xref: /openbsd/sys/dev/pci/drm/amd/amdgpu/amdgpu_gfx.c (revision bbf030e1)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32 
33 /* delay 0.1 second to enable gfx off feature */
34 #define GFX_OFF_DELAY_ENABLE         msecs_to_jiffies(100)
35 
36 #define GFX_OFF_NO_DELAY 0
37 
38 /*
39  * GPU GFX IP block helpers function.
40  */
41 
amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device * adev,int mec,int pipe,int queue)42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
43 				int pipe, int queue)
44 {
45 	int bit = 0;
46 
47 	bit += mec * adev->gfx.mec.num_pipe_per_mec
48 		* adev->gfx.mec.num_queue_per_pipe;
49 	bit += pipe * adev->gfx.mec.num_queue_per_pipe;
50 	bit += queue;
51 
52 	return bit;
53 }
54 
amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device * adev,int bit,int * mec,int * pipe,int * queue)55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
56 				 int *mec, int *pipe, int *queue)
57 {
58 	*queue = bit % adev->gfx.mec.num_queue_per_pipe;
59 	*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
60 		% adev->gfx.mec.num_pipe_per_mec;
61 	*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
62 	       / adev->gfx.mec.num_pipe_per_mec;
63 
64 }
65 
amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device * adev,int xcc_id,int mec,int pipe,int queue)66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
67 				     int xcc_id, int mec, int pipe, int queue)
68 {
69 	return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
70 			adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
71 }
72 
amdgpu_gfx_me_queue_to_bit(struct amdgpu_device * adev,int me,int pipe,int queue)73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
74 			       int me, int pipe, int queue)
75 {
76 	int bit = 0;
77 
78 	bit += me * adev->gfx.me.num_pipe_per_me
79 		* adev->gfx.me.num_queue_per_pipe;
80 	bit += pipe * adev->gfx.me.num_queue_per_pipe;
81 	bit += queue;
82 
83 	return bit;
84 }
85 
amdgpu_gfx_bit_to_me_queue(struct amdgpu_device * adev,int bit,int * me,int * pipe,int * queue)86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
87 				int *me, int *pipe, int *queue)
88 {
89 	*queue = bit % adev->gfx.me.num_queue_per_pipe;
90 	*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
91 		% adev->gfx.me.num_pipe_per_me;
92 	*me = (bit / adev->gfx.me.num_queue_per_pipe)
93 		/ adev->gfx.me.num_pipe_per_me;
94 }
95 
amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device * adev,int me,int pipe,int queue)96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
97 				    int me, int pipe, int queue)
98 {
99 	return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
100 			adev->gfx.me.queue_bitmap);
101 }
102 
103 /**
104  * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
105  *
106  * @mask: array in which the per-shader array disable masks will be stored
107  * @max_se: number of SEs
108  * @max_sh: number of SHs
109  *
110  * The bitmask of CUs to be disabled in the shader array determined by se and
111  * sh is stored in mask[se * max_sh + sh].
112  */
amdgpu_gfx_parse_disable_cu(unsigned int * mask,unsigned int max_se,unsigned int max_sh)113 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
114 {
115 	unsigned int se, sh, cu;
116 	const char *p;
117 
118 	memset(mask, 0, sizeof(*mask) * max_se * max_sh);
119 
120 	if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
121 		return;
122 
123 #ifdef notyet
124 	p = amdgpu_disable_cu;
125 	for (;;) {
126 		char *next;
127 		int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
128 
129 		if (ret < 3) {
130 			DRM_ERROR("amdgpu: could not parse disable_cu\n");
131 			return;
132 		}
133 
134 		if (se < max_se && sh < max_sh && cu < 16) {
135 			DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
136 			mask[se * max_sh + sh] |= 1u << cu;
137 		} else {
138 			DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
139 				  se, sh, cu);
140 		}
141 
142 		next = strchr(p, ',');
143 		if (!next)
144 			break;
145 		p = next + 1;
146 	}
147 #endif
148 }
149 
amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device * adev)150 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
151 {
152 	return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
153 }
154 
amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device * adev)155 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
156 {
157 	if (amdgpu_compute_multipipe != -1) {
158 		DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
159 			 amdgpu_compute_multipipe);
160 		return amdgpu_compute_multipipe == 1;
161 	}
162 
163 	if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
164 		return true;
165 
166 	/* FIXME: spreading the queues across pipes causes perf regressions
167 	 * on POLARIS11 compute workloads */
168 	if (adev->asic_type == CHIP_POLARIS11)
169 		return false;
170 
171 	return adev->gfx.mec.num_mec > 1;
172 }
173 
amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)174 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
175 						struct amdgpu_ring *ring)
176 {
177 	int queue = ring->queue;
178 	int pipe = ring->pipe;
179 
180 	/* Policy: use pipe1 queue0 as high priority graphics queue if we
181 	 * have more than one gfx pipe.
182 	 */
183 	if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
184 	    adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
185 		int me = ring->me;
186 		int bit;
187 
188 		bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
189 		if (ring == &adev->gfx.gfx_ring[bit])
190 			return true;
191 	}
192 
193 	return false;
194 }
195 
amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)196 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
197 					       struct amdgpu_ring *ring)
198 {
199 	/* Policy: use 1st queue as high priority compute queue if we
200 	 * have more than one compute queue.
