1 //===- Chunks.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Chunks.h"
10 #include "COFFLinkerContext.h"
11 #include "InputFiles.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "Writer.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/BinaryFormat/COFF.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <algorithm>
23 #include <iterator>
24
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
28 using namespace llvm::COFF;
29 using llvm::support::ulittle32_t;
30
31 namespace lld::coff {
32
SectionChunk(ObjFile * f,const coff_section * h)33 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h)
34 : Chunk(SectionKind), file(f), header(h), repl(this) {
35 // Initialize relocs.
36 if (file)
37 setRelocs(file->getCOFFObj()->getRelocations(header));
38
39 // Initialize sectionName.
40 StringRef sectionName;
41 if (file) {
42 if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header))
43 sectionName = *e;
44 }
45 sectionNameData = sectionName.data();
46 sectionNameSize = sectionName.size();
47
48 setAlignment(header->getAlignment());
49
50 hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
51
52 // If linker GC is disabled, every chunk starts out alive. If linker GC is
53 // enabled, treat non-comdat sections as roots. Generally optimized object
54 // files will be built with -ffunction-sections or /Gy, so most things worth
55 // stripping will be in a comdat.
56 if (file)
57 live = !file->ctx.config.doGC || !isCOMDAT();
58 else
59 live = true;
60 }
61
62 // SectionChunk is one of the most frequently allocated classes, so it is
63 // important to keep it as compact as possible. As of this writing, the number
64 // below is the size of this class on x64 platforms.
65 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly");
66
add16(uint8_t * p,int16_t v)67 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); }
add32(uint8_t * p,int32_t v)68 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); }
add64(uint8_t * p,int64_t v)69 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); }
or16(uint8_t * p,uint16_t v)70 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); }
or32(uint8_t * p,uint32_t v)71 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); }
72
73 // Verify that given sections are appropriate targets for SECREL
74 // relocations. This check is relaxed because unfortunately debug
75 // sections have section-relative relocations against absolute symbols.
checkSecRel(const SectionChunk * sec,OutputSection * os)76 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) {
77 if (os)
78 return true;
79 if (sec->isCodeView())
80 return false;
81 error("SECREL relocation cannot be applied to absolute symbols");
82 return false;
83 }
84
applySecRel(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)85 static void applySecRel(const SectionChunk *sec, uint8_t *off,
86 OutputSection *os, uint64_t s) {
87 if (!checkSecRel(sec, os))
88 return;
89 uint64_t secRel = s - os->getRVA();
90 if (secRel > UINT32_MAX) {
91 error("overflow in SECREL relocation in section: " + sec->getSectionName());
92 return;
93 }
94 add32(off, secRel);
95 }
96
applySecIdx(uint8_t * off,OutputSection * os,unsigned numOutputSections)97 static void applySecIdx(uint8_t *off, OutputSection *os,
98 unsigned numOutputSections) {
99 // numOutputSections is the largest valid section index. Make sure that
100 // it fits in 16 bits.
101 assert(numOutputSections <= 0xffff && "size of outputSections is too big");
102
103 // Absolute symbol doesn't have section index, but section index relocation
104 // against absolute symbol should be resolved to one plus the last output
105 // section index. This is required for compatibility with MSVC.
106 if (os)
107 add16(off, os->sectionIndex);
108 else
109 add16(off, numOutputSections + 1);
110 }
111
applyRelX64(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p,uint64_t imageBase) const112 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os,
113 uint64_t s, uint64_t p,
114 uint64_t imageBase) const {
115 switch (type) {
116 case IMAGE_REL_AMD64_ADDR32:
117 add32(off, s + imageBase);
118 break;
119 case IMAGE_REL_AMD64_ADDR64:
120 add64(off, s + imageBase);
121 break;
122 case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break;
123 case IMAGE_REL_AMD64_REL32: add32(off, s - p - 4); break;
124 case IMAGE_REL_AMD64_REL32_1: add32(off, s - p - 5); break;
125 case IMAGE_REL_AMD64_REL32_2: add32(off, s - p - 6); break;
126 case IMAGE_REL_AMD64_REL32_3: add32(off, s - p - 7); break;
127 case IMAGE_REL_AMD64_REL32_4: add32(off, s - p - 8); break;
128 case IMAGE_REL_AMD64_REL32_5: add32(off, s - p - 9); break;
129 case IMAGE_REL_AMD64_SECTION:
130 applySecIdx(off, os, file->ctx.outputSections.size());
131 break;
132 case IMAGE_REL_AMD64_SECREL: applySecRel(this, off, os, s); break;
133 default:
134 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
135 toString(file));
136 }
137 }
138
applyRelX86(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p,uint64_t imageBase) const139 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os,
140 uint64_t s, uint64_t p,
141 uint64_t imageBase) const {
