1 //===--- JSON.h - JSON values, parsing and serialization -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file supports working with JSON data.
11 ///
12 /// It comprises:
13 ///
14 /// - classes which hold dynamically-typed parsed JSON structures
15 /// These are value types that can be composed, inspected, and modified.
16 /// See json::Value, and the related types json::Object and json::Array.
17 ///
18 /// - functions to parse JSON text into Values, and to serialize Values to text.
19 /// See parse(), operator<<, and format_provider.
20 ///
21 /// - a convention and helpers for mapping between json::Value and user-defined
22 /// types. See fromJSON(), ObjectMapper, and the class comment on Value.
23 ///
24 /// - an output API json::OStream which can emit JSON without materializing
25 /// all structures as json::Value.
26 ///
27 /// Typically, JSON data would be read from an external source, parsed into
28 /// a Value, and then converted into some native data structure before doing
29 /// real work on it. (And vice versa when writing).
30 ///
31 /// Other serialization mechanisms you may consider:
32 ///
33 /// - YAML is also text-based, and more human-readable than JSON. It's a more
34 /// complex format and data model, and YAML parsers aren't ubiquitous.
35 /// YAMLParser.h is a streaming parser suitable for parsing large documents
36 /// (including JSON, as YAML is a superset). It can be awkward to use
37 /// directly. YAML I/O (YAMLTraits.h) provides data mapping that is more
38 /// declarative than the toJSON/fromJSON conventions here.
39 ///
40 /// - LLVM bitstream is a space- and CPU- efficient binary format. Typically it
41 /// encodes LLVM IR ("bitcode"), but it can be a container for other data.
42 /// Low-level reader/writer libraries are in Bitstream/Bitstream*.h
43 ///
44 //===---------------------------------------------------------------------===//
45
46 #ifndef LLVM_SUPPORT_JSON_H
47 #define LLVM_SUPPORT_JSON_H
48
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringRef.h"
52 #include "llvm/ADT/STLFunctionalExtras.h"
53 #include "llvm/Support/Error.h"
54 #include "llvm/Support/FormatVariadic.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cmath>
57 #include <map>
58
59 namespace llvm {
60 namespace json {
61
62 // === String encodings ===
63 //
64 // JSON strings are character sequences (not byte sequences like std::string).
65 // We need to know the encoding, and for simplicity only support UTF-8.
66 //
67 // - When parsing, invalid UTF-8 is a syntax error like any other
68 //
69 // - When creating Values from strings, callers must ensure they are UTF-8.
70 // with asserts on, invalid UTF-8 will crash the program
71 // with asserts off, we'll substitute the replacement character (U+FFFD)
72 // Callers can use json::isUTF8() and json::fixUTF8() for validation.
73 //
74 // - When retrieving strings from Values (e.g. asString()), the result will
75 // always be valid UTF-8.
76
77 /// Returns true if \p S is valid UTF-8, which is required for use as JSON.
78 /// If it returns false, \p Offset is set to a byte offset near the first error.
79 bool isUTF8(llvm::StringRef S, size_t *ErrOffset = nullptr);
80 /// Replaces invalid UTF-8 sequences in \p S with the replacement character
81 /// (U+FFFD). The returned string is valid UTF-8.
82 /// This is much slower than isUTF8, so test that first.
83 std::string fixUTF8(llvm::StringRef S);
84
85 class Array;
86 class ObjectKey;
87 class Value;
88 template <typename T> Value toJSON(const std::optional<T> &Opt);
89
90 /// An Object is a JSON object, which maps strings to heterogenous JSON values.
91 /// It simulates DenseMap<ObjectKey, Value>. ObjectKey is a maybe-owned string.
92 class Object {
93 using Storage = DenseMap<ObjectKey, Value, llvm::DenseMapInfo<StringRef>>;
94 Storage M;
95
96 public:
97 using key_type = ObjectKey;
98 using mapped_type = Value;
99 using value_type = Storage::value_type;
100 using iterator = Storage::iterator;
101 using const_iterator = Storage::const_iterator;
102
103 Object() = default;
104 // KV is a trivial key-value struct for list-initialization.
105 // (using std::pair forces extra copies).
106 struct KV;
107 explicit Object(std::initializer_list<KV> Properties);
108
begin()109 iterator begin() { return M.begin(); }
begin()110 const_iterator begin() const { return M.begin(); }
end()111 iterator end() { return M.end(); }
end()112 const_iterator end() const { return M.end(); }
113
empty()114 bool empty() const { return M.empty(); }
size()115 size_t size() const { return M.size(); }
116
clear()117 void clear() { M.clear(); }
118 std::pair<iterator, bool> insert(KV E);
119 template <typename... Ts>
try_emplace(const ObjectKey & K,Ts &&...Args)120 std::pair<iterator, bool> try_emplace(const ObjectKey &K, Ts &&... Args) {
121 return M.try_emplace(K, std::forward<Ts>(Args)...);
122 }
123 template <typename... Ts>
try_emplace(ObjectKey && K,Ts &&...Args)124 std::pair<iterator, bool> try_emplace(ObjectKey &&K, Ts &&... Args) {
125 return M.try_emplace(std::move(K), std::forward<Ts>(Args)...);
126 }
127 bool erase(StringRef K);
erase(iterator I)128 void erase(iterator I) { M.erase(I); }
129
find(StringRef K)130 iterator find(StringRef K) { return M.find_as(K); }
find(StringRef K)131 const_iterator find(StringRef K) const { return M.find_as(K); }
132 // operator[] acts as if Value was default-constructible as null.