201 	 */
202 	if (adev->gfx.num_compute_rings > 1 &&
203 	    ring == &adev->gfx.compute_ring[0])
204 		return true;
205 
206 	return false;
207 }
208 
amdgpu_gfx_compute_queue_acquire(struct amdgpu_device * adev)209 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
210 {
211 	int i, j, queue, pipe;
212 	bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
213 	int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
214 				     adev->gfx.mec.num_queue_per_pipe,
215 				     adev->gfx.num_compute_rings);
216 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
217 
218 	if (multipipe_policy) {
219 		/* policy: make queues evenly cross all pipes on MEC1 only
220 		 * for multiple xcc, just use the original policy for simplicity */
221 		for (j = 0; j < num_xcc; j++) {
222 			for (i = 0; i < max_queues_per_mec; i++) {
223 				pipe = i % adev->gfx.mec.num_pipe_per_mec;
224 				queue = (i / adev->gfx.mec.num_pipe_per_mec) %
225 					 adev->gfx.mec.num_queue_per_pipe;
226 
227 				set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
228 					adev->gfx.mec_bitmap[j].queue_bitmap);
229 			}
230 		}
231 	} else {
232 		/* policy: amdgpu owns all queues in the given pipe */
233 		for (j = 0; j < num_xcc; j++) {
234 			for (i = 0; i < max_queues_per_mec; ++i)
235 				set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
236 		}
237 	}
238 
239 	for (j = 0; j < num_xcc; j++) {
240 		dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
241 			bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
242 	}
243 }
244 
amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device * adev)245 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
246 {
247 	int i, queue, pipe;
248 	bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
249 	int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
250 					adev->gfx.me.num_queue_per_pipe;
251 
252 	if (multipipe_policy) {
253 		/* policy: amdgpu owns the first queue per pipe at this stage
254 		 * will extend to mulitple queues per pipe later */
255 		for (i = 0; i < max_queues_per_me; i++) {
256 			pipe = i % adev->gfx.me.num_pipe_per_me;
257 			queue = (i / adev->gfx.me.num_pipe_per_me) %
258 				adev->gfx.me.num_queue_per_pipe;
259 
260 			set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
261 				adev->gfx.me.queue_bitmap);
262 		}
263 	} else {
264 		for (i = 0; i < max_queues_per_me; ++i)
265 			set_bit(i, adev->gfx.me.queue_bitmap);
266 	}
267 
268 	/* update the number of active graphics rings */
269 	adev->gfx.num_gfx_rings =
270 		bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
271 }
272 
amdgpu_gfx_kiq_acquire(struct amdgpu_device * adev,struct amdgpu_ring * ring,int xcc_id)273 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
274 				  struct amdgpu_ring *ring, int xcc_id)
275 {
276 	int queue_bit;
277 	int mec, pipe, queue;
278 
279 	queue_bit = adev->gfx.mec.num_mec
280 		    * adev->gfx.mec.num_pipe_per_mec
281 		    * adev->gfx.mec.num_queue_per_pipe;
282 
283 	while (--queue_bit >= 0) {
284 		if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
285 			continue;
286 
287 		amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
288 
289 		/*
290 		 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
291 		 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
292 		 * only can be issued on queue 0.
293 		 */
294 		if ((mec == 1 && pipe > 1) || queue != 0)
295 			continue;
296 
297 		ring->me = mec + 1;
298 		ring->pipe = pipe;
299 		ring->queue = queue;
300 
301 		return 0;
302 	}
303 
304 	dev_err(adev->dev, "Failed to find a queue for KIQ\n");
305 	return -EINVAL;
306 }
307 
amdgpu_gfx_kiq_init_ring(struct amdgpu_device * adev,struct amdgpu_ring * ring,struct amdgpu_irq_src * irq,int xcc_id)308 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
309 			     struct amdgpu_ring *ring,
310 			     struct amdgpu_irq_src *irq, int xcc_id)
311 {
312 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
313 	int r = 0;
314 
315 	mtx_init(&kiq->ring_lock, IPL_TTY);
316 
317 	ring->adev = NULL;
318 	ring->ring_obj = NULL;
319 	ring->use_doorbell = true;
320 	ring->xcc_id = xcc_id;
321 	ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
322 	ring->doorbell_index =
323 		(adev->doorbell_index.kiq +
324 		 xcc_id * adev->doorbell_index.xcc_doorbell_range)
325 		<< 1;
326 
327 	r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
328 	if (r)
329 		return r;
330 
331 	ring->eop_gpu_addr = kiq->eop_gpu_addr;
332 	ring->no_scheduler = true;
333 	snprintf(ring->name, sizeof(ring->name), "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
334 	r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
335 			     AMDGPU_RING_PRIO_DEFAULT, NULL);
336 	if (r)
337 		dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
338 
339 	return r;
340 }
341 
amdgpu_gfx_kiq_free_ring(struct amdgpu_ring * ring)342 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
343 {
344 	amdgpu_ring_fini(ring);
345 }
346 
amdgpu_gfx_kiq_fini(struct amdgpu_device * adev,int xcc_id)347 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
348 {
349 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
350 
351 	amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
352 }
353 
amdgpu_gfx_kiq_init(struct amdgpu_device * adev,unsigned int hpd_size,int xcc_id)354 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
355 			unsigned int hpd_size, int xcc_id)
356 {
357 	int r;
358 	u32 *hpd;
359 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
360 
