1 /*	$NetBSD: amr.c,v 1.61 2016/07/14 04:19:27 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999,2000 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59  * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
60  */
61 
62 /*
63  * Driver for AMI RAID controllers.
64  */
65 
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.61 2016/07/14 04:19:27 msaitoh Exp $");
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
80 #include <sys/mutex.h>
81 #include <sys/condvar.h>
82 
83 #include <machine/endian.h>
84 #include <sys/bus.h>
85 
86 #include <dev/pci/pcidevs.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/amrreg.h>
89 #include <dev/pci/amrvar.h>
90 #include <dev/pci/amrio.h>
91 
92 #include "locators.h"
93 
94 static void	amr_attach(device_t, device_t, void *);
95 static void	amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
96 static void	*amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
97 			     void *);
98 static int	amr_init(struct amr_softc *, const char *,
99 			 struct pci_attach_args *pa);
100 static int	amr_intr(void *);
101 static int	amr_match(device_t, cfdata_t, void *);
102 static int	amr_print(void *, const char *);
103 static void	amr_shutdown(void *);
104 static void	amr_teardown(struct amr_softc *);
105 static void	amr_quartz_thread(void *);
106 static void	amr_std_thread(void *);
107 
108 static int	amr_quartz_get_work(struct amr_softc *,
109 				    struct amr_mailbox_resp *);
110 static int	amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
111 static int	amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
112 static int	amr_std_submit(struct amr_softc *, struct amr_ccb *);
113 
114 static dev_type_open(amropen);
115 static dev_type_close(amrclose);
116 static dev_type_ioctl(amrioctl);
117 
118 CFATTACH_DECL_NEW(amr, sizeof(struct amr_softc),
119     amr_match, amr_attach, NULL, NULL);
120 
121 const struct cdevsw amr_cdevsw = {
122 	.d_open = amropen,
123 	.d_close = amrclose,
124 	.d_read = noread,
125 	.d_write = nowrite,
126 	.d_ioctl = amrioctl,
127 	.d_stop = nostop,
128 	.d_tty = notty,
129 	.d_poll = nopoll,
130 	.d_mmap = nommap,
131 	.d_kqfilter = nokqfilter,
132 	.d_discard = nodiscard,
133 	.d_flag = D_OTHER
134 };
135 
136 extern struct   cfdriver amr_cd;
137 
138 #define AT_QUARTZ	0x01	/* `Quartz' chipset */
139 #define	AT_SIG		0x02	/* Check for signature */
140 
141 static struct amr_pci_type {
142 	u_short	apt_vendor;
143 	u_short	apt_product;
144 	u_short	apt_flags;
145 } const amr_pci_type[] = {
146 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID,  0 },
147 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID2, 0 },
148 	{ PCI_VENDOR_AMI,   PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
149 	{ PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
150 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
151 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
152 	{ PCI_VENDOR_INTEL,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
153 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
154 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
155 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
156 	{ PCI_VENDOR_DELL,  PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
157 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
158 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
159 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
160 	{ PCI_VENDOR_SYMBIOS,  PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
161 };
162 
163 static struct amr_typestr {
164 	const char	*at_str;
165 	int		at_sig;
166 } const amr_typestr[] = {
167 	{ "Series 431",			AMR_SIG_431 },
168 	{ "Series 438",			AMR_SIG_438 },
169 	{ "Series 466",			AMR_SIG_466 },
170 	{ "Series 467",			AMR_SIG_467 },
171 	{ "Series 490",			AMR_SIG_490 },
172 	{ "Series 762",			AMR_SIG_762 },
173 	{ "HP NetRAID (T5)",		AMR_SIG_T5 },
174 	{ "HP NetRAID (T7)",		AMR_SIG_T7 },
175 };
176 
177 static struct {
178 	const char	*ds_descr;
179 	int	ds_happy;
180 } const amr_dstate[] = {
181 	{ "offline",	0 },
182 	{ "degraded",	1 },
183 	{ "optimal",	1 },
184 	{ "online",	1 },
185 	{ "failed",	0 },
186 	{ "rebuilding",	1 },
187 	{ "hotspare",	0 },
188 };
189 
190 static void	*amr_sdh;
191 
192 static kcondvar_t thread_cv;
193 static kmutex_t	thread_mutex;
194 
195 static int	amr_max_segs;
196 int		amr_max_xfer;
197 
198 static inline u_int8_t
amr_inb(struct amr_softc * amr,int off)199 amr_inb(struct amr_softc *amr, int off)
200 {
201 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
202 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
203 	return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
204 }
205 
206 static inline u_int32_t
amr_inl(struct amr_softc * amr,int off)207 amr_inl(struct amr_softc *amr, int off)
208 {
209 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
210 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
211 	return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
212 }
213 
214 static inline void
amr_outb(struct amr_softc * amr,int off,u_int8_t val)215 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
216 {
217 	bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
218 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
219 	    BUS_SPACE_BARRIER_WRITE);
220 }
221 
222 static inline void
amr_outl(struct amr_softc * amr,int off,u_int32_t val)223 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
224 {
225 	bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
226 	bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
227 	    BUS_SPACE_BARRIER_WRITE);
228 }
229 
230 /*
231  * Match a supported device.
232  */
233 static int
amr_match(device_t parent,cfdata_t match,void * aux)234 amr_match(device_t parent, cfdata_t match, void *aux)
235 {
236 	struct pci_attach_args *pa;
237 	pcireg_t s;
238 	int i;
239 
240 	pa = (struct pci_attach_args *)aux;
241 
242 	/*
243 	 * Don't match the device if it's operating in I2O mode.  In this
244 	 * case it should be handled by the `iop' driver.
245 	 */
246 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
247 		return (0);
248 
249 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
250 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
251 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
252 		    	break;
253 
254 	if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
255 		return (0);
256 
257 	if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
258 		return (1);
259 
260 	s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
261 	return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
262 }
263 
264 /*
265  * Attach a supported device.
