xref: /openbsd/sys/dev/ic/ar9380.c (revision 4b1a56af)
1 /*	$OpenBSD: ar9380.c,v 1.28 2022/01/09 05:42:38 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2011 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2010 Atheros Communications Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Driver for Atheros 802.11a/g/n chipsets.
22  * Routines for AR9380 and AR9485 chipsets.
23  */
24 
25 #include "bpfilter.h"
26 
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/mbuf.h>
30 #include <sys/kernel.h>
31 #include <sys/socket.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/queue.h>
35 #include <sys/conf.h>
36 #include <sys/device.h>
37 #include <sys/endian.h>
38 
39 #include <machine/bus.h>
40 
41 #if NBPFILTER > 0
42 #include <net/bpf.h>
43 #endif
44 #include <net/if.h>
45 #include <net/if_media.h>
46 
47 #include <netinet/in.h>
48 #include <netinet/if_ether.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_amrr.h>
52 #include <net80211/ieee80211_ra.h>
53 #include <net80211/ieee80211_radiotap.h>
54 
55 #include <dev/ic/athnreg.h>
56 #include <dev/ic/athnvar.h>
57 
58 #include <dev/ic/ar9003reg.h>
59 #include <dev/ic/ar9380reg.h>
60 
61 int	ar9380_attach(struct athn_softc *);
62 void	ar9380_setup(struct athn_softc *);
63 const	uint8_t *ar9380_get_rom_template(struct athn_softc *, uint8_t);
64 void	ar9380_swap_rom(struct athn_softc *);
65 int	ar9380_set_synth(struct athn_softc *, struct ieee80211_channel *,
66 	    struct ieee80211_channel *);
67 void	ar9380_get_paprd_masks(struct athn_softc *, struct ieee80211_channel *,
68 	    uint32_t *, uint32_t *);
69 void	ar9380_init_from_rom(struct athn_softc *, struct ieee80211_channel *,
70 	    struct ieee80211_channel *);
71 void	ar9380_init_swreg(struct athn_softc *);
72 int	ar9485_pmu_write(struct athn_softc *, uint32_t, uint32_t);
73 void	ar9485_init_swreg(struct athn_softc *);
74 void	ar9380_spur_mitigate_cck(struct athn_softc *,
75 	    struct ieee80211_channel *, struct ieee80211_channel *);
76 void	ar9380_spur_mitigate_ofdm(struct athn_softc *,
77 	    struct ieee80211_channel *, struct ieee80211_channel *);
78 void	ar9380_spur_mitigate(struct athn_softc *, struct ieee80211_channel *,
79 	    struct ieee80211_channel *);
80 void	ar9380_set_txpower(struct athn_softc *, struct ieee80211_channel *,
81 	    struct ieee80211_channel *);
82 void	ar9380_get_correction(struct athn_softc *, struct ieee80211_channel *,
83 	    int, int *, int *);
84 void	ar9380_set_correction(struct athn_softc *, struct ieee80211_channel *);
85 
86 /* Extern functions. */
87 int	athn_interpolate(int, int, int, int, int);
88 uint8_t	athn_chan2fbin(struct ieee80211_channel *);
89 void	athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *);
90 int	ar9003_attach(struct athn_softc *);
91 void	ar9003_write_txpower(struct athn_softc *, int16_t power[]);
92 void	ar9003_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *,
93 	    uint8_t, const uint8_t *, const struct ar_cal_target_power_leg *,
94 	    int, uint8_t[]);
95 void	ar9003_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *,
96 	    uint8_t, const uint8_t *, const struct ar_cal_target_power_ht *,
97 	    int, uint8_t[]);
98 
99 
100 int
ar9380_attach(struct athn_softc * sc)101 ar9380_attach(struct athn_softc *sc)
102 {
103 	sc->ngpiopins = 17;
104 	sc->ops.setup = ar9380_setup;
105 	sc->ops.get_rom_template = ar9380_get_rom_template;
106 	sc->ops.swap_rom = ar9380_swap_rom;
107 	sc->ops.init_from_rom = ar9380_init_from_rom;
108 	sc->ops.set_txpower = ar9380_set_txpower;
109 	sc->ops.set_synth = ar9380_set_synth;
110 	sc->ops.spur_mitigate = ar9380_spur_mitigate;
111 	sc->ops.get_paprd_masks = ar9380_get_paprd_masks;
112 	sc->cca_min_2g = AR9380_PHY_CCA_MIN_GOOD_VAL_2GHZ;
113 	sc->cca_max_2g = AR9380_PHY_CCA_MAX_GOOD_VAL_2GHZ;
114 	sc->cca_min_5g = AR9380_PHY_CCA_MIN_GOOD_VAL_5GHZ;
115 	sc->cca_max_5g = AR9380_PHY_CCA_MAX_GOOD_VAL_5GHZ;
116 	if (AR_SREV_9485(sc)) {
117 		sc->ini = &ar9485_1_1_ini;
118 		sc->serdes = &ar9485_1_1_serdes;
119 	} else {
120 		sc->ini = &ar9380_2_2_ini;
121 		sc->serdes = &ar9380_2_2_serdes;
122 	}
123 
124 	return (ar9003_attach(sc));
125 }
126 
127 void