361 	r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
362 				    AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
363 				    &kiq->eop_gpu_addr, (void **)&hpd);
364 	if (r) {
365 		dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
366 		return r;
367 	}
368 
369 	memset(hpd, 0, hpd_size);
370 
371 	r = amdgpu_bo_reserve(kiq->eop_obj, true);
372 	if (unlikely(r != 0))
373 		dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
374 	amdgpu_bo_kunmap(kiq->eop_obj);
375 	amdgpu_bo_unreserve(kiq->eop_obj);
376 
377 	return 0;
378 }
379 
380 /* create MQD for each compute/gfx queue */
amdgpu_gfx_mqd_sw_init(struct amdgpu_device * adev,unsigned int mqd_size,int xcc_id)381 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
382 			   unsigned int mqd_size, int xcc_id)
383 {
384 	int r, i, j;
385 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
386 	struct amdgpu_ring *ring = &kiq->ring;
387 	u32 domain = AMDGPU_GEM_DOMAIN_GTT;
388 
389 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
390 	/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
391 	if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
392 		domain |= AMDGPU_GEM_DOMAIN_VRAM;
393 #endif
394 
395 	/* create MQD for KIQ */
396 	if (!adev->enable_mes_kiq && !ring->mqd_obj) {
397 		/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
398 		 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
399 		 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
400 		 * KIQ MQD no matter SRIOV or Bare-metal
401 		 */
402 		r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
403 					    AMDGPU_GEM_DOMAIN_VRAM |
404 					    AMDGPU_GEM_DOMAIN_GTT,
405 					    &ring->mqd_obj,
406 					    &ring->mqd_gpu_addr,
407 					    &ring->mqd_ptr);
408 		if (r) {
409 			dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
410 			return r;
411 		}
412 
413 		/* prepare MQD backup */
414 		kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
415 		if (!kiq->mqd_backup) {
416 			dev_warn(adev->dev,
417 				 "no memory to create MQD backup for ring %s\n", ring->name);
418 			return -ENOMEM;
419 		}
420 	}
421 
422 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
423 		/* create MQD for each KGQ */
424 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
425 			ring = &adev->gfx.gfx_ring[i];
426 			if (!ring->mqd_obj) {
427 				r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
428 							    domain, &ring->mqd_obj,
429 							    &ring->mqd_gpu_addr, &ring->mqd_ptr);
430 				if (r) {
431 					dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
432 					return r;
433 				}
434 
435 				ring->mqd_size = mqd_size;
436 				/* prepare MQD backup */
437 				adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
438 				if (!adev->gfx.me.mqd_backup[i]) {
439 					dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
440 					return -ENOMEM;
441 				}
442 			}
443 		}
444 	}
445 
446 	/* create MQD for each KCQ */
447 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
448 		j = i + xcc_id * adev->gfx.num_compute_rings;
449 		ring = &adev->gfx.compute_ring[j];
450 		if (!ring->mqd_obj) {
451 			r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
452 						    domain, &ring->mqd_obj,
453 						    &ring->mqd_gpu_addr, &ring->mqd_ptr);
454 			if (r) {
455 				dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
456 				return r;
457 			}
458 
459 			ring->mqd_size = mqd_size;
460 			/* prepare MQD backup */
461 			adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
462 			if (!adev->gfx.mec.mqd_backup[j]) {
463 				dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
464 				return -ENOMEM;
465 			}
466 		}
467 	}
468 
469 	return 0;
470 }
471 
amdgpu_gfx_mqd_sw_fini(struct amdgpu_device * adev,int xcc_id)472 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
473 {
474 	struct amdgpu_ring *ring = NULL;
475 	int i, j;
476 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
477 
478 	if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
479 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
480 			ring = &adev->gfx.gfx_ring[i];
481 			kfree(adev->gfx.me.mqd_backup[i]);
482 			amdgpu_bo_free_kernel(&ring->mqd_obj,
483 					      &ring->mqd_gpu_addr,
484 					      &ring->mqd_ptr);
485 		}
486 	}
487 
488 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
489 		j = i + xcc_id * adev->gfx.num_compute_rings;
490 		ring = &adev->gfx.compute_ring[j];
491 		kfree(adev->gfx.mec.mqd_backup[j]);
492 		amdgpu_bo_free_kernel(&ring->mqd_obj,
493 				      &ring->mqd_gpu_addr,
494 				      &ring->mqd_ptr);
495 	}
496 
497 	ring = &kiq->ring;
498 	kfree(kiq->mqd_backup);
499 	amdgpu_bo_free_kernel(&ring->mqd_obj,
500 			      &ring->mqd_gpu_addr,
501 			      &ring->mqd_ptr);
502 }
503 
amdgpu_gfx_disable_kcq(struct amdgpu_device * adev,int xcc_id)504 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
505 {
506 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
507 	struct amdgpu_ring *kiq_ring = &kiq->ring;
508 	int i, r = 0;
509 	int j;
510 
511 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
512 		return -EINVAL;
513 
514 	spin_lock(&kiq->ring_lock);
515 	if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
516 					adev->gfx.num_compute_rings)) {
517 		spin_unlock(&kiq->ring_lock);
518 		return -ENOMEM;
519 	}
520 
521 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
522 		j = i + xcc_id * adev->gfx.num_compute_rings;
523 		kiq->pmf->kiq_unmap_queues(kiq_ring,
524 					   &adev->gfx.compute_ring[j],