142 switch (type) {
143 case IMAGE_REL_I386_ABSOLUTE: break;
144 case IMAGE_REL_I386_DIR32:
145 add32(off, s + imageBase);
146 break;
147 case IMAGE_REL_I386_DIR32NB: add32(off, s); break;
148 case IMAGE_REL_I386_REL32: add32(off, s - p - 4); break;
149 case IMAGE_REL_I386_SECTION:
150 applySecIdx(off, os, file->ctx.outputSections.size());
151 break;
152 case IMAGE_REL_I386_SECREL: applySecRel(this, off, os, s); break;
153 default:
154 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
155 toString(file));
156 }
157 }
158
applyMOV(uint8_t * off,uint16_t v)159 static void applyMOV(uint8_t *off, uint16_t v) {
160 write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf));
161 write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff));
162 }
163
readMOV(uint8_t * off,bool movt)164 static uint16_t readMOV(uint8_t *off, bool movt) {
165 uint16_t op1 = read16le(off);
166 if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240))
167 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
168 " instruction in MOV32T relocation");
169 uint16_t op2 = read16le(off + 2);
170 if ((op2 & 0x8000) != 0)
171 error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
172 " instruction in MOV32T relocation");
173 return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) |
174 ((op1 & 0x000f) << 12);
175 }
176
applyMOV32T(uint8_t * off,uint32_t v)177 void applyMOV32T(uint8_t *off, uint32_t v) {
178 uint16_t immW = readMOV(off, false); // read MOVW operand
179 uint16_t immT = readMOV(off + 4, true); // read MOVT operand
180 uint32_t imm = immW | (immT << 16);
181 v += imm; // add the immediate offset
182 applyMOV(off, v); // set MOVW operand
183 applyMOV(off + 4, v >> 16); // set MOVT operand
184 }
185
applyBranch20T(uint8_t * off,int32_t v)186 static void applyBranch20T(uint8_t *off, int32_t v) {
187 if (!isInt<21>(v))
188 error("relocation out of range");
189 uint32_t s = v < 0 ? 1 : 0;
190 uint32_t j1 = (v >> 19) & 1;
191 uint32_t j2 = (v >> 18) & 1;
192 or16(off, (s << 10) | ((v >> 12) & 0x3f));
193 or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
194 }
195
applyBranch24T(uint8_t * off,int32_t v)196 void applyBranch24T(uint8_t *off, int32_t v) {
197 if (!isInt<25>(v))
198 error("relocation out of range");
199 uint32_t s = v < 0 ? 1 : 0;
200 uint32_t j1 = ((~v >> 23) & 1) ^ s;
201 uint32_t j2 = ((~v >> 22) & 1) ^ s;
202 or16(off, (s << 10) | ((v >> 12) & 0x3ff));
203 // Clear out the J1 and J2 bits which may be set.
204 write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
205 }
206
applyRelARM(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p,uint64_t imageBase) const207 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os,
208 uint64_t s, uint64_t p,
209 uint64_t imageBase) const {
210 // Pointer to thumb code must have the LSB set.
211 uint64_t sx = s;
212 if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE))
213 sx |= 1;
214 switch (type) {
215 case IMAGE_REL_ARM_ADDR32:
216 add32(off, sx + imageBase);
217 break;
218 case IMAGE_REL_ARM_ADDR32NB: add32(off, sx); break;
219 case IMAGE_REL_ARM_MOV32T:
220 applyMOV32T(off, sx + imageBase);
221 break;
222 case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break;
223 case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break;
224 case IMAGE_REL_ARM_BLX23T: applyBranch24T(off, sx - p - 4); break;
225 case IMAGE_REL_ARM_SECTION:
226 applySecIdx(off, os, file->ctx.outputSections.size());
227 break;
228 case IMAGE_REL_ARM_SECREL: applySecRel(this, off, os, s); break;
229 case IMAGE_REL_ARM_REL32: add32(off, sx - p - 4); break;
230 default:
231 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
232 toString(file));
233 }
234 }
235
236 // Interpret the existing immediate value as a byte offset to the
237 // target symbol, then update the instruction with the immediate as
238 // the page offset from the current instruction to the target.
applyArm64Addr(uint8_t * off,uint64_t s,uint64_t p,int shift)239 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) {
240 uint32_t orig = read32le(off);
241 int64_t imm =
242 SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC));
243 s += imm;
244 imm = (s >> shift) - (p >> shift);
245 uint32_t immLo = (imm & 0x3) << 29;
246 uint32_t immHi = (imm & 0x1FFFFC) << 3;
247 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
248 write32le(off, (orig & ~mask) | immLo | immHi);
249 }
250
251 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
252 // Optionally limit the range of the written immediate by one or more bits
253 // (rangeLimit).
applyArm64Imm(uint8_t * off,uint64_t imm,uint32_t rangeLimit)254 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) {
255 uint32_t orig = read32le(off);
256 imm += (orig >> 10) & 0xFFF;
257 orig &= ~(0xFFF << 10);
258 write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10));
259 }
260
261 // Add the 12 bit page offset to the existing immediate.
262 // Ldr/str instructions store the opcode immediate scaled
263 // by the load/store size (giving a larger range for larger
264 // loads/stores). The immediate is always (both before and after
265 // fixing up the relocation) stored scaled similarly.
