1 /* $OpenBSD: uvm_amap.c,v 1.95 2024/05/20 17:03:36 dv Exp $ */
2 /* $NetBSD: uvm_amap.c,v 1.27 2000/11/25 06:27:59 chs Exp $ */
3
4 /*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * uvm_amap.c: amap operations
31 *
32 * this file contains functions that perform operations on amaps. see
33 * uvm_amap.h for a brief explanation of the role of amaps in uvm.
34 */
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/kernel.h>
40 #include <sys/pool.h>
41 #include <sys/atomic.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_swap.h>
45
46 /*
47 * pools for allocation of vm_amap structures. note that in order to
48 * avoid an endless loop, the amap pool's allocator cannot allocate
49 * memory from an amap (it currently goes through the kernel uobj, so
50 * we are ok).
51 */
52
53 struct pool uvm_amap_pool;
54 struct pool uvm_small_amap_pool[UVM_AMAP_CHUNK];
55 struct pool uvm_amap_chunk_pool;
56
57 LIST_HEAD(, vm_amap) amap_list;
58 struct rwlock amap_list_lock = RWLOCK_INITIALIZER("amaplstlk");
59 #define amap_lock_list() rw_enter_write(&amap_list_lock)
60 #define amap_unlock_list() rw_exit_write(&amap_list_lock)
61
62 static char amap_small_pool_names[UVM_AMAP_CHUNK][9];
63
64 /*
65 * local functions
66 */
67
68 static struct vm_amap *amap_alloc1(int, int, int);
69 static inline void amap_list_insert(struct vm_amap *);
70 static inline void amap_list_remove(struct vm_amap *);
71
72 struct vm_amap_chunk *amap_chunk_get(struct vm_amap *, int, int, int);
73 void amap_chunk_free(struct vm_amap *, struct vm_amap_chunk *);
74
75 /*
76 * if we enable PPREF, then we have a couple of extra functions that
77 * we need to prototype here...
78 */
79
80 #ifdef UVM_AMAP_PPREF
81
82 #define PPREF_NONE ((int *) -1) /* not using ppref */
83
84 void amap_pp_adjref(struct vm_amap *, int, vsize_t, int);
85 void amap_pp_establish(struct vm_amap *);
86 void amap_wiperange_chunk(struct vm_amap *, struct vm_amap_chunk *, int,
87 int);
88 void amap_wiperange(struct vm_amap *, int, int);
89
90 #endif /* UVM_AMAP_PPREF */
91
92 static inline void
amap_list_insert(struct vm_amap * amap)93 amap_list_insert(struct vm_amap *amap)
94 {
95 amap_lock_list();
96 LIST_INSERT_HEAD(&amap_list, amap, am_list);
97 amap_unlock_list();
98 }
99
100 static inline void
amap_list_remove(struct vm_amap * amap)101 amap_list_remove(struct vm_amap *amap)
102 {
103 amap_lock_list();
104 LIST_REMOVE(amap, am_list);
105 amap_unlock_list();
106 }
107
108 /*
109 * amap_chunk_get: lookup a chunk for slot. if create is non-zero,
110 * the chunk is created if it does not yet exist.
111 *
112 * => returns the chunk on success or NULL on error
113 */
114 struct vm_amap_chunk *
amap_chunk_get(struct vm_amap * amap,int slot,int create,int waitf)115 amap_chunk_get(struct vm_amap *amap, int slot, int create, int waitf)
116 {
117 int bucket = UVM_AMAP_BUCKET(amap, slot);
118 int baseslot = AMAP_BASE_SLOT(slot);
119 int n;
120 struct vm_amap_chunk *chunk, *newchunk, *pchunk = NULL;
121
122 if (UVM_AMAP_SMALL(amap))
123 return &amap->am_small;
124
125 for (chunk = amap->am_buckets[bucket]; chunk != NULL;
126 chunk = TAILQ_NEXT(chunk, ac_list)) {
127 if (UVM_AMAP_BUCKET(amap, chunk->ac_baseslot) != bucket)
128 break;
129 if (chunk->ac_baseslot == baseslot)
130 return chunk;
131 pchunk = chunk;
132 }
133 if (!create)
134 return NULL;
135
136 if (amap->am_nslot - baseslot >= UVM_AMAP_CHUNK)
137 n = UVM_AMAP_CHUNK;
138 else
139 n = amap->am_nslot - baseslot;
140
141 newchunk = pool_get(&uvm_amap_chunk_pool, waitf | PR_ZERO);
142 if (newchunk == NULL)
143 return NULL;
144
145 if (pchunk == NULL) {
146 TAILQ_INSERT_TAIL(&amap->am_chunks, newchunk, ac_list);
147 KASSERT(amap->am_buckets[bucket] == NULL);
148 amap->am_buckets[bucket] = newchunk;
149 } else
150 TAILQ_INSERT_AFTER(&amap->am_chunks, pchunk, newchunk,
151 ac_list);
152
153 amap->am_ncused++;
154 newchunk->ac_baseslot = baseslot;
155 newchunk->ac_nslot = n;
156 return newchunk;
157 }
158
159 void
amap_chunk_free(struct vm_amap * amap,struct vm_amap_chunk * chunk)160 amap_chunk_free(struct vm_amap *amap, struct vm_amap_chunk *chunk)
161 {
162 int bucket = UVM_AMAP_BUCKET(amap, chunk->ac_baseslot);
163 struct vm_amap_chunk *nchunk;
164
165 if (UVM_AMAP_SMALL(amap))
166 return;
167
168 nchunk = TAILQ_NEXT(chunk, ac_list);
169 TAILQ_REMOVE(&amap->am_chunks, chunk, ac_list);
170 if (amap->am_buckets[bucket] == chunk) {
171 if (nchunk != NULL &&
172 UVM_AMAP_BUCKET(amap, nchunk->ac_baseslot) == bucket)
173 amap->am_buckets[bucket] = nchunk;
174 else
175 amap->am_buckets[bucket] = NULL;
176
177 }
178 pool_put(&uvm_amap_chunk_pool, chunk);
179 amap->am_ncused--;
180 }
181
182 #ifdef UVM_AMAP_PPREF
183 /*
184 * what is ppref? ppref is an _optional_ amap feature which is used
185 * to keep track of reference counts on a per-page basis. it is enabled
186 * when UVM_AMAP_PPREF is defined.