525 					   RESET_QUEUES, 0, 0);
526 	}
527 
528 	if (kiq_ring->sched.ready && !adev->job_hang)
529 		r = amdgpu_ring_test_helper(kiq_ring);
530 	spin_unlock(&kiq->ring_lock);
531 
532 	return r;
533 }
534 
amdgpu_gfx_disable_kgq(struct amdgpu_device * adev,int xcc_id)535 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
536 {
537 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
538 	struct amdgpu_ring *kiq_ring = &kiq->ring;
539 	int i, r = 0;
540 	int j;
541 
542 	if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
543 		return -EINVAL;
544 
545 	spin_lock(&kiq->ring_lock);
546 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
547 		if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
548 						adev->gfx.num_gfx_rings)) {
549 			spin_unlock(&kiq->ring_lock);
550 			return -ENOMEM;
551 		}
552 
553 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
554 			j = i + xcc_id * adev->gfx.num_gfx_rings;
555 			kiq->pmf->kiq_unmap_queues(kiq_ring,
556 						   &adev->gfx.gfx_ring[j],
557 						   PREEMPT_QUEUES, 0, 0);
558 		}
559 	}
560 
561 	if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
562 		r = amdgpu_ring_test_helper(kiq_ring);
563 	spin_unlock(&kiq->ring_lock);
564 
565 	return r;
566 }
567 
amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device * adev,int queue_bit)568 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
569 					int queue_bit)
570 {
571 	int mec, pipe, queue;
572 	int set_resource_bit = 0;
573 
574 	amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
575 
576 	set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
577 
578 	return set_resource_bit;
579 }
580 
amdgpu_gfx_enable_kcq(struct amdgpu_device * adev,int xcc_id)581 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
582 {
583 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
584 	struct amdgpu_ring *kiq_ring = &kiq->ring;
585 	uint64_t queue_mask = 0;
586 	int r, i, j;
587 
588 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
589 		return -EINVAL;
590 
591 	for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
592 		if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
593 			continue;
594 
595 		/* This situation may be hit in the future if a new HW
596 		 * generation exposes more than 64 queues. If so, the
597 		 * definition of queue_mask needs updating */
598 		if (WARN_ON(i > (sizeof(queue_mask)*8))) {
599 			DRM_ERROR("Invalid KCQ enabled: %d\n", i);
600 			break;
601 		}
602 
603 		queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
604 	}
605 
606 	DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
607 							kiq_ring->queue);
608 	amdgpu_device_flush_hdp(adev, NULL);
609 
610 	spin_lock(&kiq->ring_lock);
611 	r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
612 					adev->gfx.num_compute_rings +
613 					kiq->pmf->set_resources_size);
614 	if (r) {
615 		DRM_ERROR("Failed to lock KIQ (%d).\n", r);
616 		spin_unlock(&kiq->ring_lock);
617 		return r;
618 	}
619 
620 	if (adev->enable_mes)
621 		queue_mask = ~0ULL;
622 
623 	kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
624 	for (i = 0; i < adev->gfx.num_compute_rings; i++) {
625 		j = i + xcc_id * adev->gfx.num_compute_rings;
626 			kiq->pmf->kiq_map_queues(kiq_ring,
627 						 &adev->gfx.compute_ring[j]);
628 	}
629 
630 	r = amdgpu_ring_test_helper(kiq_ring);
631 	spin_unlock(&kiq->ring_lock);
632 	if (r)
633 		DRM_ERROR("KCQ enable failed\n");
634 
635 	return r;
636 }
637 
amdgpu_gfx_enable_kgq(struct amdgpu_device * adev,int xcc_id)638 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
639 {
640 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
641 	struct amdgpu_ring *kiq_ring = &kiq->ring;
642 	int r, i, j;
643 
644 	if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
645 		return -EINVAL;
646 
647 	amdgpu_device_flush_hdp(adev, NULL);
648 
649 	spin_lock(&kiq->ring_lock);
650 	/* No need to map kcq on the slave */
651 	if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
652 		r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
653 						adev->gfx.num_gfx_rings);
654 		if (r) {
655 			DRM_ERROR("Failed to lock KIQ (%d).\n", r);
656 			spin_unlock(&kiq->ring_lock);
657 			return r;
658 		}
659 
660 		for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
661 			j = i + xcc_id * adev->gfx.num_gfx_rings;
662 			kiq->pmf->kiq_map_queues(kiq_ring,
663 						 &adev->gfx.gfx_ring[j]);
664 		}
665 	}
666 
667 	r = amdgpu_ring_test_helper(kiq_ring);
668 	spin_unlock(&kiq->ring_lock);
669 	if (r)
670 		DRM_ERROR("KCQ enable failed\n");
671 
672 	return r;
673 }
674 
675 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
676  *
677  * @adev: amdgpu_device pointer
678  * @bool enable true: enable gfx off feature, false: disable gfx off feature
679  *
680  * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
681  * 2. other client can send request to disable gfx off feature, the request should be honored.
682  * 3. other client can cancel their request of disable gfx off feature
683  * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
684  */
685 
amdgpu_gfx_off_ctrl(struct amdgpu_device * adev,bool enable)686 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
687 {
688 	unsigned long delay = GFX_OFF_DELAY_ENABLE;
689 
690 	if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
691 		return;
692 
693 	mutex_lock(&adev->gfx.gfx_off_mutex);
694 
695 	if (enable) {
696 		/* If the count is already 0, it means there's an imbalance bug somewhere.
