1 /*	$NetBSD: uvm_amap.c,v 1.107 2012/04/08 20:47:10 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * uvm_amap.c: amap operations
30  */
31 
32 /*
33  * this file contains functions that perform operations on amaps.  see
34  * uvm_amap.h for a brief explanation of the role of amaps in uvm.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: uvm_amap.c,v 1.107 2012/04/08 20:47:10 chs Exp $");
39 
40 #include "opt_uvmhist.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/pool.h>
47 #include <sys/atomic.h>
48 
49 #include <uvm/uvm.h>
50 #include <uvm/uvm_swap.h>
51 
52 /*
53  * cache for allocation of vm_map structures.  note that in order to
54  * avoid an endless loop, the amap cache's allocator cannot allocate
55  * memory from an amap (it currently goes through the kernel uobj, so
56  * we are ok).
57  */
58 static struct pool_cache uvm_amap_cache;
59 static kmutex_t amap_list_lock;
60 static LIST_HEAD(, vm_amap) amap_list;
61 
62 /*
63  * local functions
64  */
65 
66 static inline void
amap_list_insert(struct vm_amap * amap)67 amap_list_insert(struct vm_amap *amap)
68 {
69 
70 	mutex_enter(&amap_list_lock);
71 	LIST_INSERT_HEAD(&amap_list, amap, am_list);
72 	mutex_exit(&amap_list_lock);
73 }
74 
75 static inline void
amap_list_remove(struct vm_amap * amap)76 amap_list_remove(struct vm_amap *amap)
77 {
78 
79 	mutex_enter(&amap_list_lock);
80 	LIST_REMOVE(amap, am_list);
81 	mutex_exit(&amap_list_lock);
82 }
83 
84 static int
amap_roundup_slots(int slots)85 amap_roundup_slots(int slots)
86 {
87 
88 	return kmem_roundup_size(slots * sizeof(int)) / sizeof(int);
89 }
90 
91 #ifdef UVM_AMAP_PPREF
92 /*
93  * what is ppref?   ppref is an _optional_ amap feature which is used
94  * to keep track of reference counts on a per-page basis.  it is enabled
95  * when UVM_AMAP_PPREF is defined.
96  *
97  * when enabled, an array of ints is allocated for the pprefs.  this
98  * array is allocated only when a partial reference is added to the
99  * map (either by unmapping part of the amap, or gaining a reference
100  * to only a part of an amap).  if the allocation of the array fails
101  * (KM_NOSLEEP), then we set the array pointer to PPREF_NONE to indicate
102  * that we tried to do ppref's but couldn't alloc the array so just
103  * give up (after all, this is an optional feature!).
104  *
105  * the array is divided into page sized "chunks."   for chunks of length 1,
106  * the chunk reference count plus one is stored in that chunk's slot.
107  * for chunks of length > 1 the first slot contains (the reference count
108  * plus one) * -1.    [the negative value indicates that the length is
109  * greater than one.]   the second slot of the chunk contains the length
110  * of the chunk.   here is an example:
111  *
112  * actual REFS:  2  2  2  2  3  1  1  0  0  0  4  4  0  1  1  1
113  *       ppref: -3  4  x  x  4 -2  2 -1  3  x -5  2  1 -2  3  x
114  *              <----------><-><----><-------><----><-><------->
115  * (x = don't care)
116  *
117  * this allows us to allow one int to contain the ref count for the whole
118  * chunk.    note that the "plus one" part is needed because a reference
119  * count of zero is neither positive or negative (need a way to tell
120  * if we've got one zero or a bunch of them).
121  *
122  * here are some in-line functions to help us.
123  */
124 
125 /*
126  * pp_getreflen: get the reference and length for a specific offset
127  *
128  * => ppref's amap must be locked
129  */
130 static inline void
pp_getreflen(int * ppref,int offset,int * refp,int * lenp)131 pp_getreflen(int *ppref, int offset, int *refp, int *lenp)
132 {
133 
134 	if (ppref[offset] > 0) {		/* chunk size must be 1 */
135 		*refp = ppref[offset] - 1;	/* don't forget to adjust */
136 		*lenp = 1;
137 	} else {
138 		*refp = (ppref[offset] * -1) - 1;
139 		*lenp = ppref[offset+1];
140 	}
141 }
142 
143 /*
144  * pp_setreflen: set the reference and length for a specific offset
145  *
146  * => ppref's amap must be locked
147  */
148 static inline void
pp_setreflen(int * ppref,int offset,int ref,int len)149 pp_setreflen(int *ppref, int offset, int ref, int len)
150 {
151 	if (len == 0)
152 		return;
153 	if (len == 1) {
154 		ppref[offset] = ref + 1;
155 	} else {
156 		ppref[offset] = (ref + 1) * -1;
157 		ppref[offset+1] = len;
158 	}
159 }
160 #endif /* UVM_AMAP_PPREF */
161 
162 /*
163  * amap_alloc1: allocate an amap, but do not initialise the overlay.
164  *
165  * => Note: lock is not set.
166  */
167 static struct vm_amap *
amap_alloc1(int slots,int padslots,int flags)168 amap_alloc1(int slots, int padslots, int flags)
169 {
170 	const bool nowait = (flags & UVM_FLAG_NOWAIT) != 0;
171 	const km_flag_t kmflags = nowait ? KM_NOSLEEP : KM_SLEEP;
172 	struct vm_amap *amap;
173 	int totalslots;
174 
175 	amap = pool_cache_get(&uvm_amap_cache, nowait ? PR_NOWAIT : PR_WAITOK);
176 	if (amap == NULL) {
177 		return NULL;
178 	}
179 	totalslots = amap_roundup_slots(slots + padslots);
180 	amap->am_lock = NULL;
181 	amap->am_ref = 1;
182 	amap->am_flags = 0;
183 #ifdef UVM_AMAP_PPREF
184 	amap->am_ppref = NULL;
185 #endif
186 	amap->am_maxslot = totalslots;
187 	amap->am_nslot = slots;
188 	amap->am_nused = 0;
189 
190 	/*
191 	 * Note: since allocations are likely big, we expect to reduce the
192 	 * memory fragmentation by allocating them in separate blocks.
193 	 */
194 	amap->am_slots = kmem_alloc(totalslots * sizeof(int), kmflags);
195 	if (amap->am_slots == NULL)
196 		goto fail1;
197 
198 	amap->am_bckptr = kmem_alloc(totalslots * sizeof(int), kmflags);
199 	if (amap->am_bckptr == NULL)
200 		goto fail2;
201 
202 	amap->am_anon = kmem_alloc(totalslots * sizeof(struct vm_anon *),
203 	    kmflags);
204 	if (amap->am_anon == NULL)
205 		goto fail3;
206 
207 	return amap;
208 
209 fail3:
210 	kmem_free(amap->am_bckptr, totalslots * sizeof(int));
211 fail2:
212 	kmem_free(amap->am_slots, totalslots * sizeof(int));
213 fail1:
214 	pool_cache_put(&uvm_amap_cache, amap);
215 
216 	/*
217 	 * XXX hack to tell the pagedaemon how many pages we need,
218 	 * since we can need more than it would normally free.
219 	 */
220 	if (nowait) {
221 		extern u_int uvm_extrapages;
222 		atomic_add_int(&uvm_extrapages,
223 		    ((sizeof(int) * 2 + sizeof(struct vm_anon *)) *
224 		    totalslots) >> PAGE_SHIFT);
225 	}
226 	return NULL;
227 }
228 
229 /*
230  * amap_alloc: allocate an amap to manage "sz" bytes of anonymous VM
231  *
232  * => caller should ensure sz is a multiple of PAGE_SIZE
233  * => reference count to new amap is set to one
234  * => new amap is returned unlocked
235  */
236 
237 struct vm_amap *
amap_alloc(vaddr_t sz,vaddr_t padsz,int waitf)238 amap_alloc(vaddr_t sz, vaddr_t padsz, int waitf)
239 {
240 	struct vm_amap *amap;
241 	int slots, padslots;
242 	UVMHIST_FUNC("amap_alloc"); UVMHIST_CALLED(maphist);
243 
244 	AMAP_B2SLOT(slots, sz);
245 	AMAP_B2SLOT(padslots, padsz);
246 
247 	amap = amap_alloc1(slots, padslots, waitf);
248 	if (amap) {
249 		memset(amap->am_anon, 0,
250 		    amap->am_maxslot * sizeof(struct vm_anon *));
251 		amap->am_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
252 		amap_list_insert(amap);
253 	}
254 
255 	UVMHIST_LOG(maphist,"<- done, amap = 0x%x, sz=%d", amap, sz, 0, 0);
256 	return(amap);
257 }
258 
259 /*
260  * uvm_amap_init: initialize the amap system.