187 *
188 * when enabled, an array of ints is allocated for the pprefs. this
189 * array is allocated only when a partial reference is added to the
190 * map (either by unmapping part of the amap, or gaining a reference
191 * to only a part of an amap). if the allocation of the array fails
192 * (M_NOWAIT), then we set the array pointer to PPREF_NONE to indicate
193 * that we tried to do ppref's but couldn't alloc the array so just
194 * give up (after all, this is an optional feature!).
195 *
196 * the array is divided into page sized "chunks." for chunks of length 1,
197 * the chunk reference count plus one is stored in that chunk's slot.
198 * for chunks of length > 1 the first slot contains (the reference count
199 * plus one) * -1. [the negative value indicates that the length is
200 * greater than one.] the second slot of the chunk contains the length
201 * of the chunk. here is an example:
202 *
203 * actual REFS: 2 2 2 2 3 1 1 0 0 0 4 4 0 1 1 1
204 * ppref: -3 4 x x 4 -2 2 -1 3 x -5 2 1 -2 3 x
205 * <----------><-><----><-------><----><-><------->
206 * (x = don't care)
207 *
208 * this allows us to allow one int to contain the ref count for the whole
209 * chunk. note that the "plus one" part is needed because a reference
210 * count of zero is neither positive or negative (need a way to tell
211 * if we've got one zero or a bunch of them).
212 *
213 * here are some in-line functions to help us.
214 */
215
216 /*
217 * pp_getreflen: get the reference and length for a specific offset
218 *
219 * => ppref's amap must be locked
220 */
221 static inline void
pp_getreflen(int * ppref,int offset,int * refp,int * lenp)222 pp_getreflen(int *ppref, int offset, int *refp, int *lenp)
223 {
224
225 if (ppref[offset] > 0) { /* chunk size must be 1 */
226 *refp = ppref[offset] - 1; /* don't forget to adjust */
227 *lenp = 1;
228 } else {
229 *refp = (ppref[offset] * -1) - 1;
230 *lenp = ppref[offset+1];
231 }
232 }
233
234 /*
235 * pp_setreflen: set the reference and length for a specific offset
236 *
237 * => ppref's amap must be locked
238 */
239 static inline void
pp_setreflen(int * ppref,int offset,int ref,int len)240 pp_setreflen(int *ppref, int offset, int ref, int len)
241 {
242 if (len == 1) {
243 ppref[offset] = ref + 1;
244 } else {
245 ppref[offset] = (ref + 1) * -1;
246 ppref[offset+1] = len;
247 }
248 }
249 #endif /* UVM_AMAP_PPREF */
250
251 /*
252 * amap_init: called at boot time to init global amap data structures
253 */
254
255 void
amap_init(void)256 amap_init(void)
257 {
258 int i;
259 size_t size;
260
261 /* Initialize the vm_amap pool. */
262 pool_init(&uvm_amap_pool, sizeof(struct vm_amap),
263 0, IPL_MPFLOOR, PR_WAITOK, "amappl", NULL);
264 pool_sethiwat(&uvm_amap_pool, 4096);
265
266 /* initialize small amap pools */
267 for (i = 0; i < nitems(uvm_small_amap_pool); i++) {
268 snprintf(amap_small_pool_names[i],
269 sizeof(amap_small_pool_names[0]), "amappl%d", i + 1);
270 size = offsetof(struct vm_amap, am_small.ac_anon) +
271 (i + 1) * sizeof(struct vm_anon *);
272 pool_init(&uvm_small_amap_pool[i], size, 0, IPL_MPFLOOR,
273 PR_WAITOK, amap_small_pool_names[i], NULL);
274 }
275
276 pool_init(&uvm_amap_chunk_pool, sizeof(struct vm_amap_chunk) +
277 UVM_AMAP_CHUNK * sizeof(struct vm_anon *),
278 0, IPL_MPFLOOR, PR_WAITOK, "amapchunkpl", NULL);
279 pool_sethiwat(&uvm_amap_chunk_pool, 4096);
280 }
281
282 /*
283 * amap_alloc1: allocate an amap, but do not initialise the overlay.
284 *
285 * => Note: lock is not set.
286 */
287 static inline struct vm_amap *
amap_alloc1(int slots,int waitf,int lazyalloc)288 amap_alloc1(int slots, int waitf, int lazyalloc)
289 {
290 struct vm_amap *amap;
291 struct vm_amap_chunk *chunk, *tmp;
292 int chunks, log_chunks, chunkperbucket = 1, hashshift = 0;
293 int buckets, i, n;
294 int pwaitf = (waitf & M_WAITOK) ? PR_WAITOK : PR_NOWAIT;
295
296 KASSERT(slots > 0);
297
298 /*
299 * Cast to unsigned so that rounding up cannot cause integer overflow
300 * if slots is large.
301 */
302 chunks = roundup((unsigned int)slots, UVM_AMAP_CHUNK) / UVM_AMAP_CHUNK;
303
304 if (lazyalloc) {
305 /*
306 * Basically, the amap is a hash map where the number of
307 * buckets is fixed. We select the number of buckets using the
308 * following strategy:
309 *
310 * 1. The maximal number of entries to search in a bucket upon
311 * a collision should be less than or equal to
312 * log2(slots / UVM_AMAP_CHUNK). This is the worst-case number
313 * of lookups we would have if we could chunk the amap. The
314 * log2(n) comes from the fact that amaps are chunked by
315 * splitting up their vm_map_entries and organizing those
316 * in a binary search tree.
317 *
318 * 2. The maximal number of entries in a bucket must be a
319 * power of two.
320 *
321 * The maximal number of entries per bucket is used to hash
322 * a slot to a bucket.
323 *
324 * In the future, this strategy could be refined to make it
325 * even harder/impossible that the total amount of KVA needed
326 * for the hash buckets of all amaps to exceed the maximal
327 * amount of KVA memory reserved for amaps.
