1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2004 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar5210_reset.c,v 1.7 2015/11/24 08:48:25 jklos Exp $
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
27 
28 #include "ah_eeprom_v1.h"
29 
30 typedef struct {
31 	uint32_t	Offset;
32 	uint32_t	Value;
33 } REGISTER_VAL;
34 
35 static const REGISTER_VAL ar5k0007_init[] = {
36 #include "ar5210/ar5k_0007.ini"
37 };
38 
39 /* Default Power Settings for channels outside of EEPROM range */
40 static const uint8_t ar5k0007_pwrSettings[17] = {
41 /*	gain delta			pc dac */
42 /* 54  48  36  24  18  12   9   54  48  36  24  18  12   9   6  ob  db	  */
43     9,  9,  0,  0,  0,  0,  0,   2,  2,  6,  6,  6,  6,  6,  6,  2,  2
44 };
45 
46 /*
47  * The delay, in usecs, between writing AR_RC with a reset
48  * request and waiting for the chip to settle.  If this is
49  * too short then the chip does not come out of sleep state.
50  * Note this value was empirically derived and may be dependent
51  * on the host machine (don't know--the problem was identified
52  * on an IBM 570e laptop; 10us delays worked on other systems).
53  */
54 #define	AR_RC_SETTLE_TIME	20000
55 
56 static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
57 		uint32_t resetMask, u_int waitTime);
58 static HAL_BOOL ar5210SetChannel(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
59 static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
60 
61 /*
62  * Places the device in and out of reset and then places sane
63  * values in the registers based on EEPROM config, initialization
64  * vectors (as determined by the mode), and station configuration
65  *
66  * bChannelChange is used to preserve DMA/PCU registers across
67  * a HW Reset during channel change.
68  */
69 HAL_BOOL
ar5210Reset(struct ath_hal * ah,HAL_OPMODE opmode,HAL_CHANNEL * chan,HAL_BOOL bChannelChange,HAL_STATUS * status)70 ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
71 	HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
72 {
73 #define	N(a)	(sizeof (a) /sizeof (a[0]))
74 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
75 	struct ath_hal_5210 *ahp = AH5210(ah);
76 	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
77 	HAL_CHANNEL_INTERNAL *ichan;
78 	HAL_STATUS ecode;
79 	uint32_t ledstate;
80 	int i, q;
81 
82 	HALDEBUG(ah, HAL_DEBUG_RESET,
83 	    "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
84 	    opmode, chan->channel, chan->channelFlags,
85 	    bChannelChange ? "change" : "same");
86 
87 	if ((chan->channelFlags & CHANNEL_5GHZ) == 0) {
88 		/* Only 11a mode */
89 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5Ghz\n", __func__);
90 		FAIL(HAL_EINVAL);
91 	}
92 	/*
93 	 * Map public channel to private.
94 	 */
95 	ichan = ath_hal_checkchannel(ah, chan);
96 	if (ichan == AH_NULL) {
97 		HALDEBUG(ah, HAL_DEBUG_ANY,
98 		    "%s: invalid channel %u/0x%x; no mapping\n",
99 		    __func__, chan->channel, chan->channelFlags);
100 		FAIL(HAL_EINVAL);
101 	}
102 	switch (opmode) {
103 	case HAL_M_STA:
104 	case HAL_M_IBSS:
105 	case HAL_M_HOSTAP:
106 	case HAL_M_MONITOR:
107 		break;
108 	default:
109 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
110 		    __func__, opmode);
111 		FAIL(HAL_EINVAL);
112 		break;
113 	}
114 
115 	ledstate = OS_REG_READ(ah, AR_PCICFG) &
116 		(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
117 
118 	if (!ar5210ChipReset(ah, chan)) {
119 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
120 		    __func__);
121 		FAIL(HAL_EIO);
122 	}
123 
124 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
125 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
126 	ar5210SetOperatingMode(ah, opmode);
127 
128 	switch (opmode) {
129 	case HAL_M_HOSTAP:
130 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
131 		OS_REG_WRITE(ah, AR_PCICFG,
132 			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
133 		break;
134 	case HAL_M_IBSS:
135 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
136 		OS_REG_WRITE(ah, AR_PCICFG,
137 			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
138 		break;
139 	case HAL_M_STA:
140 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
141 		OS_REG_WRITE(ah, AR_PCICFG,
142 			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
143 		break;
144 	case HAL_M_MONITOR:
145 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
146 		OS_REG_WRITE(ah, AR_PCICFG,
147 			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
148 		break;
149 	}
150 
151 	/* Restore previous led state */
152 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
153 
154 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
155 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
156 
157 	OS_REG_WRITE(ah, AR_TXDP0, 0);
158 	OS_REG_WRITE(ah, AR_TXDP1, 0);
159 	OS_REG_WRITE(ah, AR_RXDP, 0);
160 
161 	/*
162 	 * Initialize interrupt state.
