1 /*	$NetBSD: ath.c,v 1.122 2016/06/10 13:27:13 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.122 2016/06/10 13:27:13 ozaki-r Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #ifdef _KERNEL_OPT
55 #include "opt_inet.h"
56 #endif
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/errno.h>
69 #include <sys/callout.h>
70 #include <sys/bus.h>
71 #include <sys/endian.h>
72 
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_types.h>
77 #include <net/if_arp.h>
78 #include <net/if_ether.h>
79 #include <net/if_llc.h>
80 
81 #include <net80211/ieee80211_netbsd.h>
82 #include <net80211/ieee80211_var.h>
83 
84 #include <net/bpf.h>
85 
86 #ifdef INET
87 #include <netinet/in.h>
88 #endif
89 
90 #include <sys/device.h>
91 #include <dev/ic/ath_netbsd.h>
92 
93 #define	AR_DEBUG
94 #include <dev/ic/athvar.h>
95 #include "ah_desc.h"
96 #include "ah_devid.h"	/* XXX for softled */
97 #include "opt_ah.h"
98 
99 #ifdef ATH_TX99_DIAG
100 #include <dev/ath/ath_tx99/ath_tx99.h>
101 #endif
102 
103 /* unaligned little endian access */
104 #define LE_READ_2(p)							\
105 	((u_int16_t)							\
106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
107 #define LE_READ_4(p)							\
108 	((u_int32_t)							\
109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
111 
112 enum {
113 	ATH_LED_TX,
114 	ATH_LED_RX,
115 	ATH_LED_POLL,
116 };
117 
118 #ifdef	AH_NEED_DESC_SWAP
119 #define	HTOAH32(x)	htole32(x)
120 #else
121 #define	HTOAH32(x)	(x)
122 #endif
123 
124 static int	ath_ifinit(struct ifnet *);
125 static int	ath_init(struct ath_softc *);
126 static void	ath_stop_locked(struct ifnet *, int);
127 static void	ath_stop(struct ifnet *, int);
128 static void	ath_start(struct ifnet *);
129 static int	ath_media_change(struct ifnet *);
130 static void	ath_watchdog(struct ifnet *);
131 static int	ath_ioctl(struct ifnet *, u_long, void *);
132 static void	ath_fatal_proc(void *, int);
133 static void	ath_rxorn_proc(void *, int);
134 static void	ath_bmiss_proc(void *, int);
135 static void	ath_radar_proc(void *, int);
136 static int	ath_key_alloc(struct ieee80211com *,
137 			const struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211com *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211com *);
144 static void	ath_key_update_end(struct ieee80211com *);
145 static void	ath_mode_init(struct ath_softc *);
146 static void	ath_setslottime(struct ath_softc *);
147 static void	ath_updateslot(struct ifnet *);
148 static int	ath_beaconq_setup(struct ath_hal *);
149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
151 static void	ath_beacon_proc(void *, int);
152 static void	ath_bstuck_proc(void *, int);
153 static void	ath_beacon_free(struct ath_softc *);
154 static void	ath_beacon_config(struct ath_softc *);
155 static void	ath_descdma_cleanup(struct ath_softc *sc,
156 			struct ath_descdma *, ath_bufhead *);
157 static int	ath_desc_alloc(struct ath_softc *);
158 static void	ath_desc_free(struct ath_softc *);
159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
160 static void	ath_node_free(struct ieee80211_node *);
161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
164 			struct ieee80211_node *ni,
165 			int subtype, int rssi, u_int32_t rstamp);
166 static void	ath_setdefantenna(struct ath_softc *, u_int);
167 static void	ath_rx_proc(void *, int);
168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
169 static int	ath_tx_setup(struct ath_softc *, int, int);
170 static int	ath_wme_update(struct ieee80211com *);
171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
172 static void	ath_tx_cleanup(struct ath_softc *);
173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
174 			     struct ath_buf *, struct mbuf *);
175 static void	ath_tx_proc_q0(void *, int);
176 static void	ath_tx_proc_q0123(void *, int);
177 static void	ath_tx_proc(void *, int);
178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void	ath_draintxq(struct ath_softc *);
180 static void	ath_stoprecv(struct ath_softc *);
181 static int	ath_startrecv(struct ath_softc *);
182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
183 static void	ath_next_scan(void *);
184 static void	ath_calibrate(void *);
185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
186 static void	ath_setup_stationkey(struct ieee80211_node *);
187 static void	ath_newassoc(struct ieee80211_node *, int);
188 static int	ath_getchannels(struct ath_softc *, u_int cc,
189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
190 static void	ath_led_event(struct ath_softc *, int);
191 static void	ath_update_txpow(struct ath_softc *);
192 static void	ath_freetx(struct mbuf *);
193 static void	ath_restore_diversity(struct ath_softc *);
194 
195 static int	ath_rate_setup(struct ath_softc *, u_int mode);
196 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
197 
198 static void	ath_bpfattach(struct ath_softc *);
199 static void	ath_announce(struct ath_softc *);
200 
201 int ath_dwelltime = 200;		/* 5 channels/second */
202 int ath_calinterval = 30;		/* calibrate every 30 secs */
203 int ath_outdoor = AH_TRUE;		/* outdoor operation */
204 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
205 int ath_countrycode = CTRY_DEFAULT;	/* country code */
206 int ath_regdomain = 0;			/* regulatory domain */
207 int ath_debug = 0;
208 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
209 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
210 
211 #ifdef AR_DEBUG
212 enum {
213 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
214 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
215 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
216 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
217 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
218 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
219 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
220 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
221 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
222 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
223 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
224 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
225 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
226 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
227 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
228 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
229 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
230 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
231 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
232 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
233 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
234 	ATH_DEBUG_ANY		= 0xffffffff
235 };
236 #define	IFF_DUMPPKTS(sc, m) \
237 	((sc->sc_debug & (m)) || \
238 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
239 #define	DPRINTF(sc, m, fmt, ...) do {				\
240 	if (sc->sc_debug & (m))					\
241 		printf(fmt, __VA_ARGS__);			\
242 } while (0)
243 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
244 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
245 		ath_keyprint(__func__, ix, hk, mac);		\
246 } while (0)
247 static	void ath_printrxbuf(struct ath_buf *bf, int);
248 static	void ath_printtxbuf(struct ath_buf *bf, int);
249 #else
250 #define        IFF_DUMPPKTS(sc, m) \
251 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define        DPRINTF(m, fmt, ...)
253 #define        KEYPRINTF(sc, k, ix, mac)
254 #endif
255 
256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
257 
258 int
ath_attach(u_int16_t devid,struct ath_softc * sc)259 ath_attach(u_int16_t devid, struct ath_softc *sc)
260 {
261 	struct ifnet *ifp = &sc->sc_if;
262 	struct ieee80211com *ic = &sc->sc_ic;
263 	struct ath_hal *ah = NULL;
264 	HAL_STATUS status;
265 	int error = 0, i;
266 
267 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
268 
269 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
270 
271 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
272 
273 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
274 	if (ah == NULL) {
275 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
276 			status);
277 		error = ENXIO;
278 		goto bad;
279 	}
280 	if (ah->ah_abi != HAL_ABI_VERSION) {
281 		if_printf(ifp, "HAL ABI mismatch detected "
282 			"(HAL:0x%x != driver:0x%x)\n",
283 			ah->ah_abi, HAL_ABI_VERSION);
284 		error = ENXIO;
285 		goto bad;
286 	}
287 	sc->sc_ah = ah;
288 
289 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
290 	    "pmf-powerdown", false))
291 		goto bad;
292 
293 	/*
294 	 * Check if the MAC has multi-rate retry support.
295 	 * We do this by trying to setup a fake extended
296 	 * descriptor.  MAC's that don't have support will
297 	 * return false w/o doing anything.  MAC's that do
298 	 * support it will return true w/o doing anything.
299 	 */
300 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
301 
302 	/*
303 	 * Check if the device has hardware counters for PHY
304 	 * errors.  If so we need to enable the MIB interrupt
305 	 * so we can act on stat triggers.
306 	 */
307 	if (ath_hal_hwphycounters(ah))
308 		sc->sc_needmib = 1;
309 
310 	/*
311 	 * Get the hardware key cache size.
312 	 */
313 	sc->sc_keymax = ath_hal_keycachesize(ah);
314 	if (sc->sc_keymax > ATH_KEYMAX) {
315 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
316 			ATH_KEYMAX, sc->sc_keymax);
317 		sc->sc_keymax = ATH_KEYMAX;
318 	}
319 	/*
320 	 * Reset the key cache since some parts do not
321 	 * reset the contents on initial power up.
322 	 */
323 	for (i = 0; i < sc->sc_keymax; i++)
324 		ath_hal_keyreset(ah, i);
325 	/*
326 	 * Mark key cache slots associated with global keys
327 	 * as in use.  If we knew TKIP was not to be used we
328 	 * could leave the +32, +64, and +32+64 slots free.
329 	 * XXX only for splitmic.
330 	 */
331 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
332 		setbit(sc->sc_keymap, i);
333 		setbit(sc->sc_keymap, i+32);
334 		setbit(sc->sc_keymap, i+64);
335 		setbit(sc->sc_keymap, i+32+64);
336 	}
337 
338 	/*
339 	 * Collect the channel list using the default country
340 	 * code and including outdoor channels.  The 802.11 layer
341 	 * is resposible for filtering this list based on settings
342 	 * like the phy mode.
343 	 */
344 	error = ath_getchannels(sc, ath_countrycode,
345 			ath_outdoor, ath_xchanmode);
346 	if (error != 0)
347 		goto bad;
348 
349 	/*
350 	 * Setup rate tables for all potential media types.
351 	 */
352 	ath_rate_setup(sc, IEEE80211_MODE_11A);
353 	ath_rate_setup(sc, IEEE80211_MODE_11B);
354 	ath_rate_setup(sc, IEEE80211_MODE_11G);
355 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
356 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
357 	/* NB: setup here so ath_rate_update is happy */
358 	ath_setcurmode(sc, IEEE80211_MODE_11A);
359 
360 	/*
361 	 * Allocate tx+rx descriptors and populate the lists.
362 	 */
363 	error = ath_desc_alloc(sc);
364 	if (error != 0) {
365 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
366 		goto bad;
367 	}
368 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
369 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
370 #if 0
371 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
372 #endif
373 
374 	ATH_TXBUF_LOCK_INIT(sc);
375 
376 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
377 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
378 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
379 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
380 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
381 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
382 
383 	/*
384 	 * Allocate hardware transmit queues: one queue for
385 	 * beacon frames and one data queue for each QoS
386 	 * priority.  Note that the hal handles reseting
387 	 * these queues at the needed time.
388 	 *
389 	 * XXX PS-Poll
390 	 */
391 	sc->sc_bhalq = ath_beaconq_setup(ah);
392 	if (sc->sc_bhalq == (u_int) -1) {
393 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
394 		error = EIO;
395 		goto bad2;
396 	}
397 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
398 	if (sc->sc_cabq == NULL) {
399 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
400 		error = EIO;
401 		goto bad2;
402 	}
403 	/* NB: insure BK queue is the lowest priority h/w queue */
404 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
405 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
406 			ieee80211_wme_acnames[WME_AC_BK]);
407 		error = EIO;
408 		goto bad2;
409 	}
410 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
411 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
412 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
413 		/*
414 		 * Not enough hardware tx queues to properly do WME;
415 		 * just punt and assign them all to the same h/w queue.
416 		 * We could do a better job of this if, for example,
417 		 * we allocate queues when we switch from station to
418 		 * AP mode.
419 		 */
420 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
421 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
422 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
423 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
424 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
425 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
426 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
427 	}
428 
429 	/*
430 	 * Special case certain configurations.  Note the
431 	 * CAB queue is handled by these specially so don't
432 	 * include them when checking the txq setup mask.
433 	 */
434 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
435 	case 0x01:
436 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
437 		break;
438 	case 0x0f:
439 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
440 		break;
441 	default:
442 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
443 		break;
444 	}
445 
446 	/*
447 	 * Setup rate control.  Some rate control modules
448 	 * call back to change the anntena state so expose
449 	 * the necessary entry points.
450 	 * XXX maybe belongs in struct ath_ratectrl?
451 	 */
452 	sc->sc_setdefantenna = ath_setdefantenna;
453 	sc->sc_rc = ath_rate_attach(sc);
454 	if (sc->sc_rc == NULL) {
455 		error = EIO;
456 		goto bad2;
457 	}
458 
459 	sc->sc_blinking = 0;
460 	sc->sc_ledstate = 1;
461 	sc->sc_ledon = 0;			/* low true */
462 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
463 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
464 	/*
465 	 * Auto-enable soft led processing for IBM cards and for
466 	 * 5211 minipci cards.  Users can also manually enable/disable
467 	 * support with a sysctl.
468 	 */
469 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
470 	if (sc->sc_softled) {
471 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
472 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
473 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
474 	}
475 
476 	ifp->if_softc = sc;
477 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
478 	ifp->if_start = ath_start;
479 	ifp->if_stop = ath_stop;
480 	ifp->if_watchdog = ath_watchdog;
481 	ifp->if_ioctl = ath_ioctl;
482 	ifp->if_init = ath_ifinit;
483 	IFQ_SET_READY(&ifp->if_snd);
484 
485 	ic->ic_ifp = ifp;
486 	ic->ic_reset = ath_reset;
487 	ic->ic_newassoc = ath_newassoc;
488 	ic->ic_updateslot = ath_updateslot;
489 	ic->ic_wme.wme_update = ath_wme_update;
490 	/* XXX not right but it's not used anywhere important */
491 	ic->ic_phytype = IEEE80211_T_OFDM;
492 	ic->ic_opmode = IEEE80211_M_STA;
493 	ic->ic_caps =
494 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
495 		| IEEE80211_C_HOSTAP		/* hostap mode */
496 		| IEEE80211_C_MONITOR		/* monitor mode */
497 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
498 		| IEEE80211_C_SHSLOT		/* short slot time supported */
499 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
500 		| IEEE80211_C_TXFRAG		/* handle tx frags */
501 		;
502 	/*
503 	 * Query the hal to figure out h/w crypto support.
504 	 */
505 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
506 		ic->ic_caps |= IEEE80211_C_WEP;
507 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
508 		ic->ic_caps |= IEEE80211_C_AES;
509 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
510 		ic->ic_caps |= IEEE80211_C_AES_CCM;
511 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
512 		ic->ic_caps |= IEEE80211_C_CKIP;
513 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
514 		ic->ic_caps |= IEEE80211_C_TKIP;
515 		/*
516 		 * Check if h/w does the MIC and/or whether the
517 		 * separate key cache entries are required to
518 		 * handle both tx+rx MIC keys.
519 		 */
520 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
521 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
522 
523 		/*
524 		 * If the h/w supports storing tx+rx MIC keys
525 		 * in one cache slot automatically enable use.
526 		 */
527 		if (ath_hal_hastkipsplit(ah) ||
528 		    !ath_hal_settkipsplit(ah, AH_FALSE))
529 			sc->sc_splitmic = 1;
530 
531 		/*
532 		 * If the h/w can do TKIP MIC together with WME then
533 		 * we use it; otherwise we force the MIC to be done
534 		 * in software by the net80211 layer.
535 		 */
536 		if (ath_hal_haswmetkipmic(ah))
537 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
538 	}
539 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
540 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
541 	/*
542 	 * Mark key cache slots associated with global keys
543 	 * as in use.  If we knew TKIP was not to be used we
544 	 * could leave the +32, +64, and +32+64 slots free.
545 	 */
546 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
547 		setbit(sc->sc_keymap, i);
548 		setbit(sc->sc_keymap, i+64);
549 		if (sc->sc_splitmic) {
550 			setbit(sc->sc_keymap, i+32);
551 			setbit(sc->sc_keymap, i+32+64);
552 		}
553 	}
554 	/*
555 	 * TPC support can be done either with a global cap or
556 	 * per-packet support.  The latter is not available on
557 	 * all parts.  We're a bit pedantic here as all parts
558 	 * support a global cap.
559 	 */
560 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
561 		ic->ic_caps |= IEEE80211_C_TXPMGT;
562 
563 	/*
564 	 * Mark WME capability only if we have sufficient
565 	 * hardware queues to do proper priority scheduling.
566 	 */
567 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
568 		ic->ic_caps |= IEEE80211_C_WME;
569 	/*
570 	 * Check for misc other capabilities.
571 	 */
572 	if (ath_hal_hasbursting(ah))
573 		ic->ic_caps |= IEEE80211_C_BURST;
574 
575 	/*
576 	 * Indicate we need the 802.11 header padded to a
577 	 * 32-bit boundary for 4-address and QoS frames.
578 	 */
579 	ic->ic_flags |= IEEE80211_F_DATAPAD;
580 
581 	/*
582 	 * Query the hal about antenna support.
583 	 */
584 	sc->sc_defant = ath_hal_getdefantenna(ah);
585 
586 	/*
587 	 * Not all chips have the VEOL support we want to
588 	 * use with IBSS beacons; check here for it.
589 	 */
590 	sc->sc_hasveol = ath_hal_hasveol(ah);
591 
592 	/* get mac address from hardware */
593 	ath_hal_getmac(ah, ic->ic_myaddr);
594 
595 	if_attach(ifp);
596 	/* call MI attach routine. */
597 	ieee80211_ifattach(ic);
598 	/* override default methods */
599 	ic->ic_node_alloc = ath_node_alloc;
600 	sc->sc_node_free = ic->ic_node_free;
601 	ic->ic_node_free = ath_node_free;
602 	ic->ic_node_getrssi = ath_node_getrssi;
603 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
604 	ic->ic_recv_mgmt = ath_recv_mgmt;
605 	sc->sc_newstate = ic->ic_newstate;
606 	ic->ic_newstate = ath_newstate;
607 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
608 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
609 	ic->ic_crypto.cs_key_delete = ath_key_delete;
610 	ic->ic_crypto.cs_key_set = ath_key_set;
611 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
612 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
613 	/* complete initialization */
614 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
615 
616 	ath_bpfattach(sc);
617 
618 	sc->sc_flags |= ATH_ATTACHED;
619 
620 	/*
621 	 * Setup dynamic sysctl's now that country code and
622 	 * regdomain are available from the hal.
623 	 */
624 	ath_sysctlattach(sc);
625 
626 	ieee80211_announce(ic);
627 	ath_announce(sc);
628 	return 0;
629 bad2:
630 	ath_tx_cleanup(sc);
631 	ath_desc_free(sc);
632 bad:
633 	if (ah)
634 		ath_hal_detach(ah);
635 	/* XXX don't get under the abstraction like this */
636 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
637 	return error;
638 }
639 
640 int
ath_detach(struct ath_softc * sc)641 ath_detach(struct ath_softc *sc)
642 {
643 	struct ifnet *ifp = &sc->sc_if;
644 	int s;
645 
646 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
647 		return (0);
648 
649 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
650 		__func__, ifp->if_flags);
651 
652 	s = splnet();
653 	ath_stop(ifp, 1);
654 	bpf_detach(ifp);
655 	/*
656 	 * NB: the order of these is important:
657 	 * o call the 802.11 layer before detaching the hal to
658 	 *   insure callbacks into the driver to delete global
659 	 *   key cache entries can be handled
660 	 * o reclaim the tx queue data structures after calling
661 	 *   the 802.11 layer as we'll get called back to reclaim
662 	 *   node state and potentially want to use them
663 	 * o to cleanup the tx queues the hal is called, so detach
664 	 *   it last
665 	 * Other than that, it's straightforward...
666 	 */
667 	ieee80211_ifdetach(&sc->sc_ic);
668 #ifdef ATH_TX99_DIAG
669 	if (sc->sc_tx99 != NULL)
670 		sc->sc_tx99->detach(sc->sc_tx99);
671 #endif
672 	ath_rate_detach(sc->sc_rc);
673 	ath_desc_free(sc);
674 	ath_tx_cleanup(sc);
675 	sysctl_teardown(&sc->sc_sysctllog);
676 	ath_hal_detach(sc->sc_ah);
677 	if_detach(ifp);
678 	splx(s);
679 
680 	return 0;
681 }
682 
683 void
ath_suspend(struct ath_softc * sc)684 ath_suspend(struct ath_softc *sc)
685 {
686 #if notyet
687 	/*
688 	 * Set the chip in full sleep mode.  Note that we are
689 	 * careful to do this only when bringing the interface
690 	 * completely to a stop.  When the chip is in this state
691 	 * it must be carefully woken up or references to
692 	 * registers in the PCI clock domain may freeze the bus
693 	 * (and system).  This varies by chip and is mostly an
694 	 * issue with newer parts that go to sleep more quickly.
695 	 */
696 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
697 #endif
698 }
699 
700 bool
ath_resume(struct ath_softc * sc)701 ath_resume(struct ath_softc *sc)
702 {
703 	struct ath_hal *ah = sc->sc_ah;
704 	struct ieee80211com *ic = &sc->sc_ic;
705 	HAL_STATUS status;
706 	int i;
707 
708 #if notyet
709 	ath_hal_setpower(ah, HAL_PM_AWAKE);
710 #else
711 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
712 #endif
713 
714 	/*
715 	 * Reset the key cache since some parts do not
716 	 * reset the contents on initial power up.
717 	 */
718 	for (i = 0; i < sc->sc_keymax; i++)
719 		ath_hal_keyreset(ah, i);
720 
721 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
722 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
723 		if (ATH_TXQ_SETUP(sc, i))
724 			ath_hal_resettxqueue(ah, i);
725 
726 	if (sc->sc_softled) {
727 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
728 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
729 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
730 	}
731 	return true;
732 }
733 
734 /*
735  * Interrupt handler.  Most of the actual processing is deferred.
736  */
737 int
ath_intr(void * arg)738 ath_intr(void *arg)
739 {
740 	struct ath_softc *sc = arg;
741 	struct ifnet *ifp = &sc->sc_if;
742 	struct ath_hal *ah = sc->sc_ah;
743 	HAL_INT status = 0;
744 
745 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
746 		/*
747 		 * The hardware is not ready/present, don't touch anything.
748 		 * Note this can happen early on if the IRQ is shared.
749 		 */
750 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
751 		return 0;
752 	}
753 
754 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
755 		return 0;
756 
757 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
758 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
759 			__func__, ifp->if_flags);
760 		ath_hal_getisr(ah, &status);	/* clear ISR */
761 		ath_hal_intrset(ah, 0);		/* disable further intr's */
762 		return 1; /* XXX */
763 	}
764 	/*
765 	 * Figure out the reason(s) for the interrupt.  Note
766 	 * that the hal returns a pseudo-ISR that may include
767 	 * bits we haven't explicitly enabled so we mask the
768 	 * value to insure we only process bits we requested.