328 */
329 for (log_chunks = 1; (chunks >> log_chunks) > 0; log_chunks++)
330 continue;
331
332 chunkperbucket = 1 << hashshift;
333 while (chunkperbucket + 1 < log_chunks) {
334 hashshift++;
335 chunkperbucket = 1 << hashshift;
336 }
337 }
338
339 if (slots > UVM_AMAP_CHUNK)
340 amap = pool_get(&uvm_amap_pool, pwaitf);
341 else
342 amap = pool_get(&uvm_small_amap_pool[slots - 1],
343 pwaitf | PR_ZERO);
344 if (amap == NULL)
345 return NULL;
346
347 amap->am_lock = NULL;
348 amap->am_ref = 1;
349 amap->am_flags = 0;
350 #ifdef UVM_AMAP_PPREF
351 amap->am_ppref = NULL;
352 #endif
353 amap->am_nslot = slots;
354 amap->am_nused = 0;
355
356 if (UVM_AMAP_SMALL(amap)) {
357 amap->am_small.ac_nslot = slots;
358 return amap;
359 }
360
361 amap->am_ncused = 0;
362 TAILQ_INIT(&amap->am_chunks);
363 amap->am_hashshift = hashshift;
364 amap->am_buckets = NULL;
365
366 buckets = howmany(chunks, chunkperbucket);
367 amap->am_buckets = mallocarray(buckets, sizeof(*amap->am_buckets),
368 M_UVMAMAP, waitf | (lazyalloc ? M_ZERO : 0));
369 if (amap->am_buckets == NULL)
370 goto fail1;
371 amap->am_nbuckets = buckets;
372
373 if (!lazyalloc) {
374 for (i = 0; i < buckets; i++) {
375 if (i == buckets - 1) {
376 n = slots % UVM_AMAP_CHUNK;
377 if (n == 0)
378 n = UVM_AMAP_CHUNK;
379 } else
380 n = UVM_AMAP_CHUNK;
381
382 chunk = pool_get(&uvm_amap_chunk_pool,
383 PR_ZERO | pwaitf);
384 if (chunk == NULL)
385 goto fail1;
386
387 amap->am_buckets[i] = chunk;
388 amap->am_ncused++;
389 chunk->ac_baseslot = i * UVM_AMAP_CHUNK;
390 chunk->ac_nslot = n;
391 TAILQ_INSERT_TAIL(&amap->am_chunks, chunk, ac_list);
392 }
393 }
394
395 return amap;
396
397 fail1:
398 free(amap->am_buckets, M_UVMAMAP, buckets * sizeof(*amap->am_buckets));
399 TAILQ_FOREACH_SAFE(chunk, &amap->am_chunks, ac_list, tmp)
400 pool_put(&uvm_amap_chunk_pool, chunk);
401 pool_put(&uvm_amap_pool, amap);
402 return NULL;
403 }
404
405 static void
amap_lock_alloc(struct vm_amap * amap)406 amap_lock_alloc(struct vm_amap *amap)
407 {
408 rw_obj_alloc(&amap->am_lock, "amaplk");
409 }
410
411 /*
412 * amap_alloc: allocate an amap to manage "sz" bytes of anonymous VM
413 *
414 * => caller should ensure sz is a multiple of PAGE_SIZE
415 * => reference count to new amap is set to one
416 * => new amap is returned unlocked
417 */
418 struct vm_amap *
amap_alloc(vaddr_t sz,int waitf,int lazyalloc)419 amap_alloc(vaddr_t sz, int waitf, int lazyalloc)
420 {
421 struct vm_amap *amap;
422 size_t slots;
423
424 AMAP_B2SLOT(slots, sz); /* load slots */
425 if (slots > INT_MAX)
426 return NULL;
427
428 amap = amap_alloc1(slots, waitf, lazyalloc);
429 if (amap != NULL) {
430 amap_lock_alloc(amap);
431 amap_list_insert(amap);
432 }
433
434 return amap;
435 }
436
437
438 /*
439 * amap_free: free an amap
440 *
441 * => the amap must be unlocked
442 * => the amap should have a zero reference count and be empty
443 */
444 void
amap_free(struct vm_amap * amap)445 amap_free(struct vm_amap *amap)
446 {
447 struct vm_amap_chunk *chunk, *tmp;
448
449 KASSERT(amap->am_ref == 0 && amap->am_nused == 0);
450 KASSERT((amap->am_flags & AMAP_SWAPOFF) == 0);
451
452 if (amap->am_lock != NULL) {
453 KASSERT(!rw_write_held(amap->am_lock));
454 rw_obj_free(amap->am_lock);
455 }
456
457 #ifdef UVM_AMAP_PPREF
458 if (amap->am_ppref && amap->am_ppref != PPREF_NONE)
459 free(amap->am_ppref, M_UVMAMAP, amap->am_nslot * sizeof(int));
460 #endif
461
462 if (UVM_AMAP_SMALL(amap))
463 pool_put(&uvm_small_amap_pool[amap->am_nslot - 1], amap);
464 else {
465 TAILQ_FOREACH_SAFE(chunk, &amap->am_chunks, ac_list, tmp)
466 pool_put(&uvm_amap_chunk_pool, chunk);
467 free(amap->am_buckets, M_UVMAMAP,
468 amap->am_nbuckets * sizeof(*amap->am_buckets));
469 pool_put(&uvm_amap_pool, amap);
470 }
471 }
472
473 /*
474 * amap_wipeout: wipeout all anon's in an amap; then free the amap!
475 *
476 * => Called from amap_unref(), when reference count drops to zero.
477 * => amap must be locked.
478 */
479 void
amap_wipeout(struct vm_amap * amap)480 amap_wipeout(struct vm_amap *amap)
481 {
482 int slot;
483 struct vm_anon *anon;
484 struct vm_amap_chunk *chunk;
485
486 KASSERT(rw_write_held(amap->am_lock));
487 KASSERT(amap->am_ref == 0);
488
489 if (__predict_false((amap->am_flags & AMAP_SWAPOFF) != 0)) {
490 /*
491 * Note: amap_swap_off() will call us again.
492 */
493 amap_unlock(amap);
494 return;
495 }
496
497 amap_list_remove(amap);
498
499 AMAP_CHUNK_FOREACH(chunk, amap) {
500 int i, refs, map = chunk->ac_usedmap;
501
502 for (i = ffs(map); i != 0; i = ffs(map)) {
503 slot = i - 1;
504 map ^= 1 << slot;
505 anon = chunk->ac_anon[slot];
506
507 if (anon == NULL || anon->an_ref == 0)
508 panic("amap_wipeout: corrupt amap");
509 KASSERT(anon->an_lock == amap->am_lock);
510
511 /*
512 * Drop the reference.
513 */
514 refs = --anon->an_ref;
515 if (refs == 0) {
516 uvm_anfree(anon);
517 }
518 }
519 }
520
521 /*
522 * Finally, destroy the amap.
