1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2008 by Oyvind Harboe                                   *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2018 by Liviu Ionescu                                   *
12  *   <ilg@livius.net>                                                      *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
26  ***************************************************************************/
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #include "arm.h"
33 #include "armv4_5.h"
34 #include "arm_jtag.h"
35 #include "breakpoints.h"
36 #include "arm_disassembler.h"
37 #include <helper/binarybuffer.h>
38 #include "algorithm.h"
39 #include "register.h"
40 #include "semihosting_common.h"
41 
42 /* offsets into armv4_5 core register cache */
43 enum {
44 /*	ARMV4_5_CPSR = 31, */
45 	ARMV4_5_SPSR_FIQ = 32,
46 	ARMV4_5_SPSR_IRQ = 33,
47 	ARMV4_5_SPSR_SVC = 34,
48 	ARMV4_5_SPSR_ABT = 35,
49 	ARMV4_5_SPSR_UND = 36,
50 	ARM_SPSR_MON = 41,
51 	ARM_SPSR_HYP = 43,
52 };
53 
54 static const uint8_t arm_usr_indices[17] = {
55 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
56 };
57 
58 static const uint8_t arm_fiq_indices[8] = {
59 	16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
60 };
61 
62 static const uint8_t arm_irq_indices[3] = {
63 	23, 24, ARMV4_5_SPSR_IRQ,
64 };
65 
66 static const uint8_t arm_svc_indices[3] = {
67 	25, 26, ARMV4_5_SPSR_SVC,
68 };
69 
70 static const uint8_t arm_abt_indices[3] = {
71 	27, 28, ARMV4_5_SPSR_ABT,
72 };
73 
74 static const uint8_t arm_und_indices[3] = {
75 	29, 30, ARMV4_5_SPSR_UND,
76 };
77 
78 static const uint8_t arm_mon_indices[3] = {
79 	39, 40, ARM_SPSR_MON,
80 };
81 
82 static const uint8_t arm_hyp_indices[2] = {
83 	42, ARM_SPSR_HYP,
84 };
85 
86 static const struct {
87 	const char *name;
88 	unsigned short psr;
89 	/* For user and system modes, these list indices for all registers.
90 	 * otherwise they're just indices for the shadow registers and SPSR.
91 	 */
92 	unsigned short n_indices;
93 	const uint8_t *indices;
94 } arm_mode_data[] = {
95 	/* Seven modes are standard from ARM7 on. "System" and "User" share
96 	 * the same registers; other modes shadow from 3 to 8 registers.
97 	 */
98 	{
99 		.name = "User",
100 		.psr = ARM_MODE_USR,
101 		.n_indices = ARRAY_SIZE(arm_usr_indices),
102 		.indices = arm_usr_indices,
103 	},
104 	{
105 		.name = "FIQ",
106 		.psr = ARM_MODE_FIQ,
107 		.n_indices = ARRAY_SIZE(arm_fiq_indices),
108 		.indices = arm_fiq_indices,
109 	},
110 	{
111 		.name = "Supervisor",
112 		.psr = ARM_MODE_SVC,
113 		.n_indices = ARRAY_SIZE(arm_svc_indices),
114 		.indices = arm_svc_indices,
115 	},
116 	{
117 		.name = "Abort",
118 		.psr = ARM_MODE_ABT,
119 		.n_indices = ARRAY_SIZE(arm_abt_indices),
120 		.indices = arm_abt_indices,
121 	},
122 	{
123 		.name = "IRQ",
124 		.psr = ARM_MODE_IRQ,
125 		.n_indices = ARRAY_SIZE(arm_irq_indices),
126 		.indices = arm_irq_indices,
127 	},
128 	{
129 		.name = "Undefined instruction",
130 		.psr = ARM_MODE_UND,
131 		.n_indices = ARRAY_SIZE(arm_und_indices),
132 		.indices = arm_und_indices,
133 	},
134 	{
135 		.name = "System",
136 		.psr = ARM_MODE_SYS,
137 		.n_indices = ARRAY_SIZE(arm_usr_indices),
138 		.indices = arm_usr_indices,
139 	},
140 	/* TrustZone "Security Extensions" add a secure monitor mode.
141 	 * This is distinct from a "debug monitor" which can support
142 	 * non-halting debug, in conjunction with some debuggers.
143 	 */
144 	{
145 		.name = "Secure Monitor",
146 		.psr = ARM_MODE_MON,
147 		.n_indices = ARRAY_SIZE(arm_mon_indices),
148 		.indices = arm_mon_indices,
149 	},
150 	{
151 		.name = "Secure Monitor ARM1176JZF-S",
152 		.psr = ARM_MODE_1176_MON,
153 		.n_indices = ARRAY_SIZE(arm_mon_indices),
154 		.indices = arm_mon_indices,
155 	},
156 
157 	/* These special modes are currently only supported
158 	 * by ARMv6M and ARMv7M profiles */
159 	{
160 		.name = "Thread",
161 		.psr = ARM_MODE_THREAD,
162 	},
163 	{
164 		.name = "Thread (User)",
165 		.psr = ARM_MODE_USER_THREAD,
166 	},
167 	{
168 		.name = "Handler",
169 		.psr = ARM_MODE_HANDLER,
170 	},
171 
172 	/* armv7-a with virtualization extension */
173 	{
174 		.name = "Hypervisor",
175 		.psr = ARM_MODE_HYP,
176 		.n_indices = ARRAY_SIZE(arm_hyp_indices),
177 		.indices = arm_hyp_indices,
178 	},
179 };
180 
181 /** Map PSR mode bits to the name of an ARM processor operating mode. */
arm_mode_name(unsigned psr_mode)182 const char *arm_mode_name(unsigned psr_mode)
183 {
184 	for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
185 		if (arm_mode_data[i].psr == psr_mode)
186 			return arm_mode_data[i].name;
187 	}
188 	LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
189 	return "UNRECOGNIZED";
190 }
191 
192 /** Return true iff the parameter denotes a valid ARM processor mode. */
is_arm_mode(unsigned psr_mode)193 bool is_arm_mode(unsigned psr_mode)
194 {
195 	for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
196 		if (arm_mode_data[i].psr == psr_mode)
197 			return true;
198 	}
199 	return false;
200 }
201 
202 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
arm_mode_to_number(enum arm_mode mode)203 int arm_mode_to_number(enum arm_mode mode)
204 {
205 	switch (mode) {
206 		case ARM_MODE_ANY:
207 		/* map MODE_ANY to user mode */
208 		case ARM_MODE_USR:
209 			return 0;
210 		case ARM_MODE_FIQ:
211 			return 1;
212 		case ARM_MODE_IRQ:
213 			return 2;
214 		case ARM_MODE_SVC:
215 			return 3;
216 		case ARM_MODE_ABT:
217 			return 4;
218 		case ARM_MODE_UND:
219 			return 5;
220 		case ARM_MODE_SYS:
221 			return 6;
222 		case ARM_MODE_MON:
223 		case ARM_MODE_1176_MON:
224 			return 7;
225 		case ARM_MODE_HYP:
226 			return 8;
227 		default:
228 			LOG_ERROR("invalid mode value encountered %d", mode);
229 			return -1;
230 	}
231 }
232 
233 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
armv4_5_number_to_mode(int number)234 enum arm_mode armv4_5_number_to_mode(int number)
235 {
236 	switch (number) {
237 		case 0:
238 			return ARM_MODE_USR;
239 		case 1:
240 			return ARM_MODE_FIQ;
241 		case 2:
242 			return ARM_MODE_IRQ;
243 		case 3:
244 			return ARM_MODE_SVC;
245 		case 4:
246 			return ARM_MODE_ABT;
247 		case 5:
248 			return ARM_MODE_UND;
249 		case 6:
250 			return ARM_MODE_SYS;
251 		case 7:
252 			return ARM_MODE_MON;
253 		case 8:
254 			return ARM_MODE_HYP;
255 		default:
256 			LOG_ERROR("mode index out of bounds %d", number);
257 			return ARM_MODE_ANY;
258 	}
259 }
260 
261 static const char *arm_state_strings[] = {
262 	"ARM", "Thumb", "Jazelle", "ThumbEE",
263 };
264 
265 /* Templates for ARM core registers.