769 	 */
770 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
771 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
772 	status &= sc->sc_imask;			/* discard unasked for bits */
773 	if (status & HAL_INT_FATAL) {
774 		/*
775 		 * Fatal errors are unrecoverable.  Typically
776 		 * these are caused by DMA errors.  Unfortunately
777 		 * the exact reason is not (presently) returned
778 		 * by the hal.
779 		 */
780 		sc->sc_stats.ast_hardware++;
781 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
782 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
783 	} else if (status & HAL_INT_RXORN) {
784 		sc->sc_stats.ast_rxorn++;
785 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
786 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
787 	} else {
788 		if (status & HAL_INT_SWBA) {
789 			/*
790 			 * Software beacon alert--time to send a beacon.
791 			 * Handle beacon transmission directly; deferring
792 			 * this is too slow to meet timing constraints
793 			 * under load.
794 			 */
795 			ath_beacon_proc(sc, 0);
796 		}
797 		if (status & HAL_INT_RXEOL) {
798 			/*
799 			 * NB: the hardware should re-read the link when
800 			 *     RXE bit is written, but it doesn't work at
801 			 *     least on older hardware revs.
802 			 */
803 			sc->sc_stats.ast_rxeol++;
804 			sc->sc_rxlink = NULL;
805 		}
806 		if (status & HAL_INT_TXURN) {
807 			sc->sc_stats.ast_txurn++;
808 			/* bump tx trigger level */
809 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
810 		}
811 		if (status & HAL_INT_RX)
812 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
813 		if (status & HAL_INT_TX)
814 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
815 		if (status & HAL_INT_BMISS) {
816 			sc->sc_stats.ast_bmiss++;
817 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
818 		}
819 		if (status & HAL_INT_MIB) {
820 			sc->sc_stats.ast_mib++;
821 			/*
822 			 * Disable interrupts until we service the MIB
823 			 * interrupt; otherwise it will continue to fire.
824 			 */
825 			ath_hal_intrset(ah, 0);
826 			/*
827 			 * Let the hal handle the event.  We assume it will
828 			 * clear whatever condition caused the interrupt.
829 			 */
830 			ath_hal_mibevent(ah, &sc->sc_halstats);
831 			ath_hal_intrset(ah, sc->sc_imask);
832 		}
833 	}
834 	return 1;
835 }
836 
837 /* Swap transmit descriptor.
838  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
839  * function.
840  */
841 static inline void
ath_desc_swap(struct ath_desc * ds)842 ath_desc_swap(struct ath_desc *ds)
843 {
844 #ifdef AH_NEED_DESC_SWAP
845 	ds->ds_link = htole32(ds->ds_link);
846 	ds->ds_data = htole32(ds->ds_data);
847 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
848 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
849 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
850 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
851 #endif
852 }
853 
854 static void
ath_fatal_proc(void * arg,int pending)855 ath_fatal_proc(void *arg, int pending)
856 {
857 	struct ath_softc *sc = arg;
858 	struct ifnet *ifp = &sc->sc_if;
859 
860 	if_printf(ifp, "hardware error; resetting\n");
861 	ath_reset(ifp);
862 }
863 
864 static void
ath_rxorn_proc(void * arg,int pending)865 ath_rxorn_proc(void *arg, int pending)
866 {
867 	struct ath_softc *sc = arg;
868 	struct ifnet *ifp = &sc->sc_if;
869 
870 	if_printf(ifp, "rx FIFO overrun; resetting\n");
871 	ath_reset(ifp);
872 }
873 
874 static void
ath_bmiss_proc(void * arg,int pending)875 ath_bmiss_proc(void *arg, int pending)
876 {
877 	struct ath_softc *sc = arg;
878 	struct ieee80211com *ic = &sc->sc_ic;
879 
880 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
881 	KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
882 		"unexpect operating mode %u", ic->ic_opmode);
883 	if (ic->ic_state == IEEE80211_S_RUN) {
884 		u_int64_t lastrx = sc->sc_lastrx;
885 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
886 
887 		DPRINTF(sc, ATH_DEBUG_BEACON,
888 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
889 		    " (%" PRIu64 ") bmiss %u\n",
890 		    __func__, tsf, tsf - lastrx, lastrx,
891 		    ic->ic_bmisstimeout*1024);
892 		/*
893 		 * Workaround phantom bmiss interrupts by sanity-checking
894 		 * the time of our last rx'd frame.  If it is within the
895 		 * beacon miss interval then ignore the interrupt.  If it's
896 		 * truly a bmiss we'll get another interrupt soon and that'll
897 		 * be dispatched up for processing.
898 		 */
899 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
900 			NET_LOCK_GIANT();
901 			ieee80211_beacon_miss(ic);
902 			NET_UNLOCK_GIANT();
903 		} else
904 			sc->sc_stats.ast_bmiss_phantom++;
905 	}
906 }
907 
908 static void
ath_radar_proc(void * arg,int pending)909 ath_radar_proc(void *arg, int pending)
910 {
911 #if 0
912 	struct ath_softc *sc = arg;
913 	struct ifnet *ifp = &sc->sc_if;
914 	struct ath_hal *ah = sc->sc_ah;
915 	HAL_CHANNEL hchan;
916 
917 	if (ath_hal_procdfs(ah, &hchan)) {
918 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
919 			hchan.channel, hchan.channelFlags, hchan.privFlags);
920 		/*
921 		 * Initiate channel change.
922 		 */
923 		/* XXX not yet */
924 	}
925 #endif
926 }
927 
928 static u_int
ath_chan2flags(struct ieee80211com * ic,struct ieee80211_channel * chan)929 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
930 {
931 #define	N(a)	(sizeof(a) / sizeof(a[0]))
932 	static const u_int modeflags[] = {
933 		0,			/* IEEE80211_MODE_AUTO */
934 		CHANNEL_A,		/* IEEE80211_MODE_11A */
935 		CHANNEL_B,		/* IEEE80211_MODE_11B */
936 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
937 		0,			/* IEEE80211_MODE_FH */
938 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
939 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
940 	};
941 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
942 
943 	KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
944 	KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
945 	return modeflags[mode];
946 #undef N
947 }
948 
949 static int
ath_ifinit(struct ifnet * ifp)950 ath_ifinit(struct ifnet *ifp)
951 {
952 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
953 
954 	return ath_init(sc);
955 }
956 
957 static void
ath_settkipmic(struct ath_softc * sc)958 ath_settkipmic(struct ath_softc *sc)
959 {
960 	struct ieee80211com *ic = &sc->sc_ic;
961 	struct ath_hal *ah = sc->sc_ah;
962 
963 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
964 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
965 		if (ic->ic_flags & IEEE80211_F_WME) {
966 			(void)ath_hal_settkipmic(ah, AH_FALSE);
967 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
968 		} else {
969 			(void)ath_hal_settkipmic(ah, AH_TRUE);
970 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
971 		}
972 	}
973 }
974 
975 static int
ath_init(struct ath_softc * sc)976 ath_init(struct ath_softc *sc)
977 {
978 	struct ifnet *ifp = &sc->sc_if;
979 	struct ieee80211com *ic = &sc->sc_ic;
980 	struct ath_hal *ah = sc->sc_ah;
981 	HAL_STATUS status;
982 	int error = 0, s;
983 
984 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
985 		__func__, ifp->if_flags);
986 
987 	if (device_is_active(sc->sc_dev)) {
988 		s = splnet();
989 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
990 	           !device_is_active(sc->sc_dev))
991 		return 0;
992 	else
993 		s = splnet();
994 
995 	/*
996 	 * Stop anything previously setup.  This is safe
997 	 * whether this is the first time through or not.
998 	 */
999 	ath_stop_locked(ifp, 0);
1000 
1001 	/*
1002 	 * The basic interface to setting the hardware in a good
1003 	 * state is ``reset''.  On return the hardware is known to
1004 	 * be powered up and with interrupts disabled.  This must
1005 	 * be followed by initialization of the appropriate bits
1006 	 * and then setup of the interrupt mask.
1007 	 */
1008 	ath_settkipmic(sc);
1009 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1010 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1011 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1012 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1013 			status);
1014 		error = EIO;
1015 		goto done;
1016 	}
1017 
1018 	/*
1019 	 * This is needed only to setup initial state
1020 	 * but it's best done after a reset.
1021 	 */
1022 	ath_update_txpow(sc);
1023 	/*
1024 	 * Likewise this is set during reset so update
1025 	 * state cached in the driver.
1026 	 */
1027 	ath_restore_diversity(sc);
1028 	sc->sc_calinterval = 1;
1029 	sc->sc_caltries = 0;
1030 
1031 	/*
1032 	 * Setup the hardware after reset: the key cache
1033 	 * is filled as needed and the receive engine is
1034 	 * set going.  Frame transmit is handled entirely
1035 	 * in the frame output path; there's nothing to do
1036 	 * here except setup the interrupt mask.
1037 	 */
1038 	if ((error = ath_startrecv(sc)) != 0) {
1039 		if_printf(ifp, "unable to start recv logic\n");
1040 		goto done;
1041 	}
1042 
1043 	/*
1044 	 * Enable interrupts.
1045 	 */
1046 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1047 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1048 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1049 	/*
1050 	 * Enable MIB interrupts when there are hardware phy counters.
1051 	 * Note we only do this (at the moment) for station mode.
1052 	 */
1053 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1054 		sc->sc_imask |= HAL_INT_MIB;
1055 	ath_hal_intrset(ah, sc->sc_imask);
1056 
1057 	ifp->if_flags |= IFF_RUNNING;
1058 	ic->ic_state = IEEE80211_S_INIT;
1059 
1060 	/*
1061 	 * The hardware should be ready to go now so it's safe
1062 	 * to kick the 802.11 state machine as it's likely to
1063 	 * immediately call back to us to send mgmt frames.
1064 	 */
1065 	ath_chan_change(sc, ic->ic_curchan);
1066 #ifdef ATH_TX99_DIAG
1067 	if (sc->sc_tx99 != NULL)
1068 		sc->sc_tx99->start(sc->sc_tx99);
1069 	else
1070 #endif
1071 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1072 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1073 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1074 	} else
1075 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1076 done:
1077 	splx(s);
1078 	return error;
1079 }
1080 
1081 static void
ath_stop_locked(struct ifnet * ifp,int disable)1082 ath_stop_locked(struct ifnet *ifp, int disable)
1083 {
1084 	struct ath_softc *sc = ifp->if_softc;
1085 	struct ieee80211com *ic = &sc->sc_ic;
1086 	struct ath_hal *ah = sc->sc_ah;
1087 
1088 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1089 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1090 
1091 	/* KASSERT() IPL_NET */
1092 	if (ifp->if_flags & IFF_RUNNING) {
1093 		/*
1094 		 * Shutdown the hardware and driver:
1095 		 *    reset 802.11 state machine
1096 		 *    turn off timers
1097 		 *    disable interrupts
1098 		 *    turn off the radio
1099 		 *    clear transmit machinery
1100 		 *    clear receive machinery
1101 		 *    drain and release tx queues
1102 		 *    reclaim beacon resources
1103 		 *    power down hardware
1104 		 *
1105 		 * Note that some of this work is not possible if the
1106 		 * hardware is gone (invalid).
1107 		 */
1108 #ifdef ATH_TX99_DIAG
1109 		if (sc->sc_tx99 != NULL)
1110 			sc->sc_tx99->stop(sc->sc_tx99);
1111 #endif
1112 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1113 		ifp->if_flags &= ~IFF_RUNNING;
1114 		ifp->if_timer = 0;
1115 		if (device_is_enabled(sc->sc_dev)) {
1116 			if (sc->sc_softled) {
1117 				callout_stop(&sc->sc_ledtimer);
1118 				ath_hal_gpioset(ah, sc->sc_ledpin,
1119 					!sc->sc_ledon);
1120 				sc->sc_blinking = 0;
1121 			}
1122 			ath_hal_intrset(ah, 0);
1123 		}
1124 		ath_draintxq(sc);
1125 		if (device_is_enabled(sc->sc_dev)) {
1126 			ath_stoprecv(sc);
1127 			ath_hal_phydisable(ah);
1128 		} else
1129 			sc->sc_rxlink = NULL;
1130 		IF_PURGE(&ifp->if_snd);
1131 		ath_beacon_free(sc);
1132 	}
1133 	if (disable)
1134 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1135 }
1136 
1137 static void
ath_stop(struct ifnet * ifp,int disable)1138 ath_stop(struct ifnet *ifp, int disable)
1139 {
1140 	int s;
1141 
1142 	s = splnet();
1143 	ath_stop_locked(ifp, disable);
1144 	splx(s);
1145 }
1146 
1147 static void
ath_restore_diversity(struct ath_softc * sc)1148 ath_restore_diversity(struct ath_softc *sc)
1149 {
1150 	struct ifnet *ifp = &sc->sc_if;
1151 	struct ath_hal *ah = sc->sc_ah;
1152 
1153 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1154 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1155 		if_printf(ifp, "could not restore diversity setting %d\n",
1156 		    sc->sc_diversity);
1157 		sc->sc_diversity = ath_hal_getdiversity(ah);
1158 	}
1159 }
1160 
1161 /*
1162  * Reset the hardware w/o losing operational state.  This is
1163  * basically a more efficient way of doing ath_stop, ath_init,
1164  * followed by state transitions to the current 802.11
1165  * operational state.  Used to recover from various errors and
1166  * to reset or reload hardware state.
1167  */
1168 int
ath_reset(struct ifnet * ifp)1169 ath_reset(struct ifnet *ifp)
1170 {
1171 	struct ath_softc *sc = ifp->if_softc;
1172 	struct ieee80211com *ic = &sc->sc_ic;
1173 	struct ath_hal *ah = sc->sc_ah;
1174 	struct ieee80211_channel *c;
1175 	HAL_STATUS status;
1176 
1177 	/*
1178 	 * Convert to a HAL channel description with the flags
1179 	 * constrained to reflect the current operating mode.
1180 	 */
1181 	c = ic->ic_curchan;
1182 	sc->sc_curchan.channel = c->ic_freq;
1183 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1184 
1185 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1186 	ath_draintxq(sc);		/* stop xmit side */
1187 	ath_stoprecv(sc);		/* stop recv side */
1188 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1189 	/* NB: indicate channel change so we do a full reset */
1190 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1191 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1192 			__func__, status);
1193 	ath_update_txpow(sc);		/* update tx power state */
1194 	ath_restore_diversity(sc);
1195 	sc->sc_calinterval = 1;
1196 	sc->sc_caltries = 0;
1197 	if (ath_startrecv(sc) != 0)	/* restart recv */
1198 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1199 	/*
1200 	 * We may be doing a reset in response to an ioctl
1201 	 * that changes the channel so update any state that
1202 	 * might change as a result.
1203 	 */
1204 	ath_chan_change(sc, c);
1205 	if (ic->ic_state == IEEE80211_S_RUN)
1206 		ath_beacon_config(sc);	/* restart beacons */
1207 	ath_hal_intrset(ah, sc->sc_imask);
1208 
1209 	ath_start(ifp);			/* restart xmit */
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Cleanup driver resources when we run out of buffers
1215  * while processing fragments; return the tx buffers
1216  * allocated and drop node references.
1217  */
1218 static void
ath_txfrag_cleanup(struct ath_softc * sc,ath_bufhead * frags,struct ieee80211_node * ni)1219 ath_txfrag_cleanup(struct ath_softc *sc,
1220 	ath_bufhead *frags, struct ieee80211_node *ni)
1221 {
1222 	struct ath_buf *bf;
1223 
1224 	ATH_TXBUF_LOCK_ASSERT(sc);
1225 
1226 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1227 		STAILQ_REMOVE_HEAD(frags, bf_list);
1228 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1229 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1230 		ieee80211_node_decref(ni);
1231 	}
1232 }
1233 
1234 /*
1235  * Setup xmit of a fragmented frame.  Allocate a buffer
1236  * for each frag and bump the node reference count to
1237  * reflect the held reference to be setup by ath_tx_start.
1238  */
1239 static int
ath_txfrag_setup(struct ath_softc * sc,ath_bufhead * frags,struct mbuf * m0,struct ieee80211_node * ni)1240 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1241 	struct mbuf *m0, struct ieee80211_node *ni)
1242 {
1243 	struct mbuf *m;
1244 	struct ath_buf *bf;
1245 
1246 	ATH_TXBUF_LOCK(sc);
1247 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1248 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1249 		if (bf == NULL) {       /* out of buffers, cleanup */
1250 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1251 				__func__);
1252 			sc->sc_if.if_flags |= IFF_OACTIVE;
1253 			ath_txfrag_cleanup(sc, frags, ni);
1254 			break;
1255 		}
1256 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1257 		ieee80211_node_incref(ni);
1258 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1259 	}
1260 	ATH_TXBUF_UNLOCK(sc);
1261 
1262 	return !STAILQ_EMPTY(frags);
1263 }
1264 
1265 static void
ath_start(struct ifnet * ifp)1266 ath_start(struct ifnet *ifp)
1267 {
1268 	struct ath_softc *sc = ifp->if_softc;
1269 	struct ath_hal *ah = sc->sc_ah;
1270 	struct ieee80211com *ic = &sc->sc_ic;
1271 	struct ieee80211_node *ni;
1272 	struct ath_buf *bf;
1273 	struct mbuf *m, *next;
1274 	struct ieee80211_frame *wh;
1275 	struct ether_header *eh;
1276 	ath_bufhead frags;
1277 
1278 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1279 	    !device_is_active(sc->sc_dev))
1280 		return;
1281 
1282 	if (sc->sc_flags & ATH_KEY_UPDATING)
1283 		return;
1284 
1285 	for (;;) {
1286 		/*
1287 		 * Grab a TX buffer and associated resources.
1288 		 */
1289 		ATH_TXBUF_LOCK(sc);
1290 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1291 		if (bf != NULL)
1292 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1293 		ATH_TXBUF_UNLOCK(sc);
1294 		if (bf == NULL) {
1295 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1296 				__func__);
1297 			sc->sc_stats.ast_tx_qstop++;
1298 			ifp->if_flags |= IFF_OACTIVE;
1299 			break;
1300 		}
1301 		/*
1302 		 * Poll the management queue for frames; they
1303 		 * have priority over normal data frames.
1304 		 */
1305 		IF_DEQUEUE(&ic->ic_mgtq, m);
1306 		if (m == NULL) {
1307 			/*
1308 			 * No data frames go out unless we're associated.
1309 			 */
1310 			if (ic->ic_state != IEEE80211_S_RUN) {
1311 				DPRINTF(sc, ATH_DEBUG_XMIT,
1312 				    "%s: discard data packet, state %s\n",
1313 				    __func__,
1314 				    ieee80211_state_name[ic->ic_state]);
1315 				sc->sc_stats.ast_tx_discard++;
1316 				ATH_TXBUF_LOCK(sc);
1317 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1318 				ATH_TXBUF_UNLOCK(sc);
1319 				break;
1320 			}
1321 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1322 			if (m == NULL) {
1323 				ATH_TXBUF_LOCK(sc);
1324 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1325 				ATH_TXBUF_UNLOCK(sc);
1326 				break;
1327 			}
1328 			STAILQ_INIT(&frags);
1329 			/*
1330 			 * Find the node for the destination so we can do
1331 			 * things like power save and fast frames aggregation.
1332 			 */
1333 			if (m->m_len < sizeof(struct ether_header) &&
1334 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1335 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1336 				ni = NULL;
1337 				goto bad;
1338 			}
1339 			eh = mtod(m, struct ether_header *);
1340 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1341 			if (ni == NULL) {
1342 				/* NB: ieee80211_find_txnode does stat+msg */
1343 				m_freem(m);
1344 				goto bad;
1345 			}
1346 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1347 			    (m->m_flags & M_PWR_SAV) == 0) {
1348 				/*
1349 				 * Station in power save mode; pass the frame
1350 				 * to the 802.11 layer and continue.  We'll get
1351 				 * the frame back when the time is right.
1352 				 */
1353 				ieee80211_pwrsave(ic, ni, m);
1354 				goto reclaim;
1355 			}
1356 			/* calculate priority so we can find the tx queue */
1357 			if (ieee80211_classify(ic, m, ni)) {
1358 				DPRINTF(sc, ATH_DEBUG_XMIT,
1359 					"%s: discard, classification failure\n",
1360 					__func__);
1361 				m_freem(m);
1362 				goto bad;
1363 			}
1364 			ifp->if_opackets++;
1365 
1366 			bpf_mtap(ifp, m);
1367 			/*
1368 			 * Encapsulate the packet in prep for transmission.
1369 			 */
1370 			m = ieee80211_encap(ic, m, ni);
1371 			if (m == NULL) {
1372 				DPRINTF(sc, ATH_DEBUG_XMIT,
1373 					"%s: encapsulation failure\n",
1374 					__func__);
1375 				sc->sc_stats.ast_tx_encap++;
1376 				goto bad;
1377 			}
1378 			/*
1379 			 * Check for fragmentation.  If this has frame
1380 			 * has been broken up verify we have enough
1381 			 * buffers to send all the fragments so all
1382 			 * go out or none...
1383 			 */
1384 			if ((m->m_flags & M_FRAG) &&
1385 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1386 				DPRINTF(sc, ATH_DEBUG_ANY,
1387 				    "%s: out of txfrag buffers\n", __func__);
1388 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1389 				ath_freetx(m);
1390 				goto bad;
1391 			}
1392 		} else {
1393 			/*
1394 			 * Hack!  The referenced node pointer is in the
1395 			 * rcvif field of the packet header.  This is
1396 			 * placed there by ieee80211_mgmt_output because
1397 			 * we need to hold the reference with the frame
1398 			 * and there's no other way (other than packet
1399 			 * tags which we consider too expensive to use)
1400 			 * to pass it along.