266  */
267 static void
amr_attach(device_t parent,device_t self,void * aux)268 amr_attach(device_t parent, device_t self, void *aux)
269 {
270 	struct pci_attach_args *pa;
271 	struct amr_attach_args amra;
272 	const struct amr_pci_type *apt;
273 	struct amr_softc *amr;
274 	pci_chipset_tag_t pc;
275 	pci_intr_handle_t ih;
276 	const char *intrstr;
277 	pcireg_t reg;
278 	int rseg, i, j, size, rv, memreg, ioreg;
279 	struct amr_ccb *ac;
280 	int locs[AMRCF_NLOCS];
281 	char intrbuf[PCI_INTRSTR_LEN];
282 
283 	aprint_naive(": RAID controller\n");
284 
285 	amr = device_private(self);
286 	amr->amr_dv = self;
287 
288 	mutex_init(&amr->amr_mutex, MUTEX_DEFAULT, IPL_BIO);
289 
290 	pa = (struct pci_attach_args *)aux;
291 	pc = pa->pa_pc;
292 
293 	for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
294 		if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
295 		    PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
296 			break;
297 	apt = amr_pci_type + i;
298 
299 	memreg = ioreg = 0;
300 	for (i = 0x10; i <= 0x14; i += 4) {
301 		reg = pci_conf_read(pc, pa->pa_tag, i);
302 		switch (PCI_MAPREG_TYPE(reg)) {
303 		case PCI_MAPREG_TYPE_MEM:
304 			if (PCI_MAPREG_MEM_SIZE(reg) != 0)
305 				memreg = i;
306 			break;
307 		case PCI_MAPREG_TYPE_IO:
308 			if (PCI_MAPREG_IO_SIZE(reg) != 0)
309 				ioreg = i;
310 			break;
311 		}
312 	}
313 
314 	if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
315 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
316 		;
317 	else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
318 	    &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
319 		;
320 	else {
321 		aprint_error("can't map control registers\n");
322 		amr_teardown(amr);
323 		return;
324 	}
325 
326 	amr->amr_flags |= AMRF_PCI_REGS;
327 	amr->amr_dmat = pa->pa_dmat;
328 	amr->amr_pc = pa->pa_pc;
329 
330 	/* Enable the device. */
331 	reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
332 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
333 	    reg | PCI_COMMAND_MASTER_ENABLE);
334 
335 	/* Map and establish the interrupt. */
336 	if (pci_intr_map(pa, &ih)) {
337 		aprint_error("can't map interrupt\n");
338 		amr_teardown(amr);
339 		return;
340 	}
341 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
342 	amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
343 	if (amr->amr_ih == NULL) {
344 		aprint_error("can't establish interrupt");
345 		if (intrstr != NULL)
346 			aprint_error(" at %s", intrstr);
347 		aprint_error("\n");
348 		amr_teardown(amr);
349 		return;
350 	}
351 	amr->amr_flags |= AMRF_PCI_INTR;
352 
353 	/*
354 	 * Allocate space for the mailbox and S/G lists.  Some controllers
355 	 * don't like S/G lists to be located below 0x2000, so we allocate
356 	 * enough slop to enable us to compensate.
357 	 *
358 	 * The standard mailbox structure needs to be aligned on a 16-byte
359 	 * boundary.  The 64-bit mailbox has one extra field, 4 bytes in
360 	 * size, which precedes the standard mailbox.
361 	 */
362 	size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
363 	amr->amr_dmasize = size;
364 
365 	if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
366 	    &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
367 		aprint_error_dev(amr->amr_dv,
368 		    "unable to allocate buffer, rv = %d\n", rv);
369 		amr_teardown(amr);
370 		return;
371 	}
372 	amr->amr_flags |= AMRF_DMA_ALLOC;
373 
374 	if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
375 	    (void **)&amr->amr_mbox,
376 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
377 		aprint_error_dev(amr->amr_dv, "unable to map buffer, rv = %d\n",
378 		    rv);
379 		amr_teardown(amr);
380 		return;
381 	}
382 	amr->amr_flags |= AMRF_DMA_MAP;
383 
384 	if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
385 	    BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
386 		aprint_error_dev(amr->amr_dv,
387 		    "unable to create buffer DMA map, rv = %d\n", rv);
388 		amr_teardown(amr);
389 		return;
390 	}
391 	amr->amr_flags |= AMRF_DMA_CREATE;
392 
393 	if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
394 	    amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
395 		aprint_error_dev(amr->amr_dv,
396 		    "unable to load buffer DMA map, rv = %d\n", rv);
397 		amr_teardown(amr);
398 		return;
399 	}
400 	amr->amr_flags |= AMRF_DMA_LOAD;
401 
402 	memset(amr->amr_mbox, 0, size);
403 
404 	amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
405 	amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
406 	amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
407 	    amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
408 
409 	/*
410 	 * Allocate and initalise the command control blocks.
411 	 */
412 	ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
413 	amr->amr_ccbs = ac;
414 	SLIST_INIT(&amr->amr_ccb_freelist);
415 	TAILQ_INIT(&amr->amr_ccb_active);
416 	amr->amr_flags |= AMRF_CCBS;
417 
418 	if (amr_max_xfer == 0) {
419 		amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
420 		amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
421 	}
422 
423 	for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
424 		rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
425 		    amr_max_segs, amr_max_xfer, 0,
426 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
427 		if (rv != 0)
428 			break;
429 
430 		ac->ac_ident = i;
431 		cv_init(&ac->ac_cv, "amr1ccb");
432 		mutex_init(&ac->ac_mutex, MUTEX_DEFAULT, IPL_NONE);
433 		amr_ccb_free(amr, ac);
434 	}
435 	if (i != AMR_MAX_CMDS) {
436 		aprint_error_dev(amr->amr_dv, "memory exhausted\n");
437 		amr_teardown(amr);
438 		return;
439 	}
440 
441 	/*
442 	 * Take care of model-specific tasks.
443 	 */
444 	if ((apt->apt_flags & AT_QUARTZ) != 0) {
445 		amr->amr_submit = amr_quartz_submit;
446 		amr->amr_get_work = amr_quartz_get_work;
447 	} else {
448 		amr->amr_submit = amr_std_submit;
449 		amr->amr_get_work = amr_std_get_work;
450 
451 		/* Notify the controller of the mailbox location. */
452 		amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
453 		amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
454 
455 		/* Clear outstanding interrupts and enable interrupts. */
456 		amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
457 		amr_outb(amr, AMR_SREG_TOGL,
458 		    amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
459 	}
460 
461 	/*
462 	 * Retrieve parameters, and tell the world about us.