163 	 */
164 	(void) OS_REG_READ(ah, AR_ISR);		/* cleared on read */
165 	OS_REG_WRITE(ah, AR_IMR, 0);
166 	OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
167 	ahp->ah_maskReg = 0;
168 
169 	(void) OS_REG_READ(ah, AR_BSR);		/* cleared on read */
170 	OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
171 	OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
172 
173 	OS_REG_WRITE(ah, AR_TOPS, 8);		/* timeout prescale */
174 	OS_REG_WRITE(ah, AR_RXNOFRM, 8);	/* RX no frame timeout */
175 	OS_REG_WRITE(ah, AR_RPGTO, 0);		/* RX frame gap timeout */
176 	OS_REG_WRITE(ah, AR_TXNOFRM, 0);	/* TX no frame timeout */
177 
178 	OS_REG_WRITE(ah, AR_SFR, 0);
179 	OS_REG_WRITE(ah, AR_MIBC, 0);		/* unfreeze ctrs + clr state */
180 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
181 	OS_REG_WRITE(ah, AR_CFP_DUR, 0);
182 
183 	ar5210SetRxFilter(ah, 0);		/* nothing for now */
184 	OS_REG_WRITE(ah, AR_MCAST_FIL0, 0);	/* multicast filter */
185 	OS_REG_WRITE(ah, AR_MCAST_FIL1, 0);	/* XXX was 2 */
186 
187 	OS_REG_WRITE(ah, AR_TX_MASK0, 0);
188 	OS_REG_WRITE(ah, AR_TX_MASK1, 0);
189 	OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
190 	OS_REG_WRITE(ah, AR_TRIG_LEV, 1);	/* minimum */
191 
192 	OS_REG_WRITE(ah, AR_DIAG_SW, 0);
193 
194 	OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
195 	OS_REG_WRITE(ah, AR_TIMER0, 0);		/* next beacon time */
196 	OS_REG_WRITE(ah, AR_TSF_L32, 0);	/* local clock */
197 	OS_REG_WRITE(ah, AR_TIMER1, ~0);	/* next DMA beacon alert */
198 	OS_REG_WRITE(ah, AR_TIMER2, ~0);	/* next SW beacon alert */
199 	OS_REG_WRITE(ah, AR_TIMER3, 1);		/* next ATIM window */
200 
201 	/* Write the INI values for PHYreg initialization */
202 	for (i = 0; i < N(ar5k0007_init); i++) {
203 		uint32_t reg = ar5k0007_init[i].Offset;
204 		/* On channel change, don't reset the PCU registers */
205 		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
206 			OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
207 	}
208 
209 	/* Setup the transmit power values for cards since 0x0[0-2]05 */
210 	if (!ar5210SetTransmitPower(ah, chan)) {
211 		HALDEBUG(ah, HAL_DEBUG_ANY,
212 		    "%s: error init'ing transmit power\n", __func__);
213 		FAIL(HAL_EIO);
214 	}
215 
216 	OS_REG_WRITE(ah, AR_PHY(10),
217 		(OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
218 		(ee->ee_xlnaOn << 8));
219 	OS_REG_WRITE(ah, AR_PHY(13),
220 		(ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
221 		(ee->ee_xpaOn << 8) | ee->ee_xpaOn);
222 	OS_REG_WRITE(ah, AR_PHY(17),
223 		(OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
224 		((ee->ee_antenna >> 1) & 0x3F80));
225 	OS_REG_WRITE(ah, AR_PHY(18),
226 		(OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
227 		((ee->ee_antenna << 10) & 0x3F000));
228 	OS_REG_WRITE(ah, AR_PHY(25),
229 		(OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
230 		((ee->ee_thresh62 << 12) & 0x7F000));
231 	OS_REG_WRITE(ah, AR_PHY(68),
232 		(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
233 		(ee->ee_antenna & 0x3));
234 
235 	if (!ar5210SetChannel(ah, ichan)) {
236 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
237 		    __func__);
238 		FAIL(HAL_EIO);
239 	}
240 	if (bChannelChange) {
241 		if (!(ichan->privFlags & CHANNEL_DFS))
242 			ichan->privFlags &= ~CHANNEL_INTERFERENCE;
243 		chan->channelFlags = ichan->channelFlags;
244 		chan->privFlags = ichan->privFlags;
245 	}
246 
247 	/* Activate the PHY */
248 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
249 
250 	OS_DELAY(1000);		/* Wait a bit (1 msec) */
251 
252 	/* calibrate the HW and poll the bit going to 0 for completion */
253 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
254 		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
255 	(void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
256 
257 	/* Perform noise floor calibration and set status */
258 	if (!ar5210CalNoiseFloor(ah, ichan)) {
259 		chan->channelFlags |= CHANNEL_CW_INT;
260 		HALDEBUG(ah, HAL_DEBUG_ANY,
261 		    "%s: noise floor calibration failed\n", __func__);
262 		FAIL(HAL_EIO);
263 	}
264 
265 	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
266 		ar5210ResetTxQueue(ah, q);
267 
268 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
269 		ar5210EnableRfKill(ah);
270 
271 	/*
272 	 * Writing to AR_BEACON will start timers. Hence it should be
273 	 * the last register to be written. Do not reset tsf, do not
274 	 * enable beacons at this point, but preserve other values
275 	 * like beaconInterval.
