1 /* Definitions for code generation pass of GNU compiler.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_OPTABS_H
22 #define GCC_OPTABS_H
23
24 #include "insn-codes.h"
25
26 /* Optabs are tables saying how to generate insn bodies
27 for various machine modes and numbers of operands.
28 Each optab applies to one operation.
29
30 For example, add_optab applies to addition.
31
32 The `lib_call' slot is the name of the library function that
33 can be used to perform the operation.
34
35 A few optabs, such as move_optab, are used by special code. */
36
37 struct optab_handlers
38 {
39 /* I - CODE_FOR_nothing, where I is either the insn code of the
40 associated insn generator or CODE_FOR_nothing if there is no such
41 insn on the target machine. */
42 int insn_code;
43 };
44
45 struct widening_optab_handlers
46 {
47 struct optab_handlers handlers[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
48 };
49
50 struct optab_d
51 {
52 enum rtx_code code;
53 char libcall_suffix;
54 const char *libcall_basename;
55 void (*libcall_gen)(struct optab_d *, const char *name, char suffix,
56 enum machine_mode);
57 struct optab_handlers handlers[NUM_MACHINE_MODES];
58 struct widening_optab_handlers *widening;
59 };
60 typedef struct optab_d * optab;
61
62 /* A convert_optab is for some sort of conversion operation between
63 modes. The first array index is the destination mode, the second
64 is the source mode. */
65 struct convert_optab_d
66 {
67 enum rtx_code code;
68 const char *libcall_basename;
69 void (*libcall_gen)(struct convert_optab_d *, const char *name,
70 enum machine_mode,
71 enum machine_mode);
72 struct optab_handlers handlers[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
73 };
74 typedef struct convert_optab_d *convert_optab;
75
76 /* Given an enum insn_code, access the function to construct
77 the body of that kind of insn. */
78 #define GEN_FCN(CODE) (insn_data[CODE].genfun)
79
80 /* Enumeration of valid indexes into optab_table. */
81 enum optab_index
82 {
83 /* Fixed-point operators with signed/unsigned saturation */
84 OTI_ssadd,
85 OTI_usadd,
86 OTI_sssub,
87 OTI_ussub,
88 OTI_ssmul,
89 OTI_usmul,
90 OTI_ssdiv,
91 OTI_usdiv,
92 OTI_ssneg,
93 OTI_usneg,
94 OTI_ssashl,
95 OTI_usashl,
96
97 OTI_add,
98 OTI_addv,
99 OTI_sub,
100 OTI_subv,
101
102 /* Signed and fp multiply */
103 OTI_smul,
104 OTI_smulv,
105 /* Signed multiply, return high word */
106 OTI_smul_highpart,
107 OTI_umul_highpart,
108 /* Signed multiply with result one machine mode wider than args */
109 OTI_smul_widen,
110 OTI_umul_widen,
111 /* Widening multiply of one unsigned and one signed operand. */
112 OTI_usmul_widen,
113 /* Signed multiply and add with the result and addend one machine mode
114 wider than the multiplicand and multiplier. */
115 OTI_smadd_widen,
116 /* Unsigned multiply and add with the result and addend one machine mode
117 wider than the multiplicand and multiplier. */
118 OTI_umadd_widen,
119 /* Signed multiply and add with the result and addend one machine mode
120 wider than the multiplicand and multiplier.
121 All involved operations are saturating. */
122 OTI_ssmadd_widen,
123 /* Unsigned multiply and add with the result and addend one machine mode
124 wider than the multiplicand and multiplier.
125 All involved operations are saturating. */
126 OTI_usmadd_widen,
127 /* Signed multiply and subtract the result and minuend one machine mode
128 wider than the multiplicand and multiplier. */
129 OTI_smsub_widen,
130 /* Unsigned multiply and subtract the result and minuend one machine mode
131 wider than the multiplicand and multiplier. */
132 OTI_umsub_widen,
133 /* Signed multiply and subtract the result and minuend one machine mode
134 wider than the multiplicand and multiplier.
135 All involved operations are saturating. */
136 OTI_ssmsub_widen,
137 /* Unsigned multiply and subtract the result and minuend one machine mode
138 wider than the multiplicand and multiplier.
139 All involved operations are saturating. */
140 OTI_usmsub_widen,
141
142 /* Signed divide */
143 OTI_sdiv,
144 OTI_sdivv,
145 /* Signed divide-and-remainder in one */
146 OTI_sdivmod,
147 OTI_udiv,
148 OTI_udivmod,
149 /* Signed remainder */
150 OTI_smod,
151 OTI_umod,
152 /* Floating point remainder functions */
153 OTI_fmod,
154 OTI_remainder,
155 /* Convert float to integer in float fmt */
156 OTI_ftrunc,
157
158 /* Logical and */
159 OTI_and,
160 /* Logical or */
161 OTI_ior,
162 /* Logical xor */
163 OTI_xor,
164
165 /* Arithmetic shift left */
166 OTI_ashl,
167 /* Logical shift right */
168 OTI_lshr,
169 /* Arithmetic shift right */
170 OTI_ashr,
171 /* Rotate left */
172 OTI_rotl,
173 /* Rotate right */
174 OTI_rotr,
175
176 /* Arithmetic shift left of vector by vector */
177 OTI_vashl,
178 /* Logical shift right of vector by vector */
179 OTI_vlshr,
180 /* Arithmetic shift right of vector by vector */
181 OTI_vashr,
182 /* Rotate left of vector by vector */
183 OTI_vrotl,
184 /* Rotate right of vector by vector */
185 OTI_vrotr,
186
187 /* Signed and floating-point minimum value */
188 OTI_smin,
189 /* Signed and floating-point maximum value */
190 OTI_smax,
191 /* Unsigned minimum value */
192 OTI_umin,
193 /* Unsigned maximum value */
194 OTI_umax,
195 /* Power */
196 OTI_pow,
197 /* Arc tangent of y/x */
198 OTI_atan2,
199 /* Floating multiply/add */
200 OTI_fma,
201 OTI_fms,
202 OTI_fnma,
203 OTI_fnms,
204
205 /* Move instruction. */
206 OTI_mov,
207 /* Move, preserving high part of register. */
208 OTI_movstrict,
209 /* Move, with a misaligned memory. */
210 OTI_movmisalign,
211 /* Nontemporal store. */
212 OTI_storent,
213
214 /* Unary operations */
215 /* Negation */
216 OTI_neg,
217 OTI_negv,
218 /* Abs value */
219 OTI_abs,
220 OTI_absv,