261  */
262 void
uvm_amap_init(void)263 uvm_amap_init(void)
264 {
265 
266 	mutex_init(&amap_list_lock, MUTEX_DEFAULT, IPL_NONE);
267 
268 	pool_cache_bootstrap(&uvm_amap_cache, sizeof(struct vm_amap), 0, 0, 0,
269 	    "amappl", NULL, IPL_NONE, NULL, NULL, NULL);
270 }
271 
272 /*
273  * amap_free: free an amap
274  *
275  * => the amap must be unlocked
276  * => the amap should have a zero reference count and be empty
277  */
278 void
amap_free(struct vm_amap * amap)279 amap_free(struct vm_amap *amap)
280 {
281 	int slots;
282 
283 	UVMHIST_FUNC("amap_free"); UVMHIST_CALLED(maphist);
284 
285 	KASSERT(amap->am_ref == 0 && amap->am_nused == 0);
286 	KASSERT((amap->am_flags & AMAP_SWAPOFF) == 0);
287 	if (amap->am_lock != NULL) {
288 		KASSERT(!mutex_owned(amap->am_lock));
289 		mutex_obj_free(amap->am_lock);
290 	}
291 	slots = amap->am_maxslot;
292 	kmem_free(amap->am_slots, slots * sizeof(*amap->am_slots));
293 	kmem_free(amap->am_bckptr, slots * sizeof(*amap->am_bckptr));
294 	kmem_free(amap->am_anon, slots * sizeof(*amap->am_anon));
295 #ifdef UVM_AMAP_PPREF
296 	if (amap->am_ppref && amap->am_ppref != PPREF_NONE)
297 		kmem_free(amap->am_ppref, slots * sizeof(*amap->am_ppref));
298 #endif
299 	pool_cache_put(&uvm_amap_cache, amap);
300 	UVMHIST_LOG(maphist,"<- done, freed amap = 0x%x", amap, 0, 0, 0);
301 }
302 
303 /*
304  * amap_extend: extend the size of an amap (if needed)
305  *
306  * => called from uvm_map when we want to extend an amap to cover
307  *    a new mapping (rather than allocate a new one)
308  * => amap should be unlocked (we will lock it)
309  * => to safely extend an amap it should have a reference count of
310  *    one (thus it can't be shared)
311  */
312 int
amap_extend(struct vm_map_entry * entry,vsize_t addsize,int flags)313 amap_extend(struct vm_map_entry *entry, vsize_t addsize, int flags)
314 {
315 	struct vm_amap *amap = entry->aref.ar_amap;
316 	int slotoff = entry->aref.ar_pageoff;
317 	int slotmapped, slotadd, slotneed, slotadded, slotalloc;
318 	int slotadj, slotspace;
319 	int oldnslots;
320 #ifdef UVM_AMAP_PPREF
321 	int *newppref, *oldppref;
322 #endif
323 	int i, *newsl, *newbck, *oldsl, *oldbck;
324 	struct vm_anon **newover, **oldover, *tofree;
325 	const km_flag_t kmflags =
326 	    (flags & AMAP_EXTEND_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
327 
328 	UVMHIST_FUNC("amap_extend"); UVMHIST_CALLED(maphist);
329 
330 	UVMHIST_LOG(maphist, "  (entry=0x%x, addsize=0x%x, flags=0x%x)",
331 	    entry, addsize, flags, 0);
332 
333 	/*
334 	 * first, determine how many slots we need in the amap.  don't
335 	 * forget that ar_pageoff could be non-zero: this means that
336 	 * there are some unused slots before us in the amap.
337 	 */
338 
339 	amap_lock(amap);
340 	KASSERT(amap_refs(amap) == 1); /* amap can't be shared */
341 	AMAP_B2SLOT(slotmapped, entry->end - entry->start); /* slots mapped */
342 	AMAP_B2SLOT(slotadd, addsize);			/* slots to add */
343 	if (flags & AMAP_EXTEND_FORWARDS) {
344 		slotneed = slotoff + slotmapped + slotadd;
345 		slotadj = 0;
346 		slotspace = 0;
347 	}
348 	else {
349 		slotneed = slotadd + slotmapped;
350 		slotadj = slotadd - slotoff;
351 		slotspace = amap->am_maxslot - slotmapped;
352 	}
353 	tofree = NULL;
354 
355 	/*
356 	 * case 1: we already have enough slots in the map and thus
357 	 * only need to bump the reference counts on the slots we are
358 	 * adding.
359 	 */
360 
361 	if (flags & AMAP_EXTEND_FORWARDS) {
362 		if (amap->am_nslot >= slotneed) {
363 #ifdef UVM_AMAP_PPREF
364 			if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
365 				amap_pp_adjref(amap, slotoff + slotmapped,
366 				    slotadd, 1, &tofree);
367 			}
368 #endif
369 			uvm_anon_freelst(amap, tofree);
370 			UVMHIST_LOG(maphist,
371 			    "<- done (case 1f), amap = 0x%x, sltneed=%d",
372 			    amap, slotneed, 0, 0);
373 			return 0;
374 		}
375 	} else {
376 		if (slotadj <= 0) {
377 			slotoff -= slotadd;
378 			entry->aref.ar_pageoff = slotoff;
379 #ifdef UVM_AMAP_PPREF
380 			if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
381 				amap_pp_adjref(amap, slotoff, slotadd, 1,
382 				    &tofree);
383 			}
384 #endif
385 			uvm_anon_freelst(amap, tofree);
386 			UVMHIST_LOG(maphist,
387 			    "<- done (case 1b), amap = 0x%x, sltneed=%d",
388 			    amap, slotneed, 0, 0);
389 			return 0;
390 		}
391 	}
392 
393 	/*
394 	 * case 2: we pre-allocated slots for use and we just need to
395 	 * bump nslot up to take account for these slots.
396 	 */
397 
398 	if (amap->am_maxslot >= slotneed) {
399 		if (flags & AMAP_EXTEND_FORWARDS) {
400 #ifdef UVM_AMAP_PPREF
401 			if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
402 				if ((slotoff + slotmapped) < amap->am_nslot)
403 					amap_pp_adjref(amap,
404 					    slotoff + slotmapped,
405 					    (amap->am_nslot -
406 					    (slotoff + slotmapped)), 1,
407 					    &tofree);
408 				pp_setreflen(amap->am_ppref, amap->am_nslot, 1,
409 				    slotneed - amap->am_nslot);
410 			}
411 #endif
412 			amap->am_nslot = slotneed;
413 			uvm_anon_freelst(amap, tofree);
414 
415 			/*
416 			 * no need to zero am_anon since that was done at
417 			 * alloc time and we never shrink an allocation.
418 			 */
419 
420 			UVMHIST_LOG(maphist,"<- done (case 2f), amap = 0x%x, "
421 			    "slotneed=%d", amap, slotneed, 0, 0);
422 			return 0;
423 		} else {
424 #ifdef UVM_AMAP_PPREF
425 			if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
426 				/*
427 				 * Slide up the ref counts on the pages that
428 				 * are actually in use.
429 				 */
430 				memmove(amap->am_ppref + slotspace,
431 				    amap->am_ppref + slotoff,
432 				    slotmapped * sizeof(int));
433 				/*
434 				 * Mark the (adjusted) gap at the front as
435 				 * referenced/not referenced.