266  *
267  * NOTE:  offsets in this table are coupled to the arm_mode_data
268  * table above, the armv4_5_core_reg_map array below, and also to
269  * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
270  */
271 static const struct {
272 	/* The name is used for e.g. the "regs" command. */
273 	const char *name;
274 
275 	/* The {cookie, mode} tuple uniquely identifies one register.
276 	 * In a given mode, cookies 0..15 map to registers R0..R15,
277 	 * with R13..R15 usually called SP, LR, PC.
278 	 *
279 	 * MODE_ANY is used as *input* to the mapping, and indicates
280 	 * various special cases (sigh) and errors.
281 	 *
282 	 * Cookie 16 is (currently) confusing, since it indicates
283 	 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
284 	 * (Exception modes have both CPSR and SPSR registers ...)
285 	 */
286 	unsigned cookie;
287 	unsigned gdb_index;
288 	enum arm_mode mode;
289 } arm_core_regs[] = {
290 	/* IMPORTANT:  we guarantee that the first eight cached registers
291 	 * correspond to r0..r7, and the fifteenth to PC, so that callers
292 	 * don't need to map them.
293 	 */
294 	[0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
295 	[1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
296 	[2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
297 	[3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
298 	[4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
299 	[5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
300 	[6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
301 	[7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
302 
303 	/* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
304 	 * them as MODE_ANY creates special cases.  (ANY means
305 	 * "not mapped" elsewhere; here it's "everything but FIQ".)
306 	 */
307 	[8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
308 	[9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
309 	[10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
310 	[11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
311 	[12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
312 
313 	/* Historical GDB mapping of indices:
314 	 *  - 13-14 are sp and lr, but banked counterparts are used
315 	 *  - 16-24 are left for deprecated 8 FPA + 1 FPS
316 	 *  - 25 is the cpsr
317 	 */
318 
319 	/* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
320 	[13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
321 	[14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
322 
323 	/* guaranteed to be at index 15 */
324 	[15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
325 	[16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
326 	[17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
327 	[18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
328 	[19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
329 	[20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
330 
331 	[21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
332 	[22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
333 
334 	[23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
335 	[24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
336 
337 	[25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
338 	[26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
339 
340 	[27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
341 	[28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
342 
343 	[29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
344 	[30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
345 
346 	[31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
347 	[32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
348 	[33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
349 	[34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
350 	[35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
351 	[36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
352 
353 	/* These are only used for GDB target description, banked registers are accessed instead */
354 	[37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
355 	[38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
356 
357 	/* These exist only when the Security Extension (TrustZone) is present */
358 	[39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
359 	[40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
360 	[41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
361 
362 	/* These exist only when the Virtualization Extensions is present */
363 	[42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, },
364 	[43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, },
365 };
366 
367 static const struct {
368 	unsigned int id;
369 	const char *name;
370 	uint32_t bits;
371 	enum arm_mode mode;
372 	enum reg_type type;
373 	const char *group;
374 	const char *feature;
375 } arm_vfp_v3_regs[] = {
376 	{ ARM_VFP_V3_D0,  "d0",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 	{ ARM_VFP_V3_D1,  "d1",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 	{ ARM_VFP_V3_D2,  "d2",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 	{ ARM_VFP_V3_D3,  "d3",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 	{ ARM_VFP_V3_D4,  "d4",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 	{ ARM_VFP_V3_D5,  "d5",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 	{ ARM_VFP_V3_D6,  "d6",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 	{ ARM_VFP_V3_D7,  "d7",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 	{ ARM_VFP_V3_D8,  "d8",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 	{ ARM_VFP_V3_D9,  "d9",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 	{ ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 	{ ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 	{ ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
389 	{ ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
390 	{ ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
391 	{ ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
392 	{ ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
393 	{ ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
394 	{ ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
395 	{ ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
396 	{ ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
397 	{ ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
398 	{ ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
399 	{ ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
400 	{ ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
401 	{ ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
402 	{ ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
403 	{ ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
404 	{ ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
405 	{ ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
406 	{ ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
407 	{ ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
408 	{ ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
409 };
410 
411 /* map core mode (USR, FIQ, ...) and register number to
412  * indices into the register cache
413  */
414 const int armv4_5_core_reg_map[9][17] = {
415 	{	/* USR */
416 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
417 	},
418 	{	/* FIQ (8 shadows of USR, vs normal 3) */
419 		0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
420 	},
421 	{	/* IRQ */
422 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
423 	},
424 	{	/* SVC */
425 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
426 	},
427 	{	/* ABT */
428 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
429 	},
430 	{	/* UND */
431 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
432 	},
433 	{	/* SYS (same registers as USR) */
434 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
435 	},
436 	{	/* MON */
437 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41,
438 	},
439 	{	/* HYP */
440 		0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43,
441 	}
442 };
443 
444 /**
445  * Configures host-side ARM records to reflect the specified CPSR.
446  * Later, code can use arm_reg_current() to map register numbers
447  * according to how they are exposed by this mode.
448  */
arm_set_cpsr(struct arm * arm,uint32_t cpsr)449 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
450 {
451 	enum arm_mode mode = cpsr & 0x1f;
452 	int num;
453 
454 	/* NOTE:  this may be called very early, before the register
455 	 * cache is set up.  We can't defend against many errors, in
456 	 * particular against CPSRs that aren't valid *here* ...
457 	 */
458 	if (arm->cpsr) {
459 		buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
460 		arm->cpsr->valid = true;
461 		arm->cpsr->dirty = false;
462 	}
463 
464 	arm->core_mode = mode;
465 
466 	/* mode_to_number() warned; set up a somewhat-sane mapping */
467 	num = arm_mode_to_number(mode);
468 	if (num < 0) {
469 		mode = ARM_MODE_USR;
470 		num = 0;
471 	}
472 
473 	arm->map = &armv4_5_core_reg_map[num][0];
474 	arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
475 		? NULL
476 		: arm->core_cache->reg_list + arm->map[16];
477 
478 	/* Older ARMs won't have the J bit */
479 	enum arm_state state;
480 
481 	if (cpsr & (1 << 5)) {	/* T */
482 		if (cpsr & (1 << 24)) {	/* J */
483 			LOG_WARNING("ThumbEE -- incomplete support");
484 			state = ARM_STATE_THUMB_EE;
485 		} else
486 			state = ARM_STATE_THUMB;
487 	} else {
488 		if (cpsr & (1 << 24)) {	/* J */
489 			LOG_ERROR("Jazelle state handling is BROKEN!");
490 			state = ARM_STATE_JAZELLE;
491 		} else
492 			state = ARM_STATE_ARM;
493 	}
494 	arm->core_state = state;
495 
496 	LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
497 		arm_mode_name(mode),
498 		arm_state_strings[arm->core_state]);
499 }
500 
501 /**
502  * Returns handle to the register currently mapped to a given number.