463 	 */
464 	amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
465 	amr->amr_flags |= AMRF_ENQBUF;
466 	amr->amr_maxqueuecnt = i;
467 	aprint_normal(": AMI RAID ");
468 	if (amr_init(amr, intrstr, pa) != 0) {
469 		amr_teardown(amr);
470 		return;
471 	}
472 
473 	/*
474 	 * Cap the maximum number of outstanding commands.  AMI's Linux
475 	 * driver doesn't trust the controller's reported value, and lockups
476 	 * have been seen when we do.
477 	 */
478 	amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
479 	if (amr->amr_maxqueuecnt > i)
480 		amr->amr_maxqueuecnt = i;
481 
482 	/* Set our `shutdownhook' before we start any device activity. */
483 	if (amr_sdh == NULL)
484 		amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
485 
486 	/* Attach sub-devices. */
487 	for (j = 0; j < amr->amr_numdrives; j++) {
488 		if (amr->amr_drive[j].al_size == 0)
489 			continue;
490 		amra.amra_unit = j;
491 
492 		locs[AMRCF_UNIT] = j;
493 
494 		amr->amr_drive[j].al_dv = config_found_sm_loc(amr->amr_dv,
495 			"amr", locs, &amra, amr_print, config_stdsubmatch);
496 	}
497 
498 	SIMPLEQ_INIT(&amr->amr_ccb_queue);
499 
500 	cv_init(&thread_cv, "amrwdog");
501 	mutex_init(&thread_mutex, MUTEX_DEFAULT, IPL_NONE);
502 
503 	if ((apt->apt_flags & AT_QUARTZ) == 0) {
504 		rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
505 				    amr_std_thread, amr, &amr->amr_thread,
506 				    "%s", device_xname(amr->amr_dv));
507 	} else {
508 		rv = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
509 				    amr_quartz_thread, amr, &amr->amr_thread,
510 				    "%s", device_xname(amr->amr_dv));
511 	}
512 	if (rv != 0)
513 		aprint_error_dev(amr->amr_dv, "unable to create thread (%d)",
514  		    rv);
515  	else
516  		amr->amr_flags |= AMRF_THREAD;
517 }
518 
519 /*
520  * Free up resources.
521  */
522 static void
amr_teardown(struct amr_softc * amr)523 amr_teardown(struct amr_softc *amr)
524 {
525 	struct amr_ccb *ac;
526 	int fl;
527 
528 	fl = amr->amr_flags;
529 
530 	if ((fl & AMRF_THREAD) != 0) {
531 		amr->amr_flags |= AMRF_THREAD_EXIT;
532 		mutex_enter(&thread_mutex);
533 		cv_broadcast(&thread_cv);
534 		mutex_exit(&thread_mutex);
535 		while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
536 			mutex_enter(&thread_mutex);
537 			cv_wait(&thread_cv, &thread_mutex);
538 			mutex_exit(&thread_mutex);
539 		}
540 	}
541 	if ((fl & AMRF_CCBS) != 0) {
542 		SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
543 			bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
544 		}
545 		free(amr->amr_ccbs, M_DEVBUF);
546 	}
547 	if ((fl & AMRF_ENQBUF) != 0)
548 		free(amr->amr_enqbuf, M_DEVBUF);
549 	if ((fl & AMRF_DMA_LOAD) != 0)
550 		bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
551 	if ((fl & AMRF_DMA_MAP) != 0)
552 		bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
553 		    amr->amr_dmasize);
554 	if ((fl & AMRF_DMA_ALLOC) != 0)
555 		bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
556 	if ((fl & AMRF_DMA_CREATE) != 0)
557 		bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
558 	if ((fl & AMRF_PCI_INTR) != 0)
559 		pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
560 	if ((fl & AMRF_PCI_REGS) != 0)
561 		bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
562 }
563 
564 /*
565  * Print autoconfiguration message for a sub-device.
566  */
567 static int
amr_print(void * aux,const char * pnp)568 amr_print(void *aux, const char *pnp)
569 {
570 	struct amr_attach_args *amra;
571 
572 	amra = (struct amr_attach_args *)aux;
573 
574 	if (pnp != NULL)
575 		aprint_normal("block device at %s", pnp);
576 	aprint_normal(" unit %d", amra->amra_unit);
577 	return (UNCONF);
578 }
579 
580 /*
581  * Retrieve operational parameters and describe the controller.
582  */
583 static int
amr_init(struct amr_softc * amr,const char * intrstr,struct pci_attach_args * pa)584 amr_init(struct amr_softc *amr, const char *intrstr,
585 	 struct pci_attach_args *pa)
586 {
587 	struct amr_adapter_info *aa;
588 	struct amr_prodinfo *ap;
589 	struct amr_enquiry *ae;
590 	struct amr_enquiry3 *aex;
591 	const char *prodstr;
592 	u_int i, sig, ishp;
593 	char sbuf[64];
594 
595 	/*
596 	 * Try to get 40LD product info, which tells us what the card is
597 	 * labelled as.
598 	 */
599 	ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
600 	    amr->amr_enqbuf);
601 	if (ap != NULL) {
602 		aprint_normal("<%.80s>\n", ap->ap_product);
603 		if (intrstr != NULL)
604 			aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
605 			    intrstr);
606 		aprint_normal_dev(amr->amr_dv,
607 		    "firmware %.16s, BIOS %.16s, %dMB RAM\n",
608 		    ap->ap_firmware, ap->ap_bios, le16toh(ap->ap_memsize));
609 
610 		amr->amr_maxqueuecnt = ap->ap_maxio;
611 
612 		/*
613 		 * Fetch and record state of logical drives.