221 /* Byteswap */
222 OTI_bswap,
223 /* Bitwise not */
224 OTI_one_cmpl,
225 /* Bit scanning and counting */
226 OTI_ffs,
227 OTI_clz,
228 OTI_ctz,
229 OTI_clrsb,
230 OTI_popcount,
231 OTI_parity,
232 /* Square root */
233 OTI_sqrt,
234 /* Sine-Cosine */
235 OTI_sincos,
236 /* Sine */
237 OTI_sin,
238 /* Inverse sine */
239 OTI_asin,
240 /* Cosine */
241 OTI_cos,
242 /* Inverse cosine */
243 OTI_acos,
244 /* Exponential */
245 OTI_exp,
246 /* Base-10 Exponential */
247 OTI_exp10,
248 /* Base-2 Exponential */
249 OTI_exp2,
250 /* Exponential - 1*/
251 OTI_expm1,
252 /* Load exponent of a floating point number */
253 OTI_ldexp,
254 /* Multiply floating-point number by integral power of radix */
255 OTI_scalb,
256 /* Mantissa of a floating-point number */
257 OTI_significand,
258 /* Radix-independent exponent */
259 OTI_logb,
260 OTI_ilogb,
261 /* Natural Logarithm */
262 OTI_log,
263 /* Base-10 Logarithm */
264 OTI_log10,
265 /* Base-2 Logarithm */
266 OTI_log2,
267 /* logarithm of 1 plus argument */
268 OTI_log1p,
269 /* Rounding functions */
270 OTI_floor,
271 OTI_ceil,
272 OTI_btrunc,
273 OTI_round,
274 OTI_nearbyint,
275 OTI_rint,
276 /* Tangent */
277 OTI_tan,
278 /* Inverse tangent */
279 OTI_atan,
280 /* Copy sign */
281 OTI_copysign,
282 /* Signbit */
283 OTI_signbit,
284 /* Test for infinite value */
285 OTI_isinf,
286
287 /* Compare insn; two operands. Used only for libcalls. */
288 OTI_cmp,
289 OTI_ucmp,
290
291 /* Floating point comparison optabs - used primarily for libfuncs */
292 OTI_eq,
293 OTI_ne,
294 OTI_gt,
295 OTI_ge,
296 OTI_lt,
297 OTI_le,
298 OTI_unord,
299
300 /* String length */
301 OTI_strlen,
302
303 /* Combined compare & jump/move/store flags/trap operations. */
304 OTI_cbranch,
305 OTI_cmov,
306 OTI_cstore,
307 OTI_ctrap,
308
309 /* Push instruction. */
310 OTI_push,
311
312 /* Conditional add instruction. */
313 OTI_addcc,
314
315 /* Reduction operations on a vector operand. */
316 OTI_reduc_smax,
317 OTI_reduc_umax,
318 OTI_reduc_smin,
319 OTI_reduc_umin,
320 OTI_reduc_splus,
321 OTI_reduc_uplus,
322
323 /* Summation, with result machine mode one or more wider than args. */
324 OTI_ssum_widen,
325 OTI_usum_widen,
326
327 /* Dot product, with result machine mode one or more wider than args. */
328 OTI_sdot_prod,
329 OTI_udot_prod,
330
331 /* Set specified field of vector operand. */
332 OTI_vec_set,
333 /* Extract specified field of vector operand. */
334 OTI_vec_extract,
335 /* Initialize vector operand. */
336 OTI_vec_init,
337 /* Whole vector shift. The shift amount is in bits. */
338 OTI_vec_shl,
339 OTI_vec_shr,
340 /* Extract specified elements from vectors, for vector load. */
341 OTI_vec_realign_load,
342 /* Widening multiplication.
343 The high/low part of the resulting vector of products is returned. */
344 OTI_vec_widen_umult_hi,
345 OTI_vec_widen_umult_lo,
346 OTI_vec_widen_smult_hi,
347 OTI_vec_widen_smult_lo,
348 /* Widening shift left.
349 The high/low part of the resulting vector is returned. */
350 OTI_vec_widen_ushiftl_hi,
351 OTI_vec_widen_ushiftl_lo,
352 OTI_vec_widen_sshiftl_hi,
353 OTI_vec_widen_sshiftl_lo,
354 /* Extract and widen the high/low part of a vector of signed or
355 floating point elements. */
356 OTI_vec_unpacks_hi,
357 OTI_vec_unpacks_lo,
358 /* Extract and widen the high/low part of a vector of unsigned
359 elements. */
360 OTI_vec_unpacku_hi,
361 OTI_vec_unpacku_lo,
362
363 /* Extract, convert to floating point and widen the high/low part of
364 a vector of signed or unsigned integer elements. */
365 OTI_vec_unpacks_float_hi,
366 OTI_vec_unpacks_float_lo,
367 OTI_vec_unpacku_float_hi,
368 OTI_vec_unpacku_float_lo,
369
370 /* Narrow (demote) and merge the elements of two vectors. */
371 OTI_vec_pack_trunc,
372 OTI_vec_pack_usat,
373 OTI_vec_pack_ssat,
374
375 /* Convert to signed/unsigned integer, narrow and merge elements
376 of two vectors of floating point elements. */
377 OTI_vec_pack_sfix_trunc,
378 OTI_vec_pack_ufix_trunc,
379
380 /* Perform a raise to the power of integer. */
381 OTI_powi,
382
383 /* Atomic compare and swap. */
384 OTI_sync_compare_and_swap,
385
386 /* Atomic exchange with acquire semantics. */
387 OTI_sync_lock_test_and_set,
388
389 /* This second set is atomic operations in which we return the value
390 that existed in memory before the operation. */
391 OTI_sync_old_add,
392 OTI_sync_old_sub,
393 OTI_sync_old_ior,
394 OTI_sync_old_and,
395 OTI_sync_old_xor,
396 OTI_sync_old_nand,
397
398 /* This third set is atomic operations in which we return the value
399 that resulted after performing the operation. */
400 OTI_sync_new_add,
401 OTI_sync_new_sub,
402 OTI_sync_new_ior,
403 OTI_sync_new_and,
404 OTI_sync_new_xor,
405 OTI_sync_new_nand,
406
407 OTI_MAX
408 };
409
410 #define ssadd_optab (&optab_table[OTI_ssadd])
411 #define usadd_optab (&optab_table[OTI_usadd])
412 #define sssub_optab (&optab_table[OTI_sssub])
413 #define ussub_optab (&optab_table[OTI_ussub])
414 #define ssmul_optab (&optab_table[OTI_ssmul])
415 #define usmul_optab (&optab_table[OTI_usmul])
416 #define ssdiv_optab (&optab_table[OTI_ssdiv])
417 #define usdiv_optab (&optab_table[OTI_usdiv])
418 #define ssneg_optab (&optab_table[OTI_ssneg])
419 #define usneg_optab (&optab_table[OTI_usneg])
420 #define ssashl_optab (&optab_table[OTI_ssashl])
421 #define usashl_optab (&optab_table[OTI_usashl])
422
423 #define add_optab (&optab_table[OTI_add])
424 #define sub_optab (&optab_table[OTI_sub])
425 #define smul_optab (&optab_table[OTI_smul])
426 #define addv_optab (&optab_table[OTI_addv])
427 #define subv_optab (&optab_table[OTI_subv])
428 #define smul_highpart_optab (&optab_table[OTI_smul_highpart])
429 #define umul_highpart_optab (&optab_table[OTI_umul_highpart])
