011 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2012 		if (!vdev_readable(vd))
2013 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2014 		else
2015 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2016 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2017 
2018 		/*
2019 		 * If the vdev was resilvering and no longer has any
2020 		 * DTLs then reset its resilvering flag and dirty
2021 		 * the top level so that we persist the change.
2022 		 */
2023 		if (vd->vdev_resilver_txg != 0 &&
2024 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2025 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2026 			vd->vdev_resilver_txg = 0;
2027 			vdev_config_dirty(vd->vdev_top);
2028 		}
2029 
2030 		mutex_exit(&vd->vdev_dtl_lock);
2031 
2032 		if (txg != 0)
2033 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2034 		return;
2035 	}
2036 
2037 	mutex_enter(&vd->vdev_dtl_lock);
2038 	for (int t = 0; t < DTL_TYPES; t++) {
2039 		/* account for child's outage in parent's missing map */
2040 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2041 		if (t == DTL_SCRUB)
2042 			continue;			/* leaf vdevs only */
2043 		if (t == DTL_PARTIAL)
2044 			minref = 1;			/* i.e. non-zero */
2045 		else if (vd->vdev_nparity != 0)
2046 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2047 		else
2048 			minref = vd->vdev_children;	/* any kind of mirror */
2049 		space_reftree_create(&reftree);
2050 		for (int c = 0; c < vd->vdev_children; c++) {
2051 			vdev_t *cvd = vd->vdev_child[c];
2052 			mutex_enter(&cvd->vdev_dtl_lock);
2053 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2054 			mutex_exit(&cvd->vdev_dtl_lock);
2055 		}
2056 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2057 		space_reftree_destroy(&reftree);
2058 	}
2059 	mutex_exit(&vd->vdev_dtl_lock);
2060 }
2061 
2062 int
vdev_dtl_load(vdev_t * vd)2063 vdev_dtl_load(vdev_t *vd)
2064 {
2065 	spa_t *spa = vd->vdev_spa;
2066 	objset_t *mos = spa->spa_meta_objset;
2067 	int error = 0;
2068 
2069 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2070 		ASSERT(!vd->vdev_ishole);
2071 
2072 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2073 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2074 		if (error)
2075 			return (error);
2076 		ASSERT(vd->vdev_dtl_sm != NULL);
2077 
2078 		mutex_enter(&vd->vdev_dtl_lock);
2079 
2080 		/*
2081 		 * Now that we've opened the space_map we need to update
2082 		 * the in-core DTL.
2083 		 */
2084 		space_map_update(vd->vdev_dtl_sm);
2085 
2086 		error = space_map_load(vd->vdev_dtl_sm,
2087 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2088 		mutex_exit(&vd->vdev_dtl_lock);
2089 
2090 		return (error);
2091 	}
2092 
2093 	for (int c = 0; c < vd->vdev_children; c++) {
2094 		error = vdev_dtl_load(vd->vdev_child[c]);
2095 		if (error != 0)
2096 			break;
2097 	}
2098 
2099 	return (error);
2100 }
2101 
2102 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)2103 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2104 {
2105 	spa_t *spa = vd->vdev_spa;
2106 
2107 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2108 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2109 	    zapobj, tx));
2110 }
2111 
2112 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)2113 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2114 {
2115 	spa_t *spa = vd->vdev_spa;
2116 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2117 	    DMU_OT_NONE, 0, tx);
2118 
2119 	ASSERT(zap != 0);
2120 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2121 	    zap, tx));
2122 
2123 	return (zap);
2124 }
2125 
2126 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)2127 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2128 {
2129 	if (vd->vdev_ops != &vdev_hole_ops &&
2130 	    vd->vdev_ops != &vdev_missing_ops &&
2131 	    vd->vdev_ops != &vdev_root_ops &&
2132 	    !vd->vdev_top->vdev_removing) {
2133 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2134 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2135 		}
2136 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2137 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2138 		}
2139 	}
2140 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2141 		vdev_construct_zaps(vd->vdev_child[i], tx);
2142 	}
2143 }
2144 
2145 void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)2146 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2147 {
2148 	spa_t *spa = vd->vdev_spa;
2149 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2150 	objset_t *mos = spa->spa_meta_objset;
2151 	range_tree_t *rtsync;
2152 	kmutex_t rtlock;
2153 	dmu_tx_t *tx;
2154 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2155 
2156 	ASSERT(!vd->vdev_ishole);
2157 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2158 
2159 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2160 
2161 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2162 		mutex_enter(&vd->vdev_dtl_lock);
2163 		space_map_free(vd->vdev_dtl_sm, tx);
2164 		space_map_close(vd->vdev_dtl_sm);
2165 		vd->vdev_dtl_sm = NULL;
2166 		mutex_exit(&vd->vdev_dtl_lock);
2167 
2168 		/*
2169 		 * We only destroy the leaf ZAP for detached leaves or for
2170 		 * removed log devices. Removed data devices handle leaf ZAP
2171 		 * cleanup later, once cancellation is no longer possible.
2172 		 */
2173 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2174 		    vd->vdev_top->vdev_islog)) {
2175 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2176 			vd->vdev_leaf_zap = 0;
2177 		}
2178 
2179 		dmu_tx_commit(tx);
2180 		return;
2181 	}
2182 
2183 	if (vd->vdev_dtl_sm == NULL) {
2184 		uint64_t new_object;
2185 
2186 		new_object = space_map_alloc(mos, tx);
2187 		VERIFY3U(new_object, !=, 0);
2188 
2189 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2190 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2191 		ASSERT(vd->vdev_dtl_sm != NULL);
2192 	}
2193 
2194 	bzero(&rtlock, sizeof(rtlock));
2195 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2196 
2197 	rtsync = range_tree_create(NULL, NULL, &rtlock);
2198 
2199 	mutex_enter(&rtlock);
2200 
2201 	mutex_enter(&vd->vdev_dtl_lock);
2202 	range_tree_walk(rt, range_tree_add, rtsync);
2203 	mutex_exit(&vd->vdev_dtl_lock);
2204 
2205 	space_map_truncate(vd->vdev_dtl_sm, tx);
2206 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2207 	range_tree_vacate(rtsync, NULL, NULL);
2208 
2209 	range_tree_destroy(rtsync);
2210 
2211 	mutex_exit(&rtlock);
2212 	mutex_destroy(&rtlock);
2213 
2214 	/*
2215 	 * If the object for the space map has changed then dirty
2216 	 * the top level so that we update the config.