1401 			 */
1402 			ni = M_GETCTX(m, struct ieee80211_node *);
1403 			M_CLEARCTX(m);
1404 
1405 			wh = mtod(m, struct ieee80211_frame *);
1406 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1407 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1408 				/* fill time stamp */
1409 				u_int64_t tsf;
1410 				u_int32_t *tstamp;
1411 
1412 				tsf = ath_hal_gettsf64(ah);
1413 				/* XXX: adjust 100us delay to xmit */
1414 				tsf += 100;
1415 				tstamp = (u_int32_t *)&wh[1];
1416 				tstamp[0] = htole32(tsf & 0xffffffff);
1417 				tstamp[1] = htole32(tsf >> 32);
1418 			}
1419 			sc->sc_stats.ast_tx_mgmt++;
1420 		}
1421 
1422 	nextfrag:
1423 		next = m->m_nextpkt;
1424 		if (ath_tx_start(sc, ni, bf, m)) {
1425 	bad:
1426 			ifp->if_oerrors++;
1427 	reclaim:
1428 			ATH_TXBUF_LOCK(sc);
1429 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1430 			ath_txfrag_cleanup(sc, &frags, ni);
1431 			ATH_TXBUF_UNLOCK(sc);
1432 			if (ni != NULL)
1433 				ieee80211_free_node(ni);
1434 			continue;
1435 		}
1436 		if (next != NULL) {
1437 			m = next;
1438 			bf = STAILQ_FIRST(&frags);
1439 			KASSERTMSG(bf != NULL, "no buf for txfrag");
1440 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1441 			goto nextfrag;
1442 		}
1443 
1444 		ifp->if_timer = 1;
1445 	}
1446 }
1447 
1448 static int
ath_media_change(struct ifnet * ifp)1449 ath_media_change(struct ifnet *ifp)
1450 {
1451 #define	IS_UP(ifp) \
1452 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1453 	int error;
1454 
1455 	error = ieee80211_media_change(ifp);
1456 	if (error == ENETRESET) {
1457 		if (IS_UP(ifp))
1458 			ath_init(ifp->if_softc);	/* XXX lose error */
1459 		error = 0;
1460 	}
1461 	return error;
1462 #undef IS_UP
1463 }
1464 
1465 #ifdef AR_DEBUG
1466 static void
ath_keyprint(const char * tag,u_int ix,const HAL_KEYVAL * hk,const u_int8_t mac[IEEE80211_ADDR_LEN])1467 ath_keyprint(const char *tag, u_int ix,
1468 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1469 {
1470 	static const char *ciphers[] = {
1471 		"WEP",
1472 		"AES-OCB",
1473 		"AES-CCM",
1474 		"CKIP",
1475 		"TKIP",
1476 		"CLR",
1477 	};
1478 	int i, n;
1479 
1480 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1481 	for (i = 0, n = hk->kv_len; i < n; i++)
1482 		printf("%02x", hk->kv_val[i]);
1483 	printf(" mac %s", ether_sprintf(mac));
1484 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1485 		printf(" mic ");
1486 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1487 			printf("%02x", hk->kv_mic[i]);
1488 	}
1489 	printf("\n");
1490 }
1491 #endif
1492 
1493 /*
1494  * Set a TKIP key into the hardware.  This handles the
1495  * potential distribution of key state to multiple key
1496  * cache slots for TKIP.
1497  */
1498 static int
ath_keyset_tkip(struct ath_softc * sc,const struct ieee80211_key * k,HAL_KEYVAL * hk,const u_int8_t mac[IEEE80211_ADDR_LEN])1499 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1500 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1501 {
1502 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1503 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1504 	struct ath_hal *ah = sc->sc_ah;
1505 
1506 	KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1507 		"got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
1508 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1509 		if (sc->sc_splitmic) {
1510 			/*
1511 			 * TX key goes at first index, RX key at the rx index.
1512 			 * The hal handles the MIC keys at index+64.
1513 			 */
1514 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1515 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1516 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1517 						zerobssid))
1518 				return 0;
1519 
1520 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1521 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1522 			/* XXX delete tx key on failure? */
1523 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1524 					hk, mac);
1525 		} else {
1526 			/*
1527 			 * Room for both TX+RX MIC keys in one key cache
1528 			 * slot, just set key at the first index; the HAL
1529 			 * will handle the reset.
1530 			 */
1531 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1532 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1533 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1534 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1535 		}
1536 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1537 		if (sc->sc_splitmic) {
1538 			/*
1539 			 * NB: must pass MIC key in expected location when
1540 			 * the keycache only holds one MIC key per entry.
1541 			 */
1542 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1543 		} else
1544 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1545 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1546 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1547 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1548 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1549 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1550 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1551 	}
1552 	return 0;
1553 #undef IEEE80211_KEY_XR
1554 }
1555 
1556 /*
1557  * Set a net80211 key into the hardware.  This handles the
1558  * potential distribution of key state to multiple key
1559  * cache slots for TKIP with hardware MIC support.
1560  */
1561 static int
ath_keyset(struct ath_softc * sc,const struct ieee80211_key * k,const u_int8_t mac0[IEEE80211_ADDR_LEN],struct ieee80211_node * bss)1562 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1563 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1564 	struct ieee80211_node *bss)
1565 {
1566 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1567 	static const u_int8_t ciphermap[] = {
1568 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1569 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1570 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1571 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1572 		(u_int8_t) -1,		/* 4 is not allocated */
1573 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1574 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1575 	};
1576 	struct ath_hal *ah = sc->sc_ah;
1577 	const struct ieee80211_cipher *cip = k->wk_cipher;
1578 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1579 	const u_int8_t *mac;
1580 	HAL_KEYVAL hk;
1581 
1582 	memset(&hk, 0, sizeof(hk));
1583 	/*
1584 	 * Software crypto uses a "clear key" so non-crypto
1585 	 * state kept in the key cache are maintained and
1586 	 * so that rx frames have an entry to match.
1587 	 */
1588 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1589 		KASSERTMSG(cip->ic_cipher < N(ciphermap),
1590 			"invalid cipher type %u", cip->ic_cipher);
1591 		hk.kv_type = ciphermap[cip->ic_cipher];
1592 		hk.kv_len = k->wk_keylen;
1593 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1594 	} else
1595 		hk.kv_type = HAL_CIPHER_CLR;
1596 
1597 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1598 		/*
1599 		 * Group keys on hardware that supports multicast frame
1600 		 * key search use a mac that is the sender's address with
1601 		 * the high bit set instead of the app-specified address.
1602 		 */
1603 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1604 		gmac[0] |= 0x80;
1605 		mac = gmac;
1606 	} else
1607 		mac = mac0;
1608 
1609 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1610 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1611 		return ath_keyset_tkip(sc, k, &hk, mac);
1612 	} else {
1613 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1614 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1615 	}
1616 #undef N
1617 }
1618 
1619 /*
1620  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1621  * each key, one for decrypt/encrypt and the other for the MIC.
1622  */
1623 static u_int16_t
key_alloc_2pair(struct ath_softc * sc,ieee80211_keyix * txkeyix,ieee80211_keyix * rxkeyix)1624 key_alloc_2pair(struct ath_softc *sc,
1625 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1626 {
1627 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1628 	u_int i, keyix;
1629 
1630 	KASSERTMSG(sc->sc_splitmic, "key cache !split");
1631 	/* XXX could optimize */
1632 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1633 		u_int8_t b = sc->sc_keymap[i];
1634 		if (b != 0xff) {
1635 			/*
1636 			 * One or more slots in this byte are free.
1637 			 */
1638 			keyix = i*NBBY;
1639 			while (b & 1) {
1640 		again:
1641 				keyix++;
1642 				b >>= 1;
1643 			}
1644 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1645 			if (isset(sc->sc_keymap, keyix+32) ||
1646 			    isset(sc->sc_keymap, keyix+64) ||
1647 			    isset(sc->sc_keymap, keyix+32+64)) {
1648 				/* full pair unavailable */
1649 				/* XXX statistic */
1650 				if (keyix == (i+1)*NBBY) {
1651 					/* no slots were appropriate, advance */
1652 					continue;
1653 				}
1654 				goto again;
1655 			}
1656 			setbit(sc->sc_keymap, keyix);
1657 			setbit(sc->sc_keymap, keyix+64);
1658 			setbit(sc->sc_keymap, keyix+32);
1659 			setbit(sc->sc_keymap, keyix+32+64);
1660 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1661 				"%s: key pair %u,%u %u,%u\n",
1662 				__func__, keyix, keyix+64,
1663 				keyix+32, keyix+32+64);
1664 			*txkeyix = keyix;
1665 			*rxkeyix = keyix+32;
1666 			return keyix;
1667 		}
1668 	}
1669 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1670 	return IEEE80211_KEYIX_NONE;
1671 #undef N
1672 }
1673 
1674 /*
1675  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1676  * each key, one for decrypt/encrypt and the other for the MIC.
1677  */
1678 static int
key_alloc_pair(struct ath_softc * sc,ieee80211_keyix * txkeyix,ieee80211_keyix * rxkeyix)1679 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1680     ieee80211_keyix *rxkeyix)
1681 {
1682 #define N(a)	(sizeof(a)/sizeof(a[0]))
1683 	u_int i, keyix;
1684 
1685 	KASSERTMSG(!sc->sc_splitmic, "key cache split");
1686 	/* XXX could optimize */
1687 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1688 		uint8_t b = sc->sc_keymap[i];
1689 		if (b != 0xff) {
1690 			/*
1691 			 * One or more slots in this byte are free.
1692 			 */
1693 			keyix = i*NBBY;
1694 			while (b & 1) {
1695 		again:
1696 				keyix++;
1697 				b >>= 1;
1698 			}
1699 			if (isset(sc->sc_keymap, keyix+64)) {
1700 				/* full pair unavailable */
1701 				/* XXX statistic */
1702 				if (keyix == (i+1)*NBBY) {
1703 					/* no slots were appropriate, advance */
1704 					continue;
1705 				}
1706 				goto again;
1707 			}
1708 			setbit(sc->sc_keymap, keyix);
1709 			setbit(sc->sc_keymap, keyix+64);
1710 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1711 				"%s: key pair %u,%u\n",
1712 				__func__, keyix, keyix+64);
1713 			*txkeyix = *rxkeyix = keyix;
1714 			return 1;
1715 		}
1716 	}
1717 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1718 	return 0;
1719 #undef N
1720 }
1721 
1722 /*
1723  * Allocate a single key cache slot.
1724  */
1725 static int
key_alloc_single(struct ath_softc * sc,ieee80211_keyix * txkeyix,ieee80211_keyix * rxkeyix)1726 key_alloc_single(struct ath_softc *sc,
1727 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1728 {
1729 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1730 	u_int i, keyix;
1731 
1732 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1733 	for (i = 0; i < N(sc->sc_keymap); i++) {
1734 		u_int8_t b = sc->sc_keymap[i];
1735 		if (b != 0xff) {
1736 			/*
1737 			 * One or more slots are free.
1738 			 */
1739 			keyix = i*NBBY;
1740 			while (b & 1)
1741 				keyix++, b >>= 1;
1742 			setbit(sc->sc_keymap, keyix);
1743 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1744 				__func__, keyix);
1745 			*txkeyix = *rxkeyix = keyix;
1746 			return 1;
1747 		}
1748 	}
1749 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1750 	return 0;
1751 #undef N
1752 }
1753 
1754 /*
1755  * Allocate one or more key cache slots for a uniacst key.  The
1756  * key itself is needed only to identify the cipher.  For hardware
1757  * TKIP with split cipher+MIC keys we allocate two key cache slot
1758  * pairs so that we can setup separate TX and RX MIC keys.  Note
1759  * that the MIC key for a TKIP key at slot i is assumed by the
1760  * hardware to be at slot i+64.  This limits TKIP keys to the first
1761  * 64 entries.
1762  */
1763 static int
ath_key_alloc(struct ieee80211com * ic,const struct ieee80211_key * k,ieee80211_keyix * keyix,ieee80211_keyix * rxkeyix)1764 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1765 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1766 {
1767 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1768 
1769 	/*
1770 	 * Group key allocation must be handled specially for
1771 	 * parts that do not support multicast key cache search
1772 	 * functionality.  For those parts the key id must match
1773 	 * the h/w key index so lookups find the right key.  On
1774 	 * parts w/ the key search facility we install the sender's
1775 	 * mac address (with the high bit set) and let the hardware
1776 	 * find the key w/o using the key id.  This is preferred as
1777 	 * it permits us to support multiple users for adhoc and/or
1778 	 * multi-station operation.
1779 	 */
1780 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1781 		if (!(&ic->ic_nw_keys[0] <= k &&
1782 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1783 			/* should not happen */
1784 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1785 				"%s: bogus group key\n", __func__);
1786 			return 0;
1787 		}
1788 		/*
1789 		 * XXX we pre-allocate the global keys so
1790 		 * have no way to check if they've already been allocated.
1791 		 */
1792 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1793 		return 1;
1794 	}
1795 
1796 	/*
1797 	 * We allocate two pair for TKIP when using the h/w to do
1798 	 * the MIC.  For everything else, including software crypto,
1799 	 * we allocate a single entry.  Note that s/w crypto requires
1800 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1801 	 * not support pass-through cache entries and we map all
1802 	 * those requests to slot 0.
1803 	 */
1804 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1805 		return key_alloc_single(sc, keyix, rxkeyix);
1806 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1807 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1808 		if (sc->sc_splitmic)
1809 			return key_alloc_2pair(sc, keyix, rxkeyix);
1810 		else
1811 			return key_alloc_pair(sc, keyix, rxkeyix);
1812 	} else {
1813 		return key_alloc_single(sc, keyix, rxkeyix);
1814 	}
1815 }
1816 
1817 /*
1818  * Delete an entry in the key cache allocated by ath_key_alloc.
1819  */
1820 static int
ath_key_delete(struct ieee80211com * ic,const struct ieee80211_key * k)1821 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1822 {
1823 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1824 	struct ath_hal *ah = sc->sc_ah;
1825 	const struct ieee80211_cipher *cip = k->wk_cipher;
1826 	u_int keyix = k->wk_keyix;
1827 
1828 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1829 
1830 	if (!device_has_power(sc->sc_dev)) {
1831 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1832 		    k->wk_keyix);
1833 	}
1834 
1835 	ath_hal_keyreset(ah, keyix);
1836 	/*
1837 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1838 	 */
1839 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1840 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1841 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1842 	if (keyix >= IEEE80211_WEP_NKID) {
1843 		/*
1844 		 * Don't touch keymap entries for global keys so
1845 		 * they are never considered for dynamic allocation.
1846 		 */
1847 		clrbit(sc->sc_keymap, keyix);
1848 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1849 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1850 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1851 			if (sc->sc_splitmic) {
1852 				/* +32 for RX key, +32+64 for RX key MIC */
1853 				clrbit(sc->sc_keymap, keyix+32);
1854 				clrbit(sc->sc_keymap, keyix+32+64);
1855 			}
1856 		}
1857 	}
1858 	return 1;
1859 }
1860 
1861 /*
1862  * Set the key cache contents for the specified key.  Key cache
1863  * slot(s) must already have been allocated by ath_key_alloc.
1864  */
1865 static int
ath_key_set(struct ieee80211com * ic,const struct ieee80211_key * k,const u_int8_t mac[IEEE80211_ADDR_LEN])1866 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1867 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1868 {
1869 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1870 
1871 	if (!device_has_power(sc->sc_dev)) {
1872 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1873 		    k->wk_keyix);
1874 	}
1875 	return ath_keyset(sc, k, mac, ic->ic_bss);
1876 }
1877 
1878 /*
1879  * Block/unblock tx+rx processing while a key change is done.
1880  * We assume the caller serializes key management operations
1881  * so we only need to worry about synchronization with other
1882  * uses that originate in the driver.
1883  */
1884 static void
ath_key_update_begin(struct ieee80211com * ic)1885 ath_key_update_begin(struct ieee80211com *ic)
1886 {
1887 	struct ifnet *ifp = ic->ic_ifp;
1888 	struct ath_softc *sc = ifp->if_softc;
1889 
1890 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1891 #if 0
1892 	tasklet_disable(&sc->sc_rxtq);
1893 #endif
1894 	sc->sc_flags |= ATH_KEY_UPDATING;
1895 }
1896 
1897 static void
ath_key_update_end(struct ieee80211com * ic)1898 ath_key_update_end(struct ieee80211com *ic)
1899 {
1900 	struct ifnet *ifp = ic->ic_ifp;
1901 	struct ath_softc *sc = ifp->if_softc;
1902 
1903 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1904 	sc->sc_flags &= ~ATH_KEY_UPDATING;
1905 #if 0
1906 	tasklet_enable(&sc->sc_rxtq);
1907 #endif
1908 }
1909 
1910 /*
1911  * Calculate the receive filter according to the
1912  * operating mode and state:
1913  *
1914  * o always accept unicast, broadcast, and multicast traffic
1915  * o maintain current state of phy error reception (the hal
1916  *   may enable phy error frames for noise immunity work)
1917  * o probe request frames are accepted only when operating in
1918  *   hostap, adhoc, or monitor modes
1919  * o enable promiscuous mode according to the interface state
1920  * o accept beacons:
1921  *   - when operating in adhoc mode so the 802.11 layer creates
1922  *     node table entries for peers,
1923  *   - when operating in station mode for collecting rssi data when
1924  *     the station is otherwise quiet, or
1925  *   - when scanning
1926  */
1927 static u_int32_t
ath_calcrxfilter(struct ath_softc * sc,enum ieee80211_state state)1928 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1929 {
1930 	struct ieee80211com *ic = &sc->sc_ic;
1931 	struct ath_hal *ah = sc->sc_ah;
1932 	struct ifnet *ifp = &sc->sc_if;
1933 	u_int32_t rfilt;
1934 
1935 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1936 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1937 	if (ic->ic_opmode != IEEE80211_M_STA)
1938 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1939 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1940 	    (ifp->if_flags & IFF_PROMISC))
1941 		rfilt |= HAL_RX_FILTER_PROM;
1942 	if (ifp->if_flags & IFF_PROMISC)
1943 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1944 	if (ic->ic_opmode == IEEE80211_M_STA ||
1945 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1946 	    state == IEEE80211_S_SCAN)
1947 		rfilt |= HAL_RX_FILTER_BEACON;
1948 	return rfilt;
1949 }
1950 
1951 static void
ath_mode_init(struct ath_softc * sc)1952 ath_mode_init(struct ath_softc *sc)
1953 {
1954 	struct ifnet *ifp = &sc->sc_if;
1955 	struct ieee80211com *ic = &sc->sc_ic;
1956 	struct ath_hal *ah = sc->sc_ah;
1957 	struct ether_multi *enm;
1958 	struct ether_multistep estep;
1959 	u_int32_t rfilt, mfilt[2], val;
1960 	int i;
1961 	uint8_t pos;
1962 
1963 	/* configure rx filter */
1964 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1965 	ath_hal_setrxfilter(ah, rfilt);
1966 
1967 	/* configure operational mode */
1968 	ath_hal_setopmode(ah);
1969 
1970 	/* Write keys to hardware; it may have been powered down. */
1971 	ath_key_update_begin(ic);
1972 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1973 		ath_key_set(ic,
1974 			    &ic->ic_crypto.cs_nw_keys[i],
1975 			    ic->ic_myaddr);
1976 	}
1977 	ath_key_update_end(ic);
1978 
1979 	/*
1980 	 * Handle any link-level address change.  Note that we only
1981 	 * need to force ic_myaddr; any other addresses are handled
1982 	 * as a byproduct of the ifnet code marking the interface
1983 	 * down then up.
1984 	 *
1985 	 * XXX should get from lladdr instead of arpcom but that's more work
1986 	 */
1987 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1988 	ath_hal_setmac(ah, ic->ic_myaddr);
1989 
1990 	/* calculate and install multicast filter */
1991 	ifp->if_flags &= ~IFF_ALLMULTI;
1992 	mfilt[0] = mfilt[1] = 0;
1993 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1994 	while (enm != NULL) {
1995 		void *dl;
1996 		/* XXX Punt on ranges. */
1997 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1998 			mfilt[0] = mfilt[1] = 0xffffffff;
1999 			ifp->if_flags |= IFF_ALLMULTI;
2000 			break;
2001 		}
2002 		dl = enm->enm_addrlo;
2003 		val = LE_READ_4((char *)dl + 0);
2004 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2005 		val = LE_READ_4((char *)dl + 3);
2006 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2007 		pos &= 0x3f;
2008 		mfilt[pos / 32] |= (1 << (pos % 32));
2009 
2010 		ETHER_NEXT_MULTI(estep, enm);
2011 	}
2012 
2013 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2014 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2015 		__func__, rfilt, mfilt[0], mfilt[1]);
2016 }
2017 
2018 /*
2019  * Set the slot time based on the current setting.
2020  */
2021 static void
ath_setslottime(struct ath_softc * sc)2022 ath_setslottime(struct ath_softc *sc)
2023 {
2024 	struct ieee80211com *ic = &sc->sc_ic;
2025 	struct ath_hal *ah = sc->sc_ah;
2026 
2027 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2028 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2029 	else
2030 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2031 	sc->sc_updateslot = OK;
2032 }
2033 
2034 /*
2035  * Callback from the 802.11 layer to update the
2036  * slot time based on the current setting.
2037  */
2038 static void
ath_updateslot(struct ifnet * ifp)2039 ath_updateslot(struct ifnet *ifp)
2040 {
2041 	struct ath_softc *sc = ifp->if_softc;
2042 	struct ieee80211com *ic = &sc->sc_ic;
2043 
2044 	/*
2045 	 * When not coordinating the BSS, change the hardware
2046 	 * immediately.  For other operation we defer the change
2047 	 * until beacon updates have propagated to the stations.
2048 	 */
2049 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2050 		sc->sc_updateslot = UPDATE;
2051 	else
2052 		ath_setslottime(sc);
2053 }
2054 
2055 /*
2056  * Setup a h/w transmit queue for beacons.
2057  */
2058 static int
ath_beaconq_setup(struct ath_hal * ah)2059 ath_beaconq_setup(struct ath_hal *ah)
2060 {
2061 	HAL_TXQ_INFO qi;
2062 
2063 	memset(&qi, 0, sizeof(qi));
2064 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2065 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2066 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2067 	/* NB: for dynamic turbo, don't enable any other interrupts */
2068 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2069 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2070 }
2071 
2072 /*
2073  * Setup the transmit queue parameters for the beacon queue.
2074  */
2075 static int
ath_beaconq_config(struct ath_softc * sc)2076 ath_beaconq_config(struct ath_softc *sc)
2077 {
2078 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2079 	struct ieee80211com *ic = &sc->sc_ic;
2080 	struct ath_hal *ah = sc->sc_ah;
2081 	HAL_TXQ_INFO qi;
2082 
2083 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2084 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2085 		/*
2086 		 * Always burst out beacon and CAB traffic.
2087 		 */
2088 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2089 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2090 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2091 	} else {
2092 		struct wmeParams *wmep =
2093 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2094 		/*
2095 		 * Adhoc mode; important thing is to use 2x cwmin.
2096 		 */
2097 		qi.tqi_aifs = wmep->wmep_aifsn;
2098 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2099 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2100 	}
2101 
2102 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2103 		device_printf(sc->sc_dev, "unable to update parameters for "
2104 			"beacon hardware queue!\n");
2105 		return 0;
2106 	} else {
2107 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2108 		return 1;
2109 	}
2110 #undef ATH_EXPONENT_TO_VALUE
2111 }
2112 
2113 /*
2114  * Allocate and setup an initial beacon frame.