266 // Even if larger loads/stores have a larger range, limit the
267 // effective offset to 12 bit, since it is intended to be a
268 // page offset.
applyArm64Ldr(uint8_t * off,uint64_t imm)269 static void applyArm64Ldr(uint8_t *off, uint64_t imm) {
270 uint32_t orig = read32le(off);
271 uint32_t size = orig >> 30;
272 // 0x04000000 indicates SIMD/FP registers
273 // 0x00800000 indicates 128 bit
274 if ((orig & 0x4800000) == 0x4800000)
275 size += 4;
276 if ((imm & ((1 << size) - 1)) != 0)
277 error("misaligned ldr/str offset");
278 applyArm64Imm(off, imm >> size, size);
279 }
280
applySecRelLow12A(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)281 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off,
282 OutputSection *os, uint64_t s) {
283 if (checkSecRel(sec, os))
284 applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0);
285 }
286
applySecRelHigh12A(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)287 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off,
288 OutputSection *os, uint64_t s) {
289 if (!checkSecRel(sec, os))
290 return;
291 uint64_t secRel = (s - os->getRVA()) >> 12;
292 if (0xfff < secRel) {
293 error("overflow in SECREL_HIGH12A relocation in section: " +
294 sec->getSectionName());
295 return;
296 }
297 applyArm64Imm(off, secRel & 0xfff, 0);
298 }
299
applySecRelLdr(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)300 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off,
301 OutputSection *os, uint64_t s) {
302 if (checkSecRel(sec, os))
303 applyArm64Ldr(off, (s - os->getRVA()) & 0xfff);
304 }
305
applyArm64Branch26(uint8_t * off,int64_t v)306 void applyArm64Branch26(uint8_t *off, int64_t v) {
307 if (!isInt<28>(v))
308 error("relocation out of range");
309 or32(off, (v & 0x0FFFFFFC) >> 2);
310 }
311
applyArm64Branch19(uint8_t * off,int64_t v)312 static void applyArm64Branch19(uint8_t *off, int64_t v) {
313 if (!isInt<21>(v))
314 error("relocation out of range");
315 or32(off, (v & 0x001FFFFC) << 3);
316 }
317
applyArm64Branch14(uint8_t * off,int64_t v)318 static void applyArm64Branch14(uint8_t *off, int64_t v) {
319 if (!isInt<16>(v))
320 error("relocation out of range");
321 or32(off, (v & 0x0000FFFC) << 3);
322 }
323
applyRelARM64(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p,uint64_t imageBase) const324 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os,
325 uint64_t s, uint64_t p,
326 uint64_t imageBase) const {
327 switch (type) {
328 case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break;
329 case IMAGE_REL_ARM64_REL21: applyArm64Addr(off, s, p, 0); break;
330 case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break;
331 case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break;
332 case IMAGE_REL_ARM64_BRANCH26: applyArm64Branch26(off, s - p); break;
333 case IMAGE_REL_ARM64_BRANCH19: applyArm64Branch19(off, s - p); break;
334 case IMAGE_REL_ARM64_BRANCH14: applyArm64Branch14(off, s - p); break;
335 case IMAGE_REL_ARM64_ADDR32:
336 add32(off, s + imageBase);
337 break;
338 case IMAGE_REL_ARM64_ADDR32NB: add32(off, s); break;
339 case IMAGE_REL_ARM64_ADDR64:
340 add64(off, s + imageBase);
341 break;
342 case IMAGE_REL_ARM64_SECREL: applySecRel(this, off, os, s); break;
343 case IMAGE_REL_ARM64_SECREL_LOW12A: applySecRelLow12A(this, off, os, s); break;
344 case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break;
345 case IMAGE_REL_ARM64_SECREL_LOW12L: applySecRelLdr(this, off, os, s); break;
346 case IMAGE_REL_ARM64_SECTION:
347 applySecIdx(off, os, file->ctx.outputSections.size());
348 break;
349 case IMAGE_REL_ARM64_REL32: add32(off, s - p - 4); break;
350 default:
351 error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
352 toString(file));
353 }
354 }
355
maybeReportRelocationToDiscarded(const SectionChunk * fromChunk,Defined * sym,const coff_relocation & rel,bool isMinGW)356 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk,
357 Defined *sym,
358 const coff_relocation &rel,
359 bool isMinGW) {
360 // Don't report these errors when the relocation comes from a debug info
361 // section or in mingw mode. MinGW mode object files (built by GCC) can
362 // have leftover sections with relocations against discarded comdat
363 // sections. Such sections are left as is, with relocations untouched.
364 if (fromChunk->isCodeView() || fromChunk->isDWARF() || isMinGW)
365 return;
366
367 // Get the name of the symbol. If it's null, it was discarded early, so we
368 // have to go back to the object file.
369 ObjFile *file = fromChunk->file;
370 StringRef name;
371 if (sym) {
372 name = sym->getName();
373 } else {
374 COFFSymbolRef coffSym =
375 check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex));
376 name = check(file->getCOFFObj()->getSymbolName(coffSym));
377 }
378
379 std::vector<std::string> symbolLocations =
380 getSymbolLocations(file, rel.SymbolTableIndex);
381
382 std::string out;
383 llvm::raw_string_ostream os(out);
384 os << "relocation against symbol in discarded section: " + name;
385 for (const std::string &s : symbolLocations)
386 os << s;
387 error(os.str());
388 }
389
writeTo(uint8_t * buf) const390 void SectionChunk::writeTo(uint8_t *buf) const {
391 if (!hasData)
392 return;
393 // Copy section contents from source object file to output file.
394 ArrayRef<uint8_t> a = getContents();
395 if (!a.empty())
396 memcpy(buf, a.data(), a.size());
397
398 // Apply relocations.