2217 	 */
2218 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2219 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2220 		    "new object %llu", txg, spa_name(spa), object,
2221 		    space_map_object(vd->vdev_dtl_sm));
2222 		vdev_config_dirty(vd->vdev_top);
2223 	}
2224 
2225 	dmu_tx_commit(tx);
2226 
2227 	mutex_enter(&vd->vdev_dtl_lock);
2228 	space_map_update(vd->vdev_dtl_sm);
2229 	mutex_exit(&vd->vdev_dtl_lock);
2230 }
2231 
2232 /*
2233  * Determine whether the specified vdev can be offlined/detached/removed
2234  * without losing data.
2235  */
2236 boolean_t
vdev_dtl_required(vdev_t * vd)2237 vdev_dtl_required(vdev_t *vd)
2238 {
2239 	spa_t *spa = vd->vdev_spa;
2240 	vdev_t *tvd = vd->vdev_top;
2241 	uint8_t cant_read = vd->vdev_cant_read;
2242 	boolean_t required;
2243 
2244 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2245 
2246 	if (vd == spa->spa_root_vdev || vd == tvd)
2247 		return (B_TRUE);
2248 
2249 	/*
2250 	 * Temporarily mark the device as unreadable, and then determine
2251 	 * whether this results in any DTL outages in the top-level vdev.
2252 	 * If not, we can safely offline/detach/remove the device.
2253 	 */
2254 	vd->vdev_cant_read = B_TRUE;
2255 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2256 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2257 	vd->vdev_cant_read = cant_read;
2258 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2259 
2260 	if (!required && zio_injection_enabled)
2261 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2262 
2263 	return (required);
2264 }
2265 
2266 /*
2267  * Determine if resilver is needed, and if so the txg range.
2268  */
2269 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)2270 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2271 {
2272 	boolean_t needed = B_FALSE;
2273 	uint64_t thismin = UINT64_MAX;
2274 	uint64_t thismax = 0;
2275 
2276 	if (vd->vdev_children == 0) {
2277 		mutex_enter(&vd->vdev_dtl_lock);
2278 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2279 		    vdev_writeable(vd)) {
2280 
2281 			thismin = vdev_dtl_min(vd);
2282 			thismax = vdev_dtl_max(vd);
2283 			needed = B_TRUE;
2284 		}
2285 		mutex_exit(&vd->vdev_dtl_lock);
2286 	} else {
2287 		for (int c = 0; c < vd->vdev_children; c++) {
2288 			vdev_t *cvd = vd->vdev_child[c];
2289 			uint64_t cmin, cmax;
2290 
2291 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2292 				thismin = MIN(thismin, cmin);
2293 				thismax = MAX(thismax, cmax);
2294 				needed = B_TRUE;
2295 			}
2296 		}
2297 	}
2298 
2299 	if (needed && minp) {
2300 		*minp = thismin;
2301 		*maxp = thismax;
2302 	}
2303 	return (needed);
2304 }
2305 
2306 void
vdev_load(vdev_t * vd)2307 vdev_load(vdev_t *vd)
2308 {
2309 	/*
2310 	 * Recursively load all children.
2311 	 */
2312 	for (int c = 0; c < vd->vdev_children; c++)
2313 		vdev_load(vd->vdev_child[c]);
2314 
2315 	/*
2316 	 * If this is a top-level vdev, initialize its metaslabs.
2317 	 */
2318 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2319 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2320 	    vdev_metaslab_init(vd, 0) != 0))
2321 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2322 		    VDEV_AUX_CORRUPT_DATA);
2323 
2324 	/*
2325 	 * If this is a leaf vdev, load its DTL.
2326 	 */
2327 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2328 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2329 		    VDEV_AUX_CORRUPT_DATA);
2330 }
2331 
2332 /*
2333  * The special vdev case is used for hot spares and l2cache devices.  Its
2334  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2335  * we make sure that we can open the underlying device, then try to read the
2336  * label, and make sure that the label is sane and that it hasn't been
2337  * repurposed to another pool.
2338  */
2339 int
vdev_validate_aux(vdev_t * vd)2340 vdev_validate_aux(vdev_t *vd)
2341 {
2342 	nvlist_t *label;
2343 	uint64_t guid, version;
2344 	uint64_t state;
2345 
2346 	if (!vdev_readable(vd))
2347 		return (0);
2348 
2349 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2350 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2351 		    VDEV_AUX_CORRUPT_DATA);
2352 		return (-1);
2353 	}
2354 
2355 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2356 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2357 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2358 	    guid != vd->vdev_guid ||
2359 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2360 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2361 		    VDEV_AUX_CORRUPT_DATA);
2362 		nvlist_free(label);
2363 		return (-1);
2364 	}
2365 
2366 	/*
2367 	 * We don't actually check the pool state here.  If it's in fact in
2368 	 * use by another pool, we update this fact on the fly when requested.
2369 	 */
2370 	nvlist_free(label);
2371 	return (0);
2372 }
2373 
2374 void
vdev_remove(vdev_t * vd,uint64_t txg)2375 vdev_remove(vdev_t *vd, uint64_t txg)
2376 {
2377 	spa_t *spa = vd->vdev_spa;
2378 	objset_t *mos = spa->spa_meta_objset;
2379 	dmu_tx_t *tx;
2380 
2381 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2382 	ASSERT(vd == vd->vdev_top);
2383 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2384 
2385 	if (vd->vdev_ms != NULL) {
2386 		metaslab_group_t *mg = vd->vdev_mg;
2387 
2388 		metaslab_group_histogram_verify(mg);
2389 		metaslab_class_histogram_verify(mg->mg_class);
2390 
2391 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2392 			metaslab_t *msp = vd->vdev_ms[m];
2393 
2394 			if (msp == NULL || msp->ms_sm == NULL)
2395 				continue;
2396 
2397 			mutex_enter(&msp->ms_lock);
2398 			/*
2399 			 * If the metaslab was not loaded when the vdev
2400 			 * was removed then the histogram accounting may
2401 			 * not be accurate. Update the histogram information
2402 			 * here so that we ensure that the metaslab group
2403 			 * and metaslab class are up-to-date.
