1 /* Extended regular expression matching and search library,
2    version 0.12.
3    (Implements POSIX draft P1003.2/D11.2, except for some of the
4    internationalization features.)
5    Copyright (C) 1993-1999, 2000 Free Software Foundation, Inc.
6 
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Library General Public License as
9    published by the Free Software Foundation; either version 2 of the
10    License, or (at your option) any later version.
11 
12    The GNU C Library is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15    Library General Public License for more details.
16 
17    You should have received a copy of the GNU Library General Public
18    License along with the GNU C Library; see the file COPYING.LIB.  If not,
19    write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20    Boston, MA 02111-1307, USA.  */
21 
22 /* AIX requires this to be the first thing in the file. */
23 
24 #undef        _GNU_SOURCE
25 #define _GNU_SOURCE
26 
27 #ifdef HAVE_CONFIG_H
28 # include <config.h>
29 #endif
30 
31 #ifndef PARAMS
32 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
33 #  define PARAMS(args) args
34 # else
35 #  define PARAMS(args) ()
36 # endif  /* GCC.  */
37 #endif  /* Not PARAMS.  */
38 
39 # include <stdio.h>
40 #if defined STDC_HEADERS && !defined emacs
41 # include <stddef.h>
42 #else
43 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
44 # include <sys/types.h>
45 #endif
46 
47 # include <string.h>
48 
49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
50 
51 /* For platform which support the ISO C amendement 1 functionality we
52    support user defined character classes.  */
53 #if defined _LIBC || WIDE_CHAR_SUPPORT
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
55 # include <wchar.h>
56 # include <wctype.h>
57 #endif
58 
59 #ifdef _LIBC
60 /* We have to keep the namespace clean.  */
61 # define regfree(preg) __regfree (preg)
62 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
63 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
64 # define regerror(errcode, preg, errbuf, errbuf_size) \
65         __regerror(errcode, preg, errbuf, errbuf_size)
66 # define re_set_registers(bu, re, nu, st, en) \
67         __re_set_registers (bu, re, nu, st, en)
68 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
69         __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
70 # define re_match(bufp, string, size, pos, regs) \
71         __re_match (bufp, string, size, pos, regs)
72 # define re_search(bufp, string, size, startpos, range, regs) \
73         __re_search (bufp, string, size, startpos, range, regs)
74 # define re_compile_pattern(pattern, length, bufp) \
75         __re_compile_pattern (pattern, length, bufp)
76 # define re_set_syntax(syntax) __re_set_syntax (syntax)
77 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
78         __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
79 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
80 
81 #define btowc __btowc
82 #endif
83 
84 /* This is for other GNU distributions with internationalized messages.  */
85 #if HAVE_LIBINTL_H || defined _LIBC
86 # include <libintl.h>
87 #else
88 # define gettext(msgid) (msgid)
89 #endif
90 
91 #ifndef gettext_noop
92 /* This define is so xgettext can find the internationalizable
93    strings.  */
94 # define gettext_noop(String) String
95 #endif
96 
97 # undef REL_ALLOC
98 
99 # if defined STDC_HEADERS || defined _LIBC || defined __GNUC__
100 #  include <stdlib.h>
101 # else
102 char *malloc ();
103 char *realloc ();
104 # endif
105 
106 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
107    If nothing else has been done, use the method below.  */
108 # ifdef INHIBIT_STRING_HEADER
109 #  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
110 #   if !defined bzero && !defined bcopy
111 #    undef INHIBIT_STRING_HEADER
112 #   endif
113 #  endif
114 # endif
115 
116 /* This is the normal way of making sure we have a bcopy and a bzero.
117    This is used in most programs--a few other programs avoid this
118    by defining INHIBIT_STRING_HEADER.  */
119 # ifndef INHIBIT_STRING_HEADER
120 #  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
121 #   include <string.h>
122 #   ifndef bzero
123 #    ifndef _LIBC
124 #     define bzero(s, n)        (memset (s, '\0', n), (s))
125 #    else
126 #     define bzero(s, n)        __bzero (s, n)
127 #    endif
128 #   endif
129 #  else
130 #   include <strings.h>
131 #   ifndef memcmp
132 #    define memcmp(s1, s2, n)        bcmp (s1, s2, n)
133 #   endif
134 #   ifndef memcpy
135 #    define memcpy(d, s, n)        (bcopy (s, d, n), (d))
136 #   endif
137 #  endif
138 # endif
139 
140 /* Define the syntax stuff for \<, \>, etc.  */
141 
142 /* This must be nonzero for the wordchar and notwordchar pattern
143    commands in re_match_2.  */
144 # ifndef Sword
145 #  define Sword 1
146 # endif
147 
148 # ifdef SWITCH_ENUM_BUG
149 #  define SWITCH_ENUM_CAST(x) ((int)(x))
150 # else
151 #  define SWITCH_ENUM_CAST(x) (x)
152 # endif
153 
154 
155 /* Get the interface, including the syntax bits.  */
156 #include <regex.h>
157 
158 /* isalpha etc. are used for the character classes.  */
159 #include <ctype.h>
160 
161 /* Jim Meyering writes:
162 
163    "... Some ctype macros are valid only for character codes that
164    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
165    using /bin/cc or gcc but without giving an ansi option).  So, all
166    ctype uses should be through macros like ISPRINT...  If
167    STDC_HEADERS is defined, then autoconf has verified that the ctype
168    macros don't need to be guarded with references to isascii. ...
169    Defining isascii to 1 should let any compiler worth its salt
170    eliminate the && through constant folding."
171    Solaris defines some of these symbols so we must undefine them first.  */
172 
173 #undef ISASCII
174 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
175 # define ISASCII(c) 1
176 #else
177 # define ISASCII(c) isascii(c)
178 #endif
179 
180 #ifdef isblank
181 # define ISBLANK(c) (ISASCII (c) && isblank (c))
182 #else
183 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
184 #endif
185 #ifdef isgraph
186 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
187 #else
188 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
189 #endif
190 
191 #undef ISPRINT
192 #define ISPRINT(c) (ISASCII (c) && isprint (c))
193 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
194 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
195 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
196 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
197 #define ISLOWER(c) (ISASCII (c) && islower (c))
198 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
199 #define ISSPACE(c) (ISASCII (c) && isspace (c))
200 #define ISUPPER(c) (ISASCII (c) && isupper (c))
201 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
202 
203 #ifdef _tolower
204 # define TOLOWER(c) _tolower(c)
205 #else
206 # define TOLOWER(c) tolower(c)
207 #endif
208 
209 #ifndef NULL
210 # define NULL (void *)0
211 #endif
212 
213 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
214    since ours (we hope) works properly with all combinations of
215    machines, compilers, `char' and `unsigned char' argument types.
216    (Per Bothner suggested the basic approach.)  */
217 #undef SIGN_EXTEND_CHAR
218 #if __STDC__
219 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
220 #else  /* not __STDC__ */
221 /* As in Harbison and Steele.  */
222 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
223 #endif
224 
225 #ifndef emacs
226 /* How many characters in the character set.  */
227 # define CHAR_SET_SIZE 256
228 
229 # ifdef SYNTAX_TABLE
230 
231 extern char *re_syntax_table;
232 
233 # else /* not SYNTAX_TABLE */
234 
235 static char re_syntax_table[CHAR_SET_SIZE];
236 
237 static void
init_syntax_once()238 init_syntax_once ()
239 {
240    register int c;
241    static int done = 0;
242 
243    if (done)
244      return;
245    bzero (re_syntax_table, sizeof re_syntax_table);
246 
247    for (c = 0; c < CHAR_SET_SIZE; ++c)
248      if (ISALNUM (c))
249         re_syntax_table[c] = Sword;
250 
251    re_syntax_table['_'] = Sword;
252 
253    done = 1;
254 }
255 
256 # endif /* not SYNTAX_TABLE */
257 
258 # define SYNTAX(c) re_syntax_table[((c) & 0xFF)]
259 
260 #endif /* emacs */
261 
262 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
263    use `alloca' instead of `malloc'.  This is because using malloc in
264    re_search* or re_match* could cause memory leaks when C-g is used in
265    Emacs; also, malloc is slower and causes storage fragmentation.  On
266    the other hand, malloc is more portable, and easier to debug.
267 
268    Because we sometimes use alloca, some routines have to be macros,
269    not functions -- `alloca'-allocated space disappears at the end of the
270    function it is called in.  */
271 
272 #define REGEX_MALLOC
273 #ifdef REGEX_MALLOC
274 
275 # define REGEX_ALLOCATE malloc
276 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
277 # define REGEX_FREE free
278 # undef alloca
279 
280 #else /* not REGEX_MALLOC  */
281 
282 /* Emacs already defines alloca, sometimes.  */
283 # ifndef alloca
284 
285 /* Make alloca work the best possible way.  */
286 #  ifdef __GNUC__
287 #   define alloca __builtin_alloca
288 #  else /* not __GNUC__ */
289 #   if HAVE_ALLOCA_H
290 #    include <alloca.h>
291 #   endif /* HAVE_ALLOCA_H */
292 #  endif /* not __GNUC__ */
293 
294 # endif /* not alloca */
295 
296 # define REGEX_ALLOCATE alloca
297 
298 /* Assumes a `char *destination' variable.  */
299 # define REGEX_REALLOCATE(source, osize, nsize)                                \
300   (destination = (char *) alloca (nsize),                                \
301    memcpy (destination, source, osize))
302 
303 /* No need to do anything to free, after alloca.  */
304 # define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
305 
306 #endif /* not REGEX_MALLOC */
307 
308 /* Define how to allocate the failure stack.  */
309 
310 #if defined REL_ALLOC && defined REGEX_MALLOC
311 
312 # define REGEX_ALLOCATE_STACK(size)                                \
313   r_alloc (&failure_stack_ptr, (size))
314 # define REGEX_REALLOCATE_STACK(source, osize, nsize)                \
315   r_re_alloc (&failure_stack_ptr, (nsize))
316 # define REGEX_FREE_STACK(ptr)                                        \
317   r_alloc_free (&failure_stack_ptr)
318 
319 #else /* not using relocating allocator */
320 
321 # ifdef REGEX_MALLOC
322 
323 #  define REGEX_ALLOCATE_STACK malloc
324 #  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
325 #  define REGEX_FREE_STACK free
326 
327 # else /* not REGEX_MALLOC */
328 
329 #  define REGEX_ALLOCATE_STACK alloca
330 
331 #  define REGEX_REALLOCATE_STACK(source, osize, nsize)                        \
332    REGEX_REALLOCATE (source, osize, nsize)
333 /* No need to explicitly free anything.  */
334 #  define REGEX_FREE_STACK(arg)
335 
336 # endif /* not REGEX_MALLOC */
337 #endif /* not using relocating allocator */
338 
339 
340 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
341    `string1' or just past its end.  This works if PTR is NULL, which is
342    a good thing.  */
343 #define FIRST_STRING_P(ptr)                                         \
344   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
345 
346 /* (Re)Allocate N items of type T using malloc, or fail.  */
347 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
348 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
349 #define RETALLOC_IF(addr, n, t) \
350   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
351 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
352 
353 #define BYTEWIDTH 8 /* In bits.  */
354 
355 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
356 
357 #undef MAX
358 #undef MIN
359 #define MAX(a, b) ((a) > (b) ? (a) : (b))
360 #define MIN(a, b) ((a) < (b) ? (a) : (b))
361 
362 typedef char boolean;
363 #define false 0
364 #define true 1
365 
366 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
367                                         const char *string1, int size1,
368                                         const char *string2, int size2,
369                                         int pos,
370                                         struct re_registers *regs,
371                                         int stop));
372 
373 /* These are the command codes that appear in compiled regular
374    expressions.  Some opcodes are followed by argument bytes.  A
375    command code can specify any interpretation whatsoever for its
376    arguments.  Zero bytes may appear in the compiled regular expression.  */
377 
378 typedef enum
379 {
380   no_op = 0,
381 
382   /* Succeed right away--no more backtracking.  */
383   succeed,
384 
385         /* Followed by one byte giving n, then by n literal bytes.  */
386   exactn,
387 
388         /* Matches any (more or less) character.  */
389   anychar,
390 
391         /* Matches any one char belonging to specified set.  First
392            following byte is number of bitmap bytes.  Then come bytes
393            for a bitmap saying which chars are in.  Bits in each byte
394            are ordered low-bit-first.  A character is in the set if its
395            bit is 1.  A character too large to have a bit in the map is
396            automatically not in the set.  */
397   charset,
398 
399         /* Same parameters as charset, but match any character that is
400            not one of those specified.  */
401   charset_not,
402 
403         /* Start remembering the text that is matched, for storing in a
404            register.  Followed by one byte with the register number, in
405            the range 0 to one less than the pattern buffer's re_nsub
406            field.  Then followed by one byte with the number of groups
407            inner to this one.  (This last has to be part of the
408            start_memory only because we need it in the on_failure_jump
409            of re_match_2.)  */
410   start_memory,
411 
412         /* Stop remembering the text that is matched and store it in a
413            memory register.  Followed by one byte with the register
414            number, in the range 0 to one less than `re_nsub' in the
415            pattern buffer, and one byte with the number of inner groups,
416            just like `start_memory'.  (We need the number of inner
417            groups here because we don't have any easy way of finding the
418            corresponding start_memory when we're at a stop_memory.)  */
419   stop_memory,
420 
421         /* Match a duplicate of something remembered. Followed by one
422            byte containing the register number.  */
423   duplicate,
424 
425         /* Fail unless at beginning of line.  */
426   begline,
427 
428         /* Fail unless at end of line.  */
429   endline,
430 
431         /* Succeeds if at beginning of buffer (if emacs) or at beginning
432            of string to be matched (if not).  */
433   begbuf,
434 
435         /* Analogously, for end of buffer/string.  */
436   endbuf,
437 
438         /* Followed by two byte relative address to which to jump.  */
439   jump,
440 
441         /* Same as jump, but marks the end of an alternative.  */
442   jump_past_alt,
443 
444         /* Followed by two-byte relative address of place to resume at
445            in case of failure.  */
446   on_failure_jump,
447 
448         /* Like on_failure_jump, but pushes a placeholder instead of the
449            current string position when executed.  */
450   on_failure_keep_string_jump,
451 
452         /* Throw away latest failure point and then jump to following
453            two-byte relative address.  */
454   pop_failure_jump,
455 
456         /* Change to pop_failure_jump if know won't have to backtrack to
457            match; otherwise change to jump.  This is used to jump
458            back to the beginning of a repeat.  If what follows this jump
459            clearly won't match what the repeat does, such that we can be
460            sure that there is no use backtracking out of repetitions
461            already matched, then we change it to a pop_failure_jump.
462            Followed by two-byte address.  */
463   maybe_pop_jump,
464 
465         /* Jump to following two-byte address, and push a dummy failure
466            point. This failure point will be thrown away if an attempt
467            is made to use it for a failure.  A `+' construct makes this
468            before the first repeat.  Also used as an intermediary kind
469            of jump when compiling an alternative.  */
470   dummy_failure_jump,
471 
472         /* Push a dummy failure point and continue.  Used at the end of
473            alternatives.  */
474   push_dummy_failure,
475 
476         /* Followed by two-byte relative address and two-byte number n.
477            After matching N times, jump to the address upon failure.  */
478   succeed_n,
479 
480         /* Followed by two-byte relative address, and two-byte number n.
