1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 placement->num_busy_placement = 0;
106 return;
107 }
108
109 /* Object isn't an AMDGPU object so ignore */
110 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 placement->placement = &placements;
112 placement->busy_placement = &placements;
113 placement->num_placement = 1;
114 placement->num_busy_placement = 1;
115 return;
116 }
117
118 abo = ttm_to_amdgpu_bo(bo);
119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 placement->num_placement = 0;
121 placement->num_busy_placement = 0;
122 return;
123 }
124
125 switch (bo->resource->mem_type) {
126 case AMDGPU_PL_GDS:
127 case AMDGPU_PL_GWS:
128 case AMDGPU_PL_OA:
129 case AMDGPU_PL_DOORBELL:
130 placement->num_placement = 0;
131 placement->num_busy_placement = 0;
132 return;
133
134 case TTM_PL_VRAM:
135 if (!adev->mman.buffer_funcs_enabled) {
136 /* Move to system memory */
137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 amdgpu_res_cpu_visible(adev, bo->resource)) {
141
142 /* Try evicting to the CPU inaccessible part of VRAM
143 * first, but only set GTT as busy placement, so this
144 * BO will be evicted to GTT rather than causing other
145 * BOs to be evicted from VRAM
146 */
147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 AMDGPU_GEM_DOMAIN_GTT |
149 AMDGPU_GEM_DOMAIN_CPU);
150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 abo->placements[0].lpfn = 0;
152 abo->placement.busy_placement = &abo->placements[1];
153 abo->placement.num_busy_placement = 1;
154 } else {
155 /* Move to GTT memory */
156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 AMDGPU_GEM_DOMAIN_CPU);
158 }
159 break;
160 case TTM_PL_TT:
161 case AMDGPU_PL_PREEMPT:
162 default:
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 break;
165 }
166 *placement = abo->placement;
167 }
168
169 /**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 struct ttm_resource *mem,
185 struct amdgpu_res_cursor *mm_cur,
186 unsigned int window, struct amdgpu_ring *ring,
187 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 struct amdgpu_device *adev = ring->adev;
190 unsigned int offset, num_pages, num_dw, num_bytes;
191 uint64_t src_addr, dst_addr;
192 struct amdgpu_job *job;
193 void *cpu_addr;
194 uint64_t flags;
195 unsigned int i;
196 int r;
197
198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 return -EINVAL;
203
204 /* Map only what can't be accessed directly */
205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 mm_cur->start;
208 return 0;
209 }
210
211
212 /*
213 * If start begins at an offset inside the page, then adjust the size
214 * and addr accordingly
215 */
216 offset = mm_cur->start & ~LINUX_PAGE_MASK;
217
218 num_pages = PFN_UP(*size + offset);
219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223 *addr = adev->gmc.gart_start;
224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 AMDGPU_GPU_PAGE_SIZE;
226 *addr += offset;
227
228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 AMDGPU_FENCE_OWNER_UNDEFINED,
233 num_dw * 4 + num_bytes,
234 AMDGPU_IB_POOL_DELAYED, &job);
235 if (r)
236 return r;
237
238 src_addr = num_dw * 4;
239 src_addr += job->ibs[0].gpu_addr;
240
241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 dst_addr, num_bytes, false);
245
246 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 WARN_ON(job->ibs[0].length_dw > num_dw);
248
249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 if (tmz)
251 flags |= AMDGPU_PTE_TMZ;
252
253 cpu_addr = &job->ibs[0].ptr[num_dw];
254
255 if (mem->mem_type == TTM_PL_TT) {
256 dma_addr_t *dma_addr;
257
258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 } else {
261 dma_addr_t dma_address;
262
263 dma_address = mm_cur->start;
264 dma_address += adev->vm_manager.vram_base_offset;
265
266 for (i = 0; i < num_pages; ++i) {
267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 flags, cpu_addr);
269 dma_address += PAGE_SIZE;
270 }
271 }
272
273 dma_fence_put(amdgpu_job_submit(job));
274 return 0;
275 }
276
277 /**
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
286 *
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
290 *
291 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 const struct amdgpu_copy_mem *src,
294 const struct amdgpu_copy_mem *dst,
295 uint64_t size, bool tmz,
296 struct dma_resv *resv,
297 struct dma_fence **f)
298 {
299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 struct amdgpu_res_cursor src_mm, dst_mm;
301 struct dma_fence *fence = NULL;
302 int r = 0;
303
304 if (!adev->mman.buffer_funcs_enabled) {
305 DRM_ERROR("Trying to move memory with ring turned off.\n");
306 return -EINVAL;
307 }
308
309 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312 mutex_lock(&adev->mman.gtt_window_lock);
313 while (src_mm.remaining) {
314 uint64_t from, to, cur_size;
315 struct dma_fence *next;
316
317 /* Never copy more than 256MiB at once to avoid a timeout */
318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320 /* Map src to window 0 and dst to window 1. */
321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 0, ring, tmz, &cur_size, &from);
323 if (r)
324 goto error;
325
326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 1, ring, tmz, &cur_size, &to);
328 if (r)
329 goto error;
330
331 r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 resv, &next, false, true, tmz);
333 if (r)
334 goto error;
335
336 dma_fence_put(fence);
337 fence = next;
338
339 amdgpu_res_next(&src_mm, cur_size);
340 amdgpu_res_next(&dst_mm, cur_size);
341 }
342 error:
343 mutex_unlock(&adev->mman.gtt_window_lock);
344 if (f)
345 *f = dma_fence_get(fence);
346 dma_fence_put(fence);
347 return r;
348 }
349
350 /*
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
352 *
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
355 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 bool evict,
358 struct ttm_resource *new_mem,
359 struct ttm_resource *old_mem)
360 {
361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 struct amdgpu_copy_mem src, dst;
364 struct dma_fence *fence = NULL;
365 int r;
366
367 src.bo = bo;
368 dst.bo = bo;
369 src.mem = old_mem;
370 dst.mem = new_mem;
371 src.offset = 0;
372 dst.offset = 0;
373
374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 new_mem->size,
376 amdgpu_bo_encrypted(abo),
377 bo->base.resv, &fence);
378 if (r)
379 goto error;
380
381 /* clear the space being freed */
382 if (old_mem->mem_type == TTM_PL_VRAM &&
383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 struct dma_fence *wipe_fence = NULL;
385
386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 false);
388 if (r) {
389 goto error;
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
392 fence = wipe_fence;
393 }
394 }
395
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 else
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 dma_fence_put(fence);
402 return r;
403
404 error:
405 if (fence)
406 dma_fence_wait(fence, false);
407 dma_fence_put(fence);
408 return r;
409 }
410
411 /**
412 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
413 * @adev: amdgpu device
414 * @res: the resource to check
415 *
416 * Returns: true if the full resource is CPU visible, false otherwise.
