1 /*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ah_eeprom_v3.h"
25
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29
30 #define AH_5212_5413
31 #include "ar5212/ar5212.ini"
32
33 #define N(a) (sizeof(a)/sizeof(a[0]))
34
35 struct ar5413State {
36 RF_HAL_FUNCS base; /* public state, must be first */
37 uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
38
39 uint32_t Bank1Data[N(ar5212Bank1_5413)];
40 uint32_t Bank2Data[N(ar5212Bank2_5413)];
41 uint32_t Bank3Data[N(ar5212Bank3_5413)];
42 uint32_t Bank6Data[N(ar5212Bank6_5413)];
43 uint32_t Bank7Data[N(ar5212Bank7_5413)];
44
45 /*
46 * Private state for reduced stack usage.
47 */
48 /* filled out Vpd table for all pdGains (chanL) */
49 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 [MAX_PWR_RANGE_IN_HALF_DB];
51 /* filled out Vpd table for all pdGains (chanR) */
52 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 [MAX_PWR_RANGE_IN_HALF_DB];
54 /* filled out Vpd table for all pdGains (interpolated) */
55 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define AR5413(ah) ((struct ar5413State *) AH5212(ah)->ah_rfHal)
59
60 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63 static void
ar5413WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)64 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 int writes)
66 {
67 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
68 HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
69 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
70 }
71
72 /*
73 * Take the MHz channel value and set the Channel value
74 *
75 * ASSUMES: Writes enabled to analog bus
76 */
77 static HAL_BOOL
ar5413SetChannel(struct ath_hal * ah,const struct ieee80211_channel * chan)78 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80 uint16_t freq = ath_hal_gethwchannel(ah, chan);
81 uint32_t channelSel = 0;
82 uint32_t bModeSynth = 0;
83 uint32_t aModeRefSel = 0;
84 uint32_t reg32 = 0;
85
86 OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87
88 if (freq < 4800) {
89 uint32_t txctl;
90
91 if (((freq - 2192) % 5) == 0) {
92 channelSel = ((freq - 672) * 2 - 3040)/10;
93 bModeSynth = 0;
94 } else if (((freq - 2224) % 5) == 0) {
95 channelSel = ((freq - 704) * 2 - 3040) / 10;
96 bModeSynth = 1;
97 } else {
98 HALDEBUG(ah, HAL_DEBUG_ANY,
99 "%s: invalid channel %u MHz\n",
100 __func__, freq);
101 return AH_FALSE;
102 }
103
104 channelSel = (channelSel << 2) & 0xff;
105 channelSel = ath_hal_reverseBits(channelSel, 8);
106
107 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 if (freq == 2484) {
109 /* Enable channel spreading for channel 14 */
110 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 } else {
113 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 }
116 } else if (((freq % 5) == 2) && (freq <= 5435)) {
117 freq = freq - 2; /* Align to even 5MHz raster */
118 channelSel = ath_hal_reverseBits(
119 (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120 aModeRefSel = ath_hal_reverseBits(0, 2);
121 } else if ((freq % 20) == 0 && freq >= 5120) {
122 channelSel = ath_hal_reverseBits(
123 ((freq - 4800) / 20 << 2), 8);
124 aModeRefSel = ath_hal_reverseBits(1, 2);
125 } else if ((freq % 10) == 0) {
126 channelSel = ath_hal_reverseBits(
127 ((freq - 4800) / 10 << 1), 8);
128 aModeRefSel = ath_hal_reverseBits(1, 2);
129 } else if ((freq % 5) == 0) {
130 channelSel = ath_hal_reverseBits(
131 (freq - 4800) / 5, 8);
132 aModeRefSel = ath_hal_reverseBits(1, 2);
133 } else {
134 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 __func__, freq);
136 return AH_FALSE;
137 }
138
139 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 (1 << 12) | 0x1;
141 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143 reg32 >>= 8;