481            Jump to the address N times, then fail.  */
482   jump_n,
483 
484         /* Set the following two-byte relative address to the
485            subsequent two-byte number.  The address *includes* the two
486            bytes of number.  */
487   set_number_at,
488 
489   wordchar,        /* Matches any word-constituent character.  */
490   notwordchar,        /* Matches any char that is not a word-constituent.  */
491 
492   wordbeg,        /* Succeeds if at word beginning.  */
493   wordend,        /* Succeeds if at word end.  */
494 
495   wordbound,        /* Succeeds if at a word boundary.  */
496   notwordbound        /* Succeeds if not at a word boundary.  */
497 
498 #ifdef emacs
499   ,before_dot,        /* Succeeds if before point.  */
500   at_dot,        /* Succeeds if at point.  */
501   after_dot,        /* Succeeds if after point.  */
502 
503         /* Matches any character whose syntax is specified.  Followed by
504            a byte which contains a syntax code, e.g., Sword.  */
505   syntaxspec,
506 
507         /* Matches any character whose syntax is not that specified.  */
508   notsyntaxspec
509 #endif /* emacs */
510 } re_opcode_t;
511 
512 /* Common operations on the compiled pattern.  */
513 
514 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
515 
516 #define STORE_NUMBER(destination, number)                                \
517   do {                                                                        \
518     (destination)[0] = (number) & 0377;                                        \
519     (destination)[1] = (number) >> 8;                                        \
520   } while (0)
521 
522 /* Same as STORE_NUMBER, except increment DESTINATION to
523    the byte after where the number is stored.  Therefore, DESTINATION
524    must be an lvalue.  */
525 
526 #define STORE_NUMBER_AND_INCR(destination, number)                        \
527   do {                                                                        \
528     STORE_NUMBER (destination, number);                                        \
529     (destination) += 2;                                                        \
530   } while (0)
531 
532 /* Put into DESTINATION a number stored in two contiguous bytes starting
533    at SOURCE.  */
534 
535 #define EXTRACT_NUMBER(destination, source)                                \
536   do {                                                                        \
537     (destination) = *(source) & 0377;                                        \
538     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;                \
539   } while (0)
540 
541 #ifdef DEBUG
542 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
543 static void
extract_number(dest,source)544 extract_number (dest, source)
545     int *dest;
546     unsigned char *source;
547 {
548   int temp = SIGN_EXTEND_CHAR (*(source + 1));
549   *dest = *source & 0377;
550   *dest += temp << 8;
551 }
552 
553 # ifndef EXTRACT_MACROS /* To debug the macros.  */
554 #  undef EXTRACT_NUMBER
555 #  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
556 # endif /* not EXTRACT_MACROS */
557 
558 #endif /* DEBUG */
559 
560 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
561    SOURCE must be an lvalue.  */
562 
563 #define EXTRACT_NUMBER_AND_INCR(destination, source)                        \
564   do {                                                                        \
565     EXTRACT_NUMBER (destination, source);                                \
566     (source) += 2;                                                         \
567   } while (0)
568 
569 #ifdef DEBUG
570 static void extract_number_and_incr _RE_ARGS ((int *destination,
571                                                unsigned char **source));
572 static void
extract_number_and_incr(destination,source)573 extract_number_and_incr (destination, source)
574     int *destination;
575     unsigned char **source;
576 {
577   extract_number (destination, *source);
578   *source += 2;
579 }
580 
581 # ifndef EXTRACT_MACROS
582 #  undef EXTRACT_NUMBER_AND_INCR
583 #  define EXTRACT_NUMBER_AND_INCR(dest, src) \
584   extract_number_and_incr (&dest, &src)
585 # endif /* not EXTRACT_MACROS */
586 
587 #endif /* DEBUG */
588 
589 /* If DEBUG is defined, Regex prints many voluminous messages about what
590    it is doing (if the variable `debug' is nonzero).  If linked with the
591    main program in `iregex.c', you can enter patterns and strings
592    interactively.  And if linked with the main program in `main.c' and
593    the other test files, you can run the already-written tests.  */
594 
595 #ifdef DEBUG
596 
597 /* We use standard I/O for debugging.  */
598 # include <stdio.h>
599 
600 /* It is useful to test things that ``must'' be true when debugging.  */
601 # include <assert.h>
602 
603 static int debug;
604 
605 # define DEBUG_STATEMENT(e) e
606 # define DEBUG_PRINT1(x) if (debug) printf (x)
607 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
608 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
609 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
610 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                                 \
611   if (debug) print_partial_compiled_pattern (s, e)
612 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                        \
613   if (debug) print_double_string (w, s1, sz1, s2, sz2)
614 
615 
616 /* Print the fastmap in human-readable form.  */
617 
618 void
print_fastmap(fastmap)619 print_fastmap (fastmap)
620     char *fastmap;
621 {
622   unsigned was_a_range = 0;
623   unsigned i = 0;
624 
625   while (i < (1 << BYTEWIDTH))
626     {
627       if (fastmap[i++])
628         {
629           was_a_range = 0;
630           putchar (i - 1);
631           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
632             {
633               was_a_range = 1;
634               i++;
635             }
636           if (was_a_range)
637             {
638               printf ("-");
639               putchar (i - 1);
640             }
641         }
642     }
643   putchar ('\n');
644 }
645 
646 
647 /* Print a compiled pattern string in human-readable form, starting at
648    the START pointer into it and ending just before the pointer END.  */
649 
650 void
print_partial_compiled_pattern(start,end)651 print_partial_compiled_pattern (start, end)
652     unsigned char *start;
653     unsigned char *end;
654 {
655   int mcnt, mcnt2;
656   unsigned char *p1;
657   unsigned char *p = start;
658   unsigned char *pend = end;
659 
660   if (start == NULL)
661     {
662       printf ("(null)\n");
663       return;
664     }
665 
666   /* Loop over pattern commands.  */
667   while (p < pend)
668     {
669       printf ("%d:\t", p - start);
670 
671       switch ((re_opcode_t) *p++)
672         {
673         case no_op:
674           printf ("/no_op");
675           break;
676 
677         case exactn:
678           mcnt = *p++;
679           printf ("/exactn/%d", mcnt);
680           do
681             {
682               putchar ('/');
683               putchar (*p++);
684             }
685           while (--mcnt);
686           break;
687 
688         case start_memory:
689           mcnt = *p++;
690           printf ("/start_memory/%d/%d", mcnt, *p++);
691           break;
692 
693         case stop_memory:
694           mcnt = *p++;
695           printf ("/stop_memory/%d/%d", mcnt, *p++);
696           break;
697 
698         case duplicate:
699           printf ("/duplicate/%d", *p++);
700           break;
701 
702         case anychar:
703           printf ("/anychar");
704           break;
705 
706         case charset:
707         case charset_not:
708           {
709             register int c, last = -100;
710             register int in_range = 0;
711 
712             printf ("/charset [%s",
713                     (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
714 
715             assert (p + *p < pend);
716 
717             for (c = 0; c < 256; c++)
718               if (c / 8 < *p
719                   && (p[1 + (c/8)] & (1 << (c % 8))))
720                 {
721                   /* Are we starting a range?  */
722                   if (last + 1 == c && ! in_range)
723                     {
724                       putchar ('-');
725                       in_range = 1;
726                     }
727                   /* Have we broken a range?  */
728                   else if (last + 1 != c && in_range)
729               {
730                       putchar (last);
731                       in_range = 0;
732                     }
733 
734                   if (! in_range)
735                     putchar (c);
736 
737                   last = c;
738               }
739 
740             if (in_range)
741               putchar (last);
742 
743             putchar (']');
744 
745             p += 1 + *p;
746           }
747           break;
748 
749         case begline:
750           printf ("/begline");
751           break;
752 
753         case endline:
754           printf ("/endline");
755           break;
756 
757         case on_failure_jump:
758           extract_number_and_incr (&mcnt, &p);
759             printf ("/on_failure_jump to %d", p + mcnt - start);
760           break;
761 
762         case on_failure_keep_string_jump:
763           extract_number_and_incr (&mcnt, &p);
764             printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
765           break;
766 
767         case dummy_failure_jump:
768           extract_number_and_incr (&mcnt, &p);
769             printf ("/dummy_failure_jump to %d", p + mcnt - start);
770           break;
771 
772         case push_dummy_failure:
773           printf ("/push_dummy_failure");
774           break;
775 
776         case maybe_pop_jump:
777           extract_number_and_incr (&mcnt, &p);
778             printf ("/maybe_pop_jump to %d", p + mcnt - start);
779           break;
780 
781         case pop_failure_jump:
782           extract_number_and_incr (&mcnt, &p);
783             printf ("/pop_failure_jump to %d", p + mcnt - start);
784           break;
785 
786         case jump_past_alt:
787           extract_number_and_incr (&mcnt, &p);
788             printf ("/jump_past_alt to %d", p + mcnt - start);
789           break;
790 
791         case jump:
792           extract_number_and_incr (&mcnt, &p);
793             printf ("/jump to %d", p + mcnt - start);
794           break;
795 
796         case succeed_n:
797           extract_number_and_incr (&mcnt, &p);
798           p1 = p + mcnt;
799           extract_number_and_incr (&mcnt2, &p);
800           printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
801           break;
802 
803         case jump_n:
804           extract_number_and_incr (&mcnt, &p);
805           p1 = p + mcnt;
806           extract_number_and_incr (&mcnt2, &p);
807           printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
808           break;
809 
810         case set_number_at:
811           extract_number_and_incr (&mcnt, &p);
812           p1 = p + mcnt;
813           extract_number_and_incr (&mcnt2, &p);
814           printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
815           break;
816 
817         case wordbound:
818           printf ("/wordbound");
819           break;
820 
821         case notwordbound:
822           printf ("/notwordbound");
823           break;
824 
825         case wordbeg:
826           printf ("/wordbeg");
827           break;
828 
829         case wordend:
830           printf ("/wordend");
831 
832 # ifdef emacs
833         case before_dot:
834           printf ("/before_dot");
835           break;
836 
837         case at_dot:
838           printf ("/at_dot");
839           break;
840 
841         case after_dot:
842           printf ("/after_dot");
843           break;
844 
845         case syntaxspec:
846           printf ("/syntaxspec");
847           mcnt = *p++;
848           printf ("/%d", mcnt);
849           break;
850 
851         case notsyntaxspec:
852           printf ("/notsyntaxspec");
853           mcnt = *p++;
854           printf ("/%d", mcnt);
855           break;
856 # endif /* emacs */
857 
858         case wordchar:
859           printf ("/wordchar");
860           break;
861 
862         case notwordchar:
863           printf ("/notwordchar");
864           break;
865 
866         case begbuf:
867           printf ("/begbuf");
868           break;
869 
870         case endbuf:
871           printf ("/endbuf");
872           break;
873 
874         default:
875           printf ("?%d", *(p-1));
876         }
877 
878       putchar ('\n');
879     }
880 
881   printf ("%d:\tend of pattern.\n", p - start);
882 }
883 
884 
885 void
print_compiled_pattern(bufp)886 print_compiled_pattern (bufp)
887     struct re_pattern_buffer *bufp;
888 {
889   unsigned char *buffer = bufp->buffer;
890 
891   print_partial_compiled_pattern (buffer, buffer + bufp->used);
892   printf ("%ld bytes used/%ld bytes allocated.\n",
893           bufp->used, bufp->allocated);
894 
895   if (bufp->fastmap_accurate && bufp->fastmap)
896     {
897       printf ("fastmap: ");
898       print_fastmap (bufp->fastmap);
899     }
900 
901   printf ("re_nsub: %d\t", bufp->re_nsub);
902   printf ("regs_alloc: %d\t", bufp->regs_allocated);
903   printf ("can_be_null: %d\t", bufp->can_be_null);
904   printf ("newline_anchor: %d\n", bufp->newline_anchor);
905   printf ("no_sub: %d\t", bufp->no_sub);
906   printf ("not_bol: %d\t", bufp->not_bol);
907   printf ("not_eol: %d\t", bufp->not_eol);
908   printf ("syntax: %lx\n", bufp->syntax);
909   /* Perhaps we should print the translate table?  */
910 }
911 
912 
913 void
print_double_string(where,string1,size1,string2,size2)914 print_double_string (where, string1, size1, string2, size2)
915     const char *where;
916     const char *string1;
917     const char *string2;
918     int size1;
919     int size2;
920 {
921   int this_char;
922 
923   if (where == NULL)
924     printf ("(null)");
925   else
926     {
927       if (FIRST_STRING_P (where))
928         {
929           for (this_char = where - string1; this_char < size1; this_char++)
930             putchar (string1[this_char]);
931 
932           where = string2;
933         }
934 
935       for (this_char = where - string2; this_char < size2; this_char++)
936         putchar (string2[this_char]);
937     }
938 }
939 
940 void
printchar(c)941 printchar (c)
942      int c;
943 {
944   putc (c, stderr);
945 }
946 
947 #else /* not DEBUG */
948 
949 # undef assert
950 # define assert(e)
951 
952 # define DEBUG_STATEMENT(e)
953 # define DEBUG_PRINT1(x)
954 # define DEBUG_PRINT2(x1, x2)
955 # define DEBUG_PRINT3(x1, x2, x3)
956 # define DEBUG_PRINT4(x1, x2, x3, x4)
957 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
958 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
959 
960 #endif /* not DEBUG */
961 
962 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
963    also be assigned to arbitrarily: each pattern buffer stores its own
964    syntax, so it can be changed between regex compilations.  */
965 /* This has no initializer because initialized variables in Emacs
966    become read-only after dumping.  */
967 reg_syntax_t re_syntax_options = 0;
968 
969 
970 /* Specify the precise syntax of regexps for compilation.  This provides
971    for compatibility for various utilities which historically have
972    different, incompatible syntaxes.
973 
974    The argument SYNTAX is a bit mask comprised of the various bits
975    defined in regex.h.  We return the old syntax.  */
976 
977 reg_syntax_t
re_set_syntax(syntax)978 re_set_syntax (syntax)
979     reg_syntax_t syntax;
980 {
981   reg_syntax_t ret = re_syntax_options;
982 
983   re_syntax_options = syntax;
984 #ifdef DEBUG
985   if (syntax & RE_DEBUG)
986     debug = 1;
987   else if (debug) /* was on but now is not */
988     debug = 0;
989 #endif /* DEBUG */
990   return ret;
991 }
992 #ifdef _LIBC
993 weak_alias (__re_set_syntax, re_set_syntax)
994 #endif
995 
996 /* This table gives an error message for each of the error codes listed
997    in regex.h.  Obviously the order here has to be same as there.
998    POSIX doesn't require that we do anything for REG_NOERROR,
999    but why not be nice?  */
1000 
1001 static const char re_error_msgid[] =
1002   {
1003 #define REG_NOERROR_IDX        0
1004     gettext_noop ("Success")        /* REG_NOERROR */
1005     "\0"
1006 #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1007     gettext_noop ("No match")        /* REG_NOMATCH */
1008     "\0"
1009 #define REG_BADPAT_IDX        (REG_NOMATCH_IDX + sizeof "No match")
1010     gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1011     "\0"
1012 #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1013     gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1014     "\0"
1015 #define REG_ECTYPE_IDX        (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1016     gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1017     "\0"
1018 #define REG_EESCAPE_IDX        (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1019     gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1020     "\0"
1021 #define REG_ESUBREG_IDX        (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1022     gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1023     "\0"
1024 #define REG_EBRACK_IDX        (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1025     gettext_noop ("Unmatched [ or [^")        /* REG_EBRACK */
1026     "\0"
1027 #define REG_EPAREN_IDX        (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1028     gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1029     "\0"
1030 #define REG_EBRACE_IDX        (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1031     gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1032     "\0"
1033 #define REG_BADBR_IDX        (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1034     gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1035     "\0"
1036 #define REG_ERANGE_IDX        (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1037     gettext_noop ("Invalid range end")        /* REG_ERANGE */
1038     "\0"
1039 #define REG_ESPACE_IDX        (REG_ERANGE_IDX + sizeof "Invalid range end")
1040     gettext_noop ("Memory exhausted") /* REG_ESPACE */
1041     "\0"
1042 #define REG_BADRPT_IDX        (REG_ESPACE_IDX + sizeof "Memory exhausted")
1043     gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1044     "\0"
1045 #define REG_EEND_IDX        (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1046     gettext_noop ("Premature end of regular expression") /* REG_EEND */
1047     "\0"
1048 #define REG_ESIZE_IDX        (REG_EEND_IDX + sizeof "Premature end of regular expression")
1049     gettext_noop ("Regular expression too big") /* REG_ESIZE */
1050     "\0"
1051 #define REG_ERPAREN_IDX        (REG_ESIZE_IDX + sizeof "Regular expression too big")
1052     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1053   };
1054 
1055 static const size_t re_error_msgid_idx[] =
1056   {
1057     REG_NOERROR_IDX,
1058     REG_NOMATCH_IDX,
1059     REG_BADPAT_IDX,
1060     REG_ECOLLATE_IDX,
1061     REG_ECTYPE_IDX,
1062     REG_EESCAPE_IDX,
1063     REG_ESUBREG_IDX,
1064     REG_EBRACK_IDX,
1065     REG_EPAREN_IDX,
1066     REG_EBRACE_IDX,
1067     REG_BADBR_IDX,
1068     REG_ERANGE_IDX,
1069     REG_ESPACE_IDX,
1070     REG_BADRPT_IDX,
1071     REG_EEND_IDX,
1072     REG_ESIZE_IDX,
1073     REG_ERPAREN_IDX
1074   };
1075 
1076 /* Avoiding alloca during matching, to placate r_alloc.  */
1077 
1078 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1079    searching and matching functions should not call alloca.  On some
1080    systems, alloca is implemented in terms of malloc, and if we're
1081    using the relocating allocator routines, then malloc could cause a
1082    relocation, which might (if the strings being searched are in the
1083    ralloc heap) shift the data out from underneath the regexp
1084    routines.
1085 
1086    Here's another reason to avoid allocation: Emacs
1087    processes input from X in a signal handler; processing X input may
1088    call malloc; if input arrives while a matching routine is calling
1089    malloc, then we're scrod.  But Emacs can't just block input while
1090    calling matching routines; then we don't notice interrupts when
1091    they come in.  So, Emacs blocks input around all regexp calls
1092    except the matching calls, which it leaves unprotected, in the
1093    faith that they will not malloc.  */
1094 
1095 /* Normally, this is fine.  */
1096 #define MATCH_MAY_ALLOCATE
1097 
1098 /* When using GNU C, we are not REALLY using the C alloca, no matter
1099    what config.h may say.  So don't take precautions for it.  */
1100 #ifdef __GNUC__
1101 # undef C_ALLOCA
1102 #endif
1103 
1104 /* The match routines may not allocate if (1) they would do it with malloc
1105    and (2) it's not safe for them to use malloc.
1106    Note that if REL_ALLOC is defined, matching would not use malloc for the
1107    failure stack, but we would still use it for the register vectors;
1108    so REL_ALLOC should not affect this.  */
1109 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1110 # undef MATCH_MAY_ALLOCATE
1111 #endif
1112 
1113 
1114 /* Failure stack declarations and macros; both re_compile_fastmap and
1115    re_match_2 use a failure stack.  These have to be macros because of
1116    REGEX_ALLOCATE_STACK.  */
1117 
1118 
1119 /* Number of failure points for which to initially allocate space
1120    when matching.  If this number is exceeded, we allocate more
1121    space, so it is not a hard limit.  */
1122 #ifndef INIT_FAILURE_ALLOC
1123 # define INIT_FAILURE_ALLOC 5
1124 #endif
1125 
1126 /* Roughly the maximum number of failure points on the stack.  Would be
1127    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1128    This is a variable only so users of regex can assign to it; we never
1129    change it ourselves.  */
1130 
1131 #ifdef INT_IS_16BIT
1132 
1133 # if defined MATCH_MAY_ALLOCATE
1134 /* 4400 was enough to cause a crash on Alpha OSF/1,
1135    whose default stack limit is 2mb.  */
1136 long int re_max_failures = 4000;
1137 # else
1138 long int re_max_failures = 2000;
1139 # endif
1140 
1141 union fail_stack_elt
1142 {
1143   unsigned char *pointer;
1144   long int integer;
1145 };
1146 
1147 typedef union fail_stack_elt fail_stack_elt_t;
1148 
1149 typedef struct
1150 {
1151   fail_stack_elt_t *stack;
1152   unsigned long int size;
1153   unsigned long int avail;                /* Offset of next open position.  */
1154 } fail_stack_type;
1155 
1156 #else /* not INT_IS_16BIT */
1157 
1158 # if defined MATCH_MAY_ALLOCATE
1159 /* 4400 was enough to cause a crash on Alpha OSF/1,
1160    whose default stack limit is 2mb.  */
1161 int re_max_failures = 20000;
1162 # else
1163 int re_max_failures = 2000;
1164 # endif
1165 
1166 union fail_stack_elt
1167 {
1168   unsigned char *pointer;
1169   int integer;
1170 };
1171 
1172 typedef union fail_stack_elt fail_stack_elt_t;
1173 
1174 typedef struct
1175 {
1176   fail_stack_elt_t *stack;
1177   unsigned size;
1178   unsigned avail;                        /* Offset of next open position.  */
1179 } fail_stack_type;
1180 
1181 #endif /* INT_IS_16BIT */
1182 
1183 #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1184 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1185 #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1186 
1187 
1188 /* Define macros to initialize and free the failure stack.
1189    Do `return -2' if the alloc fails.  */
1190 
1191 #ifdef MATCH_MAY_ALLOCATE
1192 # define INIT_FAIL_STACK()                                                \
1193   do {                                                                        \
1194     fail_stack.stack = (fail_stack_elt_t *)                                \
1195       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1196                                                                         \
1197     if (fail_stack.stack == NULL)                                        \
1198       return -2;                                                        \
1199                                                                         \
1200     fail_stack.size = INIT_FAILURE_ALLOC;                                \
1201     fail_stack.avail = 0;                                                \
1202   } while (0)
1203 
1204 # define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1205 #else
1206 # define INIT_FAIL_STACK()                                                \
1207   do {                                                                        \
1208     fail_stack.avail = 0;                                                \
1209   } while (0)
1210 
1211 # define RESET_FAIL_STACK()
1212 #endif
1213 
1214 
1215 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1216 
1217    Return 1 if succeeds, and 0 if either ran out of memory
1218    allocating space for it or it was already too large.
1219 
1220    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1221 
1222 #define DOUBLE_FAIL_STACK(fail_stack)                                        \
1223   ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)        \
1224    ? 0                                                                        \
1225    : ((fail_stack).stack = (fail_stack_elt_t *)                                \
1226         REGEX_REALLOCATE_STACK ((fail_stack).stack,                         \
1227           (fail_stack).size * sizeof (fail_stack_elt_t),                \
1228           ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),        \
1229                                                                         \
1230       (fail_stack).stack == NULL                                        \
1231       ? 0                                                                \
1232       : ((fail_stack).size <<= 1,                                         \
1233          1)))
1234 
1235 
1236 /* Push pointer POINTER on FAIL_STACK.
1237    Return 1 if was able to do so and 0 if ran out of memory allocating
1238    space to do so.  */
1239 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK)                                \
1240   ((FAIL_STACK_FULL ()                                                        \
1241     && !DOUBLE_FAIL_STACK (FAIL_STACK))                                        \
1242    ? 0                                                                        \
1243    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,        \
1244       1))
1245 
1246 /* Push a pointer value onto the failure stack.
1247    Assumes the variable `fail_stack'.  Probably should only
1248    be called from within `PUSH_FAILURE_POINT'.  */
1249 #define PUSH_FAILURE_POINTER(item)                                        \
1250   fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1251 
1252 /* This pushes an integer-valued item onto the failure stack.
1253    Assumes the variable `fail_stack'.  Probably should only
1254    be called from within `PUSH_FAILURE_POINT'.  */
1255 #define PUSH_FAILURE_INT(item)                                        \
1256   fail_stack.stack[fail_stack.avail++].integer = (item)
1257 
1258 /* Push a fail_stack_elt_t value onto the failure stack.
1259    Assumes the variable `fail_stack'.  Probably should only
1260    be called from within `PUSH_FAILURE_POINT'.  */
1261 #define PUSH_FAILURE_ELT(item)                                        \
1262   fail_stack.stack[fail_stack.avail++] =  (item)
1263 
1264 /* These three POP... operations complement the three PUSH... operations.
1265    All assume that `fail_stack' is nonempty.  */
1266 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1267 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1268 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1269 
1270 /* Used to omit pushing failure point id's when we're not debugging.  */
1271 #ifdef DEBUG
1272 # define DEBUG_PUSH PUSH_FAILURE_INT
1273 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1274 #else
1275 # define DEBUG_PUSH(item)
1276 # define DEBUG_POP(item_addr)
1277 #endif
1278 
1279 
1280 /* Push the information about the state we will need
1281    if we ever fail back to it.