523 */
524 amap->am_ref = 0; /* ... was one */
525 amap->am_nused = 0;
526 amap_unlock(amap);
527 amap_free(amap);
528 }
529
530 /*
531 * amap_copy: ensure that a map entry's "needs_copy" flag is false
532 * by copying the amap if necessary.
533 *
534 * => an entry with a null amap pointer will get a new (blank) one.
535 * => the map that the map entry belongs to must be locked by caller.
536 * => the amap currently attached to "entry" (if any) must be unlocked.
537 * => if canchunk is true, then we may clip the entry into a chunk
538 * => "startva" and "endva" are used only if canchunk is true. they are
539 * used to limit chunking (e.g. if you have a large space that you
540 * know you are going to need to allocate amaps for, there is no point
541 * in allowing that to be chunked)
542 */
543
544 void
amap_copy(struct vm_map * map,struct vm_map_entry * entry,int waitf,boolean_t canchunk,vaddr_t startva,vaddr_t endva)545 amap_copy(struct vm_map *map, struct vm_map_entry *entry, int waitf,
546 boolean_t canchunk, vaddr_t startva, vaddr_t endva)
547 {
548 struct vm_amap *amap, *srcamap;
549 int slots, lcv, lazyalloc = 0;
550 vaddr_t chunksize;
551 int i, j, k, n, srcslot;
552 struct vm_amap_chunk *chunk = NULL, *srcchunk = NULL;
553 struct vm_anon *anon;
554
555 KASSERT(map != kernel_map); /* we use sleeping locks */
556
557 /*
558 * Is there an amap to copy? If not, create one.
559 */
560 if (entry->aref.ar_amap == NULL) {
561 /*
562 * Check to see if we have a large amap that we can
563 * chunk. We align startva/endva to chunk-sized
564 * boundaries and then clip to them.
565 *
566 * If we cannot chunk the amap, allocate it in a way
567 * that makes it grow or shrink dynamically with
568 * the number of slots.
569 */
570 if (atop(entry->end - entry->start) >= UVM_AMAP_LARGE) {
571 if (canchunk) {
572 /* convert slots to bytes */
573 chunksize = UVM_AMAP_CHUNK << PAGE_SHIFT;
574 startva = (startva / chunksize) * chunksize;
575 endva = roundup(endva, chunksize);
576 UVM_MAP_CLIP_START(map, entry, startva);
577 /* watch out for endva wrap-around! */
578 if (endva >= startva)
579 UVM_MAP_CLIP_END(map, entry, endva);
580 } else
581 lazyalloc = 1;
582 }
583
584 entry->aref.ar_pageoff = 0;
585 entry->aref.ar_amap = amap_alloc(entry->end - entry->start,
586 waitf, lazyalloc);
587 if (entry->aref.ar_amap != NULL)
588 entry->etype &= ~UVM_ET_NEEDSCOPY;
589 return;
590 }
591
592 /*
593 * First check and see if we are the only map entry referencing
594 * he amap we currently have. If so, then just take it over instead
595 * of copying it. Note that we are reading am_ref without lock held
596 * as the value can only be one if we have the only reference
597 * to the amap (via our locked map). If the value is greater than
598 * one, then allocate amap and re-check the value.
599 */
600 if (entry->aref.ar_amap->am_ref == 1) {
601 entry->etype &= ~UVM_ET_NEEDSCOPY;
602 return;
603 }
604
605 /*
606 * Allocate a new amap (note: not initialised, etc).
607 */
608 AMAP_B2SLOT(slots, entry->end - entry->start);
609 if (!UVM_AMAP_SMALL(entry->aref.ar_amap) &&
610 entry->aref.ar_amap->am_hashshift != 0)
611 lazyalloc = 1;
612 amap = amap_alloc1(slots, waitf, lazyalloc);
613 if (amap == NULL)
614 return;
615 srcamap = entry->aref.ar_amap;
616
617 /*
618 * Make the new amap share the source amap's lock, and then lock
619 * both.
620 */
621 amap->am_lock = srcamap->am_lock;
622 rw_obj_hold(amap->am_lock);
623
624 amap_lock(srcamap);
625
626 /*
627 * Re-check the reference count with the lock held. If it has
628 * dropped to one - we can take over the existing map.
629 */
630 if (srcamap->am_ref == 1) {
631 /* Just take over the existing amap. */
632 entry->etype &= ~UVM_ET_NEEDSCOPY;
633 amap_unlock(srcamap);
634 /* Destroy the new (unused) amap. */
635 amap->am_ref--;
636 amap_free(amap);
637 return;
638 }
639
640 /*
641 * Copy the slots.
642 */
643 for (lcv = 0; lcv < slots; lcv += n) {
644 srcslot = entry->aref.ar_pageoff + lcv;
645 i = UVM_AMAP_SLOTIDX(lcv);
646 j = UVM_AMAP_SLOTIDX(srcslot);
647 n = UVM_AMAP_CHUNK;
648 if (i > j)
649 n -= i;
650 else
651 n -= j;
652 if (lcv + n > slots)
653 n = slots - lcv;
654
655 srcchunk = amap_chunk_get(srcamap, srcslot, 0, PR_NOWAIT);
656 if (srcchunk == NULL)
657 continue;
658
659 chunk = amap_chunk_get(amap, lcv, 1, PR_NOWAIT);
660 if (chunk == NULL) {
661 amap_unlock(srcamap);
662 /* Destroy the new amap. */
663 amap->am_ref--;
664 amap_free(amap);
665 return;
666 }
667
668 for (k = 0; k < n; i++, j++, k++) {
669 chunk->ac_anon[i] = anon = srcchunk->ac_anon[j];
670 if (anon == NULL)
671 continue;
672
673 KASSERT(anon->an_lock == srcamap->am_lock);
674 KASSERT(anon->an_ref > 0);
675 chunk->ac_usedmap |= (1 << i);
676 anon->an_ref++;
677 amap->am_nused++;
678 }
679 }
680
681 /*
682 * Drop our reference to the old amap (srcamap) and unlock.
683 * Since the reference count on srcamap is greater than one,
684 * (we checked above), it cannot drop to zero while it is locked.
685 */
686 srcamap->am_ref--;
687 KASSERT(srcamap->am_ref > 0);
688
689 if (srcamap->am_ref == 1 && (srcamap->am_flags & AMAP_SHARED) != 0)
690 srcamap->am_flags &= ~AMAP_SHARED; /* clear shared flag */
691 #ifdef UVM_AMAP_PPREF
692 if (srcamap->am_ppref && srcamap->am_ppref != PPREF_NONE) {
693 amap_pp_adjref(srcamap, entry->aref.ar_pageoff,
694 (entry->end - entry->start) >> PAGE_SHIFT, -1);
695 }
696 #endif
697
698 /*
699 * If we referenced any anons, then share the source amap's lock.