ar9380_setup(struct athn_softc * sc)128 ar9380_setup(struct athn_softc *sc)
129 {
130 	struct ieee80211com *ic = &sc->sc_ic;
131 	struct ar9380_eeprom *eep = sc->eep;
132 	struct ar9380_base_eep_hdr *base = &eep->baseEepHeader;
133 	uint8_t type;
134 
135 	if (base->opFlags & AR_OPFLAGS_11A)
136 		sc->flags |= ATHN_FLAG_11A;
137 	if (base->opFlags & AR_OPFLAGS_11G)
138 		sc->flags |= ATHN_FLAG_11G;
139 	if (base->opFlags & AR_OPFLAGS_11N)
140 		sc->flags |= ATHN_FLAG_11N;
141 
142 	IEEE80211_ADDR_COPY(ic->ic_myaddr, eep->macAddr);
143 	sc->led_pin = base->wlanLedGpio;
144 
145 	/* Check if we have a hardware radio switch. */
146 	if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) {
147 		sc->flags |= ATHN_FLAG_RFSILENT;
148 		/* Get GPIO pin used by hardware radio switch. */
149 		sc->rfsilent_pin = MS(base->rfSilent,
150 		    AR_EEP_RFSILENT_GPIO_SEL);
151 		/* Get polarity of hardware radio switch. */
152 		if (base->rfSilent & AR_EEP_RFSILENT_POLARITY)
153 			sc->flags |= ATHN_FLAG_RFSILENT_REVERSED;
154 	}
155 
156 	/* Set the number of HW key cache entries. */
157 	sc->kc_entries = AR_KEYTABLE_SIZE;
158 
159 	sc->txchainmask = MS(base->txrxMask, AR_EEP_TX_MASK);
160 	sc->rxchainmask = MS(base->txrxMask, AR_EEP_RX_MASK);
161 
162 	/* Fast PLL clock is always supported. */
163 	sc->flags |= ATHN_FLAG_FAST_PLL_CLOCK;
164 
165 	/* Enable PA predistortion if supported. */
166 	if (base->featureEnable & AR_EEP_PAPRD)
167 		sc->flags |= ATHN_FLAG_PAPRD;
168 	/*
169 	 * Some 3-stream chips may exceed the PCIe power requirements,
170 	 * requiring to reduce the number of Tx chains in some cases.
171 	 */
172 	if ((base->miscConfiguration & AR_EEP_CHAIN_MASK_REDUCE) &&
173 	    sc->txchainmask == 0x7)
174 		sc->flags |= ATHN_FLAG_3TREDUCE_CHAIN;
175 
176 	/* Select initialization values based on ROM. */
177 	type = MS(eep->baseEepHeader.txrxgain, AR_EEP_RX_GAIN);
178 	if (!AR_SREV_9485(sc)) {
179 		if (type == AR_EEP_RX_GAIN_WO_XLNA)
180 			sc->rx_gain = &ar9380_2_2_rx_gain_wo_xlna;
181 		else
182 			sc->rx_gain = &ar9380_2_2_rx_gain;
183 	} else
184 		sc->rx_gain = &ar9485_1_1_rx_gain;
185 
186 	/* Select initialization values based on ROM. */
187 	type = MS(eep->baseEepHeader.txrxgain, AR_EEP_TX_GAIN);
188 	if (!AR_SREV_9485(sc)) {
189 		if (type == AR_EEP_TX_GAIN_HIGH_OB_DB)
190 			sc->tx_gain = &ar9380_2_2_tx_gain_high_ob_db;
191 		else if (type == AR_EEP_TX_GAIN_LOW_OB_DB)
192 			sc->tx_gain = &ar9380_2_2_tx_gain_low_ob_db;
193 		else if (type == AR_EEP_TX_GAIN_HIGH_POWER)
194 			sc->tx_gain = &ar9380_2_2_tx_gain_high_power;
195 		else
196 			sc->tx_gain = &ar9380_2_2_tx_gain;
197 	} else
198 		sc->tx_gain = &ar9485_1_1_tx_gain;
199 }
200 
201 const uint8_t *
ar9380_get_rom_template(struct athn_softc * sc,uint8_t ref)202 ar9380_get_rom_template(struct athn_softc *sc, uint8_t ref)
203 {
204 	int i;
205 
206 	/* Retrieve template ROM image for given reference. */
207 	for (i = 0; i < nitems(ar9380_rom_templates); i++)
208 		if (ar9380_rom_templates[i][1] == ref)
209 			return (ar9380_rom_templates[i]);
210 	return (NULL);
211 }
212 
213 void
ar9380_swap_rom(struct athn_softc * sc)214 ar9380_swap_rom(struct athn_softc *sc)
215 {
216 #if BYTE_ORDER == BIG_ENDIAN
217 	struct ar9380_eeprom *eep = sc->eep;
218 	struct ar9380_base_eep_hdr *base = &eep->baseEepHeader;
219 	struct ar9380_modal_eep_header *modal;
220 	int i;
221 
222 	base->regDmn[0] = swap16(base->regDmn[0]);
223 	base->regDmn[1] = swap16(base->regDmn[1]);
224 	base->swreg = swap32(base->swreg);
225 
226 	modal = &eep->modalHeader2G;
227 	modal->antCtrlCommon = swap32(modal->antCtrlCommon);
228 	modal->antCtrlCommon2 = swap32(modal->antCtrlCommon2);
229 	modal->papdRateMaskHt20 = swap32(modal->papdRateMaskHt20);
230 	modal->papdRateMaskHt40 = swap32(modal->papdRateMaskHt40);
231 	for (i = 0; i < AR9380_MAX_CHAINS; i++)
232 		modal->antCtrlChain[i] = swap16(modal->antCtrlChain[i]);
233 
234 	modal = &eep->modalHeader5G;
235 	modal->antCtrlCommon = swap32(modal->antCtrlCommon);
236 	modal->antCtrlCommon2 = swap32(modal->antCtrlCommon2);
237 	modal->papdRateMaskHt20 = swap32(modal->papdRateMaskHt20);
238 	modal->papdRateMaskHt40 = swap32(modal->papdRateMaskHt40);