430 #define smul_widen_optab (&optab_table[OTI_smul_widen])
431 #define umul_widen_optab (&optab_table[OTI_umul_widen])
432 #define usmul_widen_optab (&optab_table[OTI_usmul_widen])
433 #define smadd_widen_optab (&optab_table[OTI_smadd_widen])
434 #define umadd_widen_optab (&optab_table[OTI_umadd_widen])
435 #define ssmadd_widen_optab (&optab_table[OTI_ssmadd_widen])
436 #define usmadd_widen_optab (&optab_table[OTI_usmadd_widen])
437 #define smsub_widen_optab (&optab_table[OTI_smsub_widen])
438 #define umsub_widen_optab (&optab_table[OTI_umsub_widen])
439 #define ssmsub_widen_optab (&optab_table[OTI_ssmsub_widen])
440 #define usmsub_widen_optab (&optab_table[OTI_usmsub_widen])
441 #define sdiv_optab (&optab_table[OTI_sdiv])
442 #define smulv_optab (&optab_table[OTI_smulv])
443 #define sdivv_optab (&optab_table[OTI_sdivv])
444 #define sdivmod_optab (&optab_table[OTI_sdivmod])
445 #define udiv_optab (&optab_table[OTI_udiv])
446 #define udivmod_optab (&optab_table[OTI_udivmod])
447 #define smod_optab (&optab_table[OTI_smod])
448 #define umod_optab (&optab_table[OTI_umod])
449 #define fmod_optab (&optab_table[OTI_fmod])
450 #define remainder_optab (&optab_table[OTI_remainder])
451 #define ftrunc_optab (&optab_table[OTI_ftrunc])
452 #define and_optab (&optab_table[OTI_and])
453 #define ior_optab (&optab_table[OTI_ior])
454 #define xor_optab (&optab_table[OTI_xor])
455 #define ashl_optab (&optab_table[OTI_ashl])
456 #define lshr_optab (&optab_table[OTI_lshr])
457 #define ashr_optab (&optab_table[OTI_ashr])
458 #define rotl_optab (&optab_table[OTI_rotl])
459 #define rotr_optab (&optab_table[OTI_rotr])
460 #define vashl_optab (&optab_table[OTI_vashl])
461 #define vlshr_optab (&optab_table[OTI_vlshr])
462 #define vashr_optab (&optab_table[OTI_vashr])
463 #define vrotl_optab (&optab_table[OTI_vrotl])
464 #define vrotr_optab (&optab_table[OTI_vrotr])
465 #define smin_optab (&optab_table[OTI_smin])
466 #define smax_optab (&optab_table[OTI_smax])
467 #define umin_optab (&optab_table[OTI_umin])
468 #define umax_optab (&optab_table[OTI_umax])
469 #define pow_optab (&optab_table[OTI_pow])
470 #define atan2_optab (&optab_table[OTI_atan2])
471 #define fma_optab (&optab_table[OTI_fma])
472 #define fms_optab (&optab_table[OTI_fms])
473 #define fnma_optab (&optab_table[OTI_fnma])
474 #define fnms_optab (&optab_table[OTI_fnms])
475
476 #define mov_optab (&optab_table[OTI_mov])
477 #define movstrict_optab (&optab_table[OTI_movstrict])
478 #define movmisalign_optab (&optab_table[OTI_movmisalign])
479 #define storent_optab (&optab_table[OTI_storent])
480
481 #define neg_optab (&optab_table[OTI_neg])
482 #define negv_optab (&optab_table[OTI_negv])
483 #define abs_optab (&optab_table[OTI_abs])
484 #define absv_optab (&optab_table[OTI_absv])
485 #define one_cmpl_optab (&optab_table[OTI_one_cmpl])
486 #define bswap_optab (&optab_table[OTI_bswap])
487 #define ffs_optab (&optab_table[OTI_ffs])
488 #define clz_optab (&optab_table[OTI_clz])
489 #define ctz_optab (&optab_table[OTI_ctz])
490 #define clrsb_optab (&optab_table[OTI_clrsb])
491 #define popcount_optab (&optab_table[OTI_popcount])
492 #define parity_optab (&optab_table[OTI_parity])
493 #define sqrt_optab (&optab_table[OTI_sqrt])
494 #define sincos_optab (&optab_table[OTI_sincos])
495 #define sin_optab (&optab_table[OTI_sin])
496 #define asin_optab (&optab_table[OTI_asin])
497 #define cos_optab (&optab_table[OTI_cos])
498 #define acos_optab (&optab_table[OTI_acos])
499 #define exp_optab (&optab_table[OTI_exp])
500 #define exp10_optab (&optab_table[OTI_exp10])
501 #define exp2_optab (&optab_table[OTI_exp2])
502 #define expm1_optab (&optab_table[OTI_expm1])
503 #define ldexp_optab (&optab_table[OTI_ldexp])
504 #define scalb_optab (&optab_table[OTI_scalb])
505 #define significand_optab (&optab_table[OTI_significand])
506 #define logb_optab (&optab_table[OTI_logb])
507 #define ilogb_optab (&optab_table[OTI_ilogb])
508 #define log_optab (&optab_table[OTI_log])
509 #define log10_optab (&optab_table[OTI_log10])
510 #define log2_optab (&optab_table[OTI_log2])
511 #define log1p_optab (&optab_table[OTI_log1p])
512 #define floor_optab (&optab_table[OTI_floor])
513 #define ceil_optab (&optab_table[OTI_ceil])
514 #define btrunc_optab (&optab_table[OTI_btrunc])
515 #define round_optab (&optab_table[OTI_round])
516 #define nearbyint_optab (&optab_table[OTI_nearbyint])
517 #define rint_optab (&optab_table[OTI_rint])
518 #define tan_optab (&optab_table[OTI_tan])
519 #define atan_optab (&optab_table[OTI_atan])
520 #define copysign_optab (&optab_table[OTI_copysign])
521 #define signbit_optab (&optab_table[OTI_signbit])
522 #define isinf_optab (&optab_table[OTI_isinf])
523
524 #define cmp_optab (&optab_table[OTI_cmp])
525 #define ucmp_optab (&optab_table[OTI_ucmp])
526
527 #define eq_optab (&optab_table[OTI_eq])
528 #define ne_optab (&optab_table[OTI_ne])
529 #define gt_optab (&optab_table[OTI_gt])
530 #define ge_optab (&optab_table[OTI_ge])
531 #define lt_optab (&optab_table[OTI_lt])
532 #define le_optab (&optab_table[OTI_le])
533 #define unord_optab (&optab_table[OTI_unord])
534
535 #define strlen_optab (&optab_table[OTI_strlen])
536
537 #define cbranch_optab (&optab_table[OTI_cbranch])
538 #define cmov_optab (&optab_table[OTI_cmov])
539 #define cstore_optab (&optab_table[OTI_cstore])
540 #define ctrap_optab (&optab_table[OTI_ctrap])
541
542 #define push_optab (&optab_table[OTI_push])
543 #define addcc_optab (&optab_table[OTI_addcc])
544
545 #define reduc_smax_optab (&optab_table[OTI_reduc_smax])
546 #define reduc_umax_optab (&optab_table[OTI_reduc_umax])
547 #define reduc_smin_optab (&optab_table[OTI_reduc_smin])
548 #define reduc_umin_optab (&optab_table[OTI_reduc_umin])
549 #define reduc_splus_optab (&optab_table[OTI_reduc_splus])