436 				 */
437 				pp_setreflen(amap->am_ppref,
438 				    0, 0, slotspace - slotadd);
439 				pp_setreflen(amap->am_ppref,
440 				    slotspace - slotadd, 1, slotadd);
441 			}
442 #endif
443 
444 			/*
445 			 * Slide the anon pointers up and clear out
446 			 * the space we just made.
447 			 */
448 			memmove(amap->am_anon + slotspace,
449 			    amap->am_anon + slotoff,
450 			    slotmapped * sizeof(struct vm_anon*));
451 			memset(amap->am_anon + slotoff, 0,
452 			    (slotspace - slotoff) * sizeof(struct vm_anon *));
453 
454 			/*
455 			 * Slide the backpointers up, but don't bother
456 			 * wiping out the old slots.
457 			 */
458 			memmove(amap->am_bckptr + slotspace,
459 			    amap->am_bckptr + slotoff,
460 			    slotmapped * sizeof(int));
461 
462 			/*
463 			 * Adjust all the useful active slot numbers.
464 			 */
465 			for (i = 0; i < amap->am_nused; i++)
466 				amap->am_slots[i] += (slotspace - slotoff);
467 
468 			/*
469 			 * We just filled all the empty space in the
470 			 * front of the amap by activating a few new
471 			 * slots.
472 			 */
473 			amap->am_nslot = amap->am_maxslot;
474 			entry->aref.ar_pageoff = slotspace - slotadd;
475 			amap_unlock(amap);
476 
477 			UVMHIST_LOG(maphist,"<- done (case 2b), amap = 0x%x, "
478 			    "slotneed=%d", amap, slotneed, 0, 0);
479 			return 0;
480 		}
481 	}
482 
483 	/*
484 	 * Case 3: we need to allocate a new amap and copy all the amap
485 	 * data over from old amap to the new one.  Drop the lock before
486 	 * performing allocation.
487 	 *
488 	 * Note: since allocations are likely big, we expect to reduce the
489 	 * memory fragmentation by allocating them in separate blocks.
490 	 */
491 
492 	amap_unlock(amap);
493 
494 	if (slotneed >= UVM_AMAP_LARGE) {
495 		return E2BIG;
496 	}
497 
498 	slotalloc = amap_roundup_slots(slotneed);
499 #ifdef UVM_AMAP_PPREF
500 	newppref = NULL;
501 	if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
502 		/* Will be handled later if fails. */
503 		newppref = kmem_alloc(slotalloc * sizeof(*newppref), kmflags);
504 	}
505 #endif
506 	newsl = kmem_alloc(slotalloc * sizeof(*newsl), kmflags);
507 	newbck = kmem_alloc(slotalloc * sizeof(*newbck), kmflags);
508 	newover = kmem_alloc(slotalloc * sizeof(*newover), kmflags);
509 	if (newsl == NULL || newbck == NULL || newover == NULL) {
510 #ifdef UVM_AMAP_PPREF
511 		if (newppref != NULL) {
512 			kmem_free(newppref, slotalloc * sizeof(*newppref));
513 		}
514 #endif
515 		if (newsl != NULL) {
516 			kmem_free(newsl, slotalloc * sizeof(*newsl));
517 		}
518 		if (newbck != NULL) {
519 			kmem_free(newbck, slotalloc * sizeof(*newbck));
520 		}
521 		if (newover != NULL) {
522 			kmem_free(newover, slotalloc * sizeof(*newover));
523 		}
524 		return ENOMEM;
525 	}
526 	amap_lock(amap);
527 	KASSERT(amap->am_maxslot < slotneed);
528 
529 	/*
530 	 * Copy everything over to new allocated areas.
531 	 */
532 
533 	slotadded = slotalloc - amap->am_nslot;
534 	if (!(flags & AMAP_EXTEND_FORWARDS))
535 		slotspace = slotalloc - slotmapped;
536 
537 	/* do am_slots */
538 	oldsl = amap->am_slots;
539 	if (flags & AMAP_EXTEND_FORWARDS)
540 		memcpy(newsl, oldsl, sizeof(int) * amap->am_nused);
541 	else
542 		for (i = 0; i < amap->am_nused; i++)
543 			newsl[i] = oldsl[i] + slotspace - slotoff;
544 	amap->am_slots = newsl;
545 
546 	/* do am_anon */
547 	oldover = amap->am_anon;
548 	if (flags & AMAP_EXTEND_FORWARDS) {
549 		memcpy(newover, oldover,
550 		    sizeof(struct vm_anon *) * amap->am_nslot);
551 		memset(newover + amap->am_nslot, 0,
552 		    sizeof(struct vm_anon *) * slotadded);
553 	} else {
554 		memcpy(newover + slotspace, oldover + slotoff,
555 		    sizeof(struct vm_anon *) * slotmapped);
556 		memset(newover, 0,
557 		    sizeof(struct vm_anon *) * slotspace);
558 	}
559 	amap->am_anon = newover;
560 
561 	/* do am_bckptr */
562 	oldbck = amap->am_bckptr;
563 	if (flags & AMAP_EXTEND_FORWARDS)
564 		memcpy(newbck, oldbck, sizeof(int) * amap->am_nslot);
565 	else
566 		memcpy(newbck + slotspace, oldbck + slotoff,
567 		    sizeof(int) * slotmapped);
568 	amap->am_bckptr = newbck;
569 
570 #ifdef UVM_AMAP_PPREF
571 	/* do ppref */
572 	oldppref = amap->am_ppref;
573 	if (newppref) {
574 		if (flags & AMAP_EXTEND_FORWARDS) {
575 			memcpy(newppref, oldppref,
576 			    sizeof(int) * amap->am_nslot);
577 			memset(newppref + amap->am_nslot, 0,
578 			    sizeof(int) * slotadded);
579 		} else {
580 			memcpy(newppref + slotspace, oldppref + slotoff,
581 			    sizeof(int) * slotmapped);
582 		}
583 		amap->am_ppref = newppref;
584 		if ((flags & AMAP_EXTEND_FORWARDS) &&
585 		    (slotoff + slotmapped) < amap->am_nslot)
586 			amap_pp_adjref(amap, slotoff + slotmapped,
587 			    (amap->am_nslot - (slotoff + slotmapped)), 1,
588 			    &tofree);
589 		if (flags & AMAP_EXTEND_FORWARDS)
590 			pp_setreflen(newppref, amap->am_nslot, 1,
591 			    slotneed - amap->am_nslot);
592 		else {
593 			pp_setreflen(newppref, 0, 0,
594 			    slotalloc - slotneed);
595 			pp_setreflen(newppref, slotalloc - slotneed, 1,
596 			    slotneed - slotmapped);
597 		}
598 	} else {
599 		if (amap->am_ppref)
600 			amap->am_ppref = PPREF_NONE;
601 	}
602 #endif
603 
604 	/* update master values */
605 	if (flags & AMAP_EXTEND_FORWARDS)
606 		amap->am_nslot = slotneed;
607 	else {
608 		entry->aref.ar_pageoff = slotspace - slotadd;
609 		amap->am_nslot = slotalloc;
610 	}
611 	oldnslots = amap->am_maxslot;
612 	amap->am_maxslot = slotalloc;
613 
614 	uvm_anon_freelst(amap, tofree);
615 
616 	kmem_free(oldsl, oldnslots * sizeof(*oldsl));
617 	kmem_free(oldbck, oldnslots * sizeof(*oldbck));
618 	kmem_free(oldover, oldnslots * sizeof(*oldover));
619 #ifdef UVM_AMAP_PPREF
620 	if (oldppref && oldppref != PPREF_NONE)
621 		kmem_free(oldppref, oldnslots * sizeof(*oldppref));
622 #endif
623 	UVMHIST_LOG(maphist,"<- done (case 3), amap = 0x%x, slotneed=%d",
624 	    amap, slotneed, 0, 0);
625 	return 0;
626 }
627 
628 /*
629  * amap_share_protect: change protection of anons in a shared amap
630  *
631  * for shared amaps, given the current data structure layout, it is
632  * not possible for us to directly locate all maps referencing the
633  * shared anon (to change the protection).  in order to protect data
634  * in shared maps we use pmap_page_protect().  [this is useful for IPC
635  * mechanisms like map entry passing that may want to write-protect
636  * all mappings of a shared amap.]  we traverse am_anon or am_slots
637  * depending on the current state of the amap.