239 	for (i = 0; i < AR9380_MAX_CHAINS; i++)
240 		modal->antCtrlChain[i] = swap16(modal->antCtrlChain[i]);
241 #endif
242 }
243 
244 void
ar9380_get_paprd_masks(struct athn_softc * sc,struct ieee80211_channel * c,uint32_t * ht20mask,uint32_t * ht40mask)245 ar9380_get_paprd_masks(struct athn_softc *sc, struct ieee80211_channel *c,
246     uint32_t *ht20mask, uint32_t *ht40mask)
247 {
248 	const struct ar9380_eeprom *eep = sc->eep;
249 	const struct ar9380_modal_eep_header *modal;
250 
251 	if (IEEE80211_IS_CHAN_2GHZ(c))
252 		modal = &eep->modalHeader2G;
253 	else
254 		modal = &eep->modalHeader5G;
255 	*ht20mask = modal->papdRateMaskHt20;
256 	*ht40mask = modal->papdRateMaskHt40;
257 }
258 
259 int
ar9380_set_synth(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)260 ar9380_set_synth(struct athn_softc *sc, struct ieee80211_channel *c,
261     struct ieee80211_channel *extc)
262 {
263 	uint32_t freq = c->ic_freq;
264 	uint32_t chansel, phy;
265 
266 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
267 		if (AR_SREV_9485(sc))
268 			chansel = ((freq << 16) - 215) / 15;
269 		else
270 			chansel = (freq << 16) / 15;
271 		AR_WRITE(sc, AR_PHY_SYNTH_CONTROL, AR9380_BMODE);
272 	} else {
273 		chansel = (freq << 15) / 15;
274 		chansel >>= 1;
275 		AR_WRITE(sc, AR_PHY_SYNTH_CONTROL, 0);
276 	}
277 
278 	/* Enable Long Shift Select for synthesizer. */
279 	AR_SETBITS(sc, AR_PHY_65NM_CH0_SYNTH4,
280 	    AR_PHY_SYNTH4_LONG_SHIFT_SELECT);
281 	AR_WRITE_BARRIER(sc);
282 
283 	/* Program synthesizer. */
284 	phy = (chansel << 2) | AR9380_FRACMODE;
285 	DPRINTFN(4, ("AR_PHY_65NM_CH0_SYNTH7=0x%08x\n", phy));
286 	AR_WRITE(sc, AR_PHY_65NM_CH0_SYNTH7, phy);
287 	AR_WRITE_BARRIER(sc);
288 	/* Toggle Load Synth Channel bit. */
289 	AR_WRITE(sc, AR_PHY_65NM_CH0_SYNTH7, phy | AR9380_LOAD_SYNTH);
290 	AR_WRITE_BARRIER(sc);
291 	return (0);
292 }
293 
294 void
ar9380_init_from_rom(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)295 ar9380_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
296     struct ieee80211_channel *extc)
297 {
298 	const struct ar9380_eeprom *eep = sc->eep;
299 	const struct ar9380_modal_eep_header *modal;
300 	uint8_t db, margin, ant_div_ctrl;
301 	uint32_t reg;
302 	int i, maxchains;
303 
304 	if (IEEE80211_IS_CHAN_2GHZ(c))
305 		modal = &eep->modalHeader2G;
306 	else
307 		modal = &eep->modalHeader5G;
308 
309 	/* Apply XPA bias level. */
310 	if (AR_SREV_9485(sc)) {
311 		reg = AR_READ(sc, AR9485_PHY_65NM_CH0_TOP2);
312 		reg = RW(reg, AR9485_PHY_65NM_CH0_TOP2_XPABIASLVL,
313 		    modal->xpaBiasLvl);
314 		AR_WRITE(sc, AR9485_PHY_65NM_CH0_TOP2, reg);
315 	} else {
316 		reg = AR_READ(sc, AR_PHY_65NM_CH0_TOP);
317 		reg = RW(reg, AR_PHY_65NM_CH0_TOP_XPABIASLVL,
318 		    modal->xpaBiasLvl & 0x3);
319 		AR_WRITE(sc, AR_PHY_65NM_CH0_TOP, reg);
320 		reg = AR_READ(sc, AR_PHY_65NM_CH0_THERM);
321 		reg = RW(reg, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB,
322 		    modal->xpaBiasLvl >> 2);
323 		reg |= AR_PHY_65NM_CH0_THERM_XPASHORT2GND;
324 		AR_WRITE(sc, AR_PHY_65NM_CH0_THERM, reg);
325 	}
326 
327 	/* Apply antenna control. */
328 	reg = AR_READ(sc, AR_PHY_SWITCH_COM);
329 	reg = RW(reg, AR_SWITCH_TABLE_COM_ALL, modal->antCtrlCommon);
330 	AR_WRITE(sc, AR_PHY_SWITCH_COM, reg);
331 	reg = AR_READ(sc, AR_PHY_SWITCH_COM_2);
332 	reg = RW(reg, AR_SWITCH_TABLE_COM_2_ALL, modal->antCtrlCommon2);
333 	AR_WRITE(sc, AR_PHY_SWITCH_COM_2, reg);
334 
335 	maxchains = AR_SREV_9485(sc) ? 1 : AR9380_MAX_CHAINS;
336 	for (i = 0; i < maxchains; i++) {
337 		reg = AR_READ(sc, AR_PHY_SWITCH_CHAIN(i));
338 		reg = RW(reg, AR_SWITCH_TABLE_ALL, modal->antCtrlChain[i]);
339 		AR_WRITE(sc, AR_PHY_SWITCH_CHAIN(i), reg);
340 	}
341 
342 	if (AR_SREV_9485(sc)) {
343 		ant_div_ctrl = eep->base_ext1.ant_div_control;
344 		reg = AR_READ(sc, AR_PHY_MC_GAIN_CTRL);
345 		reg = RW(reg, AR_PHY_MC_GAIN_CTRL_ANT_DIV_CTRL_ALL,
346 		    MS(ant_div_ctrl, AR_EEP_ANT_DIV_CTRL_ALL));
347 		if (ant_div_ctrl & AR_EEP_ANT_DIV_CTRL_ANT_DIV)
348 			reg |= AR_PHY_MC_GAIN_CTRL_ENABLE_ANT_DIV;
349 		else
350 			reg &= ~AR_PHY_MC_GAIN_CTRL_ENABLE_ANT_DIV;
351 		AR_WRITE(sc, AR_PHY_MC_GAIN_CTRL, reg);