399 size_t inputSize = getSize();
400 for (const coff_relocation &rel : getRelocs()) {
401 // Check for an invalid relocation offset. This check isn't perfect, because
402 // we don't have the relocation size, which is only known after checking the
403 // machine and relocation type. As a result, a relocation may overwrite the
404 // beginning of the following input section.
405 if (rel.VirtualAddress >= inputSize) {
406 error("relocation points beyond the end of its parent section");
407 continue;
408 }
409
410 applyRelocation(buf + rel.VirtualAddress, rel);
411 }
412 }
413
applyRelocation(uint8_t * off,const coff_relocation & rel) const414 void SectionChunk::applyRelocation(uint8_t *off,
415 const coff_relocation &rel) const {
416 auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
417
418 // Get the output section of the symbol for this relocation. The output
419 // section is needed to compute SECREL and SECTION relocations used in debug
420 // info.
421 Chunk *c = sym ? sym->getChunk() : nullptr;
422 OutputSection *os = c ? file->ctx.getOutputSection(c) : nullptr;
423
424 // Skip the relocation if it refers to a discarded section, and diagnose it
425 // as an error if appropriate. If a symbol was discarded early, it may be
426 // null. If it was discarded late, the output section will be null, unless
427 // it was an absolute or synthetic symbol.
428 if (!sym ||
429 (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) {
430 maybeReportRelocationToDiscarded(this, sym, rel, file->ctx.config.mingw);
431 return;
432 }
433
434 uint64_t s = sym->getRVA();
435
436 // Compute the RVA of the relocation for relative relocations.
437 uint64_t p = rva + rel.VirtualAddress;
438 uint64_t imageBase = file->ctx.config.imageBase;
439 switch (file->ctx.config.machine) {
440 case AMD64:
441 applyRelX64(off, rel.Type, os, s, p, imageBase);
442 break;
443 case I386:
444 applyRelX86(off, rel.Type, os, s, p, imageBase);
445 break;
446 case ARMNT:
447 applyRelARM(off, rel.Type, os, s, p, imageBase);
448 break;
449 case ARM64:
450 applyRelARM64(off, rel.Type, os, s, p, imageBase);
451 break;
452 default:
453 llvm_unreachable("unknown machine type");
454 }
455 }
456
457 // Defend against unsorted relocations. This may be overly conservative.
sortRelocations()458 void SectionChunk::sortRelocations() {
459 auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) {
460 return l.VirtualAddress < r.VirtualAddress;
461 };
462 if (llvm::is_sorted(getRelocs(), cmpByVa))
463 return;
464 warn("some relocations in " + file->getName() + " are not sorted");
465 MutableArrayRef<coff_relocation> newRelocs(
466 bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize);
467 memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation));
468 llvm::sort(newRelocs, cmpByVa);
469 setRelocs(newRelocs);
470 }
471
472 // Similar to writeTo, but suitable for relocating a subsection of the overall
473 // section.
writeAndRelocateSubsection(ArrayRef<uint8_t> sec,ArrayRef<uint8_t> subsec,uint32_t & nextRelocIndex,uint8_t * buf) const474 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec,
475 ArrayRef<uint8_t> subsec,
476 uint32_t &nextRelocIndex,
477 uint8_t *buf) const {
478 assert(!subsec.empty() && !sec.empty());
479 assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() &&
480 "subsection is not part of this section");
481 size_t vaBegin = std::distance(sec.begin(), subsec.begin());
482 size_t vaEnd = std::distance(sec.begin(), subsec.end());
483 memcpy(buf, subsec.data(), subsec.size());
484 for (; nextRelocIndex < relocsSize; ++nextRelocIndex) {
485 const coff_relocation &rel = relocsData[nextRelocIndex];
486 // Only apply relocations that apply to this subsection. These checks
487 // assume that all subsections completely contain their relocations.
488 // Relocations must not straddle the beginning or end of a subsection.
489 if (rel.VirtualAddress < vaBegin)
490 continue;
491 if (rel.VirtualAddress + 1 >= vaEnd)
492 break;
493 applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel);
494 }
495 }
496
addAssociative(SectionChunk * child)497 void SectionChunk::addAssociative(SectionChunk *child) {
498 // Insert the child section into the list of associated children. Keep the
499 // list ordered by section name so that ICF does not depend on section order.
500 assert(child->assocChildren == nullptr &&
501 "associated sections cannot have their own associated children");
502 SectionChunk *prev = this;
503 SectionChunk *next = assocChildren;
504 for (; next != nullptr; prev = next, next = next->assocChildren) {
505 if (next->getSectionName() <= child->getSectionName())
506 break;
507 }
508
509 // Insert child between prev and next.