614 		 */
615 		aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
616 		    AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
617 		if (aex == NULL) {
618 			aprint_error_dev(amr->amr_dv, "ENQUIRY3 failed\n");
619 			return (-1);
620 		}
621 
622 		if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
623 			aprint_error_dev(amr->amr_dv, "Inquiry returned more "
624 			    "drives (%d) than the array can handle (%zu)\n",
625 			    aex->ae_numldrives,
626 			    __arraycount(aex->ae_drivestate));
627 			aex->ae_numldrives = __arraycount(aex->ae_drivestate);
628 		}
629 		if (aex->ae_numldrives > AMR_MAX_UNITS) {
630 			aprint_error_dev(amr->amr_dv,
631 			    "adjust AMR_MAX_UNITS to %d (currently %d)\n",
632 			    AMR_MAX_UNITS, amr->amr_numdrives);
633 			amr->amr_numdrives = AMR_MAX_UNITS;
634 		} else
635 			amr->amr_numdrives = aex->ae_numldrives;
636 
637 		for (i = 0; i < amr->amr_numdrives; i++) {
638 			amr->amr_drive[i].al_size =
639 			    le32toh(aex->ae_drivesize[i]);
640 			amr->amr_drive[i].al_state = aex->ae_drivestate[i];
641 			amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
642 		}
643 
644 		return (0);
645 	}
646 
647 	/*
648 	 * Try 8LD extended ENQUIRY to get the controller signature.  Once
649 	 * found, search for a product description.
650 	 */
651 	ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
652 	if (ae != NULL) {
653 		i = 0;
654 		sig = le32toh(ae->ae_signature);
655 
656 		while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
657 			if (amr_typestr[i].at_sig == sig)
658 				break;
659 			i++;
660 		}
661 		if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
662 			snprintf(sbuf, sizeof(sbuf),
663 			    "unknown ENQUIRY2 sig (0x%08x)", sig);
664 			prodstr = sbuf;
665 		} else
666 			prodstr = amr_typestr[i].at_str;
667 	} else {
668 		ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
669 		if (ae == NULL) {
670 			aprint_error_dev(amr->amr_dv,
671 			    "unsupported controller\n");
672 			return (-1);
673 		}
674 
675 		switch (PCI_PRODUCT(pa->pa_id)) {
676 		case PCI_PRODUCT_AMI_MEGARAID:
677 			prodstr = "Series 428";
678 			break;
679 		case PCI_PRODUCT_AMI_MEGARAID2:
680 			prodstr = "Series 434";
681 			break;
682 		default:
683 			snprintf(sbuf, sizeof(sbuf),
684 			    "unknown PCI dev (0x%04x)",
685 			    PCI_PRODUCT(pa->pa_id));
686 			prodstr = sbuf;
687 			break;
688 		}
689 	}
690 
691 	/*
692 	 * HP NetRaid controllers have a special encoding of the firmware
693 	 * and BIOS versions.  The AMI version seems to have it as strings
694 	 * whereas the HP version does it with a leading uppercase character
695 	 * and two binary numbers.
696 	*/
697 	aa = &ae->ae_adapter;
698 
699 	if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
700 	    aa->aa_firmware[1] <  ' ' && aa->aa_firmware[0] <  ' ' &&
701 	    aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
702 	    aa->aa_bios[1] <  ' ' && aa->aa_bios[0] <  ' ') {
703 		if (le32toh(ae->ae_signature) == AMR_SIG_438) {
704 			/* The AMI 438 is a NetRaid 3si in HP-land. */
705 			prodstr = "HP NetRaid 3si";
706 		}
707 		ishp = 1;
708 	} else
709 		ishp = 0;
710 
711 	aprint_normal("<%s>\n", prodstr);
712 	if (intrstr != NULL)
713 		aprint_normal_dev(amr->amr_dv, "interrupting at %s\n",
714 		    intrstr);
715 
716 	if (ishp)
717 		aprint_normal_dev(amr->amr_dv, "firmware <%c.%02d.%02d>, "
718 		    "BIOS <%c.%02d.%02d>, %dMB RAM\n", aa->aa_firmware[2],
719 		     aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
720 		     aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
721 	else
722 		aprint_normal_dev(amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, "
723 		    "%dMB RAM\n", aa->aa_firmware, aa->aa_bios,
724 		    aa->aa_memorysize);
725 
726 	amr->amr_maxqueuecnt = aa->aa_maxio;
727 
728 	/*
729 	 * Record state of logical drives.
730 	 */
731 	if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
732 		aprint_error_dev(amr->amr_dv, "Inquiry returned more drives "
733 		    "(%d) than the array can handle (%zu)\n",
734 		    ae->ae_ldrv.al_numdrives,
735 		    __arraycount(ae->ae_ldrv.al_size));
736 		ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
737 	}
738 	if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
739 		aprint_error_dev(amr->amr_dv,
740 		    "adjust AMR_MAX_UNITS to %d (currently %d)\n",
741 		    ae->ae_ldrv.al_numdrives, AMR_MAX_UNITS);
742 		amr->amr_numdrives = AMR_MAX_UNITS;
743 	} else
744 		amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
745 
746 	for (i = 0; i < amr->amr_numdrives; i++) {
747 		amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
748 		amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
749 		amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
750 	}
751 
752 	return (0);
753 }
754 
755 /*
756  * Flush the internal cache on each configured controller.  Called at
757  * shutdown time.
758  */
759 static void
amr_shutdown(void * cookie)760 amr_shutdown(void *cookie)
761 {
762 	extern struct cfdriver amr_cd;
763 	struct amr_softc *amr;
764 	struct amr_ccb *ac;
765 	int i, rv;
766 
767 	for (i = 0; i < amr_cd.cd_ndevs; i++) {
768 		if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
769 			continue;
770 
771 		if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
772 			ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
773 			rv = amr_ccb_poll(amr, ac, 30000);
774 			amr_ccb_free(amr, ac);
775 		}
776 		if (rv != 0)
777 			aprint_error_dev(amr->amr_dv,
778 			    "unable to flush cache (%d)\n", rv);
779 	}
780 }
781 
782 /*
783  * Interrupt service routine.