352 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);
353 		if (ant_div_ctrl & AR_EEP_ANT_DIV_CTRL_FAST_DIV)
354 			reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
355 		else
356 			reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
357 		AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
358 	}
359 
360 	if (eep->baseEepHeader.miscConfiguration & AR_EEP_DRIVE_STRENGTH) {
361 		/* Apply drive strength. */
362 		reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS1);
363 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_0, 5);
364 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_1, 5);
365 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_2, 5);
366 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_3, 5);
367 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_4, 5);
368 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_5, 5);
369 		AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS1, reg);
370 
371 		reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS2);
372 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_0, 5);
373 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_1, 5);
374 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_2, 5);
375 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_3, 5);
376 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_4, 5);
377 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_5, 5);
378 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_6, 5);
379 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_7, 5);
380 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_8, 5);
381 		AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS2, reg);
382 
383 		reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS4);
384 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_0, 5);
385 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_1, 5);
386 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_2, 5);
387 		AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS4, reg);
388 	}
389 
390 	/* Apply attenuation settings. */
391 	maxchains = AR_SREV_9485(sc) ? 1 : AR9380_MAX_CHAINS;
392 	for (i = 0; i < maxchains; i++) {
393 		if (IEEE80211_IS_CHAN_5GHZ(c) &&
394 		    eep->base_ext2.xatten1DBLow[i] != 0) {
395 			if (c->ic_freq <= 5500) {
396 				db = athn_interpolate(c->ic_freq,
397 				    5180, eep->base_ext2.xatten1DBLow[i],
398 				    5500, modal->xatten1DB[i]);
399 			} else {
400 				db = athn_interpolate(c->ic_freq,
401 				    5500, modal->xatten1DB[i],
402 				    5785, eep->base_ext2.xatten1DBHigh[i]);
403 			}
404 		} else
405 			db = modal->xatten1DB[i];
406 		if (IEEE80211_IS_CHAN_5GHZ(c) &&
407 		    eep->base_ext2.xatten1MarginLow[i] != 0) {
408 			if (c->ic_freq <= 5500) {
409 				margin = athn_interpolate(c->ic_freq,
410 				    5180, eep->base_ext2.xatten1MarginLow[i],
411 				    5500, modal->xatten1Margin[i]);
412 			} else {
413 				margin = athn_interpolate(c->ic_freq,
414 				    5500, modal->xatten1Margin[i],
415 				    5785, eep->base_ext2.xatten1MarginHigh[i]);
416 			}
417 		} else
418 			margin = modal->xatten1Margin[i];
419 		reg = AR_READ(sc, AR_PHY_EXT_ATTEN_CTL(i));
420 		reg = RW(reg, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, db);
421 		reg = RW(reg, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, margin);
422 		AR_WRITE(sc, AR_PHY_EXT_ATTEN_CTL(i), reg);
423 	}
424 
425 	/* Initialize switching regulator. */
426 	if (AR_SREV_9485(sc))
427 		ar9485_init_swreg(sc);
428 	else
429 		ar9380_init_swreg(sc);
430 
431 	/* Apply tuning capabilities. */
432 	if (AR_SREV_9485(sc) &&
433 	    (eep->baseEepHeader.featureEnable & AR_EEP_TUNING_CAPS)) {
434 		reg = AR_READ(sc, AR9485_PHY_CH0_XTAL);
435 		reg = RW(reg, AR9485_PHY_CH0_XTAL_CAPINDAC,
436 		    eep->baseEepHeader.params_for_tuning_caps[0]);
437 		reg = RW(reg, AR9485_PHY_CH0_XTAL_CAPOUTDAC,
438 		    eep->baseEepHeader.params_for_tuning_caps[0]);
439 		AR_WRITE(sc, AR9485_PHY_CH0_XTAL, reg);
440 	}
441 	AR_WRITE_BARRIER(sc);
442 }
443 
444 void
ar9380_init_swreg(struct athn_softc * sc)445 ar9380_init_swreg(struct athn_softc *sc)
446 {
447 	const struct ar9380_eeprom *eep = sc->eep;