510 assert(prev->assocChildren == next);
511 prev->assocChildren = child;
512 child->assocChildren = next;
513 }
514
getBaserelType(const coff_relocation & rel,llvm::COFF::MachineTypes machine)515 static uint8_t getBaserelType(const coff_relocation &rel,
516 llvm::COFF::MachineTypes machine) {
517 switch (machine) {
518 case AMD64:
519 if (rel.Type == IMAGE_REL_AMD64_ADDR64)
520 return IMAGE_REL_BASED_DIR64;
521 if (rel.Type == IMAGE_REL_AMD64_ADDR32)
522 return IMAGE_REL_BASED_HIGHLOW;
523 return IMAGE_REL_BASED_ABSOLUTE;
524 case I386:
525 if (rel.Type == IMAGE_REL_I386_DIR32)
526 return IMAGE_REL_BASED_HIGHLOW;
527 return IMAGE_REL_BASED_ABSOLUTE;
528 case ARMNT:
529 if (rel.Type == IMAGE_REL_ARM_ADDR32)
530 return IMAGE_REL_BASED_HIGHLOW;
531 if (rel.Type == IMAGE_REL_ARM_MOV32T)
532 return IMAGE_REL_BASED_ARM_MOV32T;
533 return IMAGE_REL_BASED_ABSOLUTE;
534 case ARM64:
535 if (rel.Type == IMAGE_REL_ARM64_ADDR64)
536 return IMAGE_REL_BASED_DIR64;
537 return IMAGE_REL_BASED_ABSOLUTE;
538 default:
539 llvm_unreachable("unknown machine type");
540 }
541 }
542
543 // Windows-specific.
544 // Collect all locations that contain absolute addresses, which need to be
545 // fixed by the loader if load-time relocation is needed.
546 // Only called when base relocation is enabled.
getBaserels(std::vector<Baserel> * res)547 void SectionChunk::getBaserels(std::vector<Baserel> *res) {
548 for (const coff_relocation &rel : getRelocs()) {
549 uint8_t ty = getBaserelType(rel, file->ctx.config.machine);
550 if (ty == IMAGE_REL_BASED_ABSOLUTE)
551 continue;
552 Symbol *target = file->getSymbol(rel.SymbolTableIndex);
553 if (!target || isa<DefinedAbsolute>(target))
554 continue;
555 res->emplace_back(rva + rel.VirtualAddress, ty);
556 }
557 }
558
559 // MinGW specific.
560 // Check whether a static relocation of type Type can be deferred and
561 // handled at runtime as a pseudo relocation (for references to a module
562 // local variable, which turned out to actually need to be imported from
563 // another DLL) This returns the size the relocation is supposed to update,
564 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo
565 // relocation.
getRuntimePseudoRelocSize(uint16_t type,llvm::COFF::MachineTypes machine)566 static int getRuntimePseudoRelocSize(uint16_t type,
567 llvm::COFF::MachineTypes machine) {
568 // Relocations that either contain an absolute address, or a plain
569 // relative offset, since the runtime pseudo reloc implementation
570 // adds 8/16/32/64 bit values to a memory address.
571 //
572 // Given a pseudo relocation entry,
573 //
574 // typedef struct {
575 // DWORD sym;
576 // DWORD target;
577 // DWORD flags;
578 // } runtime_pseudo_reloc_item_v2;
579 //
580 // the runtime relocation performs this adjustment:
581 // *(base + .target) += *(base + .sym) - (base + .sym)
582 //
583 // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
584 // IMAGE_REL_I386_DIR32, where the memory location initially contains
585 // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
586 // where the memory location originally contains the relative offset to the
587 // IAT slot.
588 //
589 // This requires the target address to be writable, either directly out of
590 // the image, or temporarily changed at runtime with VirtualProtect.
591 // Since this only operates on direct address values, it doesn't work for
592 // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
593 switch (machine) {
594 case AMD64:
595 switch (type) {
596 case IMAGE_REL_AMD64_ADDR64:
597 return 64;
598 case IMAGE_REL_AMD64_ADDR32:
599 case IMAGE_REL_AMD64_REL32:
600 case IMAGE_REL_AMD64_REL32_1:
601 case IMAGE_REL_AMD64_REL32_2:
602 case IMAGE_REL_AMD64_REL32_3:
603 case IMAGE_REL_AMD64_REL32_4:
604 case IMAGE_REL_AMD64_REL32_5:
605 return 32;
606 default:
607 return 0;
608 }
609 case I386:
610 switch (type) {
611 case IMAGE_REL_I386_DIR32:
612 case IMAGE_REL_I386_REL32:
613 return 32;
614 default:
615 return 0;
616 }
617 case ARMNT:
618 switch (type) {
619 case IMAGE_REL_ARM_ADDR32:
620 return 32;
621 default:
622 return 0;
623 }
624 case ARM64:
625 switch (type) {
626 case IMAGE_REL_ARM64_ADDR64:
627 return 64;
628 case IMAGE_REL_ARM64_ADDR32:
629 return 32;
630 default:
631 return 0;
632 }
633 default:
634 llvm_unreachable("unknown machine type");
635 }
636 }
637
638 // MinGW specific.
639 // Append information to the provided vector about all relocations that
640 // need to be handled at runtime as runtime pseudo relocations (references
641 // to a module local variable, which turned out to actually need to be
642 // imported from another DLL).
getRuntimePseudoRelocs(std::vector<RuntimePseudoReloc> & res)643 void SectionChunk::getRuntimePseudoRelocs(
644 std::vector<RuntimePseudoReloc> &res) {
645 for (const coff_relocation &rel : getRelocs()) {
646 auto *target =
647 dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
648 if (!target || !target->isRuntimePseudoReloc)
649 continue;
650 int sizeInBits =
651 getRuntimePseudoRelocSize(rel.Type, file->ctx.config.machine);
652 if (sizeInBits == 0) {
653 error("unable to automatically import from " + target->getName() +
654 " with relocation type " +
655 file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " +
656 toString(file));
657 continue;
658 }
659 // sizeInBits is used to initialize the Flags field; currently no
660 // other flags are defined.