276 	 */
277 	OS_REG_WRITE(ah, AR_BEACON,
278 		(OS_REG_READ(ah, AR_BEACON) &
279 			~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
280 
281 	/* Restore user-specified slot time and timeouts */
282 	if (ahp->ah_sifstime != (u_int) -1)
283 		ar5210SetSifsTime(ah, ahp->ah_sifstime);
284 	if (ahp->ah_slottime != (u_int) -1)
285 		ar5210SetSlotTime(ah, ahp->ah_slottime);
286 	if (ahp->ah_acktimeout != (u_int) -1)
287 		ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
288 	if (ahp->ah_ctstimeout != (u_int) -1)
289 		ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
290 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
291 		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
292 
293 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
294 
295 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
296 
297 	return AH_TRUE;
298 bad:
299 	if (status != AH_NULL)
300 		*status = ecode;
301 	return AH_FALSE;
302 #undef FAIL
303 #undef N
304 }
305 
306 static void
ar5210SetOperatingMode(struct ath_hal * ah,int opmode)307 ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
308 {
309 	struct ath_hal_5210 *ahp = AH5210(ah);
310 	uint32_t val;
311 
312 	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
313 	switch (opmode) {
314 	case HAL_M_HOSTAP:
315 		OS_REG_WRITE(ah, AR_STA_ID1, val
316 			| AR_STA_ID1_AP
317 			| AR_STA_ID1_NO_PSPOLL
318 			| AR_STA_ID1_DESC_ANTENNA
319 			| ahp->ah_staId1Defaults);
320 		break;
321 	case HAL_M_IBSS:
322 		OS_REG_WRITE(ah, AR_STA_ID1, val
323 			| AR_STA_ID1_ADHOC
324 			| AR_STA_ID1_NO_PSPOLL
325 			| AR_STA_ID1_DESC_ANTENNA
326 			| ahp->ah_staId1Defaults);
327 		break;
328 	case HAL_M_STA:
329 		OS_REG_WRITE(ah, AR_STA_ID1, val
330 			| AR_STA_ID1_NO_PSPOLL
331 			| AR_STA_ID1_PWR_SV
332 			| ahp->ah_staId1Defaults);
333 		break;
334 	case HAL_M_MONITOR:
335 		OS_REG_WRITE(ah, AR_STA_ID1, val
336 			| AR_STA_ID1_NO_PSPOLL
337 			| ahp->ah_staId1Defaults);
338 		break;
339 	}
340 }
341 
342 void
ar5210SetPCUConfig(struct ath_hal * ah)343 ar5210SetPCUConfig(struct ath_hal *ah)
344 {
345 	ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
346 }
347 
348 /*
349  * Places the PHY and Radio chips into reset.  A full reset
350  * must be called to leave this state.  The PCI/MAC/PCU are
351  * not placed into reset as we must receive interrupt to
352  * re-enable the hardware.