550 #define reduc_uplus_optab (&optab_table[OTI_reduc_uplus])
551
552 #define ssum_widen_optab (&optab_table[OTI_ssum_widen])
553 #define usum_widen_optab (&optab_table[OTI_usum_widen])
554 #define sdot_prod_optab (&optab_table[OTI_sdot_prod])
555 #define udot_prod_optab (&optab_table[OTI_udot_prod])
556
557 #define vec_set_optab (&optab_table[OTI_vec_set])
558 #define vec_extract_optab (&optab_table[OTI_vec_extract])
559 #define vec_init_optab (&optab_table[OTI_vec_init])
560 #define vec_shl_optab (&optab_table[OTI_vec_shl])
561 #define vec_shr_optab (&optab_table[OTI_vec_shr])
562 #define vec_realign_load_optab (&optab_table[OTI_vec_realign_load])
563 #define vec_widen_umult_hi_optab (&optab_table[OTI_vec_widen_umult_hi])
564 #define vec_widen_umult_lo_optab (&optab_table[OTI_vec_widen_umult_lo])
565 #define vec_widen_smult_hi_optab (&optab_table[OTI_vec_widen_smult_hi])
566 #define vec_widen_smult_lo_optab (&optab_table[OTI_vec_widen_smult_lo])
567 #define vec_widen_ushiftl_hi_optab (&optab_table[OTI_vec_widen_ushiftl_hi])
568 #define vec_widen_ushiftl_lo_optab (&optab_table[OTI_vec_widen_ushiftl_lo])
569 #define vec_widen_sshiftl_hi_optab (&optab_table[OTI_vec_widen_sshiftl_hi])
570 #define vec_widen_sshiftl_lo_optab (&optab_table[OTI_vec_widen_sshiftl_lo])
571 #define vec_unpacks_hi_optab (&optab_table[OTI_vec_unpacks_hi])
572 #define vec_unpacks_lo_optab (&optab_table[OTI_vec_unpacks_lo])
573 #define vec_unpacku_hi_optab (&optab_table[OTI_vec_unpacku_hi])
574 #define vec_unpacku_lo_optab (&optab_table[OTI_vec_unpacku_lo])
575 #define vec_unpacks_float_hi_optab (&optab_table[OTI_vec_unpacks_float_hi])
576 #define vec_unpacks_float_lo_optab (&optab_table[OTI_vec_unpacks_float_lo])
577 #define vec_unpacku_float_hi_optab (&optab_table[OTI_vec_unpacku_float_hi])
578 #define vec_unpacku_float_lo_optab (&optab_table[OTI_vec_unpacku_float_lo])
579 #define vec_pack_trunc_optab (&optab_table[OTI_vec_pack_trunc])
580 #define vec_pack_ssat_optab (&optab_table[OTI_vec_pack_ssat])
581 #define vec_pack_usat_optab (&optab_table[OTI_vec_pack_usat])
582 #define vec_pack_sfix_trunc_optab (&optab_table[OTI_vec_pack_sfix_trunc])
583 #define vec_pack_ufix_trunc_optab (&optab_table[OTI_vec_pack_ufix_trunc])
584
585 #define powi_optab (&optab_table[OTI_powi])
586
587 #define sync_compare_and_swap_optab \
588 (&optab_table[(int) OTI_sync_compare_and_swap])
589 #define sync_lock_test_and_set_optab \
590 (&optab_table[(int) OTI_sync_lock_test_and_set])
591 #define sync_old_add_optab (&optab_table[(int) OTI_sync_old_add])
592 #define sync_old_sub_optab (&optab_table[(int) OTI_sync_old_sub])
593 #define sync_old_ior_optab (&optab_table[(int) OTI_sync_old_ior])
594 #define sync_old_and_optab (&optab_table[(int) OTI_sync_old_and])
595 #define sync_old_xor_optab (&optab_table[(int) OTI_sync_old_xor])
596 #define sync_old_nand_optab (&optab_table[(int) OTI_sync_old_nand])
597 #define sync_new_add_optab (&optab_table[(int) OTI_sync_new_add])
598 #define sync_new_sub_optab (&optab_table[(int) OTI_sync_new_sub])
599 #define sync_new_ior_optab (&optab_table[(int) OTI_sync_new_ior])
600 #define sync_new_and_optab (&optab_table[(int) OTI_sync_new_and])
601 #define sync_new_xor_optab (&optab_table[(int) OTI_sync_new_xor])
602 #define sync_new_nand_optab (&optab_table[(int) OTI_sync_new_nand])
603
604 /* Conversion optabs have their own table and indexes. */
605 enum convert_optab_index
606 {
607 COI_sext,
608 COI_zext,
609 COI_trunc,
610
611 COI_sfix,
612 COI_ufix,
613
614 COI_sfixtrunc,
615 COI_ufixtrunc,
616
617 COI_sfloat,
618 COI_ufloat,
619
620 COI_lrint,
621 COI_lround,
622 COI_lfloor,
623 COI_lceil,
624
625 COI_fract,
626 COI_fractuns,
627 COI_satfract,
628 COI_satfractuns,
629
630 COI_vec_load_lanes,
631 COI_vec_store_lanes,
632
633 /* Vector conditional operations. */
634 COI_vcond,
635 COI_vcondu,
636
637 COI_MAX
638 };
639
640 #define sext_optab (&convert_optab_table[COI_sext])
641 #define zext_optab (&convert_optab_table[COI_zext])
642 #define trunc_optab (&convert_optab_table[COI_trunc])
643 #define sfix_optab (&convert_optab_table[COI_sfix])
644 #define ufix_optab (&convert_optab_table[COI_ufix])
645 #define sfixtrunc_optab (&convert_optab_table[COI_sfixtrunc])
646 #define ufixtrunc_optab (&convert_optab_table[COI_ufixtrunc])
647 #define sfloat_optab (&convert_optab_table[COI_sfloat])
648 #define ufloat_optab (&convert_optab_table[COI_ufloat])
649 #define lrint_optab (&convert_optab_table[COI_lrint])
650 #define lround_optab (&convert_optab_table[COI_lround])
651 #define lfloor_optab (&convert_optab_table[COI_lfloor])
652 #define lceil_optab (&convert_optab_table[COI_lceil])
653 #define fract_optab (&convert_optab_table[COI_fract])
654 #define fractuns_optab (&convert_optab_table[COI_fractuns])
655 #define satfract_optab (&convert_optab_table[COI_satfract])
656 #define satfractuns_optab (&convert_optab_table[COI_satfractuns])
657 #define vec_load_lanes_optab (&convert_optab_table[COI_vec_load_lanes])
658 #define vec_store_lanes_optab (&convert_optab_table[COI_vec_store_lanes])
659 #define vcond_optab (&convert_optab_table[(int) COI_vcond])
660 #define vcondu_optab (&convert_optab_table[(int) COI_vcondu])
661
662 /* Contains the optab used for each rtx code. */
663 extern optab code_to_optab[NUM_RTX_CODE + 1];
664
665
666 typedef rtx (*rtxfun) (rtx);
667
668 /* Enumerates operations that have a named .md pattern associated
669 with them, but which are not implemented as library functions. */
670 enum direct_optab_index
671 {
672 #ifdef HAVE_conditional_move
673 /* Conditional move operations. */
674 DOI_movcc,
675 #endif
676
677 /* Operations that use a scratch register to perform input and output
678 reloads of special objects. */
679 DOI_reload_in,