700 * Otherwise, we have nothing in common, so allocate a new one.
701 */
702 KASSERT(amap->am_lock == srcamap->am_lock);
703 if (amap->am_nused == 0) {
704 rw_obj_free(amap->am_lock);
705 amap->am_lock = NULL;
706 }
707 amap_unlock(srcamap);
708
709 if (amap->am_lock == NULL)
710 amap_lock_alloc(amap);
711
712 /*
713 * Install new amap.
714 */
715 entry->aref.ar_pageoff = 0;
716 entry->aref.ar_amap = amap;
717 entry->etype &= ~UVM_ET_NEEDSCOPY;
718
719 amap_list_insert(amap);
720 }
721
722 /*
723 * amap_cow_now: resolve all copy-on-write faults in an amap now for fork(2)
724 *
725 * called during fork(2) when the parent process has a wired map
726 * entry. in that case we want to avoid write-protecting pages
727 * in the parent's map (e.g. like what you'd do for a COW page)
728 * so we resolve the COW here.
729 *
730 * => assume parent's entry was wired, thus all pages are resident.
731 * => the parent and child vm_map must both be locked.
732 * => caller passes child's map/entry in to us
733 * => XXXCDC: out of memory should cause fork to fail, but there is
734 * currently no easy way to do this (needs fix)
735 */
736
737 void
amap_cow_now(struct vm_map * map,struct vm_map_entry * entry)738 amap_cow_now(struct vm_map *map, struct vm_map_entry *entry)
739 {
740 struct vm_amap *amap = entry->aref.ar_amap;
741 int slot;
742 struct vm_anon *anon, *nanon;
743 struct vm_page *pg, *npg;
744 struct vm_amap_chunk *chunk;
745
746 /*
747 * note that if we unlock the amap then we must ReStart the "lcv" for
748 * loop because some other process could reorder the anon's in the
749 * am_anon[] array on us while the lock is dropped.
750 */
751 ReStart:
752 amap_lock(amap);
753 AMAP_CHUNK_FOREACH(chunk, amap) {
754 int i, map = chunk->ac_usedmap;
755
756 for (i = ffs(map); i != 0; i = ffs(map)) {
757 slot = i - 1;
758 map ^= 1 << slot;
759 anon = chunk->ac_anon[slot];
760 pg = anon->an_page;
761 KASSERT(anon->an_lock == amap->am_lock);
762
763 /*
764 * The old page must be resident since the parent is
765 * wired.
766 */
767 KASSERT(pg != NULL);
768
769 /*
770 * if the anon ref count is one, we are safe (the child
771 * has exclusive access to the page).
772 */
773 if (anon->an_ref <= 1)
774 continue;
775
776 /*
777 * If the page is busy, then we have to unlock, wait for
778 * it and then restart.
779 */
780 if (pg->pg_flags & PG_BUSY) {
781 uvm_pagewait(pg, amap->am_lock, "cownow");
782 goto ReStart;
783 }
784
785 /*
786 * Perform a copy-on-write.
787 * First - get a new anon and a page.
788 */
789 nanon = uvm_analloc();
790 if (nanon != NULL) {
791 /* the new anon will share the amap's lock */
792 nanon->an_lock = amap->am_lock;
793 npg = uvm_pagealloc(NULL, 0, nanon, 0);
794 } else
795 npg = NULL; /* XXX: quiet gcc warning */
796
797 if (nanon == NULL || npg == NULL) {
798 /* out of memory */
799 amap_unlock(amap);
800 if (nanon != NULL) {
801 nanon->an_lock = NULL;
802 nanon->an_ref--;
803 KASSERT(nanon->an_ref == 0);
804 uvm_anfree(nanon);
805 }
806 uvm_wait("cownowpage");
807 goto ReStart;
808 }
809
810 /*
811 * Copy the data and replace anon with the new one.
812 * Also, setup its lock (share the with amap's lock).
813 */
814 uvm_pagecopy(pg, npg);
815 anon->an_ref--;
816 KASSERT(anon->an_ref > 0);
817 chunk->ac_anon[slot] = nanon;
818
819 /*
820 * Drop PG_BUSY on new page. Since its owner was write
821 * locked all this time - it cannot be PG_RELEASED or
822 * PG_WANTED.
823 */
824 atomic_clearbits_int(&npg->pg_flags, PG_BUSY|PG_FAKE);
825 UVM_PAGE_OWN(npg, NULL);
826 uvm_lock_pageq();
827 uvm_pageactivate(npg);
828 uvm_unlock_pageq();
829 }
830 }
831 amap_unlock(amap);
832 }
833
834 /*
835 * amap_splitref: split a single reference into two separate references
836 *
837 * => called from uvm_map's clip routines
838 * => origref's map should be locked
839 * => origref->ar_amap should be unlocked (we will lock)
840 */
841 void
amap_splitref(struct vm_aref * origref,struct vm_aref * splitref,vaddr_t offset)842 amap_splitref(struct vm_aref *origref, struct vm_aref *splitref, vaddr_t offset)
843 {
844 struct vm_amap *amap = origref->ar_amap;
845 int leftslots;
846
847 KASSERT(splitref->ar_amap == amap);
848 AMAP_B2SLOT(leftslots, offset);
849 if (leftslots == 0)
850 panic("amap_splitref: split at zero offset");
851
852 amap_lock(amap);
853
854 if (amap->am_nslot - origref->ar_pageoff - leftslots <= 0)
855 panic("amap_splitref: map size check failed");
856
857 #ifdef UVM_AMAP_PPREF
858 /* Establish ppref before we add a duplicate reference to the amap. */
859 if (amap->am_ppref == NULL)
860 amap_pp_establish(amap);
861 #endif
862
863 /* Note: not a share reference. */
864 amap->am_ref++;
865 splitref->ar_amap = amap;
866 splitref->ar_pageoff = origref->ar_pageoff + leftslots;
867 amap_unlock(amap);
868 }
869
870 #ifdef UVM_AMAP_PPREF
871
872 /*
873 * amap_pp_establish: add a ppref array to an amap, if possible.