353  */
354 HAL_BOOL
ar5210PhyDisable(struct ath_hal * ah)355 ar5210PhyDisable(struct ath_hal *ah)
356 {
357 	return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
358 }
359 
360 /*
361  * Places all of hardware into reset
362  */
363 HAL_BOOL
ar5210Disable(struct ath_hal * ah)364 ar5210Disable(struct ath_hal *ah)
365 {
366 #define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
367 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
368 		return AH_FALSE;
369 
370 	/*
371 	 * Reset the HW - PCI must be reset after the rest of the
372 	 * device has been reset
373 	 */
374 	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
375 		return AH_FALSE;
376 	OS_DELAY(1000);
377 	(void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
378 	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
379 
380 	return AH_TRUE;
381 #undef AR_RC_HW
382 }
383 
384 /*
385  * Places the hardware into reset and then pulls it out of reset
386  */
387 HAL_BOOL
ar5210ChipReset(struct ath_hal * ah,HAL_CHANNEL * chan)388 ar5210ChipReset(struct ath_hal *ah, HAL_CHANNEL *chan)
389 {
390 #define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
391 
392 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
393 		chan && IS_CHAN_TURBO(chan) ? "enabled" : "disabled");
394 
395 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
396 		return AH_FALSE;
397 
398 	/* Place chip in turbo before reset to cleanly reset clocks */
399 	OS_REG_WRITE(ah, AR_PHY_FRCTL,
400 		chan && IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
401 
402 	/*
403 	 * Reset the HW.
404 	 * PCI must be reset after the rest of the device has been reset.
405 	 */
406 	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
407 		return AH_FALSE;
408 	OS_DELAY(1000);
409 	if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
410 		return AH_FALSE;
411 	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
412 
413 	/*
414 	 * Bring out of sleep mode (AGAIN)
415 	 *
416 	 * WARNING WARNING WARNING
417 	 *
418 	 * There is a problem with the chip where it doesn't always indicate
419 	 * that it's awake, so initializePowerUp() will fail.
420 	 */
421 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
422 		return AH_FALSE;
423 
424 	/* Clear warm reset reg */
425 	return ar5210SetResetReg(ah, 0, 10);
426 #undef AR_RC_HW
427 }
428 
429 enum {
430 	FIRPWR_M	= 0x03fc0000,
431 	FIRPWR_S	= 18,
432 	KCOARSEHIGH_M   = 0x003f8000,
433 	KCOARSEHIGH_S   = 15,
434 	KCOARSELOW_M	= 0x00007f80,
435 	KCOARSELOW_S	= 7,
436 	ADCSAT_ICOUNT_M	= 0x0001f800,
437 	ADCSAT_ICOUNT_S	= 11,
438 	ADCSAT_THRESH_M	= 0x000007e0,
439 	ADCSAT_THRESH_S	= 5
440 };
441 
442 /*
443  * Recalibrate the lower PHY chips to account for temperature/environment
444  * changes.
445  */
446 HAL_BOOL
ar5210PerCalibrationN(struct ath_hal * ah,HAL_CHANNEL * chan,u_int chainMask,HAL_BOOL longCal,HAL_BOOL * isCalDone)447 ar5210PerCalibrationN(struct ath_hal *ah,  HAL_CHANNEL *chan, u_int chainMask,
448 	HAL_BOOL longCal, HAL_BOOL *isCalDone)
449 {
450 	uint32_t regBeacon;
451 	uint32_t reg9858, reg985c, reg9868;
452 	HAL_CHANNEL_INTERNAL *ichan;
453 
454 	ichan = ath_hal_checkchannel(ah, chan);
455 	if (ichan == AH_NULL) {
456 		HALDEBUG(ah, HAL_DEBUG_ANY,
457 		    "%s: invalid channel %u/0x%x; no mapping\n",
458 		    __func__, chan->channel, chan->channelFlags);
459 		return AH_FALSE;
460 	}
461 	/* Disable tx and rx */
462 	OS_REG_WRITE(ah, AR_DIAG_SW,
463 		OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
464 
465 	/* Disable Beacon Enable */
466 	regBeacon = OS_REG_READ(ah, AR_BEACON);
467 	OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
468 
469 	/* Delay 4ms to ensure that all tx and rx activity has ceased */
470 	OS_DELAY(4000);
471 
472 	/* Disable AGC to radio traffic */
473 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
474 	/* Wait for the AGC traffic to cease. */
475 	OS_DELAY(10);
476 
477 	/* Change Channel to relock synth */
478 	if (!ar5210SetChannel(ah, ichan))
479 		return AH_FALSE;
480 
481 	/* wait for the synthesizer lock to stabilize */
482 	OS_DELAY(1000);
483 
484 	/* Re-enable AGC to radio traffic */
485 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
486 
487 	/*
488 	 * Configure the AGC so that it is highly unlikely (if not
489 	 * impossible) for it to send any gain changes to the analog
490 	 * chip.  We store off the current values so that they can
491 	 * be rewritten below. Setting the following values:
492 	 * firpwr	 = -1
493 	 * Kcoursehigh   = -1
494 	 * Kcourselow	 = -127
495 	 * ADCsat_icount = 2
496 	 * ADCsat_thresh = 12
497 	 */
498 	reg9858 = OS_REG_READ(ah, 0x9858);
499 	reg985c = OS_REG_READ(ah, 0x985c);
500 	reg9868 = OS_REG_READ(ah, 0x9868);
501 
502 	OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
503 					 ((~0U << FIRPWR_S) & FIRPWR_M));
504 	OS_REG_WRITE(ah, 0x985c,
505 		 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
506 		 ((~0U << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
507 		 ((((~0U << 7) + 1) << KCOARSELOW_S) & KCOARSELOW_M));
508 	OS_REG_WRITE(ah, 0x9868,
509 		 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
510 		 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
511 		 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
512 
513 	/* Wait for AGC changes to be enacted */
514 	OS_DELAY(20);
515 
516 	/*
517 	 * We disable RF mix/gain stages for the PGA to avoid a
518 	 * race condition that will occur with receiving a frame
519 	 * and performing the AGC calibration.  This will be
520 	 * re-enabled at the end of offset cal.  We turn off AGC
521 	 * writes during this write as it will go over the analog bus.