697 		 * Note that the bug may be in a different caller than the one which triggers the
698 		 * WARN_ON_ONCE.
699 		 */
700 		if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
701 			goto unlock;
702 
703 		adev->gfx.gfx_off_req_count--;
704 
705 		if (adev->gfx.gfx_off_req_count == 0 &&
706 		    !adev->gfx.gfx_off_state) {
707 			/* If going to s2idle, no need to wait */
708 			if (adev->in_s0ix) {
709 				if (!amdgpu_dpm_set_powergating_by_smu(adev,
710 						AMD_IP_BLOCK_TYPE_GFX, true))
711 					adev->gfx.gfx_off_state = true;
712 			} else {
713 				schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
714 					      delay);
715 			}
716 		}
717 	} else {
718 		if (adev->gfx.gfx_off_req_count == 0) {
719 			cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
720 
721 			if (adev->gfx.gfx_off_state &&
722 			    !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
723 				adev->gfx.gfx_off_state = false;
724 
725 				if (adev->gfx.funcs->init_spm_golden) {
726 					dev_dbg(adev->dev,
727 						"GFXOFF is disabled, re-init SPM golden settings\n");
728 					amdgpu_gfx_init_spm_golden(adev);
729 				}
730 			}
731 		}
732 
733 		adev->gfx.gfx_off_req_count++;
734 	}
735 
736 unlock:
737 	mutex_unlock(&adev->gfx.gfx_off_mutex);
738 }
739 
amdgpu_set_gfx_off_residency(struct amdgpu_device * adev,bool value)740 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
741 {
742 	int r = 0;
743 
744 	mutex_lock(&adev->gfx.gfx_off_mutex);
745 
746 	r = amdgpu_dpm_set_residency_gfxoff(adev, value);
747 
748 	mutex_unlock(&adev->gfx.gfx_off_mutex);
749 
750 	return r;
751 }
752 
amdgpu_get_gfx_off_residency(struct amdgpu_device * adev,u32 * value)753 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
754 {
755 	int r = 0;
756 
757 	mutex_lock(&adev->gfx.gfx_off_mutex);
758 
759 	r = amdgpu_dpm_get_residency_gfxoff(adev, value);
760 
761 	mutex_unlock(&adev->gfx.gfx_off_mutex);
762 
763 	return r;
764 }
765 
amdgpu_get_gfx_off_entrycount(struct amdgpu_device * adev,u64 * value)766 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
767 {
768 	int r = 0;
769 
770 	mutex_lock(&adev->gfx.gfx_off_mutex);
771 
772 	r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
773 
774 	mutex_unlock(&adev->gfx.gfx_off_mutex);
775 
776 	return r;
777 }
778 
amdgpu_get_gfx_off_status(struct amdgpu_device * adev,uint32_t * value)779 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
780 {
781 
782 	int r = 0;
783 
784 	mutex_lock(&adev->gfx.gfx_off_mutex);
785 
786 	r = amdgpu_dpm_get_status_gfxoff(adev, value);
787 
788 	mutex_unlock(&adev->gfx.gfx_off_mutex);
789 
790 	return r;
791 }
792 
amdgpu_gfx_ras_late_init(struct amdgpu_device * adev,struct ras_common_if * ras_block)793 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
794 {
795 	int r;
796 
797 	if (amdgpu_ras_is_supported(adev, ras_block->block)) {
798 		if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
799 			r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
800 			if (r)
801 				return r;
802 		}
803 
804 		r = amdgpu_ras_block_late_init(adev, ras_block);
805 		if (r)
806 			return r;
807 
808 		if (adev->gfx.cp_ecc_error_irq.funcs) {
809 			r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
810 			if (r)
811 				goto late_fini;
812 		}
813 	} else {
814 		amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
815 	}
816 
817 	return 0;
818 late_fini:
819 	amdgpu_ras_block_late_fini(adev, ras_block);
820 	return r;
821 }
822 
amdgpu_gfx_ras_sw_init(struct amdgpu_device * adev)823 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
824 {
825 	int err = 0;
826 	struct amdgpu_gfx_ras *ras = NULL;
827 
828 	/* adev->gfx.ras is NULL, which means gfx does not
829 	 * support ras function, then do nothing here.
830 	 */
831 	if (!adev->gfx.ras)
832 		return 0;
833 
834 	ras = adev->gfx.ras;
835 
836 	err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
837 	if (err) {
838 		dev_err(adev->dev, "Failed to register gfx ras block!\n");
839 		return err;
840 	}
841 
842 	strlcpy(ras->ras_block.ras_comm.name, "gfx",
843 	    sizeof(ras->ras_block.ras_comm.name));
844 	ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
845 	ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
846 	adev->gfx.ras_if = &ras->ras_block.ras_comm;
847 
848 	/* If not define special ras_late_init function, use gfx default ras_late_init */
849 	if (!ras->ras_block.ras_late_init)
850 		ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
851 
852 	/* If not defined special ras_cb function, use default ras_cb */
853 	if (!ras->ras_block.ras_cb)
854 		ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
855 
856 	return 0;
857 }
858 
amdgpu_gfx_poison_consumption_handler(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry)859 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
860 						struct amdgpu_iv_entry *entry)
861 {
862 	if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
863 		return adev->gfx.ras->poison_consumption_handler(adev, entry);
864 
865 	return 0;
866 }
867 
amdgpu_gfx_process_ras_data_cb(struct amdgpu_device * adev,void * err_data,struct amdgpu_iv_entry * entry)868 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
869 		void *err_data,
870 		struct amdgpu_iv_entry *entry)
871 {
872 	/* TODO ue will trigger an interrupt.