503  * Someone must have called arm_set_cpsr() before.
504  *
505  * \param arm This core's state and registers are used.
506  * \param regnum From 0..15 corresponding to R0..R14 and PC.
507  *	Note that R0..R7 don't require mapping; you may access those
508  *	as the first eight entries in the register cache.  Likewise
509  *	R15 (PC) doesn't need mapping; you may also access it directly.
510  *	However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
511  *	CPSR (arm->cpsr) is also not mapped.
512  */
arm_reg_current(struct arm * arm,unsigned regnum)513 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
514 {
515 	struct reg *r;
516 
517 	if (regnum > 16)
518 		return NULL;
519 
520 	if (!arm->map) {
521 		LOG_ERROR("Register map is not available yet, the target is not fully initialised");
522 		r = arm->core_cache->reg_list + regnum;
523 	} else
524 		r = arm->core_cache->reg_list + arm->map[regnum];
525 
526 	/* e.g. invalid CPSR said "secure monitor" mode on a core
527 	 * that doesn't support it...
528 	 */
529 	if (!r) {
530 		LOG_ERROR("Invalid CPSR mode");
531 		r = arm->core_cache->reg_list + regnum;
532 	}
533 
534 	return r;
535 }
536 
537 static const uint8_t arm_gdb_dummy_fp_value[12];
538 
539 static struct reg_feature arm_gdb_dummy_fp_features = {
540 	.name = "net.sourceforge.openocd.fake_fpa"
541 };
542 
543 /**
544  * Dummy FPA registers are required to support GDB on ARM.
545  * Register packets require eight obsolete FPA register values.
546  * Modern ARM cores use Vector Floating Point (VFP), if they
547  * have any floating point support.  VFP is not FPA-compatible.
548  */
549 struct reg arm_gdb_dummy_fp_reg = {
550 	.name = "GDB dummy FPA register",
551 	.value = (uint8_t *) arm_gdb_dummy_fp_value,
552 	.valid = true,
553 	.size = 96,
554 	.exist = false,
555 	.number = 16,
556 	.feature = &arm_gdb_dummy_fp_features,
557 	.group = "fake_fpa",
558 };
559 
560 static const uint8_t arm_gdb_dummy_fps_value[4];
561 
562 /**
563  * Dummy FPA status registers are required to support GDB on ARM.
564  * Register packets require an obsolete FPA status register.
565  */
566 struct reg arm_gdb_dummy_fps_reg = {
567 	.name = "GDB dummy FPA status register",
568 	.value = (uint8_t *) arm_gdb_dummy_fps_value,
569 	.valid = true,
570 	.size = 32,
571 	.exist = false,
572 	.number = 24,
573 	.feature = &arm_gdb_dummy_fp_features,
574 	.group = "fake_fpa",
575 };
576 
577 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
578 
arm_gdb_dummy_init(void)579 static void arm_gdb_dummy_init(void)
580 {
581 	register_init_dummy(&arm_gdb_dummy_fp_reg);
582 	register_init_dummy(&arm_gdb_dummy_fps_reg);
583 }
584 
armv4_5_get_core_reg(struct reg * reg)585 static int armv4_5_get_core_reg(struct reg *reg)
586 {
587 	int retval;
588 	struct arm_reg *reg_arch_info = reg->arch_info;
589 	struct target *target = reg_arch_info->target;
590 
591 	if (target->state != TARGET_HALTED) {
592 		LOG_ERROR("Target not halted");
593 		return ERROR_TARGET_NOT_HALTED;
594 	}
595 
596 	retval = reg_arch_info->arm->read_core_reg(target, reg,
597 			reg_arch_info->num, reg_arch_info->mode);
598 	if (retval == ERROR_OK) {
599 		reg->valid = true;
600 		reg->dirty = false;
601 	}
602 
603 	return retval;
604 }
605 
armv4_5_set_core_reg(struct reg * reg,uint8_t * buf)606 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
607 {
608 	struct arm_reg *reg_arch_info = reg->arch_info;
609 	struct target *target = reg_arch_info->target;
610 	struct arm *armv4_5_target = target_to_arm(target);
611 	uint32_t value = buf_get_u32(buf, 0, 32);
612 
613 	if (target->state != TARGET_HALTED) {
614 		LOG_ERROR("Target not halted");
615 		return ERROR_TARGET_NOT_HALTED;
616 	}
617 
618 	/* Except for CPSR, the "reg" command exposes a writeback model
619 	 * for the register cache.
620 	 */
621 	if (reg == armv4_5_target->cpsr) {
622 		arm_set_cpsr(armv4_5_target, value);
623 
624 		/* Older cores need help to be in ARM mode during halt
625 		 * mode debug, so we clear the J and T bits if we flush.
626 		 * For newer cores (v6/v7a/v7r) we don't need that, but
627 		 * it won't hurt since CPSR is always flushed anyway.
628 		 */
629 		if (armv4_5_target->core_mode !=
630 			(enum arm_mode)(value & 0x1f)) {
631 			LOG_DEBUG("changing ARM core mode to '%s'",
632 				arm_mode_name(value & 0x1f));
633 			value &= ~((1 << 24) | (1 << 5));
634 			uint8_t t[4];
635 			buf_set_u32(t, 0, 32, value);
636 			armv4_5_target->write_core_reg(target, reg,
637 				16, ARM_MODE_ANY, t);
638 		}
639 	} else {
640 		buf_set_u32(reg->value, 0, 32, value);
641 		if (reg->size == 64) {
642 			value = buf_get_u32(buf + 4, 0, 32);
643 			buf_set_u32(reg->value + 4, 0, 32, value);
644 		}
645 		reg->valid = true;
646 	}
647 	reg->dirty = true;
648 
649 	return ERROR_OK;
650 }
651 
652 static const struct reg_arch_type arm_reg_type = {
653 	.get = armv4_5_get_core_reg,
654 	.set = armv4_5_set_core_reg,
655 };
656 
arm_build_reg_cache(struct target * target,struct arm * arm)657 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
658 {
659 	int num_regs = ARRAY_SIZE(arm_core_regs);
660 	int num_core_regs = num_regs;
661 	if (arm->arm_vfp_version == ARM_VFP_V3)
662 		num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
663 
664 	struct reg_cache *cache = malloc(sizeof(struct reg_cache));
665 	struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
666 	struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
667 	int i;
668 
669 	if (!cache || !reg_list || !reg_arch_info) {
670 		free(cache);
671 		free(reg_list);
672 		free(reg_arch_info);
673 		return NULL;
674 	}
675 
676 	cache->name = "ARM registers";
677 	cache->next = NULL;
678 	cache->reg_list = reg_list;
679 	cache->num_regs = 0;
680 
681 	for (i = 0; i < num_core_regs; i++) {
682 		/* Skip registers this core doesn't expose */
683 		if (arm_core_regs[i].mode == ARM_MODE_MON
684 			&& arm->core_type != ARM_CORE_TYPE_SEC_EXT
685 			&& arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
686 			continue;
687 		if (arm_core_regs[i].mode == ARM_MODE_HYP
688 			&& arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
689 			continue;
690 