522 	 */
523 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
524 	OS_DELAY(10);		 /* wait for the AGC traffic to cease */
525 	OS_REG_WRITE(ah, 0x98D4, 0x21);
526 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
527 
528 	/* wait to make sure that additional AGC traffic has quiesced */
529 	OS_DELAY(1000);
530 
531 	/* AGC calibration (this was added to make the NF threshold check work) */
532 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
533 		 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
534 	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
535 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
536 		    __func__);
537 	}
538 
539 	/* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
540 	OS_REG_WRITE(ah, 0x9858, reg9858);
541 	OS_REG_WRITE(ah, 0x985c, reg985c);
542 	OS_REG_WRITE(ah, 0x9868, reg9868);
543 
544 	/* Perform noise floor and set status */
545 	if (!ar5210CalNoiseFloor(ah, ichan)) {
546 		/*
547 		 * Delay 5ms before retrying the noise floor -
548 		 * just to make sure.  We're in an error
549 		 * condition here
550 		 */
551 		HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
552 		    "%s: Performing 2nd Noise Cal\n", __func__);
553 		OS_DELAY(5000);
554 		if (!ar5210CalNoiseFloor(ah, ichan))
555 			chan->channelFlags |= CHANNEL_CW_INT;
556 	}
557 
558 	/* Clear tx and rx disable bit */
559 	OS_REG_WRITE(ah, AR_DIAG_SW,
560 		 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
561 
562 	/* Re-enable Beacons */
563 	OS_REG_WRITE(ah, AR_BEACON, regBeacon);
564 
565 	*isCalDone = AH_TRUE;
566 
567 	return AH_TRUE;
568 }
569 
570 HAL_BOOL
ar5210PerCalibration(struct ath_hal * ah,HAL_CHANNEL * chan,HAL_BOOL * isIQdone)571 ar5210PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
572 {
573 	return ar5210PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
574 }
575 
576 HAL_BOOL
ar5210ResetCalValid(struct ath_hal * ah,HAL_CHANNEL * chan)577 ar5210ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
578 {
579 	return AH_TRUE;
580 }
581 
582 /*
583  * Writes the given reset bit mask into the reset register
584  */
585 static HAL_BOOL
ar5210SetResetReg(struct ath_hal * ah,uint32_t resetMask,u_int waitTime)586 ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int waitTime)
587 {
588 	uint32_t mask = resetMask ? resetMask : ~0;
589 	HAL_BOOL rt;
590 
591 	OS_REG_WRITE(ah, AR_RC, resetMask);
592 	/* need to wait at least 128 clocks when reseting PCI before read */
593 	OS_DELAY(waitTime);
594 
595 	resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
596 	mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
597 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
598         if ((resetMask & AR_RC_RMAC) == 0) {
599 		if (isBigEndian()) {
600 			/*
601 			 * Set CFG, little-endian for register
602 			 * and descriptor accesses.