144 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146 AH_PRIVATE(ah)->ah_curchan = chan;
147 return AH_TRUE;
148 }
149
150 /*
151 * Reads EEPROM header info from device structure and programs
152 * all rf registers
153 *
154 * REQUIRES: Access to the analog rf device
155 */
156 static HAL_BOOL
ar5413SetRfRegs(struct ath_hal * ah,const struct ieee80211_channel * chan,uint16_t modesIndex,uint16_t * rfXpdGain)157 ar5413SetRfRegs(struct ath_hal *ah,
158 const struct ieee80211_channel *chan,
159 uint16_t modesIndex, uint16_t *rfXpdGain)
160 {
161 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
162 int i; \
163 for (i = 0; i < N(ar5212Bank##_ix##_5413); i++) \
164 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
165 } while (0)
166 struct ath_hal_5212 *ahp = AH5212(ah);
167 uint16_t freq = ath_hal_gethwchannel(ah, chan);
168 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169 uint16_t ob5GHz = 0, db5GHz = 0;
170 uint16_t ob2GHz = 0, db2GHz = 0;
171 struct ar5413State *priv = AR5413(ah);
172 int regWrites = 0;
173
174 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
175 __func__, chan->ic_freq, chan->ic_flags, modesIndex);
176
177 HALASSERT(priv != AH_NULL);
178
179 /* Setup rf parameters */
180 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
181 case IEEE80211_CHAN_A:
182 if (freq > 4000 && freq < 5260) {
183 ob5GHz = ee->ee_ob1;
184 db5GHz = ee->ee_db1;
185 } else if (freq >= 5260 && freq < 5500) {
186 ob5GHz = ee->ee_ob2;
187 db5GHz = ee->ee_db2;
188 } else if (freq >= 5500 && freq < 5725) {
189 ob5GHz = ee->ee_ob3;
190 db5GHz = ee->ee_db3;
191 } else if (freq >= 5725) {
192 ob5GHz = ee->ee_ob4;
193 db5GHz = ee->ee_db4;
194 } else {
195 /* XXX else */
196 }
197 break;
198 case IEEE80211_CHAN_B:
199 ob2GHz = ee->ee_obFor24;
200 db2GHz = ee->ee_dbFor24;
201 break;
202 case IEEE80211_CHAN_G:
203 case IEEE80211_CHAN_PUREG: /* NB: really 108G */
204 ob2GHz = ee->ee_obFor24g;
205 db2GHz = ee->ee_dbFor24g;
206 break;
207 default:
208 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
209 __func__, chan->ic_flags);
210 return AH_FALSE;
211 }
212
213 /* Bank 1 Write */
214 RF_BANK_SETUP(priv, 1, 1);
215
216 /* Bank 2 Write */
217 RF_BANK_SETUP(priv, 2, modesIndex);
218
219 /* Bank 3 Write */
220 RF_BANK_SETUP(priv, 3, modesIndex);
221
222 /* Bank 6 Write */
223 RF_BANK_SETUP(priv, 6, modesIndex);
224
225 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
226 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
227 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
228 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
229
230 /* TODO - only for Eagle 1.0 2GHz - remove for production */
231 /* XXX: but without this bit G doesn't work. */
232 ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
233
234 /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
235 if (AH_PRIVATE(ah)->ah_ispcie) {
236 ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
237 3, 131, 3);
238 }
239 } else {
240 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
241 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
242
243 }
244
245 /* Bank 7 Setup */
246 RF_BANK_SETUP(priv, 7, modesIndex);
247
248 /* Write Analog registers */
249 HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
250 HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
251 HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
252 HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
253 HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
254
255 /* Now that we have reprogrammed rfgain value, clear the flag. */
256 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
257
258 return AH_TRUE;
259 #undef RF_BANK_SETUP
260 }
261
262 /*
263 * Return a reference to the requested RF Bank.