448 
449 	if (eep->baseEepHeader.featureEnable & AR_EEP_INTERNAL_REGULATOR) {
450 		/* Internal regulator is ON. */
451 		AR_CLRBITS(sc, AR_RTC_REG_CONTROL1,
452 		    AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
453 		AR_WRITE(sc, AR_RTC_REG_CONTROL0, eep->baseEepHeader.swreg);
454 		AR_SETBITS(sc, AR_RTC_REG_CONTROL1,
455 		    AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
456 	} else
457 		AR_SETBITS(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_SWREG_PRD);
458 	AR_WRITE_BARRIER(sc);
459 }
460 
461 int
ar9485_pmu_write(struct athn_softc * sc,uint32_t addr,uint32_t val)462 ar9485_pmu_write(struct athn_softc *sc, uint32_t addr, uint32_t val)
463 {
464 	int ntries;
465 
466 	AR_WRITE(sc, addr, val);
467 	/* Wait for write to complete. */
468 	for (ntries = 0; ntries < 100; ntries++) {
469 		if (AR_READ(sc, addr) == val)
470 			return (0);
471 		AR_WRITE(sc, addr, val);	/* Insist. */
472 		AR_WRITE_BARRIER(sc);
473 		DELAY(10);
474 	}
475 	return (ETIMEDOUT);
476 }
477 
478 #define ar9486_pmu_read	AR_READ
479 
480 void
ar9485_init_swreg(struct athn_softc * sc)481 ar9485_init_swreg(struct athn_softc *sc)
482 {
483 	const struct ar9380_eeprom *eep = sc->eep;
484 	uint32_t reg;
485 
486 	ar9485_pmu_write(sc, AR_PHY_PMU2,
487 	    ar9486_pmu_read(sc, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM);
488 
489 	if (eep->baseEepHeader.featureEnable & AR_EEP_INTERNAL_REGULATOR) {
490 		ar9485_pmu_write(sc, AR_PHY_PMU1, 0x131dc17a);
491 
492 		reg = ar9486_pmu_read(sc, AR_PHY_PMU2);
493 		reg = (reg & ~0xffc00000) | 0x10000000;
494 		ar9485_pmu_write(sc, AR_PHY_PMU2, reg);
495 	} else {
496 		ar9485_pmu_write(sc, AR_PHY_PMU1,
497 		    ar9486_pmu_read(sc, AR_PHY_PMU1) | AR_PHY_PMU1_PWD);
498 	}
499 
500 	ar9485_pmu_write(sc, AR_PHY_PMU2,
501 	    ar9486_pmu_read(sc, AR_PHY_PMU2) | AR_PHY_PMU2_PGM);
502 }
503 
504 void
ar9380_spur_mitigate_cck(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)505 ar9380_spur_mitigate_cck(struct athn_softc *sc, struct ieee80211_channel *c,
506     struct ieee80211_channel *extc)
507 {
508 	/* NB: It is safe to call this function for 5GHz channels. */
509 	static const int16_t freqs[] = { 2420, 2440, 2464, 2480 };
510 	int i, spur, freq;
511 	uint32_t reg;
512 
513 	for (i = 0; i < nitems(freqs); i++) {
514 		spur = freqs[i] - c->ic_freq;
515 		if (abs(spur) < 10)	/* +/- 10MHz range. */
516 			break;
517 	}
518 	if (i == nitems(freqs)) {
519 		/* Disable CCK spur mitigation. */
520 		reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
521 		reg = RW(reg, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
522 		AR_WRITE(sc, AR_PHY_AGC_CONTROL, reg);
523 		reg = AR_READ(sc, AR_PHY_CCK_SPUR_MIT);
524 		reg = RW(reg, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0);
525 		reg &= ~AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT;
526 		AR_WRITE(sc, AR_PHY_CCK_SPUR_MIT, reg);
527 		AR_WRITE_BARRIER(sc);
528 		return;
529 	}
530 	freq = (spur * 524288) / 11;
531 
532 	reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
533 	reg = RW(reg, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
534 	AR_WRITE(sc, AR_PHY_AGC_CONTROL, reg);
535 
536 	reg = AR_READ(sc, AR_PHY_CCK_SPUR_MIT);
537 	reg = RW(reg, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, freq);
538 	reg = RW(reg, AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
539 	reg = RW(reg, AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 0x2);
540 	reg |= AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT;
541 	AR_WRITE(sc, AR_PHY_CCK_SPUR_MIT, reg);
542 	AR_WRITE_BARRIER(sc);
543 }
544 
545 void
ar9380_spur_mitigate_ofdm(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)546 ar9380_spur_mitigate_ofdm(struct athn_softc *sc, struct ieee80211_channel *c,
547     struct ieee80211_channel *extc)
548 {
549 	const struct ar9380_eeprom *eep = sc->eep;
550 	const uint8_t *spurchans;
551 	uint32_t reg;
552 	int idx, spur_delta_phase, spur_off, range, i;
553 	int freq, spur, spur_freq_sd, spur_subchannel_sd;
554 
555 	if (IEEE80211_IS_CHAN_2GHZ(c))
556 		spurchans = eep->modalHeader2G.spurChans;
557 	else
558 		spurchans = eep->modalHeader5G.spurChans;