133 Value &operator[](const ObjectKey &K);
134 Value &operator[](ObjectKey &&K);
135 // Look up a property, returning nullptr if it doesn't exist.
136 Value *get(StringRef K);
137 const Value *get(StringRef K) const;
138 // Typed accessors return std::nullopt/nullptr if
139 // - the property doesn't exist
140 // - or it has the wrong type
141 std::optional<std::nullptr_t> getNull(StringRef K) const;
142 std::optional<bool> getBoolean(StringRef K) const;
143 std::optional<double> getNumber(StringRef K) const;
144 std::optional<int64_t> getInteger(StringRef K) const;
145 std::optional<llvm::StringRef> getString(StringRef K) const;
146 const json::Object *getObject(StringRef K) const;
147 json::Object *getObject(StringRef K);
148 const json::Array *getArray(StringRef K) const;
149 json::Array *getArray(StringRef K);
150 };
151 bool operator==(const Object &LHS, const Object &RHS);
152 inline bool operator!=(const Object &LHS, const Object &RHS) {
153 return !(LHS == RHS);
154 }
155
156 /// An Array is a JSON array, which contains heterogeneous JSON values.
157 /// It simulates std::vector<Value>.
158 class Array {
159 std::vector<Value> V;
160
161 public:
162 using value_type = Value;
163 using iterator = std::vector<Value>::iterator;
164 using const_iterator = std::vector<Value>::const_iterator;
165
166 Array() = default;
167 explicit Array(std::initializer_list<Value> Elements);
Array(const Collection & C)168 template <typename Collection> explicit Array(const Collection &C) {
169 for (const auto &V : C)
170 emplace_back(V);
171 }
172
173 Value &operator[](size_t I);
174 const Value &operator[](size_t I) const;
175 Value &front();
176 const Value &front() const;
177 Value &back();
178 const Value &back() const;
179 Value *data();
180 const Value *data() const;
181
182 iterator begin();
183 const_iterator begin() const;
184 iterator end();
185 const_iterator end() const;
186
187 bool empty() const;
188 size_t size() const;
189 void reserve(size_t S);
190
191 void clear();
192 void push_back(const Value &E);
193 void push_back(Value &&E);
194 template <typename... Args> void emplace_back(Args &&...A);
195 void pop_back();
196 iterator insert(const_iterator P, const Value &E);
197 iterator insert(const_iterator P, Value &&E);
198 template <typename It> iterator insert(const_iterator P, It A, It Z);
199 template <typename... Args> iterator emplace(const_iterator P, Args &&...A);
200
201 friend bool operator==(const Array &L, const Array &R);
202 };
203 inline bool operator!=(const Array &L, const Array &R) { return !(L == R); }
204
205 /// A Value is an JSON value of unknown type.
206 /// They can be copied, but should generally be moved.
207 ///
208 /// === Composing values ===
209 ///
210 /// You can implicitly construct Values from:
211 /// - strings: std::string, SmallString, formatv, StringRef, char*
212 /// (char*, and StringRef are references, not copies!)
213 /// - numbers
214 /// - booleans
215 /// - null: nullptr
216 /// - arrays: {"foo", 42.0, false}
217 /// - serializable things: types with toJSON(const T&)->Value, found by ADL
218 ///
219 /// They can also be constructed from object/array helpers:
220 /// - json::Object is a type like map<ObjectKey, Value>
221 /// - json::Array is a type like vector<Value>
222 /// These can be list-initialized, or used to build up collections in a loop.
223 /// json::ary(Collection) converts all items in a collection to Values.
224 ///
225 /// === Inspecting values ===
226 ///
227 /// Each Value is one of the JSON kinds:
228 /// null (nullptr_t)
229 /// boolean (bool)
230 /// number (double, int64 or uint64)
231 /// string (StringRef)
232 /// array (json::Array)
233 /// object (json::Object)
234 ///
235 /// The kind can be queried directly, or implicitly via the typed accessors:
236 /// if (std::optional<StringRef> S = E.getAsString()
237 /// assert(E.kind() == Value::String);
238 ///
239 /// Array and Object also have typed indexing accessors for easy traversal:
240 /// Expected<Value> E = parse(R"( {"options": {"font": "sans-serif"}} )");
241 /// if (Object* O = E->getAsObject())
242 /// if (Object* Opts = O->getObject("options"))
243 /// if (std::optional<StringRef> Font = Opts->getString("font"))
244 /// assert(Opts->at("font").kind() == Value::String);
245 ///
246 /// === Converting JSON values to C++ types ===
247 ///
248 /// The convention is to have a deserializer function findable via ADL:
249 /// fromJSON(const json::Value&, T&, Path) -> bool
250 ///
251 /// The return value indicates overall success, and Path is used for precise
252 /// error reporting. (The Path::Root passed in at the top level fromJSON call
253 /// captures any nested error and can render it in context).
254 /// If conversion fails, fromJSON calls Path::report() and immediately returns.
255 /// This ensures that the first fatal error survives.
256 ///
257 /// Deserializers are provided for:
258 /// - bool
259 /// - int and int64_t
260 /// - double
261 /// - std::string
262 /// - vector<T>, where T is deserializable
263 /// - map<string, T>, where T is deserializable
264 /// - std::optional<T>, where T is deserializable
265 /// ObjectMapper can help writing fromJSON() functions for object types.
266 ///
267 /// For conversion in the other direction, the serializer function is:
268 /// toJSON(const T&) -> json::Value
269 /// If this exists, then it also allows constructing Value from T, and can
270 /// be used to serialize vector<T>, map<string, T>, and std::optional<T>.