417 */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
419 struct ttm_resource *res)
420 {
421 struct amdgpu_res_cursor cursor;
422
423 if (!res)
424 return false;
425
426 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
427 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
428 return true;
429
430 if (res->mem_type != TTM_PL_VRAM)
431 return false;
432
433 amdgpu_res_first(res, 0, res->size, &cursor);
434 while (cursor.remaining) {
435 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
436 return false;
437 amdgpu_res_next(&cursor, cursor.size);
438 }
439
440 return true;
441 }
442
443 /*
444 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
445 *
446 * Called by amdgpu_bo_move()
447 */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)448 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
449 struct ttm_resource *mem)
450 {
451 if (!amdgpu_res_cpu_visible(adev, mem))
452 return false;
453
454 /* ttm_resource_ioremap only supports contiguous memory */
455 if (mem->mem_type == TTM_PL_VRAM &&
456 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
457 return false;
458
459 return true;
460 }
461
462 /*
463 * amdgpu_bo_move - Move a buffer object to a new memory location
464 *
465 * Called by ttm_bo_handle_move_mem()
466 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468 struct ttm_operation_ctx *ctx,
469 struct ttm_resource *new_mem,
470 struct ttm_place *hop)
471 {
472 struct amdgpu_device *adev;
473 struct amdgpu_bo *abo;
474 struct ttm_resource *old_mem = bo->resource;
475 int r;
476
477 if (new_mem->mem_type == TTM_PL_TT ||
478 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
479 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
480 if (r)
481 return r;
482 }
483
484 abo = ttm_to_amdgpu_bo(bo);
485 adev = amdgpu_ttm_adev(bo->bdev);
486
487 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
488 bo->ttm == NULL)) {
489 amdgpu_bo_move_notify(bo, evict, new_mem);
490 ttm_bo_move_null(bo, new_mem);
491 return 0;
492 }
493 if (old_mem->mem_type == TTM_PL_SYSTEM &&
494 (new_mem->mem_type == TTM_PL_TT ||
495 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
496 amdgpu_bo_move_notify(bo, evict, new_mem);
497 ttm_bo_move_null(bo, new_mem);
498 return 0;
499 }
500 if ((old_mem->mem_type == TTM_PL_TT ||
501 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
502 new_mem->mem_type == TTM_PL_SYSTEM) {
503 r = ttm_bo_wait_ctx(bo, ctx);
504 if (r)
505 return r;
506
507 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
508 amdgpu_bo_move_notify(bo, evict, new_mem);
509 ttm_resource_free(bo, &bo->resource);
510 ttm_bo_assign_mem(bo, new_mem);
511 return 0;
512 }
513
514 if (old_mem->mem_type == AMDGPU_PL_GDS ||
515 old_mem->mem_type == AMDGPU_PL_GWS ||
516 old_mem->mem_type == AMDGPU_PL_OA ||
517 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
518 new_mem->mem_type == AMDGPU_PL_GDS ||
519 new_mem->mem_type == AMDGPU_PL_GWS ||
520 new_mem->mem_type == AMDGPU_PL_OA ||
521 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
522 /* Nothing to save here */
523 amdgpu_bo_move_notify(bo, evict, new_mem);
524 ttm_bo_move_null(bo, new_mem);
525 return 0;
526 }
527
528 if (bo->type == ttm_bo_type_device &&
529 new_mem->mem_type == TTM_PL_VRAM &&
530 old_mem->mem_type != TTM_PL_VRAM) {
531 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
532 * accesses the BO after it's moved.
533 */
534 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
535 }
536
537 if (adev->mman.buffer_funcs_enabled &&
538 ((old_mem->mem_type == TTM_PL_SYSTEM &&
539 new_mem->mem_type == TTM_PL_VRAM) ||
540 (old_mem->mem_type == TTM_PL_VRAM &&
541 new_mem->mem_type == TTM_PL_SYSTEM))) {
542 hop->fpfn = 0;
543 hop->lpfn = 0;
544 hop->mem_type = TTM_PL_TT;
545 hop->flags = TTM_PL_FLAG_TEMPORARY;
546 return -EMULTIHOP;
547 }
548
549 amdgpu_bo_move_notify(bo, evict, new_mem);
550 if (adev->mman.buffer_funcs_enabled)
551 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
552 else
553 r = -ENODEV;
554
555 if (r) {
556 /* Check that all memory is CPU accessible */
557 if (!amdgpu_res_copyable(adev, old_mem) ||
558 !amdgpu_res_copyable(adev, new_mem)) {
559 pr_err("Move buffer fallback to memcpy unavailable\n");
560 return r;
561 }
562
563 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
564 if (r)
565 return r;
566 }
567
568 /* update statistics after the move */
569 if (evict)
570 atomic64_inc(&adev->num_evictions);
571 atomic64_add(bo->base.size, &adev->num_bytes_moved);
572 return 0;
573 }
574
575 /*
576 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
577 *
578 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
579 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)580 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
581 struct ttm_resource *mem)
582 {
583 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
584
585 switch (mem->mem_type) {
586 case TTM_PL_SYSTEM:
587 /* system memory */
588 return 0;
589 case TTM_PL_TT:
590 case AMDGPU_PL_PREEMPT:
591 break;
592 case TTM_PL_VRAM:
593 mem->bus.offset = mem->start << PAGE_SHIFT;
594
595 if (adev->mman.aper_base_kaddr &&
596 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
597 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
598 mem->bus.offset;
599
600 mem->bus.offset += adev->gmc.aper_base;
601 mem->bus.is_iomem = true;
602 break;
603 case AMDGPU_PL_DOORBELL:
604 mem->bus.offset = mem->start << PAGE_SHIFT;
605 mem->bus.offset += adev->doorbell.base;
606 mem->bus.is_iomem = true;
607 mem->bus.caching = ttm_uncached;
608 break;
609 default:
610 return -EINVAL;
611 }
612 return 0;
613 }
614
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)615 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
616 unsigned long page_offset)
617 {
618 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
619 struct amdgpu_res_cursor cursor;
620
621 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
622 &cursor);
623
624 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
625 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
626
627 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
628 }
629
630 /**
631 * amdgpu_ttm_domain_start - Returns GPU start address
632 * @adev: amdgpu device object
633 * @type: type of the memory
634 *
635 * Returns:
636 * GPU start address of a memory domain
637 */
638
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)639 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
640 {
641 switch (type) {
642 case TTM_PL_TT:
643 return adev->gmc.gart_start;
644 case TTM_PL_VRAM:
645 return adev->gmc.vram_start;
646 }
647
648 return 0;
649 }
650
651 /*
652 * TTM backend functions.
653 */
654 struct amdgpu_ttm_tt {
655 struct ttm_tt ttm;
656 struct drm_gem_object *gobj;
657 u64 offset;
658 uint64_t userptr;
659 struct task_struct *usertask;
660 uint32_t userflags;
661 bool bound;
662 int32_t pool_id;
663 };
664
665 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
666
667 #ifdef CONFIG_DRM_AMDGPU_USERPTR
668 /*
669 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
670 * memory and start HMM tracking CPU page table update
671 *
672 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
673 * once afterwards to stop HMM tracking
674 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct vm_page ** pages,struct hmm_range ** range)675 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages,
676 struct hmm_range **range)
677 {
678 struct ttm_tt *ttm = bo->tbo.ttm;
679 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
680 unsigned long start = gtt->userptr;
681 struct vm_area_struct *vma;
682 struct mm_struct *mm;
683 bool readonly;
684 int r = 0;
685
686 /* Make sure get_user_pages_done() can cleanup gracefully */
687 *range = NULL;
688
689 mm = bo->notifier.mm;
690 if (unlikely(!mm)) {
691 DRM_DEBUG_DRIVER("BO is not registered?\n");
692 return -EFAULT;
693 }
694
695 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
696 return -ESRCH;
697
698 mmap_read_lock(mm);
699 vma = vma_lookup(mm, start);
700 if (unlikely(!vma)) {
701 r = -EFAULT;
702 goto out_unlock;
703 }
704 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
705 vma->vm_file)) {
706 r = -EPERM;
707 goto out_unlock;
708 }
709
710 readonly = amdgpu_ttm_tt_is_readonly(ttm);
711 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
712 readonly, NULL, pages, range);
713 out_unlock:
714 mmap_read_unlock(mm);
715 if (r)
716 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
717
718 mmput(mm);
719
720 return r;
721 }
722
723 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
724 */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)725 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
726 struct hmm_range *range)
727 {
728 struct amdgpu_ttm_tt *gtt = (void *)ttm;
729
730 if (gtt && gtt->userptr && range)
731 amdgpu_hmm_range_get_pages_done(range);
732 }
733
734 /*
735 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
736 * Check if the pages backing this ttm range have been invalidated
737 *
738 * Returns: true if pages are still valid
739 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)740 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
741 struct hmm_range *range)
742 {
743 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
744
745 if (!gtt || !gtt->userptr || !range)
746 return false;
747
748 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
749 gtt->userptr, ttm->num_pages);
750
751 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
752
753 return !amdgpu_hmm_range_get_pages_done(range);
754 }
755 #endif
756
757 /*
758 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
759 *
760 * Called by amdgpu_cs_list_validate(). This creates the page list
761 * that backs user memory and will ultimately be mapped into the device
762 * address space.
763 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct vm_page ** pages)764 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
765 {
766 unsigned long i;
767
768 for (i = 0; i < ttm->num_pages; ++i)
769 ttm->pages[i] = pages ? pages[i] : NULL;
770 }
771
772 /*
773 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
774 *
775 * Called by amdgpu_ttm_backend_bind()
776 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)777 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
778 struct ttm_tt *ttm)
779 {
780 STUB();
781 return -ENOSYS;
782 #ifdef notyet
783 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
784 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
785 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
786 enum dma_data_direction direction = write ?