2115  */
2116 static int
ath_beacon_alloc(struct ath_softc * sc,struct ieee80211_node * ni)2117 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2118 {
2119 	struct ieee80211com *ic = ni->ni_ic;
2120 	struct ath_buf *bf;
2121 	struct mbuf *m;
2122 	int error;
2123 
2124 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2125 	if (bf == NULL) {
2126 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2127 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2128 		return ENOMEM;			/* XXX */
2129 	}
2130 	/*
2131 	 * NB: the beacon data buffer must be 32-bit aligned;
2132 	 * we assume the mbuf routines will return us something
2133 	 * with this alignment (perhaps should assert).
2134 	 */
2135 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2136 	if (m == NULL) {
2137 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2138 			__func__);
2139 		sc->sc_stats.ast_be_nombuf++;
2140 		return ENOMEM;
2141 	}
2142 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2143 				     BUS_DMA_NOWAIT);
2144 	if (error == 0) {
2145 		bf->bf_m = m;
2146 		bf->bf_node = ieee80211_ref_node(ni);
2147 	} else {
2148 		m_freem(m);
2149 	}
2150 	return error;
2151 }
2152 
2153 /*
2154  * Setup the beacon frame for transmit.
2155  */
2156 static void
ath_beacon_setup(struct ath_softc * sc,struct ath_buf * bf)2157 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2158 {
2159 #define	USE_SHPREAMBLE(_ic) \
2160 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2161 		== IEEE80211_F_SHPREAMBLE)
2162 	struct ieee80211_node *ni = bf->bf_node;
2163 	struct ieee80211com *ic = ni->ni_ic;
2164 	struct mbuf *m = bf->bf_m;
2165 	struct ath_hal *ah = sc->sc_ah;
2166 	struct ath_desc *ds;
2167 	int flags, antenna;
2168 	const HAL_RATE_TABLE *rt;
2169 	u_int8_t rix, rate;
2170 
2171 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2172 		__func__, m, m->m_len);
2173 
2174 	/* setup descriptors */
2175 	ds = bf->bf_desc;
2176 
2177 	flags = HAL_TXDESC_NOACK;
2178 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2179 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2180 		flags |= HAL_TXDESC_VEOL;
2181 		/*
2182 		 * Let hardware handle antenna switching unless
2183 		 * the user has selected a transmit antenna
2184 		 * (sc_txantenna is not 0).
2185 		 */
2186 		antenna = sc->sc_txantenna;
2187 	} else {
2188 		ds->ds_link = 0;
2189 		/*
2190 		 * Switch antenna every 4 beacons, unless the user
2191 		 * has selected a transmit antenna (sc_txantenna
2192 		 * is not 0).
2193 		 *
2194 		 * XXX assumes two antenna
2195 		 */
2196 		if (sc->sc_txantenna == 0)
2197 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2198 		else
2199 			antenna = sc->sc_txantenna;
2200 	}
2201 
2202 	KASSERTMSG(bf->bf_nseg == 1,
2203 		"multi-segment beacon frame; nseg %u", bf->bf_nseg);
2204 	ds->ds_data = bf->bf_segs[0].ds_addr;
2205 	/*
2206 	 * Calculate rate code.
2207 	 * XXX everything at min xmit rate
2208 	 */
2209 	rix = sc->sc_minrateix;
2210 	rt = sc->sc_currates;
2211 	rate = rt->info[rix].rateCode;
2212 	if (USE_SHPREAMBLE(ic))
2213 		rate |= rt->info[rix].shortPreamble;
2214 	ath_hal_setuptxdesc(ah, ds
2215 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2216 		, sizeof(struct ieee80211_frame)/* header length */
2217 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2218 		, ni->ni_txpower		/* txpower XXX */
2219 		, rate, 1			/* series 0 rate/tries */
2220 		, HAL_TXKEYIX_INVALID		/* no encryption */
2221 		, antenna			/* antenna mode */
2222 		, flags				/* no ack, veol for beacons */
2223 		, 0				/* rts/cts rate */
2224 		, 0				/* rts/cts duration */
2225 	);
2226 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2227 	ath_hal_filltxdesc(ah, ds
2228 		, roundup(m->m_len, 4)		/* buffer length */
2229 		, AH_TRUE			/* first segment */
2230 		, AH_TRUE			/* last segment */
2231 		, ds				/* first descriptor */
2232 	);
2233 
2234 	/* NB: The desc swap function becomes void, if descriptor swapping
2235 	 * is not enabled
2236 	 */
2237 	ath_desc_swap(ds);
2238 
2239 #undef USE_SHPREAMBLE
2240 }
2241 
2242 /*
2243  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2244  * frame contents are done as needed and the slot time is
2245  * also adjusted based on current state.
2246  */
2247 static void
ath_beacon_proc(void * arg,int pending)2248 ath_beacon_proc(void *arg, int pending)
2249 {
2250 	struct ath_softc *sc = arg;
2251 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2252 	struct ieee80211_node *ni = bf->bf_node;
2253 	struct ieee80211com *ic = ni->ni_ic;
2254 	struct ath_hal *ah = sc->sc_ah;
2255 	struct mbuf *m;
2256 	int ncabq, error, otherant;
2257 
2258 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2259 		__func__, pending);
2260 
2261 	if (ic->ic_opmode == IEEE80211_M_STA ||
2262 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2263 	    bf == NULL || bf->bf_m == NULL) {
2264 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2265 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2266 		return;
2267 	}
2268 	/*
2269 	 * Check if the previous beacon has gone out.  If
2270 	 * not don't try to post another, skip this period
2271 	 * and wait for the next.  Missed beacons indicate
2272 	 * a problem and should not occur.  If we miss too
2273 	 * many consecutive beacons reset the device.
2274 	 */
2275 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2276 		sc->sc_bmisscount++;
2277 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2278 			"%s: missed %u consecutive beacons\n",
2279 			__func__, sc->sc_bmisscount);
2280 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2281 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2282 		return;
2283 	}
2284 	if (sc->sc_bmisscount != 0) {
2285 		DPRINTF(sc, ATH_DEBUG_BEACON,
2286 			"%s: resume beacon xmit after %u misses\n",
2287 			__func__, sc->sc_bmisscount);
2288 		sc->sc_bmisscount = 0;
2289 	}
2290 
2291 	/*
2292 	 * Update dynamic beacon contents.  If this returns
2293 	 * non-zero then we need to remap the memory because
2294 	 * the beacon frame changed size (probably because
2295 	 * of the TIM bitmap).
2296 	 */
2297 	m = bf->bf_m;
2298 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2299 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2300 		/* XXX too conservative? */
2301 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2302 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2303 					     BUS_DMA_NOWAIT);
2304 		if (error != 0) {
2305 			if_printf(&sc->sc_if,
2306 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2307 			    __func__, error);
2308 			return;
2309 		}
2310 	}
2311 
2312 	/*
2313 	 * Handle slot time change when a non-ERP station joins/leaves
2314 	 * an 11g network.  The 802.11 layer notifies us via callback,
2315 	 * we mark updateslot, then wait one beacon before effecting
2316 	 * the change.  This gives associated stations at least one
2317 	 * beacon interval to note the state change.
2318 	 */
2319 	/* XXX locking */
2320 	if (sc->sc_updateslot == UPDATE)
2321 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2322 	else if (sc->sc_updateslot == COMMIT)
2323 		ath_setslottime(sc);		/* commit change to h/w */
2324 
2325 	/*
2326 	 * Check recent per-antenna transmit statistics and flip
2327 	 * the default antenna if noticeably more frames went out
2328 	 * on the non-default antenna.
2329 	 * XXX assumes 2 anntenae
2330 	 */
2331 	otherant = sc->sc_defant & 1 ? 2 : 1;
2332 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2333 		ath_setdefantenna(sc, otherant);
2334 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2335 
2336 	/*
2337 	 * Construct tx descriptor.
2338 	 */
2339 	ath_beacon_setup(sc, bf);
2340 
2341 	/*
2342 	 * Stop any current dma and put the new frame on the queue.
2343 	 * This should never fail since we check above that no frames
2344 	 * are still pending on the queue.
2345 	 */
2346 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2347 		DPRINTF(sc, ATH_DEBUG_ANY,
2348 			"%s: beacon queue %u did not stop?\n",
2349 			__func__, sc->sc_bhalq);
2350 	}
2351 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2352 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2353 
2354 	/*
2355 	 * Enable the CAB queue before the beacon queue to
2356 	 * insure cab frames are triggered by this beacon.
2357 	 */
2358 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2359 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2360 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2361 	ath_hal_txstart(ah, sc->sc_bhalq);
2362 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2363 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2364 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2365 
2366 	sc->sc_stats.ast_be_xmit++;
2367 }
2368 
2369 /*
2370  * Reset the hardware after detecting beacons have stopped.
2371  */
2372 static void
ath_bstuck_proc(void * arg,int pending)2373 ath_bstuck_proc(void *arg, int pending)
2374 {
2375 	struct ath_softc *sc = arg;
2376 	struct ifnet *ifp = &sc->sc_if;
2377 
2378 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2379 		sc->sc_bmisscount);
2380 	ath_reset(ifp);
2381 }
2382 
2383 /*
2384  * Reclaim beacon resources.
2385  */
2386 static void
ath_beacon_free(struct ath_softc * sc)2387 ath_beacon_free(struct ath_softc *sc)
2388 {
2389 	struct ath_buf *bf;
2390 
2391 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2392 		if (bf->bf_m != NULL) {
2393 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2394 			m_freem(bf->bf_m);
2395 			bf->bf_m = NULL;
2396 		}
2397 		if (bf->bf_node != NULL) {
2398 			ieee80211_free_node(bf->bf_node);
2399 			bf->bf_node = NULL;
2400 		}
2401 	}
2402 }
2403 
2404 /*
2405  * Configure the beacon and sleep timers.
2406  *
2407  * When operating as an AP this resets the TSF and sets
2408  * up the hardware to notify us when we need to issue beacons.
2409  *
2410  * When operating in station mode this sets up the beacon
2411  * timers according to the timestamp of the last received
2412  * beacon and the current TSF, configures PCF and DTIM
2413  * handling, programs the sleep registers so the hardware
2414  * will wakeup in time to receive beacons, and configures
2415  * the beacon miss handling so we'll receive a BMISS
2416  * interrupt when we stop seeing beacons from the AP
2417  * we've associated with.
2418  */
2419 static void
ath_beacon_config(struct ath_softc * sc)2420 ath_beacon_config(struct ath_softc *sc)
2421 {
2422 #define	TSF_TO_TU(_h,_l) \
2423 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2424 #define	FUDGE	2
2425 	struct ath_hal *ah = sc->sc_ah;
2426 	struct ieee80211com *ic = &sc->sc_ic;
2427 	struct ieee80211_node *ni = ic->ic_bss;
2428 	u_int32_t nexttbtt, intval, tsftu;
2429 	u_int64_t tsf;
2430 
2431 	/* extract tstamp from last beacon and convert to TU */
2432 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2433 			     LE_READ_4(ni->ni_tstamp.data));
2434 	/* NB: the beacon interval is kept internally in TU's */
2435 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2436 	if (nexttbtt == 0)		/* e.g. for ap mode */
2437 		nexttbtt = intval;
2438 	else if (intval)		/* NB: can be 0 for monitor mode */
2439 		nexttbtt = roundup(nexttbtt, intval);
2440 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2441 		__func__, nexttbtt, intval, ni->ni_intval);
2442 	if (ic->ic_opmode == IEEE80211_M_STA) {
2443 		HAL_BEACON_STATE bs;
2444 		int dtimperiod, dtimcount;
2445 		int cfpperiod, cfpcount;
2446 
2447 		/*
2448 		 * Setup dtim and cfp parameters according to
2449 		 * last beacon we received (which may be none).
2450 		 */
2451 		dtimperiod = ni->ni_dtim_period;
2452 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2453 			dtimperiod = 1;
2454 		dtimcount = ni->ni_dtim_count;
2455 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2456 			dtimcount = 0;		/* XXX? */
2457 		cfpperiod = 1;			/* NB: no PCF support yet */
2458 		cfpcount = 0;
2459 		/*
2460 		 * Pull nexttbtt forward to reflect the current
2461 		 * TSF and calculate dtim+cfp state for the result.
2462 		 */
2463 		tsf = ath_hal_gettsf64(ah);
2464 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2465 		do {
2466 			nexttbtt += intval;
2467 			if (--dtimcount < 0) {
2468 				dtimcount = dtimperiod - 1;
2469 				if (--cfpcount < 0)
2470 					cfpcount = cfpperiod - 1;
2471 			}
2472 		} while (nexttbtt < tsftu);
2473 		memset(&bs, 0, sizeof(bs));
2474 		bs.bs_intval = intval;
2475 		bs.bs_nexttbtt = nexttbtt;
2476 		bs.bs_dtimperiod = dtimperiod*intval;
2477 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2478 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2479 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2480 		bs.bs_cfpmaxduration = 0;
2481 #if 0
2482 		/*
2483 		 * The 802.11 layer records the offset to the DTIM
2484 		 * bitmap while receiving beacons; use it here to
2485 		 * enable h/w detection of our AID being marked in
2486 		 * the bitmap vector (to indicate frames for us are
2487 		 * pending at the AP).
2488 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2489 		 * XXX enable based on h/w rev for newer chips
2490 		 */
2491 		bs.bs_timoffset = ni->ni_timoff;
2492 #endif
2493 		/*
2494 		 * Calculate the number of consecutive beacons to miss
2495 		 * before taking a BMISS interrupt.  The configuration
2496 		 * is specified in ms, so we need to convert that to
2497 		 * TU's and then calculate based on the beacon interval.
2498 		 * Note that we clamp the result to at most 10 beacons.
2499 		 */
2500 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2501 		if (bs.bs_bmissthreshold > 10)
2502 			bs.bs_bmissthreshold = 10;
2503 		else if (bs.bs_bmissthreshold <= 0)
2504 			bs.bs_bmissthreshold = 1;
2505 
2506 		/*
2507 		 * Calculate sleep duration.  The configuration is
2508 		 * given in ms.  We insure a multiple of the beacon
2509 		 * period is used.  Also, if the sleep duration is
2510 		 * greater than the DTIM period then it makes senses
2511 		 * to make it a multiple of that.
2512 		 *
2513 		 * XXX fixed at 100ms
2514 		 */
2515 		bs.bs_sleepduration =
2516 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2517 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2518 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2519 
2520 		DPRINTF(sc, ATH_DEBUG_BEACON,
2521 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2522 			, __func__
2523 			, tsf, tsftu
2524 			, bs.bs_intval
2525 			, bs.bs_nexttbtt
2526 			, bs.bs_dtimperiod
2527 			, bs.bs_nextdtim
2528 			, bs.bs_bmissthreshold
2529 			, bs.bs_sleepduration
2530 			, bs.bs_cfpperiod
2531 			, bs.bs_cfpmaxduration
2532 			, bs.bs_cfpnext
2533 			, bs.bs_timoffset
2534 		);
2535 		ath_hal_intrset(ah, 0);
2536 		ath_hal_beacontimers(ah, &bs);
2537 		sc->sc_imask |= HAL_INT_BMISS;
2538 		ath_hal_intrset(ah, sc->sc_imask);
2539 	} else {
2540 		ath_hal_intrset(ah, 0);
2541 		if (nexttbtt == intval)
2542 			intval |= HAL_BEACON_RESET_TSF;
2543 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2544 			/*
2545 			 * In IBSS mode enable the beacon timers but only
2546 			 * enable SWBA interrupts if we need to manually
2547 			 * prepare beacon frames.  Otherwise we use a
2548 			 * self-linked tx descriptor and let the hardware
2549 			 * deal with things.
2550 			 */
2551 			intval |= HAL_BEACON_ENA;
2552 			if (!sc->sc_hasveol)
2553 				sc->sc_imask |= HAL_INT_SWBA;
2554 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2555 				/*
2556 				 * Pull nexttbtt forward to reflect
2557 				 * the current TSF.
2558 				 */
2559 				tsf = ath_hal_gettsf64(ah);
2560 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2561 				do {
2562 					nexttbtt += intval;
2563 				} while (nexttbtt < tsftu);
2564 			}
2565 			ath_beaconq_config(sc);
2566 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2567 			/*
2568 			 * In AP mode we enable the beacon timers and
2569 			 * SWBA interrupts to prepare beacon frames.
2570 			 */
2571 			intval |= HAL_BEACON_ENA;
2572 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2573 			ath_beaconq_config(sc);
2574 		}
2575 		ath_hal_beaconinit(ah, nexttbtt, intval);
2576 		sc->sc_bmisscount = 0;
2577 		ath_hal_intrset(ah, sc->sc_imask);
2578 		/*
2579 		 * When using a self-linked beacon descriptor in
2580 		 * ibss mode load it once here.
2581 		 */
2582 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2583 			ath_beacon_proc(sc, 0);
2584 	}
2585 	sc->sc_syncbeacon = 0;
2586 #undef UNDEF
2587 #undef TSF_TO_TU
2588 }
2589 
2590 static int
ath_descdma_setup(struct ath_softc * sc,struct ath_descdma * dd,ath_bufhead * head,const char * name,int nbuf,int ndesc)2591 ath_descdma_setup(struct ath_softc *sc,
2592 	struct ath_descdma *dd, ath_bufhead *head,
2593 	const char *name, int nbuf, int ndesc)
2594 {
2595 #define	DS2PHYS(_dd, _ds) \
2596 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2597 	struct ifnet *ifp = &sc->sc_if;
2598 	struct ath_desc *ds;
2599 	struct ath_buf *bf;
2600 	int i, bsize, error;
2601 
2602 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2603 	    __func__, name, nbuf, ndesc);
2604 
2605 	dd->dd_name = name;
2606 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2607 
2608 	/*
2609 	 * Setup DMA descriptor area.
2610 	 */
2611 	dd->dd_dmat = sc->sc_dmat;
2612 
2613 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2614 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2615 
2616 	if (error != 0) {
2617 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2618 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2619 		goto fail0;
2620 	}
2621 
2622 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2623 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2624 	if (error != 0) {
2625 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2626 		    nbuf * ndesc, dd->dd_name, error);
2627 		goto fail1;
2628 	}
2629 
2630 	/* allocate descriptors */
2631 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2632 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2633 	if (error != 0) {
2634 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2635 			"error %u\n", dd->dd_name, error);
2636 		goto fail2;
2637 	}
2638 
2639 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2640 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2641 	if (error != 0) {
2642 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2643 			dd->dd_name, error);
2644 		goto fail3;
2645 	}
2646 
2647 	ds = dd->dd_desc;
2648 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2649 	DPRINTF(sc, ATH_DEBUG_RESET,
2650 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2651 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2652 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2653 
2654 	/* allocate rx buffers */
2655 	bsize = sizeof(struct ath_buf) * nbuf;
2656 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2657 	if (bf == NULL) {
2658 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2659 			dd->dd_name, bsize);
2660 		goto fail4;
2661 	}
2662 	dd->dd_bufptr = bf;
2663 
2664 	STAILQ_INIT(head);
2665 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2666 		bf->bf_desc = ds;
2667 		bf->bf_daddr = DS2PHYS(dd, ds);
2668 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2669 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2670 		if (error != 0) {
2671 			if_printf(ifp, "unable to create dmamap for %s "
2672 				"buffer %u, error %u\n", dd->dd_name, i, error);
2673 			ath_descdma_cleanup(sc, dd, head);
2674 			return error;
2675 		}
2676 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2677 	}
2678 	return 0;
2679 fail4:
2680 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2681 fail3:
2682 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2683 fail2:
2684 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2685 fail1:
2686 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2687 fail0:
2688 	memset(dd, 0, sizeof(*dd));
2689 	return error;
2690 #undef DS2PHYS
2691 }
2692 
2693 static void
ath_descdma_cleanup(struct ath_softc * sc,struct ath_descdma * dd,ath_bufhead * head)2694 ath_descdma_cleanup(struct ath_softc *sc,
2695 	struct ath_descdma *dd, ath_bufhead *head)
2696 {
2697 	struct ath_buf *bf;
2698 	struct ieee80211_node *ni;
2699 
2700 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2701 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2702 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2703 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2704 
2705 	STAILQ_FOREACH(bf, head, bf_list) {
2706 		if (bf->bf_m) {
2707 			m_freem(bf->bf_m);
2708 			bf->bf_m = NULL;
2709 		}
2710 		if (bf->bf_dmamap != NULL) {
2711 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2712 			bf->bf_dmamap = NULL;
2713 		}
2714 		ni = bf->bf_node;
2715 		bf->bf_node = NULL;
2716 		if (ni != NULL) {
2717 			/*
2718 			 * Reclaim node reference.
2719 			 */
2720 			ieee80211_free_node(ni);
2721 		}
2722 	}
2723 
2724 	STAILQ_INIT(head);
2725 	free(dd->dd_bufptr, M_ATHDEV);
2726 	memset(dd, 0, sizeof(*dd));
2727 }
2728 
2729 static int
ath_desc_alloc(struct ath_softc * sc)2730 ath_desc_alloc(struct ath_softc *sc)
2731 {
2732 	int error;
2733 
2734 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2735 			"rx", ath_rxbuf, 1);
2736 	if (error != 0)
2737 		return error;
2738 
2739 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2740 			"tx", ath_txbuf, ATH_TXDESC);
2741 	if (error != 0) {
2742 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2743 		return error;
2744 	}
2745 
2746 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2747 			"beacon", 1, 1);
2748 	if (error != 0) {
2749 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2750 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2751 		return error;
2752 	}
2753 	return 0;
2754 }
2755 
2756 static void
ath_desc_free(struct ath_softc * sc)2757 ath_desc_free(struct ath_softc *sc)
2758 {
2759 
2760 	if (sc->sc_bdma.dd_desc_len != 0)
2761 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2762 	if (sc->sc_txdma.dd_desc_len != 0)
2763 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2764 	if (sc->sc_rxdma.dd_desc_len != 0)
2765 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2766 }
2767 
2768 static struct ieee80211_node *
ath_node_alloc(struct ieee80211_node_table * nt)2769 ath_node_alloc(struct ieee80211_node_table *nt)
2770 {
2771 	struct ieee80211com *ic = nt->nt_ic;
2772 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2773 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2774 	struct ath_node *an;
2775 
2776 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2777 	if (an == NULL) {
2778 		/* XXX stat+msg */
2779 		return NULL;
2780 	}
2781 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2782 	ath_rate_node_init(sc, an);
2783 
2784 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2785 	return &an->an_node;
2786 }
2787 
2788 static void
ath_node_free(struct ieee80211_node * ni)2789 ath_node_free(struct ieee80211_node *ni)
2790 {
2791 	struct ieee80211com *ic = ni->ni_ic;
2792         struct ath_softc *sc = ic->ic_ifp->if_softc;
2793 
2794 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2795 
2796 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2797 	sc->sc_node_free(ni);
2798 }
2799 
2800 static u_int8_t
ath_node_getrssi(const struct ieee80211_node * ni)2801 ath_node_getrssi(const struct ieee80211_node *ni)
2802 {
2803 #define	HAL_EP_RND(x, mul) \
2804 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2805 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2806 	int32_t rssi;
2807 
2808 	/*
2809 	 * When only one frame is received there will be no state in
2810 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2811 	 */
2812 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2813 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2814 	else
2815 		rssi = ni->ni_rssi;
2816 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2817 #undef HAL_EP_RND
2818 }
2819 
2820 static int
ath_rxbuf_init(struct ath_softc * sc,struct ath_buf * bf)2821 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2822 {
2823 	struct ath_hal *ah = sc->sc_ah;
2824 	int error;
2825 	struct mbuf *m;
2826 	struct ath_desc *ds;
2827 
2828 	m = bf->bf_m;
2829 	if (m == NULL) {
2830 		/*
2831 		 * NB: by assigning a page to the rx dma buffer we
2832 		 * implicitly satisfy the Atheros requirement that
2833 		 * this buffer be cache-line-aligned and sized to be
2834 		 * multiple of the cache line size.  Not doing this
2835 		 * causes weird stuff to happen (for the 5210 at least).