661 res.emplace_back(
662 RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits));
663 }
664 }
665
isCOMDAT() const666 bool SectionChunk::isCOMDAT() const {
667 return header->Characteristics & IMAGE_SCN_LNK_COMDAT;
668 }
669
printDiscardedMessage() const670 void SectionChunk::printDiscardedMessage() const {
671 // Removed by dead-stripping. If it's removed by ICF, ICF already
672 // printed out the name, so don't repeat that here.
673 if (sym && this == repl)
674 log("Discarded " + sym->getName());
675 }
676
getDebugName() const677 StringRef SectionChunk::getDebugName() const {
678 if (sym)
679 return sym->getName();
680 return "";
681 }
682
getContents() const683 ArrayRef<uint8_t> SectionChunk::getContents() const {
684 ArrayRef<uint8_t> a;
685 cantFail(file->getCOFFObj()->getSectionContents(header, a));
686 return a;
687 }
688
consumeDebugMagic()689 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() {
690 assert(isCodeView());
691 return consumeDebugMagic(getContents(), getSectionName());
692 }
693
consumeDebugMagic(ArrayRef<uint8_t> data,StringRef sectionName)694 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data,
695 StringRef sectionName) {
696 if (data.empty())
697 return {};
698
699 // First 4 bytes are section magic.
700 if (data.size() < 4)
701 fatal("the section is too short: " + sectionName);
702
703 if (!sectionName.startswith(".debug$"))
704 fatal("invalid section: " + sectionName);
705
706 uint32_t magic = support::endian::read32le(data.data());
707 uint32_t expectedMagic = sectionName == ".debug$H"
708 ? DEBUG_HASHES_SECTION_MAGIC
709 : DEBUG_SECTION_MAGIC;
710 if (magic != expectedMagic) {
711 warn("ignoring section " + sectionName + " with unrecognized magic 0x" +
712 utohexstr(magic));
713 return {};
714 }
715 return data.slice(4);
716 }
717
findByName(ArrayRef<SectionChunk * > sections,StringRef name)718 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections,
719 StringRef name) {
720 for (SectionChunk *c : sections)
721 if (c->getSectionName() == name)
722 return c;
723 return nullptr;
724 }
725
replace(SectionChunk * other)726 void SectionChunk::replace(SectionChunk *other) {
727 p2Align = std::max(p2Align, other->p2Align);
728 other->repl = repl;
729 other->live = false;
730 }
731
getSectionNumber() const732 uint32_t SectionChunk::getSectionNumber() const {
733 DataRefImpl r;
734 r.p = reinterpret_cast<uintptr_t>(header);
735 SectionRef s(r, file->getCOFFObj());
736 return s.getIndex() + 1;
737 }
738
CommonChunk(const COFFSymbolRef s)739 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) {
740 // The value of a common symbol is its size. Align all common symbols smaller
741 // than 32 bytes naturally, i.e. round the size up to the next power of two.
742 // This is what MSVC link.exe does.
743 setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue()))));
744 hasData = false;
745 }
746
getOutputCharacteristics() const747 uint32_t CommonChunk::getOutputCharacteristics() const {
748 return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
749 IMAGE_SCN_MEM_WRITE;
750 }
751
writeTo(uint8_t * buf) const752 void StringChunk::writeTo(uint8_t *buf) const {
753 memcpy(buf, str.data(), str.size());
754 buf[str.size()] = '\0';
755 }
756
ImportThunkChunkX64(COFFLinkerContext & ctx,Defined * s)757 ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s)
758 : ImportThunkChunk(ctx, s) {
759 // Intel Optimization Manual says that all branch targets
760 // should be 16-byte aligned. MSVC linker does this too.
761 setAlignment(16);
762 }
763
writeTo(uint8_t * buf) const764 void ImportThunkChunkX64::writeTo(uint8_t *buf) const {
765 memcpy(buf, importThunkX86, sizeof(importThunkX86));
766 // The first two bytes is a JMP instruction. Fill its operand.
767 write32le(buf + 2, impSymbol->getRVA() - rva - getSize());
768 }
769
getBaserels(std::vector<Baserel> * res)770 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) {
771 res->emplace_back(getRVA() + 2, ctx.config.machine);
772 }
773
writeTo(uint8_t * buf) const774 void ImportThunkChunkX86::writeTo(uint8_t *buf) const {
775 memcpy(buf, importThunkX86, sizeof(importThunkX86));
776 // The first two bytes is a JMP instruction. Fill its operand.
777 write32le(buf + 2, impSymbol->getRVA() + ctx.config.imageBase);
778 }
779
getBaserels(std::vector<Baserel> * res)780 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) {
781 res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
782 }
783
writeTo(uint8_t * buf) const784 void ImportThunkChunkARM::writeTo(uint8_t *buf) const {
785 memcpy(buf, importThunkARM, sizeof(importThunkARM));
786 // Fix mov.w and mov.t operands.