603 			 */
604 			mask = INIT_CONFIG_STATUS |
605 				AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
606 			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
607 		} else
608 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
609 	}
610 	return rt;
611 }
612 
613 
614 /*
615  * Returns: the pcdac value
616  */
617 static uint8_t
getPcdac(struct ath_hal * ah,const struct tpcMap * pRD,uint8_t dBm)618 getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
619 {
620 	int32_t	 i;
621 	int useNextEntry = AH_FALSE;
622 	uint32_t interp;
623 
624 	for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
625 		/* Check for exact entry */
626 		if (dBm == AR_I2DBM(i)) {
627 			if (pRD->pcdac[i] != 63)
628 				return pRD->pcdac[i];
629 			useNextEntry = AH_TRUE;
630 		} else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
631 			/* Interpolate for between entry with a logish scale */
632 			if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
633 				interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
634 				interp = (interp / 1000) + pRD->pcdac[i-1];
635 				return interp;
636 			}
637 			useNextEntry = AH_TRUE;
638 		} else if (useNextEntry == AH_TRUE) {
639 			/* Grab the next lowest */
640 			if (pRD->pcdac[i] != 63)
641 				return pRD->pcdac[i];
642 		}
643 	}
644 
645 	/* Return the lowest Entry if we haven't returned */
646 	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
647 		if (pRD->pcdac[i] != 63)
648 			return pRD->pcdac[i];
649 
650 	/* No value to return from table */
651 #ifdef AH_DEBUG
652 	ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
653 #endif
654 	return 1;
655 }
656 
657 /*
658  * Find or interpolates the gainF value from the table ptr.
659  */
660 static uint8_t
getGainF(struct ath_hal * ah,const struct tpcMap * pRD,uint8_t pcdac,uint8_t * dBm)661 getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
662 	uint8_t pcdac, uint8_t *dBm)
663 {
664 	uint32_t interp;
665 	int low, high, i;
666 
667 	low = high = -1;
668 
669 	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
670 		if(pRD->pcdac[i] == 63)
671 			continue;
672 		if (pcdac == pRD->pcdac[i]) {
673 			*dBm = AR_I2DBM(i);
674 			return pRD->gainF[i];  /* Exact Match */
675 		}
676 		if (pcdac > pRD->pcdac[i])
677 			low = i;
678 		if (pcdac < pRD->pcdac[i]) {
679 			high = i;
680 			if (low == -1) {
681 				*dBm = AR_I2DBM(i);
682 				/* PCDAC is lower than lowest setting */
683 				return pRD->gainF[i];
684 			}
685 			break;
686 		}
687 	}
688 	if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
689 		/* No settings were found */
690 #ifdef AH_DEBUG
691 		ath_hal_printf(ah,
692 			"%s: no valid entries in the pcdac table: %d\n",
693 			__func__, pcdac);
694 #endif
695 		return 63;
696 	}
697 	if (i >= AR_TP_SCALING_ENTRIES) {
698 		/* PCDAC setting was above the max setting in the table */
699 		*dBm = AR_I2DBM(low);
700 		return pRD->gainF[low];
701 	}
702 	/* Only exact if table has no missing entries */
703 	*dBm = (low + high) + 3;
704 
705 	/*
706 	 * Perform interpolation between low and high values to find gainF
707 	 * linearly scale the pcdac between low and high
708 	 */
709 	interp = ((pcdac - pRD->pcdac[low]) * 1000) /
710 		  (pRD->pcdac[high] - pRD->pcdac[low]);
711 	/*
712 	 * Multiply the scale ratio by the gainF difference
713 	 * (plus a rnd up factor)
714 	 */
715 	interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
716 
717 	/* Add ratioed gain_f to low gain_f value */
718 	return interp + pRD->gainF[low];
719 }
720 
721 HAL_BOOL
ar5210SetTxPowerLimit(struct ath_hal * ah,uint32_t limit)722 ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
723 {
724 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
725 	/* XXX flush to h/w */
726 	return AH_TRUE;
727 }
728 
729 /*
730  * Get TXPower values and set them in the radio
731  */
732 static HAL_BOOL
setupPowerSettings(struct ath_hal * ah,HAL_CHANNEL * chan,uint8_t cp[17])733 setupPowerSettings(struct ath_hal *ah, HAL_CHANNEL *chan, uint8_t cp[17])
734 {
735 	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
736 	uint8_t gainFRD, gainF36, gainF48, gainF54;
737 	uint8_t dBmRD = 0, dBm36 = 0, dBm48 = 0, dBm54 = 0, dontcare;
738 	uint32_t rd, group;
739 	const struct tpcMap  *pRD;
740 
741 	/* Set OB/DB Values regardless of channel */
742 	cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
743 	cp[16] = ee->ee_biasCurrents & 0x7;
744 
745 	if (chan->channel < 5170 || chan->channel > 5320) {