1282 
1283    Requires variables fail_stack, regstart, regend, reg_info, and
1284    num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1285    be declared.
1286 
1287    Does `return FAILURE_CODE' if runs out of memory.  */
1288 
1289 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)        \
1290   do {                                                                        \
1291     char *destination;                                                        \
1292     /* Must be int, so when we don't save any registers, the arithmetic        \
1293        of 0 + -1 isn't done as unsigned.  */                                \
1294     /* Can't be int, since there is not a shred of a guarantee that int        \
1295        is wide enough to hold a value of something to which pointer can        \
1296        be assigned */                                                        \
1297     active_reg_t this_reg;                                                \
1298                                                                             \
1299     DEBUG_STATEMENT (failure_id++);                                        \
1300     DEBUG_STATEMENT (nfailure_points_pushed++);                                \
1301     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);                \
1302     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1303     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1304                                                                         \
1305     DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);                \
1306     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);        \
1307                                                                         \
1308     /* Ensure we have enough space allocated for what we will push.  */        \
1309     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                        \
1310       {                                                                        \
1311         if (!DOUBLE_FAIL_STACK (fail_stack))                                \
1312           return failure_code;                                                \
1313                                                                         \
1314         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",                \
1315                        (fail_stack).size);                                \
1316         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1317       }                                                                        \
1318                                                                         \
1319     /* Push the info, starting with the registers.  */                        \
1320     DEBUG_PRINT1 ("\n");                                                \
1321                                                                         \
1322     if (1)                                                                \
1323       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1324            this_reg++)                                                        \
1325         {                                                                \
1326           DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);                \
1327           DEBUG_STATEMENT (num_regs_pushed++);                                \
1328                                                                         \
1329           DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);                \
1330           PUSH_FAILURE_POINTER (regstart[this_reg]);                        \
1331                                                                         \
1332           DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);                \
1333           PUSH_FAILURE_POINTER (regend[this_reg]);                        \
1334                                                                         \
1335           DEBUG_PRINT2 ("    info: %p\n      ",                                \
1336                         reg_info[this_reg].word.pointer);                \
1337           DEBUG_PRINT2 (" match_null=%d",                                \
1338                         REG_MATCH_NULL_STRING_P (reg_info[this_reg]));        \
1339           DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));        \
1340           DEBUG_PRINT2 (" matched_something=%d",                        \
1341                         MATCHED_SOMETHING (reg_info[this_reg]));        \
1342           DEBUG_PRINT2 (" ever_matched=%d",                                \
1343                         EVER_MATCHED_SOMETHING (reg_info[this_reg]));        \
1344           DEBUG_PRINT1 ("\n");                                                \
1345           PUSH_FAILURE_ELT (reg_info[this_reg].word);                        \
1346         }                                                                \
1347                                                                         \
1348     DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1349     PUSH_FAILURE_INT (lowest_active_reg);                                \
1350                                                                         \
1351     DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1352     PUSH_FAILURE_INT (highest_active_reg);                                \
1353                                                                         \
1354     DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);                \
1355     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);                \
1356     PUSH_FAILURE_POINTER (pattern_place);                                \
1357                                                                         \
1358     DEBUG_PRINT2 ("  Pushing string %p: `", string_place);                \
1359     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1360                                  size2);                                \
1361     DEBUG_PRINT1 ("'\n");                                                \
1362     PUSH_FAILURE_POINTER (string_place);                                \
1363                                                                         \
1364     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);                \
1365     DEBUG_PUSH (failure_id);                                                \
1366   } while (0)
1367 
1368 /* This is the number of items that are pushed and popped on the stack
1369    for each register.  */
1370 #define NUM_REG_ITEMS  3
1371 
1372 /* Individual items aside from the registers.  */
1373 #ifdef DEBUG
1374 # define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1375 #else
1376 # define NUM_NONREG_ITEMS 4
1377 #endif
1378 
1379 /* We push at most this many items on the stack.  */
1380 /* We used to use (num_regs - 1), which is the number of registers
1381    this regexp will save; but that was changed to 5
1382    to avoid stack overflow for a regexp with lots of parens.  */
1383 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1384 
1385 /* We actually push this many items.  */
1386 #define NUM_FAILURE_ITEMS                                \
1387   (((0                                                        \
1388      ? 0 : highest_active_reg - lowest_active_reg + 1)        \
1389     * NUM_REG_ITEMS)                                        \
1390    + NUM_NONREG_ITEMS)
1391 
1392 /* How many items can still be added to the stack without overflowing it.  */
1393 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1394 
1395 
1396 /* Pops what PUSH_FAIL_STACK pushes.
1397 
1398    We restore into the parameters, all of which should be lvalues:
1399      STR -- the saved data position.
1400      PAT -- the saved pattern position.
1401      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1402      REGSTART, REGEND -- arrays of string positions.
1403      REG_INFO -- array of information about each subexpression.
1404 
1405    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1406    `pend', `string1', `size1', `string2', and `size2'.  */
1407 
1408 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1409 {                                                                        \
1410   DEBUG_STATEMENT (unsigned failure_id;)                                \
1411   active_reg_t this_reg;                                                \
1412   const unsigned char *string_temp;                                        \
1413                                                                         \
1414   assert (!FAIL_STACK_EMPTY ());                                        \
1415                                                                         \
1416   /* Remove failure points and point to how many regs pushed.  */        \
1417   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                                \
1418   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);        \
1419   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);        \
1420                                                                         \
1421   assert (fail_stack.avail >= NUM_NONREG_ITEMS);                        \
1422                                                                         \
1423   DEBUG_POP (&failure_id);                                                \
1424   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);                \
1425                                                                         \
1426   /* If the saved string location is NULL, it came from an                \
1427      on_failure_keep_string_jump opcode, and we want to throw away the        \
1428      saved NULL, thus retaining our current position in the string.  */        \
1429   string_temp = POP_FAILURE_POINTER ();                                        \
1430   if (string_temp != NULL)                                                \
1431     str = (const char *) string_temp;                                        \
1432                                                                         \
1433   DEBUG_PRINT2 ("  Popping string %p: `", str);                                \
1434   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);        \
1435   DEBUG_PRINT1 ("'\n");                                                        \
1436                                                                         \
1437   pat = (unsigned char *) POP_FAILURE_POINTER ();                        \
1438   DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);                        \
1439   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                        \
1440                                                                         \
1441   /* Restore register info.  */                                                \
1442   high_reg = (active_reg_t) POP_FAILURE_INT ();                                \
1443   DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);                \
1444                                                                         \
1445   low_reg = (active_reg_t) POP_FAILURE_INT ();                                \
1446   DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);                \
1447                                                                         \
1448   if (1)                                                                \
1449     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)                \
1450       {                                                                        \
1451         DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);                \
1452                                                                         \
1453         reg_info[this_reg].word = POP_FAILURE_ELT ();                        \
1454         DEBUG_PRINT2 ("      info: %p\n",                                \
1455                       reg_info[this_reg].word.pointer);                        \
1456                                                                         \
1457         regend[this_reg] = (const char *) POP_FAILURE_POINTER ();        \
1458         DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);                \
1459                                                                         \
1460         regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();        \
1461         DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);                \
1462       }                                                                        \
1463   else                                                                        \
1464     {                                                                        \
1465       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1466         {                                                                \
1467           reg_info[this_reg].word.integer = 0;                                \
1468           regend[this_reg] = 0;                                                \
1469           regstart[this_reg] = 0;                                        \
1470         }                                                                \
1471       highest_active_reg = high_reg;                                        \
1472     }                                                                        \
1473                                                                         \
1474   set_regs_matched_done = 0;                                                \
1475   DEBUG_STATEMENT (nfailure_points_popped++);                                \
1476 } /* POP_FAILURE_POINT */
1477 
1478 
1479 
1480 /* Structure for per-register (a.k.a. per-group) information.
1481    Other register information, such as the
1482    starting and ending positions (which are addresses), and the list of
1483    inner groups (which is a bits list) are maintained in separate
1484    variables.
1485 
1486    We are making a (strictly speaking) nonportable assumption here: that
1487    the compiler will pack our bit fields into something that fits into
1488    the type of `word', i.e., is something that fits into one item on the
1489    failure stack.  */
1490 
1491 
1492 /* Declarations and macros for re_match_2.  */
1493 
1494 typedef union
1495 {
1496   fail_stack_elt_t word;
1497   struct
1498   {
1499       /* This field is one if this group can match the empty string,
1500          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1501 #define MATCH_NULL_UNSET_VALUE 3
1502     unsigned match_null_string_p : 2;
1503     unsigned is_active : 1;
1504     unsigned matched_something : 1;
1505     unsigned ever_matched_something : 1;
1506   } bits;
1507 } register_info_type;
1508 
1509 #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1510 #define IS_ACTIVE(R)  ((R).bits.is_active)
1511 #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1512 #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1513 
1514 
1515 /* Call this when have matched a real character; it sets `matched' flags
1516    for the subexpressions which we are currently inside.  Also records
1517    that those subexprs have matched.  */
1518 #define SET_REGS_MATCHED()                                                \
1519   do                                                                        \
1520     {                                                                        \
1521       if (!set_regs_matched_done)                                        \
1522         {                                                                \
1523           active_reg_t r;                                                \
1524           set_regs_matched_done = 1;                                        \
1525           for (r = lowest_active_reg; r <= highest_active_reg; r++)        \
1526             {                                                                \
1527               MATCHED_SOMETHING (reg_info[r])                                \
1528                 = EVER_MATCHED_SOMETHING (reg_info[r])                        \
1529                 = 1;                                                        \
1530             }                                                                \
1531         }                                                                \
1532     }                                                                        \
1533   while (0)
1534 
1535 /* Registers are set to a sentinel when they haven't yet matched.  */
1536 static char reg_unset_dummy;
1537 #define REG_UNSET_VALUE (&reg_unset_dummy)
1538 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1539 
1540 /* Subroutine declarations and macros for regex_compile.  */
1541 
1542 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1543                                               reg_syntax_t syntax,
1544                                               struct re_pattern_buffer *bufp));
1545 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1546 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1547                                  int arg1, int arg2));
1548 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1549                                   int arg, unsigned char *end));
1550 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1551                                   int arg1, int arg2, unsigned char *end));
1552 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1553                                            reg_syntax_t syntax));
1554 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1555                                            reg_syntax_t syntax));
1556 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1557                                               const char *pend,
1558                                               char *translate,
1559                                               reg_syntax_t syntax,
1560                                               unsigned char *b));
1561 
1562 /* Fetch the next character in the uncompiled pattern---translating it
1563    if necessary.  Also cast from a signed character in the constant
1564    string passed to us by the user to an unsigned char that we can use
1565    as an array index (in, e.g., `translate').  */
1566 #ifndef PATFETCH
1567 # define PATFETCH(c)                                                        \
1568   do {if (p == pend) return REG_EEND;                                        \
1569     c = (unsigned char) *p++;                                                \
1570     if (translate) c = (unsigned char) translate[c];                        \
1571   } while (0)
1572 #endif
1573 
1574 /* Fetch the next character in the uncompiled pattern, with no
1575    translation.  */
1576 #define PATFETCH_RAW(c)                                                        \
1577   do {if (p == pend) return REG_EEND;                                        \
1578     c = (unsigned char) *p++;                                                 \
1579   } while (0)
1580 
1581 /* Go backwards one character in the pattern.  */
1582 #define PATUNFETCH p--
1583 
1584 
1585 /* If `translate' is non-null, return translate[D], else just D.  We
1586    cast the subscript to translate because some data is declared as
1587    `char *', to avoid warnings when a string constant is passed.  But
1588    when we use a character as a subscript we must make it unsigned.  */
1589 #ifndef TRANSLATE
1590 # define TRANSLATE(d) \
1591   (translate ? (char) translate[(unsigned char) (d)] : (d))
1592 #endif
1593 
1594 
1595 /* Macros for outputting the compiled pattern into `buffer'.  */
1596 
1597 /* If the buffer isn't allocated when it comes in, use this.  */
1598 #define INIT_BUF_SIZE  32
1599 
1600 /* Make sure we have at least N more bytes of space in buffer.  */
1601 #define GET_BUFFER_SPACE(n)                                                \
1602     while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)        \
1603       EXTEND_BUFFER ()
1604 
1605 /* Make sure we have one more byte of buffer space and then add C to it.  */
1606 #define BUF_PUSH(c)                                                        \
1607   do {                                                                        \
1608     GET_BUFFER_SPACE (1);                                                \
1609     *b++ = (unsigned char) (c);                                                \
1610   } while (0)
1611 
1612 
1613 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1614 #define BUF_PUSH_2(c1, c2)                                                \
1615   do {                                                                        \
1616     GET_BUFFER_SPACE (2);                                                \
1617     *b++ = (unsigned char) (c1);                                        \
1618     *b++ = (unsigned char) (c2);                                        \
1619   } while (0)
1620 
1621 
1622 /* As with BUF_PUSH_2, except for three bytes.  */
1623 #define BUF_PUSH_3(c1, c2, c3)                                                \
1624   do {                                                                        \
1625     GET_BUFFER_SPACE (3);                                                \
1626     *b++ = (unsigned char) (c1);                                        \
1627     *b++ = (unsigned char) (c2);                                        \
1628     *b++ = (unsigned char) (c3);                                        \
1629   } while (0)
1630 
1631 
1632 /* Store a jump with opcode OP at LOC to location TO.  We store a
1633    relative address offset by the three bytes the jump itself occupies.  */
1634 #define STORE_JUMP(op, loc, to) \
1635   store_op1 (op, loc, (int) ((to) - (loc) - 3))
1636 
1637 /* Likewise, for a two-argument jump.  */
1638 #define STORE_JUMP2(op, loc, to, arg) \
1639   store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1640 
1641 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1642 #define INSERT_JUMP(op, loc, to) \
1643   insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1644 
1645 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1646 #define INSERT_JUMP2(op, loc, to, arg) \
1647   insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1648 
1649 
1650 /* This is not an arbitrary limit: the arguments which represent offsets
1651    into the pattern are two bytes long.  So if 2^16 bytes turns out to
1652    be too small, many things would have to change.  */
1653 /* Any other compiler which, like MSC, has allocation limit below 2^16
1654    bytes will have to use approach similar to what was done below for
1655    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1656    reallocating to 0 bytes.  Such thing is not going to work too well.
1657    You have been warned!!  */
1658 #if defined _MSC_VER  && !defined WIN32
1659 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1660    The REALLOC define eliminates a flurry of conversion warnings,
1661    but is not required. */
1662 # define MAX_BUF_SIZE  65500L
1663 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1664 #else
1665 # define MAX_BUF_SIZE (1L << 16)
1666 # define REALLOC(p,s) realloc ((p), (s))
1667 #endif
1668 
1669 /* Extend the buffer by twice its current size via realloc and
1670    reset the pointers that pointed into the old block to point to the
1671    correct places in the new one.  If extending the buffer results in it
1672    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
1673 #define EXTEND_BUFFER()                                                        \
1674   do {                                                                         \
1675     unsigned char *old_buffer = bufp->buffer;                                \
1676     if (bufp->allocated == MAX_BUF_SIZE)                                 \
1677       return REG_ESIZE;                                                        \
1678     bufp->allocated <<= 1;                                                \
1679     if (bufp->allocated > MAX_BUF_SIZE)                                        \
1680       bufp->allocated = MAX_BUF_SIZE;                                         \
1681     bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1682     if (bufp->buffer == NULL)                                                \
1683       return REG_ESPACE;                                                \
1684     /* If the buffer moved, move all the pointers into it.  */                \
1685     if (old_buffer != bufp->buffer)                                        \
1686       {                                                                        \
1687         b = (b - old_buffer) + bufp->buffer;                                \
1688         begalt = (begalt - old_buffer) + bufp->buffer;                        \
1689         if (fixup_alt_jump)                                                \
1690           fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1691         if (laststart)                                                        \
1692           laststart = (laststart - old_buffer) + bufp->buffer;                \
1693         if (pending_exact)                                                \
1694           pending_exact = (pending_exact - old_buffer) + bufp->buffer;        \
1695       }                                                                        \
1696   } while (0)
1697 
1698 
1699 /* Since we have one byte reserved for the register number argument to
1700    {start,stop}_memory, the maximum number of groups we can report
1701    things about is what fits in that byte.  */
1702 #define MAX_REGNUM 255
1703 
1704 /* But patterns can have more than `MAX_REGNUM' registers.  We just
1705    ignore the excess.  */
1706 typedef unsigned regnum_t;
1707 
1708 
1709 /* Macros for the compile stack.  */
1710 
1711 /* Since offsets can go either forwards or backwards, this type needs to
1712    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
1713 /* int may be not enough when sizeof(int) == 2.  */
1714 typedef long pattern_offset_t;
1715 
1716 typedef struct
1717 {
1718   pattern_offset_t begalt_offset;
1719   pattern_offset_t fixup_alt_jump;
1720   pattern_offset_t inner_group_offset;
1721   pattern_offset_t laststart_offset;
1722   regnum_t regnum;
1723 } compile_stack_elt_t;
1724 
1725 
1726 typedef struct
1727 {
1728   compile_stack_elt_t *stack;
1729   unsigned size;
1730   unsigned avail;                        /* Offset of next open position.  */
1731 } compile_stack_type;
1732 
1733 
1734 #define INIT_COMPILE_STACK_SIZE 32
1735 
1736 #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
1737 #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
1738 
1739 /* The next available element.  */
1740 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1741 
1742 
1743 /* Set the bit for character C in a list.  */
1744 #define SET_LIST_BIT(c)                               \
1745   (b[((unsigned char) (c)) / BYTEWIDTH]               \
1746    |= 1 << (((unsigned char) c) % BYTEWIDTH))
1747 
1748 
1749 /* Get the next unsigned number in the uncompiled pattern.  */
1750 #define GET_UNSIGNED_NUMBER(num)                                         \
1751   { if (p != pend)                                                        \
1752      {                                                                        \
1753        PATFETCH (c);                                                         \
1754        while ('0' <= c && c <= '9')                                        \
1755          {                                                                 \
1756            if (num < 0)                                                        \
1757               num = 0;                                                        \
1758            num = num * 10 + c - '0';                                         \
1759            if (p == pend)                                                 \
1760               break;                                                         \
1761            PATFETCH (c);                                                \
1762          }                                                                 \
1763        }                                                                 \
1764     }
1765 
1766 #if defined _LIBC || WIDE_CHAR_SUPPORT
1767 /* The GNU C library provides support for user-defined character classes
1768    and the functions from ISO C amendement 1.  */
1769 # ifdef CHARCLASS_NAME_MAX
1770 #  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1771 # else
1772 /* This shouldn't happen but some implementation might still have this
1773    problem.  Use a reasonable default value.  */
1774 #  define CHAR_CLASS_MAX_LENGTH 256
1775 # endif
1776 
1777 # ifdef _LIBC
1778 #  define IS_CHAR_CLASS(string) __wctype (string)
1779 # else
1780 #  define IS_CHAR_CLASS(string) wctype (string)
1781 # endif
1782 #else
1783 # define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1784 
1785 # define IS_CHAR_CLASS(string)                                                \
1786    (STREQ (string, "alpha") || STREQ (string, "upper")                        \
1787     || STREQ (string, "lower") || STREQ (string, "digit")                \
1788     || STREQ (string, "alnum") || STREQ (string, "xdigit")                \
1789     || STREQ (string, "space") || STREQ (string, "print")                \
1790     || STREQ (string, "punct") || STREQ (string, "graph")                \
1791     || STREQ (string, "cntrl") || STREQ (string, "blank"))
1792 #endif
1793 
1794 
1795 int reganch = 0;
1796 
1797 #ifndef MATCH_MAY_ALLOCATE
1798 
1799 /* If we cannot allocate large objects within re_match_2_internal,
1800    we make the fail stack and register vectors global.
1801    The fail stack, we grow to the maximum size when a regexp
1802    is compiled.