264 */
265 static uint32_t *
ar5413GetRfBank(struct ath_hal * ah,int bank)266 ar5413GetRfBank(struct ath_hal *ah, int bank)
267 {
268 struct ar5413State *priv = AR5413(ah);
269
270 HALASSERT(priv != AH_NULL);
271 switch (bank) {
272 case 1: return priv->Bank1Data;
273 case 2: return priv->Bank2Data;
274 case 3: return priv->Bank3Data;
275 case 6: return priv->Bank6Data;
276 case 7: return priv->Bank7Data;
277 }
278 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
279 __func__, bank);
280 return AH_NULL;
281 }
282
283 /*
284 * Return indices surrounding the value in sorted integer lists.
285 *
286 * NB: the input list is assumed to be sorted in ascending order
287 */
288 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)289 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
290 uint32_t *vlo, uint32_t *vhi)
291 {
292 int16_t target = v;
293 const uint16_t *ep = lp+listSize;
294 const uint16_t *tp;
295
296 *vlo = 0; /* avoid gcc warnings */
297 *vhi = 0; /* avoid gcc warnings */
298
299 /*
300 * Check first and last elements for out-of-bounds conditions.
301 */
302 if (target < lp[0]) {
303 *vlo = *vhi = 0;
304 return;
305 }
306 if (target >= ep[-1]) {
307 *vlo = *vhi = listSize - 1;
308 return;
309 }
310
311 /* look for value being near or between 2 values in list */
312 for (tp = lp; tp < ep; tp++) {
313 /*
314 * If value is close to the current value of the list
315 * then target is not between values, it is one of the values
316 */
317 if (*tp == target) {
318 *vlo = *vhi = tp - (const uint16_t *) lp;
319 return;
320 }
321 /*
322 * Look for value being between current value and next value
323 * if so return these 2 values
324 */
325 if (target < tp[1]) {
326 *vlo = tp - (const uint16_t *) lp;
327 *vhi = *vlo + 1;
328 return;
329 }
330 }
331 }
332
333 /*
334 * Fill the Vpdlist for indices Pmax-Pmin
335 */
336 static HAL_BOOL
ar5413FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const uint16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])337 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
338 const int16_t *pwrList, const uint16_t *VpdList,
339 uint16_t numIntercepts,
340 uint16_t retVpdList[][64])
341 {
342 uint16_t ii, jj, kk;
343 int16_t currPwr = (int16_t)(2*Pmin);
344 /* since Pmin is pwr*2 and pwrList is 4*pwr */
345 uint32_t idxL, idxR;
346
347 ii = 0;
348 jj = 0;
349
350 if (numIntercepts < 2)
351 return AH_FALSE;
352
353 while (ii <= (uint16_t)(Pmax - Pmin)) {
354 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
355 numIntercepts, &(idxL), &(idxR));
356 if (idxR < 1)
357 idxR = 1; /* extrapolate below */
358 if (idxL == (uint32_t)(numIntercepts - 1))
359 idxL = numIntercepts - 2; /* extrapolate above */
360 if (pwrList[idxL] == pwrList[idxR])
361 kk = VpdList[idxL];
362 else
363 kk = (uint16_t)
364 (((currPwr - pwrList[idxL])*VpdList[idxR]+
365 (pwrList[idxR] - currPwr)*VpdList[idxL])/
366 (pwrList[idxR] - pwrList[idxL]));
367 retVpdList[pdGainIdx][ii] = kk;
368 ii++;
369 currPwr += 2; /* half dB steps */
370 }
371
372 return AH_TRUE;
373 }
374
375 /*
376 * Returns interpolated or the scaled up interpolated value
377 */
378 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)379 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
380 int16_t targetLeft, int16_t targetRight)
381 {
382 int16_t rv;
383
384 if (srcRight != srcLeft) {
385 rv = ((target - srcLeft)*targetRight +
386 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
387 } else {
388 rv = targetLeft;
389 }
390 return rv;
391 }
392
393 /*
394 * Uses the data points read from EEPROM to reconstruct the pdadc power table
395 * Called by ar5413SetPowerTable()
396 */
397 static int
ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2413 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])398 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
399 const RAW_DATA_STRUCT_2413 *pRawDataset,
400 uint16_t pdGainOverlap_t2,
401 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
402 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
403 {
404 struct ar5413State *priv = AR5413(ah);
405 #define VpdTable_L priv->vpdTable_L
406 #define VpdTable_R priv->vpdTable_R
407 #define VpdTable_I priv->vpdTable_I
408 uint32_t ii, jj, kk;
409 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
410 uint32_t idxL, idxR;
411 uint32_t numPdGainsUsed = 0;
412 /*
413 * If desired to support -ve power levels in future, just
414 * change pwr_I_0 to signed 5-bits.