787 applyMOV32T(buf, impSymbol->getRVA() + ctx.config.imageBase);
788 }
789
writeTo(uint8_t * buf) const790 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const {
791 int64_t off = impSymbol->getRVA() & 0xfff;
792 memcpy(buf, importThunkARM64, sizeof(importThunkARM64));
793 applyArm64Addr(buf, impSymbol->getRVA(), rva, 12);
794 applyArm64Ldr(buf + 4, off);
795 }
796
797 // A Thumb2, PIC, non-interworking range extension thunk.
798 const uint8_t armThunk[] = {
799 0x40, 0xf2, 0x00, 0x0c, // P: movw ip,:lower16:S - (P + (L1-P) + 4)
800 0xc0, 0xf2, 0x00, 0x0c, // movt ip,:upper16:S - (P + (L1-P) + 4)
801 0xe7, 0x44, // L1: add pc, ip
802 };
803
getSize() const804 size_t RangeExtensionThunkARM::getSize() const {
805 assert(ctx.config.machine == ARMNT);
806 (void)&ctx;
807 return sizeof(armThunk);
808 }
809
writeTo(uint8_t * buf) const810 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const {
811 assert(ctx.config.machine == ARMNT);
812 uint64_t offset = target->getRVA() - rva - 12;
813 memcpy(buf, armThunk, sizeof(armThunk));
814 applyMOV32T(buf, uint32_t(offset));
815 }
816
817 // A position independent ARM64 adrp+add thunk, with a maximum range of
818 // +/- 4 GB, which is enough for any PE-COFF.
819 const uint8_t arm64Thunk[] = {
820 0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
821 0x10, 0x02, 0x00, 0x91, // add x16, x16, :lo12:Dest
822 0x00, 0x02, 0x1f, 0xd6, // br x16
823 };
824
getSize() const825 size_t RangeExtensionThunkARM64::getSize() const {
826 assert(ctx.config.machine == ARM64);
827 (void)&ctx;
828 return sizeof(arm64Thunk);
829 }
830
writeTo(uint8_t * buf) const831 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const {
832 assert(ctx.config.machine == ARM64);
833 memcpy(buf, arm64Thunk, sizeof(arm64Thunk));
834 applyArm64Addr(buf + 0, target->getRVA(), rva, 12);
835 applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0);
836 }
837
LocalImportChunk(COFFLinkerContext & c,Defined * s)838 LocalImportChunk::LocalImportChunk(COFFLinkerContext &c, Defined *s)
839 : sym(s), ctx(c) {
840 setAlignment(ctx.config.wordsize);
841 }
842
getBaserels(std::vector<Baserel> * res)843 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) {
844 res->emplace_back(getRVA(), ctx.config.machine);
845 }
846
getSize() const847 size_t LocalImportChunk::getSize() const { return ctx.config.wordsize; }
848
writeTo(uint8_t * buf) const849 void LocalImportChunk::writeTo(uint8_t *buf) const {
850 if (ctx.config.is64()) {
851 write64le(buf, sym->getRVA() + ctx.config.imageBase);
852 } else {
853 write32le(buf, sym->getRVA() + ctx.config.imageBase);
854 }
855 }
856
writeTo(uint8_t * buf) const857 void RVATableChunk::writeTo(uint8_t *buf) const {
858 ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf);
859 size_t cnt = 0;
860 for (const ChunkAndOffset &co : syms)
861 begin[cnt++] = co.inputChunk->getRVA() + co.offset;
862 llvm::sort(begin, begin + cnt);
863 assert(std::unique(begin, begin + cnt) == begin + cnt &&
864 "RVA tables should be de-duplicated");
865 }
866
writeTo(uint8_t * buf) const867 void RVAFlagTableChunk::writeTo(uint8_t *buf) const {
868 struct RVAFlag {
869 ulittle32_t rva;
870 uint8_t flag;
871 };
872 auto flags =
873 MutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size());
874 for (auto t : zip(syms, flags)) {
875 const auto &sym = std::get<0>(t);
876 auto &flag = std::get<1>(t);
877 flag.rva = sym.inputChunk->getRVA() + sym.offset;
878 flag.flag = 0;
879 }
880 llvm::sort(flags,
881 [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; });
882 assert(llvm::unique(flags, [](const RVAFlag &a,
883 const RVAFlag &b) { return a.rva == b.rva; }) ==
884 flags.end() &&
885 "RVA tables should be de-duplicated");
886 }
887
888 // MinGW specific, for the "automatic import of variables from DLLs" feature.
getSize() const889 size_t PseudoRelocTableChunk::getSize() const {
890 if (relocs.empty())
891 return 0;
892 return 12 + 12 * relocs.size();
893 }
894
895 // MinGW specific.
writeTo(uint8_t * buf) const896 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const {
897 if (relocs.empty())
898 return;
899
900 ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf);
901 // This is the list header, to signal the runtime pseudo relocation v2
902 // format.
903 table[0] = 0;
904 table[1] = 0;
905 table[2] = 1;
906
907 size_t idx = 3;
908 for (const RuntimePseudoReloc &rpr : relocs) {
909 table[idx + 0] = rpr.sym->getRVA();
910 table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset;
911 table[idx + 2] = rpr.flags;
912 idx += 3;
913 }
914 }
915
916 // Windows-specific. This class represents a block in .reloc section.
