1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2004 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5210_misc.c,v 1.2 2011/03/07 11:25:42 cegger Exp $
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
27
28 #include "ah_eeprom_v1.h"
29
30 #define AR_NUM_GPIO 6 /* 6 GPIO bits */
31 #define AR_GPIOD_MASK 0x2f /* 6-bit mask */
32
33 void
ar5210GetMacAddress(struct ath_hal * ah,uint8_t * mac)34 ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
35 {
36 struct ath_hal_5210 *ahp = AH5210(ah);
37
38 OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
39 }
40
41 HAL_BOOL
ar5210SetMacAddress(struct ath_hal * ah,const uint8_t * mac)42 ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
43 {
44 struct ath_hal_5210 *ahp = AH5210(ah);
45
46 OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
47 return AH_TRUE;
48 }
49
50 void
ar5210GetBssIdMask(struct ath_hal * ah,uint8_t * mask)51 ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
52 {
53 static const uint8_t ones[IEEE80211_ADDR_LEN] =
54 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55 OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
56 }
57
58 HAL_BOOL
ar5210SetBssIdMask(struct ath_hal * ah,const uint8_t * mask)59 ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
60 {
61 return AH_FALSE;
62 }
63
64 /*
65 * Read 16 bits of data from the specified EEPROM offset.
66 */
67 HAL_BOOL
ar5210EepromRead(struct ath_hal * ah,u_int off,uint16_t * data)68 ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
69 {
70 (void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */
71 if (!ath_hal_wait(ah, AR_EP_STA,
72 AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
73 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
74 __func__, AR_EP_AIR(off));
75 return AH_FALSE;
76 }
77 *data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
78 return AH_TRUE;
79 }
80
81 #ifdef AH_SUPPORT_WRITE_EEPROM
82 /*
83 * Write 16 bits of data to the specified EEPROM offset.
84 */
85 HAL_BOOL
ar5210EepromWrite(struct ath_hal * ah,u_int off,uint16_t data)86 ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
87 {
88 return AH_FALSE;
89 }
90 #endif /* AH_SUPPORT_WRITE_EEPROM */
91
92 /*
93 * Attempt to change the cards operating regulatory domain to the given value
94 */
95 HAL_BOOL
ar5210SetRegulatoryDomain(struct ath_hal * ah,uint16_t regDomain,HAL_STATUS * status)96 ar5210SetRegulatoryDomain(struct ath_hal *ah,
97 uint16_t regDomain, HAL_STATUS *status)
98 {
99 HAL_STATUS ecode;
100
101 if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
102 ecode = HAL_EINVAL;
103 goto bad;
104 }
105 /*
106 * Check if EEPROM is configured to allow this; must
107 * be a proper version and the protection bits must
108 * permit re-writing that segment of the EEPROM.
109 */
110 if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
111 ecode = HAL_EEWRITE;
112 goto bad;
113 }
114 ecode = HAL_EIO; /* disallow all writes */
115 bad:
116 if (status)
117 *status = ecode;
118 return AH_FALSE;
119 }
120
121 /*
122 * Return the wireless modes (a,b,g,t) supported by hardware.
123 *
124 * This value is what is actually supported by the hardware
125 * and is unaffected by regulatory/country code settings.
126 *
127 */
128 u_int
ar5210GetWirelessModes(struct ath_hal * ah)129 ar5210GetWirelessModes(struct ath_hal *ah)
130 {
131 /* XXX could enable turbo mode but can't do all rates */
132 return HAL_MODE_11A;
133 }
134
135 /*
136 * Called if RfKill is supported (according to EEPROM). Set the interrupt and
137 * GPIO values so the ISR and can disable RF on a switch signal
138 */
139 void
ar5210EnableRfKill(struct ath_hal * ah)140 ar5210EnableRfKill(struct ath_hal *ah)
141 {
142 uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
143 int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
144 int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
145
146 /*
147 * If radio disable switch connection to GPIO bit 0 is enabled
148 * program GPIO interrupt.
149 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
150 * verified that it is a later version of eeprom, it has a place for
151 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
152 * connection is present.