787 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
788 int r;
789
790 /* Allocate an SG array and squash pages into it */
791 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
792 (u64)ttm->num_pages << PAGE_SHIFT,
793 GFP_KERNEL);
794 if (r)
795 goto release_sg;
796
797 /* Map SG to device */
798 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
799 if (r)
800 goto release_sg;
801
802 /* convert SG to linear array of pages and dma addresses */
803 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
804 ttm->num_pages);
805
806 return 0;
807
808 release_sg:
809 kfree(ttm->sg);
810 ttm->sg = NULL;
811 return r;
812 #endif
813 }
814
815 /*
816 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
817 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)818 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
819 struct ttm_tt *ttm)
820 {
821 STUB();
822 #ifdef notyet
823 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
824 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
825 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
826 enum dma_data_direction direction = write ?
827 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
828
829 /* double check that we don't free the table twice */
830 if (!ttm->sg || !ttm->sg->sgl)
831 return;
832
833 /* unmap the pages mapped to the device */
834 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
835 sg_free_table(ttm->sg);
836 #endif
837 }
838
839 /*
840 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
841 * MQDn+CtrlStackn where n is the number of XCCs per partition.
842 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
843 * and uses memory type default, UC. The rest of pages_per_xcc are
844 * Ctrl stack and modify their memory type to NC.
845 */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)846 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
847 struct ttm_tt *ttm, uint64_t flags)
848 {
849 struct amdgpu_ttm_tt *gtt = (void *)ttm;
850 uint64_t total_pages = ttm->num_pages;
851 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
852 uint64_t page_idx, pages_per_xcc;
853 int i;
854 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
855 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
856
857 pages_per_xcc = total_pages;
858 do_div(pages_per_xcc, num_xcc);
859
860 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
861 /* MQD page: use default flags */
862 amdgpu_gart_bind(adev,
863 gtt->offset + (page_idx << PAGE_SHIFT),
864 1, >t->ttm.dma_address[page_idx], flags);
865 /*
866 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
867 * the second page of the BO onward.
868 */
869 amdgpu_gart_bind(adev,
870 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
871 pages_per_xcc - 1,
872 >t->ttm.dma_address[page_idx + 1],
873 ctrl_flags);
874 }
875 }
876
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)877 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
878 struct ttm_buffer_object *tbo,
879 uint64_t flags)
880 {
881 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
882 struct ttm_tt *ttm = tbo->ttm;
883 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
884
885 if (amdgpu_bo_encrypted(abo))
886 flags |= AMDGPU_PTE_TMZ;
887
888 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
889 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
890 } else {
891 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
892 gtt->ttm.dma_address, flags);
893 }
894 gtt->bound = true;
895 }
896
897 /*
898 * amdgpu_ttm_backend_bind - Bind GTT memory
899 *
900 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
901 * This handles binding GTT memory to the device address space.
902 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)903 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
904 struct ttm_tt *ttm,
905 struct ttm_resource *bo_mem)
906 {
907 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
908 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
909 uint64_t flags;
910 int r;
911
912 if (!bo_mem)
913 return -EINVAL;
914
915 if (gtt->bound)
916 return 0;
917
918 if (gtt->userptr) {
919 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
920 if (r) {
921 DRM_ERROR("failed to pin userptr\n");
922 return r;
923 }
924 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
925 if (!ttm->sg) {
926 struct dma_buf_attachment *attach;
927 struct sg_table *sgt;
928
929 attach = gtt->gobj->import_attach;
930 #ifdef notyet
931 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
932 if (IS_ERR(sgt))
933 return PTR_ERR(sgt);
934 #else
935 STUB();
936 return -ENOSYS;
937 #endif
938
939 ttm->sg = sgt;
940 }
941
942 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
943 ttm->num_pages);
944 }
945
946 if (!ttm->num_pages) {
947 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
948 ttm->num_pages, bo_mem, ttm);
949 }
950
951 if (bo_mem->mem_type != TTM_PL_TT ||
952 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
953 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
954 return 0;
955 }
956
957 /* compute PTE flags relevant to this BO memory */
958 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
959
960 /* bind pages into GART page tables */
961 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
962 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
963 gtt->ttm.dma_address, flags);
964 gtt->bound = true;
965 return 0;
966 }
967
968 /*
969 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
970 * through AGP or GART aperture.
971 *
972 * If bo is accessible through AGP aperture, then use AGP aperture
973 * to access bo; otherwise allocate logical space in GART aperture
974 * and map bo to GART aperture.
975 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)976 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
977 {
978 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
979 struct ttm_operation_ctx ctx = { false, false };
980 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
981 struct ttm_placement placement;
982 struct ttm_place placements;
983 struct ttm_resource *tmp;
984 uint64_t addr, flags;
985 int r;
986
987 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
988 return 0;
989
990 addr = amdgpu_gmc_agp_addr(bo);
991 if (addr != AMDGPU_BO_INVALID_OFFSET) {
992 bo->resource->start = addr >> PAGE_SHIFT;
993 return 0;
994 }
995
996 /* allocate GART space */
997 placement.num_placement = 1;
998 placement.placement = &placements;
999 placement.num_busy_placement = 1;
1000 placement.busy_placement = &placements;
1001 placements.fpfn = 0;
1002 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1003 placements.mem_type = TTM_PL_TT;
1004 placements.flags = bo->resource->placement;
1005
1006 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1007 if (unlikely(r))
1008 return r;
1009
1010 /* compute PTE flags for this buffer object */
1011 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1012
1013 /* Bind pages */
1014 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1015 amdgpu_ttm_gart_bind(adev, bo, flags);
1016 amdgpu_gart_invalidate_tlb(adev);
1017 ttm_resource_free(bo, &bo->resource);
1018 ttm_bo_assign_mem(bo, tmp);
1019
1020 return 0;
1021 }
1022
1023 /*
1024 * amdgpu_ttm_recover_gart - Rebind GTT pages
1025 *
1026 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1027 * rebind GTT pages during a GPU reset.
1028 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1029 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1030 {
1031 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1032 uint64_t flags;
1033
1034 if (!tbo->ttm)
1035 return;
1036
1037 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1038 amdgpu_ttm_gart_bind(adev, tbo, flags);
1039 }
1040
1041 /*
1042 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1043 *
1044 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1045 * ttm_tt_destroy().
1046 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1047 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1048 struct ttm_tt *ttm)
1049 {
1050 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1051 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1052
1053 /* if the pages have userptr pinning then clear that first */
1054 if (gtt->userptr) {
1055 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1056 } else if (ttm->sg && gtt->gobj->import_attach) {
1057 struct dma_buf_attachment *attach;
1058
1059 attach = gtt->gobj->import_attach;
1060 #ifdef notyet
1061 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1062 #else
1063 STUB();
1064 #endif
1065 ttm->sg = NULL;
1066 }
1067
1068 if (!gtt->bound)
1069 return;
1070
1071 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1072 return;
1073
1074 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1075 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1076 gtt->bound = false;
1077 }
1078
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1079 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1080 struct ttm_tt *ttm)
1081 {
1082 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1083
1084 #ifdef notyet
1085 if (gtt->usertask)
1086 put_task_struct(gtt->usertask);
1087 #endif
1088
1089 ttm_tt_fini(>t->ttm);
1090 kfree(gtt);
1091 }
1092
1093 /**
1094 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1095 *
1096 * @bo: The buffer object to create a GTT ttm_tt object around
1097 * @page_flags: Page flags to be added to the ttm_tt object
1098 *
1099 * Called by ttm_tt_create().
1100 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1101 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1102 uint32_t page_flags)
1103 {
1104 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1105 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1106 struct amdgpu_ttm_tt *gtt;
1107 enum ttm_caching caching;
1108
1109 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1110 if (!gtt)
1111 return NULL;
1112
1113 gtt->gobj = &bo->base;
1114 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1115 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1116 else
1117 gtt->pool_id = abo->xcp_id;
1118
1119 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1120 caching = ttm_write_combined;
1121 else
1122 caching = ttm_cached;
1123
1124 /* allocate space for the uninitialized page entries */
1125 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1126 kfree(gtt);
1127 return NULL;
1128 }
1129 return >t->ttm;
1130 }
1131
1132 /*
1133 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1134 *
1135 * Map the pages of a ttm_tt object to an address space visible
1136 * to the underlying device.