638  *
639  * => entry's map and amap must be locked by the caller
640  */
641 void
amap_share_protect(struct vm_map_entry * entry,vm_prot_t prot)642 amap_share_protect(struct vm_map_entry *entry, vm_prot_t prot)
643 {
644 	struct vm_amap *amap = entry->aref.ar_amap;
645 	u_int slots, lcv, slot, stop;
646 	struct vm_anon *anon;
647 
648 	KASSERT(mutex_owned(amap->am_lock));
649 
650 	AMAP_B2SLOT(slots, (entry->end - entry->start));
651 	stop = entry->aref.ar_pageoff + slots;
652 
653 	if (slots < amap->am_nused) {
654 		/*
655 		 * Cheaper to traverse am_anon.
656 		 */
657 		for (lcv = entry->aref.ar_pageoff ; lcv < stop ; lcv++) {
658 			anon = amap->am_anon[lcv];
659 			if (anon == NULL) {
660 				continue;
661 			}
662 			if (anon->an_page) {
663 				pmap_page_protect(anon->an_page, prot);
664 			}
665 		}
666 		return;
667 	}
668 
669 	/*
670 	 * Cheaper to traverse am_slots.
671 	 */
672 	for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
673 		slot = amap->am_slots[lcv];
674 		if (slot < entry->aref.ar_pageoff || slot >= stop) {
675 			continue;
676 		}
677 		anon = amap->am_anon[slot];
678 		if (anon->an_page) {
679 			pmap_page_protect(anon->an_page, prot);
680 		}
681 	}
682 }
683 
684 /*
685  * amap_wipeout: wipeout all anon's in an amap; then free the amap!
686  *
687  * => Called from amap_unref(), when reference count drops to zero.
688  * => amap must be locked.
689  */
690 
691 void
amap_wipeout(struct vm_amap * amap)692 amap_wipeout(struct vm_amap *amap)
693 {
694 	struct vm_anon *tofree = NULL;
695 	u_int lcv;
696 
697 	UVMHIST_FUNC("amap_wipeout"); UVMHIST_CALLED(maphist);
698 	UVMHIST_LOG(maphist,"(amap=0x%x)", amap, 0,0,0);
699 
700 	KASSERT(mutex_owned(amap->am_lock));
701 	KASSERT(amap->am_ref == 0);
702 
703 	if (__predict_false(amap->am_flags & AMAP_SWAPOFF)) {
704 		/*
705 		 * Note: amap_swap_off() will call us again.
706 		 */
707 		amap_unlock(amap);
708 		return;
709 	}
710 	amap_list_remove(amap);
711 
712 	for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
713 		struct vm_anon *anon;
714 		u_int slot;
715 
716 		slot = amap->am_slots[lcv];
717 		anon = amap->am_anon[slot];
718 		KASSERT(anon != NULL && anon->an_ref != 0);
719 
720 		KASSERT(anon->an_lock == amap->am_lock);
721 		UVMHIST_LOG(maphist,"  processing anon 0x%x, ref=%d", anon,
722 		    anon->an_ref, 0, 0);
723 
724 		/*
725 		 * Drop the reference.  Defer freeing.
726 		 */
727 
728 		if (--anon->an_ref == 0) {
729 			anon->an_link = tofree;
730 			tofree = anon;
731 		}
732 		if (curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
733 			preempt();
734 		}
735 	}
736 
737 	/*
738 	 * Finally, destroy the amap.
739 	 */
740 
741 	amap->am_nused = 0;
742 	uvm_anon_freelst(amap, tofree);
743 	amap_free(amap);
744 	UVMHIST_LOG(maphist,"<- done!", 0,0,0,0);
745 }
746 
747 /*
748  * amap_copy: ensure that a map entry's "needs_copy" flag is false
749  *	by copying the amap if necessary.
750  *
751  * => an entry with a null amap pointer will get a new (blank) one.
752  * => the map that the map entry belongs to must be locked by caller.
753  * => the amap currently attached to "entry" (if any) must be unlocked.
754  * => if canchunk is true, then we may clip the entry into a chunk
755  * => "startva" and "endva" are used only if canchunk is true.  they are
756  *     used to limit chunking (e.g. if you have a large space that you
757  *     know you are going to need to allocate amaps for, there is no point
758  *     in allowing that to be chunked)
759  */
760 
761 void
amap_copy(struct vm_map * map,struct vm_map_entry * entry,int flags,vaddr_t startva,vaddr_t endva)762 amap_copy(struct vm_map *map, struct vm_map_entry *entry, int flags,
763     vaddr_t startva, vaddr_t endva)
764 {
765 	const int waitf = (flags & AMAP_COPY_NOWAIT) ? UVM_FLAG_NOWAIT : 0;
766 	struct vm_amap *amap, *srcamap;
767 	struct vm_anon *tofree;
768 	u_int slots, lcv;
769 	vsize_t len;
770 
771 	UVMHIST_FUNC("amap_copy"); UVMHIST_CALLED(maphist);
772 	UVMHIST_LOG(maphist, "  (map=%p, entry=%p, flags=%d)",
773 		    map, entry, flags, 0);
774 
775 	KASSERT(map != kernel_map);	/* we use nointr pool */
776 
777 	srcamap = entry->aref.ar_amap;
778 	len = entry->end - entry->start;
779 
780 	/*
781 	 * Is there an amap to copy?  If not, create one.
782 	 */
783 
784 	if (srcamap == NULL) {
785 		const bool canchunk = (flags & AMAP_COPY_NOCHUNK) == 0;
786 
787 		/*
788 		 * Check to see if we have a large amap that we can
789 		 * chunk.  We align startva/endva to chunk-sized
790 		 * boundaries and then clip to them.
791 		 */
792 
793 		if (canchunk && atop(len) >= UVM_AMAP_LARGE) {
794 			vsize_t chunksize;
795 
796 			/* Convert slots to bytes. */
797 			chunksize = UVM_AMAP_CHUNK << PAGE_SHIFT;
798 			startva = (startva / chunksize) * chunksize;
799 			endva = roundup(endva, chunksize);
800 			UVMHIST_LOG(maphist, "  chunk amap ==> clip 0x%x->0x%x"
801 			    "to 0x%x->0x%x", entry->start, entry->end, startva,
802 			    endva);
803 			UVM_MAP_CLIP_START(map, entry, startva);
804 
805 			/* Watch out for endva wrap-around! */
806 			if (endva >= startva) {
807 				UVM_MAP_CLIP_END(map, entry, endva);
808 			}
809 		}
810 
811 		if ((flags & AMAP_COPY_NOMERGE) == 0 &&
812 		    uvm_mapent_trymerge(map, entry, UVM_MERGE_COPYING)) {
813 			return;
814 		}
815 
816 		UVMHIST_LOG(maphist, "<- done [creating new amap 0x%x->0x%x]",
817 		    entry->start, entry->end, 0, 0);
818 
819 		/*
820 		 * Allocate an initialised amap and install it.
821 		 * Note: we must update the length after clipping.
822 		 */
823 		len = entry->end - entry->start;
824 		entry->aref.ar_pageoff = 0;
825 		entry->aref.ar_amap = amap_alloc(len, 0, waitf);
826 		if (entry->aref.ar_amap != NULL) {
827 			entry->etype &= ~UVM_ET_NEEDSCOPY;
828 		}
829 		return;
830 	}
831 
832 	/*
833 	 * First check and see if we are the only map entry referencing
834 	 * he amap we currently have.  If so, then just take it over instead
835 	 * of copying it.  Note that we are reading am_ref without lock held
836 	 * as the value value can only be one if we have the only reference
837 	 * to the amap (via our locked map).  If the value is greater than
838 	 * one, then allocate amap and re-check the value.