784  */
785 static int
amr_intr(void * cookie)786 amr_intr(void *cookie)
787 {
788 	struct amr_softc *amr;
789 	struct amr_ccb *ac;
790 	struct amr_mailbox_resp mbox;
791 	u_int i, forus, idx;
792 
793 	amr = cookie;
794 	forus = 0;
795 
796 	mutex_spin_enter(&amr->amr_mutex);
797 
798 	while ((*amr->amr_get_work)(amr, &mbox) == 0) {
799 		/* Iterate over completed commands in this result. */
800 		for (i = 0; i < mbox.mb_nstatus; i++) {
801 			idx = mbox.mb_completed[i] - 1;
802 			ac = amr->amr_ccbs + idx;
803 
804 			if (idx >= amr->amr_maxqueuecnt) {
805 				printf("%s: bad status (bogus ID: %u=%u)\n",
806 				    device_xname(amr->amr_dv), i, idx);
807 				continue;
808 			}
809 
810 			if ((ac->ac_flags & AC_ACTIVE) == 0) {
811 				printf("%s: bad status (not active; 0x04%x)\n",
812 				    device_xname(amr->amr_dv), ac->ac_flags);
813 				continue;
814 			}
815 
816 			ac->ac_status = mbox.mb_status;
817 			ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
818 			    AC_COMPLETE;
819 			TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
820 
821 			if ((ac->ac_flags & AC_MOAN) != 0)
822 				printf("%s: ccb %d completed\n",
823 				    device_xname(amr->amr_dv), ac->ac_ident);
824 
825 			/* Pass notification to upper layers. */
826 			mutex_spin_exit(&amr->amr_mutex);
827 			if (ac->ac_handler != NULL) {
828 				(*ac->ac_handler)(ac);
829 			} else {
830 				mutex_enter(&ac->ac_mutex);
831 				cv_signal(&ac->ac_cv);
832 				mutex_exit(&ac->ac_mutex);
833 			}
834 			mutex_spin_enter(&amr->amr_mutex);
835 		}
836 		forus = 1;
837 	}
838 
839 	mutex_spin_exit(&amr->amr_mutex);
840 
841 	if (forus)
842 		amr_ccb_enqueue(amr, NULL);
843 
844 	return (forus);
845 }
846 
847 /*
848  * Watchdog thread.
849  */
850 static void
amr_quartz_thread(void * cookie)851 amr_quartz_thread(void *cookie)
852 {
853 	struct amr_softc *amr;
854 	struct amr_ccb *ac;
855 
856 	amr = cookie;
857 
858 	for (;;) {
859 		mutex_enter(&thread_mutex);
860 		cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
861 		mutex_exit(&thread_mutex);
862 
863 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
864 			amr->amr_flags ^= AMRF_THREAD_EXIT;
865 			mutex_enter(&thread_mutex);
866 			cv_signal(&thread_cv);
867 			mutex_exit(&thread_mutex);
868 			kthread_exit(0);
869 		}
870 
871 		if (amr_intr(amr) == 0)
872 			amr_ccb_enqueue(amr, NULL);
873 
874 		mutex_spin_enter(&amr->amr_mutex);
875 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
876 		while (ac != NULL) {
877 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
878 				break;
879 			if ((ac->ac_flags & AC_MOAN) == 0) {
880 				printf("%s: ccb %d timed out; mailbox:\n",
881 				    device_xname(amr->amr_dv), ac->ac_ident);
882 				amr_ccb_dump(amr, ac);
883 				ac->ac_flags |= AC_MOAN;
884 			}
885 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
886 		}
887 		mutex_spin_exit(&amr->amr_mutex);
888 	}
889 }
890 
891 static void
amr_std_thread(void * cookie)892 amr_std_thread(void *cookie)
893 {
894 	struct amr_softc *amr;
895 	struct amr_ccb *ac;
896 	struct amr_logdrive *al;
897 	struct amr_enquiry *ae;
898 	int rv, i;
899 
900 	amr = cookie;
901 	ae = amr->amr_enqbuf;
902 
903 	for (;;) {
904 		mutex_enter(&thread_mutex);
905 		cv_timedwait(&thread_cv, &thread_mutex, AMR_WDOG_TICKS);
906 		mutex_exit(&thread_mutex);
907 
908 		if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
909 			amr->amr_flags ^= AMRF_THREAD_EXIT;
910 			mutex_enter(&thread_mutex);
911 			cv_signal(&thread_cv);
912 			mutex_exit(&thread_mutex);
913 			kthread_exit(0);
914 		}
915 
916 		if (amr_intr(amr) == 0)
917 			amr_ccb_enqueue(amr, NULL);
918 
919 		mutex_spin_enter(&amr->amr_mutex);
920 		ac = TAILQ_FIRST(&amr->amr_ccb_active);
921 		while (ac != NULL) {
922 			if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
923 				break;
924 			if ((ac->ac_flags & AC_MOAN) == 0) {
925 				printf("%s: ccb %d timed out; mailbox:\n",
926 				    device_xname(amr->amr_dv), ac->ac_ident);
927 				amr_ccb_dump(amr, ac);
928 				ac->ac_flags |= AC_MOAN;
929 			}
930 			ac = TAILQ_NEXT(ac, ac_chain.tailq);
931 		}
932 		mutex_spin_exit(&amr->amr_mutex);
933 
934 		if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
935 			printf("%s: ccb_alloc failed (%d)\n",
936  			    device_xname(amr->amr_dv), rv);
937 			continue;
938 		}
939 
940 		ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
941 
942 		rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
943 		    AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
944 		if (rv != 0) {
945 			aprint_error_dev(amr->amr_dv, "ccb_map failed (%d)\n",
946  			    rv);
947 			amr_ccb_free(amr, ac);
948 			continue;
949 		}
950 
951 		rv = amr_ccb_wait(amr, ac);
952 		amr_ccb_unmap(amr, ac);
953 		if (rv != 0) {
954 			aprint_error_dev(amr->amr_dv,
955 			    "enquiry failed (st=%d)\n", ac->ac_status);
956 			continue;
957 		}
958 		amr_ccb_free(amr, ac);
959 
960 		al = amr->amr_drive;
961 		for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
962 			if (al->al_dv == NULL)
963 				continue;
964 			if (al->al_state == ae->ae_ldrv.al_state[i])
965 				continue;
966 
967 			printf("%s: state changed: %s -> %s\n",
968 			    device_xname(al->al_dv),
969 			    amr_drive_state(al->al_state, NULL),
970 			    amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
971 
972 			al->al_state = ae->ae_ldrv.al_state[i];
973 		}
974 	}
975 }
976 
977 /*
978  * Return a text description of a logical drive's current state.