559 	if (spurchans[0] == 0)
560 		return;
561 
562 	/* Disable OFDM spur mitigation. */
563 	AR_CLRBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER);
564 
565 	reg = AR_READ(sc, AR_PHY_TIMING11);
566 	reg = RW(reg, AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
567 	reg = RW(reg, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
568 	reg &= ~AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC;
569 	reg &= ~AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR;
570 	AR_WRITE(sc, AR_PHY_TIMING11, reg);
571 
572 	AR_CLRBITS(sc, AR_PHY_SFCORR_EXT,
573 	    AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD);
574 
575 	AR_CLRBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI);
576 
577 	reg = AR_READ(sc, AR_PHY_SPUR_REG);
578 	reg = RW(reg, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
579 	reg &= ~AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI;
580 	reg &= ~AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT;
581 	reg &= ~AR_PHY_SPUR_REG_ENABLE_MASK_PPM;
582 	AR_WRITE(sc, AR_PHY_SPUR_REG, reg);
583 	AR_WRITE_BARRIER(sc);
584 
585 	freq = c->ic_freq;
586 	if (extc != NULL) {
587 		range = 19;	/* +/- 19MHz range. */
588 		if (AR_READ(sc, AR_PHY_GEN_CTRL) & AR_PHY_GC_DYN2040_PRI_CH)
589 			freq += 10;
590 		else
591 			freq -= 10;
592 	} else
593 		range = 10;	/* +/- 10MHz range. */
594 	for (i = 0; i < AR9380_EEPROM_MODAL_SPURS; i++) {
595 		spur = spurchans[i];
596 		if (spur == 0)
597 			return;
598 		/* Convert to frequency. */
599 		if (IEEE80211_IS_CHAN_2GHZ(c))
600 			spur = 2300 + spur;
601 		else
602 			spur = 4900 + (spur * 5);
603 		spur -= freq;
604 		if (abs(spur) < range)
605 			break;
606 	}
607 	if (i == AR9380_EEPROM_MODAL_SPURS)
608 		return;
609 
610 	/* Enable OFDM spur mitigation. */
611 	if (extc != NULL) {
612 		spur_delta_phase = (spur * 131072) / 5;
613 		reg = AR_READ(sc, AR_PHY_GEN_CTRL);
614 		if (spur < 0) {
615 			spur_subchannel_sd =
616 			    (reg & AR_PHY_GC_DYN2040_PRI_CH) == 0;
617 			spur_off = spur + 10;
618 		} else {
619 			spur_subchannel_sd =
620 			    (reg & AR_PHY_GC_DYN2040_PRI_CH) != 0;
621 			spur_off = spur - 10;
622 		}
623 	} else {
624 		spur_delta_phase = (spur * 262144) / 5;
625 		spur_subchannel_sd = 0;
626 		spur_off = spur;
627 	}
628 	spur_freq_sd = (spur_off * 512) / 11;
629 
630 	AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER);
631 
632 	reg = AR_READ(sc, AR_PHY_TIMING11);
633 	reg = RW(reg, AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
634 	reg = RW(reg, AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
635 	reg |= AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC;
636 	reg |= AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR;
637 	AR_WRITE(sc, AR_PHY_TIMING11, reg);
638 
639 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
640 	if (spur_subchannel_sd)
641 		reg |= AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD;
642 	else
643 		reg &= ~AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD;
644 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
645 
646 	AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI);
647 
648 	reg = AR_READ(sc, AR_PHY_SPUR_REG);
649 	reg = RW(reg, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
650 	reg = RW(reg, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
651 	reg |= AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI;
652 	if (AR_READ(sc, AR_PHY_MODE) & AR_PHY_MODE_DYNAMIC)
653 		reg |= AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT;
654 	reg |= AR_PHY_SPUR_REG_ENABLE_MASK_PPM;
655 	AR_WRITE(sc, AR_PHY_SPUR_REG, reg);
656 
657 	idx = (spur * 16) / 5;
658 	if (idx < 0)
659 		idx--;
660 
661 	/* Write pilot mask. */
662 	AR_SETBITS(sc, AR_PHY_TIMING4,
663 	    AR_PHY_TIMING4_ENABLE_PILOT_MASK |
664 	    AR_PHY_TIMING4_ENABLE_CHAN_MASK);
665 
666 	reg = AR_READ(sc, AR_PHY_PILOT_SPUR_MASK);
667 	reg = RW(reg, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, idx);
668 	reg = RW(reg, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0x0c);
669 	AR_WRITE(sc, AR_PHY_PILOT_SPUR_MASK, reg);
670 
671 	reg = AR_READ(sc, AR_PHY_SPUR_MASK_A);
672 	reg = RW(reg, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, idx);