1803    The register vectors, we adjust in size each time we
1804    compile a regexp, according to the number of registers it needs.  */
1805 
1806 static fail_stack_type fail_stack;
1807 
1808 /* Size with which the following vectors are currently allocated.
1809    That is so we can make them bigger as needed,
1810    but never make them smaller.  */
1811 static int regs_allocated_size;
1812 
1813 static const char **     regstart, **     regend;
1814 static const char ** old_regstart, ** old_regend;
1815 static const char **best_regstart, **best_regend;
1816 static register_info_type *reg_info;
1817 static const char **reg_dummy;
1818 static register_info_type *reg_info_dummy;
1819 
1820 
1821 /* Make the register vectors big enough for NUM_REGS registers,
1822    but don't make them smaller.  */
1823 
1824 static
regex_grow_registers(num_regs)1825 regex_grow_registers (num_regs)
1826      int num_regs;
1827 {
1828   if (num_regs > regs_allocated_size)
1829     {
1830       RETALLOC_IF (regstart,         num_regs, const char *);
1831       RETALLOC_IF (regend,         num_regs, const char *);
1832       RETALLOC_IF (old_regstart, num_regs, const char *);
1833       RETALLOC_IF (old_regend,         num_regs, const char *);
1834       RETALLOC_IF (best_regstart, num_regs, const char *);
1835       RETALLOC_IF (best_regend,         num_regs, const char *);
1836       RETALLOC_IF (reg_info,         num_regs, register_info_type);
1837       RETALLOC_IF (reg_dummy,         num_regs, const char *);
1838       RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1839 
1840       regs_allocated_size = num_regs;
1841     }
1842 }
1843 
1844 #endif /* not MATCH_MAY_ALLOCATE */
1845 
1846 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1847                                                  compile_stack,
1848                                                  regnum_t regnum));
1849 
1850 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1851    Returns one of error codes defined in `regex.h', or zero for success.
1852 
1853    Assumes the `allocated' (and perhaps `buffer') and `translate'
1854    fields are set in BUFP on entry.
1855 
1856    If it succeeds, results are put in BUFP (if it returns an error, the
1857    contents of BUFP are undefined):
1858      `buffer' is the compiled pattern;
1859      `syntax' is set to SYNTAX;
1860      `used' is set to the length of the compiled pattern;
1861      `fastmap_accurate' is zero;
1862      `re_nsub' is the number of subexpressions in PATTERN;
1863      `not_bol' and `not_eol' are zero;
1864 
1865    The `fastmap' and `newline_anchor' fields are neither
1866    examined nor set.  */
1867 
1868 /* Return, freeing storage we allocated.  */
1869 #define FREE_STACK_RETURN(value)                \
1870   return (free (compile_stack.stack), value)
1871 
1872 static reg_errcode_t
regex_compile(pattern,size,syntax,bufp)1873 regex_compile (pattern, size, syntax, bufp)
1874      const char *pattern;
1875      size_t size;
1876      reg_syntax_t syntax;
1877      struct re_pattern_buffer *bufp;
1878 {
1879   /* We fetch characters from PATTERN here.  Even though PATTERN is
1880      `char *' (i.e., signed), we declare these variables as unsigned, so
1881      they can be reliably used as array indices.  */
1882   register unsigned char c, c1;
1883 
1884   /* A random temporary spot in PATTERN.  */
1885   const char *p1;
1886 
1887   /* Points to the end of the buffer, where we should append.  */
1888   register unsigned char *b;
1889 
1890   /* whether this pattern contains multiple piped expressions */
1891   char piped = 0;
1892 
1893   /* Keeps track of unclosed groups.  */
1894   compile_stack_type compile_stack;
1895 
1896   /* Points to the current (ending) position in the pattern.  */
1897   const char *p = pattern;
1898   const char *pend = pattern + size;
1899 
1900   /* How to translate the characters in the pattern.  */
1901   RE_TRANSLATE_TYPE translate = bufp->translate;
1902 
1903   /* Address of the count-byte of the most recently inserted `exactn'
1904      command.  This makes it possible to tell if a new exact-match
1905      character can be added to that command or if the character requires
1906      a new `exactn' command.  */
1907   unsigned char *pending_exact = 0;
1908 
1909   /* Address of start of the most recently finished expression.
1910      This tells, e.g., postfix * where to find the start of its
1911      operand.  Reset at the beginning of groups and alternatives.  */
1912   unsigned char *laststart = 0;
1913 
1914   /* Address of beginning of regexp, or inside of last group.  */
1915   unsigned char *begalt;
1916 
1917   /* Place in the uncompiled pattern (i.e., the {) to
1918      which to go back if the interval is invalid.  */
1919   const char *beg_interval;
1920 
1921   /* Address of the place where a forward jump should go to the end of
1922      the containing expression.  Each alternative of an `or' -- except the
1923      last -- ends with a forward jump of this sort.  */
1924   unsigned char *fixup_alt_jump = 0;
1925 
1926   /* Counts open-groups as they are encountered.  Remembered for the
1927      matching close-group on the compile stack, so the same register
1928      number is put in the stop_memory as the start_memory.  */
1929   regnum_t regnum = 0;
1930 
1931 #ifdef DEBUG
1932   DEBUG_PRINT1 ("\nCompiling pattern: ");
1933   if (debug)
1934     {
1935       unsigned debug_count;
1936 
1937       for (debug_count = 0; debug_count < size; debug_count++)
1938         putchar (pattern[debug_count]);
1939       putchar ('\n');
1940     }
1941 #endif /* DEBUG */
1942 
1943   /* Initialize the compile stack.  */
1944   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1945   if (compile_stack.stack == NULL)
1946     return REG_ESPACE;
1947 
1948   compile_stack.size = INIT_COMPILE_STACK_SIZE;
1949   compile_stack.avail = 0;
1950 
1951   /* Initialize the pattern buffer.  */
1952   bufp->syntax = syntax;
1953   bufp->fastmap_accurate = 0;
1954   bufp->not_bol = bufp->not_eol = 0;
1955 
1956   /* Set `used' to zero, so that if we return an error, the pattern
1957      printer (for debugging) will think there's no pattern.  We reset it
1958      at the end.  */
1959   bufp->used = 0;
1960 
1961   /* Always count groups, whether or not bufp->no_sub is set.  */
1962   bufp->re_nsub = 0;
1963 
1964 #if !defined emacs && !defined SYNTAX_TABLE
1965   /* Initialize the syntax table.  */
1966    init_syntax_once ();
1967 #endif
1968 
1969   if (bufp->allocated == 0)
1970     {
1971       if (bufp->buffer)
1972         { /* If zero allocated, but buffer is non-null, try to realloc
1973              enough space.  This loses if buffer's address is bogus, but
1974              that is the user's responsibility.  */
1975           RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1976         }
1977       else
1978         { /* Caller did not allocate a buffer.  Do it for them.  */
1979           bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1980         }
1981       if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1982 
1983       bufp->allocated = INIT_BUF_SIZE;
1984     }
1985 
1986   begalt = b = bufp->buffer;
1987 
1988   /* Loop through the uncompiled pattern until we're at the end.  */
1989   while (p != pend)
1990     {
1991       PATFETCH (c);
1992 
1993       switch (c)
1994         {
1995         case '^':
1996           {
1997             if (   /* If at start of pattern, it's an operator.  */
1998                    p == pattern + 1
1999                    /* If context independent, it's an operator.  */
2000                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2001                    /* Otherwise, depends on what's come before.  */
2002                 || at_begline_loc_p (pattern, p, syntax))
2003             {
2004               BUF_PUSH (begline);
2005               reganch = 1;
2006             }
2007             else
2008               goto normal_char;
2009           }
2010           break;
2011 
2012 
2013         case '$':
2014           {
2015             if (   /* If at end of pattern, it's an operator.  */
2016                    p == pend
2017                    /* If context independent, it's an operator.  */
2018                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2019                    /* Otherwise, depends on what's next.  */
2020                 || at_endline_loc_p (p, pend, syntax))
2021                BUF_PUSH (endline);
2022              else
2023                goto normal_char;
2024            }
2025            break;
2026 
2027 
2028         case '+':
2029         case '?':
2030           if ((syntax & RE_BK_PLUS_QM)
2031               || (syntax & RE_LIMITED_OPS))
2032             goto normal_char;
2033         handle_plus:
2034         case '*':
2035           /* If there is no previous pattern... */
2036           if (!laststart)
2037             {
2038               if (syntax & RE_CONTEXT_INVALID_OPS)
2039               {
2040                 fprintf(stderr,"yoyo\n");
2041                 FREE_STACK_RETURN (REG_BADRPT);
2042               }
2043               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2044                 goto normal_char;
2045             }
2046 
2047           {
2048             /* Are we optimizing this jump?  */
2049             boolean keep_string_p = false;
2050 
2051             /* 1 means zero (many) matches is allowed.  */
2052             char zero_times_ok = 0, many_times_ok = 0;
2053 
2054             /* If there is a sequence of repetition chars, collapse it
2055                down to just one (the right one).  We can't combine
2056                interval operators with these because of, e.g., `a{2}*',
2057                which should only match an even number of `a's.  */
2058 
2059             for (;;)
2060               {
2061                 zero_times_ok |= c != '+';
2062                 many_times_ok |= c != '?';
2063 
2064                 if (p == pend)
2065                   break;
2066 
2067                 PATFETCH (c);
2068 
2069                 if (c == '*'
2070                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2071                   ;
2072 
2073                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2074                   {
2075                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2076 
2077                     PATFETCH (c1);
2078                     if (!(c1 == '+' || c1 == '?'))
2079                       {
2080                         PATUNFETCH;
2081                         PATUNFETCH;
2082                         break;
2083                       }
2084 
2085                     c = c1;
2086                   }
2087                 else
2088                   {
2089                     PATUNFETCH;
2090                     break;
2091                   }
2092 
2093                 /* If we get here, we found another repeat character.  */
2094                }
2095 
2096             /* Star, etc. applied to an empty pattern is equivalent
2097                to an empty pattern.  */
2098             if (!laststart)
2099               break;
2100 
2101             /* Now we know whether or not zero matches is allowed
2102                and also whether or not two or more matches is allowed.  */
2103             if (many_times_ok)
2104               { /* More than one repetition is allowed, so put in at the
2105                    end a backward relative jump from `b' to before the next
2106                    jump we're going to put in below (which jumps from
2107                    laststart to after this jump).
2108 
2109                    But if we are at the `*' in the exact sequence `.*\n',
2110                    insert an unconditional jump backwards to the .,
2111                    instead of the beginning of the loop.  This way we only
2112                    push a failure point once, instead of every time
2113                    through the loop.  */
2114                 assert (p - 1 > pattern);
2115 
2116                 /* Allocate the space for the jump.  */
2117                 GET_BUFFER_SPACE (3);
2118 
2119                 /* We know we are not at the first character of the pattern,
2120                    because laststart was nonzero.  And we've already
2121                    incremented `p', by the way, to be the character after
2122                    the `*'.  Do we have to do something analogous here
2123                    for null bytes, because of RE_DOT_NOT_NULL?  */
2124                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2125                     && zero_times_ok
2126                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2127                     && !(syntax & RE_DOT_NEWLINE))
2128                   { /* We have .*\n.  */
2129                     STORE_JUMP (jump, b, laststart);
2130                     keep_string_p = true;
2131                   }
2132                 else
2133                   /* Anything else.  */
2134                   STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2135 
2136                 /* We've added more stuff to the buffer.  */
2137                 b += 3;
2138               }
2139 
2140             /* On failure, jump from laststart to b + 3, which will be the
2141                end of the buffer after this jump is inserted.  */
2142             GET_BUFFER_SPACE (3);
2143             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2144                                        : on_failure_jump,
2145                          laststart, b + 3);
2146             pending_exact = 0;
2147             b += 3;
2148 
2149             if (!zero_times_ok)
2150               {
2151                 /* At least one repetition is required, so insert a
2152                    `dummy_failure_jump' before the initial
2153                    `on_failure_jump' instruction of the loop. This
2154                    effects a skip over that instruction the first time
2155                    we hit that loop.  */
2156                 GET_BUFFER_SPACE (3);
2157                 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2158                 b += 3;
2159               }
2160             }
2161           break;
2162 
2163 
2164         case '.':
2165           laststart = b;
2166           BUF_PUSH (anychar);
2167           break;
2168 
2169 
2170         case '[':
2171           {
2172             boolean had_char_class = false;
2173 
2174             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2175 
2176             /* Ensure that we have enough space to push a charset: the
2177                opcode, the length count, and the bitset; 34 bytes in all.  */
2178             GET_BUFFER_SPACE (34);
2179 
2180             laststart = b;
2181 
2182             /* We test `*p == '^' twice, instead of using an if
2183                statement, so we only need one BUF_PUSH.  */
2184             BUF_PUSH (*p == '^' ? charset_not : charset);
2185             if (*p == '^')
2186               p++;
2187 
2188             /* Remember the first position in the bracket expression.  */
2189             p1 = p;
2190 
2191             /* Push the number of bytes in the bitmap.  */
2192             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2193 
2194             /* Clear the whole map.  */
2195             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2196 
2197             /* charset_not matches newline according to a syntax bit.  */
2198             if ((re_opcode_t) b[-2] == charset_not
2199                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2200               SET_LIST_BIT ('\n');
2201 
2202             /* Read in characters and ranges, setting map bits.  */
2203             for (;;)
2204               {
2205                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2206 
2207                 PATFETCH (c);
2208 
2209                 /* \ might escape characters inside [...] and [^...].  */
2210                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2211                   {
2212                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2213 
2214                     PATFETCH (c1);
2215                     SET_LIST_BIT (c1);
2216                     continue;
2217                   }
2218 
2219                 /* Could be the end of the bracket expression.  If it's
2220                    not (i.e., when the bracket expression is `[]' so
2221                    far), the ']' character bit gets set way below.  */
2222                 if (c == ']' && p != p1 + 1)
2223                   break;
2224 
2225                 /* Look ahead to see if it's a range when the last thing
2226                    was a character class.  */
2227                 if (had_char_class && c == '-' && *p != ']')
2228                   FREE_STACK_RETURN (REG_ERANGE);
2229 
2230                 /* Look ahead to see if it's a range when the last thing
2231                    was a character: if this is a hyphen not at the
2232                    beginning or the end of a list, then it's the range
2233                    operator.  */
2234                 if (c == '-'
2235                     && !(p - 2 >= pattern && p[-2] == '[')
2236                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2237                     && *p != ']')
2238                   {
2239                     reg_errcode_t ret
2240                       = compile_range (&p, pend, translate, syntax, b);
2241                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2242                   }
2243 
2244                 else if (p[0] == '-' && p[1] != ']')
2245                   { /* This handles ranges made up of characters only.  */
2246                     reg_errcode_t ret;
2247 
2248                     /* Move past the `-'.  */
2249                     PATFETCH (c1);
2250 
2251                     ret = compile_range (&p, pend, translate, syntax, b);
2252                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2253                   }
2254 
2255                 /* See if we're at the beginning of a possible character
2256                    class.  */
2257 
2258                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2259                   { /* Leave room for the null.  */
2260                     char str[CHAR_CLASS_MAX_LENGTH + 1];
2261 
2262                     PATFETCH (c);
2263                     c1 = 0;
2264 
2265                     /* If pattern is `[[:'.  */
2266                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2267 
2268                     for (;;)
2269                       {
2270                         PATFETCH (c);
2271                         if ((c == ':' && *p == ']') || p == pend)
2272                           break;
2273                         if (c1 < CHAR_CLASS_MAX_LENGTH)
2274                           str[c1++] = c;
2275                         else
2276                           /* This is in any case an invalid class name.  */
2277                           str[0] = '\0';
2278                       }
2279                     str[c1] = '\0';
2280 
2281                     /* If isn't a word bracketed by `[:' and `:]':
2282                        undo the ending character, the letters, and leave
2283                        the leading `:' and `[' (but set bits for them).  */
2284                     if (c == ':' && *p == ']')
2285                       {
2286 #if defined _LIBC || WIDE_CHAR_SUPPORT
2287                         boolean is_lower = STREQ (str, "lower");
2288                         boolean is_upper = STREQ (str, "upper");
2289                         wctype_t wt;
2290                         int ch;
2291 
2292                         wt = IS_CHAR_CLASS (str);
2293                         if (wt == 0)
2294                           FREE_STACK_RETURN (REG_ECTYPE);
2295 
2296                         /* Throw away the ] at the end of the character
2297                            class.  */
2298                         PATFETCH (c);
2299 
2300                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2301 
2302                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2303                           {
2304 # ifdef _LIBC
2305                             if (__iswctype (__btowc (ch), wt))
2306                               SET_LIST_BIT (ch);
2307 # else
2308                             if (iswctype (btowc (ch), wt))
2309                               SET_LIST_BIT (ch);
2310 # endif
2311 
2312                             if (translate && (is_upper || is_lower)
2313                                 && (ISUPPER (ch) || ISLOWER (ch)))
2314                               SET_LIST_BIT (ch);
2315                           }
2316 
2317                         had_char_class = true;
2318 #else
2319                         int ch;
2320                         boolean is_alnum = STREQ (str, "alnum");
2321                         boolean is_alpha = STREQ (str, "alpha");
2322                         boolean is_blank = STREQ (str, "blank");
2323                         boolean is_cntrl = STREQ (str, "cntrl");
2324                         boolean is_digit = STREQ (str, "digit");
2325                         boolean is_graph = STREQ (str, "graph");
2326                         boolean is_lower = STREQ (str, "lower");
2327                         boolean is_print = STREQ (str, "print");
2328                         boolean is_punct = STREQ (str, "punct");
2329                         boolean is_space = STREQ (str, "space");
2330                         boolean is_upper = STREQ (str, "upper");
2331                         boolean is_xdigit = STREQ (str, "xdigit");
2332 
2333                         if (!IS_CHAR_CLASS (str))
2334                           FREE_STACK_RETURN (REG_ECTYPE);
2335 
2336                         /* Throw away the ] at the end of the character
2337                            class.  */
2338                         PATFETCH (c);
2339 
2340                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2341 
2342                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2343                           {
2344                             /* This was split into 3 if's to
2345                                avoid an arbitrary limit in some compiler.  */
2346                             if (   (is_alnum  && ISALNUM (ch))
2347                                 || (is_alpha  && ISALPHA (ch))
2348                                 || (is_blank  && ISBLANK (ch))
2349                                 || (is_cntrl  && ISCNTRL (ch)))
2350                               SET_LIST_BIT (ch);
2351                             if (   (is_digit  && ISDIGIT (ch))
2352                                 || (is_graph  && ISGRAPH (ch))
2353                                 || (is_lower  && ISLOWER (ch))
2354                                 || (is_print  && ISPRINT (ch)))