2836 		 */
2837 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2838 		if (m == NULL) {
2839 			DPRINTF(sc, ATH_DEBUG_ANY,
2840 				"%s: no mbuf/cluster\n", __func__);
2841 			sc->sc_stats.ast_rx_nombuf++;
2842 			return ENOMEM;
2843 		}
2844 		bf->bf_m = m;
2845 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2846 
2847 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2848 					     bf->bf_dmamap, m,
2849 					     BUS_DMA_NOWAIT);
2850 		if (error != 0) {
2851 			DPRINTF(sc, ATH_DEBUG_ANY,
2852 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2853 			    __func__, error);
2854 			sc->sc_stats.ast_rx_busdma++;
2855 			return error;
2856 		}
2857 		KASSERTMSG(bf->bf_nseg == 1,
2858 			"multi-segment packet; nseg %u", bf->bf_nseg);
2859 	}
2860 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2861 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2862 
2863 	/*
2864 	 * Setup descriptors.  For receive we always terminate
2865 	 * the descriptor list with a self-linked entry so we'll
2866 	 * not get overrun under high load (as can happen with a
2867 	 * 5212 when ANI processing enables PHY error frames).
2868 	 *
2869 	 * To insure the last descriptor is self-linked we create
2870 	 * each descriptor as self-linked and add it to the end.  As
2871 	 * each additional descriptor is added the previous self-linked
2872 	 * entry is ``fixed'' naturally.  This should be safe even
2873 	 * if DMA is happening.  When processing RX interrupts we
2874 	 * never remove/process the last, self-linked, entry on the
2875 	 * descriptor list.  This insures the hardware always has
2876 	 * someplace to write a new frame.
2877 	 */
2878 	ds = bf->bf_desc;
2879 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2880 	ds->ds_data = bf->bf_segs[0].ds_addr;
2881 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2882 	ath_hal_setuprxdesc(ah, ds
2883 		, m->m_len		/* buffer size */
2884 		, 0
2885 	);
2886 
2887 	if (sc->sc_rxlink != NULL)
2888 		*sc->sc_rxlink = bf->bf_daddr;
2889 	sc->sc_rxlink = &ds->ds_link;
2890 	return 0;
2891 }
2892 
2893 /*
2894  * Extend 15-bit time stamp from rx descriptor to
2895  * a full 64-bit TSF using the specified TSF.
2896  */
2897 static inline u_int64_t
ath_extend_tsf(u_int32_t rstamp,u_int64_t tsf)2898 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2899 {
2900 	if ((tsf & 0x7fff) < rstamp)
2901 		tsf -= 0x8000;
2902 	return ((tsf &~ 0x7fff) | rstamp);
2903 }
2904 
2905 /*
2906  * Intercept management frames to collect beacon rssi data
2907  * and to do ibss merges.
2908  */
2909 static void
ath_recv_mgmt(struct ieee80211com * ic,struct mbuf * m,struct ieee80211_node * ni,int subtype,int rssi,u_int32_t rstamp)2910 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2911 	struct ieee80211_node *ni,
2912 	int subtype, int rssi, u_int32_t rstamp)
2913 {
2914 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2915 
2916 	/*
2917 	 * Call up first so subsequent work can use information
2918 	 * potentially stored in the node (e.g. for ibss merge).
2919 	 */
2920 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2921 	switch (subtype) {
2922 	case IEEE80211_FC0_SUBTYPE_BEACON:
2923 		/* update rssi statistics for use by the hal */
2924 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2925 		if (sc->sc_syncbeacon &&
2926 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2927 			/*
2928 			 * Resync beacon timers using the tsf of the beacon
2929 			 * frame we just received.
2930 			 */
2931 			ath_beacon_config(sc);
2932 		}
2933 		/* fall thru... */
2934 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2935 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2936 		    ic->ic_state == IEEE80211_S_RUN) {
2937 			u_int64_t tsf = ath_extend_tsf(rstamp,
2938 				ath_hal_gettsf64(sc->sc_ah));
2939 
2940 			/*
2941 			 * Handle ibss merge as needed; check the tsf on the
2942 			 * frame before attempting the merge.  The 802.11 spec
2943 			 * says the station should change its bssid to match
2944 			 * the oldest station with the same ssid, where oldest
2945 			 * is determined by the tsf.  Note that hardware
2946 			 * reconfiguration happens through callback to
2947 			 * ath_newstate as the state machine will go from
2948 			 * RUN -> RUN when this happens.
2949 			 */
2950 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2951 				DPRINTF(sc, ATH_DEBUG_STATE,
2952 				    "ibss merge, rstamp %u tsf %ju "
2953 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2954 				    (uintmax_t)ni->ni_tstamp.tsf);
2955 				(void) ieee80211_ibss_merge(ni);
2956 			}
2957 		}
2958 		break;
2959 	}
2960 }
2961 
2962 /*
2963  * Set the default antenna.
2964  */
2965 static void
ath_setdefantenna(struct ath_softc * sc,u_int antenna)2966 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2967 {
2968 	struct ath_hal *ah = sc->sc_ah;
2969 
2970 	/* XXX block beacon interrupts */
2971 	ath_hal_setdefantenna(ah, antenna);
2972 	if (sc->sc_defant != antenna)
2973 		sc->sc_stats.ast_ant_defswitch++;
2974 	sc->sc_defant = antenna;
2975 	sc->sc_rxotherant = 0;
2976 }
2977 
2978 static void
ath_handle_micerror(struct ieee80211com * ic,struct ieee80211_frame * wh,int keyix)2979 ath_handle_micerror(struct ieee80211com *ic,
2980 	struct ieee80211_frame *wh, int keyix)
2981 {
2982 	struct ieee80211_node *ni;
2983 
2984 	/* XXX recheck MIC to deal w/ chips that lie */
2985 	/* XXX discard MIC errors on !data frames */
2986 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2987 	if (ni != NULL) {
2988 		ieee80211_notify_michael_failure(ic, wh, keyix);
2989 		ieee80211_free_node(ni);
2990 	}
2991 }
2992 
2993 static void
ath_rx_proc(void * arg,int npending)2994 ath_rx_proc(void *arg, int npending)
2995 {
2996 #define	PA2DESC(_sc, _pa) \
2997 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2998 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2999 	struct ath_softc *sc = arg;
3000 	struct ath_buf *bf;
3001 	struct ieee80211com *ic = &sc->sc_ic;
3002 	struct ifnet *ifp = &sc->sc_if;
3003 	struct ath_hal *ah = sc->sc_ah;
3004 	struct ath_desc *ds;
3005 	struct mbuf *m;
3006 	struct ieee80211_node *ni;
3007 	struct ath_node *an;
3008 	int len, ngood, type;
3009 	u_int phyerr;
3010 	HAL_STATUS status;
3011 	int16_t nf;
3012 	u_int64_t tsf;
3013 	uint8_t rxerr_tap, rxerr_mon;
3014 
3015 	NET_LOCK_GIANT();		/* XXX */
3016 
3017 	rxerr_tap =
3018 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3019 
3020 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3021 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3022 	else if (ifp->if_flags & IFF_PROMISC)
3023 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3024 
3025 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3026 	ngood = 0;
3027 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3028 	tsf = ath_hal_gettsf64(ah);
3029 	do {
3030 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3031 		if (bf == NULL) {		/* NB: shouldn't happen */
3032 			if_printf(ifp, "%s: no buffer!\n", __func__);
3033 			break;
3034 		}
3035 		ds = bf->bf_desc;
3036 		if (ds->ds_link == bf->bf_daddr) {
3037 			/* NB: never process the self-linked entry at the end */
3038 			break;
3039 		}
3040 		m = bf->bf_m;
3041 		if (m == NULL) {		/* NB: shouldn't happen */
3042 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3043 			break;
3044 		}
3045 		/* XXX sync descriptor memory */
3046 		/*
3047 		 * Must provide the virtual address of the current
3048 		 * descriptor, the physical address, and the virtual
3049 		 * address of the next descriptor in the h/w chain.
3050 		 * This allows the HAL to look ahead to see if the
3051 		 * hardware is done with a descriptor by checking the
3052 		 * done bit in the following descriptor and the address
3053 		 * of the current descriptor the DMA engine is working
3054 		 * on.  All this is necessary because of our use of
3055 		 * a self-linked list to avoid rx overruns.
3056 		 */
3057 		status = ath_hal_rxprocdesc(ah, ds,
3058 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3059 				&ds->ds_rxstat);
3060 #ifdef AR_DEBUG
3061 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3062 			ath_printrxbuf(bf, status == HAL_OK);
3063 #endif
3064 		if (status == HAL_EINPROGRESS)
3065 			break;
3066 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3067 		if (ds->ds_rxstat.rs_more) {
3068 			/*
3069 			 * Frame spans multiple descriptors; this
3070 			 * cannot happen yet as we don't support
3071 			 * jumbograms.  If not in monitor mode,
3072 			 * discard the frame.
3073 			 */
3074 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3075 				sc->sc_stats.ast_rx_toobig++;
3076 				goto rx_next;
3077 			}
3078 			/* fall thru for monitor mode handling... */
3079 		} else if (ds->ds_rxstat.rs_status != 0) {
3080 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3081 				sc->sc_stats.ast_rx_crcerr++;
3082 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3083 				sc->sc_stats.ast_rx_fifoerr++;
3084 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3085 				sc->sc_stats.ast_rx_phyerr++;
3086 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3087 				sc->sc_stats.ast_rx_phy[phyerr]++;
3088 				goto rx_next;
3089 			}
3090 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3091 				/*
3092 				 * Decrypt error.  If the error occurred
3093 				 * because there was no hardware key, then
3094 				 * let the frame through so the upper layers
3095 				 * can process it.  This is necessary for 5210
3096 				 * parts which have no way to setup a ``clear''
3097 				 * key cache entry.
3098 				 *
3099 				 * XXX do key cache faulting
3100 				 */
3101 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3102 					goto rx_accept;
3103 				sc->sc_stats.ast_rx_badcrypt++;
3104 			}
3105 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3106 				sc->sc_stats.ast_rx_badmic++;
3107 				/*
3108 				 * Do minimal work required to hand off
3109 				 * the 802.11 header for notifcation.
3110 				 */
3111 				/* XXX frag's and qos frames */
3112 				len = ds->ds_rxstat.rs_datalen;
3113 				if (len >= sizeof (struct ieee80211_frame)) {
3114 					bus_dmamap_sync(sc->sc_dmat,
3115 					    bf->bf_dmamap,
3116 					    0, bf->bf_dmamap->dm_mapsize,
3117 					    BUS_DMASYNC_POSTREAD);
3118 					ath_handle_micerror(ic,
3119 					    mtod(m, struct ieee80211_frame *),
3120 					    sc->sc_splitmic ?
3121 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3122 				}
3123 			}
3124 			ifp->if_ierrors++;
3125 			/*
3126 			 * Reject error frames, we normally don't want
3127 			 * to see them in monitor mode (in monitor mode
3128 			 * allow through packets that have crypto problems).
3129 			 */
3130 
3131 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3132 				goto rx_next;
3133 		}
3134 rx_accept:
3135 		/*
3136 		 * Sync and unmap the frame.  At this point we're
3137 		 * committed to passing the mbuf somewhere so clear
3138 		 * bf_m; this means a new sk_buff must be allocated
3139 		 * when the rx descriptor is setup again to receive
3140 		 * another frame.
3141 		 */
3142 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3143 		    0, bf->bf_dmamap->dm_mapsize,
3144 		    BUS_DMASYNC_POSTREAD);
3145 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3146 		bf->bf_m = NULL;
3147 
3148 		m_set_rcvif(m, ifp);
3149 		len = ds->ds_rxstat.rs_datalen;
3150 		m->m_pkthdr.len = m->m_len = len;
3151 
3152 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3153 
3154 		if (sc->sc_drvbpf) {
3155 			u_int8_t rix;
3156 
3157 			/*
3158 			 * Discard anything shorter than an ack or cts.
3159 			 */
3160 			if (len < IEEE80211_ACK_LEN) {
3161 				DPRINTF(sc, ATH_DEBUG_RECV,
3162 					"%s: runt packet %d\n",
3163 					__func__, len);
3164 				sc->sc_stats.ast_rx_tooshort++;
3165 				m_freem(m);
3166 				goto rx_next;
3167 			}
3168 			rix = ds->ds_rxstat.rs_rate;
3169 			sc->sc_rx_th.wr_tsf = htole64(
3170 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3171 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3172 			if (ds->ds_rxstat.rs_status &
3173 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3174 				sc->sc_rx_th.wr_flags |=
3175 				    IEEE80211_RADIOTAP_F_BADFCS;
3176 			}
3177 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3178 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3179 			sc->sc_rx_th.wr_antnoise = nf;
3180 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3181 
3182 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3183 			    sc->sc_rx_th_len, m);
3184 		}
3185 
3186 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3187 			m_freem(m);
3188 			goto rx_next;
3189 		}
3190 		/*
3191 		 * From this point on we assume the frame is at least
3192 		 * as large as ieee80211_frame_min; verify that.
3193 		 */
3194 		if (len < IEEE80211_MIN_LEN) {
3195 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3196 				__func__, len);
3197 			sc->sc_stats.ast_rx_tooshort++;
3198 			m_freem(m);
3199 			goto rx_next;
3200 		}
3201 
3202 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3203 			ieee80211_dump_pkt(mtod(m, void *), len,
3204 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3205 				   ds->ds_rxstat.rs_rssi);
3206 		}
3207 
3208 		m_adj(m, -IEEE80211_CRC_LEN);
3209 
3210 		/*
3211 		 * Locate the node for sender, track state, and then
3212 		 * pass the (referenced) node up to the 802.11 layer
3213 		 * for its use.
3214 		 */
3215 		ni = ieee80211_find_rxnode_withkey(ic,
3216 			mtod(m, const struct ieee80211_frame_min *),
3217 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3218 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3219 		/*
3220 		 * Track rx rssi and do any rx antenna management.
3221 		 */
3222 		an = ATH_NODE(ni);
3223 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3224 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3225 		/*
3226 		 * Send frame up for processing.
3227 		 */
3228 		type = ieee80211_input(ic, m, ni,
3229 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3230 		ieee80211_free_node(ni);
3231 		if (sc->sc_diversity) {
3232 			/*
3233 			 * When using fast diversity, change the default rx
3234 			 * antenna if diversity chooses the other antenna 3
3235 			 * times in a row.
3236 			 */
3237 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3238 				if (++sc->sc_rxotherant >= 3)
3239 					ath_setdefantenna(sc,
3240 						ds->ds_rxstat.rs_antenna);
3241 			} else
3242 				sc->sc_rxotherant = 0;
3243 		}
3244 		if (sc->sc_softled) {
3245 			/*
3246 			 * Blink for any data frame.  Otherwise do a
3247 			 * heartbeat-style blink when idle.  The latter
3248 			 * is mainly for station mode where we depend on
3249 			 * periodic beacon frames to trigger the poll event.
3250 			 */
3251 			if (type == IEEE80211_FC0_TYPE_DATA) {
3252 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3253 				ath_led_event(sc, ATH_LED_RX);
3254 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3255 				ath_led_event(sc, ATH_LED_POLL);
3256 		}
3257 		/*
3258 		 * Arrange to update the last rx timestamp only for
3259 		 * frames from our ap when operating in station mode.
3260 		 * This assumes the rx key is always setup when associated.
3261 		 */
3262 		if (ic->ic_opmode == IEEE80211_M_STA &&
3263 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3264 			ngood++;
3265 rx_next:
3266 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3267 	} while (ath_rxbuf_init(sc, bf) == 0);
3268 
3269 	/* rx signal state monitoring */
3270 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3271 #if 0
3272 	if (ath_hal_radar_event(ah))
3273 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3274 #endif
3275 	if (ngood)
3276 		sc->sc_lastrx = tsf;
3277 
3278 #ifdef __NetBSD__
3279 	/* XXX Why isn't this necessary in FreeBSD? */
3280 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3281 		ath_start(ifp);
3282 #endif /* __NetBSD__ */
3283 
3284 	NET_UNLOCK_GIANT();		/* XXX */
3285 #undef PA2DESC
3286 }
3287 
3288 /*
3289  * Setup a h/w transmit queue.
3290  */
3291 static struct ath_txq *
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)3292 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3293 {
3294 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3295 	struct ath_hal *ah = sc->sc_ah;
3296 	HAL_TXQ_INFO qi;
3297 	int qnum;
3298 
3299 	memset(&qi, 0, sizeof(qi));
3300 	qi.tqi_subtype = subtype;
3301 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3302 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3303 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3304 	/*
3305 	 * Enable interrupts only for EOL and DESC conditions.
3306 	 * We mark tx descriptors to receive a DESC interrupt
3307 	 * when a tx queue gets deep; otherwise waiting for the
3308 	 * EOL to reap descriptors.  Note that this is done to
3309 	 * reduce interrupt load and this only defers reaping
3310 	 * descriptors, never transmitting frames.  Aside from
3311 	 * reducing interrupts this also permits more concurrency.
3312 	 * The only potential downside is if the tx queue backs
3313 	 * up in which case the top half of the kernel may backup
3314 	 * due to a lack of tx descriptors.
3315 	 */
3316 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3317 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3318 	if (qnum == -1) {
3319 		/*
3320 		 * NB: don't print a message, this happens
3321 		 * normally on parts with too few tx queues
3322 		 */
3323 		return NULL;
3324 	}
3325 	if (qnum >= N(sc->sc_txq)) {
3326 		device_printf(sc->sc_dev,
3327 			"hal qnum %u out of range, max %zu!\n",
3328 			qnum, N(sc->sc_txq));
3329 		ath_hal_releasetxqueue(ah, qnum);
3330 		return NULL;
3331 	}
3332 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3333 		struct ath_txq *txq = &sc->sc_txq[qnum];
3334 
3335 		txq->axq_qnum = qnum;
3336 		txq->axq_depth = 0;
3337 		txq->axq_intrcnt = 0;
3338 		txq->axq_link = NULL;
3339 		STAILQ_INIT(&txq->axq_q);
3340 		ATH_TXQ_LOCK_INIT(sc, txq);
3341 		sc->sc_txqsetup |= 1<<qnum;
3342 	}
3343 	return &sc->sc_txq[qnum];
3344 #undef N
3345 }
3346 
3347 /*
3348  * Setup a hardware data transmit queue for the specified
3349  * access control.  The hal may not support all requested
3350  * queues in which case it will return a reference to a
3351  * previously setup queue.  We record the mapping from ac's
3352  * to h/w queues for use by ath_tx_start and also track
3353  * the set of h/w queues being used to optimize work in the
3354  * transmit interrupt handler and related routines.
3355  */
3356 static int
ath_tx_setup(struct ath_softc * sc,int ac,int haltype)3357 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3358 {
3359 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3360 	struct ath_txq *txq;
3361 
3362 	if (ac >= N(sc->sc_ac2q)) {
3363 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3364 			ac, N(sc->sc_ac2q));
3365 		return 0;
3366 	}
3367 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3368 	if (txq != NULL) {
3369 		sc->sc_ac2q[ac] = txq;
3370 		return 1;
3371 	} else
3372 		return 0;
3373 #undef N
3374 }
3375 
3376 /*
3377  * Update WME parameters for a transmit queue.
3378  */
3379 static int
ath_txq_update(struct ath_softc * sc,int ac)3380 ath_txq_update(struct ath_softc *sc, int ac)
3381 {
3382 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3383 #define	ATH_TXOP_TO_US(v)		(v<<5)
3384 	struct ieee80211com *ic = &sc->sc_ic;
3385 	struct ath_txq *txq = sc->sc_ac2q[ac];
3386 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3387 	struct ath_hal *ah = sc->sc_ah;
3388 	HAL_TXQ_INFO qi;
3389 
3390 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3391 	qi.tqi_aifs = wmep->wmep_aifsn;
3392 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3393 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3394 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3395 
3396 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3397 		device_printf(sc->sc_dev, "unable to update hardware queue "
3398 			"parameters for %s traffic!\n",
3399 			ieee80211_wme_acnames[ac]);
3400 		return 0;
3401 	} else {
3402 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3403 		return 1;
3404 	}
3405 #undef ATH_TXOP_TO_US
3406 #undef ATH_EXPONENT_TO_VALUE
3407 }
3408 
3409 /*
3410  * Callback from the 802.11 layer to update WME parameters.
3411  */
3412 static int
ath_wme_update(struct ieee80211com * ic)3413 ath_wme_update(struct ieee80211com *ic)
3414 {
3415 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3416 
3417 	return !ath_txq_update(sc, WME_AC_BE) ||
3418 	    !ath_txq_update(sc, WME_AC_BK) ||
3419 	    !ath_txq_update(sc, WME_AC_VI) ||
3420 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3421 }
3422 
3423 /*
3424  * Reclaim resources for a setup queue.
3425  */
3426 static void
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)3427 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3428 {
3429 
3430 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3431 	ATH_TXQ_LOCK_DESTROY(txq);
3432 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3433 }
3434 
3435 /*
3436  * Reclaim all tx queue resources.
3437  */
3438 static void
ath_tx_cleanup(struct ath_softc * sc)3439 ath_tx_cleanup(struct ath_softc *sc)
3440 {
3441 	int i;
3442 
3443 	ATH_TXBUF_LOCK_DESTROY(sc);
3444 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3445 		if (ATH_TXQ_SETUP(sc, i))
3446 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3447 }
3448 
3449 /*
3450  * Defragment an mbuf chain, returning at most maxfrags separate
3451  * mbufs+clusters.  If this is not possible NULL is returned and
3452  * the original mbuf chain is left in its present (potentially
3453  * modified) state.  We use two techniques: collapsing consecutive
3454  * mbufs and replacing consecutive mbufs by a cluster.