839 	 */
840 
841 	if (srcamap->am_ref == 1) {
842 		entry->etype &= ~UVM_ET_NEEDSCOPY;
843 		UVMHIST_LOG(maphist, "<- done [ref cnt = 1, took it over]",
844 		    0, 0, 0, 0);
845 		return;
846 	}
847 
848 	UVMHIST_LOG(maphist,"  amap=%p, ref=%d, must copy it",
849 	    srcamap, srcamap->am_ref, 0, 0);
850 
851 	/*
852 	 * Allocate a new amap (note: not initialised, no lock set, etc).
853 	 */
854 
855 	AMAP_B2SLOT(slots, len);
856 	amap = amap_alloc1(slots, 0, waitf);
857 	if (amap == NULL) {
858 		UVMHIST_LOG(maphist, "  amap_alloc1 failed", 0,0,0,0);
859 		return;
860 	}
861 
862 	amap_lock(srcamap);
863 
864 	/*
865 	 * Re-check the reference count with the lock held.  If it has
866 	 * dropped to one - we can take over the existing map.
867 	 */
868 
869 	if (srcamap->am_ref == 1) {
870 		/* Just take over the existing amap. */
871 		entry->etype &= ~UVM_ET_NEEDSCOPY;
872 		amap_unlock(srcamap);
873 		/* Destroy the new (unused) amap. */
874 		amap->am_ref--;
875 		amap_free(amap);
876 		return;
877 	}
878 
879 	/*
880 	 * Copy the slots.  Zero the padded part.
881 	 */
882 
883 	UVMHIST_LOG(maphist, "  copying amap now",0, 0, 0, 0);
884 	for (lcv = 0 ; lcv < slots; lcv++) {
885 		amap->am_anon[lcv] =
886 		    srcamap->am_anon[entry->aref.ar_pageoff + lcv];
887 		if (amap->am_anon[lcv] == NULL)
888 			continue;
889 		KASSERT(amap->am_anon[lcv]->an_lock == srcamap->am_lock);
890 		KASSERT(amap->am_anon[lcv]->an_ref > 0);
891 		KASSERT(amap->am_nused < amap->am_maxslot);
892 		amap->am_anon[lcv]->an_ref++;
893 		amap->am_bckptr[lcv] = amap->am_nused;
894 		amap->am_slots[amap->am_nused] = lcv;
895 		amap->am_nused++;
896 	}
897 	memset(&amap->am_anon[lcv], 0,
898 	    (amap->am_maxslot - lcv) * sizeof(struct vm_anon *));
899 
900 	/*
901 	 * Drop our reference to the old amap (srcamap) and unlock.
902 	 * Since the reference count on srcamap is greater than one,
903 	 * (we checked above), it cannot drop to zero while it is locked.
904 	 */
905 
906 	srcamap->am_ref--;
907 	KASSERT(srcamap->am_ref > 0);
908 
909 	if (srcamap->am_ref == 1 && (srcamap->am_flags & AMAP_SHARED) != 0) {
910 		srcamap->am_flags &= ~AMAP_SHARED;
911 	}
912 	tofree = NULL;
913 #ifdef UVM_AMAP_PPREF
914 	if (srcamap->am_ppref && srcamap->am_ppref != PPREF_NONE) {
915 		amap_pp_adjref(srcamap, entry->aref.ar_pageoff,
916 		    len >> PAGE_SHIFT, -1, &tofree);
917 	}
918 #endif
919 
920 	/*
921 	 * If we referenced any anons, then share the source amap's lock.
922 	 * Otherwise, we have nothing in common, so allocate a new one.
923 	 */
924 
925 	KASSERT(amap->am_lock == NULL);
926 	if (amap->am_nused != 0) {
927 		amap->am_lock = srcamap->am_lock;
928 		mutex_obj_hold(amap->am_lock);
929 	}
930 	uvm_anon_freelst(srcamap, tofree);
931 
932 	if (amap->am_lock == NULL) {
933 		amap->am_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
934 	}
935 	amap_list_insert(amap);
936 
937 	/*
938 	 * Install new amap.
939 	 */
940 
941 	entry->aref.ar_pageoff = 0;
942 	entry->aref.ar_amap = amap;
943 	entry->etype &= ~UVM_ET_NEEDSCOPY;
944 	UVMHIST_LOG(maphist, "<- done",0, 0, 0, 0);
945 }
946 
947 /*
948  * amap_cow_now: resolve all copy-on-write faults in an amap now for fork(2)
949  *
950  *	called during fork(2) when the parent process has a wired map
951  *	entry.   in that case we want to avoid write-protecting pages
952  *	in the parent's map (e.g. like what you'd do for a COW page)
953  *	so we resolve the COW here.
954  *
955  * => assume parent's entry was wired, thus all pages are resident.
956  * => assume pages that are loaned out (loan_count) are already mapped
957  *	read-only in all maps, and thus no need for us to worry about them
958  * => assume both parent and child vm_map's are locked
959  * => caller passes child's map/entry in to us
960  * => if we run out of memory we will unlock the amap and sleep _with_ the
961  *	parent and child vm_map's locked(!).    we have to do this since
962  *	we are in the middle of a fork(2) and we can't let the parent
963  *	map change until we are done copying all the map entrys.
964  * => XXXCDC: out of memory should cause fork to fail, but there is
965  *	currently no easy way to do this (needs fix)
966  * => page queues must be unlocked (we may lock them)
967  */
968 
969 void
amap_cow_now(struct vm_map * map,struct vm_map_entry * entry)970 amap_cow_now(struct vm_map *map, struct vm_map_entry *entry)
971 {
972 	struct vm_amap *amap = entry->aref.ar_amap;
973 	struct vm_anon *anon, *nanon;
974 	struct vm_page *pg, *npg;
975 	u_int lcv, slot;
976 
977 	/*
978 	 * note that if we unlock the amap then we must ReStart the "lcv" for
979 	 * loop because some other process could reorder the anon's in the
980 	 * am_anon[] array on us while the lock is dropped.
981 	 */
982 
983 ReStart:
984 	amap_lock(amap);
985 	for (lcv = 0 ; lcv < amap->am_nused ; lcv++) {
986 		slot = amap->am_slots[lcv];
987 		anon = amap->am_anon[slot];
988 		KASSERT(anon->an_lock == amap->am_lock);
989 
990 		/*
991 		 * If anon has only one reference - we must have already
992 		 * copied it.  This can happen if we needed to sleep waiting
993 		 * for memory in a previous run through this loop.  The new
994 		 * page might even have been paged out, since is not wired.
995 		 */
996 
997 		if (anon->an_ref == 1) {
998 			KASSERT(anon->an_page != NULL || anon->an_swslot != 0);
999 			continue;
1000 		}
1001 
1002 		/*
1003 		 * The old page must be resident since the parent is wired.
1004 		 */
1005 
1006 		pg = anon->an_page;
1007 		KASSERT(pg != NULL);
1008 		KASSERT(pg->wire_count > 0);
1009 
1010 		/*
1011 		 * If the page is loaned then it must already be mapped
1012 		 * read-only and we don't need to copy it.
1013 		 */
1014 
1015 		if (pg->loan_count != 0) {
1016 			continue;
1017 		}
1018 		KASSERT(pg->uanon == anon && pg->uobject == NULL);
1019 
1020 		/*
1021 		 * If the page is busy, then we have to unlock, wait for
1022 		 * it and then restart.
1023 		 */
1024 
1025 		if (pg->flags & PG_BUSY) {
1026 			pg->flags |= PG_WANTED;
1027 			UVM_UNLOCK_AND_WAIT(pg, amap->am_lock, false,
1028 			    "cownow", 0);
1029 			goto ReStart;
1030 		}
1031 
1032 		/*
1033 		 * Perform a copy-on-write.
1034 		 * First - get a new anon and a page.