680 DOI_reload_out,
681
682 /* Block move operation. */
683 DOI_movmem,
684
685 /* Block set operation. */
686 DOI_setmem,
687
688 /* Various types of block compare operation. */
689 DOI_cmpstr,
690 DOI_cmpstrn,
691 DOI_cmpmem,
692
693 /* Atomic clear with release semantics. */
694 DOI_sync_lock_release,
695
696 /* Atomic operation with no resulting value. */
697 DOI_sync_add,
698 DOI_sync_sub,
699 DOI_sync_ior,
700 DOI_sync_and,
701 DOI_sync_xor,
702 DOI_sync_nand,
703
704 /* Atomic operations with memory model parameters. */
705 DOI_atomic_exchange,
706 DOI_atomic_compare_and_swap,
707 DOI_atomic_load,
708 DOI_atomic_store,
709 DOI_atomic_add_fetch,
710 DOI_atomic_sub_fetch,
711 DOI_atomic_and_fetch,
712 DOI_atomic_nand_fetch,
713 DOI_atomic_xor_fetch,
714 DOI_atomic_or_fetch,
715 DOI_atomic_fetch_add,
716 DOI_atomic_fetch_sub,
717 DOI_atomic_fetch_and,
718 DOI_atomic_fetch_nand,
719 DOI_atomic_fetch_xor,
720 DOI_atomic_fetch_or,
721 DOI_atomic_add,
722 DOI_atomic_sub,
723 DOI_atomic_and,
724 DOI_atomic_nand,
725 DOI_atomic_xor,
726 DOI_atomic_or,
727 DOI_atomic_always_lock_free,
728 DOI_atomic_is_lock_free,
729 DOI_atomic_thread_fence,
730 DOI_atomic_signal_fence,
731
732 /* Vector permutation. */
733 DOI_vec_perm,
734 DOI_vec_perm_const,
735
736 DOI_MAX
737 };
738
739 /* A structure that says which insn should be used to perform an operation
740 in a particular mode. */
741 struct direct_optab_d
742 {
743 struct optab_handlers handlers[NUM_MACHINE_MODES];
744 };
745 typedef struct direct_optab_d *direct_optab;
746
747 #ifdef HAVE_conditional_move
748 #define movcc_optab (&direct_optab_table[(int) DOI_movcc])
749 #endif
750 #define reload_in_optab (&direct_optab_table[(int) DOI_reload_in])
751 #define reload_out_optab (&direct_optab_table[(int) DOI_reload_out])
752 #define movmem_optab (&direct_optab_table[(int) DOI_movmem])
753 #define setmem_optab (&direct_optab_table[(int) DOI_setmem])
754 #define cmpstr_optab (&direct_optab_table[(int) DOI_cmpstr])
755 #define cmpstrn_optab (&direct_optab_table[(int) DOI_cmpstrn])
756 #define cmpmem_optab (&direct_optab_table[(int) DOI_cmpmem])
757 #define sync_lock_release_optab \
758 (&direct_optab_table[(int) DOI_sync_lock_release])
759 #define sync_add_optab (&direct_optab_table[(int) DOI_sync_add])
760 #define sync_sub_optab (&direct_optab_table[(int) DOI_sync_sub])
761 #define sync_ior_optab (&direct_optab_table[(int) DOI_sync_ior])
762 #define sync_and_optab (&direct_optab_table[(int) DOI_sync_and])
763 #define sync_xor_optab (&direct_optab_table[(int) DOI_sync_xor])
764 #define sync_nand_optab (&direct_optab_table[(int) DOI_sync_nand])
765
766 #define atomic_exchange_optab \
767 (&direct_optab_table[(int) DOI_atomic_exchange])
768 #define atomic_compare_and_swap_optab \
769 (&direct_optab_table[(int) DOI_atomic_compare_and_swap])
770 #define atomic_load_optab \
771 (&direct_optab_table[(int) DOI_atomic_load])
772 #define atomic_store_optab \
773 (&direct_optab_table[(int) DOI_atomic_store])
774 #define atomic_add_fetch_optab \
775 (&direct_optab_table[(int) DOI_atomic_add_fetch])
776 #define atomic_sub_fetch_optab \
777 (&direct_optab_table[(int) DOI_atomic_sub_fetch])
778 #define atomic_and_fetch_optab \
779 (&direct_optab_table[(int) DOI_atomic_and_fetch])
780 #define atomic_nand_fetch_optab \
781 (&direct_optab_table[(int) DOI_atomic_nand_fetch])
782 #define atomic_xor_fetch_optab \
783 (&direct_optab_table[(int) DOI_atomic_xor_fetch])
784 #define atomic_or_fetch_optab \
785 (&direct_optab_table[(int) DOI_atomic_or_fetch])
786 #define atomic_fetch_add_optab \
787 (&direct_optab_table[(int) DOI_atomic_fetch_add])
788 #define atomic_fetch_sub_optab \
789 (&direct_optab_table[(int) DOI_atomic_fetch_sub])
790 #define atomic_fetch_and_optab \
791 (&direct_optab_table[(int) DOI_atomic_fetch_and])
792 #define atomic_fetch_nand_optab \
793 (&direct_optab_table[(int) DOI_atomic_fetch_nand])
794 #define atomic_fetch_xor_optab \
795 (&direct_optab_table[(int) DOI_atomic_fetch_xor])
796 #define atomic_fetch_or_optab \
797 (&direct_optab_table[(int) DOI_atomic_fetch_or])
798 #define atomic_add_optab \
799 (&direct_optab_table[(int) DOI_atomic_add])
800 #define atomic_sub_optab \
801 (&direct_optab_table[(int) DOI_atomic_sub])
802 #define atomic_and_optab \
803 (&direct_optab_table[(int) DOI_atomic_and])
804 #define atomic_nand_optab \
805 (&direct_optab_table[(int) DOI_atomic_nand])
806 #define atomic_xor_optab \
807 (&direct_optab_table[(int) DOI_atomic_xor])
808 #define atomic_or_optab \
809 (&direct_optab_table[(int) DOI_atomic_or])
810 #define atomic_always_lock_free_optab \
811 (&direct_optab_table[(int) DOI_atomic_always_lock_free])
812 #define atomic_is_lock_free_optab \
813 (&direct_optab_table[(int) DOI_atomic_is_lock_free])
814 #define atomic_thread_fence_optab \
815 (&direct_optab_table[(int) DOI_atomic_thread_fence])
816 #define atomic_signal_fence_optab \
817 (&direct_optab_table[(int) DOI_atomic_signal_fence])
818
819 #define vec_perm_optab (&direct_optab_table[DOI_vec_perm])
820 #define vec_perm_const_optab (&direct_optab_table[(int) DOI_vec_perm_const])
821
822 /* Target-dependent globals. */
823 struct target_optabs {
824 /* Tables of patterns that may have an associated libcall. */
825 struct optab_d x_optab_table[(int) OTI_MAX];
826
827 /* Tables of patterns for converting one mode to another. */
828 struct convert_optab_d x_convert_optab_table[(int) COI_MAX];
829
830 /* Tables of patterns for direct optabs (i.e. those which cannot be
831 implemented using a libcall). */
832 struct direct_optab_d x_direct_optab_table[(int) DOI_MAX];
833 };
834
835 extern struct target_optabs default_target_optabs;
836 #if SWITCHABLE_TARGET
837 extern struct target_optabs *this_target_optabs;