691 		/* REVISIT handle Cortex-M, which only shadows R13/SP */
692 
693 		reg_arch_info[i].num = arm_core_regs[i].cookie;
694 		reg_arch_info[i].mode = arm_core_regs[i].mode;
695 		reg_arch_info[i].target = target;
696 		reg_arch_info[i].arm = arm;
697 
698 		reg_list[i].name = arm_core_regs[i].name;
699 		reg_list[i].number = arm_core_regs[i].gdb_index;
700 		reg_list[i].size = 32;
701 		reg_list[i].value = reg_arch_info[i].value;
702 		reg_list[i].type = &arm_reg_type;
703 		reg_list[i].arch_info = &reg_arch_info[i];
704 		reg_list[i].exist = true;
705 
706 		/* This really depends on the calling convention in use */
707 		reg_list[i].caller_save = false;
708 
709 		/* Registers data type, as used by GDB target description */
710 		reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
711 		switch (arm_core_regs[i].cookie) {
712 		case 13:
713 			reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
714 			break;
715 		case 14:
716 		case 15:
717 			reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
718 		    break;
719 		default:
720 			reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
721 		    break;
722 		}
723 
724 		/* let GDB shows banked registers only in "info all-reg" */
725 		reg_list[i].feature = malloc(sizeof(struct reg_feature));
726 		if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
727 			reg_list[i].feature->name = "org.gnu.gdb.arm.core";
728 			reg_list[i].group = "general";
729 		} else {
730 			reg_list[i].feature->name = "net.sourceforge.openocd.banked";
731 			reg_list[i].group = "banked";
732 		}
733 
734 		cache->num_regs++;
735 	}
736 
737 	int j;
738 	for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
739 		reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
740 		reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
741 		reg_arch_info[i].target = target;
742 		reg_arch_info[i].arm = arm;
743 
744 		reg_list[i].name = arm_vfp_v3_regs[j].name;
745 		reg_list[i].number = arm_vfp_v3_regs[j].id;
746 		reg_list[i].size = arm_vfp_v3_regs[j].bits;
747 		reg_list[i].value = reg_arch_info[i].value;
748 		reg_list[i].type = &arm_reg_type;
749 		reg_list[i].arch_info = &reg_arch_info[i];
750 		reg_list[i].exist = true;
751 
752 		reg_list[i].caller_save = false;
753 
754 		reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
755 		reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
756 
757 		reg_list[i].feature = malloc(sizeof(struct reg_feature));
758 		reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
759 
760 		reg_list[i].group = arm_vfp_v3_regs[j].group;
761 
762 		cache->num_regs++;
763 	}
764 
765 	arm->pc = reg_list + 15;
766 	arm->cpsr = reg_list + ARMV4_5_CPSR;
767 	arm->core_cache = cache;
768 
769 	return cache;
770 }
771 
arm_free_reg_cache(struct arm * arm)772 void arm_free_reg_cache(struct arm *arm)
773 {
774 	if (!arm || !arm->core_cache)
775 		return;
776 
777 	struct reg_cache *cache = arm->core_cache;
778 
779 	for (unsigned int i = 0; i < cache->num_regs; i++) {
780 		struct reg *reg = &cache->reg_list[i];
781 
782 		free(reg->feature);
783 		free(reg->reg_data_type);
784 	}
785 
786 	free(cache->reg_list[0].arch_info);
787 	free(cache->reg_list);
788 	free(cache);
789 
790 	arm->core_cache = NULL;
791 }
792 
arm_arch_state(struct target * target)793 int arm_arch_state(struct target *target)
794 {
795 	struct arm *arm = target_to_arm(target);
796 
797 	if (arm->common_magic != ARM_COMMON_MAGIC) {
798 		LOG_ERROR("BUG: called for a non-ARM target");
799 		return ERROR_FAIL;
800 	}
801 
802 	/* avoid filling log waiting for fileio reply */
803 	if (target->semihosting && target->semihosting->hit_fileio)
804 		return ERROR_OK;
805 
806 	LOG_USER("target halted in %s state due to %s, current mode: %s\n"
807 		"cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
808 		arm_state_strings[arm->core_state],
809 		debug_reason_name(target),
810 		arm_mode_name(arm->core_mode),
811 		buf_get_u32(arm->cpsr->value, 0, 32),
812 		buf_get_u32(arm->pc->value, 0, 32),
813 		(target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
814 		(target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
815 
816 	return ERROR_OK;
817 }
818 
COMMAND_HANDLER(handle_armv4_5_reg_command)819 COMMAND_HANDLER(handle_armv4_5_reg_command)
820 {
821 	struct target *target = get_current_target(CMD_CTX);
822 	struct arm *arm = target_to_arm(target);
823 	struct reg *regs;
824 
825 	if (!is_arm(arm)) {
826 		command_print(CMD, "current target isn't an ARM");
827 		return ERROR_FAIL;
828 	}
829 
830 	if (target->state != TARGET_HALTED) {
831 		command_print(CMD, "error: target must be halted for register accesses");
832 		return ERROR_FAIL;
833 	}
834 
835 	if (arm->core_type != ARM_CORE_TYPE_STD) {
836 		command_print(CMD,
837 			"Microcontroller Profile not supported - use standard reg cmd");
838 		return ERROR_OK;
839 	}
840 
841 	if (!is_arm_mode(arm->core_mode)) {
842 		LOG_ERROR("not a valid arm core mode - communication failure?");
843 		return ERROR_FAIL;
844 	}
845 
846 	if (!arm->full_context) {
847 		command_print(CMD, "error: target doesn't support %s",
848 			CMD_NAME);
849 		return ERROR_FAIL;
850 	}
851 
852 	regs = arm->core_cache->reg_list;
853 
854 	for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
855 		const char *name;
856 		char *sep = "\n";
857 		char *shadow = "";
858 
859 		if (!arm_mode_data[mode].n_indices)
860 			continue;
861 
862 		/* label this bank of registers (or shadows) */
863 		switch (arm_mode_data[mode].psr) {
864 			case ARM_MODE_SYS:
865 				continue;
866 			case ARM_MODE_USR:
867 				name = "System and User";
868 				sep = "";
869 				break;
870 			case ARM_MODE_HYP:
871 				if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
872 					continue;
873 			/* FALLTHROUGH */
874 			case ARM_MODE_MON:
875 			case ARM_MODE_1176_MON:
876 				if (arm->core_type != ARM_CORE_TYPE_SEC_EXT
877 					&& arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
878 					continue;
879 			/* FALLTHROUGH */
880 			default:
881 				name = arm_mode_data[mode].name;
882 				shadow = "shadow ";
883 				break;
884 		}
885 		command_print(CMD, "%s%s mode %sregisters",
886 			sep, name, shadow);