2404 			 */
2405 			metaslab_group_histogram_remove(mg, msp);
2406 
2407 			VERIFY0(space_map_allocated(msp->ms_sm));
2408 			space_map_free(msp->ms_sm, tx);
2409 			space_map_close(msp->ms_sm);
2410 			msp->ms_sm = NULL;
2411 			mutex_exit(&msp->ms_lock);
2412 		}
2413 
2414 		metaslab_group_histogram_verify(mg);
2415 		metaslab_class_histogram_verify(mg->mg_class);
2416 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2417 			ASSERT0(mg->mg_histogram[i]);
2418 
2419 	}
2420 
2421 	if (vd->vdev_ms_array) {
2422 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2423 		vd->vdev_ms_array = 0;
2424 	}
2425 
2426 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2427 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2428 		vd->vdev_top_zap = 0;
2429 	}
2430 	dmu_tx_commit(tx);
2431 }
2432 
2433 void
vdev_sync_done(vdev_t * vd,uint64_t txg)2434 vdev_sync_done(vdev_t *vd, uint64_t txg)
2435 {
2436 	metaslab_t *msp;
2437 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2438 
2439 	ASSERT(!vd->vdev_ishole);
2440 
2441 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2442 		metaslab_sync_done(msp, txg);
2443 
2444 	if (reassess)
2445 		metaslab_sync_reassess(vd->vdev_mg);
2446 }
2447 
2448 void
vdev_sync(vdev_t * vd,uint64_t txg)2449 vdev_sync(vdev_t *vd, uint64_t txg)
2450 {
2451 	spa_t *spa = vd->vdev_spa;
2452 	vdev_t *lvd;
2453 	metaslab_t *msp;
2454 	dmu_tx_t *tx;
2455 
2456 	ASSERT(!vd->vdev_ishole);
2457 
2458 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2459 		ASSERT(vd == vd->vdev_top);
2460 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2461 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2462 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2463 		ASSERT(vd->vdev_ms_array != 0);
2464 		vdev_config_dirty(vd);
2465 		dmu_tx_commit(tx);
2466 	}
2467 
2468 	/*
2469 	 * Remove the metadata associated with this vdev once it's empty.
2470 	 */
2471 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2472 		vdev_remove(vd, txg);
2473 
2474 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2475 		metaslab_sync(msp, txg);
2476 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2477 	}
2478 
2479 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2480 		vdev_dtl_sync(lvd, txg);
2481 
2482 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2483 }
2484 
2485 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)2486 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2487 {
2488 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2489 }
2490 
2491 /*
2492  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2493  * not be opened, and no I/O is attempted.
2494  */
2495 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)2496 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2497 {
2498 	vdev_t *vd, *tvd;
2499 
2500 	spa_vdev_state_enter(spa, SCL_NONE);
2501 
2502 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2503 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2504 
2505 	if (!vd->vdev_ops->vdev_op_leaf)
2506 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2507 
2508 	tvd = vd->vdev_top;
2509 
2510 	/*
2511 	 * We don't directly use the aux state here, but if we do a
2512 	 * vdev_reopen(), we need this value to be present to remember why we
2513 	 * were faulted.
2514 	 */
2515 	vd->vdev_label_aux = aux;
2516 
2517 	/*
2518 	 * Faulted state takes precedence over degraded.
2519 	 */
2520 	vd->vdev_delayed_close = B_FALSE;
2521 	vd->vdev_faulted = 1ULL;
2522 	vd->vdev_degraded = 0ULL;
2523 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2524 
2525 	/*
2526 	 * If this device has the only valid copy of the data, then
2527 	 * back off and simply mark the vdev as degraded instead.
2528 	 */
2529 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2530 		vd->vdev_degraded = 1ULL;
2531 		vd->vdev_faulted = 0ULL;
2532 
2533 		/*
2534 		 * If we reopen the device and it's not dead, only then do we
2535 		 * mark it degraded.
2536 		 */
2537 		vdev_reopen(tvd);
2538 
2539 		if (vdev_readable(vd))
2540 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2541 	}
2542 
2543 	return (spa_vdev_state_exit(spa, vd, 0));
2544 }
2545 
2546 /*
2547  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2548  * user that something is wrong.  The vdev continues to operate as normal as far
2549  * as I/O is concerned.
2550  */
2551 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)2552 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2553 {
2554 	vdev_t *vd;
2555 
2556 	spa_vdev_state_enter(spa, SCL_NONE);
2557 
2558 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2559 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2560 
2561 	if (!vd->vdev_ops->vdev_op_leaf)
2562 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2563 
2564 	/*
2565 	 * If the vdev is already faulted, then don't do anything.
2566 	 */
2567 	if (vd->vdev_faulted || vd->vdev_degraded)
2568 		return (spa_vdev_state_exit(spa, NULL, 0));
2569 
2570 	vd->vdev_degraded = 1ULL;
2571 	if (!vdev_is_dead(vd))
2572 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2573 		    aux);
2574 
2575 	return (spa_vdev_state_exit(spa, vd, 0));
2576 }
2577 
2578 /*
2579  * Online the given vdev.
2580  *
2581  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2582  * spare device should be detached when the device finishes resilvering.
2583  * Second, the online should be treated like a 'test' online case, so no FMA
2584  * events are generated if the device fails to open.
2585  */
2586 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)2587 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2588 {
2589 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2590 	boolean_t postevent = B_FALSE;
2591 
2592 	spa_vdev_state_enter(spa, SCL_NONE);
2593 
2594 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2595 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2596 
2597 	if (!vd->vdev_ops->vdev_op_leaf)
2598 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2599 
2600 	postevent =
2601 	    (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2602 	    B_TRUE : B_FALSE;
2603 
2604 	tvd = vd->vdev_top;
2605 	vd->vdev_offline = B_FALSE;
2606 	vd->vdev_tmpoffline = B_FALSE;
2607 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2608 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2609 
2610 	/* XXX - L2ARC 1.0 does not support expansion */
2611 	if (!vd->vdev_aux) {
2612 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2613 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2614 	}
2615 
2616 	vdev_reopen(tvd);
2617 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2618 
2619 	if (!vd->vdev_aux) {
2620 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2621 			pvd->vdev_expanding = B_FALSE;
2622 	}
2623 
2624 	if (newstate)
2625 		*newstate = vd->vdev_state;
2626 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2627 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2628 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2629 	    vd->vdev_parent->vdev_child[0] == vd)
2630 		vd->vdev_unspare = B_TRUE;
2631 
2632 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2633 
2634 		/* XXX - L2ARC 1.0 does not support expansion */
2635 		if (vd->vdev_aux)
2636 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2637 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2638 	}
2639 
2640 	if (postevent)
2641 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2642 
2643 	return (spa_vdev_state_exit(spa, vd, 0));
2644 }
2645 
2646 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)2647 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2648 {
2649 	vdev_t *vd, *tvd;
2650 	int error = 0;
2651 	uint64_t generation;
2652 	metaslab_group_t *mg;
2653 
2654 top:
2655 	spa_vdev_state_enter(spa, SCL_ALLOC);
2656 
2657 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2658 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2659 
2660 	if (!vd->vdev_ops->vdev_op_leaf)
2661 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2662 
2663 	tvd = vd->vdev_top;
2664 	mg = tvd->vdev_mg;
2665 	generation = spa->spa_config_generation + 1;
2666 
2667 	/*
2668 	 * If the device isn't already offline, try to offline it.