874 *
875 * => amap should be locked by caller* => amap should be locked by caller
876 */
877 void
amap_pp_establish(struct vm_amap * amap)878 amap_pp_establish(struct vm_amap *amap)
879 {
880
881 KASSERT(rw_write_held(amap->am_lock));
882 amap->am_ppref = mallocarray(amap->am_nslot, sizeof(int),
883 M_UVMAMAP, M_NOWAIT|M_ZERO);
884
885 if (amap->am_ppref == NULL) {
886 /* Failure - just do not use ppref. */
887 amap->am_ppref = PPREF_NONE;
888 return;
889 }
890
891 pp_setreflen(amap->am_ppref, 0, amap->am_ref, amap->am_nslot);
892 }
893
894 /*
895 * amap_pp_adjref: adjust reference count to a part of an amap using the
896 * per-page reference count array.
897 *
898 * => caller must check that ppref != PPREF_NONE before calling.
899 * => map and amap must be locked.
900 */
901 void
amap_pp_adjref(struct vm_amap * amap,int curslot,vsize_t slotlen,int adjval)902 amap_pp_adjref(struct vm_amap *amap, int curslot, vsize_t slotlen, int adjval)
903 {
904 int stopslot, *ppref, lcv, prevlcv;
905 int ref, len, prevref, prevlen;
906
907 KASSERT(rw_write_held(amap->am_lock));
908
909 stopslot = curslot + slotlen;
910 ppref = amap->am_ppref;
911 prevlcv = 0;
912
913 /*
914 * Advance to the correct place in the array, fragment if needed.
915 */
916 for (lcv = 0 ; lcv < curslot ; lcv += len) {
917 pp_getreflen(ppref, lcv, &ref, &len);
918 if (lcv + len > curslot) { /* goes past start? */
919 pp_setreflen(ppref, lcv, ref, curslot - lcv);
920 pp_setreflen(ppref, curslot, ref, len - (curslot -lcv));
921 len = curslot - lcv; /* new length of entry @ lcv */
922 }
923 prevlcv = lcv;
924 }
925 if (lcv != 0)
926 pp_getreflen(ppref, prevlcv, &prevref, &prevlen);
927 else {
928 /*
929 * Ensure that the "prevref == ref" test below always
930 * fails, since we are starting from the beginning of
931 * the ppref array; that is, there is no previous chunk.
932 */
933 prevref = -1;
934 prevlen = 0;
935 }
936
937 /*
938 * Now adjust reference counts in range. Merge the first
939 * changed entry with the last unchanged entry if possible.
940 */
941 if (lcv != curslot)
942 panic("amap_pp_adjref: overshot target");
943
944 for (/* lcv already set */; lcv < stopslot ; lcv += len) {
945 pp_getreflen(ppref, lcv, &ref, &len);
946 if (lcv + len > stopslot) { /* goes past end? */
947 pp_setreflen(ppref, lcv, ref, stopslot - lcv);
948 pp_setreflen(ppref, stopslot, ref,
949 len - (stopslot - lcv));
950 len = stopslot - lcv;
951 }
952 ref += adjval;
953 if (ref < 0)
954 panic("amap_pp_adjref: negative reference count");
955 if (lcv == prevlcv + prevlen && ref == prevref) {
956 pp_setreflen(ppref, prevlcv, ref, prevlen + len);
957 } else {
958 pp_setreflen(ppref, lcv, ref, len);
959 }
960 if (ref == 0)
961 amap_wiperange(amap, lcv, len);
962 }
963
964 }
965
966 void
amap_wiperange_chunk(struct vm_amap * amap,struct vm_amap_chunk * chunk,int slotoff,int slots)967 amap_wiperange_chunk(struct vm_amap *amap, struct vm_amap_chunk *chunk,
968 int slotoff, int slots)
969 {
970 int curslot, i, map;
971 int startbase, endbase;
972 struct vm_anon *anon;
973
974 startbase = AMAP_BASE_SLOT(slotoff);
975 endbase = AMAP_BASE_SLOT(slotoff + slots - 1);
976
977 map = chunk->ac_usedmap;
978 if (startbase == chunk->ac_baseslot)
979 map &= ~((1 << (slotoff - startbase)) - 1);
980 if (endbase == chunk->ac_baseslot)
981 map &= (1 << (slotoff + slots - endbase)) - 1;
982
983 for (i = ffs(map); i != 0; i = ffs(map)) {
984 int refs;
985
986 curslot = i - 1;
987 map ^= 1 << curslot;
988 chunk->ac_usedmap ^= 1 << curslot;
989 anon = chunk->ac_anon[curslot];
990 KASSERT(anon->an_lock == amap->am_lock);
991
992 /* remove it from the amap */
993 chunk->ac_anon[curslot] = NULL;
994
995 amap->am_nused--;
996
997 /* drop anon reference count */
998 refs = --anon->an_ref;
999 if (refs == 0) {
1000 uvm_anfree(anon);
1001 }
1002
1003 /*
1004 * done with this anon, next ...!
1005 */
1006
1007 } /* end of 'for' loop */
1008 }
1009
1010 /*
1011 * amap_wiperange: wipe out a range of an amap.
1012 * Note: different from amap_wipeout because the amap is kept intact.
1013 *
1014 * => Both map and amap must be locked by caller.
1015 */
1016 void
amap_wiperange(struct vm_amap * amap,int slotoff,int slots)1017 amap_wiperange(struct vm_amap *amap, int slotoff, int slots)
1018 {
1019 int bucket, startbucket, endbucket;
1020 struct vm_amap_chunk *chunk, *nchunk;
1021
1022 KASSERT(rw_write_held(amap->am_lock));
1023
1024 startbucket = UVM_AMAP_BUCKET(amap, slotoff);
1025 endbucket = UVM_AMAP_BUCKET(amap, slotoff + slots - 1);
1026
1027 /*
1028 * We can either traverse the amap by am_chunks or by am_buckets.
1029 * Determine which way is less expensive.