887 
888 		/* display N rows of up to 4 registers each */
889 		for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
890 			char output[80];
891 			int output_len = 0;
892 
893 			for (unsigned j = 0; j < 4; j++, i++) {
894 				uint32_t value;
895 				struct reg *reg = regs;
896 
897 				if (i >= arm_mode_data[mode].n_indices)
898 					break;
899 
900 				reg += arm_mode_data[mode].indices[i];
901 
902 				/* REVISIT be smarter about faults... */
903 				if (!reg->valid)
904 					arm->full_context(target);
905 
906 				value = buf_get_u32(reg->value, 0, 32);
907 				output_len += snprintf(output + output_len,
908 						sizeof(output) - output_len,
909 						"%8s: %8.8" PRIx32 " ",
910 						reg->name, value);
911 			}
912 			command_print(CMD, "%s", output);
913 		}
914 	}
915 
916 	return ERROR_OK;
917 }
918 
COMMAND_HANDLER(handle_armv4_5_core_state_command)919 COMMAND_HANDLER(handle_armv4_5_core_state_command)
920 {
921 	struct target *target = get_current_target(CMD_CTX);
922 	struct arm *arm = target_to_arm(target);
923 
924 	if (!is_arm(arm)) {
925 		command_print(CMD, "current target isn't an ARM");
926 		return ERROR_FAIL;
927 	}
928 
929 	if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
930 		/* armv7m not supported */
931 		command_print(CMD, "Unsupported Command");
932 		return ERROR_OK;
933 	}
934 
935 	if (CMD_ARGC > 0) {
936 		if (strcmp(CMD_ARGV[0], "arm") == 0)
937 			arm->core_state = ARM_STATE_ARM;
938 		if (strcmp(CMD_ARGV[0], "thumb") == 0)
939 			arm->core_state = ARM_STATE_THUMB;
940 	}
941 
942 	command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]);
943 
944 	return ERROR_OK;
945 }
946 
COMMAND_HANDLER(handle_arm_disassemble_command)947 COMMAND_HANDLER(handle_arm_disassemble_command)
948 {
949 #if HAVE_CAPSTONE
950 	struct target *target = get_current_target(CMD_CTX);
951 
952 	if (target == NULL) {
953 		LOG_ERROR("No target selected");
954 		return ERROR_FAIL;
955 	}
956 
957 	struct arm *arm = target_to_arm(target);
958 	target_addr_t address;
959 	unsigned int count = 1;
960 	bool thumb = false;
961 
962 	if (!is_arm(arm)) {
963 		command_print(CMD, "current target isn't an ARM");
964 		return ERROR_FAIL;
965 	}
966 
967 	if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
968 		/* armv7m is always thumb mode */
969 		thumb = true;
970 	}
971 
972 	switch (CMD_ARGC) {
973 		case 3:
974 			if (strcmp(CMD_ARGV[2], "thumb") != 0)
975 				return ERROR_COMMAND_SYNTAX_ERROR;
976 			thumb = true;
977 		/* FALL THROUGH */
978 		case 2:
979 			COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
980 		/* FALL THROUGH */
981 		case 1:
982 			COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
983 			if (address & 0x01) {
984 				if (!thumb) {
985 					command_print(CMD, "Disassemble as Thumb");
986 					thumb = true;
987 				}
988 				address &= ~1;
989 			}
990 			break;
991 		default:
992 			return ERROR_COMMAND_SYNTAX_ERROR;
993 	}
994 
995 	return arm_disassemble(CMD, target, address, count, thumb);
996 #else
997 	command_print(CMD, "capstone disassembly framework required");
998 	return ERROR_FAIL;
999 #endif
1000 }
1001 
jim_mcrmrc(Jim_Interp * interp,int argc,Jim_Obj * const * argv)1002 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
1003 {
1004 	struct command_context *context;
1005 	struct target *target;
1006 	struct arm *arm;
1007 	int retval;
1008 
1009 	context = current_command_context(interp);
1010 	assert(context != NULL);
1011 
1012 	target = get_current_target(context);
1013 	if (target == NULL) {
1014 		LOG_ERROR("%s: no current target", __func__);
1015 		return JIM_ERR;
1016 	}
1017 	if (!target_was_examined(target)) {
1018 		LOG_ERROR("%s: not yet examined", target_name(target));
1019 		return JIM_ERR;
1020 	}
1021 	arm = target_to_arm(target);
1022 	if (!is_arm(arm)) {
1023 		LOG_ERROR("%s: not an ARM", target_name(target));
1024 		return JIM_ERR;
1025 	}
1026 
1027 	if ((argc < 6) || (argc > 7)) {
1028 		/* FIXME use the command name to verify # params... */
1029 		LOG_ERROR("%s: wrong number of arguments", __func__);
1030 		return JIM_ERR;
1031 	}
1032 
1033 	int cpnum;
1034 	uint32_t op1;
1035 	uint32_t op2;
1036 	uint32_t CRn;
1037 	uint32_t CRm;
1038 	uint32_t value;
1039 	long l;
1040 
1041 	/* NOTE:  parameter sequence matches ARM instruction set usage:
1042 	 *	MCR	pNUM, op1, rX, CRn, CRm, op2	; write CP from rX
1043 	 *	MRC	pNUM, op1, rX, CRn, CRm, op2	; read CP into rX
1044 	 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1045 	 */
1046 	retval = Jim_GetLong(interp, argv[1], &l);
1047 	if (retval != JIM_OK)
1048 		return retval;
1049 	if (l & ~0xf) {
1050 		LOG_ERROR("%s: %s %d out of range", __func__,
1051 			"coprocessor", (int) l);
1052 		return JIM_ERR;
1053 	}
1054 	cpnum = l;
1055 
1056 	retval = Jim_GetLong(interp, argv[2], &l);
1057 	if (retval != JIM_OK)
1058 		return retval;
1059 	if (l & ~0x7) {
1060 		LOG_ERROR("%s: %s %d out of range", __func__,
1061 			"op1", (int) l);
1062 		return JIM_ERR;
1063 	}
1064 	op1 = l;
1065 
1066 	retval = Jim_GetLong(interp, argv[3], &l);
1067 	if (retval != JIM_OK)
1068 		return retval;
1069 	if (l & ~0xf) {
1070 		LOG_ERROR("%s: %s %d out of range", __func__,
1071 			"CRn", (int) l);
1072 		return JIM_ERR;
1073 	}
1074 	CRn = l;
1075 
1076 	retval = Jim_GetLong(interp, argv[4], &l);
1077 	if (retval != JIM_OK)
1078 		return retval;
1079 	if (l & ~0xf) {
1080 		LOG_ERROR("%s: %s %d out of range", __func__,
1081 			"CRm", (int) l);
1082 		return JIM_ERR;
1083 	}
1084 	CRm = l;
1085 
1086 	retval = Jim_GetLong(interp, argv[5], &l);
1087 	if (retval != JIM_OK)
1088 		return retval;
1089 	if (l & ~0x7) {
1090 		LOG_ERROR("%s: %s %d out of range", __func__,
1091 			"op2", (int) l);
1092 		return JIM_ERR;
1093 	}
1094 	op2 = l;
1095 
1096 	value = 0;
1097 
1098 	/* FIXME don't assume "mrc" vs "mcr" from the number of params;
1099 	 * that could easily be a typo!  Check both...
1100 	 *
1101 	 * FIXME change the call syntax here ... simplest to just pass
1102 	 * the MRC() or MCR() instruction to be executed.  That will also
1103 	 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1104 	 * if that's ever needed.