2669 	 */
2670 	if (!vd->vdev_offline) {
2671 		/*
2672 		 * If this device has the only valid copy of some data,
2673 		 * don't allow it to be offlined. Log devices are always
2674 		 * expendable.
2675 		 */
2676 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2677 		    vdev_dtl_required(vd))
2678 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2679 
2680 		/*
2681 		 * If the top-level is a slog and it has had allocations
2682 		 * then proceed.  We check that the vdev's metaslab group
2683 		 * is not NULL since it's possible that we may have just
2684 		 * added this vdev but not yet initialized its metaslabs.
2685 		 */
2686 		if (tvd->vdev_islog && mg != NULL) {
2687 			/*
2688 			 * Prevent any future allocations.
2689 			 */
2690 			metaslab_group_passivate(mg);
2691 			(void) spa_vdev_state_exit(spa, vd, 0);
2692 
2693 			error = spa_offline_log(spa);
2694 
2695 			spa_vdev_state_enter(spa, SCL_ALLOC);
2696 
2697 			/*
2698 			 * Check to see if the config has changed.
2699 			 */
2700 			if (error || generation != spa->spa_config_generation) {
2701 				metaslab_group_activate(mg);
2702 				if (error)
2703 					return (spa_vdev_state_exit(spa,
2704 					    vd, error));
2705 				(void) spa_vdev_state_exit(spa, vd, 0);
2706 				goto top;
2707 			}
2708 			ASSERT0(tvd->vdev_stat.vs_alloc);
2709 		}
2710 
2711 		/*
2712 		 * Offline this device and reopen its top-level vdev.
2713 		 * If the top-level vdev is a log device then just offline
2714 		 * it. Otherwise, if this action results in the top-level
2715 		 * vdev becoming unusable, undo it and fail the request.
2716 		 */
2717 		vd->vdev_offline = B_TRUE;
2718 		vdev_reopen(tvd);
2719 
2720 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2721 		    vdev_is_dead(tvd)) {
2722 			vd->vdev_offline = B_FALSE;
2723 			vdev_reopen(tvd);
2724 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2725 		}
2726 
2727 		/*
2728 		 * Add the device back into the metaslab rotor so that
2729 		 * once we online the device it's open for business.
2730 		 */
2731 		if (tvd->vdev_islog && mg != NULL)
2732 			metaslab_group_activate(mg);
2733 	}
2734 
2735 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2736 
2737 	return (spa_vdev_state_exit(spa, vd, 0));
2738 }
2739 
2740 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)2741 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2742 {
2743 	int error;
2744 
2745 	mutex_enter(&spa->spa_vdev_top_lock);
2746 	error = vdev_offline_locked(spa, guid, flags);
2747 	mutex_exit(&spa->spa_vdev_top_lock);
2748 
2749 	return (error);
2750 }
2751 
2752 /*
2753  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2754  * vdev_offline(), we assume the spa config is locked.  We also clear all
2755  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2756  */
2757 void
vdev_clear(spa_t * spa,vdev_t * vd)2758 vdev_clear(spa_t *spa, vdev_t *vd)
2759 {
2760 	vdev_t *rvd = spa->spa_root_vdev;
2761 
2762 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2763 
2764 	if (vd == NULL)
2765 		vd = rvd;
2766 
2767 	vd->vdev_stat.vs_read_errors = 0;
2768 	vd->vdev_stat.vs_write_errors = 0;
2769 	vd->vdev_stat.vs_checksum_errors = 0;
2770 
2771 	for (int c = 0; c < vd->vdev_children; c++)
2772 		vdev_clear(spa, vd->vdev_child[c]);
2773 
2774 	if (vd == rvd) {
2775 		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2776 			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2777 
2778 		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2779 			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2780 	}
2781 
2782 	/*
2783 	 * If we're in the FAULTED state or have experienced failed I/O, then
2784 	 * clear the persistent state and attempt to reopen the device.  We
2785 	 * also mark the vdev config dirty, so that the new faulted state is
2786 	 * written out to disk.
2787 	 */
2788 	if (vd->vdev_faulted || vd->vdev_degraded ||
2789 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2790 
2791 		/*
2792 		 * When reopening in reponse to a clear event, it may be due to
2793 		 * a fmadm repair request.  In this case, if the device is
2794 		 * still broken, we want to still post the ereport again.
2795 		 */
2796 		vd->vdev_forcefault = B_TRUE;
2797 
2798 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2799 		vd->vdev_cant_read = B_FALSE;
2800 		vd->vdev_cant_write = B_FALSE;
2801 
2802 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2803 
2804 		vd->vdev_forcefault = B_FALSE;
2805 
2806 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2807 			vdev_state_dirty(vd->vdev_top);
2808 
2809 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2810 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2811 
2812 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2813 	}
2814 
2815 	/*
2816 	 * When clearing a FMA-diagnosed fault, we always want to
2817 	 * unspare the device, as we assume that the original spare was
2818 	 * done in response to the FMA fault.
2819 	 */
2820 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2821 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2822 	    vd->vdev_parent->vdev_child[0] == vd)
2823 		vd->vdev_unspare = B_TRUE;
2824 }
2825 
2826 boolean_t
vdev_is_dead(vdev_t * vd)2827 vdev_is_dead(vdev_t *vd)
2828 {
2829 	/*
2830 	 * Holes and missing devices are always considered "dead".
2831 	 * This simplifies the code since we don't have to check for
2832 	 * these types of devices in the various code paths.
2833 	 * Instead we rely on the fact that we skip over dead devices
2834 	 * before issuing I/O to them.
2835 	 */
2836 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2837 	    vd->vdev_ops == &vdev_missing_ops);
2838 }
2839 
2840 boolean_t
vdev_readable(vdev_t * vd)2841 vdev_readable(vdev_t *vd)
2842 {
2843 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2844 }
2845 
2846 boolean_t
vdev_writeable(vdev_t * vd)2847 vdev_writeable(vdev_t *vd)
2848 {
2849 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2850 }
2851 
2852 boolean_t
vdev_allocatable(vdev_t * vd)2853 vdev_allocatable(vdev_t *vd)
2854 {
2855 	uint64_t state = vd->vdev_state;
2856 
2857 	/*
2858 	 * We currently allow allocations from vdevs which may be in the
2859 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2860 	 * fails to reopen then we'll catch it later when we're holding
2861 	 * the proper locks.  Note that we have to get the vdev state
2862 	 * in a local variable because although it changes atomically,
2863 	 * we're asking two separate questions about it.