746 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
747 		    __func__, chan->channel);
748 		return AH_FALSE;
749 	}
750 
751 	HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
752 	    ee->ee_version < AR_EEPROM_VER3);
753 
754 	/* Match regulatory domain */
755 	for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
756 		if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
757 			break;
758 	if (rd == AR_REG_DOMAINS_MAX) {
759 #ifdef AH_DEBUG
760 		ath_hal_printf(ah,
761 			"%s: no calibrated regulatory domain matches the "
762 			"current regularly domain (0x%0x)\n", __func__,
763 			AH_PRIVATE(ah)->ah_currentRD);
764 #endif
765 		return AH_FALSE;
766 	}
767 	group = ((chan->channel - 5170) / 10);
768 
769 	if (group > 11) {
770 		/* Pull 5.29 into the 5.27 group */
771 		group--;
772 	}
773 
774 	/* Integer divide will set group from 0 to 4 */
775 	group = group / 3;
776 	pRD   = &ee->ee_tpc[group];
777 
778 	/* Set PC DAC Values */
779 	cp[14] = pRD->regdmn[rd];
780 	cp[9]  = AH_MIN(pRD->regdmn[rd], pRD->rate36);
781 	cp[8]  = AH_MIN(pRD->regdmn[rd], pRD->rate48);
782 	cp[7]  = AH_MIN(pRD->regdmn[rd], pRD->rate54);
783 
784 	/* Find Corresponding gainF values for RD, 36, 48, 54 */
785 	gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
786 	gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
787 	gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
788 	gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
789 
790 	/* Power Scale if requested */
791 	if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
792 		static const uint16_t tpcScaleReductionTable[5] =
793 			{ 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
794 		uint16_t tpScale;
795 
796 		tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
797 		if (dBmRD < tpScale+3)
798 			dBmRD = 3;		/* min */
799 		else
800 			dBmRD -= tpScale;
801 		cp[14]  = getPcdac(ah, pRD, dBmRD);
802 		gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
803 		dBm36   = AH_MIN(dBm36, dBmRD);
804 		cp[9]   = getPcdac(ah, pRD, dBm36);
805 		gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
806 		dBm48   = AH_MIN(dBm48, dBmRD);
807 		cp[8]   = getPcdac(ah, pRD, dBm48);
808 		gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
809 		dBm54   = AH_MIN(dBm54, dBmRD);
810 		cp[7]   = getPcdac(ah, pRD, dBm54);
811 		gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
812 	}
813 	/* Record current dBm at rate 6 */
814 	AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
815 
816 	cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
817 
818 	/* Set GainF Values */
819 	cp[0] = gainFRD - gainF54;
820 	cp[1] = gainFRD - gainF48;
821 	cp[2] = gainFRD - gainF36;
822 	/* 9, 12, 18, 24 have no gain_delta from 6 */
823 	cp[3] = cp[4] = cp[5] = cp[6] = 0;
824 	return AH_TRUE;
825 }
826 
827 /*
828  * Places the device in and out of reset and then places sane
829  * values in the registers based on EEPROM config, initialization
830  * vectors (as determined by the mode), and station configuration
831  */
832 HAL_BOOL
ar5210SetTransmitPower(struct ath_hal * ah,HAL_CHANNEL * chan)833 ar5210SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL *chan)
834 {
835 #define	N(a)	(sizeof (a) / sizeof (a[0]))
836 	static const uint32_t pwr_regs_start[17] = {
837 		0x00000000, 0x00000000, 0x00000000,
838 		0x00000000, 0x00000000, 0xf0000000,
839 		0xcc000000, 0x00000000, 0x00000000,
840 		0x00000000, 0x0a000000, 0x000000e2,
841 		0x0a000020, 0x01000002, 0x01000018,
842 		0x40000000, 0x00000418
843 	};
844 	uint16_t i;
845 	uint8_t cp[sizeof(ar5k0007_pwrSettings)];
846 	uint32_t pwr_regs[17];
847 
848 	OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
849 	OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
850 
851 	/* Check the EEPROM tx power calibration settings */
852 	if (!setupPowerSettings(ah, chan, cp)) {
853 #ifdef AH_DEBUG
854 		ath_hal_printf(ah, "%s: unable to setup power settings\n",
855 			__func__);
856 #endif
857 		return AH_FALSE;
858 	}
859 	if (cp[15] < 1 || cp[15] > 5) {
860 #ifdef AH_DEBUG
861 		ath_hal_printf(ah, "%s: OB out of range (%u)\n",
862 			__func__, cp[15]);
863 #endif
864 		return AH_FALSE;
865 	}
866 	if (cp[16] < 1 || cp[16] > 5) {
867 #ifdef AH_DEBUG
868 		ath_hal_printf(ah, "%s: DB out of range (%u)\n",
869 			__func__, cp[16]);
870 #endif
871 		return AH_FALSE;
872 	}
873 
874 	/* reverse bits of the transmit power array */