271 ///
272 /// === Serialization ===
273 ///
274 /// Values can be serialized to JSON:
275 /// 1) raw_ostream << Value // Basic formatting.
276 /// 2) raw_ostream << formatv("{0}", Value) // Basic formatting.
277 /// 3) raw_ostream << formatv("{0:2}", Value) // Pretty-print with indent 2.
278 ///
279 /// And parsed:
280 /// Expected<Value> E = json::parse("[1, 2, null]");
281 /// assert(E && E->kind() == Value::Array);
282 class Value {
283 public:
284 enum Kind {
285 Null,
286 Boolean,
287 /// Number values can store both int64s and doubles at full precision,
288 /// depending on what they were constructed/parsed from.
289 Number,
290 String,
291 Array,
292 Object,
293 };
294
295 // It would be nice to have Value() be null. But that would make {} null too.
Value(const Value & M)296 Value(const Value &M) { copyFrom(M); }
Value(Value && M)297 Value(Value &&M) { moveFrom(std::move(M)); }
298 Value(std::initializer_list<Value> Elements);
Value(json::Array && Elements)299 Value(json::Array &&Elements) : Type(T_Array) {
300 create<json::Array>(std::move(Elements));
301 }
302 template <typename Elt>
Value(const std::vector<Elt> & C)303 Value(const std::vector<Elt> &C) : Value(json::Array(C)) {}
Value(json::Object && Properties)304 Value(json::Object &&Properties) : Type(T_Object) {
305 create<json::Object>(std::move(Properties));
306 }
307 template <typename Elt>
Value(const std::map<std::string,Elt> & C)308 Value(const std::map<std::string, Elt> &C) : Value(json::Object(C)) {}
309 // Strings: types with value semantics. Must be valid UTF-8.
Value(std::string V)310 Value(std::string V) : Type(T_String) {
311 if (LLVM_UNLIKELY(!isUTF8(V))) {
312 assert(false && "Invalid UTF-8 in value used as JSON");
313 V = fixUTF8(std::move(V));
314 }
315 create<std::string>(std::move(V));
316 }
Value(const llvm::SmallVectorImpl<char> & V)317 Value(const llvm::SmallVectorImpl<char> &V)
318 : Value(std::string(V.begin(), V.end())) {}
Value(const llvm::formatv_object_base & V)319 Value(const llvm::formatv_object_base &V) : Value(V.str()) {}
320 // Strings: types with reference semantics. Must be valid UTF-8.
Value(StringRef V)321 Value(StringRef V) : Type(T_StringRef) {
322 create<llvm::StringRef>(V);
323 if (LLVM_UNLIKELY(!isUTF8(V))) {
324 assert(false && "Invalid UTF-8 in value used as JSON");
325 *this = Value(fixUTF8(V));
326 }
327 }
Value(const char * V)328 Value(const char *V) : Value(StringRef(V)) {}
Value(std::nullptr_t)329 Value(std::nullptr_t) : Type(T_Null) {}
330 // Boolean (disallow implicit conversions).
331 // (The last template parameter is a dummy to keep templates distinct.)
332 template <typename T,
333 typename = std::enable_if_t<std::is_same<T, bool>::value>,
334 bool = false>
Value(T B)335 Value(T B) : Type(T_Boolean) {
336 create<bool>(B);
337 }
338
339 // Unsigned 64-bit long integers.
340 template <typename T,
341 typename = std::enable_if_t<std::is_same<T, uint64_t>::value>,
342 bool = false, bool = false>
Value(T V)343 Value(T V) : Type(T_UINT64) {
344 create<uint64_t>(uint64_t{V});
345 }
346
347 // Integers (except boolean and uint64_t).
348 // Must be non-narrowing convertible to int64_t.
349 template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>,
350 typename = std::enable_if_t<!std::is_same<T, bool>::value>,
351 typename = std::enable_if_t<!std::is_same<T, uint64_t>::value>>
Value(T I)352 Value(T I) : Type(T_Integer) {
353 create<int64_t>(int64_t{I});
354 }
355 // Floating point. Must be non-narrowing convertible to double.
356 template <typename T,
357 typename = std::enable_if_t<std::is_floating_point<T>::value>,
358 double * = nullptr>
Value(T D)359 Value(T D) : Type(T_Double) {
360 create<double>(double{D});
361 }
362 // Serializable types: with a toJSON(const T&)->Value function, found by ADL.
363 template <typename T,
364 typename = std::enable_if_t<std::is_same<
365 Value, decltype(toJSON(*(const T *)nullptr))>::value>,
366 Value * = nullptr>
Value(const T & V)367 Value(const T &V) : Value(toJSON(V)) {}
368
369 Value &operator=(const Value &M) {
370 destroy();
371 copyFrom(M);
372 return *this;
373 }
374 Value &operator=(Value &&M) {
375 destroy();
376 moveFrom(std::move(M));
377 return *this;
378 }
~Value()379 ~Value() { destroy(); }
380
kind()381 Kind kind() const {
382 switch (Type) {
383 case T_Null:
384 return Null;
385 case T_Boolean:
386 return Boolean;
387 case T_Double:
388 case T_Integer:
389 case T_UINT64:
390 return Number;
391 case T_String:
392 case T_StringRef:
393 return String;
394 case T_Object:
395 return Object;
396 case T_Array:
397 return Array;
398 }
399 llvm_unreachable("Unknown kind");
400 }
401
402 // Typed accessors return std::nullopt/nullptr if the Value is not of this
403 // type.