1105 	 */
1106 	if (argc == 7) {
1107 		retval = Jim_GetLong(interp, argv[6], &l);
1108 		if (retval != JIM_OK)
1109 			return retval;
1110 		value = l;
1111 
1112 		/* NOTE: parameters reordered! */
1113 		/* ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2) */
1114 		retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
1115 		if (retval != ERROR_OK)
1116 			return JIM_ERR;
1117 	} else {
1118 		/* NOTE: parameters reordered! */
1119 		/* ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2) */
1120 		retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
1121 		if (retval != ERROR_OK)
1122 			return JIM_ERR;
1123 
1124 		Jim_SetResult(interp, Jim_NewIntObj(interp, value));
1125 	}
1126 
1127 	return JIM_OK;
1128 }
1129 
1130 extern const struct command_registration semihosting_common_handlers[];
1131 
1132 static const struct command_registration arm_exec_command_handlers[] = {
1133 	{
1134 		.name = "reg",
1135 		.handler = handle_armv4_5_reg_command,
1136 		.mode = COMMAND_EXEC,
1137 		.help = "display ARM core registers",
1138 		.usage = "",
1139 	},
1140 	{
1141 		.name = "core_state",
1142 		.handler = handle_armv4_5_core_state_command,
1143 		.mode = COMMAND_EXEC,
1144 		.usage = "['arm'|'thumb']",
1145 		.help = "display/change ARM core state",
1146 	},
1147 	{
1148 		.name = "disassemble",
1149 		.handler = handle_arm_disassemble_command,
1150 		.mode = COMMAND_EXEC,
1151 		.usage = "address [count ['thumb']]",
1152 		.help = "disassemble instructions ",
1153 	},
1154 	{
1155 		.name = "mcr",
1156 		.mode = COMMAND_EXEC,
1157 		.jim_handler = &jim_mcrmrc,
1158 		.help = "write coprocessor register",
1159 		.usage = "cpnum op1 CRn CRm op2 value",
1160 	},
1161 	{
1162 		.name = "mrc",
1163 		.mode = COMMAND_EXEC,
1164 		.jim_handler = &jim_mcrmrc,
1165 		.help = "read coprocessor register",
1166 		.usage = "cpnum op1 CRn CRm op2",
1167 	},
1168 	{
1169 		.chain = semihosting_common_handlers,
1170 	},
1171 	COMMAND_REGISTRATION_DONE
1172 };
1173 const struct command_registration arm_command_handlers[] = {
1174 	{
1175 		.name = "arm",
1176 		.mode = COMMAND_ANY,
1177 		.help = "ARM command group",
1178 		.usage = "",
1179 		.chain = arm_exec_command_handlers,
1180 	},
1181 	COMMAND_REGISTRATION_DONE
1182 };
1183 
1184 /*
1185  * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1186  * of arm architecture. You can list them using the autocompletion of gdb
1187  * command prompt by typing "set architecture " and then press TAB key.
1188  * The default, selected automatically, is "arm".
1189  * Let's use the default value, here, to make gdb-multiarch behave in the
1190  * same way as a gdb for arm. This can be changed later on. User can still
1191  * set the specific architecture variant with the gdb command.
1192  */
arm_get_gdb_arch(struct target * target)1193 const char *arm_get_gdb_arch(struct target *target)
1194 {
1195 	return "arm";
1196 }
1197 
arm_get_gdb_reg_list(struct target * target,struct reg ** reg_list[],int * reg_list_size,enum target_register_class reg_class)1198 int arm_get_gdb_reg_list(struct target *target,
1199 	struct reg **reg_list[], int *reg_list_size,
1200 	enum target_register_class reg_class)
1201 {
1202 	struct arm *arm = target_to_arm(target);
1203 	unsigned int i;
1204 
1205 	if (!is_arm_mode(arm->core_mode)) {
1206 		LOG_ERROR("not a valid arm core mode - communication failure?");
1207 		return ERROR_FAIL;
1208 	}
1209 
1210 	switch (reg_class) {
1211 	case REG_CLASS_GENERAL:
1212 		*reg_list_size = 26;
1213 		*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1214 
1215 		for (i = 0; i < 16; i++)
1216 				(*reg_list)[i] = arm_reg_current(arm, i);
1217 
1218 		/* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1219 		for (i = 16; i < 24; i++)
1220 				(*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1221 		(*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1222 
1223 		(*reg_list)[25] = arm->cpsr;
1224 
1225 		return ERROR_OK;
1226 
1227 	case REG_CLASS_ALL:
1228 		switch (arm->core_type) {
1229 			case ARM_CORE_TYPE_SEC_EXT:
1230 				*reg_list_size = 51;
1231 				break;
1232 			case ARM_CORE_TYPE_VIRT_EXT:
1233 				*reg_list_size = 53;
1234 				break;
1235 			default:
1236 				*reg_list_size = 48;
1237 		}
1238 		unsigned int list_size_core = *reg_list_size;
1239 		if (arm->arm_vfp_version == ARM_VFP_V3)
1240 			*reg_list_size += 33;
1241 
1242 		*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1243 
1244 		for (i = 0; i < 16; i++)
1245 				(*reg_list)[i] = arm_reg_current(arm, i);
1246 
1247 		for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1248 				int reg_index = arm->core_cache->reg_list[i].number;
1249 
1250 				if (arm_core_regs[i].mode == ARM_MODE_MON
1251 					&& arm->core_type != ARM_CORE_TYPE_SEC_EXT
1252 					&& arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1253 					continue;
1254 				if (arm_core_regs[i].mode == ARM_MODE_HYP
1255 					&& arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1256 					continue;
1257 				(*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1258 		}
1259 
1260 		/* When we supply the target description, there is no need for fake FPA */
1261 		for (i = 16; i < 24; i++) {
1262 				(*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1263 				(*reg_list)[i]->size = 0;
1264 		}
1265 		(*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1266 		(*reg_list)[24]->size = 0;
1267 
1268 		if (arm->arm_vfp_version == ARM_VFP_V3) {
1269 			unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1270 			for (i = 0; i < 33; i++)
1271 				(*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1272 		}
1273 
1274 		return ERROR_OK;
1275 
1276 	default:
1277 		LOG_ERROR("not a valid register class type in query.");
1278 		return ERROR_FAIL;
1279 	}
1280 }
1281 
1282 /* wait for execution to complete and check exit point */
armv4_5_run_algorithm_completion(struct target * target,uint32_t exit_point,int timeout_ms,void * arch_info)1283 static int armv4_5_run_algorithm_completion(struct target *target,
1284 	uint32_t exit_point,
1285 	int timeout_ms,
1286 	void *arch_info)
1287 {
1288 	int retval;
1289 	struct arm *arm = target_to_arm(target);
1290 
1291 	retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1292 	if (retval != ERROR_OK)
1293 		return retval;
1294 	if (target->state != TARGET_HALTED) {
1295 		retval = target_halt(target);
1296 		if (retval != ERROR_OK)
1297 			return retval;
1298 		retval = target_wait_state(target, TARGET_HALTED, 500);
1299 		if (retval != ERROR_OK)
1300 			return retval;
1301 		return ERROR_TARGET_TIMEOUT;
1302 	}
1303 
1304 	/* fast exit: ARMv5+ code can use BKPT */
1305 	if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1306 		LOG_WARNING(
1307 			"target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1308 			buf_get_u32(arm->pc->value, 0, 32));
1309 		return ERROR_TARGET_TIMEOUT;
1310 	}
1311 
1312 	return ERROR_OK;
1313 }
1314 
armv4_5_run_algorithm_inner(struct target * target,int num_mem_params,struct mem_param * mem_params,int num_reg_params,struct reg_param * reg_params,uint32_t entry_point,uint32_t exit_point,int timeout_ms,void * arch_info,int (* run_it)(struct target * target,uint32_t exit_point,int timeout_ms,void * arch_info))1315 int armv4_5_run_algorithm_inner(struct target *target,
1316 	int num_mem_params, struct mem_param *mem_params,
1317 	int num_reg_params, struct reg_param *reg_params,
1318 	uint32_t entry_point, uint32_t exit_point,
1319 	int timeout_ms, void *arch_info,
1320 	int (*run_it)(struct target *target, uint32_t exit_point,
1321 	int timeout_ms, void *arch_info))
1322 {
1323 	struct arm *arm = target_to_arm(target);
1324 	struct arm_algorithm *arm_algorithm_info = arch_info;
1325 	enum arm_state core_state = arm->core_state;
1326 	uint32_t context[17];
1327 	uint32_t cpsr;
1328 	int exit_breakpoint_size = 0;
1329 	int i;
1330 	int retval = ERROR_OK;
1331 
1332 	LOG_DEBUG("Running algorithm");
1333 
1334 	if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1335 		LOG_ERROR("current target isn't an ARMV4/5 target");
1336 		return ERROR_TARGET_INVALID;
1337 	}
1338 
1339 	if (target->state != TARGET_HALTED) {
1340 		LOG_WARNING("target not halted");
1341 		return ERROR_TARGET_NOT_HALTED;
1342 	}
1343 
1344 	if (!is_arm_mode(arm->core_mode)) {
1345 		LOG_ERROR("not a valid arm core mode - communication failure?");
1346 		return ERROR_FAIL;
1347 	}
1348 
1349 	/* armv5 and later can terminate with BKPT instruction; less overhead */
1350 	if (!exit_point && arm->is_armv4) {
1351 		LOG_ERROR("ARMv4 target needs HW breakpoint location");
1352 		return ERROR_FAIL;
1353 	}
1354 
1355 	/* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1356 	 * they'll be restored later.