3455  */
3456 static struct mbuf *
ath_defrag(struct mbuf * m0,int how,int maxfrags)3457 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3458 {
3459 	struct mbuf *m, *n, *n2, **prev;
3460 	u_int curfrags;
3461 
3462 	/*
3463 	 * Calculate the current number of frags.
3464 	 */
3465 	curfrags = 0;
3466 	for (m = m0; m != NULL; m = m->m_next)
3467 		curfrags++;
3468 	/*
3469 	 * First, try to collapse mbufs.  Note that we always collapse
3470 	 * towards the front so we don't need to deal with moving the
3471 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3472 	 * less data than the following.
3473 	 */
3474 	m = m0;
3475 again:
3476 	for (;;) {
3477 		n = m->m_next;
3478 		if (n == NULL)
3479 			break;
3480 		if (n->m_len < M_TRAILINGSPACE(m)) {
3481 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3482 				n->m_len);
3483 			m->m_len += n->m_len;
3484 			m->m_next = n->m_next;
3485 			m_free(n);
3486 			if (--curfrags <= maxfrags)
3487 				return m0;
3488 		} else
3489 			m = n;
3490 	}
3491 	KASSERTMSG(maxfrags > 1,
3492 		"maxfrags %u, but normal collapse failed", maxfrags);
3493 	/*
3494 	 * Collapse consecutive mbufs to a cluster.
3495 	 */
3496 	prev = &m0->m_next;		/* NB: not the first mbuf */
3497 	while ((n = *prev) != NULL) {
3498 		if ((n2 = n->m_next) != NULL &&
3499 		    n->m_len + n2->m_len < MCLBYTES) {
3500 			m = m_getcl(how, MT_DATA, 0);
3501 			if (m == NULL)
3502 				goto bad;
3503 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3504 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3505 				n2->m_len);
3506 			m->m_len = n->m_len + n2->m_len;
3507 			m->m_next = n2->m_next;
3508 			*prev = m;
3509 			m_free(n);
3510 			m_free(n2);
3511 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3512 				return m0;
3513 			/*
3514 			 * Still not there, try the normal collapse
3515 			 * again before we allocate another cluster.
3516 			 */
3517 			goto again;
3518 		}
3519 		prev = &n->m_next;
3520 	}
3521 	/*
3522 	 * No place where we can collapse to a cluster; punt.
3523 	 * This can occur if, for example, you request 2 frags
3524 	 * but the packet requires that both be clusters (we
3525 	 * never reallocate the first mbuf to avoid moving the
3526 	 * packet header).
3527 	 */
3528 bad:
3529 	return NULL;
3530 }
3531 
3532 /*
3533  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3534  */
3535 static int
ath_tx_findrix(const HAL_RATE_TABLE * rt,int rate)3536 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3537 {
3538 	int i;
3539 
3540 	for (i = 0; i < rt->rateCount; i++)
3541 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3542 			return i;
3543 	return 0;		/* NB: lowest rate */
3544 }
3545 
3546 static void
ath_freetx(struct mbuf * m)3547 ath_freetx(struct mbuf *m)
3548 {
3549 	struct mbuf *next;
3550 
3551 	do {
3552 		next = m->m_nextpkt;
3553 		m->m_nextpkt = NULL;
3554 		m_freem(m);
3555 	} while ((m = next) != NULL);
3556 }
3557 
3558 static int
deduct_pad_bytes(int len,int hdrlen)3559 deduct_pad_bytes(int len, int hdrlen)
3560 {
3561 	/* XXX I am suspicious that this code, which I extracted
3562 	 * XXX from ath_tx_start() for reuse, does the right thing.
3563 	 */
3564 	return len - (hdrlen & 3);
3565 }
3566 
3567 static int
ath_tx_start(struct ath_softc * sc,struct ieee80211_node * ni,struct ath_buf * bf,struct mbuf * m0)3568 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3569     struct mbuf *m0)
3570 {
3571 	struct ieee80211com *ic = &sc->sc_ic;
3572 	struct ath_hal *ah = sc->sc_ah;
3573 	struct ifnet *ifp = &sc->sc_if;
3574 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3575 	int i, error, iswep, ismcast, isfrag, ismrr;
3576 	int keyix, hdrlen, pktlen, try0;
3577 	u_int8_t rix, txrate, ctsrate;
3578 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3579 	struct ath_desc *ds, *ds0;
3580 	struct ath_txq *txq;
3581 	struct ieee80211_frame *wh;
3582 	u_int subtype, flags, ctsduration;
3583 	HAL_PKT_TYPE atype;
3584 	const HAL_RATE_TABLE *rt;
3585 	HAL_BOOL shortPreamble;
3586 	struct ath_node *an;
3587 	struct mbuf *m;
3588 	u_int pri;
3589 
3590 	wh = mtod(m0, struct ieee80211_frame *);
3591 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3592 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3593 	isfrag = m0->m_flags & M_FRAG;
3594 	hdrlen = ieee80211_anyhdrsize(wh);
3595 	/*
3596 	 * Packet length must not include any
3597 	 * pad bytes; deduct them here.
3598 	 */
3599 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3600 
3601 	if (iswep) {
3602 		const struct ieee80211_cipher *cip;
3603 		struct ieee80211_key *k;
3604 
3605 		/*
3606 		 * Construct the 802.11 header+trailer for an encrypted
3607 		 * frame. The only reason this can fail is because of an
3608 		 * unknown or unsupported cipher/key type.
3609 		 */
3610 		k = ieee80211_crypto_encap(ic, ni, m0);
3611 		if (k == NULL) {
3612 			/*
3613 			 * This can happen when the key is yanked after the
3614 			 * frame was queued.  Just discard the frame; the
3615 			 * 802.11 layer counts failures and provides
3616 			 * debugging/diagnostics.
3617 			 */
3618 			ath_freetx(m0);
3619 			return EIO;
3620 		}
3621 		/*
3622 		 * Adjust the packet + header lengths for the crypto
3623 		 * additions and calculate the h/w key index.  When
3624 		 * a s/w mic is done the frame will have had any mic
3625 		 * added to it prior to entry so m0->m_pkthdr.len above will
3626 		 * account for it. Otherwise we need to add it to the
3627 		 * packet length.
3628 		 */
3629 		cip = k->wk_cipher;
3630 		hdrlen += cip->ic_header;
3631 		pktlen += cip->ic_header + cip->ic_trailer;
3632 		/* NB: frags always have any TKIP MIC done in s/w */
3633 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3634 			pktlen += cip->ic_miclen;
3635 		keyix = k->wk_keyix;
3636 
3637 		/* packet header may have moved, reset our local pointer */
3638 		wh = mtod(m0, struct ieee80211_frame *);
3639 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3640 		/*
3641 		 * Use station key cache slot, if assigned.
3642 		 */
3643 		keyix = ni->ni_ucastkey.wk_keyix;
3644 		if (keyix == IEEE80211_KEYIX_NONE)
3645 			keyix = HAL_TXKEYIX_INVALID;
3646 	} else
3647 		keyix = HAL_TXKEYIX_INVALID;
3648 
3649 	pktlen += IEEE80211_CRC_LEN;
3650 
3651 	/*
3652 	 * Load the DMA map so any coalescing is done.  This
3653 	 * also calculates the number of descriptors we need.
3654 	 */
3655 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3656 				     BUS_DMA_NOWAIT);
3657 	if (error == EFBIG) {
3658 		/* XXX packet requires too many descriptors */
3659 		bf->bf_nseg = ATH_TXDESC+1;
3660 	} else if (error != 0) {
3661 		sc->sc_stats.ast_tx_busdma++;
3662 		ath_freetx(m0);
3663 		return error;
3664 	}
3665 	/*
3666 	 * Discard null packets and check for packets that
3667 	 * require too many TX descriptors.  We try to convert
3668 	 * the latter to a cluster.
3669 	 */
3670 	if (error == EFBIG) {		/* too many desc's, linearize */
3671 		sc->sc_stats.ast_tx_linear++;
3672 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3673 		if (m == NULL) {
3674 			ath_freetx(m0);
3675 			sc->sc_stats.ast_tx_nombuf++;
3676 			return ENOMEM;
3677 		}
3678 		m0 = m;
3679 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3680 					     BUS_DMA_NOWAIT);
3681 		if (error != 0) {
3682 			sc->sc_stats.ast_tx_busdma++;
3683 			ath_freetx(m0);
3684 			return error;
3685 		}
3686 		KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
3687 		    "too many segments after defrag; nseg %u", bf->bf_nseg);
3688 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3689 		sc->sc_stats.ast_tx_nodata++;
3690 		ath_freetx(m0);
3691 		return EIO;
3692 	}
3693 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3694 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3695             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3696 	bf->bf_m = m0;
3697 	bf->bf_node = ni;			/* NB: held reference */
3698 
3699 	/* setup descriptors */
3700 	ds = bf->bf_desc;
3701 	rt = sc->sc_currates;
3702 	KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
3703 
3704 	/*
3705 	 * NB: the 802.11 layer marks whether or not we should
3706 	 * use short preamble based on the current mode and
3707 	 * negotiated parameters.
3708 	 */
3709 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3710 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3711 		shortPreamble = AH_TRUE;
3712 		sc->sc_stats.ast_tx_shortpre++;
3713 	} else {
3714 		shortPreamble = AH_FALSE;
3715 	}
3716 
3717 	an = ATH_NODE(ni);
3718 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3719 	ismrr = 0;				/* default no multi-rate retry*/
3720 	/*
3721 	 * Calculate Atheros packet type from IEEE80211 packet header,
3722 	 * setup for rate calculations, and select h/w transmit queue.
3723 	 */
3724 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3725 	case IEEE80211_FC0_TYPE_MGT:
3726 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3727 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3728 			atype = HAL_PKT_TYPE_BEACON;
3729 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3730 			atype = HAL_PKT_TYPE_PROBE_RESP;
3731 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3732 			atype = HAL_PKT_TYPE_ATIM;
3733 		else
3734 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3735 		rix = sc->sc_minrateix;
3736 		txrate = rt->info[rix].rateCode;
3737 		if (shortPreamble)
3738 			txrate |= rt->info[rix].shortPreamble;
3739 		try0 = ATH_TXMGTTRY;
3740 		/* NB: force all management frames to highest queue */
3741 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3742 			/* NB: force all management frames to highest queue */
3743 			pri = WME_AC_VO;
3744 		} else
3745 			pri = WME_AC_BE;
3746 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3747 		break;
3748 	case IEEE80211_FC0_TYPE_CTL:
3749 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3750 		rix = sc->sc_minrateix;
3751 		txrate = rt->info[rix].rateCode;
3752 		if (shortPreamble)
3753 			txrate |= rt->info[rix].shortPreamble;
3754 		try0 = ATH_TXMGTTRY;
3755 		/* NB: force all ctl frames to highest queue */
3756 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3757 			/* NB: force all ctl frames to highest queue */
3758 			pri = WME_AC_VO;
3759 		} else
3760 			pri = WME_AC_BE;
3761 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3762 		break;
3763 	case IEEE80211_FC0_TYPE_DATA:
3764 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3765 		/*
3766 		 * Data frames: multicast frames go out at a fixed rate,
3767 		 * otherwise consult the rate control module for the
3768 		 * rate to use.
3769 		 */
3770 		if (ismcast) {
3771 			/*
3772 			 * Check mcast rate setting in case it's changed.
3773 			 * XXX move out of fastpath
3774 			 */
3775 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3776 				sc->sc_mcastrix =
3777 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3778 				sc->sc_mcastrate = ic->ic_mcast_rate;
3779 			}
3780 			rix = sc->sc_mcastrix;
3781 			txrate = rt->info[rix].rateCode;
3782 			try0 = 1;
3783 		} else {
3784 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3785 				&rix, &try0, &txrate);
3786 			sc->sc_txrate = txrate;		/* for LED blinking */
3787 			if (try0 != ATH_TXMAXTRY)
3788 				ismrr = 1;
3789 		}
3790 		pri = M_WME_GETAC(m0);
3791 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3792 			flags |= HAL_TXDESC_NOACK;
3793 		break;
3794 	default:
3795 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3796 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3797 		/* XXX statistic */
3798 		ath_freetx(m0);
3799 		return EIO;
3800 	}
3801 	txq = sc->sc_ac2q[pri];
3802 
3803 	/*
3804 	 * When servicing one or more stations in power-save mode
3805 	 * multicast frames must be buffered until after the beacon.
3806 	 * We use the CAB queue for that.
3807 	 */
3808 	if (ismcast && ic->ic_ps_sta) {
3809 		txq = sc->sc_cabq;
3810 		/* XXX? more bit in 802.11 frame header */
3811 	}
3812 
3813 	/*
3814 	 * Calculate miscellaneous flags.
3815 	 */
3816 	if (ismcast) {
3817 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3818 	} else if (pktlen > ic->ic_rtsthreshold) {
3819 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3820 		cix = rt->info[rix].controlRate;
3821 		sc->sc_stats.ast_tx_rts++;
3822 	}
3823 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3824 		sc->sc_stats.ast_tx_noack++;
3825 
3826 	/*
3827 	 * If 802.11g protection is enabled, determine whether
3828 	 * to use RTS/CTS or just CTS.  Note that this is only
3829 	 * done for OFDM unicast frames.
3830 	 */
3831 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3832 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3833 	    (flags & HAL_TXDESC_NOACK) == 0) {
3834 		/* XXX fragments must use CCK rates w/ protection */
3835 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3836 			flags |= HAL_TXDESC_RTSENA;
3837 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3838 			flags |= HAL_TXDESC_CTSENA;
3839 		if (isfrag) {
3840 			/*
3841 			 * For frags it would be desirable to use the
3842 			 * highest CCK rate for RTS/CTS.  But stations
3843 			 * farther away may detect it at a lower CCK rate
3844 			 * so use the configured protection rate instead
3845 			 * (for now).
3846 			 */
3847 			cix = rt->info[sc->sc_protrix].controlRate;
3848 		} else
3849 			cix = rt->info[sc->sc_protrix].controlRate;
3850 		sc->sc_stats.ast_tx_protect++;
3851 	}
3852 
3853 	/*
3854 	 * Calculate duration.  This logically belongs in the 802.11
3855 	 * layer but it lacks sufficient information to calculate it.
3856 	 */
3857 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3858 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3859 		u_int16_t dur;
3860 		/*
3861 		 * XXX not right with fragmentation.
3862 		 */
3863 		if (shortPreamble)
3864 			dur = rt->info[rix].spAckDuration;
3865 		else
3866 			dur = rt->info[rix].lpAckDuration;
3867 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3868 			dur += dur;             /* additional SIFS+ACK */
3869 			KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
3870 			/*
3871 			 * Include the size of next fragment so NAV is
3872 			 * updated properly.  The last fragment uses only
3873 			 * the ACK duration
3874 			 */
3875 			dur += ath_hal_computetxtime(ah, rt,
3876 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3877 			        hdrlen) -
3878 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3879 			    rix, shortPreamble);
3880 		}
3881 		if (isfrag) {
3882 			/*
3883 			 * Force hardware to use computed duration for next
3884 			 * fragment by disabling multi-rate retry which updates
3885 			 * duration based on the multi-rate duration table.
3886 			 */
3887 			try0 = ATH_TXMAXTRY;
3888 		}
3889 		*(u_int16_t *)wh->i_dur = htole16(dur);
3890 	}
3891 
3892 	/*
3893 	 * Calculate RTS/CTS rate and duration if needed.
3894 	 */
3895 	ctsduration = 0;
3896 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3897 		/*
3898 		 * CTS transmit rate is derived from the transmit rate
3899 		 * by looking in the h/w rate table.  We must also factor
3900 		 * in whether or not a short preamble is to be used.
3901 		 */
3902 		/* NB: cix is set above where RTS/CTS is enabled */
3903 		KASSERTMSG(cix != 0xff, "cix not setup");
3904 		ctsrate = rt->info[cix].rateCode;
3905 		/*
3906 		 * Compute the transmit duration based on the frame
3907 		 * size and the size of an ACK frame.  We call into the
3908 		 * HAL to do the computation since it depends on the
3909 		 * characteristics of the actual PHY being used.
3910 		 *
3911 		 * NB: CTS is assumed the same size as an ACK so we can
3912 		 *     use the precalculated ACK durations.
3913 		 */
3914 		if (shortPreamble) {
3915 			ctsrate |= rt->info[cix].shortPreamble;
3916 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3917 				ctsduration += rt->info[cix].spAckDuration;
3918 			ctsduration += ath_hal_computetxtime(ah,
3919 				rt, pktlen, rix, AH_TRUE);
3920 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3921 				ctsduration += rt->info[rix].spAckDuration;
3922 		} else {
3923 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3924 				ctsduration += rt->info[cix].lpAckDuration;
3925 			ctsduration += ath_hal_computetxtime(ah,
3926 				rt, pktlen, rix, AH_FALSE);
3927 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3928 				ctsduration += rt->info[rix].lpAckDuration;
3929 		}
3930 		/*
3931 		 * Must disable multi-rate retry when using RTS/CTS.
3932 		 */
3933 		ismrr = 0;
3934 		try0 = ATH_TXMGTTRY;		/* XXX */
3935 	} else
3936 		ctsrate = 0;
3937 
3938 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3939 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3940 			sc->sc_hwmap[txrate].ieeerate, -1);
3941 	bpf_mtap3(ic->ic_rawbpf, m0);
3942 	if (sc->sc_drvbpf) {
3943 		u_int64_t tsf = ath_hal_gettsf64(ah);
3944 
3945 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3946 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3947 		if (iswep)
3948 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3949 		if (isfrag)
3950 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3951 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3952 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3953 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3954 
3955 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3956 	}
3957 
3958 	/*
3959 	 * Determine if a tx interrupt should be generated for
3960 	 * this descriptor.  We take a tx interrupt to reap
3961 	 * descriptors when the h/w hits an EOL condition or
3962 	 * when the descriptor is specifically marked to generate
3963 	 * an interrupt.  We periodically mark descriptors in this
3964 	 * way to insure timely replenishing of the supply needed
3965 	 * for sending frames.  Defering interrupts reduces system
3966 	 * load and potentially allows more concurrent work to be
3967 	 * done but if done to aggressively can cause senders to
3968 	 * backup.
3969 	 *
3970 	 * NB: use >= to deal with sc_txintrperiod changing
3971 	 *     dynamically through sysctl.
3972 	 */
3973 	if (flags & HAL_TXDESC_INTREQ) {
3974 		txq->axq_intrcnt = 0;
3975 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3976 		flags |= HAL_TXDESC_INTREQ;
3977 		txq->axq_intrcnt = 0;
3978 	}
3979 
3980 	/*
3981 	 * Formulate first tx descriptor with tx controls.
3982 	 */
3983 	/* XXX check return value? */
3984 	ath_hal_setuptxdesc(ah, ds
3985 		, pktlen		/* packet length */
3986 		, hdrlen		/* header length */
3987 		, atype			/* Atheros packet type */
3988 		, ni->ni_txpower	/* txpower */
3989 		, txrate, try0		/* series 0 rate/tries */
3990 		, keyix			/* key cache index */
3991 		, sc->sc_txantenna	/* antenna mode */
3992 		, flags			/* flags */
3993 		, ctsrate		/* rts/cts rate */
3994 		, ctsduration		/* rts/cts duration */
3995 	);
3996 	bf->bf_flags = flags;
3997 	/*
3998 	 * Setup the multi-rate retry state only when we're
3999 	 * going to use it.  This assumes ath_hal_setuptxdesc
4000 	 * initializes the descriptors (so we don't have to)
4001 	 * when the hardware supports multi-rate retry and
4002 	 * we don't use it.
4003 	 */
4004 	if (ismrr)
4005 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4006 
4007 	/*
4008 	 * Fillin the remainder of the descriptor info.
4009 	 */
4010 	ds0 = ds;
4011 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4012 		ds->ds_data = bf->bf_segs[i].ds_addr;
4013 		if (i == bf->bf_nseg - 1)
4014 			ds->ds_link = 0;
4015 		else
4016 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4017 		ath_hal_filltxdesc(ah, ds
4018 			, bf->bf_segs[i].ds_len	/* segment length */
4019 			, i == 0		/* first segment */
4020 			, i == bf->bf_nseg - 1	/* last segment */
4021 			, ds0			/* first descriptor */
4022 		);
4023 
4024 		/* NB: The desc swap function becomes void,
4025 		 * if descriptor swapping is not enabled
4026 		 */
4027 		ath_desc_swap(ds);
4028 
4029 		DPRINTF(sc, ATH_DEBUG_XMIT,
4030 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4031 			__func__, i, ds->ds_link, ds->ds_data,
4032 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4033 	}
4034 	/*
4035 	 * Insert the frame on the outbound list and
4036 	 * pass it on to the hardware.
4037 	 */
4038 	ATH_TXQ_LOCK(txq);
4039 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4040 	if (txq->axq_link == NULL) {
4041 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4042 		DPRINTF(sc, ATH_DEBUG_XMIT,
4043 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4044 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4045 		    txq->axq_depth);
4046 	} else {
4047 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4048 		DPRINTF(sc, ATH_DEBUG_XMIT,
4049 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4050 		    __func__, txq->axq_qnum, txq->axq_link,
4051 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4052 	}
4053 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4054 	/*
4055 	 * The CAB queue is started from the SWBA handler since
4056 	 * frames only go out on DTIM and to avoid possible races.
4057 	 */
4058 	if (txq != sc->sc_cabq)
4059 		ath_hal_txstart(ah, txq->axq_qnum);
4060 	ATH_TXQ_UNLOCK(txq);
4061 
4062 	return 0;
4063 }
4064 
4065 /*
4066  * Process completed xmit descriptors from the specified queue.