getAsNull()404 std::optional<std::nullptr_t> getAsNull() const {
405 if (LLVM_LIKELY(Type == T_Null))
406 return nullptr;
407 return std::nullopt;
408 }
getAsBoolean()409 std::optional<bool> getAsBoolean() const {
410 if (LLVM_LIKELY(Type == T_Boolean))
411 return as<bool>();
412 return std::nullopt;
413 }
getAsNumber()414 std::optional<double> getAsNumber() const {
415 if (LLVM_LIKELY(Type == T_Double))
416 return as<double>();
417 if (LLVM_LIKELY(Type == T_Integer))
418 return as<int64_t>();
419 if (LLVM_LIKELY(Type == T_UINT64))
420 return as<uint64_t>();
421 return std::nullopt;
422 }
423 // Succeeds if the Value is a Number, and exactly representable as int64_t.
getAsInteger()424 std::optional<int64_t> getAsInteger() const {
425 if (LLVM_LIKELY(Type == T_Integer))
426 return as<int64_t>();
427 if (LLVM_LIKELY(Type == T_Double)) {
428 double D = as<double>();
429 if (LLVM_LIKELY(std::modf(D, &D) == 0.0 &&
430 D >= double(std::numeric_limits<int64_t>::min()) &&
431 D <= double(std::numeric_limits<int64_t>::max())))
432 return D;
433 }
434 return std::nullopt;
435 }
getAsUINT64()436 std::optional<uint64_t> getAsUINT64() const {
437 if (Type == T_UINT64)
438 return as<uint64_t>();
439 else if (Type == T_Integer) {
440 int64_t N = as<int64_t>();
441 if (N >= 0)
442 return as<uint64_t>();
443 }
444 return std::nullopt;
445 }
getAsString()446 std::optional<llvm::StringRef> getAsString() const {
447 if (Type == T_String)
448 return llvm::StringRef(as<std::string>());
449 if (LLVM_LIKELY(Type == T_StringRef))
450 return as<llvm::StringRef>();
451 return std::nullopt;
452 }
getAsObject()453 const json::Object *getAsObject() const {
454 return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
455 }
getAsObject()456 json::Object *getAsObject() {
457 return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
458 }
getAsArray()459 const json::Array *getAsArray() const {
460 return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
461 }
getAsArray()462 json::Array *getAsArray() {
463 return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
464 }
465
466 private:
467 void destroy();
468 void copyFrom(const Value &M);
469 // We allow moving from *const* Values, by marking all members as mutable!
470 // This hack is needed to support initializer-list syntax efficiently.
471 // (std::initializer_list<T> is a container of const T).
472 void moveFrom(const Value &&M);
473 friend class Array;
474 friend class Object;
475
create(U &&...V)476 template <typename T, typename... U> void create(U &&... V) {
477 new (reinterpret_cast<T *>(&Union)) T(std::forward<U>(V)...);
478 }
as()479 template <typename T> T &as() const {
480 // Using this two-step static_cast via void * instead of reinterpret_cast
481 // silences a -Wstrict-aliasing false positive from GCC6 and earlier.
482 void *Storage = static_cast<void *>(&Union);
483 return *static_cast<T *>(Storage);
484 }
485
486 friend class OStream;
487
488 enum ValueType : char16_t {
489 T_Null,
490 T_Boolean,
491 T_Double,
492 T_Integer,
493 T_UINT64,
494 T_StringRef,
495 T_String,
496 T_Object,
497 T_Array,
498 };
499 // All members mutable, see moveFrom().
500 mutable ValueType Type;
501 mutable llvm::AlignedCharArrayUnion<bool, double, int64_t, uint64_t,
502 llvm::StringRef, std::string, json::Array,
503 json::Object>
504 Union;
505 friend bool operator==(const Value &, const Value &);
506 };
507
508 bool operator==(const Value &, const Value &);
509 inline bool operator!=(const Value &L, const Value &R) { return !(L == R); }
510
511 // Array Methods
512 inline Value &Array::operator[](size_t I) { return V[I]; }
513 inline const Value &Array::operator[](size_t I) const { return V[I]; }
front()514 inline Value &Array::front() { return V.front(); }
front()515 inline const Value &Array::front() const { return V.front(); }
back()516 inline Value &Array::back() { return V.back(); }
back()517 inline const Value &Array::back() const { return V.back(); }
data()518 inline Value *Array::data() { return V.data(); }
data()519 inline const Value *Array::data() const { return V.data(); }
520
begin()521 inline typename Array::iterator Array::begin() { return V.begin(); }
begin()522 inline typename Array::const_iterator Array::begin() const { return V.begin(); }
end()523 inline typename Array::iterator Array::end() { return V.end(); }
end()524 inline typename Array::const_iterator Array::end() const { return V.end(); }
525
empty()526 inline bool Array::empty() const { return V.empty(); }
size()527 inline size_t Array::size() const { return V.size(); }
reserve(size_t S)528 inline void Array::reserve(size_t S) { V.reserve(S); }
529
clear()530 inline void Array::clear() { V.clear(); }
push_back(const Value & E)531 inline void Array::push_back(const Value &E) { V.push_back(E); }
push_back(Value && E)532 inline void Array::push_back(Value &&E) { V.push_back(std::move(E)); }
emplace_back(Args &&...A)533 template <typename... Args> inline void Array::emplace_back(Args &&...A) {
534 V.emplace_back(std::forward<Args>(A)...);
535 }
pop_back()536 inline void Array::pop_back() { V.pop_back(); }
insert(const_iterator P,const Value & E)537 inline typename Array::iterator Array::insert(const_iterator P, const Value &E) {
538 return V.insert(P, E);
539 }
insert(const_iterator P,Value && E)540 inline typename Array::iterator Array::insert(const_iterator P, Value &&E) {
541 return V.insert(P, std::move(E));
542 }
543 template <typename It>
insert(const_iterator P,It A,It Z)544 inline typename Array::iterator Array::insert(const_iterator P, It A, It Z) {
545 return V.insert(P, A, Z);
546 }
547 template <typename... Args>
emplace(const_iterator P,Args &&...A)548 inline typename Array::iterator Array::emplace(const_iterator P, Args &&...A) {
549 return V.emplace(P, std::forward<Args>(A)...);
550 }
551 inline bool operator==(const Array &L, const Array &R) { return L.V == R.V; }
552
553 /// ObjectKey is a used to capture keys in Object. Like Value but:
554 /// - only strings are allowed
555 /// - it's optimized for the string literal case (Owned == nullptr)
556 /// Like Value, strings must be UTF-8. See isUTF8 documentation for details.