1137 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1138 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1139 struct ttm_tt *ttm,
1140 struct ttm_operation_ctx *ctx)
1141 {
1142 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1143 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1144 struct ttm_pool *pool;
1145 pgoff_t i;
1146 int ret;
1147
1148 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1149 if (gtt->userptr) {
1150 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1151 if (!ttm->sg)
1152 return -ENOMEM;
1153 return 0;
1154 }
1155
1156 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1157 return 0;
1158
1159 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1160 pool = &adev->mman.ttm_pools[gtt->pool_id];
1161 else
1162 pool = &adev->mman.bdev.pool;
1163 ret = ttm_pool_alloc(pool, ttm, ctx);
1164 if (ret)
1165 return ret;
1166
1167 #ifdef notyet
1168 for (i = 0; i < ttm->num_pages; ++i)
1169 ttm->pages[i]->mapping = bdev->dev_mapping;
1170 #endif
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1177 *
1178 * Unmaps pages of a ttm_tt object from the device address space and
1179 * unpopulates the page array backing it.
1180 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1181 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1182 struct ttm_tt *ttm)
1183 {
1184 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1185 struct amdgpu_device *adev;
1186 struct ttm_pool *pool;
1187 pgoff_t i;
1188 struct vm_page *page;
1189
1190 amdgpu_ttm_backend_unbind(bdev, ttm);
1191
1192 if (gtt->userptr) {
1193 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1194 kfree(ttm->sg);
1195 ttm->sg = NULL;
1196 return;
1197 }
1198
1199 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1200 return;
1201
1202 for (i = 0; i < ttm->num_pages; ++i) {
1203 page = ttm->pages[i];
1204 if (unlikely(page == NULL))
1205 continue;
1206 pmap_page_protect(page, PROT_NONE);
1207 }
1208
1209 adev = amdgpu_ttm_adev(bdev);
1210
1211 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1212 pool = &adev->mman.ttm_pools[gtt->pool_id];
1213 else
1214 pool = &adev->mman.bdev.pool;
1215
1216 return ttm_pool_free(pool, ttm);
1217 }
1218
1219 /**
1220 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1221 * task
1222 *
1223 * @tbo: The ttm_buffer_object that contains the userptr
1224 * @user_addr: The returned value
1225 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1226 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1227 uint64_t *user_addr)
1228 {
1229 struct amdgpu_ttm_tt *gtt;
1230
1231 if (!tbo->ttm)
1232 return -EINVAL;
1233
1234 gtt = (void *)tbo->ttm;
1235 *user_addr = gtt->userptr;
1236 return 0;
1237 }
1238
1239 /**
1240 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1241 * task
1242 *
1243 * @bo: The ttm_buffer_object to bind this userptr to
1244 * @addr: The address in the current tasks VM space to use
1245 * @flags: Requirements of userptr object.
1246 *
1247 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1248 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1249 * initialize GPU VM for a KFD process.
1250 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1251 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1252 uint64_t addr, uint32_t flags)
1253 {
1254 struct amdgpu_ttm_tt *gtt;
1255
1256 if (!bo->ttm) {
1257 /* TODO: We want a separate TTM object type for userptrs */
1258 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1259 if (bo->ttm == NULL)
1260 return -ENOMEM;
1261 }
1262
1263 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1264 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1265
1266 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1267 gtt->userptr = addr;
1268 gtt->userflags = flags;
1269
1270 #ifdef notyet
1271 if (gtt->usertask)
1272 put_task_struct(gtt->usertask);
1273 gtt->usertask = current->group_leader;
1274 get_task_struct(gtt->usertask);
1275 #endif
1276
1277 return 0;
1278 }
1279
1280 /*
1281 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1282 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1283 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1284 {
1285 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1286
1287 if (gtt == NULL)
1288 return NULL;
1289
1290 if (gtt->usertask == NULL)
1291 return NULL;
1292
1293 #ifdef notyet
1294 return gtt->usertask->mm;
1295 #else
1296 STUB();
1297 return NULL;
1298 #endif
1299 }
1300
1301 /*
1302 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1303 * address range for the current task.
1304 *
1305 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1306 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1307 unsigned long end, unsigned long *userptr)
1308 {
1309 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1310 unsigned long size;
1311
1312 if (gtt == NULL || !gtt->userptr)
1313 return false;
1314
1315 /* Return false if no part of the ttm_tt object lies within
1316 * the range
1317 */
1318 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1319 if (gtt->userptr > end || gtt->userptr + size <= start)
1320 return false;
1321
1322 if (userptr)
1323 *userptr = gtt->userptr;
1324 return true;
1325 }
1326
1327 /*
1328 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1329 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1330 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1331 {
1332 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1333
1334 if (gtt == NULL || !gtt->userptr)
1335 return false;
1336
1337 return true;
1338 }
1339
1340 /*
1341 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1342 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1343 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1344 {
1345 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1346
1347 if (gtt == NULL)
1348 return false;
1349
1350 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1351 }
1352
1353 /**
1354 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1355 *
1356 * @ttm: The ttm_tt object to compute the flags for
1357 * @mem: The memory registry backing this ttm_tt object
1358 *
1359 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1360 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1361 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1362 {
1363 uint64_t flags = 0;
1364
1365 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1366 flags |= AMDGPU_PTE_VALID;
1367
1368 if (mem && (mem->mem_type == TTM_PL_TT ||
1369 mem->mem_type == AMDGPU_PL_DOORBELL ||
1370 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1371 flags |= AMDGPU_PTE_SYSTEM;
1372
1373 if (ttm->caching == ttm_cached)
1374 flags |= AMDGPU_PTE_SNOOPED;
1375 }
1376
1377 if (mem && mem->mem_type == TTM_PL_VRAM &&
1378 mem->bus.caching == ttm_cached)
1379 flags |= AMDGPU_PTE_SNOOPED;
1380
1381 return flags;
1382 }
1383
1384 /**
1385 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1386 *
1387 * @adev: amdgpu_device pointer
1388 * @ttm: The ttm_tt object to compute the flags for
1389 * @mem: The memory registry backing this ttm_tt object
1390 *
1391 * Figure out the flags to use for a VM PTE (Page Table Entry).
1392 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1393 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1394 struct ttm_resource *mem)
1395 {
1396 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1397
1398 flags |= adev->gart.gart_pte_flags;
1399 flags |= AMDGPU_PTE_READABLE;
1400
1401 if (!amdgpu_ttm_tt_is_readonly(ttm))
1402 flags |= AMDGPU_PTE_WRITEABLE;
1403
1404 return flags;
1405 }
1406
1407 /*
1408 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1409 * object.
1410 *
1411 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1412 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1413 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1414 * used to clean out a memory space.
1415 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1416 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1417 const struct ttm_place *place)
1418 {
1419 struct dma_resv_iter resv_cursor;
1420 struct dma_fence *f;
1421
1422 if (!amdgpu_bo_is_amdgpu_bo(bo))
1423 return ttm_bo_eviction_valuable(bo, place);
1424
1425 /* Swapout? */
1426 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1427 return true;
1428
1429 if (bo->type == ttm_bo_type_kernel &&
1430 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1431 return false;
1432
1433 /* If bo is a KFD BO, check if the bo belongs to the current process.
1434 * If true, then return false as any KFD process needs all its BOs to
1435 * be resident to run successfully
1436 */
1437 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1438 DMA_RESV_USAGE_BOOKKEEP, f) {
1439 #ifdef notyet
1440 if (amdkfd_fence_check_mm(f, current->mm))
1441 return false;
1442 #endif
1443 }
1444
1445 /* Preemptible BOs don't own system resources managed by the
1446 * driver (pages, VRAM, GART space). They point to resources
1447 * owned by someone else (e.g. pageable memory in user mode
1448 * or a DMABuf). They are used in a preemptible context so we
1449 * can guarantee no deadlocks and good QoS in case of MMU
1450 * notifiers or DMABuf move notifiers from the resource owner.