673 	reg = RW(reg, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
674 	AR_WRITE(sc, AR_PHY_SPUR_MASK_A, reg);
675 
676 	reg = AR_READ(sc, AR_PHY_CHAN_SPUR_MASK);
677 	reg = RW(reg, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, idx);
678 	reg = RW(reg, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0x0c);
679 	AR_WRITE(sc, AR_PHY_CHAN_SPUR_MASK, reg);
680 	AR_WRITE_BARRIER(sc);
681 }
682 
683 void
ar9380_spur_mitigate(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)684 ar9380_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c,
685     struct ieee80211_channel *extc)
686 {
687 	/* NB: We call spur_mitigate_cck for 5GHz too, just to disable it. */
688 	ar9380_spur_mitigate_cck(sc, c, extc);
689 	ar9380_spur_mitigate_ofdm(sc, c, extc);
690 }
691 
692 void
ar9380_set_txpower(struct athn_softc * sc,struct ieee80211_channel * c,struct ieee80211_channel * extc)693 ar9380_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
694     struct ieee80211_channel *extc)
695 {
696 	const struct ar9380_eeprom *eep = sc->eep;
697 	uint8_t tpow_cck[4], tpow_ofdm[4];
698 	uint8_t tpow_ht20[14], tpow_ht40[14];
699 	int16_t power[ATHN_POWER_COUNT];
700 
701 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
702 		/* Get CCK target powers. */
703 		ar9003_get_lg_tpow(sc, c, AR_CTL_11B,
704 		    eep->calTargetFbinCck, eep->calTargetPowerCck,
705 		    AR9380_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
706 
707 		/* Get OFDM target powers. */
708 		ar9003_get_lg_tpow(sc, c, AR_CTL_11G,
709 		    eep->calTargetFbin2G, eep->calTargetPower2G,
710 		    AR9380_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
711 
712 		/* Get HT-20 target powers. */
713 		ar9003_get_ht_tpow(sc, c, AR_CTL_2GHT20,
714 		    eep->calTargetFbin2GHT20, eep->calTargetPower2GHT20,
715 		    AR9380_NUM_2G_20_TARGET_POWERS, tpow_ht20);
716 
717 		if (extc != NULL) {
718 			/* Get HT-40 target powers. */
719 			ar9003_get_ht_tpow(sc, c, AR_CTL_2GHT40,
720 			    eep->calTargetFbin2GHT40,
721 			    eep->calTargetPower2GHT40,
722 			    AR9380_NUM_2G_40_TARGET_POWERS, tpow_ht40);
723 		}
724 	} else {
725 		/* Get OFDM target powers. */
726 		ar9003_get_lg_tpow(sc, c, AR_CTL_11A,
727 		    eep->calTargetFbin5G, eep->calTargetPower5G,
728 		    AR9380_NUM_5G_20_TARGET_POWERS, tpow_ofdm);
729 
730 		/* Get HT-20 target powers. */
731 		ar9003_get_ht_tpow(sc, c, AR_CTL_5GHT20,
732 		    eep->calTargetFbin5GHT20, eep->calTargetPower5GHT20,
733 		    AR9380_NUM_5G_20_TARGET_POWERS, tpow_ht20);
734 
735 		if (extc != NULL) {
736 			/* Get HT-40 target powers. */
737 			ar9003_get_ht_tpow(sc, c, AR_CTL_5GHT40,
738 			    eep->calTargetFbin5GHT40,
739 			    eep->calTargetPower5GHT40,
740 			    AR9380_NUM_5G_40_TARGET_POWERS, tpow_ht40);
741 		}
742 	}
743 
744 	memset(power, 0, sizeof(power));
745 	/* Shuffle target powers across transmit rates. */
746 	power[ATHN_POWER_OFDM6 ] =
747 	power[ATHN_POWER_OFDM9 ] =
748 	power[ATHN_POWER_OFDM12] =
749 	power[ATHN_POWER_OFDM18] =
750 	power[ATHN_POWER_OFDM24] = tpow_ofdm[0];
751 	power[ATHN_POWER_OFDM36] = tpow_ofdm[1];
752 	power[ATHN_POWER_OFDM48] = tpow_ofdm[2];
753 	power[ATHN_POWER_OFDM54] = tpow_ofdm[3];
754 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
755 		power[ATHN_POWER_CCK1_LP ] =
756 		power[ATHN_POWER_CCK2_LP ] =
757 		power[ATHN_POWER_CCK2_SP ] =
758 		power[ATHN_POWER_CCK55_LP] = tpow_cck[0];
759 		power[ATHN_POWER_CCK55_SP] = tpow_cck[1];
760 		power[ATHN_POWER_CCK11_LP] = tpow_cck[2];
761 		power[ATHN_POWER_CCK11_SP] = tpow_cck[3];
762 	}
763 	/* Next entry covers MCS0, MCS8 and MCS16. */
764 	power[ATHN_POWER_HT20( 0)] = tpow_ht20[ 0];
765 	/* Next entry covers MCS1-3, MCS9-11 and MCS17-19. */
766 	power[ATHN_POWER_HT20( 1)] = tpow_ht20[ 1];
767 	power[ATHN_POWER_HT20( 4)] = tpow_ht20[ 2];
768 	power[ATHN_POWER_HT20( 5)] = tpow_ht20[ 3];
769 	power[ATHN_POWER_HT20( 6)] = tpow_ht20[ 4];
770 	power[ATHN_POWER_HT20( 7)] = tpow_ht20[ 5];
771 	power[ATHN_POWER_HT20(12)] = tpow_ht20[ 6];
772 	power[ATHN_POWER_HT20(13)] = tpow_ht20[ 7];
773 	power[ATHN_POWER_HT20(14)] = tpow_ht20[ 8];