1035 		 */
1036 
1037 		nanon = uvm_analloc();
1038 		if (nanon) {
1039 			nanon->an_lock = amap->am_lock;
1040 			npg = uvm_pagealloc(NULL, 0, nanon, 0);
1041 		} else {
1042 			npg = NULL;
1043 		}
1044 		if (nanon == NULL || npg == NULL) {
1045 			amap_unlock(amap);
1046 			if (nanon) {
1047 				nanon->an_lock = NULL;
1048 				nanon->an_ref--;
1049 				KASSERT(nanon->an_ref == 0);
1050 				uvm_anon_free(nanon);
1051 			}
1052 			uvm_wait("cownowpage");
1053 			goto ReStart;
1054 		}
1055 
1056 		/*
1057 		 * Copy the data and replace anon with the new one.
1058 		 * Also, setup its lock (share the with amap's lock).
1059 		 */
1060 
1061 		uvm_pagecopy(pg, npg);
1062 		anon->an_ref--;
1063 		KASSERT(anon->an_ref > 0);
1064 		amap->am_anon[slot] = nanon;
1065 
1066 		/*
1067 		 * Drop PG_BUSY on new page.  Since its owner was locked all
1068 		 * this time - it cannot be PG_RELEASED or PG_WANTED.
1069 		 */
1070 
1071 		mutex_enter(&uvm_pageqlock);
1072 		uvm_pageactivate(npg);
1073 		mutex_exit(&uvm_pageqlock);
1074 		npg->flags &= ~(PG_BUSY|PG_FAKE);
1075 		UVM_PAGE_OWN(npg, NULL);
1076 	}
1077 	amap_unlock(amap);
1078 }
1079 
1080 /*
1081  * amap_splitref: split a single reference into two separate references
1082  *
1083  * => called from uvm_map's clip routines
1084  * => origref's map should be locked
1085  * => origref->ar_amap should be unlocked (we will lock)
1086  */
1087 void
amap_splitref(struct vm_aref * origref,struct vm_aref * splitref,vaddr_t offset)1088 amap_splitref(struct vm_aref *origref, struct vm_aref *splitref, vaddr_t offset)
1089 {
1090 	struct vm_amap *amap = origref->ar_amap;
1091 	u_int leftslots;
1092 
1093 	KASSERT(splitref->ar_amap == origref->ar_amap);
1094 	AMAP_B2SLOT(leftslots, offset);
1095 	KASSERT(leftslots != 0);
1096 
1097 	amap_lock(amap);
1098 	KASSERT(amap->am_nslot - origref->ar_pageoff - leftslots > 0);
1099 
1100 #ifdef UVM_AMAP_PPREF
1101 	/* Establish ppref before we add a duplicate reference to the amap. */
1102 	if (amap->am_ppref == NULL) {
1103 		amap_pp_establish(amap, origref->ar_pageoff);
1104 	}
1105 #endif
1106 	/* Note: not a share reference. */
1107 	amap->am_ref++;
1108 	splitref->ar_pageoff = origref->ar_pageoff + leftslots;
1109 	amap_unlock(amap);
1110 }
1111 
1112 #ifdef UVM_AMAP_PPREF
1113 
1114 /*
1115  * amap_pp_establish: add a ppref array to an amap, if possible.
1116  *
1117  * => amap should be locked by caller.
1118  */
1119 void
amap_pp_establish(struct vm_amap * amap,vaddr_t offset)1120 amap_pp_establish(struct vm_amap *amap, vaddr_t offset)
1121 {
1122 	const size_t sz = amap->am_maxslot * sizeof(*amap->am_ppref);
1123 
1124 	KASSERT(mutex_owned(amap->am_lock));
1125 
1126 	amap->am_ppref = kmem_zalloc(sz, KM_NOSLEEP);
1127 	if (amap->am_ppref == NULL) {
1128 		/* Failure - just do not use ppref. */
1129 		amap->am_ppref = PPREF_NONE;
1130 		return;
1131 	}
1132 	pp_setreflen(amap->am_ppref, 0, 0, offset);
1133 	pp_setreflen(amap->am_ppref, offset, amap->am_ref,
1134 	    amap->am_nslot - offset);
1135 }
1136 
1137 /*
1138  * amap_pp_adjref: adjust reference count to a part of an amap using the
1139  * per-page reference count array.
1140  *
1141  * => caller must check that ppref != PPREF_NONE before calling.
1142  * => map and amap must be locked.
1143  */
1144 void
amap_pp_adjref(struct vm_amap * amap,int curslot,vsize_t slotlen,int adjval,struct vm_anon ** tofree)1145 amap_pp_adjref(struct vm_amap *amap, int curslot, vsize_t slotlen, int adjval,
1146     struct vm_anon **tofree)
1147 {
1148 	int stopslot, *ppref, lcv, prevlcv;
1149 	int ref, len, prevref, prevlen;
1150 
1151 	KASSERT(mutex_owned(amap->am_lock));
1152 
1153 	stopslot = curslot + slotlen;
1154 	ppref = amap->am_ppref;
1155 	prevlcv = 0;
1156 
1157 	/*
1158 	 * Advance to the correct place in the array, fragment if needed.
1159 	 */
1160 
1161 	for (lcv = 0 ; lcv < curslot ; lcv += len) {
1162 		pp_getreflen(ppref, lcv, &ref, &len);
1163 		if (lcv + len > curslot) {     /* goes past start? */
1164 			pp_setreflen(ppref, lcv, ref, curslot - lcv);
1165 			pp_setreflen(ppref, curslot, ref, len - (curslot -lcv));
1166 			len = curslot - lcv;   /* new length of entry @ lcv */
1167 		}
1168 		prevlcv = lcv;
1169 	}
1170 	if (lcv == 0) {
1171 		/*
1172 		 * Ensure that the "prevref == ref" test below always
1173 		 * fails, since we are starting from the beginning of
1174 		 * the ppref array; that is, there is no previous chunk.
1175 		 */
1176 		prevref = -1;
1177 		prevlen = 0;
1178 	} else {
1179 		pp_getreflen(ppref, prevlcv, &prevref, &prevlen);
1180 	}
1181 
1182 	/*
1183 	 * Now adjust reference counts in range.  Merge the first
1184 	 * changed entry with the last unchanged entry if possible.
1185 	 */
1186 	KASSERT(lcv == curslot);
1187 	for (/* lcv already set */; lcv < stopslot ; lcv += len) {
1188 		pp_getreflen(ppref, lcv, &ref, &len);
1189 		if (lcv + len > stopslot) {     /* goes past end? */
1190 			pp_setreflen(ppref, lcv, ref, stopslot - lcv);
1191 			pp_setreflen(ppref, stopslot, ref,
1192 			    len - (stopslot - lcv));
1193 			len = stopslot - lcv;
1194 		}
1195 		ref += adjval;
1196 		KASSERT(ref >= 0);
1197 		KASSERT(ref <= amap->am_ref);
1198 		if (lcv == prevlcv + prevlen && ref == prevref) {
1199 			pp_setreflen(ppref, prevlcv, ref, prevlen + len);
1200 		} else {
1201 			pp_setreflen(ppref, lcv, ref, len);
1202 		}
1203 		if (ref == 0) {
1204 			amap_wiperange(amap, lcv, len, tofree);
1205 		}
1206 	}
1207 }
1208 
1209 /*
1210  * amap_wiperange: wipe out a range of an amap.
1211  * Note: different from amap_wipeout because the amap is kept intact.
1212  *
1213  * => Both map and amap must be locked by caller.
1214  */
1215 void
amap_wiperange(struct vm_amap * amap,int slotoff,int slots,struct vm_anon ** tofree)1216 amap_wiperange(struct vm_amap *amap, int slotoff, int slots,
1217     struct vm_anon **tofree)
1218 {
1219 	u_int lcv, stop, slotend;
1220 	bool byanon;
1221 
1222 	KASSERT(mutex_owned(amap->am_lock));
1223 
1224 	/*
1225 	 * We can either traverse the amap by am_anon or by am_slots.
1226 	 * Determine which way is less expensive.