838 #else
839 #define this_target_optabs (&default_target_optabs)
840 #endif
841
842 #define optab_table \
843 (this_target_optabs->x_optab_table)
844 #define convert_optab_table \
845 (this_target_optabs->x_convert_optab_table)
846 #define direct_optab_table \
847 (this_target_optabs->x_direct_optab_table)
848
849 /* Define functions given in optabs.c. */
850
851 extern rtx expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
852 rtx target, int unsignedp);
853
854 extern rtx expand_ternary_op (enum machine_mode mode, optab ternary_optab,
855 rtx op0, rtx op1, rtx op2, rtx target,
856 int unsignedp);
857
858 /* Expand a binary operation given optab and rtx operands. */
859 extern rtx expand_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
860 enum optab_methods);
861
862 extern rtx simplify_expand_binop (enum machine_mode mode, optab binoptab,
863 rtx op0, rtx op1, rtx target, int unsignedp,
864 enum optab_methods methods);
865
866 extern bool force_expand_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
867 enum optab_methods);
868
869 /* Expand a binary operation with both signed and unsigned forms. */
870 extern rtx sign_expand_binop (enum machine_mode, optab, optab, rtx, rtx,
871 rtx, int, enum optab_methods);
872
873 /* Generate code to perform an operation on one operand with two results. */
874 extern int expand_twoval_unop (optab, rtx, rtx, rtx, int);
875
876 /* Generate code to perform an operation on two operands with two results. */
877 extern int expand_twoval_binop (optab, rtx, rtx, rtx, rtx, int);
878
879 /* Generate code to perform an operation on two operands with two
880 results, using a library function. */
881 extern bool expand_twoval_binop_libfunc (optab, rtx, rtx, rtx, rtx,
882 enum rtx_code);
883
884 /* Expand a unary arithmetic operation given optab rtx operand. */
885 extern rtx expand_unop (enum machine_mode, optab, rtx, rtx, int);
886
887 /* Expand the absolute value operation. */
888 extern rtx expand_abs_nojump (enum machine_mode, rtx, rtx, int);
889 extern rtx expand_abs (enum machine_mode, rtx, rtx, int, int);
890
891 /* Expand the one's complement absolute value operation. */
892 extern rtx expand_one_cmpl_abs_nojump (enum machine_mode, rtx, rtx);
893
894 /* Expand the copysign operation. */
895 extern rtx expand_copysign (rtx, rtx, rtx);
896
897 /* Generate an instruction with a given INSN_CODE with an output and
898 an input. */
899 extern void emit_unop_insn (enum insn_code, rtx, rtx, enum rtx_code);
900 extern bool maybe_emit_unop_insn (enum insn_code, rtx, rtx, enum rtx_code);
901
902 /* Find a widening optab even if it doesn't widen as much as we want. */
903 #define find_widening_optab_handler(A,B,C,D) \
904 find_widening_optab_handler_and_mode (A, B, C, D, NULL)
905 extern enum insn_code find_widening_optab_handler_and_mode (optab,
906 enum machine_mode,
907 enum machine_mode,
908 int,
909 enum machine_mode *);
910
911 /* An extra flag to control optab_for_tree_code's behavior. This is needed to
912 distinguish between machines with a vector shift that takes a scalar for the
913 shift amount vs. machines that take a vector for the shift amount. */
914 enum optab_subtype
915 {
916 optab_default,
917 optab_scalar,
918 optab_vector
919 };
920
921 /* Return the optab used for computing the given operation on the type given by
922 the second argument. The third argument distinguishes between the types of
923 vector shifts and rotates */
924 extern optab optab_for_tree_code (enum tree_code, const_tree, enum optab_subtype);
925
926 /* The various uses that a comparison can have; used by can_compare_p:
927 jumps, conditional moves, store flag operations. */
928 enum can_compare_purpose
929 {
930 ccp_jump,
931 ccp_cmov,
932 ccp_store_flag
933 };
934
935 /* Nonzero if a compare of mode MODE can be done straightforwardly
936 (without splitting it into pieces). */
937 extern int can_compare_p (enum rtx_code, enum machine_mode,
938 enum can_compare_purpose);
939
940 /* Return the INSN_CODE to use for an extend operation. */
941 extern enum insn_code can_extend_p (enum machine_mode, enum machine_mode, int);
942
943 /* Generate the body of an insn to extend Y (with mode MFROM)
944 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
945 extern rtx gen_extend_insn (rtx, rtx, enum machine_mode,
946 enum machine_mode, int);
947
948 /* Call this to reset the function entry for one optab. */
949 extern void set_optab_libfunc (optab, enum machine_mode, const char *);
950 extern void set_conv_libfunc (convert_optab, enum machine_mode,
951 enum machine_mode, const char *);
952
953 /* Call this to install all of the __sync libcalls up to size MAX. */
954 extern void init_sync_libfuncs (int max);
955
956 /* Generate code for a FIXED_CONVERT_EXPR. */
957 extern void expand_fixed_convert (rtx, rtx, int, int);
958
959 /* Generate code for a FLOAT_EXPR. */
960 extern void expand_float (rtx, rtx, int);
961
962 /* Return the insn_code for a FLOAT_EXPR. */
963 enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
964
965 /* Return true if there is an inline compare and swap pattern. */
966 extern bool can_compare_and_swap_p (enum machine_mode, bool);
967
968 /* Return true if there is an inline atomic exchange pattern. */
969 extern bool can_atomic_exchange_p (enum machine_mode, bool);
970
971 /* Generate code for a compare and swap. */
972 extern bool expand_atomic_compare_and_swap (rtx *, rtx *, rtx, rtx, rtx, bool,
973 enum memmodel, enum memmodel);
974
975 /* Generate memory barriers. */
976 extern void expand_mem_thread_fence (enum memmodel);
977 extern void expand_mem_signal_fence (enum memmodel);
978
979 /* Check whether an operation represented by the code CODE is a