774 	power[ATHN_POWER_HT20(15)] = tpow_ht20[ 9];
775 	power[ATHN_POWER_HT20(20)] = tpow_ht20[10];
776 	power[ATHN_POWER_HT20(21)] = tpow_ht20[11];
777 	power[ATHN_POWER_HT20(22)] = tpow_ht20[12];
778 	power[ATHN_POWER_HT20(23)] = tpow_ht20[13];
779 	if (extc != NULL) {
780 		/* Next entry covers MCS0, MCS8 and MCS16. */
781 		power[ATHN_POWER_HT40( 0)] = tpow_ht40[ 0];
782 		/* Next entry covers MCS1-3, MCS9-11 and MCS17-19. */
783 		power[ATHN_POWER_HT40( 1)] = tpow_ht40[ 1];
784 		power[ATHN_POWER_HT40( 4)] = tpow_ht40[ 2];
785 		power[ATHN_POWER_HT40( 5)] = tpow_ht40[ 3];
786 		power[ATHN_POWER_HT40( 6)] = tpow_ht40[ 4];
787 		power[ATHN_POWER_HT40( 7)] = tpow_ht40[ 5];
788 		power[ATHN_POWER_HT40(12)] = tpow_ht40[ 6];
789 		power[ATHN_POWER_HT40(13)] = tpow_ht40[ 7];
790 		power[ATHN_POWER_HT40(14)] = tpow_ht40[ 8];
791 		power[ATHN_POWER_HT40(15)] = tpow_ht40[ 9];
792 		power[ATHN_POWER_HT40(20)] = tpow_ht40[10];
793 		power[ATHN_POWER_HT40(21)] = tpow_ht40[11];
794 		power[ATHN_POWER_HT40(22)] = tpow_ht40[12];
795 		power[ATHN_POWER_HT40(23)] = tpow_ht40[13];
796 	}
797 
798 	/* Write transmit power values to hardware. */
799 	ar9003_write_txpower(sc, power);
800 
801 	/* Apply transmit power correction. */
802 	ar9380_set_correction(sc, c);
803 }
804 
805 void
ar9380_get_correction(struct athn_softc * sc,struct ieee80211_channel * c,int chain,int * corr,int * temp)806 ar9380_get_correction(struct athn_softc *sc, struct ieee80211_channel *c,
807     int chain, int *corr, int *temp)
808 {
809 	const struct ar9380_eeprom *eep = sc->eep;
810 	const struct ar9380_cal_data_per_freq_op_loop *pierdata;
811 	const uint8_t *pierfreq;
812 	uint8_t fbin;
813 	int lo, hi, npiers;
814 
815 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
816 		pierfreq = eep->calFreqPier2G;
817 		pierdata = eep->calPierData2G[chain];
818 		npiers = AR9380_NUM_2G_CAL_PIERS;
819 	} else {
820 		pierfreq = eep->calFreqPier5G;
821 		pierdata = eep->calPierData5G[chain];
822 		npiers = AR9380_NUM_5G_CAL_PIERS;
823 	}
824 	/* Find channel in ROM pier table. */
825 	fbin = athn_chan2fbin(c);
826 	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
827 
828 	*corr = athn_interpolate(fbin,
829 	    pierfreq[lo], pierdata[lo].refPower,
830 	    pierfreq[hi], pierdata[hi].refPower);
831 	*temp = athn_interpolate(fbin,
832 	    pierfreq[lo], pierdata[lo].tempMeas,
833 	    pierfreq[hi], pierdata[hi].tempMeas);
834 }
835 
836 void
ar9380_set_correction(struct athn_softc * sc,struct ieee80211_channel * c)837 ar9380_set_correction(struct athn_softc *sc, struct ieee80211_channel *c)
838 {
839 	const struct ar9380_eeprom *eep = sc->eep;
840 	const struct ar9380_modal_eep_header *modal;
841 	uint32_t reg;
842 	int8_t slope;
843 	int i, corr, temp, temp0;
844 
845 	if (IEEE80211_IS_CHAN_2GHZ(c))
846 		modal = &eep->modalHeader2G;
847 	else
848 		modal = &eep->modalHeader5G;
849 
850 	for (i = 0; i < AR9380_MAX_CHAINS; i++) {
851 		ar9380_get_correction(sc, c, i, &corr, &temp);
852 		if (i == 0)
853 			temp0 = temp;
854 
855 		reg = AR_READ(sc, AR_PHY_TPC_11_B(i));
856 		reg = RW(reg, AR_PHY_TPC_11_OLPC_GAIN_DELTA, corr);
857 		AR_WRITE(sc, AR_PHY_TPC_11_B(i), reg);
858 
859 		/* Enable open loop power control. */
860 		reg = AR_READ(sc, AR_PHY_TPC_6_B(i));
861 		reg = RW(reg, AR_PHY_TPC_6_ERROR_EST_MODE, 3);
862 		AR_WRITE(sc, AR_PHY_TPC_6_B(i), reg);
863 	}
864 
865 	/* Enable temperature compensation. */
866 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
867 	    eep->base_ext2.tempSlopeLow != 0) {
868 		if (c->ic_freq <= 5500) {
869 			slope = athn_interpolate(c->ic_freq,
870 			    5180, eep->base_ext2.tempSlopeLow,
871 			    5500, modal->tempSlope);
872 		} else {
873 			slope = athn_interpolate(c->ic_freq,
874 			    5500, modal->tempSlope,
875 			    5785, eep->base_ext2.tempSlopeHigh);
876 		}
877 	} else
878 		slope = modal->tempSlope;
879 
880 	reg = AR_READ(sc, AR_PHY_TPC_19);
881 	reg = RW(reg, AR_PHY_TPC_19_ALPHA_THERM, slope);
882 	AR_WRITE(sc, AR_PHY_TPC_19, reg);
883 
884 	reg = AR_READ(sc, AR_PHY_TPC_18);
885 	reg = RW(reg, AR_PHY_TPC_18_THERM_CAL, temp0);
886 	AR_WRITE(sc, AR_PHY_TPC_18, reg);
887 	AR_WRITE_BARRIER(sc);
888 }
889