1451 */
1452 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1453 return false;
1454
1455 if (bo->resource->mem_type == TTM_PL_TT &&
1456 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1457 return false;
1458
1459 return ttm_bo_eviction_valuable(bo, place);
1460 }
1461
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1462 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1463 void *buf, size_t size, bool write)
1464 {
1465 STUB();
1466 #ifdef notyet
1467 while (size) {
1468 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1469 uint64_t bytes = 4 - (pos & 0x3);
1470 uint32_t shift = (pos & 0x3) * 8;
1471 uint32_t mask = 0xffffffff << shift;
1472 uint32_t value = 0;
1473
1474 if (size < bytes) {
1475 mask &= 0xffffffff >> (bytes - size) * 8;
1476 bytes = size;
1477 }
1478
1479 if (mask != 0xffffffff) {
1480 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1481 if (write) {
1482 value &= ~mask;
1483 value |= (*(uint32_t *)buf << shift) & mask;
1484 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1485 } else {
1486 value = (value & mask) >> shift;
1487 memcpy(buf, &value, bytes);
1488 }
1489 } else {
1490 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1491 }
1492
1493 pos += bytes;
1494 buf += bytes;
1495 size -= bytes;
1496 }
1497 #endif
1498 }
1499
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1500 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1501 unsigned long offset, void *buf,
1502 int len, int write)
1503 {
1504 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1505 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1506 struct amdgpu_res_cursor src_mm;
1507 struct amdgpu_job *job;
1508 struct dma_fence *fence;
1509 uint64_t src_addr, dst_addr;
1510 unsigned int num_dw;
1511 int r, idx;
1512
1513 if (len != PAGE_SIZE)
1514 return -EINVAL;
1515
1516 if (!adev->mman.sdma_access_ptr)
1517 return -EACCES;
1518
1519 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1520 return -ENODEV;
1521
1522 if (write)
1523 memcpy(adev->mman.sdma_access_ptr, buf, len);
1524
1525 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1526 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1527 AMDGPU_FENCE_OWNER_UNDEFINED,
1528 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1529 &job);
1530 if (r)
1531 goto out;
1532
1533 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1534 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1535 src_mm.start;
1536 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1537 if (write)
1538 swap(src_addr, dst_addr);
1539
1540 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1541 PAGE_SIZE, false);
1542
1543 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1544 WARN_ON(job->ibs[0].length_dw > num_dw);
1545
1546 fence = amdgpu_job_submit(job);
1547
1548 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1549 r = -ETIMEDOUT;
1550 dma_fence_put(fence);
1551
1552 if (!(r || write))
1553 memcpy(buf, adev->mman.sdma_access_ptr, len);
1554 out:
1555 drm_dev_exit(idx);
1556 return r;
1557 }
1558
1559 /**
1560 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1561 *
1562 * @bo: The buffer object to read/write
1563 * @offset: Offset into buffer object
1564 * @buf: Secondary buffer to write/read from
1565 * @len: Length in bytes of access
1566 * @write: true if writing
1567 *
1568 * This is used to access VRAM that backs a buffer object via MMIO
1569 * access for debugging purposes.
1570 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1571 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1572 unsigned long offset, void *buf, int len,
1573 int write)
1574 {
1575 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1576 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1577 struct amdgpu_res_cursor cursor;
1578 int ret = 0;
1579
1580 if (bo->resource->mem_type != TTM_PL_VRAM)
1581 return -EIO;
1582
1583 if (amdgpu_device_has_timeouts_enabled(adev) &&
1584 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1585 return len;
1586
1587 amdgpu_res_first(bo->resource, offset, len, &cursor);
1588 while (cursor.remaining) {
1589 size_t count, size = cursor.size;
1590 loff_t pos = cursor.start;
1591
1592 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1593 size -= count;
1594 if (size) {
1595 /* using MM to access rest vram and handle un-aligned address */
1596 pos += count;
1597 buf += count;
1598 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1599 }
1600
1601 ret += cursor.size;
1602 buf += cursor.size;
1603 amdgpu_res_next(&cursor, cursor.size);
1604 }
1605
1606 return ret;
1607 }
1608
1609 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1610 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1611 {
1612 amdgpu_bo_move_notify(bo, false, NULL);
1613 }
1614
1615 static struct ttm_device_funcs amdgpu_bo_driver = {
1616 .ttm_tt_create = &amdgpu_ttm_tt_create,
1617 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1618 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1619 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1620 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1621 .evict_flags = &amdgpu_evict_flags,
1622 .move = &amdgpu_bo_move,
1623 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1624 .release_notify = &amdgpu_bo_release_notify,
1625 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1626 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1627 .access_memory = &amdgpu_ttm_access_memory,
1628 };
1629
1630 /*
1631 * Firmware Reservation functions
1632 */
1633 /**
1634 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * free fw reserved vram if it has been reserved.
1639 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1640 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1641 {
1642 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1643 NULL, &adev->mman.fw_vram_usage_va);
1644 }
1645
1646 /*
1647 * Driver Reservation functions
1648 */
1649 /**
1650 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1651 *
1652 * @adev: amdgpu_device pointer
1653 *
1654 * free drv reserved vram if it has been reserved.
1655 */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1656 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1657 {
1658 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1659 NULL,
1660 &adev->mman.drv_vram_usage_va);
1661 }
1662
1663 /**
1664 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1665 *
1666 * @adev: amdgpu_device pointer
1667 *
1668 * create bo vram reservation from fw.
1669 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1670 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1671 {
1672 uint64_t vram_size = adev->gmc.visible_vram_size;
1673
1674 adev->mman.fw_vram_usage_va = NULL;
1675 adev->mman.fw_vram_usage_reserved_bo = NULL;
1676
1677 if (adev->mman.fw_vram_usage_size == 0 ||
1678 adev->mman.fw_vram_usage_size > vram_size)
1679 return 0;
1680
1681 return amdgpu_bo_create_kernel_at(adev,
1682 adev->mman.fw_vram_usage_start_offset,
1683 adev->mman.fw_vram_usage_size,
1684 &adev->mman.fw_vram_usage_reserved_bo,
1685 &adev->mman.fw_vram_usage_va);
1686 }
1687
1688 /**
1689 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1690 *
1691 * @adev: amdgpu_device pointer
1692 *
1693 * create bo vram reservation from drv.
1694 */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1695 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1696 {
1697 u64 vram_size = adev->gmc.visible_vram_size;
1698
1699 adev->mman.drv_vram_usage_va = NULL;
1700 adev->mman.drv_vram_usage_reserved_bo = NULL;
1701
1702 if (adev->mman.drv_vram_usage_size == 0 ||
1703 adev->mman.drv_vram_usage_size > vram_size)
1704 return 0;
1705
1706 return amdgpu_bo_create_kernel_at(adev,
1707 adev->mman.drv_vram_usage_start_offset,
1708 adev->mman.drv_vram_usage_size,
1709 &adev->mman.drv_vram_usage_reserved_bo,
1710 &adev->mman.drv_vram_usage_va);
1711 }
1712
1713 /*
1714 * Memoy training reservation functions
1715 */
1716
1717 /**
1718 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1719 *
1720 * @adev: amdgpu_device pointer
1721 *
1722 * free memory training reserved vram if it has been reserved.
1723 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1724 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1725 {
1726 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1727
1728 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1729 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1730 ctx->c2p_bo = NULL;
1731
1732 return 0;
1733 }
1734
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1735 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1736 uint32_t reserve_size)
1737 {
1738 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1739
1740 memset(ctx, 0, sizeof(*ctx));
1741
1742 ctx->c2p_train_data_offset =
1743 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1744 ctx->p2c_train_data_offset =
1745 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1746 ctx->train_data_size =
1747 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1748
1749 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1750 ctx->train_data_size,
1751 ctx->p2c_train_data_offset,
1752 ctx->c2p_train_data_offset);
1753 }
1754
1755 /*
1756 * reserve TMR memory at the top of VRAM which holds
1757 * IP Discovery data and is protected by PSP.