1030 */
1031 if (UVM_AMAP_SMALL(amap))
1032 amap_wiperange_chunk(amap, &amap->am_small, slotoff, slots);
1033 else if (endbucket + 1 - startbucket >= amap->am_ncused) {
1034 TAILQ_FOREACH_SAFE(chunk, &amap->am_chunks, ac_list, nchunk) {
1035 if (chunk->ac_baseslot + chunk->ac_nslot <= slotoff)
1036 continue;
1037 if (chunk->ac_baseslot >= slotoff + slots)
1038 continue;
1039
1040 amap_wiperange_chunk(amap, chunk, slotoff, slots);
1041 if (chunk->ac_usedmap == 0)
1042 amap_chunk_free(amap, chunk);
1043 }
1044 } else {
1045 for (bucket = startbucket; bucket <= endbucket; bucket++) {
1046 for (chunk = amap->am_buckets[bucket]; chunk != NULL;
1047 chunk = nchunk) {
1048 nchunk = TAILQ_NEXT(chunk, ac_list);
1049
1050 if (UVM_AMAP_BUCKET(amap, chunk->ac_baseslot) !=
1051 bucket)
1052 break;
1053 if (chunk->ac_baseslot + chunk->ac_nslot <=
1054 slotoff)
1055 continue;
1056 if (chunk->ac_baseslot >= slotoff + slots)
1057 continue;
1058
1059 amap_wiperange_chunk(amap, chunk, slotoff,
1060 slots);
1061 if (chunk->ac_usedmap == 0)
1062 amap_chunk_free(amap, chunk);
1063 }
1064 }
1065 }
1066 }
1067
1068 #endif
1069
1070 /*
1071 * amap_swap_off: pagein anonymous pages in amaps and drop swap slots.
1072 *
1073 * => note that we don't always traverse all anons.
1074 * eg. amaps being wiped out, released anons.
1075 * => return TRUE if failed.
1076 */
1077
1078 boolean_t
amap_swap_off(int startslot,int endslot)1079 amap_swap_off(int startslot, int endslot)
1080 {
1081 struct vm_amap *am;
1082 struct vm_amap *am_next;
1083 struct vm_amap marker;
1084 boolean_t rv = FALSE;
1085
1086 amap_lock_list();
1087 for (am = LIST_FIRST(&amap_list); am != NULL && !rv; am = am_next) {
1088 int i, map;
1089 struct vm_amap_chunk *chunk;
1090
1091 amap_lock(am);
1092 if (am->am_nused == 0) {
1093 amap_unlock(am);
1094 am_next = LIST_NEXT(am, am_list);
1095 continue;
1096 }
1097
1098 LIST_INSERT_AFTER(am, &marker, am_list);
1099 amap_unlock_list();
1100
1101 again:
1102 AMAP_CHUNK_FOREACH(chunk, am) {
1103 map = chunk->ac_usedmap;
1104
1105 for (i = ffs(map); i != 0; i = ffs(map)) {
1106 int swslot;
1107 int slot = i - 1;
1108 struct vm_anon *anon;
1109
1110 map ^= 1 << slot;
1111 anon = chunk->ac_anon[slot];
1112
1113 swslot = anon->an_swslot;
1114 if (swslot < startslot || endslot <= swslot) {
1115 continue;
1116 }
1117
1118 am->am_flags |= AMAP_SWAPOFF;
1119
1120 rv = uvm_anon_pagein(am, anon);
1121 amap_lock(am);
1122
1123 am->am_flags &= ~AMAP_SWAPOFF;
1124 if (amap_refs(am) == 0) {
1125 amap_wipeout(am);
1126 am = NULL;
1127 goto nextamap;
1128 }
1129 if (rv)
1130 goto nextamap;
1131 goto again;
1132 }
1133 }
1134 nextamap:
1135 if (am != NULL)
1136 amap_unlock(am);
1137 amap_lock_list();
1138 am_next = LIST_NEXT(&marker, am_list);
1139 LIST_REMOVE(&marker, am_list);
1140 }
1141 amap_unlock_list();
1142
1143 return rv;
1144 }
1145
1146 /*
1147 * amap_lookup: look up a page in an amap.
1148 *
1149 * => amap should be locked by caller.
1150 */
1151 struct vm_anon *
amap_lookup(struct vm_aref * aref,vaddr_t offset)1152 amap_lookup(struct vm_aref *aref, vaddr_t offset)
1153 {
1154 int slot;
1155 struct vm_amap *amap = aref->ar_amap;
1156 struct vm_amap_chunk *chunk;
1157
1158 AMAP_B2SLOT(slot, offset);
1159 slot += aref->ar_pageoff;
1160 KASSERT(slot < amap->am_nslot);
1161
1162 chunk = amap_chunk_get(amap, slot, 0, PR_NOWAIT);
1163 if (chunk == NULL)
1164 return NULL;
1165
1166 return chunk->ac_anon[UVM_AMAP_SLOTIDX(slot)];
1167 }
1168
1169 /*
1170 * amap_lookups: look up a range of pages in an amap.
1171 *
1172 * => amap should be locked by caller.
1173 * => XXXCDC: this interface is biased toward array-based amaps. fix.
1174 */
1175 void
amap_lookups(struct vm_aref * aref,vaddr_t offset,struct vm_anon ** anons,int npages)1176 amap_lookups(struct vm_aref *aref, vaddr_t offset,
1177 struct vm_anon **anons, int npages)
1178 {
1179 int i, lcv, n, slot;
1180 struct vm_amap *amap = aref->ar_amap;
1181 struct vm_amap_chunk *chunk = NULL;
1182
1183 AMAP_B2SLOT(slot, offset);
1184 slot += aref->ar_pageoff;
1185
1186 KASSERT((slot + (npages - 1)) < amap->am_nslot);
1187
1188 for (i = 0, lcv = slot; lcv < slot + npages; i += n, lcv += n) {
1189 n = UVM_AMAP_CHUNK - UVM_AMAP_SLOTIDX(lcv);
1190 if (lcv + n > slot + npages)
1191 n = slot + npages - lcv;
1192
1193 chunk = amap_chunk_get(amap, lcv, 0, PR_NOWAIT);
1194 if (chunk == NULL)
1195 memset(&anons[i], 0, n * sizeof(*anons));
1196 else
1197 memcpy(&anons[i],
1198 &chunk->ac_anon[UVM_AMAP_SLOTIDX(lcv)],
1199 n * sizeof(*anons));
1200 }
1201 }
1202
1203 /*
1204 * amap_populate: ensure that the amap can store an anon for the page at
1205 * offset. This function can sleep until memory to store the anon is
1206 * available.
1207 */
1208 void
amap_populate(struct vm_aref * aref,vaddr_t offset)1209 amap_populate(struct vm_aref *aref, vaddr_t offset)
1210 {
1211 int slot;
1212 struct vm_amap *amap = aref->ar_amap;
1213 struct vm_amap_chunk *chunk;
1214
1215 AMAP_B2SLOT(slot, offset);
1216 slot += aref->ar_pageoff;
1217 KASSERT(slot < amap->am_nslot);
1218
1219 chunk = amap_chunk_get(amap, slot, 1, PR_WAITOK);
1220 KASSERT(chunk != NULL);
1221 }
1222
1223 /*
1224 * amap_add: add (or replace) a page to an amap.