873 	 *
874 	 * When “Full RAS” is enabled, the per-IP interrupt sources should
875 	 * be disabled and the driver should only look for the aggregated
876 	 * interrupt via sync flood
877 	 */
878 	if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
879 		kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
880 		if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
881 		    adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
882 			adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
883 		amdgpu_ras_reset_gpu(adev);
884 	}
885 	return AMDGPU_RAS_SUCCESS;
886 }
887 
amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)888 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
889 				  struct amdgpu_irq_src *source,
890 				  struct amdgpu_iv_entry *entry)
891 {
892 	struct ras_common_if *ras_if = adev->gfx.ras_if;
893 	struct ras_dispatch_if ih_data = {
894 		.entry = entry,
895 	};
896 
897 	if (!ras_if)
898 		return 0;
899 
900 	ih_data.head = *ras_if;
901 
902 	DRM_ERROR("CP ECC ERROR IRQ\n");
903 	amdgpu_ras_interrupt_dispatch(adev, &ih_data);
904 	return 0;
905 }
906 
amdgpu_gfx_ras_error_func(struct amdgpu_device * adev,void * ras_error_status,void (* func)(struct amdgpu_device * adev,void * ras_error_status,int xcc_id))907 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
908 		void *ras_error_status,
909 		void (*func)(struct amdgpu_device *adev, void *ras_error_status,
910 				int xcc_id))
911 {
912 	int i;
913 	int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
914 	uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
915 	struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
916 
917 	if (err_data) {
918 		err_data->ue_count = 0;
919 		err_data->ce_count = 0;
920 	}
921 
922 	for_each_inst(i, xcc_mask)
923 		func(adev, ras_error_status, i);
924 }
925 
amdgpu_kiq_rreg(struct amdgpu_device * adev,uint32_t reg)926 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
927 {
928 	signed long r, cnt = 0;
929 	unsigned long flags;
930 	uint32_t seq, reg_val_offs = 0, value = 0;
931 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
932 	struct amdgpu_ring *ring = &kiq->ring;
933 
934 	if (amdgpu_device_skip_hw_access(adev))
935 		return 0;
936 
937 	if (adev->mes.ring.sched.ready)
938 		return amdgpu_mes_rreg(adev, reg);
939 
940 	BUG_ON(!ring->funcs->emit_rreg);
941 
942 	spin_lock_irqsave(&kiq->ring_lock, flags);
943 	if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
944 		pr_err("critical bug! too many kiq readers\n");
945 		goto failed_unlock;
946 	}
947 	r = amdgpu_ring_alloc(ring, 32);
948 	if (r)
949 		goto failed_unlock;
950 
951 	amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
952 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
953 	if (r)
954 		goto failed_undo;
955 
956 	amdgpu_ring_commit(ring);
957 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
958 
959 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
960 
961 	/* don't wait anymore for gpu reset case because this way may
962 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
963 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
964 	 * never return if we keep waiting in virt_kiq_rreg, which cause
965 	 * gpu_recover() hang there.
966 	 *
967 	 * also don't wait anymore for IRQ context
968 	 * */
969 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
970 		goto failed_kiq_read;
971 
972 	might_sleep();
973 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
974 		drm_msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
975 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
976 	}
977 
978 	if (cnt > MAX_KIQ_REG_TRY)
979 		goto failed_kiq_read;
980 
981 	mb();
982 	value = adev->wb.wb[reg_val_offs];
983 	amdgpu_device_wb_free(adev, reg_val_offs);
984 	return value;
985 
986 failed_undo:
987 	amdgpu_ring_undo(ring);
988 failed_unlock:
989 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
990 failed_kiq_read:
991 	if (reg_val_offs)
992 		amdgpu_device_wb_free(adev, reg_val_offs);
993 	dev_err(adev->dev, "failed to read reg:%x\n", reg);
994 	return ~0;
995 }
996 
amdgpu_kiq_wreg(struct amdgpu_device * adev,uint32_t reg,uint32_t v)997 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
998 {
999 	signed long r, cnt = 0;
1000 	unsigned long flags;
1001 	uint32_t seq;
1002 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
1003 	struct amdgpu_ring *ring = &kiq->ring;
1004 
1005 	BUG_ON(!ring->funcs->emit_wreg);
1006 
1007 	if (amdgpu_device_skip_hw_access(adev))
1008 		return;
1009 
1010 	if (adev->mes.ring.sched.ready) {
1011 		amdgpu_mes_wreg(adev, reg, v);
1012 		return;
1013 	}
1014 
1015 	spin_lock_irqsave(&kiq->ring_lock, flags);
1016 	r = amdgpu_ring_alloc(ring, 32);
1017 	if (r)
1018 		goto failed_unlock;
1019 
1020 	amdgpu_ring_emit_wreg(ring, reg, v);
1021 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1022 	if (r)
1023 		goto failed_undo;
1024 
1025 	amdgpu_ring_commit(ring);
1026 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1027 
1028 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1029 
1030 	/* don't wait anymore for gpu reset case because this way may
1031 	 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1032 	 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1033 	 * never return if we keep waiting in virt_kiq_rreg, which cause
1034 	 * gpu_recover() hang there.