153 */
154 ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
155 }
156
157 /*
158 * Configure GPIO Output lines
159 */
160 HAL_BOOL
ar5210GpioCfgOutput(struct ath_hal * ah,uint32_t gpio,HAL_GPIO_MUX_TYPE type)161 ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
162 {
163 HALASSERT(gpio < AR_NUM_GPIO);
164
165 OS_REG_WRITE(ah, AR_GPIOCR,
166 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
167 | AR_GPIOCR_OUT1(gpio));
168
169 return AH_TRUE;
170 }
171
172 /*
173 * Configure GPIO Input lines
174 */
175 HAL_BOOL
ar5210GpioCfgInput(struct ath_hal * ah,uint32_t gpio)176 ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
177 {
178 HALASSERT(gpio < AR_NUM_GPIO);
179
180 OS_REG_WRITE(ah, AR_GPIOCR,
181 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
182 | AR_GPIOCR_IN(gpio));
183
184 return AH_TRUE;
185 }
186
187 /*
188 * Once configured for I/O - set output lines
189 */
190 HAL_BOOL
ar5210GpioSet(struct ath_hal * ah,uint32_t gpio,uint32_t val)191 ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
192 {
193 uint32_t reg;
194
195 HALASSERT(gpio < AR_NUM_GPIO);
196
197 reg = OS_REG_READ(ah, AR_GPIODO);
198 reg &= ~(1 << gpio);
199 reg |= (val&1) << gpio;
200
201 OS_REG_WRITE(ah, AR_GPIODO, reg);
202 return AH_TRUE;
203 }
204
205 /*
206 * Once configured for I/O - get input lines
207 */
208 uint32_t
ar5210GpioGet(struct ath_hal * ah,uint32_t gpio)209 ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
210 {
211 if (gpio < AR_NUM_GPIO) {
212 uint32_t val = OS_REG_READ(ah, AR_GPIODI);
213 val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
214 return val;
215 } else {
216 return 0xffffffff;
217 }
218 }
219
220 /*
221 * Set the GPIO 0 Interrupt
222 */
223 void
ar5210Gpio0SetIntr(struct ath_hal * ah,u_int gpio,uint32_t ilevel)224 ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
225 {
226 uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
227
228 /* Clear the bits that we will modify. */
229 val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
230 AR_GPIOCR_ALL(gpio));
231
232 val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
233 if (ilevel)
234 val |= AR_GPIOCR_INT_SELH;
235
236 /* Don't need to change anything for low level interrupt. */
237 OS_REG_WRITE(ah, AR_GPIOCR, val);
238
239 /* Change the interrupt mask. */
240 ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
241 }
242
243 /*
244 * Change the LED blinking pattern to correspond to the connectivity
245 */
246 void
ar5210SetLedState(struct ath_hal * ah,HAL_LED_STATE state)247 ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
248 {
249 uint32_t val;
250
251 val = OS_REG_READ(ah, AR_PCICFG);
252 switch (state) {
253 case HAL_LED_INIT:
254 val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
255 break;
256 case HAL_LED_RUN:
257 /* normal blink when connected */
258 val &= ~AR_PCICFG_LED_PEND;
259 val |= AR_PCICFG_LED_ACT;
260 break;
261 default:
262 val |= AR_PCICFG_LED_PEND;
263 val &= ~AR_PCICFG_LED_ACT;
264 break;
265 }
266 OS_REG_WRITE(ah, AR_PCICFG, val);
267 }
268
269 /*
270 * Return 1 or 2 for the corresponding antenna that is in use
271 */
272 u_int
ar5210GetDefAntenna(struct ath_hal * ah)273 ar5210GetDefAntenna(struct ath_hal *ah)
274 {
275 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
276 return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1);
277 }
278
279 void
ar5210SetDefAntenna(struct ath_hal * ah,u_int antenna)280 ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
281 {
282 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
283
284 if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) {
285 /*
286 * Antenna change requested, force a toggle of the default.
287 */
288 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
289 }
290 }
291
292 HAL_ANT_SETTING
ar5210GetAntennaSwitch(struct ath_hal * ah)293 ar5210GetAntennaSwitch(struct ath_hal *ah)
294 {
295 return HAL_ANT_VARIABLE;
296 }
297
298 HAL_BOOL
ar5210SetAntennaSwitch(struct ath_hal * ah,HAL_ANT_SETTING settings)299 ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
300 {
301 /* XXX not sure how to fix antenna */
302 return (settings == HAL_ANT_VARIABLE);
303 }
304
305 /*
306 * Change association related fields programmed into the hardware.
307 * Writing a valid BSSID to the hardware effectively enables the hardware
308 * to synchronize its TSF to the correct beacons and receive frames coming
309 * from that BSSID. It is called by the SME JOIN operation.
310 */
311 void
ar5210WriteAssocid(struct ath_hal * ah,const uint8_t * bssid,uint16_t assocId)312 ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
313 {
314 struct ath_hal_5210 *ahp = AH5210(ah);
315
316 /* XXX save bssid for possible re-use on reset */
317 OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
318 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
319 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
320 ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
321 if (assocId == 0)
322 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
323 else
324 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
325 }
326
327 /*
328 * Get the current hardware tsf for stamlme.