980 convert operation that is supported by the target platform in
981 vector form */
982 bool supportable_convert_operation (enum tree_code, tree, tree, tree *,
983 enum tree_code *);
984
985 /* Generate code for a FIX_EXPR. */
986 extern void expand_fix (rtx, rtx, int);
987
988 /* Generate code for float to integral conversion. */
989 extern bool expand_sfix_optab (rtx, rtx, convert_optab);
990
991 /* Generate code for a widening multiply. */
992 extern rtx expand_widening_mult (enum machine_mode, rtx, rtx, rtx, int, optab);
993
994 /* Return tree if target supports vector operations for COND_EXPR. */
995 bool expand_vec_cond_expr_p (tree, tree);
996
997 /* Generate code for VEC_COND_EXPR. */
998 extern rtx expand_vec_cond_expr (tree, tree, tree, tree, rtx);
999 /* Generate code for VEC_LSHIFT_EXPR and VEC_RSHIFT_EXPR. */
1000 extern rtx expand_vec_shift_expr (sepops, rtx);
1001
1002 /* Return tree if target supports vector operations for VEC_PERM_EXPR. */
1003 extern bool can_vec_perm_p (enum machine_mode, bool, const unsigned char *);
1004
1005 /* Generate code for VEC_PERM_EXPR. */
1006 extern rtx expand_vec_perm (enum machine_mode, rtx, rtx, rtx, rtx);
1007
1008 /* Return the insn used to implement mode MODE of OP, or CODE_FOR_nothing
1009 if the target does not have such an insn. */
1010
1011 static inline enum insn_code
optab_handler(optab op,enum machine_mode mode)1012 optab_handler (optab op, enum machine_mode mode)
1013 {
1014 return (enum insn_code) (op->handlers[(int) mode].insn_code
1015 + (int) CODE_FOR_nothing);
1016 }
1017
1018 /* Like optab_handler, but for widening_operations that have a TO_MODE and
1019 a FROM_MODE. */
1020
1021 static inline enum insn_code
widening_optab_handler(optab op,enum machine_mode to_mode,enum machine_mode from_mode)1022 widening_optab_handler (optab op, enum machine_mode to_mode,
1023 enum machine_mode from_mode)
1024 {
1025 if (to_mode == from_mode || from_mode == VOIDmode)
1026 return optab_handler (op, to_mode);
1027
1028 if (op->widening)
1029 return (enum insn_code) (op->widening->handlers[(int) to_mode][(int) from_mode].insn_code
1030 + (int) CODE_FOR_nothing);
1031
1032 return CODE_FOR_nothing;
1033 }
1034
1035 /* Record that insn CODE should be used to implement mode MODE of OP. */
1036
1037 static inline void
set_optab_handler(optab op,enum machine_mode mode,enum insn_code code)1038 set_optab_handler (optab op, enum machine_mode mode, enum insn_code code)
1039 {
1040 op->handlers[(int) mode].insn_code = (int) code - (int) CODE_FOR_nothing;
1041 }
1042
1043 /* Like set_optab_handler, but for widening operations that have a TO_MODE
1044 and a FROM_MODE. */
1045
1046 static inline void
set_widening_optab_handler(optab op,enum machine_mode to_mode,enum machine_mode from_mode,enum insn_code code)1047 set_widening_optab_handler (optab op, enum machine_mode to_mode,
1048 enum machine_mode from_mode, enum insn_code code)
1049 {
1050 if (to_mode == from_mode)
1051 set_optab_handler (op, to_mode, code);
1052 else
1053 {
1054 if (op->widening == NULL)
1055 op->widening = (struct widening_optab_handlers *)
1056 xcalloc (1, sizeof (struct widening_optab_handlers));
1057
1058 op->widening->handlers[(int) to_mode][(int) from_mode].insn_code
1059 = (int) code - (int) CODE_FOR_nothing;
1060 }
1061 }
1062
1063 /* Return the insn used to perform conversion OP from mode FROM_MODE
1064 to mode TO_MODE; return CODE_FOR_nothing if the target does not have
1065 such an insn. */
1066
1067 static inline enum insn_code
convert_optab_handler(convert_optab op,enum machine_mode to_mode,enum machine_mode from_mode)1068 convert_optab_handler (convert_optab op, enum machine_mode to_mode,
1069 enum machine_mode from_mode)
1070 {
1071 return ((enum insn_code)
1072 (op->handlers[(int) to_mode][(int) from_mode].insn_code
1073 + (int) CODE_FOR_nothing));
1074 }
1075
1076 /* Record that insn CODE should be used to perform conversion OP
1077 from mode FROM_MODE to mode TO_MODE. */
1078
1079 static inline void
set_convert_optab_handler(convert_optab op,enum machine_mode to_mode,enum machine_mode from_mode,enum insn_code code)1080 set_convert_optab_handler (convert_optab op, enum machine_mode to_mode,
1081 enum machine_mode from_mode, enum insn_code code)
1082 {
1083 op->handlers[(int) to_mode][(int) from_mode].insn_code
1084 = (int) code - (int) CODE_FOR_nothing;
1085 }
1086
1087 /* Return the insn used to implement mode MODE of OP, or CODE_FOR_nothing
1088 if the target does not have such an insn. */
1089
1090 static inline enum insn_code
direct_optab_handler(direct_optab op,enum machine_mode mode)1091 direct_optab_handler (direct_optab op, enum machine_mode mode)
1092 {
1093 return (enum insn_code) (op->handlers[(int) mode].insn_code
1094 + (int) CODE_FOR_nothing);
1095 }
1096
1097 /* Record that insn CODE should be used to implement mode MODE of OP. */
1098
1099 static inline void
set_direct_optab_handler(direct_optab op,enum machine_mode mode,enum insn_code code)1100 set_direct_optab_handler (direct_optab op, enum machine_mode mode,
1101 enum insn_code code)
1102 {
1103 op->handlers[(int) mode].insn_code = (int) code - (int) CODE_FOR_nothing;
1104 }
1105
1106 extern rtx optab_libfunc (optab optab, enum machine_mode mode);
1107 extern rtx convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
1108 enum machine_mode mode2);
1109
1110 extern bool insn_operand_matches (enum insn_code icode, unsigned int opno,
1111 rtx operand);
1112
1113 /* Describes the type of an expand_operand. Each value is associated
1114 with a create_*_operand function; see the comments above those
1115 functions for details. */
1116 enum expand_operand_type {
1117 EXPAND_FIXED,
1118 EXPAND_OUTPUT,
1119 EXPAND_INPUT,
1120 EXPAND_CONVERT_TO,
1121 EXPAND_CONVERT_FROM,