557 class ObjectKey {
558 public:
ObjectKey(const char * S)559 ObjectKey(const char *S) : ObjectKey(StringRef(S)) {}
ObjectKey(std::string S)560 ObjectKey(std::string S) : Owned(new std::string(std::move(S))) {
561 if (LLVM_UNLIKELY(!isUTF8(*Owned))) {
562 assert(false && "Invalid UTF-8 in value used as JSON");
563 *Owned = fixUTF8(std::move(*Owned));
564 }
565 Data = *Owned;
566 }
ObjectKey(llvm::StringRef S)567 ObjectKey(llvm::StringRef S) : Data(S) {
568 if (LLVM_UNLIKELY(!isUTF8(Data))) {
569 assert(false && "Invalid UTF-8 in value used as JSON");
570 *this = ObjectKey(fixUTF8(S));
571 }
572 }
ObjectKey(const llvm::SmallVectorImpl<char> & V)573 ObjectKey(const llvm::SmallVectorImpl<char> &V)
574 : ObjectKey(std::string(V.begin(), V.end())) {}
ObjectKey(const llvm::formatv_object_base & V)575 ObjectKey(const llvm::formatv_object_base &V) : ObjectKey(V.str()) {}
576
ObjectKey(const ObjectKey & C)577 ObjectKey(const ObjectKey &C) { *this = C; }
ObjectKey(ObjectKey && C)578 ObjectKey(ObjectKey &&C) : ObjectKey(static_cast<const ObjectKey &&>(C)) {}
579 ObjectKey &operator=(const ObjectKey &C) {
580 if (C.Owned) {
581 Owned.reset(new std::string(*C.Owned));
582 Data = *Owned;
583 } else {
584 Data = C.Data;
585 }
586 return *this;
587 }
588 ObjectKey &operator=(ObjectKey &&) = default;
589
StringRef()590 operator llvm::StringRef() const { return Data; }
str()591 std::string str() const { return Data.str(); }
592
593 private:
594 // FIXME: this is unneccesarily large (3 pointers). Pointer + length + owned
595 // could be 2 pointers at most.
596 std::unique_ptr<std::string> Owned;
597 llvm::StringRef Data;
598 };
599
600 inline bool operator==(const ObjectKey &L, const ObjectKey &R) {
601 return llvm::StringRef(L) == llvm::StringRef(R);
602 }
603 inline bool operator!=(const ObjectKey &L, const ObjectKey &R) {
604 return !(L == R);
605 }
606 inline bool operator<(const ObjectKey &L, const ObjectKey &R) {
607 return StringRef(L) < StringRef(R);
608 }
609
610 struct Object::KV {
611 ObjectKey K;
612 Value V;
613 };
614
Object(std::initializer_list<KV> Properties)615 inline Object::Object(std::initializer_list<KV> Properties) {
616 for (const auto &P : Properties) {
617 auto R = try_emplace(P.K, nullptr);
618 if (R.second)
619 R.first->getSecond().moveFrom(std::move(P.V));
620 }
621 }
insert(KV E)622 inline std::pair<Object::iterator, bool> Object::insert(KV E) {
623 return try_emplace(std::move(E.K), std::move(E.V));
624 }
erase(StringRef K)625 inline bool Object::erase(StringRef K) {
626 return M.erase(ObjectKey(K));
627 }
628
629 /// A "cursor" marking a position within a Value.
630 /// The Value is a tree, and this is the path from the root to the current node.
631 /// This is used to associate errors with particular subobjects.
632 class Path {
633 public:
634 class Root;
635
636 /// Records that the value at the current path is invalid.
637 /// Message is e.g. "expected number" and becomes part of the final error.
638 /// This overwrites any previously written error message in the root.
639 void report(llvm::StringLiteral Message);
640
641 /// The root may be treated as a Path.
Path(Root & R)642 Path(Root &R) : Parent(nullptr), Seg(&R) {}
643 /// Derives a path for an array element: this[Index]
index(unsigned Index)644 Path index(unsigned Index) const { return Path(this, Segment(Index)); }
645 /// Derives a path for an object field: this.Field
field(StringRef Field)646 Path field(StringRef Field) const { return Path(this, Segment(Field)); }
647
648 private:
649 /// One element in a JSON path: an object field (.foo) or array index [27].
650 /// Exception: the root Path encodes a pointer to the Path::Root.