1227 	 */
1228 
1229 	if (slots < amap->am_nused) {
1230 		byanon = true;
1231 		lcv = slotoff;
1232 		stop = slotoff + slots;
1233 		slotend = 0;
1234 	} else {
1235 		byanon = false;
1236 		lcv = 0;
1237 		stop = amap->am_nused;
1238 		slotend = slotoff + slots;
1239 	}
1240 
1241 	while (lcv < stop) {
1242 		struct vm_anon *anon;
1243 		u_int curslot, ptr, last;
1244 
1245 		if (byanon) {
1246 			curslot = lcv++;	/* lcv advances here */
1247 			if (amap->am_anon[curslot] == NULL)
1248 				continue;
1249 		} else {
1250 			curslot = amap->am_slots[lcv];
1251 			if (curslot < slotoff || curslot >= slotend) {
1252 				lcv++;		/* lcv advances here */
1253 				continue;
1254 			}
1255 			stop--;	/* drop stop, since anon will be removed */
1256 		}
1257 		anon = amap->am_anon[curslot];
1258 		KASSERT(anon->an_lock == amap->am_lock);
1259 
1260 		/*
1261 		 * Remove anon from the amap.
1262 		 */
1263 
1264 		amap->am_anon[curslot] = NULL;
1265 		ptr = amap->am_bckptr[curslot];
1266 		last = amap->am_nused - 1;
1267 		if (ptr != last) {
1268 			amap->am_slots[ptr] = amap->am_slots[last];
1269 			amap->am_bckptr[amap->am_slots[ptr]] = ptr;
1270 		}
1271 		amap->am_nused--;
1272 
1273 		/*
1274 		 * Drop its reference count.
1275 		 */
1276 
1277 		KASSERT(anon->an_lock == amap->am_lock);
1278 		if (--anon->an_ref == 0) {
1279 			/*
1280 			 * Eliminated the last reference to an anon - defer
1281 			 * freeing as uvm_anon_freelst() will unlock the amap.
1282 			 */
1283 			anon->an_link = *tofree;
1284 			*tofree = anon;
1285 		}
1286 	}
1287 }
1288 
1289 #endif
1290 
1291 #if defined(VMSWAP)
1292 
1293 /*
1294  * amap_swap_off: pagein anonymous pages in amaps and drop swap slots.
1295  *
1296  * => called with swap_syscall_lock held.
1297  * => note that we don't always traverse all anons.
1298  *    eg. amaps being wiped out, released anons.
1299  * => return true if failed.
1300  */
1301 
1302 bool
amap_swap_off(int startslot,int endslot)1303 amap_swap_off(int startslot, int endslot)
1304 {
1305 	struct vm_amap *am;
1306 	struct vm_amap *am_next;
1307 	struct vm_amap marker_prev;
1308 	struct vm_amap marker_next;
1309 	bool rv = false;
1310 
1311 #if defined(DIAGNOSTIC)
1312 	memset(&marker_prev, 0, sizeof(marker_prev));
1313 	memset(&marker_next, 0, sizeof(marker_next));
1314 #endif /* defined(DIAGNOSTIC) */
1315 
1316 	mutex_enter(&amap_list_lock);
1317 	for (am = LIST_FIRST(&amap_list); am != NULL && !rv; am = am_next) {
1318 		int i;
1319 
1320 		LIST_INSERT_BEFORE(am, &marker_prev, am_list);
1321 		LIST_INSERT_AFTER(am, &marker_next, am_list);
1322 
1323 		if (!amap_lock_try(am)) {
1324 			mutex_exit(&amap_list_lock);
1325 			preempt();
1326 			mutex_enter(&amap_list_lock);
1327 			am_next = LIST_NEXT(&marker_prev, am_list);
1328 			if (am_next == &marker_next) {
1329 				am_next = LIST_NEXT(am_next, am_list);
1330 			} else {
1331 				KASSERT(LIST_NEXT(am_next, am_list) ==
1332 				    &marker_next);
1333 			}
1334 			LIST_REMOVE(&marker_prev, am_list);
1335 			LIST_REMOVE(&marker_next, am_list);
1336 			continue;
1337 		}
1338 
1339 		mutex_exit(&amap_list_lock);
1340 
1341 		if (am->am_nused <= 0) {
1342 			amap_unlock(am);
1343 			goto next;
1344 		}
1345 
1346 		for (i = 0; i < am->am_nused; i++) {
1347 			int slot;
1348 			int swslot;
1349 			struct vm_anon *anon;
1350 
1351 			slot = am->am_slots[i];
1352 			anon = am->am_anon[slot];
1353 			KASSERT(anon->an_lock == am->am_lock);
1354 
1355 			swslot = anon->an_swslot;
1356 			if (swslot < startslot || endslot <= swslot) {
1357 				continue;
1358 			}
1359 
1360 			am->am_flags |= AMAP_SWAPOFF;
1361 
1362 			rv = uvm_anon_pagein(am, anon);
1363 			amap_lock(am);
1364 
1365 			am->am_flags &= ~AMAP_SWAPOFF;
1366 			if (amap_refs(am) == 0) {
1367 				amap_wipeout(am);
1368 				am = NULL;
1369 				break;
1370 			}
1371 			if (rv) {
1372 				break;
1373 			}
1374 			i = 0;
1375 		}
1376 
1377 		if (am) {
1378 			amap_unlock(am);
1379 		}
1380 
1381 next:
1382 		mutex_enter(&amap_list_lock);
1383 		KASSERT(LIST_NEXT(&marker_prev, am_list) == &marker_next ||
1384 		    LIST_NEXT(LIST_NEXT(&marker_prev, am_list), am_list) ==
1385 		    &marker_next);
1386 		am_next = LIST_NEXT(&marker_next, am_list);
1387 		LIST_REMOVE(&marker_prev, am_list);
1388 		LIST_REMOVE(&marker_next, am_list);
1389 	}
1390 	mutex_exit(&amap_list_lock);
1391 
1392 	return rv;
1393 }
1394 
1395 #endif /* defined(VMSWAP) */
1396 
1397 /*
1398  * amap_lookup: look up a page in an amap.
1399  *
1400  * => amap should be locked by caller.
1401  */
1402 struct vm_anon *
amap_lookup(struct vm_aref * aref,vaddr_t offset)1403 amap_lookup(struct vm_aref *aref, vaddr_t offset)
1404 {
1405 	struct vm_amap *amap = aref->ar_amap;
1406 	struct vm_anon *an;
1407 	u_int slot;
1408 
1409 	UVMHIST_FUNC("amap_lookup"); UVMHIST_CALLED(maphist);
1410 	KASSERT(mutex_owned(amap->am_lock));
1411 
1412 	AMAP_B2SLOT(slot, offset);
1413 	slot += aref->ar_pageoff;
1414 	an = amap->am_anon[slot];
1415 
1416 	UVMHIST_LOG(maphist, "<- done (amap=0x%x, offset=0x%x, result=0x%x)",
1417 	    amap, offset, an, 0);
1418 
1419 	KASSERT(slot < amap->am_nslot);
1420 	KASSERT(an == NULL || an->an_ref != 0);
1421 	KASSERT(an == NULL || an->an_lock == amap->am_lock);
1422 	return an;
1423 }
1424 
1425 /*
1426  * amap_lookups: look up a range of pages in an amap.
1427  *
1428  * => amap should be locked by caller.
1429  */
1430 void
amap_lookups(struct vm_aref * aref,vaddr_t offset,struct vm_anon ** anons,int npages)1431 amap_lookups(struct vm_aref *aref, vaddr_t offset, struct vm_anon **anons,
1432     int npages)
1433 {
1434 	struct vm_amap *amap = aref->ar_amap;
1435 	u_int slot;
1436 
1437 	UVMHIST_FUNC("amap_lookups"); UVMHIST_CALLED(maphist);
1438 	KASSERT(mutex_owned(amap->am_lock));
1439 
1440 	AMAP_B2SLOT(slot, offset);
1441 	slot += aref->ar_pageoff;
1442 
1443 	UVMHIST_LOG(maphist, "  slot=%u, npages=%d, nslot=%d",
1444 	    slot, npages, amap->am_nslot, 0);
1445 
1446 	KASSERT((slot + (npages - 1)) < amap->am_nslot);
1447 	memcpy(anons, &amap->am_anon[slot], npages * sizeof(struct vm_anon *));
1448 
1449 #if defined(DIAGNOSTIC)
1450 	for (int i = 0; i < npages; i++) {
1451 		struct vm_anon * const an = anons[i];
1452 		if (an == NULL) {
1453 			continue;
1454 		}
1455 		KASSERT(an->an_ref != 0);
1456 		KASSERT(an->an_lock == amap->am_lock);
1457 	}
1458 #endif
1459 	UVMHIST_LOG(maphist, "<- done", 0, 0, 0, 0);
1460 }
1461 
1462 /*
1463  * amap_add: add (or replace) a page to an amap.