917 // The format is described here.
918 //
919 // On Windows, each DLL is linked against a fixed base address and
920 // usually loaded to that address. However, if there's already another
921 // DLL that overlaps, the loader has to relocate it. To do that, DLLs
922 // contain .reloc sections which contain offsets that need to be fixed
923 // up at runtime. If the loader finds that a DLL cannot be loaded to its
924 // desired base address, it loads it to somewhere else, and add <actual
925 // base address> - <desired base address> to each offset that is
926 // specified by the .reloc section. In ELF terms, .reloc sections
927 // contain relative relocations in REL format (as opposed to RELA.)
928 //
929 // This already significantly reduces the size of relocations compared
930 // to ELF .rel.dyn, but Windows does more to reduce it (probably because
931 // it was invented for PCs in the late '80s or early '90s.) Offsets in
932 // .reloc are grouped by page where the page size is 12 bits, and
933 // offsets sharing the same page address are stored consecutively to
934 // represent them with less space. This is very similar to the page
935 // table which is grouped by (multiple stages of) pages.
936 //
937 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
938 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
939 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
940 // are represented like this:
941 //
942 // 0x00000 -- page address (4 bytes)
943 // 16 -- size of this block (4 bytes)
944 // 0xA030 -- entries (2 bytes each)
945 // 0xA500
946 // 0xA700
947 // 0xAA00
948 // 0x20000 -- page address (4 bytes)
949 // 12 -- size of this block (4 bytes)
950 // 0xA004 -- entries (2 bytes each)
951 // 0xA008
952 //
953 // Usually we have a lot of relocations for each page, so the number of
954 // bytes for one .reloc entry is close to 2 bytes on average.
BaserelChunk(uint32_t page,Baserel * begin,Baserel * end)955 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) {
956 // Block header consists of 4 byte page RVA and 4 byte block size.
957 // Each entry is 2 byte. Last entry may be padding.
958 data.resize(alignTo((end - begin) * 2 + 8, 4));
959 uint8_t *p = data.data();
960 write32le(p, page);
961 write32le(p + 4, data.size());
962 p += 8;
963 for (Baserel *i = begin; i != end; ++i) {
964 write16le(p, (i->type << 12) | (i->rva - page));
965 p += 2;
966 }
967 }
968
writeTo(uint8_t * buf) const969 void BaserelChunk::writeTo(uint8_t *buf) const {
970 memcpy(buf, data.data(), data.size());
971 }
972
getDefaultType(llvm::COFF::MachineTypes machine)973 uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine) {
974 switch (machine) {
975 case AMD64:
976 case ARM64:
977 return IMAGE_REL_BASED_DIR64;
978 case I386:
979 case ARMNT:
980 return IMAGE_REL_BASED_HIGHLOW;
981 default:
982 llvm_unreachable("unknown machine type");
983 }
984 }
985
MergeChunk(uint32_t alignment)986 MergeChunk::MergeChunk(uint32_t alignment)
987 : builder(StringTableBuilder::RAW, llvm::Align(alignment)) {
988 setAlignment(alignment);
989 }
990
addSection(COFFLinkerContext & ctx,SectionChunk * c)991 void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) {
992 assert(isPowerOf2_32(c->getAlignment()));
993 uint8_t p2Align = llvm::Log2_32(c->getAlignment());
994 assert(p2Align < std::size(ctx.mergeChunkInstances));
995 auto *&mc = ctx.mergeChunkInstances[p2Align];
996 if (!mc)
997 mc = make<MergeChunk>(c->getAlignment());
998 mc->sections.push_back(c);
999 }
1000
finalizeContents()1001 void MergeChunk::finalizeContents() {
1002 assert(!finalized && "should only finalize once");
1003 for (SectionChunk *c : sections)
1004 if (c->live)
1005 builder.add(toStringRef(c->getContents()));
1006 builder.finalize();
1007 finalized = true;
1008 }
1009
assignSubsectionRVAs()1010 void MergeChunk::assignSubsectionRVAs() {
1011 for (SectionChunk *c : sections) {
1012 if (!c->live)
1013 continue;
1014 size_t off = builder.getOffset(toStringRef(c->getContents()));
1015 c->setRVA(rva + off);
1016 }
1017 }
1018
getOutputCharacteristics() const1019 uint32_t MergeChunk::getOutputCharacteristics() const {
1020 return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA;
1021 }
1022
getSize() const1023 size_t MergeChunk::getSize() const {
1024 return builder.getSize();
1025 }
1026
writeTo(uint8_t * buf) const1027 void MergeChunk::writeTo(uint8_t *buf) const {
1028 builder.write(buf);
1029 }
1030
1031 // MinGW specific.
getSize() const1032 size_t AbsolutePointerChunk::getSize() const { return ctx.config.wordsize; }
1033
writeTo(uint8_t * buf) const1034 void AbsolutePointerChunk::writeTo(uint8_t *buf) const {
1035 if (ctx.config.is64()) {
1036 write64le(buf, value);
1037 } else {
1038 write32le(buf, value);
1039 }
1040 }
1041
1042 } // namespace lld::coff
1043