651 class Segment {
652 uintptr_t Pointer;
653 unsigned Offset;
654
655 public:
656 Segment() = default;
Segment(Root * R)657 Segment(Root *R) : Pointer(reinterpret_cast<uintptr_t>(R)) {}
Segment(llvm::StringRef Field)658 Segment(llvm::StringRef Field)
659 : Pointer(reinterpret_cast<uintptr_t>(Field.data())),
660 Offset(static_cast<unsigned>(Field.size())) {}
Segment(unsigned Index)661 Segment(unsigned Index) : Pointer(0), Offset(Index) {}
662
isField()663 bool isField() const { return Pointer != 0; }
field()664 StringRef field() const {
665 return StringRef(reinterpret_cast<const char *>(Pointer), Offset);
666 }
index()667 unsigned index() const { return Offset; }
root()668 Root *root() const { return reinterpret_cast<Root *>(Pointer); }
669 };
670
671 const Path *Parent;
672 Segment Seg;
673
Path(const Path * Parent,Segment S)674 Path(const Path *Parent, Segment S) : Parent(Parent), Seg(S) {}
675 };
676
677 /// The root is the trivial Path to the root value.
678 /// It also stores the latest reported error and the path where it occurred.
679 class Path::Root {
680 llvm::StringRef Name;
681 llvm::StringLiteral ErrorMessage;
682 std::vector<Path::Segment> ErrorPath; // Only valid in error state. Reversed.
683
684 friend void Path::report(llvm::StringLiteral Message);
685
686 public:
Name(Name)687 Root(llvm::StringRef Name = "") : Name(Name), ErrorMessage("") {}
688 // No copy/move allowed as there are incoming pointers.
689 Root(Root &&) = delete;
690 Root &operator=(Root &&) = delete;
691 Root(const Root &) = delete;
692 Root &operator=(const Root &) = delete;
693
694 /// Returns the last error reported, or else a generic error.
695 Error getError() const;
696 /// Print the root value with the error shown inline as a comment.
697 /// Unrelated parts of the value are elided for brevity, e.g.
698 /// {
699 /// "id": 42,
700 /// "name": /* expected string */ null,
701 /// "properties": { ... }
702 /// }
703 void printErrorContext(const Value &, llvm::raw_ostream &) const;
704 };
705
706 // Standard deserializers are provided for primitive types.
707 // See comments on Value.
fromJSON(const Value & E,std::string & Out,Path P)708 inline bool fromJSON(const Value &E, std::string &Out, Path P) {
709 if (auto S = E.getAsString()) {
710 Out = std::string(*S);
711 return true;
712 }
713 P.report("expected string");
714 return false;
715 }
fromJSON(const Value & E,int & Out,Path P)716 inline bool fromJSON(const Value &E, int &Out, Path P) {
717 if (auto S = E.getAsInteger()) {
718 Out = *S;
719 return true;
720 }
721 P.report("expected integer");
722 return false;
723 }
fromJSON(const Value & E,int64_t & Out,Path P)724 inline bool fromJSON(const Value &E, int64_t &Out, Path P) {
725 if (auto S = E.getAsInteger()) {
726 Out = *S;
727 return true;
728 }
729 P.report("expected integer");
730 return false;
731 }
fromJSON(const Value & E,double & Out,Path P)732 inline bool fromJSON(const Value &E, double &Out, Path P) {
733 if (auto S = E.getAsNumber()) {
734 Out = *S;
735 return true;
736 }
737 P.report("expected number");
738 return false;
739 }
fromJSON(const Value & E,bool & Out,Path P)740 inline bool fromJSON(const Value &E, bool &Out, Path P) {
741 if (auto S = E.getAsBoolean()) {
742 Out = *S;
743 return true;
744 }
745 P.report("expected boolean");
746 return false;
747 }
fromJSON(const Value & E,uint64_t & Out,Path P)748 inline bool fromJSON(const Value &E, uint64_t &Out, Path P) {
749 if (auto S = E.getAsUINT64()) {
750 Out = *S;
751 return true;
752 }
753 P.report("expected uint64_t");
754 return false;
755 }
fromJSON(const Value & E,std::nullptr_t & Out,Path P)756 inline bool fromJSON(const Value &E, std::nullptr_t &Out, Path P) {
757 if (auto S = E.getAsNull()) {
758 Out = *S;
759 return true;
760 }
761 P.report("expected null");
762 return false;
763 }
764 template <typename T>
fromJSON(const Value & E,std::optional<T> & Out,Path P)765 bool fromJSON(const Value &E, std::optional<T> &Out, Path P) {
766 if (E.getAsNull()) {
767 Out = std::nullopt;
768 return true;
769 }
770 T Result;
771 if (!fromJSON(E, Result, P))
772 return false;
773 Out = std::move(Result);
774 return true;
775 }
776 template <typename T>
fromJSON(const Value & E,std::vector<T> & Out,Path P)777 bool fromJSON(const Value &E, std::vector<T> &Out, Path P) {
778 if (auto *A = E.getAsArray()) {
779 Out.clear();
780 Out.resize(A->size());
781 for (size_t I = 0; I < A->size(); ++I)
782 if (!fromJSON((*A)[I], Out[I], P.index(I)))
783 return false;
784 return true;
785 }
786 P.report("expected array");
787 return false;
788 }
789 template <typename T>
fromJSON(const Value & E,std::map<std::string,T> & Out,Path P)790 bool fromJSON(const Value &E, std::map<std::string, T> &Out, Path P) {
791 if (auto *O = E.getAsObject()) {
792 Out.clear();
793 for (const auto &KV : *O)
794 if (!fromJSON(KV.second, Out[std::string(llvm::StringRef(KV.first))],
795 P.field(KV.first)))
796 return false;
797 return true;
798 }
799 P.report("expected object");
800 return false;
801 }
802
803 // Allow serialization of std::optional<T> for supported T.
toJSON(const std::optional<T> & Opt)804 template <typename T> Value toJSON(const std::optional<T> &Opt) {
805 return Opt ? Value(*Opt) : Value(nullptr);
806 }
807
808 /// Helper for mapping JSON objects onto protocol structs.