1464  *
1465  * => amap should be locked by caller.
1466  * => anon must have the lock associated with this amap.
1467  */
1468 void
amap_add(struct vm_aref * aref,vaddr_t offset,struct vm_anon * anon,bool replace)1469 amap_add(struct vm_aref *aref, vaddr_t offset, struct vm_anon *anon,
1470     bool replace)
1471 {
1472 	struct vm_amap *amap = aref->ar_amap;
1473 	u_int slot;
1474 
1475 	UVMHIST_FUNC("amap_add"); UVMHIST_CALLED(maphist);
1476 	KASSERT(mutex_owned(amap->am_lock));
1477 	KASSERT(anon->an_lock == amap->am_lock);
1478 
1479 	AMAP_B2SLOT(slot, offset);
1480 	slot += aref->ar_pageoff;
1481 	KASSERT(slot < amap->am_nslot);
1482 
1483 	if (replace) {
1484 		struct vm_anon *oanon = amap->am_anon[slot];
1485 
1486 		KASSERT(oanon != NULL);
1487 		if (oanon->an_page && (amap->am_flags & AMAP_SHARED) != 0) {
1488 			pmap_page_protect(oanon->an_page, VM_PROT_NONE);
1489 			/*
1490 			 * XXX: suppose page is supposed to be wired somewhere?
1491 			 */
1492 		}
1493 	} else {
1494 		KASSERT(amap->am_anon[slot] == NULL);
1495 		KASSERT(amap->am_nused < amap->am_maxslot);
1496 		amap->am_bckptr[slot] = amap->am_nused;
1497 		amap->am_slots[amap->am_nused] = slot;
1498 		amap->am_nused++;
1499 	}
1500 	amap->am_anon[slot] = anon;
1501 	UVMHIST_LOG(maphist,
1502 	    "<- done (amap=0x%x, offset=0x%x, anon=0x%x, rep=%d)",
1503 	    amap, offset, anon, replace);
1504 }
1505 
1506 /*
1507  * amap_unadd: remove a page from an amap.
1508  *
1509  * => amap should be locked by caller.
1510  */
1511 void
amap_unadd(struct vm_aref * aref,vaddr_t offset)1512 amap_unadd(struct vm_aref *aref, vaddr_t offset)
1513 {
1514 	struct vm_amap *amap = aref->ar_amap;
1515 	u_int slot, ptr, last;
1516 
1517 	UVMHIST_FUNC("amap_unadd"); UVMHIST_CALLED(maphist);
1518 	KASSERT(mutex_owned(amap->am_lock));
1519 
1520 	AMAP_B2SLOT(slot, offset);
1521 	slot += aref->ar_pageoff;
1522 	KASSERT(slot < amap->am_nslot);
1523 	KASSERT(amap->am_anon[slot] != NULL);
1524 	KASSERT(amap->am_anon[slot]->an_lock == amap->am_lock);
1525 
1526 	amap->am_anon[slot] = NULL;
1527 	ptr = amap->am_bckptr[slot];
1528 
1529 	last = amap->am_nused - 1;
1530 	if (ptr != last) {
1531 		/* Move the last entry to keep the slots contiguous. */
1532 		amap->am_slots[ptr] = amap->am_slots[last];
1533 		amap->am_bckptr[amap->am_slots[ptr]] = ptr;
1534 	}
1535 	amap->am_nused--;
1536 	UVMHIST_LOG(maphist, "<- done (amap=0x%x, slot=0x%x)", amap, slot,0, 0);
1537 }
1538 
1539 /*
1540  * amap_adjref_anons: adjust the reference count(s) on amap and its anons.
1541  */
1542 static void
amap_adjref_anons(struct vm_amap * amap,vaddr_t offset,vsize_t len,int refv,bool all)1543 amap_adjref_anons(struct vm_amap *amap, vaddr_t offset, vsize_t len,
1544     int refv, bool all)
1545 {
1546 	struct vm_anon *tofree = NULL;
1547 
1548 #ifdef UVM_AMAP_PPREF
1549 	KASSERT(mutex_owned(amap->am_lock));
1550 
1551 	/*
1552 	 * We must establish the ppref array before changing am_ref
1553 	 * so that the ppref values match the current amap refcount.
1554 	 */
1555 
1556 	if (amap->am_ppref == NULL && !all && len != amap->am_nslot) {
1557 		amap_pp_establish(amap, offset);
1558 	}
1559 #endif
1560 
1561 	amap->am_ref += refv;
1562 
1563 #ifdef UVM_AMAP_PPREF
1564 	if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
1565 		if (all) {
1566 			amap_pp_adjref(amap, 0, amap->am_nslot, refv, &tofree);
1567 		} else {
1568 			amap_pp_adjref(amap, offset, len, refv, &tofree);
1569 		}
1570 	}
1571 #endif
1572 	uvm_anon_freelst(amap, tofree);
1573 }
1574 
1575 /*
1576  * amap_ref: gain a reference to an amap.
1577  *
1578  * => amap must not be locked (we will lock).
1579  * => "offset" and "len" are in units of pages.
1580  * => Called at fork time to gain the child's reference.
1581  */
1582 void
amap_ref(struct vm_amap * amap,vaddr_t offset,vsize_t len,int flags)1583 amap_ref(struct vm_amap *amap, vaddr_t offset, vsize_t len, int flags)
1584 {
1585 	UVMHIST_FUNC("amap_ref"); UVMHIST_CALLED(maphist);
1586 
1587 	amap_lock(amap);
1588 	if (flags & AMAP_SHARED) {
1589 		amap->am_flags |= AMAP_SHARED;
1590 	}
1591 	amap_adjref_anons(amap, offset, len, 1, (flags & AMAP_REFALL) != 0);
1592 
1593 	UVMHIST_LOG(maphist,"<- done!  amap=0x%x", amap, 0, 0, 0);
1594 }
1595 
1596 /*
1597  * amap_unref: remove a reference to an amap.
1598  *
1599  * => All pmap-level references to this amap must be already removed.
1600  * => Called from uvm_unmap_detach(); entry is already removed from the map.
1601  * => We will lock amap, so it must be unlocked.
1602  */
1603 void
amap_unref(struct vm_amap * amap,vaddr_t offset,vsize_t len,bool all)1604 amap_unref(struct vm_amap *amap, vaddr_t offset, vsize_t len, bool all)
1605 {
1606 	UVMHIST_FUNC("amap_unref"); UVMHIST_CALLED(maphist);
1607 
1608 	amap_lock(amap);
1609 
1610 	UVMHIST_LOG(maphist,"  amap=0x%x  refs=%d, nused=%d",
1611 	    amap, amap->am_ref, amap->am_nused, 0);
1612 	KASSERT(amap->am_ref > 0);
1613 
1614 	if (amap->am_ref == 1) {
1615 
1616 		/*
1617 		 * If the last reference - wipeout and destroy the amap.
1618 		 */
1619 		amap->am_ref--;
1620 		amap_wipeout(amap);
1621 		UVMHIST_LOG(maphist,"<- done (was last ref)!", 0, 0, 0, 0);
1622 		return;
1623 	}
1624 
1625 	/*
1626 	 * Otherwise, drop the reference count(s) on anons.
1627 	 */
1628 
1629 	if (amap->am_ref == 2 && (amap->am_flags & AMAP_SHARED) != 0) {
1630 		amap->am_flags &= ~AMAP_SHARED;
1631 	}
1632 	amap_adjref_anons(amap, offset, len, -1, all);
1633 
1634 	UVMHIST_LOG(maphist,"<- done!", 0, 0, 0, 0);
1635 }
1636