2864 	 */
2865 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2866 	    !vd->vdev_cant_write && !vd->vdev_ishole &&
2867 	    vd->vdev_mg->mg_initialized);
2868 }
2869 
2870 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)2871 vdev_accessible(vdev_t *vd, zio_t *zio)
2872 {
2873 	ASSERT(zio->io_vd == vd);
2874 
2875 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2876 		return (B_FALSE);
2877 
2878 	if (zio->io_type == ZIO_TYPE_READ)
2879 		return (!vd->vdev_cant_read);
2880 
2881 	if (zio->io_type == ZIO_TYPE_WRITE)
2882 		return (!vd->vdev_cant_write);
2883 
2884 	return (B_TRUE);
2885 }
2886 
2887 /*
2888  * Get statistics for the given vdev.
2889  */
2890 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)2891 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2892 {
2893 	spa_t *spa = vd->vdev_spa;
2894 	vdev_t *rvd = spa->spa_root_vdev;
2895 	vdev_t *tvd = vd->vdev_top;
2896 
2897 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2898 
2899 	mutex_enter(&vd->vdev_stat_lock);
2900 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2901 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2902 	vs->vs_state = vd->vdev_state;
2903 	vs->vs_rsize = vdev_get_min_asize(vd);
2904 	if (vd->vdev_ops->vdev_op_leaf)
2905 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2906 	/*
2907 	 * Report expandable space on top-level, non-auxillary devices only.
2908 	 * The expandable space is reported in terms of metaslab sized units
2909 	 * since that determines how much space the pool can expand.
2910 	 */
2911 	if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
2912 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize,
2913 		    1ULL << tvd->vdev_ms_shift);
2914 	}
2915 	vs->vs_configured_ashift = vd->vdev_top != NULL
2916 	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2917 	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2918 	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2919 	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2920 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2921 	}
2922 
2923 	/*
2924 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2925 	 * over all top-level vdevs (i.e. the direct children of the root).
2926 	 */
2927 	if (vd == rvd) {
2928 		for (int c = 0; c < rvd->vdev_children; c++) {
2929 			vdev_t *cvd = rvd->vdev_child[c];
2930 			vdev_stat_t *cvs = &cvd->vdev_stat;
2931 
2932 			for (int t = 0; t < ZIO_TYPES; t++) {
2933 				vs->vs_ops[t] += cvs->vs_ops[t];
2934 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2935 			}
2936 			cvs->vs_scan_removing = cvd->vdev_removing;
2937 		}
2938 	}
2939 	mutex_exit(&vd->vdev_stat_lock);
2940 }
2941 
2942 void
vdev_clear_stats(vdev_t * vd)2943 vdev_clear_stats(vdev_t *vd)
2944 {
2945 	mutex_enter(&vd->vdev_stat_lock);
2946 	vd->vdev_stat.vs_space = 0;
2947 	vd->vdev_stat.vs_dspace = 0;
2948 	vd->vdev_stat.vs_alloc = 0;
2949 	mutex_exit(&vd->vdev_stat_lock);
2950 }
2951 
2952 void
vdev_scan_stat_init(vdev_t * vd)2953 vdev_scan_stat_init(vdev_t *vd)
2954 {
2955 	vdev_stat_t *vs = &vd->vdev_stat;
2956 
2957 	for (int c = 0; c < vd->vdev_children; c++)
2958 		vdev_scan_stat_init(vd->vdev_child[c]);
2959 
2960 	mutex_enter(&vd->vdev_stat_lock);
2961 	vs->vs_scan_processed = 0;
2962 	mutex_exit(&vd->vdev_stat_lock);
2963 }
2964 
2965 void
vdev_stat_update(zio_t * zio,uint64_t psize)2966 vdev_stat_update(zio_t *zio, uint64_t psize)
2967 {
2968 	spa_t *spa = zio->io_spa;
2969 	vdev_t *rvd = spa->spa_root_vdev;
2970 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2971 	vdev_t *pvd;
2972 	uint64_t txg = zio->io_txg;
2973 	vdev_stat_t *vs = &vd->vdev_stat;
2974 	zio_type_t type = zio->io_type;
2975 	int flags = zio->io_flags;
2976 
2977 	/*
2978 	 * If this i/o is a gang leader, it didn't do any actual work.
2979 	 */
2980 	if (zio->io_gang_tree)
2981 		return;
2982 
2983 	if (zio->io_error == 0) {
2984 		/*
2985 		 * If this is a root i/o, don't count it -- we've already
2986 		 * counted the top-level vdevs, and vdev_get_stats() will
2987 		 * aggregate them when asked.  This reduces contention on
2988 		 * the root vdev_stat_lock and implicitly handles blocks
2989 		 * that compress away to holes, for which there is no i/o.
2990 		 * (Holes never create vdev children, so all the counters
2991 		 * remain zero, which is what we want.)
2992 		 *
2993 		 * Note: this only applies to successful i/o (io_error == 0)
2994 		 * because unlike i/o counts, errors are not additive.
2995 		 * When reading a ditto block, for example, failure of
2996 		 * one top-level vdev does not imply a root-level error.
2997 		 */
2998 		if (vd == rvd)
2999 			return;
3000 
3001 		ASSERT(vd == zio->io_vd);
3002 
3003 		if (flags & ZIO_FLAG_IO_BYPASS)
3004 			return;
3005 
3006 		mutex_enter(&vd->vdev_stat_lock);
3007 
3008 		if (flags & ZIO_FLAG_IO_REPAIR) {
3009 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3010 				dsl_scan_phys_t *scn_phys =
3011 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3012 				uint64_t *processed = &scn_phys->scn_processed;
3013 
3014 				/* XXX cleanup? */
3015 				if (vd->vdev_ops->vdev_op_leaf)
3016 					atomic_add_64(processed, psize);
3017 				vs->vs_scan_processed += psize;
3018 			}
3019 
3020 			if (flags & ZIO_FLAG_SELF_HEAL)
3021 				vs->vs_self_healed += psize;
3022 		}
3023 
3024 		vs->vs_ops[type]++;
3025 		vs->vs_bytes[type] += psize;
3026 
3027 		mutex_exit(&vd->vdev_stat_lock);
3028 		return;
3029 	}
3030 
3031 	if (flags & ZIO_FLAG_SPECULATIVE)
3032 		return;
3033 
3034 	/*
3035 	 * If this is an I/O error that is going to be retried, then ignore the
3036 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3037 	 * hard errors, when in reality they can happen for any number of
3038 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3039 	 */
3040 	if (zio->io_error == EIO &&
3041 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3042 		return;
3043 
3044 	/*
3045 	 * Intent logs writes won't propagate their error to the root
3046 	 * I/O so don't mark these types of failures as pool-level
3047 	 * errors.