4067  */
4068 static int
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)4069 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4070 {
4071 	struct ath_hal *ah = sc->sc_ah;
4072 	struct ieee80211com *ic = &sc->sc_ic;
4073 	struct ath_buf *bf;
4074 	struct ath_desc *ds, *ds0;
4075 	struct ieee80211_node *ni;
4076 	struct ath_node *an;
4077 	int sr, lr, pri, nacked;
4078 	HAL_STATUS status;
4079 
4080 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4081 		__func__, txq->axq_qnum,
4082 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4083 		txq->axq_link);
4084 	nacked = 0;
4085 	for (;;) {
4086 		ATH_TXQ_LOCK(txq);
4087 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4088 		bf = STAILQ_FIRST(&txq->axq_q);
4089 		if (bf == NULL) {
4090 			txq->axq_link = NULL;
4091 			ATH_TXQ_UNLOCK(txq);
4092 			break;
4093 		}
4094 		ds0 = &bf->bf_desc[0];
4095 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4096 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4097 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4098 			ath_printtxbuf(bf, status == HAL_OK);
4099 		if (status == HAL_EINPROGRESS) {
4100 			ATH_TXQ_UNLOCK(txq);
4101 			break;
4102 		}
4103 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4104 		ATH_TXQ_UNLOCK(txq);
4105 
4106 		ni = bf->bf_node;
4107 		if (ni != NULL) {
4108 			an = ATH_NODE(ni);
4109 			if (ds->ds_txstat.ts_status == 0) {
4110 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4111 				sc->sc_stats.ast_ant_tx[txant]++;
4112 				sc->sc_ant_tx[txant]++;
4113 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4114 					sc->sc_stats.ast_tx_altrate++;
4115 				sc->sc_stats.ast_tx_rssi =
4116 					ds->ds_txstat.ts_rssi;
4117 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4118 					ds->ds_txstat.ts_rssi);
4119 				pri = M_WME_GETAC(bf->bf_m);
4120 				if (pri >= WME_AC_VO)
4121 					ic->ic_wme.wme_hipri_traffic++;
4122 				ni->ni_inact = ni->ni_inact_reload;
4123 			} else {
4124 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4125 					sc->sc_stats.ast_tx_xretries++;
4126 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4127 					sc->sc_stats.ast_tx_fifoerr++;
4128 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4129 					sc->sc_stats.ast_tx_filtered++;
4130 			}
4131 			sr = ds->ds_txstat.ts_shortretry;
4132 			lr = ds->ds_txstat.ts_longretry;
4133 			sc->sc_stats.ast_tx_shortretry += sr;
4134 			sc->sc_stats.ast_tx_longretry += lr;
4135 			/*
4136 			 * Hand the descriptor to the rate control algorithm.
4137 			 */
4138 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4139 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4140 				/*
4141 				 * If frame was ack'd update the last rx time
4142 				 * used to workaround phantom bmiss interrupts.
4143 				 */
4144 				if (ds->ds_txstat.ts_status == 0)
4145 					nacked++;
4146 				ath_rate_tx_complete(sc, an, ds, ds0);
4147 			}
4148 			/*
4149 			 * Reclaim reference to node.
4150 			 *
4151 			 * NB: the node may be reclaimed here if, for example
4152 			 *     this is a DEAUTH message that was sent and the
4153 			 *     node was timed out due to inactivity.
4154 			 */
4155 			ieee80211_free_node(ni);
4156 		}
4157 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4158 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4159 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4160 		m_freem(bf->bf_m);
4161 		bf->bf_m = NULL;
4162 		bf->bf_node = NULL;
4163 
4164 		ATH_TXBUF_LOCK(sc);
4165 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4166 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4167 		ATH_TXBUF_UNLOCK(sc);
4168 	}
4169 	return nacked;
4170 }
4171 
4172 static inline int
txqactive(struct ath_hal * ah,int qnum)4173 txqactive(struct ath_hal *ah, int qnum)
4174 {
4175 	u_int32_t txqs = 1<<qnum;
4176 	ath_hal_gettxintrtxqs(ah, &txqs);
4177 	return (txqs & (1<<qnum));
4178 }
4179 
4180 /*
4181  * Deferred processing of transmit interrupt; special-cased
4182  * for a single hardware transmit queue (e.g. 5210 and 5211).
4183  */
4184 static void
ath_tx_proc_q0(void * arg,int npending)4185 ath_tx_proc_q0(void *arg, int npending)
4186 {
4187 	struct ath_softc *sc = arg;
4188 	struct ifnet *ifp = &sc->sc_if;
4189 
4190 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4191 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4192 	}
4193 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4194 		ath_tx_processq(sc, sc->sc_cabq);
4195 
4196 	if (sc->sc_softled)
4197 		ath_led_event(sc, ATH_LED_TX);
4198 
4199 	ath_start(ifp);
4200 }
4201 
4202 /*
4203  * Deferred processing of transmit interrupt; special-cased
4204  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4205  */
4206 static void
ath_tx_proc_q0123(void * arg,int npending)4207 ath_tx_proc_q0123(void *arg, int npending)
4208 {
4209 	struct ath_softc *sc = arg;
4210 	struct ifnet *ifp = &sc->sc_if;
4211 	int nacked;
4212 
4213 	/*
4214 	 * Process each active queue.
4215 	 */
4216 	nacked = 0;
4217 	if (txqactive(sc->sc_ah, 0))
4218 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4219 	if (txqactive(sc->sc_ah, 1))
4220 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4221 	if (txqactive(sc->sc_ah, 2))
4222 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4223 	if (txqactive(sc->sc_ah, 3))
4224 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4225 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4226 		ath_tx_processq(sc, sc->sc_cabq);
4227 	if (nacked) {
4228 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4229 	}
4230 
4231 	if (sc->sc_softled)
4232 		ath_led_event(sc, ATH_LED_TX);
4233 
4234 	ath_start(ifp);
4235 }
4236 
4237 /*
4238  * Deferred processing of transmit interrupt.
4239  */
4240 static void
ath_tx_proc(void * arg,int npending)4241 ath_tx_proc(void *arg, int npending)
4242 {
4243 	struct ath_softc *sc = arg;
4244 	struct ifnet *ifp = &sc->sc_if;
4245 	int i, nacked;
4246 
4247 	/*
4248 	 * Process each active queue.
4249 	 */
4250 	nacked = 0;
4251 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4252 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4253 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4254 	if (nacked) {
4255 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4256 	}
4257 
4258 	if (sc->sc_softled)
4259 		ath_led_event(sc, ATH_LED_TX);
4260 
4261 	ath_start(ifp);
4262 }
4263 
4264 static void
ath_tx_draintxq(struct ath_softc * sc,struct ath_txq * txq)4265 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4266 {
4267 	struct ath_hal *ah = sc->sc_ah;
4268 	struct ieee80211_node *ni;
4269 	struct ath_buf *bf;
4270 	struct ath_desc *ds;
4271 
4272 	/*
4273 	 * NB: this assumes output has been stopped and
4274 	 *     we do not need to block ath_tx_tasklet
4275 	 */
4276 	for (;;) {
4277 		ATH_TXQ_LOCK(txq);
4278 		bf = STAILQ_FIRST(&txq->axq_q);
4279 		if (bf == NULL) {
4280 			txq->axq_link = NULL;
4281 			ATH_TXQ_UNLOCK(txq);
4282 			break;
4283 		}
4284 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4285 		ATH_TXQ_UNLOCK(txq);
4286 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4287 		if (sc->sc_debug & ATH_DEBUG_RESET)
4288 			ath_printtxbuf(bf,
4289 				ath_hal_txprocdesc(ah, bf->bf_desc,
4290 					&ds->ds_txstat) == HAL_OK);
4291 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4292 		m_freem(bf->bf_m);
4293 		bf->bf_m = NULL;
4294 		ni = bf->bf_node;
4295 		bf->bf_node = NULL;
4296 		if (ni != NULL) {
4297 			/*
4298 			 * Reclaim node reference.
4299 			 */
4300 			ieee80211_free_node(ni);
4301 		}
4302 		ATH_TXBUF_LOCK(sc);
4303 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4304 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4305 		ATH_TXBUF_UNLOCK(sc);
4306 	}
4307 }
4308 
4309 static void
ath_tx_stopdma(struct ath_softc * sc,struct ath_txq * txq)4310 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4311 {
4312 	struct ath_hal *ah = sc->sc_ah;
4313 
4314 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4315 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4316 	    __func__, txq->axq_qnum,
4317 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4318 	    txq->axq_link);
4319 }
4320 
4321 /*
4322  * Drain the transmit queues and reclaim resources.
4323  */
4324 static void
ath_draintxq(struct ath_softc * sc)4325 ath_draintxq(struct ath_softc *sc)
4326 {
4327 	struct ath_hal *ah = sc->sc_ah;
4328 	int i;
4329 
4330 	/* XXX return value */
4331 	if (device_is_active(sc->sc_dev)) {
4332 		/* don't touch the hardware if marked invalid */
4333 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4334 		DPRINTF(sc, ATH_DEBUG_RESET,
4335 		    "%s: beacon queue %p\n", __func__,
4336 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4337 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4338 			if (ATH_TXQ_SETUP(sc, i))
4339 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4340 	}
4341 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4342 		if (ATH_TXQ_SETUP(sc, i))
4343 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4344 }
4345 
4346 /*
4347  * Disable the receive h/w in preparation for a reset.
4348  */
4349 static void
ath_stoprecv(struct ath_softc * sc)4350 ath_stoprecv(struct ath_softc *sc)
4351 {
4352 #define	PA2DESC(_sc, _pa) \
4353 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4354 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4355 	struct ath_hal *ah = sc->sc_ah;
4356 
4357 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4358 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4359 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4360 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4361 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4362 		struct ath_buf *bf;
4363 
4364 		printf("%s: rx queue %p, link %p\n", __func__,
4365 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4366 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4367 			struct ath_desc *ds = bf->bf_desc;
4368 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4369 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4370 				&ds->ds_rxstat);
4371 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4372 				ath_printrxbuf(bf, status == HAL_OK);
4373 		}
4374 	}
4375 	sc->sc_rxlink = NULL;		/* just in case */
4376 #undef PA2DESC
4377 }
4378 
4379 /*
4380  * Enable the receive h/w following a reset.
4381  */
4382 static int
ath_startrecv(struct ath_softc * sc)4383 ath_startrecv(struct ath_softc *sc)
4384 {
4385 	struct ath_hal *ah = sc->sc_ah;
4386 	struct ath_buf *bf;
4387 
4388 	sc->sc_rxlink = NULL;
4389 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4390 		int error = ath_rxbuf_init(sc, bf);
4391 		if (error != 0) {
4392 			DPRINTF(sc, ATH_DEBUG_RECV,
4393 				"%s: ath_rxbuf_init failed %d\n",
4394 				__func__, error);
4395 			return error;
4396 		}
4397 	}
4398 
4399 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4400 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4401 	ath_hal_rxena(ah);		/* enable recv descriptors */
4402 	ath_mode_init(sc);		/* set filters, etc. */
4403 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4404 	return 0;
4405 }
4406 
4407 /*
4408  * Update internal state after a channel change.
4409  */
4410 static void
ath_chan_change(struct ath_softc * sc,struct ieee80211_channel * chan)4411 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4412 {
4413 	struct ieee80211com *ic = &sc->sc_ic;
4414 	enum ieee80211_phymode mode;
4415 	u_int16_t flags;
4416 
4417 	/*
4418 	 * Change channels and update the h/w rate map
4419 	 * if we're switching; e.g. 11a to 11b/g.
4420 	 */
4421 	mode = ieee80211_chan2mode(ic, chan);
4422 	if (mode != sc->sc_curmode)
4423 		ath_setcurmode(sc, mode);
4424 	/*
4425 	 * Update BPF state.  NB: ethereal et. al. don't handle
4426 	 * merged flags well so pick a unique mode for their use.
4427 	 */
4428 	if (IEEE80211_IS_CHAN_A(chan))
4429 		flags = IEEE80211_CHAN_A;
4430 	/* XXX 11g schizophrenia */
4431 	else if (IEEE80211_IS_CHAN_G(chan) ||
4432 	    IEEE80211_IS_CHAN_PUREG(chan))
4433 		flags = IEEE80211_CHAN_G;
4434 	else
4435 		flags = IEEE80211_CHAN_B;
4436 	if (IEEE80211_IS_CHAN_T(chan))
4437 		flags |= IEEE80211_CHAN_TURBO;
4438 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4439 		htole16(chan->ic_freq);
4440 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4441 		htole16(flags);
4442 }
4443 
4444 #if 0
4445 /*
4446  * Poll for a channel clear indication; this is required
4447  * for channels requiring DFS and not previously visited
4448  * and/or with a recent radar detection.
4449  */
4450 static void
4451 ath_dfswait(void *arg)
4452 {
4453 	struct ath_softc *sc = arg;
4454 	struct ath_hal *ah = sc->sc_ah;
4455 	HAL_CHANNEL hchan;
4456 
4457 	ath_hal_radar_wait(ah, &hchan);
4458 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4459 		if_printf(&sc->sc_if,
4460 		    "channel %u/0x%x/0x%x has interference\n",
4461 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4462 		return;
4463 	}
4464 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4465 		/* XXX should not happen */
4466 		return;
4467 	}
4468 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4469 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4470 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4471 		if_printf(&sc->sc_if,
4472 		    "channel %u/0x%x/0x%x marked clear\n",
4473 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4474 	} else
4475 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4476 }
4477 #endif
4478 
4479 /*
4480  * Set/change channels.  If the channel is really being changed,
4481  * it's done by reseting the chip.  To accomplish this we must
4482  * first cleanup any pending DMA, then restart stuff after a la
4483  * ath_init.
4484  */
4485 static int
ath_chan_set(struct ath_softc * sc,struct ieee80211_channel * chan)4486 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4487 {
4488 	struct ath_hal *ah = sc->sc_ah;
4489 	struct ieee80211com *ic = &sc->sc_ic;
4490 	HAL_CHANNEL hchan;
4491 
4492 	/*
4493 	 * Convert to a HAL channel description with
4494 	 * the flags constrained to reflect the current
4495 	 * operating mode.
4496 	 */
4497 	hchan.channel = chan->ic_freq;
4498 	hchan.channelFlags = ath_chan2flags(ic, chan);
4499 
4500 	DPRINTF(sc, ATH_DEBUG_RESET,
4501 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4502 	    __func__,
4503 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4504 		sc->sc_curchan.channelFlags),
4505 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4506 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4507 	        hchan.channel, hchan.channelFlags);
4508 	if (hchan.channel != sc->sc_curchan.channel ||
4509 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4510 		HAL_STATUS status;
4511 
4512 		/*
4513 		 * To switch channels clear any pending DMA operations;
4514 		 * wait long enough for the RX fifo to drain, reset the
4515 		 * hardware at the new frequency, and then re-enable
4516 		 * the relevant bits of the h/w.
4517 		 */
4518 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4519 		ath_draintxq(sc);		/* clear pending tx frames */
4520 		ath_stoprecv(sc);		/* turn off frame recv */
4521 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4522 			if_printf(ic->ic_ifp, "%s: unable to reset "
4523 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4524 			    __func__, ieee80211_chan2ieee(ic, chan),
4525 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4526 			return EIO;
4527 		}
4528 		sc->sc_curchan = hchan;
4529 		ath_update_txpow(sc);		/* update tx power state */
4530 		ath_restore_diversity(sc);
4531 		sc->sc_calinterval = 1;
4532 		sc->sc_caltries = 0;
4533 
4534 		/*
4535 		 * Re-enable rx framework.
4536 		 */
4537 		if (ath_startrecv(sc) != 0) {
4538 			if_printf(&sc->sc_if,
4539 				"%s: unable to restart recv logic\n", __func__);
4540 			return EIO;
4541 		}
4542 
4543 		/*
4544 		 * Change channels and update the h/w rate map
4545 		 * if we're switching; e.g. 11a to 11b/g.
4546 		 */
4547 		ic->ic_ibss_chan = chan;
4548 		ath_chan_change(sc, chan);
4549 
4550 #if 0
4551 		/*
4552 		 * Handle DFS required waiting period to determine
4553 		 * if channel is clear of radar traffic.
4554 		 */
4555 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4556 #define	DFS_AND_NOT_CLEAR(_c) \
4557 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4558 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4559 				if_printf(&sc->sc_if,
4560 					"wait for DFS clear channel signal\n");
4561 				/* XXX stop sndq */
4562 				sc->sc_if.if_flags |= IFF_OACTIVE;
4563 				callout_reset(&sc->sc_dfs_ch,
4564 					2 * hz, ath_dfswait, sc);
4565 			} else
4566 				callout_stop(&sc->sc_dfs_ch);
4567 #undef DFS_NOT_CLEAR
4568 		}
4569 #endif
4570 
4571 		/*
4572 		 * Re-enable interrupts.
4573 		 */
4574 		ath_hal_intrset(ah, sc->sc_imask);
4575 	}
4576 	return 0;
4577 }
4578 
4579 static void
ath_next_scan(void * arg)4580 ath_next_scan(void *arg)
4581 {
4582 	struct ath_softc *sc = arg;
4583 	struct ieee80211com *ic = &sc->sc_ic;
4584 	int s;
4585 
4586 	/* don't call ath_start w/o network interrupts blocked */
4587 	s = splnet();
4588 
4589 	if (ic->ic_state == IEEE80211_S_SCAN)
4590 		ieee80211_next_scan(ic);
4591 	splx(s);
4592 }
4593 
4594 /*
4595  * Periodically recalibrate the PHY to account
4596  * for temperature/environment changes.
4597  */
4598 static void
ath_calibrate(void * arg)4599 ath_calibrate(void *arg)
4600 {
4601 	struct ath_softc *sc = arg;
4602 	struct ath_hal *ah = sc->sc_ah;
4603 	HAL_BOOL iqCalDone;
4604 	int s;
4605 
4606 	sc->sc_stats.ast_per_cal++;
4607 
4608 	 s = splnet();
4609 
4610 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4611 		/*
4612 		 * Rfgain is out of bounds, reset the chip
4613 		 * to load new gain values.
4614 		 */
4615 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4616 			"%s: rfgain change\n", __func__);
4617 		sc->sc_stats.ast_per_rfgain++;
4618 		ath_reset(&sc->sc_if);
4619 	}
4620 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4621 		DPRINTF(sc, ATH_DEBUG_ANY,
4622 			"%s: calibration of channel %u failed\n",
4623 			__func__, sc->sc_curchan.channel);
4624 		sc->sc_stats.ast_per_calfail++;
4625 	}
4626 	/*
4627 	 * Calibrate noise floor data again in case of change.
4628 	 */
4629 	ath_hal_process_noisefloor(ah);
4630 	/*
4631 	 * Poll more frequently when the IQ calibration is in
4632 	 * progress to speedup loading the final settings.
4633 	 * We temper this aggressive polling with an exponential
4634 	 * back off after 4 tries up to ath_calinterval.
4635 	 */
4636 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4637 		sc->sc_caltries = 0;
4638 		sc->sc_calinterval = ath_calinterval;
4639 	} else if (sc->sc_caltries > 4) {
4640 		sc->sc_caltries = 0;
4641 		sc->sc_calinterval <<= 1;
4642 		if (sc->sc_calinterval > ath_calinterval)
4643 			sc->sc_calinterval = ath_calinterval;
4644 	}
4645 	KASSERTMSG(0 < sc->sc_calinterval &&
4646 	           sc->sc_calinterval <= ath_calinterval,
4647 		   "bad calibration interval %u", sc->sc_calinterval);
4648 
4649 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4650 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4651 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4652 	sc->sc_caltries++;
4653 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4654 		ath_calibrate, sc);
4655 	splx(s);
4656 }
4657 
4658 static int
ath_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)4659 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4660 {
4661 	struct ifnet *ifp = ic->ic_ifp;
4662 	struct ath_softc *sc = ifp->if_softc;
4663 	struct ath_hal *ah = sc->sc_ah;
4664 	struct ieee80211_node *ni;
4665 	int i, error;
4666 	const u_int8_t *bssid;
4667 	u_int32_t rfilt;
4668 	static const HAL_LED_STATE leds[] = {
4669 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4670 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4671 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4672 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4673 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4674 	};
4675 
4676 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4677 		ieee80211_state_name[ic->ic_state],
4678 		ieee80211_state_name[nstate]);
4679 
4680 	callout_stop(&sc->sc_scan_ch);
4681 	callout_stop(&sc->sc_cal_ch);
4682 #if 0
4683 	callout_stop(&sc->sc_dfs_ch);
4684 #endif
4685 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4686 
4687 	if (nstate == IEEE80211_S_INIT) {
4688 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4689 		/*
4690 		 * NB: disable interrupts so we don't rx frames.
4691 		 */
4692 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4693 		/*
4694 		 * Notify the rate control algorithm.
4695 		 */
4696 		ath_rate_newstate(sc, nstate);
4697 		goto done;
4698 	}
4699 	ni = ic->ic_bss;
4700 	error = ath_chan_set(sc, ic->ic_curchan);
4701 	if (error != 0)
4702 		goto bad;
4703 	rfilt = ath_calcrxfilter(sc, nstate);
4704 	if (nstate == IEEE80211_S_SCAN)
4705 		bssid = ifp->if_broadcastaddr;
4706 	else
4707 		bssid = ni->ni_bssid;
4708 	ath_hal_setrxfilter(ah, rfilt);
4709 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4710 		 __func__, rfilt, ether_sprintf(bssid));
4711 
4712 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4713 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4714 	else
4715 		ath_hal_setassocid(ah, bssid, 0);
4716 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4717 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4718 			if (ath_hal_keyisvalid(ah, i))
4719 				ath_hal_keysetmac(ah, i, bssid);
4720 	}
4721 
4722 	/*
4723 	 * Notify the rate control algorithm so rates
4724 	 * are setup should ath_beacon_alloc be called.
4725 	 */
4726 	ath_rate_newstate(sc, nstate);
4727 
4728 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4729 		/* nothing to do */;
4730 	} else if (nstate == IEEE80211_S_RUN) {
4731 		DPRINTF(sc, ATH_DEBUG_STATE,
4732 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4733 			"capinfo=0x%04x chan=%d\n"
4734 			 , __func__
4735 			 , ic->ic_flags
4736 			 , ni->ni_intval
4737 			 , ether_sprintf(ni->ni_bssid)
4738 			 , ni->ni_capinfo
4739 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4740 
4741 		switch (ic->ic_opmode) {
4742 		case IEEE80211_M_HOSTAP:
4743 		case IEEE80211_M_IBSS:
4744 			/*
4745 			 * Allocate and setup the beacon frame.
4746 			 *
4747 			 * Stop any previous beacon DMA.  This may be
4748 			 * necessary, for example, when an ibss merge
4749 			 * causes reconfiguration; there will be a state
4750 			 * transition from RUN->RUN that means we may
4751 			 * be called with beacon transmission active.
4752 			 */
4753 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4754 			ath_beacon_free(sc);
4755 			error = ath_beacon_alloc(sc, ni);
4756 			if (error != 0)
4757 				goto bad;
4758 			/*
4759 			 * If joining an adhoc network defer beacon timer
4760 			 * configuration to the next beacon frame so we
4761 			 * have a current TSF to use.  Otherwise we're
4762 			 * starting an ibss/bss so there's no need to delay.
4763 			 */
4764 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4765 			    ic->ic_bss->ni_tstamp.tsf != 0)
4766 				sc->sc_syncbeacon = 1;
4767 			else
4768 				ath_beacon_config(sc);
4769 			break;
4770 		case IEEE80211_M_STA:
4771 			/*
4772 			 * Allocate a key cache slot to the station.