979  */
980 const char *
amr_drive_state(int state,int * happy)981 amr_drive_state(int state, int *happy)
982 {
983 	const char *str;
984 
985 	state = AMR_DRV_CURSTATE(state);
986 	if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
987 		if (happy)
988 			*happy = 1;
989 		str = "status unknown";
990 	} else {
991 		if (happy)
992 			*happy = amr_dstate[state].ds_happy;
993 		str = amr_dstate[state].ds_descr;
994 	}
995 
996 	return (str);
997 }
998 
999 /*
1000  * Run a generic enquiry-style command.
1001  */
1002 static void *
amr_enquire(struct amr_softc * amr,u_int8_t cmd,u_int8_t cmdsub,u_int8_t cmdqual,void * sbuf)1003 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
1004 	    u_int8_t cmdqual, void *sbuf)
1005 {
1006 	struct amr_ccb *ac;
1007 	u_int8_t *mb;
1008 	int rv;
1009 
1010 	if (amr_ccb_alloc(amr, &ac) != 0)
1011 		return (NULL);
1012 
1013 	/* Build the command proper. */
1014 	mb = (u_int8_t *)&ac->ac_cmd;
1015 	mb[0] = cmd;
1016 	mb[2] = cmdsub;
1017 	mb[3] = cmdqual;
1018 
1019 	rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
1020 	if (rv == 0) {
1021 		rv = amr_ccb_poll(amr, ac, 2000);
1022 		amr_ccb_unmap(amr, ac);
1023 	}
1024 	amr_ccb_free(amr, ac);
1025 
1026 	return (rv ? NULL : sbuf);
1027 }
1028 
1029 /*
1030  * Allocate and initialise a CCB.
1031  */
1032 int
amr_ccb_alloc(struct amr_softc * amr,struct amr_ccb ** acp)1033 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
1034 {
1035 	mutex_spin_enter(&amr->amr_mutex);
1036 	if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
1037 		mutex_spin_exit(&amr->amr_mutex);
1038 		return (EAGAIN);
1039 	}
1040 	SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
1041 	mutex_spin_exit(&amr->amr_mutex);
1042 
1043 	return (0);
1044 }
1045 
1046 /*
1047  * Free a CCB.
1048  */
1049 void
amr_ccb_free(struct amr_softc * amr,struct amr_ccb * ac)1050 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
1051 {
1052 	memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
1053 	ac->ac_cmd.mb_ident = ac->ac_ident + 1;
1054 	ac->ac_cmd.mb_busy = 1;
1055 	ac->ac_handler = NULL;
1056 	ac->ac_flags = 0;
1057 
1058 	mutex_spin_enter(&amr->amr_mutex);
1059 	SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
1060 	mutex_spin_exit(&amr->amr_mutex);
1061 }
1062 
1063 /*
1064  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1065  * the order that they were enqueued and try to submit their command blocks
1066  * to the controller for execution.
1067  */
1068 void
amr_ccb_enqueue(struct amr_softc * amr,struct amr_ccb * ac)1069 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
1070 {
1071 	if (ac != NULL) {
1072 		mutex_spin_enter(&amr->amr_mutex);
1073 		SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
1074 		mutex_spin_exit(&amr->amr_mutex);
1075 	}
1076 
1077 	while (SIMPLEQ_FIRST(&amr->amr_ccb_queue) != NULL) {
1078 		mutex_spin_enter(&amr->amr_mutex);
1079 		if ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
1080 			if ((*amr->amr_submit)(amr, ac) != 0) {
1081 				mutex_spin_exit(&amr->amr_mutex);
1082 				break;
1083 			}
1084 			SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue,
1085 			    ac_chain.simpleq);
1086 			TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac,
1087 			    ac_chain.tailq);
1088 		}
1089 		mutex_spin_exit(&amr->amr_mutex);
1090 	}
1091 }
1092 
1093 /*
1094  * Map the specified CCB's data buffer onto the bus, and fill the
1095  * scatter-gather list.
1096  */
1097 int
amr_ccb_map(struct amr_softc * amr,struct amr_ccb * ac,void * data,int size,int tflag)1098 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1099 	    int tflag)
1100 {
1101 	struct amr_sgentry *sge;
1102 	struct amr_mailbox_cmd *mb;
1103 	int nsegs, i, rv, sgloff;
1104 	bus_dmamap_t xfer;
1105 	int dmaflag = 0;
1106 
1107 	xfer = ac->ac_xfer_map;
1108 
1109 	rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1110 	    BUS_DMA_NOWAIT);
1111 	if (rv != 0)
1112 		return (rv);
1113 
1114 	mb = &ac->ac_cmd;
1115 	ac->ac_xfer_size = size;
1116 	ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1117 	sgloff = AMR_SGL_SIZE * ac->ac_ident;
1118 
1119 	if (tflag & AC_XFER_OUT)
1120 		dmaflag |= BUS_DMASYNC_PREWRITE;
1121 	if (tflag & AC_XFER_IN)
1122 		dmaflag |= BUS_DMASYNC_PREREAD;
1123 
1124 	/* We don't need to use a scatter/gather list for just 1 segment. */
1125 	nsegs = xfer->dm_nsegs;
1126 	if (nsegs == 1) {
1127 		mb->mb_nsgelem = 0;
1128 		mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1129 		ac->ac_flags |= AC_NOSGL;
1130 	} else {
1131 		mb->mb_nsgelem = nsegs;
1132 		mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1133 
1134 		sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1135 		for (i = 0; i < nsegs; i++, sge++) {
1136 			sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1137 			sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1138 		}
1139 	}
1140 
1141 	bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1142 
1143 	if ((ac->ac_flags & AC_NOSGL) == 0)
1144 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1145 		    AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1146 
1147 	return (0);
1148 }
1149 
1150 /*
1151  * Unmap the specified CCB's data buffer.