3048 	 */
3049 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3050 		return;
3051 
3052 	mutex_enter(&vd->vdev_stat_lock);
3053 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3054 		if (zio->io_error == ECKSUM)
3055 			vs->vs_checksum_errors++;
3056 		else
3057 			vs->vs_read_errors++;
3058 	}
3059 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3060 		vs->vs_write_errors++;
3061 	mutex_exit(&vd->vdev_stat_lock);
3062 
3063 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
3064 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3065 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3066 	    spa->spa_claiming)) {
3067 		/*
3068 		 * This is either a normal write (not a repair), or it's
3069 		 * a repair induced by the scrub thread, or it's a repair
3070 		 * made by zil_claim() during spa_load() in the first txg.
3071 		 * In the normal case, we commit the DTL change in the same
3072 		 * txg as the block was born.  In the scrub-induced repair
3073 		 * case, we know that scrubs run in first-pass syncing context,
3074 		 * so we commit the DTL change in spa_syncing_txg(spa).
3075 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3076 		 *
3077 		 * We currently do not make DTL entries for failed spontaneous
3078 		 * self-healing writes triggered by normal (non-scrubbing)
3079 		 * reads, because we have no transactional context in which to
3080 		 * do so -- and it's not clear that it'd be desirable anyway.
3081 		 */
3082 		if (vd->vdev_ops->vdev_op_leaf) {
3083 			uint64_t commit_txg = txg;
3084 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3085 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3086 				ASSERT(spa_sync_pass(spa) == 1);
3087 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3088 				commit_txg = spa_syncing_txg(spa);
3089 			} else if (spa->spa_claiming) {
3090 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3091 				commit_txg = spa_first_txg(spa);
3092 			}
3093 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3094 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3095 				return;
3096 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3097 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3098 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3099 		}
3100 		if (vd != rvd)
3101 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3102 	}
3103 }
3104 
3105 /*
3106  * Update the in-core space usage stats for this vdev, its metaslab class,
3107  * and the root vdev.
3108  */
3109 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)3110 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3111     int64_t space_delta)
3112 {
3113 	int64_t dspace_delta = space_delta;
3114 	spa_t *spa = vd->vdev_spa;
3115 	vdev_t *rvd = spa->spa_root_vdev;
3116 	metaslab_group_t *mg = vd->vdev_mg;
3117 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3118 
3119 	ASSERT(vd == vd->vdev_top);
3120 
3121 	/*
3122 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3123 	 * factor.  We must calculate this here and not at the root vdev
3124 	 * because the root vdev's psize-to-asize is simply the max of its
3125 	 * childrens', thus not accurate enough for us.
3126 	 */
3127 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3128 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3129 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3130 	    vd->vdev_deflate_ratio;
3131 
3132 	mutex_enter(&vd->vdev_stat_lock);
3133 	vd->vdev_stat.vs_alloc += alloc_delta;
3134 	vd->vdev_stat.vs_space += space_delta;
3135 	vd->vdev_stat.vs_dspace += dspace_delta;
3136 	mutex_exit(&vd->vdev_stat_lock);
3137 
3138 	if (mc == spa_normal_class(spa)) {
3139 		mutex_enter(&rvd->vdev_stat_lock);
3140 		rvd->vdev_stat.vs_alloc += alloc_delta;
3141 		rvd->vdev_stat.vs_space += space_delta;
3142 		rvd->vdev_stat.vs_dspace += dspace_delta;
3143 		mutex_exit(&rvd->vdev_stat_lock);
3144 	}
3145 
3146 	if (mc != NULL) {
3147 		ASSERT(rvd == vd->vdev_parent);
3148 		ASSERT(vd->vdev_ms_count != 0);
3149 
3150 		metaslab_class_space_update(mc,
3151 		    alloc_delta, defer_delta, space_delta, dspace_delta);
3152 	}
3153 }
3154 
3155 /*
3156  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3157  * so that it will be written out next time the vdev configuration is synced.
3158  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3159  */
3160 void
vdev_config_dirty(vdev_t * vd)3161 vdev_config_dirty(vdev_t *vd)
3162 {
3163 	spa_t *spa = vd->vdev_spa;
3164 	vdev_t *rvd = spa->spa_root_vdev;
3165 	int c;
3166 
3167 	ASSERT(spa_writeable(spa));
3168 
3169 	/*
3170 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3171 	 * update the vdev config manually and set the sync flag.
3172 	 */
3173 	if (vd->vdev_aux != NULL) {
3174 		spa_aux_vdev_t *sav = vd->vdev_aux;
3175 		nvlist_t **aux;
3176 		uint_t naux;
3177 
3178 		for (c = 0; c < sav->sav_count; c++) {
3179 			if (sav->sav_vdevs[c] == vd)
3180 				break;
3181 		}
3182 
3183 		if (c == sav->sav_count) {
3184 			/*
3185 			 * We're being removed.  There's nothing more to do.
3186 			 */
3187 			ASSERT(sav->sav_sync == B_TRUE);
3188 			return;
3189 		}
3190 
3191 		sav->sav_sync = B_TRUE;
3192 
3193 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3194 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3195 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3196 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3197 		}
3198 
3199 		ASSERT(c < naux);
3200 
3201 		/*
3202 		 * Setting the nvlist in the middle if the array is a little
3203 		 * sketchy, but it will work.
3204 		 */
3205 		nvlist_free(aux[c]);
3206 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3207 
3208 		return;
3209 	}
3210 
3211 	/*
3212 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3213 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3214 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3215 	 * so this is sufficient to ensure mutual exclusion.
3216 	 */
3217 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3218 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3219 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3220 
3221 	if (vd == rvd) {
3222 		for (c = 0; c < rvd->vdev_children; c++)
3223 			vdev_config_dirty(rvd->vdev_child[c]);
3224 	} else {
3225 		ASSERT(vd == vd->vdev_top);
3226 
3227 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3228 		    !vd->vdev_ishole)
3229 			list_insert_head(&spa->spa_config_dirty_list, vd);
3230 	}
3231 }
3232 
3233 void
vdev_config_clean(vdev_t * vd)3234 vdev_config_clean(vdev_t *vd)
3235 {
3236 	spa_t *spa = vd->vdev_spa;
3237 
3238 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3239 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3240 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3241 
3242 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3243 	list_remove(&spa->spa_config_dirty_list, vd);
3244 }
3245 
3246 /*
3247  * Mark a top-level vdev's state as dirty, so that the next pass of
3248  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3249  * the state changes from larger config changes because they require
3250  * much less locking, and are often needed for administrative actions.