1225 *
1226 * => amap should be locked by caller.
1227 * => anon must have the lock associated with this amap.
1228 */
1229 int
amap_add(struct vm_aref * aref,vaddr_t offset,struct vm_anon * anon,boolean_t replace)1230 amap_add(struct vm_aref *aref, vaddr_t offset, struct vm_anon *anon,
1231 boolean_t replace)
1232 {
1233 int slot;
1234 struct vm_amap *amap = aref->ar_amap;
1235 struct vm_amap_chunk *chunk;
1236
1237 AMAP_B2SLOT(slot, offset);
1238 slot += aref->ar_pageoff;
1239 KASSERT(slot < amap->am_nslot);
1240
1241 chunk = amap_chunk_get(amap, slot, 1, PR_NOWAIT);
1242 if (chunk == NULL)
1243 return 1;
1244
1245 slot = UVM_AMAP_SLOTIDX(slot);
1246 if (replace) {
1247 struct vm_anon *oanon = chunk->ac_anon[slot];
1248
1249 KASSERT(oanon != NULL);
1250 if (oanon->an_page && (amap->am_flags & AMAP_SHARED) != 0) {
1251 pmap_page_protect(oanon->an_page, PROT_NONE);
1252 /*
1253 * XXX: suppose page is supposed to be wired somewhere?
1254 */
1255 }
1256 } else { /* !replace */
1257 if (chunk->ac_anon[slot] != NULL)
1258 panic("amap_add: slot in use");
1259
1260 chunk->ac_usedmap |= 1 << slot;
1261 amap->am_nused++;
1262 }
1263 chunk->ac_anon[slot] = anon;
1264
1265 return 0;
1266 }
1267
1268 /*
1269 * amap_unadd: remove a page from an amap.
1270 *
1271 * => amap should be locked by caller.
1272 */
1273 void
amap_unadd(struct vm_aref * aref,vaddr_t offset)1274 amap_unadd(struct vm_aref *aref, vaddr_t offset)
1275 {
1276 struct vm_amap *amap = aref->ar_amap;
1277 struct vm_amap_chunk *chunk;
1278 int slot;
1279
1280 KASSERT(rw_write_held(amap->am_lock));
1281
1282 AMAP_B2SLOT(slot, offset);
1283 slot += aref->ar_pageoff;
1284 KASSERT(slot < amap->am_nslot);
1285 chunk = amap_chunk_get(amap, slot, 0, PR_NOWAIT);
1286 KASSERT(chunk != NULL);
1287
1288 slot = UVM_AMAP_SLOTIDX(slot);
1289 KASSERT(chunk->ac_anon[slot] != NULL);
1290
1291 chunk->ac_anon[slot] = NULL;
1292 chunk->ac_usedmap &= ~(1 << slot);
1293 amap->am_nused--;
1294
1295 if (chunk->ac_usedmap == 0)
1296 amap_chunk_free(amap, chunk);
1297 }
1298
1299 /*
1300 * amap_adjref_anons: adjust the reference count(s) on amap and its anons.
1301 */
1302 static void
amap_adjref_anons(struct vm_amap * amap,vaddr_t offset,vsize_t len,int refv,boolean_t all)1303 amap_adjref_anons(struct vm_amap *amap, vaddr_t offset, vsize_t len,
1304 int refv, boolean_t all)
1305 {
1306 #ifdef UVM_AMAP_PPREF
1307 KASSERT(rw_write_held(amap->am_lock));
1308
1309 /*
1310 * We must establish the ppref array before changing am_ref
1311 * so that the ppref values match the current amap refcount.
1312 */
1313 if (amap->am_ppref == NULL && !all && len != amap->am_nslot) {
1314 amap_pp_establish(amap);
1315 }
1316 #endif
1317
1318 amap->am_ref += refv;
1319
1320 #ifdef UVM_AMAP_PPREF
1321 if (amap->am_ppref && amap->am_ppref != PPREF_NONE) {
1322 if (all) {
1323 amap_pp_adjref(amap, 0, amap->am_nslot, refv);
1324 } else {
1325 amap_pp_adjref(amap, offset, len, refv);
1326 }
1327 }
1328 #endif
1329 amap_unlock(amap);
1330 }
1331
1332 /*
1333 * amap_ref: gain a reference to an amap.
1334 *
1335 * => amap must not be locked (we will lock).
1336 * => "offset" and "len" are in units of pages.
1337 * => Called at fork time to gain the child's reference.
1338 */
1339 void
amap_ref(struct vm_amap * amap,vaddr_t offset,vsize_t len,int flags)1340 amap_ref(struct vm_amap *amap, vaddr_t offset, vsize_t len, int flags)
1341 {
1342 amap_lock(amap);
1343 if (flags & AMAP_SHARED)
1344 amap->am_flags |= AMAP_SHARED;
1345 amap_adjref_anons(amap, offset, len, 1, (flags & AMAP_REFALL) != 0);
1346 }
1347
1348 /*
1349 * amap_unref: remove a reference to an amap.
1350 *
1351 * => All pmap-level references to this amap must be already removed.
1352 * => Called from uvm_unmap_detach(); entry is already removed from the map.
1353 * => We will lock amap, so it must be unlocked.
1354 */
1355 void
amap_unref(struct vm_amap * amap,vaddr_t offset,vsize_t len,boolean_t all)1356 amap_unref(struct vm_amap *amap, vaddr_t offset, vsize_t len, boolean_t all)
1357 {
1358 amap_lock(amap);
1359
1360 KASSERT(amap->am_ref > 0);
1361
1362 if (amap->am_ref == 1) {
1363 /*
1364 * If the last reference - wipeout and destroy the amap.
1365 */
1366 amap->am_ref--;
1367 amap_wipeout(amap);
1368 return;
1369 }
1370
1371 /*
1372 * Otherwise, drop the reference count(s) on anons.
1373 */
1374 if (amap->am_ref == 2 && (amap->am_flags & AMAP_SHARED) != 0) {
1375 amap->am_flags &= ~AMAP_SHARED;
1376 }
1377 amap_adjref_anons(amap, offset, len, -1, all);
1378 }
1379