1035 	 *
1036 	 * also don't wait anymore for IRQ context
1037 	 * */
1038 	if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1039 		goto failed_kiq_write;
1040 
1041 	might_sleep();
1042 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1043 
1044 		drm_msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1045 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1046 	}
1047 
1048 	if (cnt > MAX_KIQ_REG_TRY)
1049 		goto failed_kiq_write;
1050 
1051 	return;
1052 
1053 failed_undo:
1054 	amdgpu_ring_undo(ring);
1055 failed_unlock:
1056 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
1057 failed_kiq_write:
1058 	dev_err(adev->dev, "failed to write reg:%x\n", reg);
1059 }
1060 
amdgpu_gfx_get_num_kcq(struct amdgpu_device * adev)1061 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1062 {
1063 	if (amdgpu_num_kcq == -1) {
1064 		return 8;
1065 	} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1066 		dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1067 		return 8;
1068 	}
1069 	return amdgpu_num_kcq;
1070 }
1071 
amdgpu_gfx_cp_init_microcode(struct amdgpu_device * adev,uint32_t ucode_id)1072 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1073 				  uint32_t ucode_id)
1074 {
1075 	const struct gfx_firmware_header_v1_0 *cp_hdr;
1076 	const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1077 	struct amdgpu_firmware_info *info = NULL;
1078 	const struct firmware *ucode_fw;
1079 	unsigned int fw_size;
1080 
1081 	switch (ucode_id) {
1082 	case AMDGPU_UCODE_ID_CP_PFP:
1083 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1084 			adev->gfx.pfp_fw->data;
1085 		adev->gfx.pfp_fw_version =
1086 			le32_to_cpu(cp_hdr->header.ucode_version);
1087 		adev->gfx.pfp_feature_version =
1088 			le32_to_cpu(cp_hdr->ucode_feature_version);
1089 		ucode_fw = adev->gfx.pfp_fw;
1090 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1091 		break;
1092 	case AMDGPU_UCODE_ID_CP_RS64_PFP:
1093 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1094 			adev->gfx.pfp_fw->data;
1095 		adev->gfx.pfp_fw_version =
1096 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1097 		adev->gfx.pfp_feature_version =
1098 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1099 		ucode_fw = adev->gfx.pfp_fw;
1100 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1101 		break;
1102 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1103 	case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1104 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1105 			adev->gfx.pfp_fw->data;
1106 		ucode_fw = adev->gfx.pfp_fw;
1107 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1108 		break;
1109 	case AMDGPU_UCODE_ID_CP_ME:
1110 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1111 			adev->gfx.me_fw->data;
1112 		adev->gfx.me_fw_version =
1113 			le32_to_cpu(cp_hdr->header.ucode_version);
1114 		adev->gfx.me_feature_version =
1115 			le32_to_cpu(cp_hdr->ucode_feature_version);
1116 		ucode_fw = adev->gfx.me_fw;
1117 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1118 		break;
1119 	case AMDGPU_UCODE_ID_CP_RS64_ME:
1120 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1121 			adev->gfx.me_fw->data;
1122 		adev->gfx.me_fw_version =
1123 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1124 		adev->gfx.me_feature_version =
1125 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1126 		ucode_fw = adev->gfx.me_fw;
1127 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1128 		break;
1129 	case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1130 	case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1131 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1132 			adev->gfx.me_fw->data;
1133 		ucode_fw = adev->gfx.me_fw;
1134 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1135 		break;
1136 	case AMDGPU_UCODE_ID_CP_CE:
1137 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1138 			adev->gfx.ce_fw->data;
1139 		adev->gfx.ce_fw_version =
1140 			le32_to_cpu(cp_hdr->header.ucode_version);
1141 		adev->gfx.ce_feature_version =
1142 			le32_to_cpu(cp_hdr->ucode_feature_version);
1143 		ucode_fw = adev->gfx.ce_fw;
1144 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1145 		break;
1146 	case AMDGPU_UCODE_ID_CP_MEC1:
1147 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1148 			adev->gfx.mec_fw->data;
1149 		adev->gfx.mec_fw_version =
1150 			le32_to_cpu(cp_hdr->header.ucode_version);
1151 		adev->gfx.mec_feature_version =
1152 			le32_to_cpu(cp_hdr->ucode_feature_version);
1153 		ucode_fw = adev->gfx.mec_fw;
1154 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1155 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1156 		break;
1157 	case AMDGPU_UCODE_ID_CP_MEC1_JT:
1158 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1159 			adev->gfx.mec_fw->data;
1160 		ucode_fw = adev->gfx.mec_fw;
1161 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1162 		break;
1163 	case AMDGPU_UCODE_ID_CP_MEC2:
1164 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1165 			adev->gfx.mec2_fw->data;
1166 		adev->gfx.mec2_fw_version =
1167 			le32_to_cpu(cp_hdr->header.ucode_version);
1168 		adev->gfx.mec2_feature_version =
1169 			le32_to_cpu(cp_hdr->ucode_feature_version);
1170 		ucode_fw = adev->gfx.mec2_fw;
1171 		fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1172 			  le32_to_cpu(cp_hdr->jt_size) * 4;
1173 		break;
1174 	case AMDGPU_UCODE_ID_CP_MEC2_JT:
1175 		cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1176 			adev->gfx.mec2_fw->data;