1152  */
1153 void
amr_ccb_unmap(struct amr_softc * amr,struct amr_ccb * ac)1154 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1155 {
1156 	int dmaflag = 0;
1157 
1158 	if (ac->ac_flags & AC_XFER_IN)
1159 		dmaflag |= BUS_DMASYNC_POSTREAD;
1160 	if (ac->ac_flags & AC_XFER_OUT)
1161 		dmaflag |= BUS_DMASYNC_POSTWRITE;
1162 
1163 	if ((ac->ac_flags & AC_NOSGL) == 0)
1164 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1165 		    AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1166 		    BUS_DMASYNC_POSTWRITE);
1167 	bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1168 	    dmaflag);
1169 	bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1170 }
1171 
1172 /*
1173  * Submit a command to the controller and poll on completion.  Return
1174  * non-zero on timeout or error.
1175  */
1176 int
amr_ccb_poll(struct amr_softc * amr,struct amr_ccb * ac,int timo)1177 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1178 {
1179 	int rv, i;
1180 
1181 	mutex_spin_enter(&amr->amr_mutex);
1182 	if ((rv = (*amr->amr_submit)(amr, ac)) != 0) {
1183 		mutex_spin_exit(&amr->amr_mutex);
1184 		return (rv);
1185 	}
1186 	TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1187 	mutex_spin_exit(&amr->amr_mutex);
1188 
1189 	for (i = timo * 10; i > 0; i--) {
1190 		amr_intr(amr);
1191 		if ((ac->ac_flags & AC_COMPLETE) != 0)
1192 			break;
1193 		DELAY(100);
1194 	}
1195 
1196 	if (i == 0)
1197 		printf("%s: polled operation timed out after %d ms\n",
1198 		       device_xname(amr->amr_dv), timo);
1199 
1200 	return ((i == 0 || ac->ac_status != 0) ? EIO : 0);
1201 }
1202 
1203 /*
1204  * Submit a command to the controller and sleep on completion.  Return
1205  * non-zero on error.
1206  */
1207 int
amr_ccb_wait(struct amr_softc * amr,struct amr_ccb * ac)1208 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1209 {
1210 	amr_ccb_enqueue(amr, ac);
1211 	mutex_enter(&ac->ac_mutex);
1212 	cv_wait(&ac->ac_cv, &ac->ac_mutex);
1213 	mutex_exit(&ac->ac_mutex);
1214 
1215 	return (ac->ac_status != 0 ? EIO : 0);
1216 }
1217 
1218 #if 0
1219 /*
1220  * Wait for the mailbox to become available.
1221  */
1222 static int
1223 amr_mbox_wait(struct amr_softc *amr)
1224 {
1225 	int timo;
1226 
1227 	for (timo = 10000; timo != 0; timo--) {
1228 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1229 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1230 		if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1231 			break;
1232 		DELAY(100);
1233 	}
1234 
1235 	if (timo == 0)
1236 		printf("%s: controller wedged\n", device_xname(amr->amr_dv));
1237 
1238 	return (timo != 0 ? 0 : EAGAIN);
1239 }
1240 #endif
1241 
1242 /*
1243  * Tell the controller that the mailbox contains a valid command.  Must be
1244  * called with interrupts blocked.
1245  */
1246 static int
amr_quartz_submit(struct amr_softc * amr,struct amr_ccb * ac)1247 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1248 {
1249 	int i = 0;
1250 	u_int32_t v;
1251 
1252 	amr->amr_mbox->mb_poll = 0;
1253 	amr->amr_mbox->mb_ack = 0;
1254 
1255 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1256 	    sizeof(struct amr_mailbox),
1257 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1258 
1259 	v = amr_inl(amr, AMR_QREG_ODB);
1260 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1261 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1262 	while ((amr->amr_mbox->mb_cmd.mb_busy != 0) && (i++ < 10)) {
1263 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1264 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1265 		/* This is a no-op read that flushes pending mailbox updates */
1266 		v = amr_inl(amr, AMR_QREG_ODB);
1267 		DELAY(1);
1268 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1269 		    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1270 	}
1271 
1272 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1273 		return (EAGAIN);
1274 
1275 	v = amr_inl(amr, AMR_QREG_IDB);
1276 	if ((v & AMR_QIDB_SUBMIT) != 0) {
1277 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1278 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1279 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1280 		printf("%s: submit failed\n", device_xname(amr->amr_dv));
1281 		return (EAGAIN);
1282 	}
1283 
1284 	amr->amr_mbox->mb_segment = 0;
1285 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1286 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1287 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1288 
1289 	ac->ac_start_time = time_uptime;
1290 	ac->ac_flags |= AC_ACTIVE;
1291 
1292 	amr_outl(amr, AMR_QREG_IDB,
1293 	    (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1294 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1295 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1296 
1297 	return (0);
1298 }
1299 
1300 static int
amr_std_submit(struct amr_softc * amr,struct amr_ccb * ac)1301 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1302 {
1303 
1304 	amr->amr_mbox->mb_poll = 0;
1305 	amr->amr_mbox->mb_ack = 0;
1306 
1307 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1308 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1309 
1310 	if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1311 		return (EAGAIN);
1312 
1313 	if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1314 		amr->amr_mbox->mb_cmd.mb_busy = 0;
1315 		bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1316 		    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1317 		return (EAGAIN);
1318 	}
1319 
1320 	amr->amr_mbox->mb_segment = 0;
1321 	memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1322 
1323 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1324 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1325 
1326 	ac->ac_start_time = time_uptime;
1327 	ac->ac_flags |= AC_ACTIVE;
1328 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1329 
1330 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1331 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTWRITE);
1332 
1333 	return (0);
1334 }
1335 
1336 /*
1337  * Claim any work that the controller has completed; acknowledge completion,
1338  * save details of the completion in (mbsave).  Must be called with
1339  * interrupts blocked.
1340  */
1341 static int
amr_quartz_get_work(struct amr_softc * amr,struct amr_mailbox_resp * mbsave)1342 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1343 {
1344 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1345 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1346 
1347 	/* Work waiting for us? */
1348 	if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1349 		return (-1);
1350 
1351 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1352 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1353 
1354 	/* Save the mailbox, which contains a list of completed commands. */
1355 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1356 
1357 	/* Ack the interrupt and mailbox transfer. */
1358 	amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1359 	amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1360 
1361 	/*
1362 	 * This waits for the controller to notice that we've taken the
1363 	 * command from it.  It's very inefficient, and we shouldn't do it,
1364 	 * but if we remove this code, we stop completing commands under
1365 	 * load.