3251  */
3252 void
vdev_state_dirty(vdev_t * vd)3253 vdev_state_dirty(vdev_t *vd)
3254 {
3255 	spa_t *spa = vd->vdev_spa;
3256 
3257 	ASSERT(spa_writeable(spa));
3258 	ASSERT(vd == vd->vdev_top);
3259 
3260 	/*
3261 	 * The state list is protected by the SCL_STATE lock.  The caller
3262 	 * must either hold SCL_STATE as writer, or must be the sync thread
3263 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3264 	 * so this is sufficient to ensure mutual exclusion.
3265 	 */
3266 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3267 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3268 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3269 
3270 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3271 		list_insert_head(&spa->spa_state_dirty_list, vd);
3272 }
3273 
3274 void
vdev_state_clean(vdev_t * vd)3275 vdev_state_clean(vdev_t *vd)
3276 {
3277 	spa_t *spa = vd->vdev_spa;
3278 
3279 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3280 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3281 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3282 
3283 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3284 	list_remove(&spa->spa_state_dirty_list, vd);
3285 }
3286 
3287 /*
3288  * Propagate vdev state up from children to parent.
3289  */
3290 void
vdev_propagate_state(vdev_t * vd)3291 vdev_propagate_state(vdev_t *vd)
3292 {
3293 	spa_t *spa = vd->vdev_spa;
3294 	vdev_t *rvd = spa->spa_root_vdev;
3295 	int degraded = 0, faulted = 0;
3296 	int corrupted = 0;
3297 	vdev_t *child;
3298 
3299 	if (vd->vdev_children > 0) {
3300 		for (int c = 0; c < vd->vdev_children; c++) {
3301 			child = vd->vdev_child[c];
3302 
3303 			/*
3304 			 * Don't factor holes into the decision.
3305 			 */
3306 			if (child->vdev_ishole)
3307 				continue;
3308 
3309 			if (!vdev_readable(child) ||
3310 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3311 				/*
3312 				 * Root special: if there is a top-level log
3313 				 * device, treat the root vdev as if it were
3314 				 * degraded.
3315 				 */
3316 				if (child->vdev_islog && vd == rvd)
3317 					degraded++;
3318 				else
3319 					faulted++;
3320 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3321 				degraded++;
3322 			}
3323 
3324 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3325 				corrupted++;
3326 		}
3327 
3328 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3329 
3330 		/*
3331 		 * Root special: if there is a top-level vdev that cannot be
3332 		 * opened due to corrupted metadata, then propagate the root
3333 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3334 		 * replicas'.
3335 		 */
3336 		if (corrupted && vd == rvd &&
3337 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3338 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3339 			    VDEV_AUX_CORRUPT_DATA);
3340 	}
3341 
3342 	if (vd->vdev_parent)
3343 		vdev_propagate_state(vd->vdev_parent);
3344 }
3345 
3346 /*
3347  * Set a vdev's state.  If this is during an open, we don't update the parent
3348  * state, because we're in the process of opening children depth-first.
3349  * Otherwise, we propagate the change to the parent.
3350  *
3351  * If this routine places a device in a faulted state, an appropriate ereport is
3352  * generated.
3353  */
3354 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)3355 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3356 {
3357 	uint64_t save_state;
3358 	spa_t *spa = vd->vdev_spa;
3359 
3360 	if (state == vd->vdev_state) {
3361 		vd->vdev_stat.vs_aux = aux;
3362 		return;
3363 	}
3364 
3365 	save_state = vd->vdev_state;
3366 
3367 	vd->vdev_state = state;
3368 	vd->vdev_stat.vs_aux = aux;
3369 
3370 	/*
3371 	 * If we are setting the vdev state to anything but an open state, then
3372 	 * always close the underlying device unless the device has requested
3373 	 * a delayed close (i.e. we're about to remove or fault the device).
3374 	 * Otherwise, we keep accessible but invalid devices open forever.
3375 	 * We don't call vdev_close() itself, because that implies some extra
3376 	 * checks (offline, etc) that we don't want here.  This is limited to
3377 	 * leaf devices, because otherwise closing the device will affect other
3378 	 * children.
3379 	 */
3380 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3381 	    vd->vdev_ops->vdev_op_leaf)
3382 		vd->vdev_ops->vdev_op_close(vd);
3383 
3384 	if (vd->vdev_removed &&
3385 	    state == VDEV_STATE_CANT_OPEN &&
3386 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3387 		/*
3388 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3389 		 * device was previously marked removed and someone attempted to
3390 		 * reopen it.  If this failed due to a nonexistent device, then
3391 		 * keep the device in the REMOVED state.  We also let this be if
3392 		 * it is one of our special test online cases, which is only
3393 		 * attempting to online the device and shouldn't generate an FMA
3394 		 * fault.
3395 		 */
3396 		vd->vdev_state = VDEV_STATE_REMOVED;
3397 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3398 	} else if (state == VDEV_STATE_REMOVED) {
3399 		vd->vdev_removed = B_TRUE;
3400 	} else if (state == VDEV_STATE_CANT_OPEN) {
3401 		/*
3402 		 * If we fail to open a vdev during an import or recovery, we
3403 		 * mark it as "not available", which signifies that it was
3404 		 * never there to begin with.  Failure to open such a device
3405 		 * is not considered an error.
3406 		 */
3407 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3408 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3409 		    vd->vdev_ops->vdev_op_leaf)
3410 			vd->vdev_not_present = 1;
3411 
3412 		/*
3413 		 * Post the appropriate ereport.  If the 'prevstate' field is
3414 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3415 		 * that this is part of a vdev_reopen().  In this case, we don't
3416 		 * want to post the ereport if the device was already in the
3417 		 * CANT_OPEN state beforehand.
3418 		 *
3419 		 * If the 'checkremove' flag is set, then this is an attempt to
3420 		 * online the device in response to an insertion event.  If we
3421 		 * hit this case, then we have detected an insertion event for a
3422 		 * faulted or offline device that wasn't in the removed state.
3423 		 * In this scenario, we don't post an ereport because we are
3424 		 * about to replace the device, or attempt an online with
3425 		 * vdev_forcefault, which will generate the fault for us.