1357 	 */
1358 	for (i = 0; i <= 16; i++) {
1359 		struct reg *r;
1360 
1361 		r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1362 				arm_algorithm_info->core_mode, i);
1363 		if (!r->valid)
1364 			arm->read_core_reg(target, r, i,
1365 				arm_algorithm_info->core_mode);
1366 		context[i] = buf_get_u32(r->value, 0, 32);
1367 	}
1368 	cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1369 
1370 	for (i = 0; i < num_mem_params; i++) {
1371 		if (mem_params[i].direction == PARAM_IN)
1372 			continue;
1373 		retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1374 				mem_params[i].value);
1375 		if (retval != ERROR_OK)
1376 			return retval;
1377 	}
1378 
1379 	for (i = 0; i < num_reg_params; i++) {
1380 		if (reg_params[i].direction == PARAM_IN)
1381 			continue;
1382 
1383 		struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, 0);
1384 		if (!reg) {
1385 			LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1386 			return ERROR_COMMAND_SYNTAX_ERROR;
1387 		}
1388 
1389 		if (reg->size != reg_params[i].size) {
1390 			LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1391 				reg_params[i].reg_name);
1392 			return ERROR_COMMAND_SYNTAX_ERROR;
1393 		}
1394 
1395 		retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1396 		if (retval != ERROR_OK)
1397 			return retval;
1398 	}
1399 
1400 	arm->core_state = arm_algorithm_info->core_state;
1401 	if (arm->core_state == ARM_STATE_ARM)
1402 		exit_breakpoint_size = 4;
1403 	else if (arm->core_state == ARM_STATE_THUMB)
1404 		exit_breakpoint_size = 2;
1405 	else {
1406 		LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1407 		return ERROR_COMMAND_SYNTAX_ERROR;
1408 	}
1409 
1410 	if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1411 		LOG_DEBUG("setting core_mode: 0x%2.2x",
1412 			arm_algorithm_info->core_mode);
1413 		buf_set_u32(arm->cpsr->value, 0, 5,
1414 			arm_algorithm_info->core_mode);
1415 		arm->cpsr->dirty = true;
1416 		arm->cpsr->valid = true;
1417 	}
1418 
1419 	/* terminate using a hardware or (ARMv5+) software breakpoint */
1420 	if (exit_point) {
1421 		retval = breakpoint_add(target, exit_point,
1422 				exit_breakpoint_size, BKPT_HARD);
1423 		if (retval != ERROR_OK) {
1424 			LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1425 			return ERROR_TARGET_FAILURE;
1426 		}
1427 	}
1428 
1429 	retval = target_resume(target, 0, entry_point, 1, 1);
1430 	if (retval != ERROR_OK)
1431 		return retval;
1432 	retval = run_it(target, exit_point, timeout_ms, arch_info);
1433 
1434 	if (exit_point)
1435 		breakpoint_remove(target, exit_point);
1436 
1437 	if (retval != ERROR_OK)
1438 		return retval;
1439 
1440 	for (i = 0; i < num_mem_params; i++) {
1441 		if (mem_params[i].direction != PARAM_OUT) {
1442 			int retvaltemp = target_read_buffer(target, mem_params[i].address,
1443 					mem_params[i].size,
1444 					mem_params[i].value);
1445 			if (retvaltemp != ERROR_OK)
1446 				retval = retvaltemp;
1447 		}
1448 	}
1449 
1450 	for (i = 0; i < num_reg_params; i++) {
1451 		if (reg_params[i].direction != PARAM_OUT) {
1452 
1453 			struct reg *reg = register_get_by_name(arm->core_cache,
1454 					reg_params[i].reg_name,
1455 					0);
1456 			if (!reg) {
1457 				LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1458 				retval = ERROR_COMMAND_SYNTAX_ERROR;
1459 				continue;
1460 			}
1461 
1462 			if (reg->size != reg_params[i].size) {
1463 				LOG_ERROR(
1464 					"BUG: register '%s' size doesn't match reg_params[i].size",
1465 					reg_params[i].reg_name);
1466 				retval = ERROR_COMMAND_SYNTAX_ERROR;
1467 				continue;
1468 			}
1469 
1470 			buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1471 		}
1472 	}
1473 
1474 	/* restore everything we saved before (17 or 18 registers) */
1475 	for (i = 0; i <= 16; i++) {
1476 		uint32_t regvalue;
1477 		regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1478 				arm_algorithm_info->core_mode, i).value, 0, 32);
1479 		if (regvalue != context[i]) {
1480 			LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1481 				ARMV4_5_CORE_REG_MODE(arm->core_cache,
1482 				arm_algorithm_info->core_mode, i).name, context[i]);
1483 			buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1484 				arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1485 			ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1486 				i).valid = true;
1487 			ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1488 				i).dirty = true;
1489 		}
1490 	}
1491 
1492 	arm_set_cpsr(arm, cpsr);
1493 	arm->cpsr->dirty = true;
1494 
1495 	arm->core_state = core_state;
1496 
1497 	return retval;
1498 }
1499 
armv4_5_run_algorithm(struct target * target,int num_mem_params,struct mem_param * mem_params,int num_reg_params,struct reg_param * reg_params,target_addr_t entry_point,target_addr_t exit_point,int timeout_ms,void * arch_info)1500 int armv4_5_run_algorithm(struct target *target,
1501 	int num_mem_params,
1502 	struct mem_param *mem_params,
1503 	int num_reg_params,
1504 	struct reg_param *reg_params,
1505 	target_addr_t entry_point,
1506 	target_addr_t exit_point,
1507 	int timeout_ms,
1508 	void *arch_info)
1509 {
1510 	return armv4_5_run_algorithm_inner(target,
1511 			num_mem_params,
1512 			mem_params,
1513 			num_reg_params,
1514 			reg_params,
1515 			(uint32_t)entry_point,
1516 			(uint32_t)exit_point,
1517 			timeout_ms,
1518 			arch_info,
1519 			armv4_5_run_algorithm_completion);
1520 }
1521 
1522 /**
1523  * Runs ARM code in the target to calculate a CRC32 checksum.