2355                               SET_LIST_BIT (ch);
2356                             if (   (is_punct  && ISPUNCT (ch))
2357                                 || (is_space  && ISSPACE (ch))
2358                                 || (is_upper  && ISUPPER (ch))
2359                                 || (is_xdigit && ISXDIGIT (ch)))
2360                               SET_LIST_BIT (ch);
2361                             if (   translate && (is_upper || is_lower)
2362                                 && (ISUPPER (ch) || ISLOWER (ch)))
2363                               SET_LIST_BIT (ch);
2364                           }
2365                         had_char_class = true;
2366 #endif        /* libc || wctype.h */
2367                       }
2368                     else
2369                       {
2370                         c1++;
2371                         while (c1--)
2372                           PATUNFETCH;
2373                         SET_LIST_BIT ('[');
2374                         SET_LIST_BIT (':');
2375                         had_char_class = false;
2376                       }
2377                   }
2378                 else
2379                   {
2380                     had_char_class = false;
2381                     SET_LIST_BIT (c);
2382                   }
2383               }
2384 
2385             /* Discard any (non)matching list bytes that are all 0 at the
2386                end of the map.  Decrease the map-length byte too.  */
2387             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2388               b[-1]--;
2389             b += b[-1];
2390           }
2391           break;
2392 
2393 
2394         case '(':
2395           if (syntax & RE_NO_BK_PARENS)
2396             goto handle_open;
2397           else
2398             goto normal_char;
2399 
2400 
2401         case ')':
2402           if (syntax & RE_NO_BK_PARENS)
2403             goto handle_close;
2404           else
2405             goto normal_char;
2406 
2407 
2408         case '\n':
2409           if (syntax & RE_NEWLINE_ALT)
2410             goto handle_alt;
2411           else
2412             goto normal_char;
2413 
2414 
2415         case '|':
2416           if (syntax & RE_NO_BK_VBAR)
2417           {
2418             piped = 1;
2419             goto handle_alt;
2420           }
2421           else
2422             goto normal_char;
2423 
2424 
2425         case '{':
2426            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2427              goto handle_interval;
2428            else
2429              goto normal_char;
2430 
2431 
2432         case '\\':
2433           if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2434 
2435           /* Do not translate the character after the \, so that we can
2436              distinguish, e.g., \B from \b, even if we normally would
2437              translate, e.g., B to b.  */
2438           PATFETCH_RAW (c);
2439 
2440           switch (c)
2441             {
2442             case '(':
2443               if (syntax & RE_NO_BK_PARENS)
2444                 goto normal_backslash;
2445 
2446             handle_open:
2447               bufp->re_nsub++;
2448               regnum++;
2449 
2450               if (COMPILE_STACK_FULL)
2451                 {
2452                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
2453                             compile_stack_elt_t);
2454                   if (compile_stack.stack == NULL) {
2455                     return REG_ESPACE;
2456                   }
2457 
2458                   compile_stack.size <<= 1;
2459                 }
2460 
2461               /* These are the values to restore when we hit end of this
2462                  group.  They are all relative offsets, so that if the
2463                  whole pattern moves because of realloc, they will still
2464                  be valid.  */
2465               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2466               COMPILE_STACK_TOP.fixup_alt_jump
2467                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2468               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2469               COMPILE_STACK_TOP.regnum = regnum;
2470 
2471               /* We will eventually replace the 0 with the number of
2472                  groups inner to this one.  But do not push a
2473                  start_memory for groups beyond the last one we can
2474                  represent in the compiled pattern.  */
2475               if (regnum <= MAX_REGNUM)
2476                 {
2477                   COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2478                   BUF_PUSH_3 (start_memory, regnum, 0);
2479                 }
2480 
2481               compile_stack.avail++;
2482 
2483               fixup_alt_jump = 0;
2484               laststart = 0;
2485               begalt = b;
2486               /* If we've reached MAX_REGNUM groups, then this open
2487                  won't actually generate any code, so we'll have to
2488                  clear pending_exact explicitly.  */
2489               pending_exact = 0;
2490               break;
2491 
2492 
2493             case ')':
2494               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2495 
2496               if (COMPILE_STACK_EMPTY)
2497                 {
2498                   if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2499                     goto normal_backslash;
2500                   else
2501                     FREE_STACK_RETURN (REG_ERPAREN);
2502                 }
2503 
2504             handle_close:
2505               if (fixup_alt_jump)
2506                 { /* Push a dummy failure point at the end of the
2507                      alternative for a possible future
2508                      `pop_failure_jump' to pop.  See comments at
2509                      `push_dummy_failure' in `re_match_2'.  */
2510                   BUF_PUSH (push_dummy_failure);
2511 
2512                   /* We allocated space for this jump when we assigned
2513                      to `fixup_alt_jump', in the `handle_alt' case below.  */
2514                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2515                 }
2516 
2517               /* See similar code for backslashed left paren above.  */
2518               if (COMPILE_STACK_EMPTY)
2519                 {
2520                   if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2521                     goto normal_char;
2522                   else
2523                     FREE_STACK_RETURN (REG_ERPAREN);
2524                 }
2525 
2526               /* Since we just checked for an empty stack above, this
2527                  ``can't happen''.  */
2528               assert (compile_stack.avail != 0);
2529               {
2530                 /* We don't just want to restore into `regnum', because
2531                    later groups should continue to be numbered higher,
2532                    as in `(ab)c(de)' -- the second group is #2.  */
2533                 regnum_t this_group_regnum;
2534 
2535                 compile_stack.avail--;
2536                 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2537                 fixup_alt_jump
2538                   = COMPILE_STACK_TOP.fixup_alt_jump
2539                     ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2540                     : 0;
2541                 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2542                 this_group_regnum = COMPILE_STACK_TOP.regnum;
2543                 /* If we've reached MAX_REGNUM groups, then this open
2544                    won't actually generate any code, so we'll have to
2545                    clear pending_exact explicitly.  */
2546                 pending_exact = 0;
2547 
2548                 /* We're at the end of the group, so now we know how many
2549                    groups were inside this one.  */
2550                 if (this_group_regnum <= MAX_REGNUM)
2551                   {
2552                     unsigned char *inner_group_loc
2553                       = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2554 
2555                     *inner_group_loc = regnum - this_group_regnum;
2556                     BUF_PUSH_3 (stop_memory, this_group_regnum,
2557                                 regnum - this_group_regnum);
2558                   }
2559               }
2560               break;
2561 
2562 
2563             case '|':                                        /* `\|'.  */
2564               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2565                 goto normal_backslash;
2566             handle_alt:
2567               if (syntax & RE_LIMITED_OPS)
2568                 goto normal_char;
2569 
2570               /* Insert before the previous alternative a jump which
2571                  jumps to this alternative if the former fails.  */
2572               GET_BUFFER_SPACE (3);
2573               INSERT_JUMP (on_failure_jump, begalt, b + 6);
2574               pending_exact = 0;
2575               b += 3;
2576 
2577               /* The alternative before this one has a jump after it
2578                  which gets executed if it gets matched.  Adjust that
2579                  jump so it will jump to this alternative's analogous
2580                  jump (put in below, which in turn will jump to the next
2581                  (if any) alternative's such jump, etc.).  The last such
2582                  jump jumps to the correct final destination.  A picture:
2583                           _____ _____
2584                           |   | |   |
2585                           |   v |   v
2586                          a | b   | c
2587 
2588                  If we are at `b', then fixup_alt_jump right now points to a
2589                  three-byte space after `a'.  We'll put in the jump, set
2590                  fixup_alt_jump to right after `b', and leave behind three
2591                  bytes which we'll fill in when we get to after `c'.  */
2592 
2593               if (fixup_alt_jump)
2594                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2595 
2596               /* Mark and leave space for a jump after this alternative,
2597                  to be filled in later either by next alternative or
2598                  when know we're at the end of a series of alternatives.  */
2599               fixup_alt_jump = b;
2600               GET_BUFFER_SPACE (3);
2601               b += 3;
2602 
2603               laststart = 0;
2604               begalt = b;
2605               break;
2606 
2607 
2608             case '{':
2609               /* If \{ is a literal.  */
2610               if (!(syntax & RE_INTERVALS)
2611                      /* If we're at `\{' and it's not the open-interval
2612                         operator.  */
2613                   || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2614                   || (p - 2 == pattern  &&  p == pend))
2615                 goto normal_backslash;
2616 
2617             handle_interval:
2618               {
2619                 /* If got here, then the syntax allows intervals.  */
2620 
2621                 /* At least (most) this many matches must be made.  */
2622                 int lower_bound = -1, upper_bound = -1;
2623 
2624                 beg_interval = p - 1;
2625 
2626                 if (p == pend)
2627                   {
2628                     if (!(syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2629                       goto unfetch_interval;
2630                     else
2631                       FREE_STACK_RETURN (REG_EBRACE);
2632                   }
2633 
2634                 GET_UNSIGNED_NUMBER (lower_bound);
2635 
2636                 if (c == ',')
2637                   {
2638                     GET_UNSIGNED_NUMBER (upper_bound);
2639                     if ((!(syntax & RE_NO_BK_BRACES) && c != '\\')
2640                         || ((syntax & RE_NO_BK_BRACES) && c != '}'))
2641                       FREE_STACK_RETURN (REG_BADBR);
2642 
2643                     if (upper_bound < 0)
2644                       upper_bound = RE_DUP_MAX;
2645                   }
2646                 else
2647                   /* Interval such as `{1}' => match exactly once. */
2648                   upper_bound = lower_bound;
2649 
2650                 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2651                     || lower_bound > upper_bound)
2652                   {
2653                     if (!(syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2654                       goto unfetch_interval;
2655                     else
2656                       FREE_STACK_RETURN (REG_BADBR);
2657                   }
2658 
2659                 if (!(syntax & RE_NO_BK_BRACES))
2660                   {
2661                     if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2662 
2663                     PATFETCH (c);
2664                   }
2665 
2666                 if (c != '}')
2667                   {
2668                     if (!(syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2669                       goto unfetch_interval;
2670                     else
2671                       FREE_STACK_RETURN (REG_BADBR);
2672                   }
2673 
2674                 /* We just parsed a valid interval.  */
2675 
2676                 /* If it's invalid to have no preceding re.  */
2677                 if (!laststart)
2678                   {
2679                     if (syntax & RE_CONTEXT_INVALID_OPS)
2680                       FREE_STACK_RETURN (REG_BADRPT);
2681                     else if (syntax & RE_CONTEXT_INDEP_OPS)
2682                       laststart = b;
2683                     else
2684                       goto unfetch_interval;
2685                   }
2686 
2687                 /* If the upper bound is zero, don't want to succeed at
2688                    all; jump from `laststart' to `b + 3', which will be
2689                    the end of the buffer after we insert the jump.  */
2690                  if (upper_bound == 0)
2691                    {
2692                      GET_BUFFER_SPACE (3);
2693                      INSERT_JUMP (jump, laststart, b + 3);
2694                      b += 3;
2695                    }
2696 
2697                  /* Otherwise, we have a nontrivial interval.  When
2698                     we're all done, the pattern will look like:
2699                       set_number_at <jump count> <upper bound>
2700                       set_number_at <succeed_n count> <lower bound>
2701                       succeed_n <after jump addr> <succeed_n count>
2702                       <body of loop>
2703                       jump_n <succeed_n addr> <jump count>
2704                     (The upper bound and `jump_n' are omitted if
2705                     `upper_bound' is 1, though.)  */
2706                  else
2707                    { /* If the upper bound is > 1, we need to insert
2708                         more at the end of the loop.  */
2709                      unsigned nbytes = 10 + (upper_bound > 1) * 10;
2710 
2711                      GET_BUFFER_SPACE (nbytes);
2712 
2713                      /* Initialize lower bound of the `succeed_n', even
2714                         though it will be set during matching by its
2715                         attendant `set_number_at' (inserted next),
2716                         because `re_compile_fastmap' needs to know.
2717                         Jump to the `jump_n' we might insert below.  */
2718                      INSERT_JUMP2 (succeed_n, laststart,
2719                                    b + 5 + (upper_bound > 1) * 5,
2720                                    lower_bound);
2721                      b += 5;
2722 
2723                      /* Code to initialize the lower bound.  Insert
2724                         before the `succeed_n'.  The `5' is the last two
2725                         bytes of this `set_number_at', plus 3 bytes of
2726                         the following `succeed_n'.  */
2727                      insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2728                      b += 5;
2729 
2730                      if (upper_bound > 1)
2731                        { /* More than one repetition is allowed, so
2732                             append a backward jump to the `succeed_n'
2733                             that starts this interval.
2734 
2735                             When we've reached this during matching,
2736                             we'll have matched the interval once, so
2737                             jump back only `upper_bound - 1' times.  */
2738                          STORE_JUMP2 (jump_n, b, laststart + 5,
2739                                       upper_bound - 1);
2740                          b += 5;
2741 
2742                          /* The location we want to set is the second
2743                             parameter of the `jump_n'; that is `b-2' as
2744                             an absolute address.  `laststart' will be
2745                             the `set_number_at' we're about to insert;
2746                             `laststart+3' the number to set, the source
2747                             for the relative address.  But we are
2748                             inserting into the middle of the pattern --
2749                             so everything is getting moved up by 5.
2750                             Conclusion: (b - 2) - (laststart + 3) + 5,
2751                             i.e., b - laststart.
2752 
2753                             We insert this at the beginning of the loop
2754                             so that if we fail during matching, we'll
2755                             reinitialize the bounds.  */
2756                          insert_op2 (set_number_at, laststart, b - laststart,
2757                                      upper_bound - 1, b);
2758                          b += 5;
2759                        }
2760                    }
2761                 pending_exact = 0;
2762                 beg_interval = NULL;
2763               }
2764               break;
2765 
2766             unfetch_interval:
2767               /* If an invalid interval, match the characters as literals.  */
2768                assert (beg_interval);
2769                p = beg_interval;
2770                beg_interval = NULL;
2771 
2772                /* normal_char and normal_backslash need `c'.  */
2773                PATFETCH (c);
2774 
2775                if (!(syntax & RE_NO_BK_BRACES))
2776                  {
2777                    if (p > pattern  &&  p[-1] == '\\')
2778                      goto normal_backslash;
2779                  }
2780                goto normal_char;
2781 
2782 #ifdef emacs
2783             /* There is no way to specify the before_dot and after_dot
2784                operators.  rms says this is ok.  --karl  */
2785             case '=':
2786               BUF_PUSH (at_dot);
2787               break;
2788 
2789             case 's':
2790               laststart = b;
2791               PATFETCH (c);
2792               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2793               break;
2794 
2795             case 'S':
2796               laststart = b;
2797               PATFETCH (c);
2798               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2799               break;
2800 #endif /* emacs */
2801 
2802 
2803             case 'w':
2804               if (syntax & RE_NO_GNU_OPS)
2805                 goto normal_char;
2806               laststart = b;
2807               BUF_PUSH (wordchar);
2808               break;
2809 
2810 
2811             case 'W':
2812               if (syntax & RE_NO_GNU_OPS)
2813                 goto normal_char;
2814               laststart = b;
2815               BUF_PUSH (notwordchar);
2816               break;
2817 
2818 
2819             case '<':
2820               if (syntax & RE_NO_GNU_OPS)
2821                 goto normal_char;
2822               BUF_PUSH (wordbeg);
2823               break;
2824 
2825             case '>':
2826               if (syntax & RE_NO_GNU_OPS)
2827                 goto normal_char;
2828               BUF_PUSH (wordend);
2829               break;
2830 
2831             case 'b':
2832               if (syntax & RE_NO_GNU_OPS)
2833                 goto normal_char;
2834               BUF_PUSH (wordbound);
2835               break;
2836 
2837             case 'B':
2838               if (syntax & RE_NO_GNU_OPS)
2839                 goto normal_char;
2840               BUF_PUSH (notwordbound);
2841               break;
2842 
2843             case '`':
2844               if (syntax & RE_NO_GNU_OPS)
2845                 goto normal_char;
2846               BUF_PUSH (begbuf);
2847               break;
2848 
2849             case '\'':
2850               if (syntax & RE_NO_GNU_OPS)
2851                 goto normal_char;
2852               BUF_PUSH (endbuf);
2853               break;
2854 
2855             case '1': case '2': case '3': case '4': case '5':
2856             case '6': case '7': case '8': case '9':
2857               if (syntax & RE_NO_BK_REFS)
2858                 goto normal_char;
2859 
2860               c1 = c - '0';
2861 
2862               if (c1 > regnum)
2863                 FREE_STACK_RETURN (REG_ESUBREG);
2864 
2865               /* Can't back reference to a subexpression if inside of it.  */
2866               if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2867                 goto normal_char;
2868 
2869               laststart = b;
2870               BUF_PUSH_2 (duplicate, c1);
2871               break;
2872 
2873 
2874             case '+':
2875             case '?':
2876               if (syntax & RE_BK_PLUS_QM)
2877                 goto handle_plus;
2878               else
2879                 goto normal_backslash;
2880 
2881             default:
2882             normal_backslash:
2883               /* You might think it would be useful for \ to mean
2884                  not to translate; but if we don't translate it
2885                  it will never match anything.  */
2886               c = TRANSLATE (c);
2887               goto normal_char;
2888             }
2889           break;
2890 
2891 
2892         default:
2893         /* Expects the character in `c'.  */
2894         normal_char:
2895               /* If no exactn currently being built.  */
2896           if (!pending_exact
2897 
2898               /* If last exactn not at current position.  */
2899               || pending_exact + *pending_exact + 1 != b
2900 
2901               /* We have only one byte following the exactn for the count.  */
2902               || *pending_exact == (1 << BYTEWIDTH) - 1
2903 
2904               /* If followed by a repetition operator.  */
2905               || *p == '*' || *p == '^'
2906               || ((syntax & RE_BK_PLUS_QM)
2907                   ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2908                   : (*p == '+' || *p == '?'))