4773 			 */
4774 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4775 			    sc->sc_hasclrkey &&
4776 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4777 				ath_setup_stationkey(ni);
4778 			/*
4779 			 * Defer beacon timer configuration to the next
4780 			 * beacon frame so we have a current TSF to use
4781 			 * (any TSF collected when scanning is likely old).
4782 			 */
4783 			sc->sc_syncbeacon = 1;
4784 			break;
4785 		default:
4786 			break;
4787 		}
4788 		/*
4789 		 * Let the hal process statistics collected during a
4790 		 * scan so it can provide calibrated noise floor data.
4791 		 */
4792 		ath_hal_process_noisefloor(ah);
4793 		/*
4794 		 * Reset rssi stats; maybe not the best place...
4795 		 */
4796 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4797 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4798 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4799 	} else {
4800 		ath_hal_intrset(ah,
4801 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4802 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4803 	}
4804 done:
4805 	/*
4806 	 * Invoke the parent method to complete the work.
4807 	 */
4808 	error = sc->sc_newstate(ic, nstate, arg);
4809 	/*
4810 	 * Finally, start any timers.
4811 	 */
4812 	if (nstate == IEEE80211_S_RUN) {
4813 		/* start periodic recalibration timer */
4814 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4815 			ath_calibrate, sc);
4816 	} else if (nstate == IEEE80211_S_SCAN) {
4817 		/* start ap/neighbor scan timer */
4818 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4819 			ath_next_scan, sc);
4820 	}
4821 bad:
4822 	return error;
4823 }
4824 
4825 /*
4826  * Allocate a key cache slot to the station so we can
4827  * setup a mapping from key index to node. The key cache
4828  * slot is needed for managing antenna state and for
4829  * compression when stations do not use crypto.  We do
4830  * it uniliaterally here; if crypto is employed this slot
4831  * will be reassigned.
4832  */
4833 static void
ath_setup_stationkey(struct ieee80211_node * ni)4834 ath_setup_stationkey(struct ieee80211_node *ni)
4835 {
4836 	struct ieee80211com *ic = ni->ni_ic;
4837 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4838 	ieee80211_keyix keyix, rxkeyix;
4839 
4840 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4841 		/*
4842 		 * Key cache is full; we'll fall back to doing
4843 		 * the more expensive lookup in software.  Note
4844 		 * this also means no h/w compression.
4845 		 */
4846 		/* XXX msg+statistic */
4847 	} else {
4848 		/* XXX locking? */
4849 		ni->ni_ucastkey.wk_keyix = keyix;
4850 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4851 		/* NB: this will create a pass-thru key entry */
4852 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4853 	}
4854 }
4855 
4856 /*
4857  * Setup driver-specific state for a newly associated node.
4858  * Note that we're called also on a re-associate, the isnew
4859  * param tells us if this is the first time or not.
4860  */
4861 static void
ath_newassoc(struct ieee80211_node * ni,int isnew)4862 ath_newassoc(struct ieee80211_node *ni, int isnew)
4863 {
4864 	struct ieee80211com *ic = ni->ni_ic;
4865 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4866 
4867 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4868 	if (isnew &&
4869 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4870 		KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4871 		    "new assoc with a unicast key already setup (keyix %u)",
4872 		    ni->ni_ucastkey.wk_keyix);
4873 		ath_setup_stationkey(ni);
4874 	}
4875 }
4876 
4877 static int
ath_getchannels(struct ath_softc * sc,u_int cc,HAL_BOOL outdoor,HAL_BOOL xchanmode)4878 ath_getchannels(struct ath_softc *sc, u_int cc,
4879 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4880 {
4881 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4882 	struct ieee80211com *ic = &sc->sc_ic;
4883 	struct ifnet *ifp = &sc->sc_if;
4884 	struct ath_hal *ah = sc->sc_ah;
4885 	HAL_CHANNEL *chans;
4886 	int i, ix, nchan;
4887 
4888 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4889 			M_TEMP, M_NOWAIT);
4890 	if (chans == NULL) {
4891 		if_printf(ifp, "unable to allocate channel table\n");
4892 		return ENOMEM;
4893 	}
4894 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4895 	    NULL, 0, NULL,
4896 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4897 		u_int32_t rd;
4898 
4899 		(void)ath_hal_getregdomain(ah, &rd);
4900 		if_printf(ifp, "unable to collect channel list from hal; "
4901 			"regdomain likely %u country code %u\n", rd, cc);
4902 		free(chans, M_TEMP);
4903 		return EINVAL;
4904 	}
4905 
4906 	/*
4907 	 * Convert HAL channels to ieee80211 ones and insert
4908 	 * them in the table according to their channel number.
4909 	 */
4910 	for (i = 0; i < nchan; i++) {
4911 		HAL_CHANNEL *c = &chans[i];
4912 		u_int16_t flags;
4913 
4914 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4915 		if (ix > IEEE80211_CHAN_MAX) {
4916 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4917 				ix, c->channel, c->channelFlags);
4918 			continue;
4919 		}
4920 		if (ix < 0) {
4921 			/* XXX can't handle stuff <2400 right now */
4922 			if (bootverbose)
4923 				if_printf(ifp, "hal channel %d (%u/%x) "
4924 				    "cannot be handled; ignored\n",
4925 				    ix, c->channel, c->channelFlags);
4926 			continue;
4927 		}
4928 		/*
4929 		 * Calculate net80211 flags; most are compatible
4930 		 * but some need massaging.  Note the static turbo
4931 		 * conversion can be removed once net80211 is updated
4932 		 * to understand static vs. dynamic turbo.
4933 		 */
4934 		flags = c->channelFlags & COMPAT;
4935 		if (c->channelFlags & CHANNEL_STURBO)
4936 			flags |= IEEE80211_CHAN_TURBO;
4937 		if (ic->ic_channels[ix].ic_freq == 0) {
4938 			ic->ic_channels[ix].ic_freq = c->channel;
4939 			ic->ic_channels[ix].ic_flags = flags;
4940 		} else {
4941 			/* channels overlap; e.g. 11g and 11b */
4942 			ic->ic_channels[ix].ic_flags |= flags;
4943 		}
4944 	}
4945 	free(chans, M_TEMP);
4946 	return 0;
4947 #undef COMPAT
4948 }
4949 
4950 static void
ath_led_done(void * arg)4951 ath_led_done(void *arg)
4952 {
4953 	struct ath_softc *sc = arg;
4954 
4955 	sc->sc_blinking = 0;
4956 }
4957 
4958 /*
4959  * Turn the LED off: flip the pin and then set a timer so no
4960  * update will happen for the specified duration.
4961  */
4962 static void
ath_led_off(void * arg)4963 ath_led_off(void *arg)
4964 {
4965 	struct ath_softc *sc = arg;
4966 
4967 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4968 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4969 }
4970 
4971 /*
4972  * Blink the LED according to the specified on/off times.
4973  */
4974 static void
ath_led_blink(struct ath_softc * sc,int on,int off)4975 ath_led_blink(struct ath_softc *sc, int on, int off)
4976 {
4977 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4978 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4979 	sc->sc_blinking = 1;
4980 	sc->sc_ledoff = off;
4981 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4982 }
4983 
4984 static void
ath_led_event(struct ath_softc * sc,int event)4985 ath_led_event(struct ath_softc *sc, int event)
4986 {
4987 
4988 	sc->sc_ledevent = ticks;	/* time of last event */
4989 	if (sc->sc_blinking)		/* don't interrupt active blink */
4990 		return;
4991 	switch (event) {
4992 	case ATH_LED_POLL:
4993 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4994 			sc->sc_hwmap[0].ledoff);
4995 		break;
4996 	case ATH_LED_TX:
4997 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4998 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4999 		break;
5000 	case ATH_LED_RX:
5001 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5002 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
5003 		break;
5004 	}
5005 }
5006 
5007 static void
ath_update_txpow(struct ath_softc * sc)5008 ath_update_txpow(struct ath_softc *sc)
5009 {
5010 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5011 	struct ieee80211com *ic = &sc->sc_ic;
5012 	struct ath_hal *ah = sc->sc_ah;
5013 	u_int32_t txpow;
5014 
5015 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5016 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5017 		/* read back in case value is clamped */
5018 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5019 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5020 	}
5021 	/*
5022 	 * Fetch max tx power level for status requests.
5023 	 */
5024 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5025 	ic->ic_bss->ni_txpower = txpow;
5026 }
5027 
5028 static void
rate_setup(struct ath_softc * sc,const HAL_RATE_TABLE * rt,struct ieee80211_rateset * rs)5029 rate_setup(struct ath_softc *sc,
5030 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5031 {
5032 	int i, maxrates;
5033 
5034 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5035 		DPRINTF(sc, ATH_DEBUG_ANY,
5036 			"%s: rate table too small (%u > %u)\n",
5037 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5038 		maxrates = IEEE80211_RATE_MAXSIZE;
5039 	} else
5040 		maxrates = rt->rateCount;
5041 	for (i = 0; i < maxrates; i++)
5042 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5043 	rs->rs_nrates = maxrates;
5044 }
5045 
5046 static int
ath_rate_setup(struct ath_softc * sc,u_int mode)5047 ath_rate_setup(struct ath_softc *sc, u_int mode)
5048 {
5049 	struct ath_hal *ah = sc->sc_ah;
5050 	struct ieee80211com *ic = &sc->sc_ic;
5051 	const HAL_RATE_TABLE *rt;
5052 
5053 	switch (mode) {
5054 	case IEEE80211_MODE_11A:
5055 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5056 		break;
5057 	case IEEE80211_MODE_11B:
5058 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5059 		break;
5060 	case IEEE80211_MODE_11G:
5061 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5062 		break;
5063 	case IEEE80211_MODE_TURBO_A:
5064 		/* XXX until static/dynamic turbo is fixed */
5065 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5066 		break;
5067 	case IEEE80211_MODE_TURBO_G:
5068 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5069 		break;
5070 	default:
5071 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5072 			__func__, mode);
5073 		return 0;
5074 	}
5075 	sc->sc_rates[mode] = rt;
5076 	if (rt != NULL) {
5077 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5078 		return 1;
5079 	} else
5080 		return 0;
5081 }
5082 
5083 static void
ath_setcurmode(struct ath_softc * sc,enum ieee80211_phymode mode)5084 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5085 {
5086 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5087 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5088 	static const struct {
5089 		u_int		rate;		/* tx/rx 802.11 rate */
5090 		u_int16_t	timeOn;		/* LED on time (ms) */
5091 		u_int16_t	timeOff;	/* LED off time (ms) */
5092 	} blinkrates[] = {
5093 		{ 108,  40,  10 },
5094 		{  96,  44,  11 },
5095 		{  72,  50,  13 },
5096 		{  48,  57,  14 },
5097 		{  36,  67,  16 },
5098 		{  24,  80,  20 },
5099 		{  22, 100,  25 },
5100 		{  18, 133,  34 },
5101 		{  12, 160,  40 },
5102 		{  10, 200,  50 },
5103 		{   6, 240,  58 },
5104 		{   4, 267,  66 },
5105 		{   2, 400, 100 },
5106 		{   0, 500, 130 },
5107 	};
5108 	const HAL_RATE_TABLE *rt;
5109 	int i, j;
5110 
5111 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5112 	rt = sc->sc_rates[mode];
5113 	KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
5114 	for (i = 0; i < rt->rateCount; i++)
5115 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5116 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5117 	for (i = 0; i < 32; i++) {
5118 		u_int8_t ix = rt->rateCodeToIndex[i];
5119 		if (ix == 0xff) {
5120 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5121 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5122 			continue;
5123 		}
5124 		sc->sc_hwmap[i].ieeerate =
5125 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5126 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5127 		if (rt->info[ix].shortPreamble ||
5128 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5129 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5130 		/* NB: receive frames include FCS */
5131 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5132 			IEEE80211_RADIOTAP_F_FCS;
5133 		/* setup blink rate table to avoid per-packet lookup */
5134 		for (j = 0; j < N(blinkrates)-1; j++)
5135 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5136 				break;
5137 		/* NB: this uses the last entry if the rate isn't found */
5138 		/* XXX beware of overlow */
5139 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5140 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5141 	}
5142 	sc->sc_currates = rt;
5143 	sc->sc_curmode = mode;
5144 	/*
5145 	 * All protection frames are transmited at 2Mb/s for
5146 	 * 11g, otherwise at 1Mb/s.
5147 	 */
5148 	if (mode == IEEE80211_MODE_11G)
5149 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5150 	else
5151 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5152 	/* rate index used to send management frames */
5153 	sc->sc_minrateix = 0;
5154 	/*
5155 	 * Setup multicast rate state.
5156 	 */
5157 	/* XXX layering violation */
5158 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5159 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5160 	/* NB: caller is responsible for reseting rate control state */
5161 #undef N
5162 }
5163 
5164 #ifdef AR_DEBUG
5165 static void
ath_printrxbuf(struct ath_buf * bf,int done)5166 ath_printrxbuf(struct ath_buf *bf, int done)
5167 {
5168 	struct ath_desc *ds;
5169 	int i;
5170 
5171 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5172 		printf("R%d (%p %" PRIx64
5173 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5174 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5175 		    ds->ds_link, ds->ds_data,
5176 		    ds->ds_ctl0, ds->ds_ctl1,
5177 		    ds->ds_hw[0], ds->ds_hw[1],
5178 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5179 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5180 	}
5181 }
5182 
5183 static void
ath_printtxbuf(struct ath_buf * bf,int done)5184 ath_printtxbuf(struct ath_buf *bf, int done)
5185 {
5186 	struct ath_desc *ds;
5187 	int i;
5188 
5189 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5190 		printf("T%d (%p %" PRIx64
5191 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5192 		    i, ds,
5193 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5194 		    ds->ds_link, ds->ds_data,
5195 		    ds->ds_ctl0, ds->ds_ctl1,
5196 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5197 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5198 	}
5199 }
5200 #endif	/* AR_DEBUG */
5201 
5202 static void
ath_watchdog(struct ifnet * ifp)5203 ath_watchdog(struct ifnet *ifp)
5204 {
5205 	struct ath_softc *sc = ifp->if_softc;
5206 	struct ieee80211com *ic = &sc->sc_ic;
5207 	struct ath_txq *axq;
5208 	int i;
5209 
5210 	ifp->if_timer = 0;
5211 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5212 	    !device_is_active(sc->sc_dev))
5213 		return;
5214 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5215 		if (!ATH_TXQ_SETUP(sc, i))
5216 			continue;
5217 		axq = &sc->sc_txq[i];
5218 		ATH_TXQ_LOCK(axq);
5219 		if (axq->axq_timer == 0)
5220 			;
5221 		else if (--axq->axq_timer == 0) {
5222 			ATH_TXQ_UNLOCK(axq);
5223 			if_printf(ifp, "device timeout (txq %d, "
5224 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5225 			if (sc->sc_txintrperiod > 1)
5226 				sc->sc_txintrperiod--;
5227 			ath_reset(ifp);
5228 			ifp->if_oerrors++;
5229 			sc->sc_stats.ast_watchdog++;
5230 			break;
5231 		} else
5232 			ifp->if_timer = 1;
5233 		ATH_TXQ_UNLOCK(axq);
5234 	}
5235 	ieee80211_watchdog(ic);
5236 }
5237 
5238 /*
5239  * Diagnostic interface to the HAL.  This is used by various
5240  * tools to do things like retrieve register contents for
5241  * debugging.  The mechanism is intentionally opaque so that
5242  * it can change frequently w/o concern for compatiblity.
5243  */
5244 static int
ath_ioctl_diag(struct ath_softc * sc,struct ath_diag * ad)5245 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5246 {
5247 	struct ath_hal *ah = sc->sc_ah;
5248 	u_int id = ad->ad_id & ATH_DIAG_ID;
5249 	void *indata = NULL;
5250 	void *outdata = NULL;
5251 	u_int32_t insize = ad->ad_in_size;
5252 	u_int32_t outsize = ad->ad_out_size;
5253 	int error = 0;
5254 
5255 	if (ad->ad_id & ATH_DIAG_IN) {
5256 		/*
5257 		 * Copy in data.
5258 		 */
5259 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5260 		if (indata == NULL) {
5261 			error = ENOMEM;
5262 			goto bad;
5263 		}
5264 		error = copyin(ad->ad_in_data, indata, insize);
5265 		if (error)
5266 			goto bad;
5267 	}
5268 	if (ad->ad_id & ATH_DIAG_DYN) {
5269 		/*
5270 		 * Allocate a buffer for the results (otherwise the HAL
5271 		 * returns a pointer to a buffer where we can read the
5272 		 * results).  Note that we depend on the HAL leaving this
5273 		 * pointer for us to use below in reclaiming the buffer;
5274 		 * may want to be more defensive.
5275 		 */
5276 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5277 		if (outdata == NULL) {
5278 			error = ENOMEM;
5279 			goto bad;
5280 		}
5281 	}
5282 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5283 		if (outsize < ad->ad_out_size)
5284 			ad->ad_out_size = outsize;
5285 		if (outdata != NULL)
5286 			error = copyout(outdata, ad->ad_out_data,
5287 					ad->ad_out_size);
5288 	} else {
5289 		error = EINVAL;
5290 	}
5291 bad:
5292 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5293 		free(indata, M_TEMP);
5294 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5295 		free(outdata, M_TEMP);
5296 	return error;
5297 }
5298 
5299 static int
ath_ioctl(struct ifnet * ifp,u_long cmd,void * data)5300 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5301 {
5302 #define	IS_RUNNING(ifp) \
5303 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5304 	struct ath_softc *sc = ifp->if_softc;
5305 	struct ieee80211com *ic = &sc->sc_ic;
5306 	struct ifreq *ifr = (struct ifreq *)data;
5307 	int error = 0, s;
5308 
5309 	s = splnet();
5310 	switch (cmd) {
5311 	case SIOCSIFFLAGS:
5312 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5313 			break;
5314 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5315 		case IFF_UP|IFF_RUNNING:
5316 			/*
5317 			 * To avoid rescanning another access point,
5318 			 * do not call ath_init() here.  Instead,
5319 			 * only reflect promisc mode settings.
5320 			 */
5321 			ath_mode_init(sc);
5322 			break;
5323 		case IFF_UP:
5324 			/*
5325 			 * Beware of being called during attach/detach
5326 			 * to reset promiscuous mode.  In that case we
5327 			 * will still be marked UP but not RUNNING.
5328 			 * However trying to re-init the interface
5329 			 * is the wrong thing to do as we've already
5330 			 * torn down much of our state.  There's
5331 			 * probably a better way to deal with this.
5332 			 */
5333 			error = ath_init(sc);
5334 			break;
5335 		case IFF_RUNNING:
5336 			ath_stop_locked(ifp, 1);
5337 			break;
5338 		case 0:
5339 			break;
5340 		}
5341 		break;
5342 	case SIOCADDMULTI:
5343 	case SIOCDELMULTI:
5344 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5345 			if (ifp->if_flags & IFF_RUNNING)
5346 				ath_mode_init(sc);
5347 			error = 0;
5348 		}
5349 		break;
5350 	case SIOCGATHSTATS:
5351 		/* NB: embed these numbers to get a consistent view */
5352 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5353 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5354 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5355 		splx(s);
5356 		/*
5357 		 * NB: Drop the softc lock in case of a page fault;
5358 		 * we'll accept any potential inconsisentcy in the
5359 		 * statistics.  The alternative is to copy the data
5360 		 * to a local structure.
5361 		 */
5362 		return copyout(&sc->sc_stats,
5363 				ifr->ifr_data, sizeof (sc->sc_stats));
5364 	case SIOCGATHDIAG:
5365 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5366 		break;
5367 	default:
5368 		error = ieee80211_ioctl(ic, cmd, data);
5369 		if (error != ENETRESET)
5370 			;
5371 		else if (IS_RUNNING(ifp) &&
5372 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5373 			error = ath_init(sc);
5374 		else
5375 			error = 0;
5376 		break;
5377 	}
5378 	splx(s);
5379 	return error;
5380 #undef IS_RUNNING
5381 }
5382 
5383 static void
ath_bpfattach(struct ath_softc * sc)5384 ath_bpfattach(struct ath_softc *sc)
5385 {
5386 	struct ifnet *ifp = &sc->sc_if;
5387 
5388 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5389 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5390 	    &sc->sc_drvbpf);
5391 
5392 	/*
5393 	 * Initialize constant fields.
5394 	 * XXX make header lengths a multiple of 32-bits so subsequent
5395 	 *     headers are properly aligned; this is a kludge to keep
5396 	 *     certain applications happy.
5397 	 *
5398 	 * NB: the channel is setup each time we transition to the
5399 	 *     RUN state to avoid filling it in for each frame.
5400 	 */
5401 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5402 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5403 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5404 
5405 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5406 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5407 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5408 }
5409 
5410 /*
5411  * Announce various information on device/driver attach.
5412  */
5413 static void
ath_announce(struct ath_softc * sc)5414 ath_announce(struct ath_softc *sc)
5415 {
5416 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5417 	struct ifnet *ifp = &sc->sc_if;
5418 	struct ath_hal *ah = sc->sc_ah;
5419 	u_int modes, cc;
5420 
5421 	if_printf(ifp, "mac %d.%d phy %d.%d",
5422 		ah->ah_macVersion, ah->ah_macRev,
5423 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5424 	/*
5425 	 * Print radio revision(s).  We check the wireless modes
5426 	 * to avoid falsely printing revs for inoperable parts.
5427 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5428 	 */
5429 	ath_hal_getcountrycode(ah, &cc);
5430 	modes = ath_hal_getwirelessmodes(ah, cc);
5431 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5432 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5433 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5434 				ah->ah_analog5GhzRev >> 4,
5435 				ah->ah_analog5GhzRev & 0xf,
5436 				ah->ah_analog2GhzRev >> 4,
5437 				ah->ah_analog2GhzRev & 0xf);
5438 		else
5439 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5440 				ah->ah_analog5GhzRev & 0xf);
5441 	} else
5442 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5443 			ah->ah_analog5GhzRev & 0xf);
5444 	printf("\n");
5445 	if (bootverbose) {
5446 		int i;
5447 		for (i = 0; i <= WME_AC_VO; i++) {
5448 			struct ath_txq *txq = sc->sc_ac2q[i];
5449 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5450 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5451 		}
5452 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5453 			sc->sc_cabq->axq_qnum);
5454 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5455 	}
5456 	if (ath_rxbuf != ATH_RXBUF)
5457 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5458 	if (ath_txbuf != ATH_TXBUF)
5459 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5460 #undef HAL_MODE_DUALBAND
5461 }
5462