809 ///
810 /// Example:
811 /// \code
812 /// bool fromJSON(const Value &E, MyStruct &R, Path P) {
813 /// ObjectMapper O(E, P);
814 /// // When returning false, error details were already reported.
815 /// return O && O.map("mandatory_field", R.MandatoryField) &&
816 /// O.mapOptional("optional_field", R.OptionalField);
817 /// }
818 /// \endcode
819 class ObjectMapper {
820 public:
821 /// If O is not an object, this mapper is invalid and an error is reported.
ObjectMapper(const Value & E,Path P)822 ObjectMapper(const Value &E, Path P) : O(E.getAsObject()), P(P) {
823 if (!O)
824 P.report("expected object");
825 }
826
827 /// True if the expression is an object.
828 /// Must be checked before calling map().
829 operator bool() const { return O; }
830
831 /// Maps a property to a field.
832 /// If the property is missing or invalid, reports an error.
map(StringLiteral Prop,T & Out)833 template <typename T> bool map(StringLiteral Prop, T &Out) {
834 assert(*this && "Must check this is an object before calling map()");
835 if (const Value *E = O->get(Prop))
836 return fromJSON(*E, Out, P.field(Prop));
837 P.field(Prop).report("missing value");
838 return false;
839 }
840
841 /// Maps a property to a field, if it exists.
842 /// If the property exists and is invalid, reports an error.
843 /// (Optional requires special handling, because missing keys are OK).
map(StringLiteral Prop,std::optional<T> & Out)844 template <typename T> bool map(StringLiteral Prop, std::optional<T> &Out) {
845 assert(*this && "Must check this is an object before calling map()");
846 if (const Value *E = O->get(Prop))
847 return fromJSON(*E, Out, P.field(Prop));
848 Out = std::nullopt;
849 return true;
850 }
851
852 /// Maps a property to a field, if it exists.
853 /// If the property exists and is invalid, reports an error.
854 /// If the property does not exist, Out is unchanged.
mapOptional(StringLiteral Prop,T & Out)855 template <typename T> bool mapOptional(StringLiteral Prop, T &Out) {
856 assert(*this && "Must check this is an object before calling map()");
857 if (const Value *E = O->get(Prop))
858 return fromJSON(*E, Out, P.field(Prop));
859 return true;
860 }
861
862 private:
863 const Object *O;
864 Path P;
865 };
866
867 /// Parses the provided JSON source, or returns a ParseError.
868 /// The returned Value is self-contained and owns its strings (they do not refer
869 /// to the original source).
870 llvm::Expected<Value> parse(llvm::StringRef JSON);
871
872 class ParseError : public llvm::ErrorInfo<ParseError> {
873 const char *Msg;
874 unsigned Line, Column, Offset;
875
876 public:
877 static char ID;
ParseError(const char * Msg,unsigned Line,unsigned Column,unsigned Offset)878 ParseError(const char *Msg, unsigned Line, unsigned Column, unsigned Offset)
879 : Msg(Msg), Line(Line), Column(Column), Offset(Offset) {}
log(llvm::raw_ostream & OS)880 void log(llvm::raw_ostream &OS) const override {
881 OS << llvm::formatv("[{0}:{1}, byte={2}]: {3}", Line, Column, Offset, Msg);
882 }
convertToErrorCode()883 std::error_code convertToErrorCode() const override {
884 return llvm::inconvertibleErrorCode();
885 }
886 };
887
888 /// Version of parse() that converts the parsed value to the type T.
889 /// RootName describes the root object and is used in error messages.
890 template <typename T>
891 Expected<T> parse(const llvm::StringRef &JSON, const char *RootName = "") {
892 auto V = parse(JSON);
893 if (!V)
894 return V.takeError();
895 Path::Root R(RootName);
896 T Result;
897 if (fromJSON(*V, Result, R))
898 return std::move(Result);
899 return R.getError();
900 }
901
902 /// json::OStream allows writing well-formed JSON without materializing
903 /// all structures as json::Value ahead of time.
904 /// It's faster, lower-level, and less safe than OS << json::Value.
905 /// It also allows emitting more constructs, such as comments.
906 ///
907 /// Only one "top-level" object can be written to a stream.
908 /// Simplest usage involves passing lambdas (Blocks) to fill in containers:
909 ///
910 /// json::OStream J(OS);
911 /// J.array([&]{
912 /// for (const Event &E : Events)
913 /// J.object([&] {
914 /// J.attribute("timestamp", int64_t(E.Time));
915 /// J.attributeArray("participants", [&] {
916 /// for (const Participant &P : E.Participants)
917 /// J.value(P.toString());
918 /// });
919 /// });
920 /// });
921 ///
922 /// This would produce JSON like:
923 ///
924 /// [
925 /// {
926 /// "timestamp": 19287398741,
927 /// "participants": [
928 /// "King Kong",
929 /// "Miley Cyrus",
930 /// "Cleopatra"
931 /// ]
932 /// },
933 /// ...
934 /// ]
935 ///
936 /// The lower level begin/end methods (arrayBegin()) are more flexible but
937 /// care must be taken to pair them correctly:
938 ///
939 /// json::OStream J(OS);
940 // J.arrayBegin();
941 /// for (const Event &E : Events) {
942 /// J.objectBegin();
943 /// J.attribute("timestamp", int64_t(E.Time));
944 /// J.attributeBegin("participants");
945 /// for (const Participant &P : E.Participants)
946 /// J.value(P.toString());
947 /// J.attributeEnd();
948 /// J.objectEnd();
949 /// }
950 /// J.arrayEnd();
951 ///
952 /// If the call sequence isn't valid JSON, asserts will fire in debug mode.