2909               || ((syntax & RE_INTERVALS)
2910                   && ((syntax & RE_NO_BK_BRACES)
2911                       ? *p == '{'
2912                       : (p[0] == '\\' && p[1] == '{'))))
2913             {
2914               /* Start building a new exactn.  */
2915 
2916               laststart = b;
2917 
2918               BUF_PUSH_2 (exactn, 0);
2919               pending_exact = b - 1;
2920             }
2921 
2922           BUF_PUSH (c);
2923           (*pending_exact)++;
2924           break;
2925         } /* switch (c) */
2926     } /* while p != pend */
2927 
2928 
2929   /* Through the pattern now.  */
2930 
2931   if (fixup_alt_jump)
2932     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2933 
2934   if (!COMPILE_STACK_EMPTY)
2935     FREE_STACK_RETURN (REG_EPAREN);
2936 
2937   /* If we don't want backtracking, force success
2938      the first time we reach the end of the compiled pattern.  */
2939   if (syntax & RE_NO_POSIX_BACKTRACKING)
2940     BUF_PUSH (succeed);
2941 
2942   free (compile_stack.stack);
2943 
2944   /* We have succeeded; set the length of the buffer.  */
2945   bufp->used = b - bufp->buffer;
2946 
2947 #ifdef DEBUG
2948   if (debug)
2949     {
2950       DEBUG_PRINT1 ("\nCompiled pattern: \n");
2951       print_compiled_pattern (bufp);
2952     }
2953 #endif /* DEBUG */
2954 
2955 #ifndef MATCH_MAY_ALLOCATE
2956   /* Initialize the failure stack to the largest possible stack.  This
2957      isn't necessary unless we're trying to avoid calling alloca in
2958      the search and match routines.  */
2959   {
2960     int num_regs = bufp->re_nsub + 1;
2961 
2962     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2963        is strictly greater than re_max_failures, the largest possible stack
2964        is 2 * re_max_failures failure points.  */
2965     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2966       {
2967         fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2968 
2969 # ifdef emacs
2970         if (! fail_stack.stack)
2971           fail_stack.stack
2972             = (fail_stack_elt_t *) xmalloc (fail_stack.size
2973                                             * sizeof (fail_stack_elt_t));
2974         else
2975           fail_stack.stack
2976             = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2977                                              (fail_stack.size
2978                                               * sizeof (fail_stack_elt_t)));
2979 # else /* not emacs */
2980         if (! fail_stack.stack)
2981           fail_stack.stack
2982             = (fail_stack_elt_t *) malloc (fail_stack.size
2983                                            * sizeof (fail_stack_elt_t));
2984         else
2985           fail_stack.stack
2986             = (fail_stack_elt_t *) realloc (fail_stack.stack,
2987                                             (fail_stack.size
2988                                              * sizeof (fail_stack_elt_t)));
2989 # endif /* not emacs */
2990       }
2991 
2992     regex_grow_registers (num_regs);
2993   }
2994 #endif /* not MATCH_MAY_ALLOCATE */
2995 
2996   reganch = (reganch && !piped);
2997 
2998   return REG_NOERROR;
2999 } /* regex_compile */
3000 
3001 /* Subroutines for `regex_compile'.  */
3002 
3003 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
3004 
3005 static void
store_op1(op,loc,arg)3006 store_op1 (op, loc, arg)
3007     re_opcode_t op;
3008     unsigned char *loc;
3009     int arg;
3010 {
3011   *loc = (unsigned char) op;
3012   STORE_NUMBER (loc + 1, arg);
3013 }
3014 
3015 
3016 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
3017 
3018 static void
store_op2(op,loc,arg1,arg2)3019 store_op2 (op, loc, arg1, arg2)
3020     re_opcode_t op;
3021     unsigned char *loc;
3022     int arg1, arg2;
3023 {
3024   *loc = (unsigned char) op;
3025   STORE_NUMBER (loc + 1, arg1);
3026   STORE_NUMBER (loc + 3, arg2);
3027 }
3028 
3029 
3030 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3031    for OP followed by two-byte integer parameter ARG.  */
3032 
3033 static void
insert_op1(op,loc,arg,end)3034 insert_op1 (op, loc, arg, end)
3035     re_opcode_t op;
3036     unsigned char *loc;
3037     int arg;
3038     unsigned char *end;
3039 {
3040   register unsigned char *pfrom = end;
3041   register unsigned char *pto = end + 3;
3042 
3043   while (pfrom != loc)
3044     *--pto = *--pfrom;
3045 
3046   store_op1 (op, loc, arg);
3047 }
3048 
3049 
3050 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
3051 
3052 static void
insert_op2(op,loc,arg1,arg2,end)3053 insert_op2 (op, loc, arg1, arg2, end)
3054     re_opcode_t op;
3055     unsigned char *loc;
3056     int arg1, arg2;
3057     unsigned char *end;
3058 {
3059   register unsigned char *pfrom = end;
3060   register unsigned char *pto = end + 5;
3061 
3062   while (pfrom != loc)
3063     *--pto = *--pfrom;
3064 
3065   store_op2 (op, loc, arg1, arg2);
3066 }
3067 
3068 
3069 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
3070    after an alternative or a begin-subexpression.  We assume there is at
3071    least one character before the ^.  */
3072 
3073 static boolean
at_begline_loc_p(pattern,p,syntax)3074 at_begline_loc_p (pattern, p, syntax)
3075     const char *pattern, *p;
3076     reg_syntax_t syntax;
3077 {
3078   const char *prev = p - 2;
3079   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3080 
3081   return
3082        /* After a subexpression?  */
3083        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3084        /* After an alternative?  */
3085     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3086 }
3087 
3088 
3089 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
3090    at least one character after the $, i.e., `P < PEND'.  */
3091 
3092 static boolean
at_endline_loc_p(p,pend,syntax)3093 at_endline_loc_p (p, pend, syntax)
3094     const char *p, *pend;
3095     reg_syntax_t syntax;
3096 {
3097   const char *next = p;
3098   boolean next_backslash = *next == '\\';
3099   const char *next_next = p + 1 < pend ? p + 1 : 0;
3100 
3101   return
3102        /* Before a subexpression?  */
3103        (syntax & RE_NO_BK_PARENS ? *next == ')'
3104         : next_backslash && next_next && *next_next == ')')
3105        /* Before an alternative?  */
3106     || (syntax & RE_NO_BK_VBAR ? *next == '|'
3107         : next_backslash && next_next && *next_next == '|');
3108 }
3109 
3110 
3111 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3112    false if it's not.  */
3113 
3114 static boolean
group_in_compile_stack(compile_stack,regnum)3115 group_in_compile_stack (compile_stack, regnum)
3116     compile_stack_type compile_stack;
3117     regnum_t regnum;
3118 {
3119   int this_element;
3120 
3121   for (this_element = compile_stack.avail - 1;
3122        this_element >= 0;
3123        this_element--)
3124     if (compile_stack.stack[this_element].regnum == regnum)
3125       return true;
3126 
3127   return false;
3128 }
3129 
3130 
3131 /* Read the ending character of a range (in a bracket expression) from the
3132    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
3133    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
3134    Then we set the translation of all bits between the starting and
3135    ending characters (inclusive) in the compiled pattern B.
3136 
3137    Return an error code.
3138 
3139    We use these short variable names so we can use the same macros as
3140    `regex_compile' itself.  */
3141 
3142 static reg_errcode_t
compile_range(p_ptr,pend,translate,syntax,b)3143 compile_range (p_ptr, pend, translate, syntax, b)
3144     const char **p_ptr, *pend;
3145     RE_TRANSLATE_TYPE translate;
3146     reg_syntax_t syntax;
3147     unsigned char *b;
3148 {
3149   unsigned this_char;
3150 
3151   const char *p = *p_ptr;
3152   reg_errcode_t ret;
3153   char range_start[2];
3154   char range_end[2];
3155   char ch[2];
3156 
3157   if (p == pend)
3158     return REG_ERANGE;
3159 
3160   /* Fetch the endpoints without translating them; the
3161      appropriate translation is done in the bit-setting loop below.  */
3162   range_start[0] = p[-2];
3163   range_start[1] = '\0';
3164   range_end[0] = p[0];
3165   range_end[1] = '\0';
3166 
3167   /* Have to increment the pointer into the pattern string, so the
3168      caller isn't still at the ending character.  */
3169   (*p_ptr)++;
3170 
3171   /* Report an error if the range is empty and the syntax prohibits this.  */
3172   ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3173 
3174   /* Here we see why `this_char' has to be larger than an `unsigned
3175      char' -- we would otherwise go into an infinite loop, since all
3176      characters <= 0xff.  */
3177   ch[1] = '\0';
3178   for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
3179     {
3180       ch[0] = this_char;
3181       if (strcoll (range_start, ch) <= 0 && strcoll (ch, range_end) <= 0)
3182         {
3183           SET_LIST_BIT (TRANSLATE (this_char));
3184           ret = REG_NOERROR;
3185         }
3186     }
3187 
3188   return ret;
3189 }
3190 
3191 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3192    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
3193    characters can start a string that matches the pattern.  This fastmap
3194    is used by re_search to skip quickly over impossible starting points.
3195 
3196    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3197    area as BUFP->fastmap.
3198 
3199    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3200    the pattern buffer.
3201 
3202    Returns 0 if we succeed, -2 if an internal error.   */
3203 
3204 int
re_compile_fastmap(bufp)3205 re_compile_fastmap (bufp)
3206      struct re_pattern_buffer *bufp;
3207 {
3208   int j, k;
3209 #ifdef MATCH_MAY_ALLOCATE
3210   fail_stack_type fail_stack;
3211 #endif
3212 #ifndef REGEX_MALLOC
3213   char *destination;
3214 #endif
3215 
3216   register char *fastmap = bufp->fastmap;
3217   unsigned char *pattern = bufp->buffer;
3218   unsigned char *p = pattern;
3219   register unsigned char *pend = pattern + bufp->used;
3220 
3221 #ifdef REL_ALLOC
3222   /* This holds the pointer to the failure stack, when
3223      it is allocated relocatably.  */
3224   fail_stack_elt_t *failure_stack_ptr;
3225 #endif
3226 
3227   /* Assume that each path through the pattern can be null until
3228      proven otherwise.  We set this false at the bottom of switch
3229      statement, to which we get only if a particular path doesn't
3230      match the empty string.  */
3231   boolean path_can_be_null = true;
3232 
3233   /* We aren't doing a `succeed_n' to begin with.  */
3234   boolean succeed_n_p = false;
3235 
3236   assert (fastmap != NULL && p != NULL);
3237 
3238   INIT_FAIL_STACK ();
3239   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
3240   bufp->fastmap_accurate = 1;            /* It will be when we're done.  */
3241   bufp->can_be_null = 0;
3242 
3243   while (1)
3244     {
3245       if (p == pend || *p == succeed)
3246         {
3247           /* We have reached the (effective) end of pattern.  */
3248           if (!FAIL_STACK_EMPTY ())
3249             {
3250               bufp->can_be_null |= path_can_be_null;
3251 
3252               /* Reset for next path.  */
3253               path_can_be_null = true;
3254 
3255               p = fail_stack.stack[--fail_stack.avail].pointer;
3256 
3257               continue;
3258             }
3259           else
3260             break;
3261         }
3262 
3263       /* We should never be about to go beyond the end of the pattern.  */
3264       assert (p < pend);
3265 
3266       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3267         {
3268 
3269         /* I guess the idea here is to simply not bother with a fastmap
3270            if a backreference is used, since it's too hard to figure out
3271            the fastmap for the corresponding group.  Setting
3272            `can_be_null' stops `re_search_2' from using the fastmap, so
3273            that is all we do.  */
3274         case duplicate:
3275           bufp->can_be_null = 1;
3276           goto done;
3277 
3278 
3279       /* Following are the cases which match a character.  These end
3280          with `break'.  */
3281 
3282         case exactn:
3283           fastmap[p[1]] = 1;
3284           break;
3285 
3286 
3287         case charset:
3288           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3289             if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3290               fastmap[j] = 1;
3291           break;
3292 
3293 
3294         case charset_not:
3295           /* Chars beyond end of map must be allowed.  */
3296           for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3297             fastmap[j] = 1;
3298 
3299           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3300             if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3301               fastmap[j] = 1;
3302           break;
3303 
3304 
3305         case wordchar:
3306           for (j = 0; j < (1 << BYTEWIDTH); j++)
3307             if (SYNTAX (j) == Sword)
3308               fastmap[j] = 1;
3309           break;
3310 
3311 
3312         case notwordchar:
3313           for (j = 0; j < (1 << BYTEWIDTH); j++)
3314             if (SYNTAX (j) != Sword)
3315               fastmap[j] = 1;
3316           break;
3317 
3318 
3319         case anychar:
3320           {
3321             int fastmap_newline = fastmap['\n'];
3322 
3323             /* `.' matches anything ...  */
3324             for (j = 0; j < (1 << BYTEWIDTH); j++)
3325               fastmap[j] = 1;
3326 
3327             /* ... except perhaps newline.  */
3328             if (!(bufp->syntax & RE_DOT_NEWLINE))
3329               fastmap['\n'] = fastmap_newline;
3330 
3331             /* Return if we have already set `can_be_null'; if we have,
3332                then the fastmap is irrelevant.  Something's wrong here.  */
3333             else if (bufp->can_be_null)
3334               goto done;
3335 
3336             /* Otherwise, have to check alternative paths.  */
3337             break;
3338           }
3339 
3340 #ifdef emacs
3341         case syntaxspec:
3342           k = *p++;
3343           for (j = 0; j < (1 << BYTEWIDTH); j++)
3344             if (SYNTAX (j) == (enum syntaxcode) k)
3345               fastmap[j] = 1;
3346           break;
3347 
3348 
3349         case notsyntaxspec:
3350           k = *p++;
3351           for (j = 0; j < (1 << BYTEWIDTH); j++)
3352             if (SYNTAX (j) != (enum syntaxcode) k)
3353               fastmap[j] = 1;
3354           break;
3355 
3356 
3357       /* All cases after this match the empty string.  These end with
3358          `continue'.  */
3359 
3360 
3361         case before_dot:
3362         case at_dot:
3363         case after_dot:
3364           continue;
3365 #endif /* emacs */
3366 
3367 
3368         case no_op:
3369         case begline:
3370         case endline:
3371         case begbuf:
3372         case endbuf:
3373         case wordbound:
3374         case notwordbound:
3375         case wordbeg:
3376         case wordend:
3377         case push_dummy_failure:
3378           continue;
3379 
3380 
3381         case jump_n:
3382         case pop_failure_jump:
3383         case maybe_pop_jump:
3384         case jump:
3385         case jump_past_alt:
3386         case dummy_failure_jump:
3387           EXTRACT_NUMBER_AND_INCR (j, p);
3388           p += j;
3389           if (j > 0)
3390             continue;
3391 
3392           /* Jump backward implies we just went through the body of a
3393              loop and matched nothing.  Opcode jumped to should be
3394              `on_failure_jump' or `succeed_n'.  Just treat it like an
3395              ordinary jump.  For a * loop, it has pushed its failure
3396              point already; if so, discard that as redundant.  */
3397           if ((re_opcode_t) *p != on_failure_jump
3398               && (re_opcode_t) *p != succeed_n)
3399             continue;
3400 
3401           p++;
3402           EXTRACT_NUMBER_AND_INCR (j, p);
3403           p += j;
3404 
3405           /* If what's on the stack is where we are now, pop it.  */
3406           if (!FAIL_STACK_EMPTY ()
3407               && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3408             fail_stack.avail--;
3409 
3410           continue;
3411 
3412 
3413         case on_failure_jump:
3414         case on_failure_keep_string_jump:
3415         handle_on_failure_jump:
3416           EXTRACT_NUMBER_AND_INCR (j, p);
3417 
3418           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3419              end of the pattern.  We don't want to push such a point,
3420              since when we restore it above, entering the switch will
3421              increment `p' past the end of the pattern.  We don't need
3422              to push such a point since we obviously won't find any more
3423              fastmap entries beyond `pend'.  Such a pattern can match
3424              the null string, though.  */
3425           if (p + j < pend)
3426             {
3427               if (!PUSH_PATTERN_OP (p + j, fail_stack))
3428                 {
3429                   RESET_FAIL_STACK ();
3430                   return -2;
3431                 }
3432             }
3433           else
3434             bufp->can_be_null = 1;
3435 
3436           if (succeed_n_p)
3437             {
3438               EXTRACT_NUMBER_AND_INCR (k, p);        /* Skip the n.  */
3439               succeed_n_p = false;
3440             }
3441 
3442           continue;
3443 
3444 
3445         case succeed_n:
3446           /* Get to the number of times to succeed.  */
3447           p += 2;
3448 
3449           /* Increment p past the n for when k != 0.  */
3450           EXTRACT_NUMBER_AND_INCR (k, p);
3451           if (k == 0)
3452             {
3453               p -= 4;
3454                 succeed_n_p = true;  /* Spaghetti code alert.  */
3455               goto handle_on_failure_jump;
3456             }
3457           continue;
3458 
3459 
3460         case set_number_at:
3461           p += 4;
3462           continue;
3463 
3464 
3465         case start_memory:
3466         case stop_memory:
3467           p += 2;
3468           continue;
3469 
3470 
3471         default:
3472           abort (); /* We have listed all the cases.  */
3473         } /* switch *p++ */
3474 
3475       /* Getting here means we have found the possible starting
3476          characters for one path of the pattern -- and that the empty
3477          string does not match.  We need not follow this path further.
3478          Instead, look at the next alternative (remembered on the
3479          stack), or quit if no more.  The test at the top of the loop
3480          does these things.  */
3481       path_can_be_null = false;
3482       p = pend;
3483     } /* while p */
3484 
3485   /* Set `can_be_null' for the last path (also the first path, if the
3486      pattern is empty).  */
3487   bufp->can_be_null |= path_can_be_null;
3488 
3489  done:
3490   RESET_FAIL_STACK ();
3491   return 0;
3492 } /* re_compile_fastmap */
3493 #ifdef _LIBC
3494 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3495 #endif
3496 
3497 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3498    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
3499    this memory for recording register information.  STARTS and ENDS
3500    must be allocated using the malloc library routine, and must each
3501    be at least NUM_REGS * sizeof (regoff_t) bytes long.
3502 
3503    If NUM_REGS == 0, then subsequent matches should allocate their own
3504    register data.
3505 
3506    Unless this function is called, the first search or match using
3507    PATTERN_BUFFER will allocate its own register data, without
3508    freeing the old data.  */
3509 
3510 void
3511 re_set_registers (bufp, regs, num_regs, starts, ends)
3512     struct re_pattern_buffer *bufp;
3513     struct re_registers *regs;
3514     unsigned num_regs;
3515     regoff_t *starts, *ends;
3516 {
3517   if (num_regs)
3518     {
3519       bufp->regs_allocated = REGS_REALLOCATE;
3520       regs->num_regs = num_regs;
3521       regs->start = starts;
3522       regs->end = ends;
3523     }
3524   else
3525     {
3526       bufp->regs_allocated = REGS_UNALLOCATED;
3527       regs->num_regs = 0;
3528       regs->start = regs->end = (regoff_t *) 0;
3529     }
3530 }
3531 #ifdef _LIBC
3532 weak_alias (__re_set_registers, re_set_registers)
3533 #endif
3534 
3535 /* Searching routines.  */
3536 
3537 /* Like re_search_2, below, but only one string is specified, and
3538    doesn't let you say where to stop matching. */
3539 
3540 int
3541 re_search (bufp, string, size, startpos, range, regs)
3542      struct re_pattern_buffer *bufp;
3543      const char *string;
3544      int size, startpos, range;
3545      struct re_registers *regs;
3546 {
3547   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3548                       regs, size);
3549 }
3550 #ifdef _LIBC
3551 weak_alias (__re_search, re_search)
3552 #endif
3553 
3554 
3555 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3556    virtual concatenation of STRING1 and STRING2, starting first at index
3557    STARTPOS, then at STARTPOS + 1, and so on.
3558 
3559    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3560 
3561    RANGE is how far to scan while trying to match.  RANGE = 0 means try
3562    only at STARTPOS; in general, the last start tried is STARTPOS +
3563    RANGE.
3564 
3565    In REGS, return the indices of the virtual concatenation of STRING1
3566    and STRING2 that matched the entire BUFP->buffer and its contained
3567    subexpressions.
3568 
3569    Do not consider matching one past the index STOP in the virtual
3570    concatenation of STRING1 and STRING2.
3571 
3572    We return either the position in the strings at which the match was
3573    found, -1 if no match, or -2 if error (such as failure
3574    stack overflow).  */
3575 
3576 int
3577 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3578      struct re_pattern_buffer *bufp;
3579      const char *string1, *string2;
3580      int size1, size2;
3581      int startpos;
3582      int range;
3583      struct re_registers *regs;
3584      int stop;
3585 {
3586   int val;
3587   register char *fastmap = bufp->fastmap;
3588   register RE_TRANSLATE_TYPE translate = bufp->translate;
3589   int total_size = size1 + size2;
3590   int endpos = startpos + range;
3591   /* int can_be_null = bufp->can_be_null; */
3592 
3593   /* Check for out-of-range STARTPOS.  */
3594   if (startpos < 0 || startpos > total_size)
3595     return -1;
3596 
3597   /* Fix up RANGE if it might eventually take us outside
3598      the virtual concatenation of STRING1 and STRING2.
3599      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
3600   if (endpos < 0)
3601     range = 0 - startpos;
3602   else if (endpos > total_size)
3603     range = total_size - startpos;
3604 
3605   /* If the search isn't to be a backwards one, don't waste time in a
3606      search for a pattern that must be anchored.  */
3607   if (bufp->used > 0 && range > 0
3608       && ((re_opcode_t) bufp->buffer[0] == begbuf
3609           /* `begline' is like `begbuf' if it cannot match at newlines.  */
3610           || ((re_opcode_t) bufp->buffer[0] == begline
3611               && !bufp->newline_anchor)))
3612     {
3613       if (startpos > 0)
3614         return -1;
3615       else
3616         range = 1;
3617     }
3618 
3619 #ifdef emacs
3620   /* In a forward search for something that starts with \=.