1366 	 *
1367 	 * Peter J says we shouldn't do this.  The documentation says we
1368 	 * should.  Who is right?
1369 	 */
1370 	while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1371 		DELAY(10);
1372 
1373 	return (0);
1374 }
1375 
1376 static int
amr_std_get_work(struct amr_softc * amr,struct amr_mailbox_resp * mbsave)1377 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1378 {
1379 	u_int8_t istat;
1380 
1381 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1382 	    sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1383 
1384 	/* Check for valid interrupt status. */
1385 	if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1386 		return (-1);
1387 
1388 	/* Ack the interrupt. */
1389 	amr_outb(amr, AMR_SREG_INTR, istat);
1390 
1391 	bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1392 	    sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1393 
1394 	/* Save mailbox, which contains a list of completed commands. */
1395 	memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1396 
1397 	/* Ack mailbox transfer. */
1398 	amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1399 
1400 	return (0);
1401 }
1402 
1403 static void
amr_ccb_dump(struct amr_softc * amr,struct amr_ccb * ac)1404 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1405 {
1406 	int i;
1407 
1408 	printf("%s: ", device_xname(amr->amr_dv));
1409 	for (i = 0; i < 4; i++)
1410 		printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1411 	printf("\n");
1412 }
1413 
1414 static int
amropen(dev_t dev,int flag,int mode,struct lwp * l)1415 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1416 {
1417 	struct amr_softc *amr;
1418 
1419 	if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1420 		return (ENXIO);
1421 	if ((amr->amr_flags & AMRF_OPEN) != 0)
1422 		return (EBUSY);
1423 
1424 	amr->amr_flags |= AMRF_OPEN;
1425 	return (0);
1426 }
1427 
1428 static int
amrclose(dev_t dev,int flag,int mode,struct lwp * l)1429 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1430 {
1431 	struct amr_softc *amr;
1432 
1433 	amr = device_lookup_private(&amr_cd, minor(dev));
1434 	amr->amr_flags &= ~AMRF_OPEN;
1435 	return (0);
1436 }
1437 
1438 /* used below to correct for a firmware bug */
1439 static unsigned long
amrioctl_buflen(unsigned long len)1440 amrioctl_buflen(unsigned long len)
1441 {
1442 	if (len <= 4 * 1024)
1443 		return (4 * 1024);
1444 	if (len <= 8 * 1024)
1445 		return (8 * 1024);
1446 	if (len <= 32 * 1024)
1447 		return (32 * 1024);
1448 	if (len <= 64 * 1024)
1449 		return (64 * 1024);
1450 	return (len);
1451 }
1452 
1453 static int
amrioctl(dev_t dev,u_long cmd,void * data,int flag,struct lwp * l)1454 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1455     struct lwp *l)
1456 {
1457 	struct amr_softc *amr;
1458 	struct amr_user_ioctl *au;
1459 	struct amr_ccb *ac;
1460 	struct amr_mailbox_ioctl *mbi;
1461 	unsigned long au_length;
1462 	uint8_t *au_cmd;
1463 	int error;
1464 	void *dp = NULL, *au_buffer;
1465 
1466 	amr = device_lookup_private(&amr_cd, minor(dev));
1467 
1468 	/* This should be compatible with the FreeBSD interface */
1469 
1470 	switch (cmd) {
1471 	case AMR_IO_VERSION:
1472 		*(int *)data = AMR_IO_VERSION_NUMBER;
1473 		return 0;
1474 	case AMR_IO_COMMAND:
1475 		error = kauth_authorize_device_passthru(l->l_cred, dev,
1476 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1477 		if (error)
1478 			return (error);
1479 
1480 		au = (struct amr_user_ioctl *)data;
1481 		au_cmd = au->au_cmd;
1482 		au_buffer = au->au_buffer;
1483 		au_length = au->au_length;
1484 		break;
1485 	default:
1486 		return ENOTTY;
1487 	}
1488 
1489 	if (au_cmd[0] == AMR_CMD_PASS) {
1490 		/* not yet */
1491 		return EOPNOTSUPP;
1492 	}
1493 
1494 	if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1495 		return (EINVAL);
1496 
1497 	/*
1498 	 * allocate kernel memory for data, doing I/O directly to user
1499 	 * buffer isn't that easy.  Correct allocation size for a bug
1500 	 * in at least some versions of the device firmware, by using
1501 	 * the amrioctl_buflen() function, defined above.
1502 	 */
1503 	dp = malloc(amrioctl_buflen(au_length), M_DEVBUF, M_WAITOK|M_ZERO);
1504 	if (dp == NULL)
1505 		return ENOMEM;
1506 	if ((error = copyin(au_buffer, dp, au_length)) != 0)
1507 		goto out;
1508 
1509 	/* direct command to controller */
1510 	while (amr_ccb_alloc(amr, &ac) != 0) {
1511 		mutex_enter(&thread_mutex);
1512 		error = cv_timedwait_sig(&thread_cv, &thread_mutex, hz);
1513 		mutex_exit(&thread_mutex);
1514 		if (error == EINTR)
1515 			goto out;
1516 	}
1517 
1518 	mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1519 	mbi->mb_command = au_cmd[0];
1520 	mbi->mb_channel = au_cmd[1];
1521 	mbi->mb_param = au_cmd[2];
1522 	mbi->mb_pad[0] = au_cmd[3];
1523 	mbi->mb_drive = au_cmd[4];
1524 	error = amr_ccb_map(amr, ac, dp, (int)au_length,
1525 	    AC_XFER_IN | AC_XFER_OUT);
1526 	if (error == 0) {
1527 		error = amr_ccb_wait(amr, ac);
1528 		amr_ccb_unmap(amr, ac);
1529 		if (error == 0)
1530 			error = copyout(dp, au_buffer, au_length);
1531 
1532 	}
1533 	amr_ccb_free(amr, ac);
1534 out:
1535 	free(dp, M_DEVBUF);
1536 	return (error);
1537 }
1538