415 */
416 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
417 /* to accommodate -ve power levels later on. */
418 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
419 /* to accommodate -ve power levels later on */
420 uint16_t numVpd = 0;
421 uint16_t Vpd_step;
422 int16_t tmpVal ;
423 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
424
425 /* Get upper lower index */
426 GetLowerUpperIndex(channel, pRawDataset->pChannels,
427 pRawDataset->numChannels, &(idxL), &(idxR));
428
429 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
430 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
431 /* work backwards 'cause highest pdGain for lowest power */
432 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
433 if (numVpd > 0) {
434 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
435 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
436 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
437 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
438 }
439 Pmin_t2[numPdGainsUsed] = (int16_t)
440 (Pmin_t2[numPdGainsUsed] / 2);
441 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
442 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
443 Pmax_t2[numPdGainsUsed] =
444 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
445 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
446 ar5413FillVpdTable(
447 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
448 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
449 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
450 );
451 ar5413FillVpdTable(
452 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
453 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
454 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
455 );
456 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
457 VpdTable_I[numPdGainsUsed][kk] =
458 interpolate_signed(
459 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
460 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
461 }
462 /* fill VpdTable_I for this pdGain */
463 numPdGainsUsed++;
464 }
465 /* if this pdGain is used */
466 }
467
468 *pMinCalPower = Pmin_t2[0];
469 kk = 0; /* index for the final table */
470 for (ii = 0; ii < numPdGainsUsed; ii++) {
471 if (ii == (numPdGainsUsed - 1))
472 pPdGainBoundaries[ii] = Pmax_t2[ii] +
473 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
474 else
475 pPdGainBoundaries[ii] = (uint16_t)
476 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
477 if (pPdGainBoundaries[ii] > 63) {
478 HALDEBUG(ah, HAL_DEBUG_ANY,
479 "%s: clamp pPdGainBoundaries[%d] %d\n",
480 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
481 pPdGainBoundaries[ii] = 63;
482 }
483
484 /* Find starting index for this pdGain */
485 if (ii == 0)
486 ss = 0; /* for the first pdGain, start from index 0 */
487 else
488 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
489 pdGainOverlap_t2;
490 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
491 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
492 /*
493 *-ve ss indicates need to extrapolate data below for this pdGain
494 */
495 while (ss < 0) {
496 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
497 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
498 ss++;
499 }
500
501 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
502 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
503 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
504
505 while (ss < (int16_t)maxIndex)
506 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
507
508 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
509 VpdTable_I[ii][sizeCurrVpdTable-2]);
510 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
511 /*
512 * for last gain, pdGainBoundary == Pmax_t2, so will
513 * have to extrapolate
514 */
515 if (tgtIndex > maxIndex) { /* need to extrapolate above */
516 while(ss < (int16_t)tgtIndex) {
517 tmpVal = (uint16_t)
518 (VpdTable_I[ii][sizeCurrVpdTable-1] +
519 (ss-maxIndex)*Vpd_step);
520 pPDADCValues[kk++] = (tmpVal > 127) ?