3621      don't keep searching past point.  */
3622   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3623     {
3624       range = PT - startpos;
3625       if (range <= 0)
3626         return -1;
3627     }
3628 #endif /* emacs */
3629 
3630   /* Update the fastmap now if not correct already.  */
3631   if (fastmap && !bufp->fastmap_accurate)
3632     if (re_compile_fastmap (bufp) == -2)
3633       return -2;
3634 
3635   if (bufp->cant_be_null)
3636     bufp->can_be_null = 0;
3637 
3638   /* Loop through the string, looking for a place to start matching.  */
3639   for (;;)
3640     {
3641       /* If a fastmap is supplied, skip quickly over characters that
3642          cannot be the start of a match.  If the pattern can match the
3643          null string, however, we don't need to skip characters; we want
3644          the first null string.  */
3645       if (fastmap && startpos < total_size && !bufp->can_be_null)
3646         {
3647           if (range > 0)        /* Searching forwards.  */
3648             {
3649               register const char *d;
3650               register int lim = 0;
3651               int irange = range;
3652 
3653               if (startpos < size1 && startpos + range >= size1)
3654                 lim = range - (size1 - startpos);
3655 
3656               d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3657 
3658               /* Written out as an if-else to avoid testing `translate'
3659                  inside the loop.  */
3660               if (translate)
3661                 while (range > lim
3662                        && !fastmap[(unsigned char)
3663                                    translate[(unsigned char) *d++]])
3664                   range--;
3665               else
3666                 while (range > lim && !fastmap[(unsigned char) *d++])
3667                   range--;
3668 
3669               startpos += irange - range;
3670             }
3671           else                                /* Searching backwards.  */
3672             {
3673               register char c = (size1 == 0 || startpos >= size1
3674                                  ? string2[startpos - size1]
3675                                  : string1[startpos]);
3676 
3677               if (!fastmap[(unsigned char) TRANSLATE (c)])
3678                 goto advance;
3679             }
3680         }
3681 
3682       /* If can't match the null string, and that's all we have left, fail.  */
3683       if (range >= 0 && startpos == total_size && fastmap
3684           && !bufp->can_be_null)
3685         return -1;
3686 
3687       val = re_match_2_internal (bufp, string1, size1, string2, size2,
3688                                  startpos, regs, stop);
3689 #ifndef REGEX_MALLOC
3690 # ifdef C_ALLOCA
3691       alloca (0);
3692 # endif
3693 #endif
3694 
3695 
3696       if (val >= 0)
3697         return startpos;
3698 
3699       if (val == -2)
3700         return -2;
3701 
3702     advance:
3703       if (!range)
3704         break;
3705       else if (range > 0)
3706         {
3707           range--;
3708           startpos++;
3709         }
3710       else
3711         {
3712           range++;
3713           startpos--;
3714         }
3715     }
3716   return -1;
3717 } /* re_search_2 */
3718 #ifdef _LIBC
3719 weak_alias (__re_search_2, re_search_2)
3720 #endif
3721 
3722 /* This converts PTR, a pointer into one of the search strings `string1'
3723    and `string2' into an offset from the beginning of that string.  */
3724 #define POINTER_TO_OFFSET(ptr)                        \
3725   (FIRST_STRING_P (ptr)                                \
3726    ? ((regoff_t) ((ptr) - string1))                \
3727    : ((regoff_t) ((ptr) - string2 + size1)))
3728 
3729 /* Macros for dealing with the split strings in re_match_2.  */
3730 
3731 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3732 
3733 /* Call before fetching a character with *d.  This switches over to
3734    string2 if necessary.  */
3735 #define PREFETCH()                                                        \
3736   while (d == dend)                                                            \
3737     {                                                                        \
3738       /* End of string2 => fail.  */                                        \
3739       if (dend == end_match_2)                                                 \
3740         goto fail;                                                        \
3741       /* End of string1 => advance to string2.  */                         \
3742       d = string2;                                                        \
3743       dend = end_match_2;                                                \
3744     }
3745 
3746 
3747 /* Test if at very beginning or at very end of the virtual concatenation
3748    of `string1' and `string2'.  If only one string, it's `string2'.  */
3749 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3750 #define AT_STRINGS_END(d) ((d) == end2)
3751 
3752 
3753 /* Test if D points to a character which is word-constituent.  We have
3754    two special cases to check for: if past the end of string1, look at
3755    the first character in string2; and if before the beginning of
3756    string2, look at the last character in string1.  */
3757 #define WORDCHAR_P(d)                                                        \
3758   (SYNTAX ((d) == end1 ? *string2                                        \
3759            : (d) == string2 - 1 ? *(end1 - 1) : *(d))                        \
3760    == Sword)
3761 
3762 /* Disabled due to a compiler bug -- see comment at case wordbound */
3763 #if 0
3764 /* Test if the character before D and the one at D differ with respect
3765    to being word-constituent.  */
3766 #define AT_WORD_BOUNDARY(d)                                                \
3767   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                                \
3768    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3769 #endif
3770 
3771 /* Free everything we malloc.  */
3772 #ifdef MATCH_MAY_ALLOCATE
3773 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3774 # define FREE_VARIABLES()                                                \
3775   do {                                                                        \
3776     REGEX_FREE_STACK (fail_stack.stack);                                \
3777     FREE_VAR (regstart);                                                \
3778     FREE_VAR (regend);                                                        \
3779     FREE_VAR (old_regstart);                                                \
3780     FREE_VAR (old_regend);                                                \
3781     FREE_VAR (best_regstart);                                                \
3782     FREE_VAR (best_regend);                                                \
3783     FREE_VAR (reg_info);                                                \
3784     FREE_VAR (reg_dummy);                                                \
3785     FREE_VAR (reg_info_dummy);                                                \
3786   } while (0)
3787 #else
3788 # define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
3789 #endif /* not MATCH_MAY_ALLOCATE */
3790 
3791 /* These values must meet several constraints.  They must not be valid
3792    register values; since we have a limit of 255 registers (because
3793    we use only one byte in the pattern for the register number), we can
3794    use numbers larger than 255.  They must differ by 1, because of
3795    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
3796    be larger than the value for the highest register, so we do not try
3797    to actually save any registers when none are active.  */
3798 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3799 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3800 
3801 /* Matching routines.  */
3802 
3803 #ifndef emacs   /* Emacs never uses this.  */
3804 /* re_match is like re_match_2 except it takes only a single string.  */
3805 
3806 int
3807 re_match (bufp, string, size, pos, regs)
3808      struct re_pattern_buffer *bufp;
3809      const char *string;
3810      int size, pos;
3811      struct re_registers *regs;
3812 {
3813   int result = re_match_2_internal (bufp, NULL, 0, string, size,
3814                                     pos, regs, size);
3815 # ifndef REGEX_MALLOC
3816 #  ifdef C_ALLOCA
3817   alloca (0);
3818 #  endif
3819 # endif
3820   return result;
3821 }
3822 # ifdef _LIBC
3823 weak_alias (__re_match, re_match)
3824 # endif
3825 #endif /* not emacs */
3826 
3827 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3828                                                     unsigned char *end,
3829                                                 register_info_type *reg_info));
3830 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3831                                                   unsigned char *end,
3832                                                 register_info_type *reg_info));
3833 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3834                                                         unsigned char *end,
3835                                                 register_info_type *reg_info));
3836 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3837                                      int len, char *translate));
3838 
3839 /* re_match_2 matches the compiled pattern in BUFP against the
3840    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3841    and SIZE2, respectively).  We start matching at POS, and stop
3842    matching at STOP.
3843 
3844    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3845    store offsets for the substring each group matched in REGS.  See the
3846    documentation for exactly how many groups we fill.
3847 
3848    We return -1 if no match, -2 if an internal error (such as the
3849    failure stack overflowing).  Otherwise, we return the length of the
3850    matched substring.  */
3851 
3852 int
re_match_2(bufp,string1,size1,string2,size2,pos,regs,stop)3853 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3854      struct re_pattern_buffer *bufp;
3855      const char *string1, *string2;
3856      int size1, size2;
3857      int pos;
3858      struct re_registers *regs;
3859      int stop;
3860 {
3861   int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3862                                     pos, regs, stop);
3863 #ifndef REGEX_MALLOC
3864 # ifdef C_ALLOCA
3865   alloca (0);
3866 # endif
3867 #endif
3868   return result;
3869 }
3870 #ifdef _LIBC
3871 weak_alias (__re_match_2, re_match_2)
3872 #endif
3873 
3874 /* This is a separate function so that we can force an alloca cleanup
3875    afterwards.  */
3876 static int
3877 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3878      struct re_pattern_buffer *bufp;
3879      const char *string1, *string2;
3880      int size1, size2;
3881      int pos;
3882      struct re_registers *regs;
3883      int stop;
3884 {
3885   /* General temporaries.  */
3886   int mcnt;
3887   unsigned char *p1;
3888 
3889   /* Just past the end of the corresponding string.  */
3890   const char *end1, *end2;
3891 
3892   /* Pointers into string1 and string2, just past the last characters in
3893      each to consider matching.  */
3894   const char *end_match_1, *end_match_2;
3895 
3896   /* Where we are in the data, and the end of the current string.  */
3897   const char *d, *dend;
3898 
3899   /* Where we are in the pattern, and the end of the pattern.  */
3900   unsigned char *p = bufp->buffer;
3901   register unsigned char *pend = p + bufp->used;
3902 
3903   /* Mark the opcode just after a start_memory, so we can test for an
3904      empty subpattern when we get to the stop_memory.  */
3905   unsigned char *just_past_start_mem = 0;
3906 
3907   /* We use this to map every character in the string.  */
3908   RE_TRANSLATE_TYPE translate = bufp->translate;
3909 
3910   /* Failure point stack.  Each place that can handle a failure further
3911      down the line pushes a failure point on this stack.  It consists of
3912      restart, regend, and reg_info for all registers corresponding to
3913      the subexpressions we're currently inside, plus the number of such
3914      registers, and, finally, two char *'s.  The first char * is where
3915      to resume scanning the pattern; the second one is where to resume
3916      scanning the strings.  If the latter is zero, the failure point is
3917      a ``dummy''; if a failure happens and the failure point is a dummy,
3918      it gets discarded and the next next one is tried.  */
3919 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3920   fail_stack_type fail_stack;
3921 #endif
3922 #ifdef DEBUG
3923   static unsigned failure_id;
3924   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3925 #endif
3926 
3927 #ifdef REL_ALLOC
3928   /* This holds the pointer to the failure stack, when
3929      it is allocated relocatably.  */
3930   fail_stack_elt_t *failure_stack_ptr;
3931 #endif
3932 
3933   /* We fill all the registers internally, independent of what we
3934      return, for use in backreferences.  The number here includes
3935      an element for register zero.  */
3936   size_t num_regs = bufp->re_nsub + 1;
3937 
3938   /* The currently active registers.  */
3939   active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3940   active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3941 
3942   /* Information on the contents of registers. These are pointers into
3943      the input strings; they record just what was matched (on this
3944      attempt) by a subexpression part of the pattern, that is, the
3945      regnum-th regstart pointer points to where in the pattern we began
3946      matching and the regnum-th regend points to right after where we
3947      stopped matching the regnum-th subexpression.  (The zeroth register
3948      keeps track of what the whole pattern matches.)  */
3949 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3950   const char **regstart, **regend;
3951 #endif
3952 
3953   /* If a group that's operated upon by a repetition operator fails to
3954      match anything, then the register for its start will need to be
3955      restored because it will have been set to wherever in the string we
3956      are when we last see its open-group operator.  Similarly for a
3957      register's end.  */
3958 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3959   const char **old_regstart, **old_regend;
3960 #endif
3961 
3962   /* The is_active field of reg_info helps us keep track of which (possibly
3963      nested) subexpressions we are currently in. The matched_something
3964      field of reg_info[reg_num] helps us tell whether or not we have
3965      matched any of the pattern so far this time through the reg_num-th
3966      subexpression.  These two fields get reset each time through any
3967      loop their register is in.  */
3968 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
3969   register_info_type *reg_info;
3970 #endif
3971 
3972   /* The following record the register info as found in the above
3973      variables when we find a match better than any we've seen before.
3974      This happens as we backtrack through the failure points, which in
3975      turn happens only if we have not yet matched the entire string. */
3976   unsigned best_regs_set = false;
3977 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3978   const char **best_regstart, **best_regend;
3979 #endif
3980 
3981   /* Logically, this is `best_regend[0]'.  But we don't want to have to
3982      allocate space for that if we're not allocating space for anything
3983      else (see below).  Also, we never need info about register 0 for
3984      any of the other register vectors, and it seems rather a kludge to
3985      treat `best_regend' differently than the rest.  So we keep track of
3986      the end of the best match so far in a separate variable.  We
3987      initialize this to NULL so that when we backtrack the first time
3988      and need to test it, it's not garbage.  */
3989   const char *match_end = NULL;
3990 
3991   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
3992   int set_regs_matched_done = 0;
3993 
3994   /* Used when we pop values we don't care about.  */
3995 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
3996   const char **reg_dummy;
3997   register_info_type *reg_info_dummy;
3998 #endif
3999 
4000 #ifdef DEBUG
4001   /* Counts the total number of registers pushed.  */
4002   unsigned num_regs_pushed = 0;
4003 #endif
4004 
4005   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4006 
4007   INIT_FAIL_STACK ();
4008 
4009 #ifdef MATCH_MAY_ALLOCATE
4010   /* Do not bother to initialize all the register variables if there are
4011      no groups in the pattern, as it takes a fair amount of time.  If
4012      there are groups, we include space for register 0 (the whole
4013      pattern), even though we never use it, since it simplifies the
4014      array indexing.  We should fix this.  */
4015   if (bufp->re_nsub)
4016     {
4017       regstart = REGEX_TALLOC (num_regs, const char *);
4018       regend = REGEX_TALLOC (num_regs, const char *);
4019       old_regstart = REGEX_TALLOC (num_regs, const char *);
4020       old_regend = REGEX_TALLOC (num_regs, const char *);
4021       best_regstart = REGEX_TALLOC (num_regs, const char *);
4022       best_regend = REGEX_TALLOC (num_regs, const char *);
4023       reg_info = REGEX_TALLOC (num_regs, register_info_type);
4024       reg_dummy = REGEX_TALLOC (num_regs, const char *);
4025       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4026 
4027       if (!(regstart && regend && old_regstart && old_regend && reg_info
4028             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4029         {
4030           FREE_VARIABLES ();
4031           return -2;
4032         }
4033     }
4034   else
4035     {
4036       /* We must initialize all our variables to NULL, so that
4037          `FREE_VARIABLES' doesn't try to free them.  */
4038       regstart = regend = old_regstart = old_regend = best_regstart
4039         = best_regend = reg_dummy = NULL;
4040       reg_info = reg_info_dummy = (register_info_type *) NULL;
4041     }
4042 #endif /* MATCH_MAY_ALLOCATE */
4043 
4044   /* The starting position is bogus.  */
4045   if (pos < 0 || pos > size1 + size2)
4046     {
4047       FREE_VARIABLES ();
4048       return -1;
4049     }
4050 
4051   /* Initialize subexpression text positions to -1 to mark ones that no
4052      start_memory/stop_memory has been seen for. Also initialize the
4053      register information struct.  */
4054   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4055     {
4056       regstart[mcnt] = regend[mcnt]
4057         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4058 
4059       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4060       IS_ACTIVE (reg_info[mcnt]) = 0;
4061       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4062       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4063     }
4064 
4065   /* We move `string1' into `string2' if the latter's empty -- but not if
4066      `string1' is null.  */
4067   if (size2 == 0 && string1 != NULL)
4068     {
4069       string2 = string1;
4070       size2 = size1;
4071       string1 = 0;
4072       size1 = 0;
4073     }
4074   end1 = string1 + size1;
4075   end2 = string2 + size2;
4076 
4077   /* Compute where to stop matching, within the two strings.  */
4078   if (stop <= size1)
4079     {
4080       end_match_1 = string1 + stop;
4081       end_match_2 = string2;
4082     }
4083   else
4084     {
4085       end_match_1 = end1;
4086       end_match_2 = string2 + stop - size1;
4087     }
4088 
4089   /* `p' scans through the pattern as `d' scans through the data.
4090      `dend' is the end of the input string that `d' points within.  `d'
4091      is advanced into the following input string whenever necessary, but
4092      this happens before fetching; therefore, at the beginning of the
4093      loop, `d' can be pointing at the end of a string, but it cannot
4094      equal `string2'.  */
4095   if (size1 > 0 && pos <= size1)
4096     {
4097       d = string1 + pos;
4098       dend = end_match_1;
4099     }
4100   else
4101     {
4102       d = string2 + pos - size1;
4103       dend = end_match_2;
4104     }
4105 
4106   DEBUG_PRINT1 ("The compiled pattern is:\n");
4107   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4108   DEBUG_PRINT1 ("The string to match is: `");
4109   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4110   DEBUG_PRINT1 ("'\n");
4111 
4112   /* This loops over pattern commands.  It exits by returning from the
4113      function if the match is complete, or it drops through if the match
4114      fails at this starting point in the input data.  */
4115   for (;;)
4116     {
4117 #ifdef _LIBC
4118       DEBUG_PRINT2 ("\n%p: ", p);
4119 #else
4120       DEBUG_PRINT2 ("\n0x%x: ", p);
4121 #endif
4122 
4123       if (p == pend)
4124         { /* End of pattern means we might have succeeded.  */
4125           DEBUG_PRINT1 ("end of pattern ... ");
4126 
4127           /* If we haven't matched the entire string, and we want the
4128              longest match, try backtracking.  */
4129           if (d != end_match_2)
4130             {
4131               /* 1 if this match ends in the same string (string1 or string2)
4132                  as the best previous match.  */
4133               boolean same_str_p = (FIRST_STRING_P (match_end)
4134                                     == MATCHING_IN_FIRST_STRING);
4135               /* 1 if this match is the best seen so far.  */
4136               boolean best_match_p;
4137 
4138               /* AIX compiler got confused when this was combined
4139                  with the previous declaration.  */
4140               if (same_str_p)
4141                 best_match_p = d > match_end;
4142               else
4143                 best_match_p = !MATCHING_IN_FIRST_STRING;
4144 
4145               DEBUG_PRINT1 ("backtracking.\n");
4146 
4147               if (!FAIL_STACK_EMPTY ())
4148                 { /* More failure points to try.  */
4149 
4150                   /* If exceeds best match so far, save it.  */
4151                   if (!best_regs_set || best_match_p)
4152                     {
4153                       best_regs_set = true;
4154                       match_end = d;
4155 
4156                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4157 
4158                       for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4159                         {
4160                           best_regstart[mcnt] = regstart[mcnt];
4161                           best_regend[mcnt] = regend[mcnt];
4162                         }
4163                     }
4164                   goto fail;
4165                 }
4166 
4167               /* If no failure points, don't restore garbage.  And if
4168                  last match is real best match, don't restore second
4169                  best one. */
4170               else if (best_regs_set && !best_match_p)
4171                 {
4172                   restore_best_regs:
4173                   /* Restore best match.  It may happen that `dend ==
4174                      end_match_1' while the restored d is in string2.