329 */
330 uint64_t
ar5210GetTsf64(struct ath_hal * ah)331 ar5210GetTsf64(struct ath_hal *ah)
332 {
333 uint32_t low1, low2, u32;
334
335 /* sync multi-word read */
336 low1 = OS_REG_READ(ah, AR_TSF_L32);
337 u32 = OS_REG_READ(ah, AR_TSF_U32);
338 low2 = OS_REG_READ(ah, AR_TSF_L32);
339 if (low2 < low1) { /* roll over */
340 /*
341 * If we are not preempted this will work. If we are
342 * then we re-reading AR_TSF_U32 does no good as the
343 * low bits will be meaningless. Likewise reading
344 * L32, U32, U32, then comparing the last two reads
345 * to check for rollover doesn't help if preempted--so
346 * we take this approach as it costs one less PCI
347 * read which can be noticeable when doing things
348 * like timestamping packets in monitor mode.
349 */
350 u32++;
351 }
352 return (((uint64_t) u32) << 32) | ((uint64_t) low2);
353 }
354
355 /*
356 * Get the current hardware tsf for stamlme.
357 */
358 uint32_t
ar5210GetTsf32(struct ath_hal * ah)359 ar5210GetTsf32(struct ath_hal *ah)
360 {
361 return OS_REG_READ(ah, AR_TSF_L32);
362 }
363
364 /*
365 * Reset the current hardware tsf for stamlme
366 */
367 void
ar5210ResetTsf(struct ath_hal * ah)368 ar5210ResetTsf(struct ath_hal *ah)
369 {
370 uint32_t val = OS_REG_READ(ah, AR_BEACON);
371
372 OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
373 }
374
375 /*
376 * Grab a semi-random value from hardware registers - may not
377 * change often
378 */
379 uint32_t
ar5210GetRandomSeed(struct ath_hal * ah)380 ar5210GetRandomSeed(struct ath_hal *ah)
381 {
382 uint32_t nf;
383
384 nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
385 if (nf & 0x100)
386 nf = 0 - ((nf ^ 0x1ff) + 1);
387 return (OS_REG_READ(ah, AR_TSF_U32) ^
388 OS_REG_READ(ah, AR_TSF_L32) ^ nf);
389 }
390
391 /*
392 * Detect if our card is present
393 */
394 HAL_BOOL
ar5210DetectCardPresent(struct ath_hal * ah)395 ar5210DetectCardPresent(struct ath_hal *ah)
396 {
397 /*
398 * Read the Silicon Revision register and compare that
399 * to what we read at attach time. If the same, we say
400 * a card/device is present.
401 */
402 return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
403 }
404
405 /*
406 * Update MIB Counters
407 */
408 void
ar5210UpdateMibCounters(struct ath_hal * ah,HAL_MIB_STATS * stats)409 ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
410 {
411 stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
412 stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
413 stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
414 stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
415 stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
416 }
417
418 HAL_BOOL
ar5210SetSifsTime(struct ath_hal * ah,u_int us)419 ar5210SetSifsTime(struct ath_hal *ah, u_int us)
420 {
421 struct ath_hal_5210 *ahp = AH5210(ah);
422
423 if (us > ath_hal_mac_usec(ah, 0x7ff)) {
424 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
425 __func__, us);
426 ahp->ah_sifstime = (u_int) -1; /* restore default handling */
427 return AH_FALSE;
428 } else {
429 /* convert to system clocks */
430 OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
431 ath_hal_mac_clks(ah, us));
432 ahp->ah_sifstime = us;
433 return AH_TRUE;
434 }
435 }
436
437 u_int
ar5210GetSifsTime(struct ath_hal * ah)438 ar5210GetSifsTime(struct ath_hal *ah)
439 {
440 u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
441 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
442 }
443
444 HAL_BOOL
ar5210SetSlotTime(struct ath_hal * ah,u_int us)445 ar5210SetSlotTime(struct ath_hal *ah, u_int us)
446 {
447 struct ath_hal_5210 *ahp = AH5210(ah);
448
449 if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
450 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
451 __func__, us);
452 ahp->ah_slottime = (u_int) -1; /* restore default handling */
453 return AH_FALSE;
454 } else {
455 /* convert to system clocks */
456 OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
457 ahp->ah_slottime = us;
458 return AH_TRUE;
459 }
460 }
461
462 u_int
ar5210GetSlotTime(struct ath_hal * ah)463 ar5210GetSlotTime(struct ath_hal *ah)
464 {
465 u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
466 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
467 }
468
469 HAL_BOOL
ar5210SetAckTimeout(struct ath_hal * ah,u_int us)470 ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
471 {
472 struct ath_hal_5210 *ahp = AH5210(ah);
473
474 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
475 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
476 __func__, us);
477 ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
478 return AH_FALSE;
479 } else {
480 /* convert to system clocks */
481 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
482 AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
483 ahp->ah_acktimeout = us;
484 return AH_TRUE;
485 }
486 }
487
488 u_int
ar5210GetAckTimeout(struct ath_hal * ah)489 ar5210GetAckTimeout(struct ath_hal *ah)