521 127 : tmpVal;
522 ss++;
523 }
524 } /* extrapolated above */
525 } /* for all pdGainUsed */
526
527 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
528 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
529 ii++;
530 }
531 while (kk < 128) {
532 pPDADCValues[kk] = pPDADCValues[kk-1];
533 kk++;
534 }
535
536 return numPdGainsUsed;
537 #undef VpdTable_L
538 #undef VpdTable_R
539 #undef VpdTable_I
540 }
541
542 static HAL_BOOL
ar5413SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,const struct ieee80211_channel * chan,uint16_t * rfXpdGain)543 ar5413SetPowerTable(struct ath_hal *ah,
544 int16_t *minPower, int16_t *maxPower,
545 const struct ieee80211_channel *chan,
546 uint16_t *rfXpdGain)
547 {
548 struct ath_hal_5212 *ahp = AH5212(ah);
549 uint16_t freq = ath_hal_gethwchannel(ah, chan);
550 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
551 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
552 uint16_t pdGainOverlap_t2;
553 int16_t minCalPower5413_t2;
554 uint16_t *pdadcValues = ahp->ah_pcdacTable;
555 uint16_t gainBoundaries[4];
556 uint32_t reg32, regoffset;
557 int i, numPdGainsUsed;
558 #ifndef AH_USE_INIPDGAIN
559 uint32_t tpcrg1;
560 #endif
561
562 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
563 __func__, chan->ic_freq, chan->ic_flags);
564
565 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
566 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
567 else if (IEEE80211_IS_CHAN_B(chan))
568 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
569 else {
570 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
571 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
572 }
573
574 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
575 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
576
577 numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
578 freq, pRawDataset, pdGainOverlap_t2,
579 &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
580 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
581
582 #ifdef AH_USE_INIPDGAIN
583 /*
584 * Use pd_gains curve from eeprom; Atheros always uses
585 * the default curve from the ini file but some vendors
586 * (e.g. Zcomax) want to override this curve and not
587 * honoring their settings results in tx power 5dBm low.
588 */
589 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
590 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
591 #else
592 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
593 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
594 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
595 switch (numPdGainsUsed) {
596 case 3:
597 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
598 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
599 /* fall thru... */
600 case 2:
601 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
602 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
603 /* fall thru... */
604 case 1:
605 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
606 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
607 break;
608 }
609 #ifdef AH_DEBUG
610 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
611 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
612 "pd_gains (default 0x%x, calculated 0x%x)\n",
613 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
614 #endif
615 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
616 #endif
617
618 /*
619 * Note the pdadc table may not start at 0 dBm power, could be
620 * negative or greater than 0. Need to offset the power
621 * values by the amount of minPower for griffin
622 */
623 if (minCalPower5413_t2 != 0)
624 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
625 else
626 ahp->ah_txPowerIndexOffset = 0;
627
628 /* Finally, write the power values into the baseband power table */
629 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
630 for (i = 0; i < 32; i++) {
631 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
632 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
633 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
634 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
635 OS_REG_WRITE(ah, regoffset, reg32);
636 regoffset += 4;
637 }
638
639 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
640 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
641 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
642 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
643 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
644 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
645
646 return AH_TRUE;
647 }
648
649 static int16_t
ar5413GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)650 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
651 {
652 uint32_t ii,jj;
653 uint16_t Pmin=0,numVpd;
654
655 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
656 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