1758 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1759 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1760 {
1761 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1762 bool mem_train_support = false;
1763 uint32_t reserve_size = 0;
1764 int ret;
1765
1766 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1767 if (amdgpu_atomfirmware_mem_training_supported(adev))
1768 mem_train_support = true;
1769 else
1770 DRM_DEBUG("memory training does not support!\n");
1771 }
1772
1773 /*
1774 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1775 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1776 *
1777 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1778 * discovery data and G6 memory training data respectively
1779 */
1780 if (adev->bios)
1781 reserve_size =
1782 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1783
1784 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1785 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1786 else if (!reserve_size)
1787 reserve_size = DISCOVERY_TMR_OFFSET;
1788
1789 if (mem_train_support) {
1790 /* reserve vram for mem train according to TMR location */
1791 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1792 ret = amdgpu_bo_create_kernel_at(adev,
1793 ctx->c2p_train_data_offset,
1794 ctx->train_data_size,
1795 &ctx->c2p_bo,
1796 NULL);
1797 if (ret) {
1798 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1799 amdgpu_ttm_training_reserve_vram_fini(adev);
1800 return ret;
1801 }
1802 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1803 }
1804
1805 if (!adev->gmc.is_app_apu) {
1806 ret = amdgpu_bo_create_kernel_at(
1807 adev, adev->gmc.real_vram_size - reserve_size,
1808 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1809 if (ret) {
1810 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1811 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1812 NULL, NULL);
1813 return ret;
1814 }
1815 } else {
1816 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1817 }
1818
1819 return 0;
1820 }
1821
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1822 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1823 {
1824 int i;
1825
1826 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1827 return 0;
1828
1829 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1830 sizeof(*adev->mman.ttm_pools),
1831 GFP_KERNEL);
1832 if (!adev->mman.ttm_pools)
1833 return -ENOMEM;
1834
1835 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1836 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1837 adev->gmc.mem_partitions[i].numa.node,
1838 false, false);
1839 }
1840 return 0;
1841 }
1842
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1843 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1844 {
1845 int i;
1846
1847 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1848 return;
1849
1850 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1851 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1852
1853 kfree(adev->mman.ttm_pools);
1854 adev->mman.ttm_pools = NULL;
1855 }
1856
1857 /*
1858 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1859 * gtt/vram related fields.
1860 *
1861 * This initializes all of the memory space pools that the TTM layer
1862 * will need such as the GTT space (system memory mapped to the device),
1863 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1864 * can be mapped per VMID.
1865 */
amdgpu_ttm_init(struct amdgpu_device * adev)1866 int amdgpu_ttm_init(struct amdgpu_device *adev)
1867 {
1868 uint64_t gtt_size;
1869 int r;
1870
1871 rw_init(&adev->mman.gtt_window_lock, "gttwin");
1872
1873 /* No others user of address space so set it to 0 */
1874 #ifdef notyet
1875 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1876 adev_to_drm(adev)->anon_inode->i_mapping,
1877 adev_to_drm(adev)->vma_offset_manager,
1878 adev->need_swiotlb,
1879 dma_addressing_limited(adev->dev));
1880 #else
1881 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1882 /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL,
1883 adev_to_drm(adev)->vma_offset_manager,
1884 adev->need_swiotlb,
1885 dma_addressing_limited(adev->dev));
1886 #endif
1887 if (r) {
1888 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1889 return r;
1890 }
1891
1892 r = amdgpu_ttm_pools_init(adev);
1893 if (r) {
1894 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1895 return r;
1896 }
1897 adev->mman.bdev.iot = adev->iot;
1898 adev->mman.bdev.memt = adev->memt;
1899 adev->mman.bdev.dmat = adev->dmat;
1900 adev->mman.initialized = true;
1901
1902 /* Initialize VRAM pool with all of VRAM divided into pages */
1903 r = amdgpu_vram_mgr_init(adev);
1904 if (r) {
1905 DRM_ERROR("Failed initializing VRAM heap.\n");
1906 return r;
1907 }
1908
1909 /* Change the size here instead of the init above so only lpfn is affected */
1910 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1911 #if defined(CONFIG_64BIT) && defined(__linux__)
1912 #ifdef CONFIG_X86
1913 if (adev->gmc.xgmi.connected_to_cpu)
1914 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1915 adev->gmc.visible_vram_size);
1916
1917 else if (adev->gmc.is_app_apu)
1918 DRM_DEBUG_DRIVER(
1919 "No need to ioremap when real vram size is 0\n");
1920 else
1921 #endif
1922 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1923 adev->gmc.visible_vram_size);
1924 #else
1925 if (bus_space_map(adev->memt, adev->gmc.aper_base,
1926 adev->gmc.visible_vram_size,
1927 BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE,
1928 &adev->mman.aper_bsh)) {
1929 adev->mman.aper_base_kaddr = NULL;
1930 } else {
1931 adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt,
1932 adev->mman.aper_bsh);
1933 }
1934 #endif
1935
1936 /*
1937 *The reserved vram for firmware must be pinned to the specified
1938 *place on the VRAM, so reserve it early.
1939 */
1940 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1941 if (r)
1942 return r;
1943
1944 /*
1945 *The reserved vram for driver must be pinned to the specified
1946 *place on the VRAM, so reserve it early.
1947 */
1948 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1949 if (r)
1950 return r;
1951
1952 /*
1953 * only NAVI10 and onwards ASIC support for IP discovery.
1954 * If IP discovery enabled, a block of memory should be
1955 * reserved for IP discovey.
1956 */
1957 if (adev->mman.discovery_bin) {
1958 r = amdgpu_ttm_reserve_tmr(adev);
1959 if (r)
1960 return r;
1961 }
1962
1963 /* allocate memory as required for VGA
1964 * This is used for VGA emulation and pre-OS scanout buffers to
1965 * avoid display artifacts while transitioning between pre-OS
1966 * and driver.
1967 */
1968 if (!adev->gmc.is_app_apu) {
1969 r = amdgpu_bo_create_kernel_at(adev, 0,
1970 adev->mman.stolen_vga_size,
1971 &adev->mman.stolen_vga_memory,
1972 NULL);
1973 if (r)
1974 return r;
1975
1976 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1977 adev->mman.stolen_extended_size,
1978 &adev->mman.stolen_extended_memory,
1979 NULL);
1980
1981 if (r)
1982 return r;
1983
1984 r = amdgpu_bo_create_kernel_at(adev,
1985 adev->mman.stolen_reserved_offset,
1986 adev->mman.stolen_reserved_size,
1987 &adev->mman.stolen_reserved_memory,
1988 NULL);
1989 if (r)
1990 return r;
1991 } else {
1992 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1993 }
1994
1995 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1996 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1997
1998 /* Compute GTT size, either based on TTM limit
1999 * or whatever the user passed on module init.