3426 		 */
3427 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3428 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3429 		    vd != spa->spa_root_vdev) {
3430 			const char *class;
3431 
3432 			switch (aux) {
3433 			case VDEV_AUX_OPEN_FAILED:
3434 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3435 				break;
3436 			case VDEV_AUX_CORRUPT_DATA:
3437 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3438 				break;
3439 			case VDEV_AUX_NO_REPLICAS:
3440 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3441 				break;
3442 			case VDEV_AUX_BAD_GUID_SUM:
3443 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3444 				break;
3445 			case VDEV_AUX_TOO_SMALL:
3446 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3447 				break;
3448 			case VDEV_AUX_BAD_LABEL:
3449 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3450 				break;
3451 			default:
3452 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3453 			}
3454 
3455 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3456 		}
3457 
3458 		/* Erase any notion of persistent removed state */
3459 		vd->vdev_removed = B_FALSE;
3460 	} else {
3461 		vd->vdev_removed = B_FALSE;
3462 	}
3463 
3464 	/*
3465 	* Notify the fmd of the state change.  Be verbose and post
3466 	* notifications even for stuff that's not important; the fmd agent can
3467 	* sort it out.  Don't emit state change events for non-leaf vdevs since
3468 	* they can't change state on their own.  The FMD can check their state
3469 	* if it wants to when it sees that a leaf vdev had a state change.
3470 	*/
3471 	if (vd->vdev_ops->vdev_op_leaf)
3472 		zfs_post_state_change(spa, vd);
3473 
3474 	if (!isopen && vd->vdev_parent)
3475 		vdev_propagate_state(vd->vdev_parent);
3476 }
3477 
3478 /*
3479  * Check the vdev configuration to ensure that it's capable of supporting
3480  * a root pool. We do not support partial configuration.
3481  * In addition, only a single top-level vdev is allowed.
3482  *
3483  * FreeBSD does not have above limitations.
3484  */
3485 boolean_t
vdev_is_bootable(vdev_t * vd)3486 vdev_is_bootable(vdev_t *vd)
3487 {
3488 #ifdef illumos
3489 	if (!vd->vdev_ops->vdev_op_leaf) {
3490 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3491 
3492 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3493 		    vd->vdev_children > 1) {
3494 			return (B_FALSE);
3495 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3496 			return (B_FALSE);
3497 		}
3498 	}
3499 
3500 	for (int c = 0; c < vd->vdev_children; c++) {
3501 		if (!vdev_is_bootable(vd->vdev_child[c]))
3502 			return (B_FALSE);
3503 	}
3504 #endif	/* illumos */
3505 	return (B_TRUE);
3506 }
3507 
3508 /*
3509  * Load the state from the original vdev tree (ovd) which
3510  * we've retrieved from the MOS config object. If the original
3511  * vdev was offline or faulted then we transfer that state to the
3512  * device in the current vdev tree (nvd).
3513  */
3514 void
vdev_load_log_state(vdev_t * nvd,vdev_t * ovd)3515 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3516 {
3517 	spa_t *spa = nvd->vdev_spa;
3518 
3519 	ASSERT(nvd->vdev_top->vdev_islog);
3520 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3521 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3522 
3523 	for (int c = 0; c < nvd->vdev_children; c++)
3524 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3525 
3526 	if (nvd->vdev_ops->vdev_op_leaf) {
3527 		/*
3528 		 * Restore the persistent vdev state
3529 		 */
3530 		nvd->vdev_offline = ovd->vdev_offline;
3531 		nvd->vdev_faulted = ovd->vdev_faulted;
3532 		nvd->vdev_degraded = ovd->vdev_degraded;
3533 		nvd->vdev_removed = ovd->vdev_removed;
3534 	}
3535 }
3536 
3537 /*
3538  * Determine if a log device has valid content.  If the vdev was
3539  * removed or faulted in the MOS config then we know that
3540  * the content on the log device has already been written to the pool.
3541  */
3542 boolean_t
vdev_log_state_valid(vdev_t * vd)3543 vdev_log_state_valid(vdev_t *vd)
3544 {
3545 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3546 	    !vd->vdev_removed)
3547 		return (B_TRUE);
3548 
3549 	for (int c = 0; c < vd->vdev_children; c++)
3550 		if (vdev_log_state_valid(vd->vdev_child[c]))
3551 			return (B_TRUE);
3552 
3553 	return (B_FALSE);
3554 }
3555 
3556 /*
3557  * Expand a vdev if possible.
3558  */
3559 void
vdev_expand(vdev_t * vd,uint64_t txg)3560 vdev_expand(vdev_t *vd, uint64_t txg)
3561 {
3562 	ASSERT(vd->vdev_top == vd);
3563 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3564 
3565 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3566 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3567 		vdev_config_dirty(vd);
3568 	}
3569 }
3570 
3571 /*
3572  * Split a vdev.
3573  */
3574 void
vdev_split(vdev_t * vd)3575 vdev_split(vdev_t *vd)
3576 {
3577 	vdev_t *cvd, *pvd = vd->vdev_parent;
3578 
3579 	vdev_remove_child(pvd, vd);
3580 	vdev_compact_children(pvd);
3581 
3582 	cvd = pvd->vdev_child[0];
3583 	if (pvd->vdev_children == 1) {
3584 		vdev_remove_parent(cvd);
3585 		cvd->vdev_splitting = B_TRUE;
3586 	}
3587 	vdev_propagate_state(cvd);
3588 }
3589 
3590 void
vdev_deadman(vdev_t * vd)3591 vdev_deadman(vdev_t *vd)
3592 {
3593 	for (int c = 0; c < vd->vdev_children; c++) {
3594 		vdev_t *cvd = vd->vdev_child[c];
3595 
3596 		vdev_deadman(cvd);
3597 	}
3598 
3599 	if (vd->vdev_ops->vdev_op_leaf) {
3600 		vdev_queue_t *vq = &vd->vdev_queue;
3601 
3602 		mutex_enter(&vq->vq_lock);
3603 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3604 			spa_t *spa = vd->vdev_spa;
3605 			zio_t *fio;
3606 			uint64_t delta;
3607 
3608 			/*
3609 			 * Look at the head of all the pending queues,
3610 			 * if any I/O has been outstanding for longer than
3611 			 * the spa_deadman_synctime we panic the system.
3612 			 */
3613 			fio = avl_first(&vq->vq_active_tree);
3614 			delta = gethrtime() - fio->io_timestamp;
3615 			if (delta > spa_deadman_synctime(spa)) {
3616 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3617 				    "delta %"PRIu64"ns, last io %lluns",
3618 				    fio->io_timestamp, delta,
3619 				    vq->vq_io_complete_ts);
3620 
3621 				printf("SLOW IO: zio timestamp %lluns, "
3622 				    "delta %"PRIu64"ns, last io %lluns",
3623 				    fio->io_timestamp, delta,
3624 				    vq->vq_io_complete_ts);
3625 
3626 				fm_panic("I/O to pool '%s' appears to be "
3627 				    "hung on vdev guid %llu at '%s'.",
3628 				    spa_name(spa),
3629 				    (long long unsigned int) vd->vdev_guid,
3630 				    vd->vdev_path);
3631 			}
3632 		}
3633 		mutex_exit(&vq->vq_lock);
3634 	}
3635 }
3636