657 /* work backwards 'cause highest pdGain for lowest power */
658 numVpd = data->pDataPerPDGain[jj].numVpd;
659 if (numVpd > 0) {
660 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
661 return(Pmin);
662 }
663 }
664 return(Pmin);
665 }
666
667 static int16_t
ar5413GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)668 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
669 {
670 uint32_t ii;
671 uint16_t Pmax=0,numVpd;
672
673 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
674 /* work forwards cuase lowest pdGain for highest power */
675 numVpd = data->pDataPerPDGain[ii].numVpd;
676 if (numVpd > 0) {
677 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
678 return(Pmax);
679 }
680 }
681 return(Pmax);
682 }
683
684 static HAL_BOOL
ar5413GetChannelMaxMinPower(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t * maxPow,int16_t * minPow)685 ar5413GetChannelMaxMinPower(struct ath_hal *ah,
686 const struct ieee80211_channel *chan,
687 int16_t *maxPow, int16_t *minPow)
688 {
689 uint16_t freq = chan->ic_freq; /* NB: never mapped */
690 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
691 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
692 const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
693 uint16_t numChannels;
694 int totalD,totalF, totalMin,last, i;
695
696 *maxPow = 0;
697
698 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
699 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
700 else if (IEEE80211_IS_CHAN_B(chan))
701 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
702 else {
703 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
704 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
705 }
706
707 numChannels = pRawDataset->numChannels;
708 data = pRawDataset->pDataPerChannel;
709
710 /* Make sure the channel is in the range of the TP values
711 * (freq piers)
712 */
713 if (numChannels < 1)
714 return(AH_FALSE);
715
716 if ((freq < data[0].channelValue) ||
717 (freq > data[numChannels-1].channelValue)) {
718 if (freq < data[0].channelValue) {
719 *maxPow = ar5413GetMaxPower(ah, &data[0]);
720 *minPow = ar5413GetMinPower(ah, &data[0]);
721 return(AH_TRUE);
722 } else {
723 *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
724 *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
725 return(AH_TRUE);
726 }
727 }
728
729 /* Linearly interpolate the power value now */
730 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
731 last = i++);
732 totalD = data[i].channelValue - data[last].channelValue;
733 if (totalD > 0) {
734 totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
735 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
736 ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
737 totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
738 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
739 ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
740 return(AH_TRUE);
741 } else {
742 if (freq == data[i].channelValue) {
743 *maxPow = ar5413GetMaxPower(ah, &data[i]);
744 *minPow = ar5413GetMinPower(ah, &data[i]);
745 return(AH_TRUE);
746 } else
747 return(AH_FALSE);
748 }
749 }
750
751 /*
752 * Free memory for analog bank scratch buffers
753 */
754 static void
ar5413RfDetach(struct ath_hal * ah)755 ar5413RfDetach(struct ath_hal *ah)
756 {
757 struct ath_hal_5212 *ahp = AH5212(ah);
758
759 HALASSERT(ahp->ah_rfHal != AH_NULL);
760 ath_hal_free(ahp->ah_rfHal);
761 ahp->ah_rfHal = AH_NULL;
762 }
763
764 /*
765 * Allocate memory for analog bank scratch buffers
766 * Scratch Buffer will be reinitialized every reset so no need to zero now
767 */
768 static HAL_BOOL
ar5413RfAttach(struct ath_hal * ah,HAL_STATUS * status)769 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
770 {
771 struct ath_hal_5212 *ahp = AH5212(ah);
772 struct ar5413State *priv;
773
774 HALASSERT(ah->ah_magic == AR5212_MAGIC);
775
776 HALASSERT(ahp->ah_rfHal == AH_NULL);
777 priv = ath_hal_malloc(sizeof(struct ar5413State));
778 if (priv == AH_NULL) {
779 HALDEBUG(ah, HAL_DEBUG_ANY,
780 "%s: cannot allocate private state\n", __func__);
781 *status = HAL_ENOMEM; /* XXX */
782 return AH_FALSE;
783 }
784 priv->base.rfDetach = ar5413RfDetach;
785 priv->base.writeRegs = ar5413WriteRegs;
786 priv->base.getRfBank = ar5413GetRfBank;
787 priv->base.setChannel = ar5413SetChannel;
788 priv->base.setRfRegs = ar5413SetRfRegs;
789 priv->base.setPowerTable = ar5413SetPowerTable;
790 priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
791 priv->base.getNfAdjust = ar5212GetNfAdjust;
792
793 ahp->ah_pcdacTable = priv->pcdacTable;
794 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
795 ahp->ah_rfHal = &priv->base;
796
797 return AH_TRUE;
798 }
799
800 static HAL_BOOL
ar5413Probe(struct ath_hal * ah)801 ar5413Probe(struct ath_hal *ah)
802 {
803 return IS_5413(ah);
804 }
805 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);
806