1122 EXPAND_ADDRESS,
1123 EXPAND_INTEGER
1124 };
1125
1126 /* Information about an operand for instruction expansion. */
1127 struct expand_operand {
1128 /* The type of operand. */
1129 ENUM_BITFIELD (expand_operand_type) type : 8;
1130
1131 /* True if any conversion should treat VALUE as being unsigned
1132 rather than signed. Only meaningful for certain types. */
1133 unsigned int unsigned_p : 1;
1134
1135 /* Unused; available for future use. */
1136 unsigned int unused : 7;
1137
1138 /* The mode passed to the convert_*_operand function. It has a
1139 type-dependent meaning. */
1140 ENUM_BITFIELD (machine_mode) mode : 16;
1141
1142 /* The value of the operand. */
1143 rtx value;
1144 };
1145
1146 /* Initialize OP with the given fields. Initialise the other fields
1147 to their default values. */
1148
1149 static inline void
create_expand_operand(struct expand_operand * op,enum expand_operand_type type,rtx value,enum machine_mode mode,bool unsigned_p)1150 create_expand_operand (struct expand_operand *op,
1151 enum expand_operand_type type,
1152 rtx value, enum machine_mode mode,
1153 bool unsigned_p)
1154 {
1155 op->type = type;
1156 op->unsigned_p = unsigned_p;
1157 op->unused = 0;
1158 op->mode = mode;
1159 op->value = value;
1160 }
1161
1162 /* Make OP describe an operand that must use rtx X, even if X is volatile. */
1163
1164 static inline void
create_fixed_operand(struct expand_operand * op,rtx x)1165 create_fixed_operand (struct expand_operand *op, rtx x)
1166 {
1167 create_expand_operand (op, EXPAND_FIXED, x, VOIDmode, false);
1168 }
1169
1170 /* Make OP describe an output operand that must have mode MODE.
1171 X, if nonnull, is a suggestion for where the output should be stored.
1172 It is OK for VALUE to be inconsistent with MODE, although it will just
1173 be ignored in that case. */
1174
1175 static inline void
create_output_operand(struct expand_operand * op,rtx x,enum machine_mode mode)1176 create_output_operand (struct expand_operand *op, rtx x,
1177 enum machine_mode mode)
1178 {
1179 create_expand_operand (op, EXPAND_OUTPUT, x, mode, false);
1180 }
1181
1182 /* Make OP describe an input operand that must have mode MODE and
1183 value VALUE; MODE cannot be VOIDmode. The backend may request that
1184 VALUE be copied into a different kind of rtx before being passed
1185 as an operand. */
1186
1187 static inline void
create_input_operand(struct expand_operand * op,rtx value,enum machine_mode mode)1188 create_input_operand (struct expand_operand *op, rtx value,
1189 enum machine_mode mode)
1190 {
1191 create_expand_operand (op, EXPAND_INPUT, value, mode, false);
1192 }
1193
1194 /* Like create_input_operand, except that VALUE must first be converted
1195 to mode MODE. UNSIGNED_P says whether VALUE is unsigned. */
1196
1197 static inline void
create_convert_operand_to(struct expand_operand * op,rtx value,enum machine_mode mode,bool unsigned_p)1198 create_convert_operand_to (struct expand_operand *op, rtx value,
1199 enum machine_mode mode, bool unsigned_p)
1200 {
1201 create_expand_operand (op, EXPAND_CONVERT_TO, value, mode, unsigned_p);
1202 }
1203
1204 /* Make OP describe an input operand that should have the same value
1205 as VALUE, after any mode conversion that the backend might request.
1206 If VALUE is a CONST_INT, it should be treated as having mode MODE.
1207 UNSIGNED_P says whether VALUE is unsigned. */
1208
1209 static inline void
create_convert_operand_from(struct expand_operand * op,rtx value,enum machine_mode mode,bool unsigned_p)1210 create_convert_operand_from (struct expand_operand *op, rtx value,
1211 enum machine_mode mode, bool unsigned_p)
1212 {
1213 create_expand_operand (op, EXPAND_CONVERT_FROM, value, mode, unsigned_p);
1214 }
1215
1216 extern void create_convert_operand_from_type (struct expand_operand *op,
1217 rtx value, tree type);
1218
1219 /* Make OP describe an input Pmode address operand. VALUE is the value
1220 of the address, but it may need to be converted to Pmode first. */
1221
1222 static inline void
create_address_operand(struct expand_operand * op,rtx value)1223 create_address_operand (struct expand_operand *op, rtx value)
1224 {
1225 create_expand_operand (op, EXPAND_ADDRESS, value, Pmode, false);
1226 }
1227
1228 /* Make OP describe an input operand that has value INTVAL and that has
1229 no inherent mode. This function should only be used for operands that
1230 are always expand-time constants. The backend may request that INTVAL
1231 be copied into a different kind of rtx, but it must specify the mode
1232 of that rtx if so. */
1233
1234 static inline void
create_integer_operand(struct expand_operand * op,HOST_WIDE_INT intval)1235 create_integer_operand (struct expand_operand *op, HOST_WIDE_INT intval)
1236 {
1237 create_expand_operand (op, EXPAND_INTEGER, GEN_INT (intval), VOIDmode, false);
1238 }
1239
1240 extern bool valid_multiword_target_p (rtx);
1241
1242 extern bool maybe_legitimize_operands (enum insn_code icode,
1243 unsigned int opno, unsigned int nops,
1244 struct expand_operand *ops);
1245 extern rtx maybe_gen_insn (enum insn_code icode, unsigned int nops,
1246 struct expand_operand *ops);
1247 extern bool maybe_expand_insn (enum insn_code icode, unsigned int nops,
1248 struct expand_operand *ops);
1249 extern bool maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
1250 struct expand_operand *ops);
1251 extern void expand_insn (enum insn_code icode, unsigned int nops,
1252 struct expand_operand *ops);
1253 extern void expand_jump_insn (enum insn_code icode, unsigned int nops,
1254 struct expand_operand *ops);
1255
1256 extern rtx prepare_operand (enum insn_code, rtx, int, enum machine_mode,
1257 enum machine_mode, int);
1258
1259 #endif /* GCC_OPTABS_H */
1260