490 {
491 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
492 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
493 }
494
495 u_int
ar5210GetAckCTSRate(struct ath_hal * ah)496 ar5210GetAckCTSRate(struct ath_hal *ah)
497 {
498 return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
499 }
500
501 HAL_BOOL
ar5210SetAckCTSRate(struct ath_hal * ah,u_int high)502 ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
503 {
504 struct ath_hal_5210 *ahp = AH5210(ah);
505
506 if (high) {
507 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
508 ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
509 } else {
510 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
511 ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
512 }
513 return AH_TRUE;
514 }
515
516 HAL_BOOL
ar5210SetCTSTimeout(struct ath_hal * ah,u_int us)517 ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
518 {
519 struct ath_hal_5210 *ahp = AH5210(ah);
520
521 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
522 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
523 __func__, us);
524 ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
525 return AH_FALSE;
526 } else {
527 /* convert to system clocks */
528 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
529 AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
530 ahp->ah_ctstimeout = us;
531 return AH_TRUE;
532 }
533 }
534
535 u_int
ar5210GetCTSTimeout(struct ath_hal * ah)536 ar5210GetCTSTimeout(struct ath_hal *ah)
537 {
538 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
539 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
540 }
541
542 HAL_BOOL
ar5210SetDecompMask(struct ath_hal * ah,uint16_t keyidx,int en)543 ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
544 {
545 /* nothing to do */
546 return AH_TRUE;
547 }
548
549 void
ar5210SetCoverageClass(struct ath_hal * ah,uint8_t coverageclass,int now)550 ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
551 {
552 }
553
554 /*
555 * Control Adaptive Noise Immunity Parameters
556 */
557 HAL_BOOL
ar5210AniControl(struct ath_hal * ah,HAL_ANI_CMD cmd,int param)558 ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
559 {
560 return AH_FALSE;
561 }
562
563 void
ar5210AniPoll(struct ath_hal * ah,const HAL_NODE_STATS * stats,HAL_CHANNEL * chan)564 ar5210AniPoll(struct ath_hal *ah, const HAL_NODE_STATS *stats, HAL_CHANNEL *chan)
565 {
566 }
567
568 void
ar5210MibEvent(struct ath_hal * ah,const HAL_NODE_STATS * stats)569 ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
570 {
571 }
572
573 #define AR_DIAG_SW_DIS_CRYPTO (AR_DIAG_SW_DIS_ENC | AR_DIAG_SW_DIS_DEC)
574
575 HAL_STATUS
ar5210GetCapability(struct ath_hal * ah,HAL_CAPABILITY_TYPE type,uint32_t capability,uint32_t * result)576 ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
577 uint32_t capability, uint32_t *result)
578 {
579
580 switch (type) {
581 case HAL_CAP_CIPHER: /* cipher handled in hardware */
582 return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
583 default:
584 return ath_hal_getcapability(ah, type, capability, result);
585 }
586 }
587
588 HAL_BOOL
ar5210SetCapability(struct ath_hal * ah,HAL_CAPABILITY_TYPE type,uint32_t capability,uint32_t setting,HAL_STATUS * status)589 ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
590 uint32_t capability, uint32_t setting, HAL_STATUS *status)
591 {
592
593 switch (type) {
594 case HAL_CAP_DIAG: /* hardware diagnostic support */
595 /*
596 * NB: could split this up into virtual capabilities,
597 * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
598 * seems worth the additional complexity.
599 */
600 #ifdef AH_DEBUG
601 AH_PRIVATE(ah)->ah_diagreg = setting;
602 #else
603 AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
604 #endif
605 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
606 return AH_TRUE;
607 case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */
608 return AH_FALSE; /* NB: disallow */
609 default:
610 return ath_hal_setcapability(ah, type, capability,
611 setting, status);
612 }
613 }
614
615 HAL_BOOL
ar5210GetDiagState(struct ath_hal * ah,int request,const void * args,uint32_t argsize,void ** result,uint32_t * resultsize)616 ar5210GetDiagState(struct ath_hal *ah, int request,
617 const void *args, uint32_t argsize,
618 void **result, uint32_t *resultsize)
619 {
620 #ifdef AH_PRIVATE_DIAG
621 uint32_t pcicfg;
622 HAL_BOOL ok;
623
624 switch (request) {
625 case HAL_DIAG_EEPROM:
626 /* XXX */
627 break;
628 case HAL_DIAG_EEREAD:
629 if (argsize != sizeof(uint16_t))
630 return AH_FALSE;
631 pcicfg = OS_REG_READ(ah, AR_PCICFG);
632 OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
633 ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
634 OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
635 if (ok)
636 *resultsize = sizeof(uint16_t);
637 return ok;
638 }
639 #endif
640 return ath_hal_getdiagstate(ah, request,
641 args, argsize, result, resultsize);
642 }
643