875 	for (i = 0; i < 7; i++)
876 		cp[i] = ath_hal_reverseBits(cp[i], 5);
877 	for (i = 7; i < 15; i++)
878 		cp[i] = ath_hal_reverseBits(cp[i], 6);
879 
880 	/* merge transmit power values into the register - quite gross */
881 	pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
882 	pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
883 			((cp[1] >> 3) & 0x03);
884 	pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
885 	pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
886 		       ((cp[4] >> 4) & 0x01);
887 	pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
888 	pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
889 			((cp[7] >> 5) & 0x01);
890 	pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
891 	pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
892 	pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
893 	pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
894 	pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
895 	pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
896 
897 	/* Set OB */
898 	pwr_regs[8] |=  (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
899 	pwr_regs[9] |=  (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
900 
901 	/* Set DB */
902 	pwr_regs[9] |=  (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
903 
904 	/* Write the registers */
905 	for (i = 0; i < N(pwr_regs)-1; i++)
906 		OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
907 	/* last write is a flush */
908 	OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
909 
910 	return AH_TRUE;
911 #undef N
912 }
913 
914 /*
915  * Takes the MHz channel value and sets the Channel value
916  *
917  * ASSUMES: Writes enabled to analog bus before AGC is active
918  *   or by disabling the AGC.
919  */
920 static HAL_BOOL
ar5210SetChannel(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)921 ar5210SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
922 {
923 	uint32_t data;
924 
925 	/* Set the Channel */
926 	data = ath_hal_reverseBits((chan->channel - 5120)/10, 5);
927 	data = (data << 1) | 0x41;
928 	OS_REG_WRITE(ah, AR_PHY(0x27), data);
929 	OS_REG_WRITE(ah, AR_PHY(0x30), 0);
930 	AH_PRIVATE(ah)->ah_curchan = chan;
931 	return AH_TRUE;
932 }
933 
934 int16_t
ar5210GetNoiseFloor(struct ath_hal * ah)935 ar5210GetNoiseFloor(struct ath_hal *ah)
936 {
937 	int16_t nf;
938 
939 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
940 	if (nf & 0x100)
941 		nf = 0 - ((nf ^ 0x1ff) + 1);
942 	return nf;
943 }
944 
945 #define NORMAL_NF_THRESH (-72)
946 /*
947  * Peform the noisefloor calibration and check for
948  * any constant channel interference
949  *
950  * Returns: TRUE for a successful noise floor calibration; else FALSE
951  */
952 HAL_BOOL
ar5210CalNoiseFloor(struct ath_hal * ah,HAL_CHANNEL_INTERNAL * chan)953 ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
954 {
955 	int32_t nf, nfLoops;
956 
957 	/* Calibrate the noise floor */
958 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
959 		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
960 
961 	/* Do not read noise floor until it has done the first update */
962 	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
963 #ifdef ATH_HAL_DEBUG
964 		ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
965 			OS_REG_READ(ah, AR_PHY_AGCCTL));
966 		ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
967 			OS_REG_READ(ah, AR_RC));
968 		ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
969 			OS_REG_READ(ah, AR_PHY_ACTIVE));
970 #endif /* ATH_HAL_DEBUG */
971 		return AH_FALSE;
972 	}
973 
974 	nf = 0;
975 	/* Keep checking until the floor is below the threshold or the nf is done */
976 	for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
977 		OS_DELAY(1000); /* Sleep for 1 ms */
978 		nf = ar5210GetNoiseFloor(ah);
979 	}
980 
981 	if (nf > NORMAL_NF_THRESH) {
982 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
983 		    __func__, nf);
984 		chan->rawNoiseFloor = 0;
985 		return AH_FALSE;
986 	}
987 	chan->rawNoiseFloor = nf;
988 	return AH_TRUE;
989 }
990 
991 /*
992  * Adjust NF based on statistical values for 5GHz frequencies.
993  */
994 int16_t
ar5210GetNfAdjust(struct ath_hal * ah,const HAL_CHANNEL_INTERNAL * c)995 ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
996 {
997 	return 0;
998 }
999 
1000 HAL_RFGAIN
ar5210GetRfgain(struct ath_hal * ah)1001 ar5210GetRfgain(struct ath_hal *ah)
1002 {
1003 	return HAL_RFGAIN_INACTIVE;
1004 }
1005