1177 		ucode_fw = adev->gfx.mec2_fw;
1178 		fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1179 		break;
1180 	case AMDGPU_UCODE_ID_CP_RS64_MEC:
1181 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1182 			adev->gfx.mec_fw->data;
1183 		adev->gfx.mec_fw_version =
1184 			le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1185 		adev->gfx.mec_feature_version =
1186 			le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1187 		ucode_fw = adev->gfx.mec_fw;
1188 		fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1189 		break;
1190 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1191 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1192 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1193 	case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1194 		cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1195 			adev->gfx.mec_fw->data;
1196 		ucode_fw = adev->gfx.mec_fw;
1197 		fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1198 		break;
1199 	default:
1200 		dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1201 		return;
1202 	}
1203 
1204 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1205 		info = &adev->firmware.ucode[ucode_id];
1206 		info->ucode_id = ucode_id;
1207 		info->fw = ucode_fw;
1208 		adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1209 	}
1210 }
1211 
amdgpu_gfx_is_master_xcc(struct amdgpu_device * adev,int xcc_id)1212 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1213 {
1214 	return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1215 			adev->gfx.num_xcc_per_xcp : 1));
1216 }
1217 
amdgpu_gfx_get_current_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1218 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1219 						struct device_attribute *addr,
1220 						char *buf)
1221 {
1222 	struct drm_device *ddev = dev_get_drvdata(dev);
1223 	struct amdgpu_device *adev = drm_to_adev(ddev);
1224 	int mode;
1225 
1226 	mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1227 					       AMDGPU_XCP_FL_NONE);
1228 
1229 	return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1230 }
1231 
amdgpu_gfx_set_compute_partition(struct device * dev,struct device_attribute * addr,const char * buf,size_t count)1232 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1233 						struct device_attribute *addr,
1234 						const char *buf, size_t count)
1235 {
1236 	struct drm_device *ddev = dev_get_drvdata(dev);
1237 	struct amdgpu_device *adev = drm_to_adev(ddev);
1238 	enum amdgpu_gfx_partition mode;
1239 	int ret = 0, num_xcc;
1240 
1241 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1242 	if (num_xcc % 2 != 0)
1243 		return -EINVAL;
1244 
1245 	if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1246 		mode = AMDGPU_SPX_PARTITION_MODE;
1247 	} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1248 		/*
1249 		 * DPX mode needs AIDs to be in multiple of 2.
1250 		 * Each AID connects 2 XCCs.
1251 		 */
1252 		if (num_xcc%4)
1253 			return -EINVAL;
1254 		mode = AMDGPU_DPX_PARTITION_MODE;
1255 	} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1256 		if (num_xcc != 6)
1257 			return -EINVAL;
1258 		mode = AMDGPU_TPX_PARTITION_MODE;
1259 	} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1260 		if (num_xcc != 8)
1261 			return -EINVAL;
1262 		mode = AMDGPU_QPX_PARTITION_MODE;
1263 	} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1264 		mode = AMDGPU_CPX_PARTITION_MODE;
1265 	} else {
1266 		return -EINVAL;
1267 	}
1268 
1269 	ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1270 
1271 	if (ret)
1272 		return ret;
1273 
1274 	return count;
1275 }
1276 
amdgpu_gfx_get_available_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1277 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1278 						struct device_attribute *addr,
1279 						char *buf)
1280 {
1281 	struct drm_device *ddev = dev_get_drvdata(dev);
1282 	struct amdgpu_device *adev = drm_to_adev(ddev);
1283 	char *supported_partition;
1284 
1285 	/* TBD */
1286 	switch (NUM_XCC(adev->gfx.xcc_mask)) {
1287 	case 8:
1288 		supported_partition = "SPX, DPX, QPX, CPX";
1289 		break;
1290 	case 6:
1291 		supported_partition = "SPX, TPX, CPX";
1292 		break;
1293 	case 4:
1294 		supported_partition = "SPX, DPX, CPX";
1295 		break;
1296 	/* this seems only existing in emulation phase */
1297 	case 2:
1298 		supported_partition = "SPX, CPX";
1299 		break;
1300 	default:
1301 		supported_partition = "Not supported";
1302 		break;
1303 	}
1304 
1305 	return sysfs_emit(buf, "%s\n", supported_partition);
1306 }
1307 
1308 static DEVICE_ATTR(current_compute_partition, 0644,
1309 		   amdgpu_gfx_get_current_compute_partition,
1310 		   amdgpu_gfx_set_compute_partition);
1311 
1312 static DEVICE_ATTR(available_compute_partition, 0444,
1313 		   amdgpu_gfx_get_available_compute_partition, NULL);
1314 
amdgpu_gfx_sysfs_init(struct amdgpu_device * adev)1315 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1316 {
1317 	int r;
1318 
1319 	r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1320 	if (r)
1321 		return r;
1322 
1323 	r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1324 
1325 	return r;
1326 }
1327 
amdgpu_gfx_sysfs_fini(struct amdgpu_device * adev)1328 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1329 {
1330 	device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1331 	device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1332 }
1333