953 /// This can be mismatched begin()/end() pairs, trying to emit attributes inside
954 /// an array, and so on.
955 /// With asserts disabled, this is undefined behavior.
956 class OStream {
957 public:
958 using Block = llvm::function_ref<void()>;
959 // If IndentSize is nonzero, output is pretty-printed.
960 explicit OStream(llvm::raw_ostream &OS, unsigned IndentSize = 0)
OS(OS)961 : OS(OS), IndentSize(IndentSize) {
962 Stack.emplace_back();
963 }
~OStream()964 ~OStream() {
965 assert(Stack.size() == 1 && "Unmatched begin()/end()");
966 assert(Stack.back().Ctx == Singleton);
967 assert(Stack.back().HasValue && "Did not write top-level value");
968 }
969
970 /// Flushes the underlying ostream. OStream does not buffer internally.
flush()971 void flush() { OS.flush(); }
972
973 // High level functions to output a value.
974 // Valid at top-level (exactly once), in an attribute value (exactly once),
975 // or in an array (any number of times).
976
977 /// Emit a self-contained value (number, string, vector<string> etc).
978 void value(const Value &V);
979 /// Emit an array whose elements are emitted in the provided Block.
array(Block Contents)980 void array(Block Contents) {
981 arrayBegin();
982 Contents();
983 arrayEnd();
984 }
985 /// Emit an object whose elements are emitted in the provided Block.
object(Block Contents)986 void object(Block Contents) {
987 objectBegin();
988 Contents();
989 objectEnd();
990 }
991 /// Emit an externally-serialized value.
992 /// The caller must write exactly one valid JSON value to the provided stream.
993 /// No validation or formatting of this value occurs.
rawValue(llvm::function_ref<void (raw_ostream &)> Contents)994 void rawValue(llvm::function_ref<void(raw_ostream &)> Contents) {
995 rawValueBegin();
996 Contents(OS);
997 rawValueEnd();
998 }
rawValue(llvm::StringRef Contents)999 void rawValue(llvm::StringRef Contents) {
1000 rawValue([&](raw_ostream &OS) { OS << Contents; });
1001 }
1002 /// Emit a JavaScript comment associated with the next printed value.
1003 /// The string must be valid until the next attribute or value is emitted.
1004 /// Comments are not part of standard JSON, and many parsers reject them!
1005 void comment(llvm::StringRef);
1006
1007 // High level functions to output object attributes.
1008 // Valid only within an object (any number of times).
1009
1010 /// Emit an attribute whose value is self-contained (number, vector<int> etc).
attribute(llvm::StringRef Key,const Value & Contents)1011 void attribute(llvm::StringRef Key, const Value& Contents) {
1012 attributeImpl(Key, [&] { value(Contents); });
1013 }
1014 /// Emit an attribute whose value is an array with elements from the Block.
attributeArray(llvm::StringRef Key,Block Contents)1015 void attributeArray(llvm::StringRef Key, Block Contents) {
1016 attributeImpl(Key, [&] { array(Contents); });
1017 }
1018 /// Emit an attribute whose value is an object with attributes from the Block.
attributeObject(llvm::StringRef Key,Block Contents)1019 void attributeObject(llvm::StringRef Key, Block Contents) {
1020 attributeImpl(Key, [&] { object(Contents); });
1021 }
1022
1023 // Low-level begin/end functions to output arrays, objects, and attributes.
1024 // Must be correctly paired. Allowed contexts are as above.
1025
1026 void arrayBegin();
1027 void arrayEnd();
1028 void objectBegin();
1029 void objectEnd();
1030 void attributeBegin(llvm::StringRef Key);
1031 void attributeEnd();
1032 raw_ostream &rawValueBegin();
1033 void rawValueEnd();
1034
1035 private:
attributeImpl(llvm::StringRef Key,Block Contents)1036 void attributeImpl(llvm::StringRef Key, Block Contents) {
1037 attributeBegin(Key);
1038 Contents();
1039 attributeEnd();
1040 }
1041
1042 void valueBegin();
1043 void flushComment();
1044 void newline();
1045
1046 enum Context {
1047 Singleton, // Top level, or object attribute.
1048 Array,
1049 Object,
1050 RawValue, // External code writing a value to OS directly.
1051 };
1052 struct State {
1053 Context Ctx = Singleton;
1054 bool HasValue = false;
1055 };
1056 llvm::SmallVector<State, 16> Stack; // Never empty.
1057 llvm::StringRef PendingComment;
1058 llvm::raw_ostream &OS;
1059 unsigned IndentSize;
1060 unsigned Indent = 0;
1061 };
1062
1063 /// Serializes this Value to JSON, writing it to the provided stream.
1064 /// The formatting is compact (no extra whitespace) and deterministic.
1065 /// For pretty-printing, use the formatv() format_provider below.
1066 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Value &V) {
1067 OStream(OS).value(V);
1068 return OS;
1069 }
1070 } // namespace json
1071
1072 /// Allow printing json::Value with formatv().
1073 /// The default style is basic/compact formatting, like operator<<.
1074 /// A format string like formatv("{0:2}", Value) pretty-prints with indent 2.
1075 template <> struct format_provider<llvm::json::Value> {
1076 static void format(const llvm::json::Value &, raw_ostream &, StringRef);
1077 };
1078 } // namespace llvm
1079
1080 #endif
1081