1524  *
1525  */
arm_checksum_memory(struct target * target,target_addr_t address,uint32_t count,uint32_t * checksum)1526 int arm_checksum_memory(struct target *target,
1527 	target_addr_t address, uint32_t count, uint32_t *checksum)
1528 {
1529 	struct working_area *crc_algorithm;
1530 	struct arm_algorithm arm_algo;
1531 	struct arm *arm = target_to_arm(target);
1532 	struct reg_param reg_params[2];
1533 	int retval;
1534 	uint32_t i;
1535 	uint32_t exit_var = 0;
1536 
1537 	static const uint8_t arm_crc_code_le[] = {
1538 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1539 	};
1540 
1541 	assert(sizeof(arm_crc_code_le) % 4 == 0);
1542 
1543 	retval = target_alloc_working_area(target,
1544 			sizeof(arm_crc_code_le), &crc_algorithm);
1545 	if (retval != ERROR_OK)
1546 		return retval;
1547 
1548 	/* convert code into a buffer in target endianness */
1549 	for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1550 		retval = target_write_u32(target,
1551 				crc_algorithm->address + i * sizeof(uint32_t),
1552 				le_to_h_u32(&arm_crc_code_le[i * 4]));
1553 		if (retval != ERROR_OK)
1554 			goto cleanup;
1555 	}
1556 
1557 	arm_algo.common_magic = ARM_COMMON_MAGIC;
1558 	arm_algo.core_mode = ARM_MODE_SVC;
1559 	arm_algo.core_state = ARM_STATE_ARM;
1560 
1561 	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1562 	init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1563 
1564 	buf_set_u32(reg_params[0].value, 0, 32, address);
1565 	buf_set_u32(reg_params[1].value, 0, 32, count);
1566 
1567 	/* 20 second timeout/megabyte */
1568 	int timeout = 20000 * (1 + (count / (1024 * 1024)));
1569 
1570 	/* armv4 must exit using a hardware breakpoint */
1571 	if (arm->is_armv4)
1572 		exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1573 
1574 	retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1575 			crc_algorithm->address,
1576 			exit_var,
1577 			timeout, &arm_algo);
1578 
1579 	if (retval == ERROR_OK)
1580 		*checksum = buf_get_u32(reg_params[0].value, 0, 32);
1581 	else
1582 		LOG_ERROR("error executing ARM crc algorithm");
1583 
1584 	destroy_reg_param(&reg_params[0]);
1585 	destroy_reg_param(&reg_params[1]);
1586 
1587 cleanup:
1588 	target_free_working_area(target, crc_algorithm);
1589 
1590 	return retval;
1591 }
1592 
1593 /**
1594  * Runs ARM code in the target to check whether a memory block holds
1595  * all ones.  NOR flash which has been erased, and thus may be written,
1596  * holds all ones.
1597  *
1598  */
arm_blank_check_memory(struct target * target,struct target_memory_check_block * blocks,int num_blocks,uint8_t erased_value)1599 int arm_blank_check_memory(struct target *target,
1600 	struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1601 {
1602 	struct working_area *check_algorithm;
1603 	struct reg_param reg_params[3];
1604 	struct arm_algorithm arm_algo;
1605 	struct arm *arm = target_to_arm(target);
1606 	int retval;
1607 	uint32_t i;
1608 	uint32_t exit_var = 0;
1609 
1610 	static const uint8_t check_code_le[] = {
1611 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1612 	};
1613 
1614 	assert(sizeof(check_code_le) % 4 == 0);
1615 
1616 	if (erased_value != 0xff) {
1617 		LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1618 			erased_value);
1619 		return ERROR_FAIL;
1620 	}
1621 
1622 	/* make sure we have a working area */
1623 	retval = target_alloc_working_area(target,
1624 			sizeof(check_code_le), &check_algorithm);
1625 	if (retval != ERROR_OK)
1626 		return retval;
1627 
1628 	/* convert code into a buffer in target endianness */
1629 	for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1630 		retval = target_write_u32(target,
1631 				check_algorithm->address
1632 				+ i * sizeof(uint32_t),
1633 				le_to_h_u32(&check_code_le[i * 4]));
1634 		if (retval != ERROR_OK)
1635 			goto cleanup;
1636 	}
1637 
1638 	arm_algo.common_magic = ARM_COMMON_MAGIC;
1639 	arm_algo.core_mode = ARM_MODE_SVC;
1640 	arm_algo.core_state = ARM_STATE_ARM;
1641 
1642 	init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1643 	buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1644 
1645 	init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1646 	buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1647 
1648 	init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1649 	buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1650 
1651 	/* armv4 must exit using a hardware breakpoint */
1652 	if (arm->is_armv4)
1653 		exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1654 
1655 	retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1656 			check_algorithm->address,
1657 			exit_var,
1658 			10000, &arm_algo);
1659 
1660 	if (retval == ERROR_OK)
1661 		blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1662 
1663 	destroy_reg_param(&reg_params[0]);
1664 	destroy_reg_param(&reg_params[1]);
1665 	destroy_reg_param(&reg_params[2]);
1666 
1667 cleanup:
1668 	target_free_working_area(target, check_algorithm);
1669 
1670 	if (retval != ERROR_OK)
1671 		return retval;
1672 
1673 	return 1;       /* only one block has been checked */
1674 }
1675 
arm_full_context(struct target * target)1676 static int arm_full_context(struct target *target)
1677 {
1678 	struct arm *arm = target_to_arm(target);
1679 	unsigned num_regs = arm->core_cache->num_regs;
1680 	struct reg *reg = arm->core_cache->reg_list;
1681 	int retval = ERROR_OK;
1682 
1683 	for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1684 		if (reg->valid)
1685 			continue;
1686 		retval = armv4_5_get_core_reg(reg);
1687 	}
1688 	return retval;
1689 }
1690 
arm_default_mrc(struct target * target,int cpnum,uint32_t op1,uint32_t op2,uint32_t CRn,uint32_t CRm,uint32_t * value)1691 static int arm_default_mrc(struct target *target, int cpnum,
1692 	uint32_t op1, uint32_t op2,
1693 	uint32_t CRn, uint32_t CRm,
1694 	uint32_t *value)
1695 {
1696 	LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1697 	return ERROR_FAIL;
1698 }
1699 
arm_default_mcr(struct target * target,int cpnum,uint32_t op1,uint32_t op2,uint32_t CRn,uint32_t CRm,uint32_t value)1700 static int arm_default_mcr(struct target *target, int cpnum,
1701 	uint32_t op1, uint32_t op2,
1702 	uint32_t CRn, uint32_t CRm,
1703 	uint32_t value)
1704 {
1705 	LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1706 	return ERROR_FAIL;
1707 }
1708 
arm_init_arch_info(struct target * target,struct arm * arm)1709 int arm_init_arch_info(struct target *target, struct arm *arm)
1710 {
1711 	target->arch_info = arm;
1712 	arm->target = target;
1713 
1714 	arm->common_magic = ARM_COMMON_MAGIC;
1715 
1716 	/* core_type may be overridden by subtype logic */
1717 	if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) {
1718 		arm->core_type = ARM_CORE_TYPE_STD;
1719 		arm_set_cpsr(arm, ARM_MODE_USR);
1720 	}
1721 
1722 	/* default full_context() has no core-specific optimizations */
1723 	if (!arm->full_context && arm->read_core_reg)
1724 		arm->full_context = arm_full_context;
1725 
1726 	if (!arm->mrc)
1727 		arm->mrc = arm_default_mrc;
1728 	if (!arm->mcr)
1729 		arm->mcr = arm_default_mcr;
1730 
1731 	return ERROR_OK;
1732 }
1733