2000 */
2001 if (amdgpu_gtt_size == -1)
2002 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
2003 else
2004 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
2005
2006 /* Initialize GTT memory pool */
2007 r = amdgpu_gtt_mgr_init(adev, gtt_size);
2008 if (r) {
2009 DRM_ERROR("Failed initializing GTT heap.\n");
2010 return r;
2011 }
2012 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2013 (unsigned int)(gtt_size / (1024 * 1024)));
2014
2015 /* Initiailize doorbell pool on PCI BAR */
2016 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
2017 if (r) {
2018 DRM_ERROR("Failed initializing doorbell heap.\n");
2019 return r;
2020 }
2021
2022 /* Create a boorbell page for kernel usages */
2023 r = amdgpu_doorbell_create_kernel_doorbells(adev);
2024 if (r) {
2025 DRM_ERROR("Failed to initialize kernel doorbells.\n");
2026 return r;
2027 }
2028
2029 /* Initialize preemptible memory pool */
2030 r = amdgpu_preempt_mgr_init(adev);
2031 if (r) {
2032 DRM_ERROR("Failed initializing PREEMPT heap.\n");
2033 return r;
2034 }
2035
2036 /* Initialize various on-chip memory pools */
2037 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2038 if (r) {
2039 DRM_ERROR("Failed initializing GDS heap.\n");
2040 return r;
2041 }
2042
2043 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2044 if (r) {
2045 DRM_ERROR("Failed initializing gws heap.\n");
2046 return r;
2047 }
2048
2049 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2050 if (r) {
2051 DRM_ERROR("Failed initializing oa heap.\n");
2052 return r;
2053 }
2054 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2055 AMDGPU_GEM_DOMAIN_GTT,
2056 &adev->mman.sdma_access_bo, NULL,
2057 &adev->mman.sdma_access_ptr))
2058 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2059
2060 return 0;
2061 }
2062
2063 /*
2064 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2065 */
amdgpu_ttm_fini(struct amdgpu_device * adev)2066 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2067 {
2068 int idx;
2069
2070 if (!adev->mman.initialized)
2071 return;
2072
2073 amdgpu_ttm_pools_fini(adev);
2074
2075 amdgpu_ttm_training_reserve_vram_fini(adev);
2076 /* return the stolen vga memory back to VRAM */
2077 if (!adev->gmc.is_app_apu) {
2078 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2079 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2080 /* return the FW reserved memory back to VRAM */
2081 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2082 NULL);
2083 if (adev->mman.stolen_reserved_size)
2084 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2085 NULL, NULL);
2086 }
2087 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2088 &adev->mman.sdma_access_ptr);
2089 amdgpu_ttm_fw_reserve_vram_fini(adev);
2090 amdgpu_ttm_drv_reserve_vram_fini(adev);
2091
2092 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2093
2094 #ifdef __linux__
2095 if (adev->mman.aper_base_kaddr)
2096 iounmap(adev->mman.aper_base_kaddr);
2097 #else
2098 if (adev->mman.aper_base_kaddr)
2099 bus_space_unmap(adev->memt, adev->mman.aper_bsh,
2100 adev->gmc.visible_vram_size);
2101 #endif
2102 adev->mman.aper_base_kaddr = NULL;
2103
2104 drm_dev_exit(idx);
2105 }
2106
2107 amdgpu_vram_mgr_fini(adev);
2108 amdgpu_gtt_mgr_fini(adev);
2109 amdgpu_preempt_mgr_fini(adev);
2110 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2111 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2112 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2113 ttm_device_fini(&adev->mman.bdev);
2114 adev->mman.initialized = false;
2115 DRM_INFO("amdgpu: ttm finalized\n");
2116 }
2117
2118 /**
2119 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2120 *
2121 * @adev: amdgpu_device pointer
2122 * @enable: true when we can use buffer functions.
2123 *
2124 * Enable/disable use of buffer functions during suspend/resume. This should
2125 * only be called at bootup or when userspace isn't running.
2126 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2127 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2128 {
2129 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2130 uint64_t size;
2131 int r;
2132
2133 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2134 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2135 return;
2136
2137 if (enable) {
2138 struct amdgpu_ring *ring;
2139 struct drm_gpu_scheduler *sched;
2140
2141 ring = adev->mman.buffer_funcs_ring;
2142 sched = &ring->sched;
2143 r = drm_sched_entity_init(&adev->mman.high_pr,
2144 DRM_SCHED_PRIORITY_KERNEL, &sched,
2145 1, NULL);
2146 if (r) {
2147 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2148 r);
2149 return;
2150 }
2151
2152 r = drm_sched_entity_init(&adev->mman.low_pr,
2153 DRM_SCHED_PRIORITY_NORMAL, &sched,
2154 1, NULL);
2155 if (r) {
2156 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2157 r);
2158 goto error_free_entity;
2159 }
2160 } else {
2161 drm_sched_entity_destroy(&adev->mman.high_pr);
2162 drm_sched_entity_destroy(&adev->mman.low_pr);
2163 dma_fence_put(man->move);
2164 man->move = NULL;
2165 }
2166
2167 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2168 if (enable)
2169 size = adev->gmc.real_vram_size;
2170 else
2171 size = adev->gmc.visible_vram_size;
2172 man->size = size;
2173 adev->mman.buffer_funcs_enabled = enable;
2174
2175 return;
2176
2177 error_free_entity:
2178 drm_sched_entity_destroy(&adev->mman.high_pr);
2179 }
2180
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2181 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2182 bool direct_submit,
2183 unsigned int num_dw,
2184 struct dma_resv *resv,
2185 bool vm_needs_flush,
2186 struct amdgpu_job **job,
2187 bool delayed)
2188 {
2189 enum amdgpu_ib_pool_type pool = direct_submit ?
2190 AMDGPU_IB_POOL_DIRECT :
2191 AMDGPU_IB_POOL_DELAYED;
2192 int r;
2193 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2194 &adev->mman.high_pr;
2195 r = amdgpu_job_alloc_with_ib(adev, entity,
2196 AMDGPU_FENCE_OWNER_UNDEFINED,
2197 num_dw * 4, pool, job);
2198 if (r)
2199 return r;
2200
2201 if (vm_needs_flush) {
2202 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2203 adev->gmc.pdb0_bo :
2204 adev->gart.bo);
2205 (*job)->vm_needs_flush = true;
2206 }
2207 if (!resv)
2208 return 0;
2209
2210 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2211 DMA_RESV_USAGE_BOOKKEEP);
2212 }
2213
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)2214 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2215 uint64_t dst_offset, uint32_t byte_count,
2216 struct dma_resv *resv,
2217 struct dma_fence **fence, bool direct_submit,
2218 bool vm_needs_flush, bool tmz)
2219 {
2220 struct amdgpu_device *adev = ring->adev;
2221 unsigned int num_loops, num_dw;
2222 struct amdgpu_job *job;
2223 uint32_t max_bytes;
2224 unsigned int i;
2225 int r;
2226
2227 if (!direct_submit && !ring->sched.ready) {
2228 DRM_ERROR("Trying to move memory with ring turned off.\n");
2229 return -EINVAL;
2230 }
2231
2232 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2233 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2234 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2235 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2236 resv, vm_needs_flush, &job, false);
2237 if (r)
2238 return r;
2239
2240 for (i = 0; i < num_loops; i++) {
2241 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2242
2243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2244 dst_offset, cur_size_in_bytes, tmz);
2245
2246 src_offset += cur_size_in_bytes;
2247 dst_offset += cur_size_in_bytes;
2248 byte_count -= cur_size_in_bytes;
2249 }
2250
2251 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2252 WARN_ON(job->ibs[0].length_dw > num_dw);
2253 if (direct_submit)
2254 r = amdgpu_job_submit_direct(job, ring, fence);
2255 else
2256 *fence = amdgpu_job_submit(job);
2257 if (r)
2258 goto error_free;
2259
2260 return r;
2261
2262 error_free:
2263 amdgpu_job_free(job);
2264 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2265 return r;
2266 }
2267
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2268 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2269 uint64_t dst_addr, uint32_t byte_count,
2270 struct dma_resv *resv,
2271 struct dma_fence **fence,
2272 bool vm_needs_flush, bool delayed)
2273 {
2274 struct amdgpu_device *adev = ring->adev;
2275 unsigned int num_loops, num_dw;
2276 struct amdgpu_job *job;
2277 uint32_t max_bytes;
2278 unsigned int i;
2279 int r;
2280
2281 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2282 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2283 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2284 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2285 &job, delayed);
2286 if (r)
2287 return r;
2288
2289 for (i = 0; i < num_loops; i++) {
2290 uint32_t cur_size = min(byte_count, max_bytes);
2291
2292 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2293 cur_size);
2294
2295 dst_addr += cur_size;
2296 byte_count -= cur_size;
2297 }
2298
2299 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2300 WARN_ON(job->ibs[0].length_dw > num_dw);
2301 *fence = amdgpu_job_submit(job);
2302 return 0;
2303 }
2304
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2305 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2306 uint32_t src_data,
2307 struct dma_resv *resv,
2308 struct dma_fence **f,
2309 bool delayed)
2310 {
2311 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2312 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2313 struct dma_fence *fence = NULL;
2314 struct amdgpu_res_cursor dst;
2315 int r;
2316
2317 if (!adev->mman.buffer_funcs_enabled) {
2318 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2319 return -EINVAL;
2320 }
2321
2322 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2323
2324 mutex_lock(&adev->mman.gtt_window_lock);
2325 while (dst.remaining) {
2326 struct dma_fence *next;
2327 uint64_t cur_size, to;
2328
2329 /* Never fill more than 256MiB at once to avoid timeouts */
2330 cur_size = min(dst.size, 256ULL << 20);
2331
2332 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2333 1, ring, false, &cur_size, &to);
2334 if (r)
2335 goto error;
2336
2337 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2338 &next, true, delayed);
2339 if (r)
2340 goto error;
2341
2342 dma_fence_put(fence);
2343 fence = next;
2344
2345 amdgpu_res_next(&dst, cur_size);
2346 }
2347 error:
2348 mutex_unlock(&adev->mman.gtt_window_lock);
2349 if (f)
2350 *f = dma_fence_get(fence);
2351 dma_fence_put(fence);
2352 return r;
2353 }
2354
2355 /**
2356 * amdgpu_ttm_evict_resources - evict memory buffers
2357 * @adev: amdgpu device object
2358 * @mem_type: evicted BO's memory type
2359 *
2360 * Evicts all @mem_type buffers on the lru list of the memory type.
2361 *
2362 * Returns:
2363 * 0 for success or a negative error code on failure.
2364 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2365 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2366 {
2367 struct ttm_resource_manager *man;
2368
2369 switch (mem_type) {
2370 case TTM_PL_VRAM:
2371 case TTM_PL_TT:
2372 case AMDGPU_PL_GWS:
2373 case AMDGPU_PL_GDS:
2374 case AMDGPU_PL_OA:
2375 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2376 break;
2377 default:
2378 DRM_ERROR("Trying to evict invalid memory type\n");
2379 return -EINVAL;
2380 }
2381
2382 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2383 }
2384
2385 #if defined(CONFIG_DEBUG_FS)
2386
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2387 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2388 {
2389 struct amdgpu_device *adev = m->private;
2390
2391 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2392 }
2393
2394 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2395
2396 /*
2397 * amdgpu_ttm_vram_read - Linear read access to VRAM
2398 *
2399 * Accesses VRAM via MMIO for debugging purposes.
2400 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2401 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2402 size_t size, loff_t *pos)
2403 {
2404 struct amdgpu_device *adev = file_inode(f)->i_private;
2405 ssize_t result = 0;
2406
2407 if (size & 0x3 || *pos & 0x3)
2408 return -EINVAL;
2409
2410 if (*pos >= adev->gmc.mc_vram_size)
2411 return -ENXIO;
2412
2413 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2414 while (size) {
2415 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2416 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2417
2418 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2419 if (copy_to_user(buf, value, bytes))
2420 return -EFAULT;
2421
2422 result += bytes;
2423 buf += bytes;
2424 *pos += bytes;
2425 size -= bytes;
2426 }
2427
2428 return result;
2429 }
2430
2431 /*
2432 * amdgpu_ttm_vram_write - Linear write access to VRAM
2433 *
2434 * Accesses VRAM via MMIO for debugging purposes.
2435 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2436 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2437 size_t size, loff_t *pos)
2438 {
2439 struct amdgpu_device *adev = file_inode(f)->i_private;
2440 ssize_t result = 0;
2441 int r;
2442
2443 if (size & 0x3 || *pos & 0x3)
2444 return -EINVAL;
2445
2446 if (*pos >= adev->gmc.mc_vram_size)
2447 return -ENXIO;
2448
2449 while (size) {
2450 uint32_t value;
2451
2452 if (*pos >= adev->gmc.mc_vram_size)
2453 return result;
2454
2455 r = get_user(value, (uint32_t *)buf);
2456 if (r)
2457 return r;
2458
2459 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2460
2461 result += 4;
2462 buf += 4;
2463 *pos += 4;
2464 size -= 4;
2465 }
2466
2467 return result;
2468 }
2469
2470 static const struct file_operations amdgpu_ttm_vram_fops = {
2471 .owner = THIS_MODULE,
2472 .read = amdgpu_ttm_vram_read,
2473 .write = amdgpu_ttm_vram_write,
2474 .llseek = default_llseek,
2475 };
2476
2477 /*
2478 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2479 *
2480 * This function is used to read memory that has been mapped to the
2481 * GPU and the known addresses are not physical addresses but instead
2482 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2483 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2484 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2485 size_t size, loff_t *pos)
2486 {
2487 struct amdgpu_device *adev = file_inode(f)->i_private;
2488 struct iommu_domain *dom;
2489 ssize_t result = 0;
2490 int r;
2491
2492 /* retrieve the IOMMU domain if any for this device */
2493 dom = iommu_get_domain_for_dev(adev->dev);
2494
2495 while (size) {
2496 phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2497 loff_t off = *pos & ~LINUX_PAGE_MASK;
2498 size_t bytes = PAGE_SIZE - off;
2499 unsigned long pfn;
2500 struct vm_page *p;
2501 void *ptr;
2502
2503 bytes = min(bytes, size);
2504
2505 /* Translate the bus address to a physical address. If
2506 * the domain is NULL it means there is no IOMMU active
2507 * and the address translation is the identity
2508 */
2509 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2510
2511 pfn = addr >> PAGE_SHIFT;
2512 if (!pfn_valid(pfn))
2513 return -EPERM;
2514
2515 p = pfn_to_page(pfn);
2516 #ifdef notyet
2517 if (p->mapping != adev->mman.bdev.dev_mapping)
2518 return -EPERM;
2519 #else
2520 STUB();
2521 #endif
2522
2523 ptr = kmap_local_page(p);
2524 r = copy_to_user(buf, ptr + off, bytes);
2525 kunmap_local(ptr);
2526 if (r)
2527 return -EFAULT;
2528
2529 size -= bytes;
2530 *pos += bytes;
2531 result += bytes;
2532 }
2533
2534 return result;
2535 }
2536
2537 /*
2538 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2539 *
2540 * This function is used to write memory that has been mapped to the
2541 * GPU and the known addresses are not physical addresses but instead
2542 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2543 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2544 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2545 size_t size, loff_t *pos)
2546 {
2547 struct amdgpu_device *adev = file_inode(f)->i_private;
2548 struct iommu_domain *dom;
2549 ssize_t result = 0;
2550 int r;
2551
2552 dom = iommu_get_domain_for_dev(adev->dev);
2553
2554 while (size) {
2555 phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2556 loff_t off = *pos & ~LINUX_PAGE_MASK;
2557 size_t bytes = PAGE_SIZE - off;
2558 unsigned long pfn;
2559 struct vm_page *p;
2560 void *ptr;
2561
2562 bytes = min(bytes, size);
2563
2564 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2565
2566 pfn = addr >> PAGE_SHIFT;
2567 if (!pfn_valid(pfn))
2568 return -EPERM;
2569
2570 p = pfn_to_page(pfn);
2571 #ifdef notyet
2572 if (p->mapping != adev->mman.bdev.dev_mapping)
2573 return -EPERM;
2574 #else
2575 STUB();
2576 #endif
2577
2578 ptr = kmap_local_page(p);
2579 r = copy_from_user(ptr + off, buf, bytes);
2580 kunmap_local(ptr);
2581 if (r)
2582 return -EFAULT;
2583
2584 size -= bytes;
2585 *pos += bytes;
2586 result += bytes;
2587 }
2588
2589 return result;
2590 }
2591
2592 static const struct file_operations amdgpu_ttm_iomem_fops = {
2593 .owner = THIS_MODULE,
2594 .read = amdgpu_iomem_read,
2595 .write = amdgpu_iomem_write,
2596 .llseek = default_llseek
2597 };
2598
2599 #endif
2600
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2601 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2602 {
2603 #if defined(CONFIG_DEBUG_FS)
2604 struct drm_minor *minor = adev_to_drm(adev)->primary;
2605 struct dentry *root = minor->debugfs_root;
2606
2607 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2608 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2609 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2610 &amdgpu_ttm_iomem_fops);
2611 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2612 &amdgpu_ttm_page_pool_fops);
2613 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2614 TTM_PL_VRAM),
2615 root, "amdgpu_vram_mm");
2616 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2617 TTM_PL_TT),
2618 root, "amdgpu_gtt_mm");
2619 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2620 AMDGPU_PL_GDS),
2621 root, "amdgpu_gds_mm");
2622 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2623 AMDGPU_PL_GWS),
2624 root, "amdgpu_gws_mm");
2625 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2626 AMDGPU_PL_OA),
2627 root, "amdgpu_oa_mm");
2628
2629 #endif
2630 }
2631