4175                      For example, the pattern `x.*y.*z' against the
4176                      strings `x-' and `y-z-', if the two strings are
4177                      not consecutive in memory.  */
4178                   DEBUG_PRINT1 ("Restoring best registers.\n");
4179 
4180                   d = match_end;
4181                   dend = ((d >= string1 && d <= end1)
4182                            ? end_match_1 : end_match_2);
4183 
4184                   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4185                     {
4186                       regstart[mcnt] = best_regstart[mcnt];
4187                       regend[mcnt] = best_regend[mcnt];
4188                     }
4189                 }
4190             } /* d != end_match_2 */
4191 
4192         succeed_label:
4193           DEBUG_PRINT1 ("Accepting match.\n");
4194 
4195           /* If caller wants register contents data back, do it.  */
4196           if (regs && !bufp->no_sub)
4197             {
4198               /* Have the register data arrays been allocated?  */
4199               if (bufp->regs_allocated == REGS_UNALLOCATED)
4200                 { /* No.  So allocate them with malloc.  We need one
4201                      extra element beyond `num_regs' for the `-1' marker
4202                      GNU code uses.  */
4203                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4204                   regs->start = TALLOC (regs->num_regs, regoff_t);
4205                   regs->end = TALLOC (regs->num_regs, regoff_t);
4206                   if (regs->start == NULL || regs->end == NULL)
4207                     {
4208                       FREE_VARIABLES ();
4209                       return -2;
4210                     }
4211                   bufp->regs_allocated = REGS_REALLOCATE;
4212                 }
4213               else if (bufp->regs_allocated == REGS_REALLOCATE)
4214                 { /* Yes.  If we need more elements than were already
4215                      allocated, reallocate them.  If we need fewer, just
4216                      leave it alone.  */
4217                   if (regs->num_regs < num_regs + 1)
4218                     {
4219                       regs->num_regs = num_regs + 1;
4220                       RETALLOC (regs->start, regs->num_regs, regoff_t);
4221                       RETALLOC (regs->end, regs->num_regs, regoff_t);
4222                       if (regs->start == NULL || regs->end == NULL)
4223                         {
4224                           FREE_VARIABLES ();
4225                           return -2;
4226                         }
4227                     }
4228                 }
4229               else
4230                 {
4231                   /* These braces fend off a "empty body in an else-statement"
4232                      warning under GCC when assert expands to nothing.  */
4233                   assert (bufp->regs_allocated == REGS_FIXED);
4234                 }
4235 
4236               /* Convert the pointer data in `regstart' and `regend' to
4237                  indices.  Register zero has to be set differently,
4238                  since we haven't kept track of any info for it.  */
4239               if (regs->num_regs > 0)
4240                 {
4241                   regs->start[0] = pos;
4242                   regs->end[0] = (MATCHING_IN_FIRST_STRING
4243                                   ? ((regoff_t) (d - string1))
4244                                   : ((regoff_t) (d - string2 + size1)));
4245                 }
4246 
4247               /* Go through the first `min (num_regs, regs->num_regs)'
4248                  registers, since that is all we initialized.  */
4249               for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4250                    mcnt++)
4251                 {
4252                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4253                     regs->start[mcnt] = regs->end[mcnt] = -1;
4254                   else
4255                     {
4256                       regs->start[mcnt]
4257                         = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4258                       regs->end[mcnt]
4259                         = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4260                     }
4261                 }
4262 
4263               /* If the regs structure we return has more elements than
4264                  were in the pattern, set the extra elements to -1.  If
4265                  we (re)allocated the registers, this is the case,
4266                  because we always allocate enough to have at least one
4267                  -1 at the end.  */
4268               for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4269                 regs->start[mcnt] = regs->end[mcnt] = -1;
4270             } /* regs && !bufp->no_sub */
4271 
4272           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4273                         nfailure_points_pushed, nfailure_points_popped,
4274                         nfailure_points_pushed - nfailure_points_popped);
4275           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4276 
4277           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4278                             ? string1
4279                             : string2 - size1);
4280 
4281           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4282 
4283           FREE_VARIABLES ();
4284           return mcnt;
4285         }
4286 
4287       /* Otherwise match next pattern command.  */
4288       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4289         {
4290         /* Ignore these.  Used to ignore the n of succeed_n's which
4291            currently have n == 0.  */
4292         case no_op:
4293           DEBUG_PRINT1 ("EXECUTING no_op.\n");
4294           break;
4295 
4296         case succeed:
4297           DEBUG_PRINT1 ("EXECUTING succeed.\n");
4298           goto succeed_label;
4299 
4300         /* Match the next n pattern characters exactly.  The following
4301            byte in the pattern defines n, and the n bytes after that
4302            are the characters to match.  */
4303         case exactn:
4304           mcnt = *p++;
4305           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4306 
4307           /* This is written out as an if-else so we don't waste time
4308              testing `translate' inside the loop.  */
4309           if (translate)
4310             {
4311               do
4312                 {
4313                   PREFETCH ();
4314                   if ((unsigned char) translate[(unsigned char) *d++]
4315                       != (unsigned char) *p++)
4316                     goto fail;
4317                 }
4318               while (--mcnt);
4319             }
4320           else
4321             {
4322               do
4323                 {
4324                   PREFETCH ();
4325                   if (*d++ != (char) *p++) goto fail;
4326                 }
4327               while (--mcnt);
4328             }
4329           SET_REGS_MATCHED ();
4330           break;
4331 
4332 
4333         /* Match any character except possibly a newline or a null.  */
4334         case anychar:
4335           DEBUG_PRINT1 ("EXECUTING anychar.\n");
4336 
4337           PREFETCH ();
4338 
4339           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4340               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4341             goto fail;
4342 
4343           SET_REGS_MATCHED ();
4344           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
4345           d++;
4346           break;
4347 
4348 
4349         case charset:
4350         case charset_not:
4351           {
4352             register unsigned char c;
4353             boolean not = (re_opcode_t) *(p - 1) == charset_not;
4354 
4355             DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4356 
4357             PREFETCH ();
4358             c = TRANSLATE (*d); /* The character to match.  */
4359 
4360             /* Cast to `unsigned' instead of `unsigned char' in case the
4361                bit list is a full 32 bytes long.  */
4362             if (c < (unsigned) (*p * BYTEWIDTH)
4363                 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4364               not = !not;
4365 
4366             p += 1 + *p;
4367 
4368             if (!not) goto fail;
4369 
4370             SET_REGS_MATCHED ();
4371             d++;
4372             break;
4373           }
4374 
4375 
4376         /* The beginning of a group is represented by start_memory.
4377            The arguments are the register number in the next byte, and the
4378            number of groups inner to this one in the next.  The text
4379            matched within the group is recorded (in the internal
4380            registers data structure) under the register number.  */
4381         case start_memory:
4382           DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4383 
4384           /* Find out if this group can match the empty string.  */
4385           p1 = p;                /* To send to group_match_null_string_p.  */
4386 
4387           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4388             REG_MATCH_NULL_STRING_P (reg_info[*p])
4389               = group_match_null_string_p (&p1, pend, reg_info);
4390 
4391           /* Save the position in the string where we were the last time
4392              we were at this open-group operator in case the group is
4393              operated upon by a repetition operator, e.g., with `(a*)*b'
4394              against `ab'; then we want to ignore where we are now in
4395              the string in case this attempt to match fails.  */
4396           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4397                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4398                              : regstart[*p];
4399           DEBUG_PRINT2 ("  old_regstart: %d\n",
4400                          POINTER_TO_OFFSET (old_regstart[*p]));
4401 
4402           regstart[*p] = d;
4403           DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4404 
4405           IS_ACTIVE (reg_info[*p]) = 1;
4406           MATCHED_SOMETHING (reg_info[*p]) = 0;
4407 
4408           /* Clear this whenever we change the register activity status.  */
4409           set_regs_matched_done = 0;
4410 
4411           /* This is the new highest active register.  */
4412           highest_active_reg = *p;
4413 
4414           /* If nothing was active before, this is the new lowest active
4415              register.  */
4416           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4417             lowest_active_reg = *p;
4418 
4419           /* Move past the register number and inner group count.  */
4420           p += 2;
4421           just_past_start_mem = p;
4422 
4423           break;
4424 
4425 
4426         /* The stop_memory opcode represents the end of a group.  Its
4427            arguments are the same as start_memory's: the register
4428            number, and the number of inner groups.  */
4429         case stop_memory:
4430           DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4431 
4432           /* We need to save the string position the last time we were at
4433              this close-group operator in case the group is operated
4434              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4435              against `aba'; then we want to ignore where we are now in
4436              the string in case this attempt to match fails.  */
4437           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4438                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
4439                            : regend[*p];
4440           DEBUG_PRINT2 ("      old_regend: %d\n",
4441                          POINTER_TO_OFFSET (old_regend[*p]));
4442 
4443           regend[*p] = d;
4444           DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4445 
4446           /* This register isn't active anymore.  */
4447           IS_ACTIVE (reg_info[*p]) = 0;
4448 
4449           /* Clear this whenever we change the register activity status.  */
4450           set_regs_matched_done = 0;
4451 
4452           /* If this was the only register active, nothing is active
4453              anymore.  */
4454           if (lowest_active_reg == highest_active_reg)
4455             {
4456               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4457               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4458             }
4459           else
4460             { /* We must scan for the new highest active register, since
4461                  it isn't necessarily one less than now: consider
4462                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
4463                  new highest active register is 1.  */
4464               unsigned char r = *p - 1;
4465               while (r > 0 && !IS_ACTIVE (reg_info[r]))
4466                 r--;
4467 
4468               /* If we end up at register zero, that means that we saved
4469                  the registers as the result of an `on_failure_jump', not
4470                  a `start_memory', and we jumped to past the innermost
4471                  `stop_memory'.  For example, in ((.)*) we save
4472                  registers 1 and 2 as a result of the *, but when we pop
4473                  back to the second ), we are at the stop_memory 1.
4474                  Thus, nothing is active.  */
4475               if (r == 0)
4476                 {
4477                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4478                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4479                 }
4480               else
4481                 highest_active_reg = r;
4482             }
4483 
4484           /* If just failed to match something this time around with a
4485              group that's operated on by a repetition operator, try to
4486              force exit from the ``loop'', and restore the register
4487              information for this group that we had before trying this
4488              last match.  */
4489           if ((!MATCHED_SOMETHING (reg_info[*p])
4490                || just_past_start_mem == p - 1)
4491               && (p + 2) < pend)
4492             {
4493               boolean is_a_jump_n = false;
4494 
4495               p1 = p + 2;
4496               mcnt = 0;
4497               switch ((re_opcode_t) *p1++)
4498                 {
4499                   case jump_n:
4500                     is_a_jump_n = true;
4501                   case pop_failure_jump:
4502                   case maybe_pop_jump:
4503                   case jump:
4504                   case dummy_failure_jump:
4505                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4506                     if (is_a_jump_n)
4507                       p1 += 2;
4508                     break;
4509 
4510                   default:
4511                     /* do nothing */ ;
4512                 }
4513               p1 += mcnt;
4514 
4515               /* If the next operation is a jump backwards in the pattern
4516                  to an on_failure_jump right before the start_memory
4517                  corresponding to this stop_memory, exit from the loop
4518                  by forcing a failure after pushing on the stack the
4519                  on_failure_jump's jump in the pattern, and d.  */
4520               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4521                   && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4522                 {
4523                   /* If this group ever matched anything, then restore
4524                      what its registers were before trying this last
4525                      failed match, e.g., with `(a*)*b' against `ab' for
4526                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
4527                      against `aba' for regend[3].
4528 
4529                      Also restore the registers for inner groups for,
4530                      e.g., `((a*)(b*))*' against `aba' (register 3 would
4531                      otherwise get trashed).  */
4532 
4533                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4534                     {
4535                       unsigned r;
4536 
4537                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4538 
4539                       /* Restore this and inner groups' (if any) registers.  */
4540                       for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4541                            r++)
4542                         {
4543                           regstart[r] = old_regstart[r];
4544 
4545                           /* xx why this test?  */
4546                           if (old_regend[r] >= regstart[r])
4547                             regend[r] = old_regend[r];
4548                         }
4549                     }
4550                   p1++;
4551                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4552                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4553 
4554                   goto fail;
4555                 }
4556             }
4557 
4558           /* Move past the register number and the inner group count.  */
4559           p += 2;
4560           break;
4561 
4562 
4563         /* \<digit> has been turned into a `duplicate' command which is
4564            followed by the numeric value of <digit> as the register number.  */
4565         case duplicate:
4566           {
4567             register const char *d2, *dend2;
4568             int regno = *p++;   /* Get which register to match against.  */
4569             DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4570 
4571             /* Can't back reference a group which we've never matched.  */
4572             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4573               goto fail;
4574 
4575             /* Where in input to try to start matching.  */
4576             d2 = regstart[regno];
4577 
4578             /* Where to stop matching; if both the place to start and
4579                the place to stop matching are in the same string, then
4580                set to the place to stop, otherwise, for now have to use
4581                the end of the first string.  */
4582 
4583             dend2 = ((FIRST_STRING_P (regstart[regno])
4584                       == FIRST_STRING_P (regend[regno]))
4585                      ? regend[regno] : end_match_1);
4586             for (;;)
4587               {
4588                 /* If necessary, advance to next segment in register
4589                    contents.  */
4590                 while (d2 == dend2)
4591                   {
4592                     if (dend2 == end_match_2) break;
4593                     if (dend2 == regend[regno]) break;
4594 
4595                     /* End of string1 => advance to string2. */
4596                     d2 = string2;
4597                     dend2 = regend[regno];
4598                   }
4599                 /* At end of register contents => success */
4600                 if (d2 == dend2) break;
4601 
4602                 /* If necessary, advance to next segment in data.  */
4603                 PREFETCH ();
4604 
4605                 /* How many characters left in this segment to match.  */
4606                 mcnt = dend - d;
4607 
4608                 /* Want how many consecutive characters we can match in
4609                    one shot, so, if necessary, adjust the count.  */
4610                 if (mcnt > dend2 - d2)
4611                   mcnt = dend2 - d2;
4612 
4613                 /* Compare that many; failure if mismatch, else move
4614                    past them.  */
4615                 if (translate
4616                     ? bcmp_translate (d, d2, mcnt, translate)
4617                     : memcmp (d, d2, mcnt))
4618                   goto fail;
4619                 d += mcnt, d2 += mcnt;
4620 
4621                 /* Do this because we've match some characters.  */
4622                 SET_REGS_MATCHED ();
4623               }
4624           }
4625           break;
4626 
4627 
4628         /* begline matches the empty string at the beginning of the string
4629            (unless `not_bol' is set in `bufp'), and, if
4630            `newline_anchor' is set, after newlines.  */
4631         case begline:
4632           DEBUG_PRINT1 ("EXECUTING begline.\n");
4633 
4634           if (AT_STRINGS_BEG (d))
4635             {
4636               if (!bufp->not_bol) break;
4637             }
4638           else if (d[-1] == '\n' && bufp->newline_anchor)
4639             {
4640               break;
4641             }
4642           /* In all other cases, we fail.  */
4643           goto fail;
4644 
4645 
4646         /* endline is the dual of begline.  */
4647         case endline:
4648           DEBUG_PRINT1 ("EXECUTING endline.\n");
4649 
4650           if (AT_STRINGS_END (d))
4651             {
4652               if (!bufp->not_eol) break;
4653             }
4654 
4655           /* We have to ``prefetch'' the next character.  */
4656           else if ((d == end1 ? *string2 : *d) == '\n'
4657                    && bufp->newline_anchor)
4658             {
4659               break;
4660             }
4661           goto fail;
4662 
4663 
4664         /* Match at the very beginning of the data.  */
4665         case begbuf:
4666           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4667           if (AT_STRINGS_BEG (d))
4668             break;
4669           goto fail;
4670 
4671 
4672         /* Match at the very end of the data.  */
4673         case endbuf:
4674           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4675           if (AT_STRINGS_END (d))
4676             break;
4677           goto fail;
4678 
4679 
4680         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
4681            pushes NULL as the value for the string on the stack.  Then
4682            `pop_failure_point' will keep the current value for the
4683            string, instead of restoring it.  To see why, consider
4684            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
4685            then the . fails against the \n.  But the next thing we want
4686            to do is match the \n against the \n; if we restored the
4687            string value, we would be back at the foo.
4688 
4689            Because this is used only in specific cases, we don't need to
4690            check all the things that `on_failure_jump' does, to make
4691            sure the right things get saved on the stack.  Hence we don't
4692            share its code.  The only reason to push anything on the
4693            stack at all is that otherwise we would have to change
4694            `anychar's code to do something besides goto fail in this
4695            case; that seems worse than this.  */
4696         case on_failure_keep_string_jump:
4697           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4698 
4699           EXTRACT_NUMBER_AND_INCR (mcnt, p);
4700 #ifdef _LIBC
4701           DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4702 #else
4703           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4704 #endif
4705 
4706           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4707           break;
4708 
4709 
4710         /* Uses of on_failure_jump:
4711 
4712            Each alternative starts with an on_failure_jump that points
4713            to the beginning of the next alternative.  Each alternative
4714            except the last ends with a jump that in effect jumps past
4715            the rest of the alternatives.  (They really jump to the
4716            ending jump of the following alternative, because tensioning
4717            these jumps is a hassle.)
4718 
4719            Repeats start with an on_failure_jump that points past both
4720            the repetition text and either the following jump or
4721            pop_failure_jump back to this on_failure_jump.  */
4722         case on_failure_jump:
4723         on_failure:
4724           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4725 
4726           EXTRACT_NUMBER_AND_INCR (mcnt, p);
4727 #ifdef _LIBC
4728           DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4729 #else
4730           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4731 #endif
4732 
4733           /* If this on_failure_jump comes right before a group (i.e.,
4734              the original * applied to a group), save the information
4735              for that group and all inner ones, so that if we fail back
4736              to this point, the group's information will be correct.
4737              For example, in \(a*\)*\1, we need the preceding group,
4738              and in \(zz\(a*\)b*\)\2, we need the inner group.  */
4739 
4740           /* We can't use `p' to check ahead because we push
4741              a failure point to `p + mcnt' after we do this.  */
4742           p1 = p;
4743 
4744           /* We need to skip no_op's before we look for the
4745              start_memory in case this on_failure_jump is happening as
4746              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4747              against aba.  */
4748           while (p1 < pend && (re_opcode_t) *p1 == no_op)
4749             p1++;
4750 
4751           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4752             {
4753               /* We have a new highest active register now.  This will
4754                  get reset at the start_memory we are about to get to,
4755                  but we will have saved all the registers relevant to
4756                  this repetition op, as described above.  */
4757               highest_active_reg = *(p1 + 1) + *(p1 + 2);
4758               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4759                 lowest_active_reg = *(p1 + 1);
4760             }
4761 
4762           DEBUG_PRINT1 (":\n");
4763           PUSH_FAILURE_POINT (p + mcnt, d, -2);
4764           break;
4765 
4766 
4767         /* A smart repeat ends with `maybe_pop_jump'.
4768            We change it to either `pop_failure_jump' or `jump'.  */
4769         case maybe_pop_jump:
4770           EXTRACT_NUMBER_AND_INCR (mcnt, p);
4771           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4772           {
4773             register unsigned char *p2 = p;
4774 
4775             /* Compare the beginning of the repeat with what in the
4776                pattern follows its end. If we can establish that there
4777                is nothing that they would both match, i.e., that we
4778                would have to backtrack because of (as in, e.g., `a*a')
4779                then we can change to pop_failure_jump, because we'll
4780                never have to backtrack.
4781 
4782                This is not true in the case of alternatives: in
4783                `(a|ab)*' we do need to backtrack to the `ab' alternative
4784                (e.g., if the string was `ab').  But instead of trying to
4785                detect that here, the alternative has put on a dummy
4786                failure point which is what we will end up popping.  */
4787 
4788             /* Skip over open/close-group commands.
4789                If what follows this loop is a ...+ construct,
4790                look at what begins its body, since we will have to
4791                match at least one of that.  */
4792             while (1)
4793               {
4794                 if (p2 + 2 < pend
4795                     && ((re_opcode_t) *p2 == stop_memory
4796                         || (re_opcode_t) *p2 == start_memory))
4797                   p2 += 3;
4798                 else if (p2 + 6 < pend
4799                          && (re_opcode_t) *p2 == dummy_failure_jump)
4800                   p2 += 6;
4801                 else
4802                   break;
4803               }
4804 
4805             p1 = p + mcnt;
4806             /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4807                to the `maybe_finalize_jump' of this case.  Examine what
4808                follows.  */
4809 
4810             /* If we're at the end of the pattern, we can change.  */
4811             if (p2 == pend)
4812               {
4813                 /* Consider what happens when matching ":\(.*\)"
4814                    against ":/".  I don't really understand this code
4815                    yet.  */
4816                   p[-3] = (unsigned char) pop_failure_jump;
4817                 DEBUG_PRINT1
4818                   ("  End of pattern: change to `pop_failure_jump'.\n");
4819               }
4820 
4821             else if ((re_opcode_t) *p2 == exactn
4822                      || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4823               {
4824                 register unsigned char c
4825                   = *p2 == (unsigned char) endline ? '\n' : p2[2];
4826 
4827                 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4828                   {
4829                       p[-3] = (unsigned char) pop_failure_jump;
4830                     DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4831                                   c, p1[5]);
4832                   }
4833 
4834                 else if ((re_opcode_t) p1[3] == charset
4835                          || (re_opcode_t) p1[3] == charset_not)
4836                   {
4837                     int not = (re_opcode_t) p1[3] == charset_not;
4838 
4839                     if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4840                         && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4841                       not = !not;
4842 
4843                     /* `not' is equal to 1 if c would match, which means
4844                         that we can't change to pop_failure_jump.  */
4845                     if (!not)
4846                       {
4847                           p[-3] = (unsigned char) pop_failure_jump;
4848                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4849                       }
4850                   }
4851               }
4852             else if ((re_opcode_t) *p2 == charset)
4853               {
4854                 /* We win if the first character of the loop is not part
4855                    of the charset.  */
4856                 if ((re_opcode_t) p1[3] == exactn
4857                      && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4858                            && (p2[2 + p1[5] / BYTEWIDTH]
4859                                & (1 << (p1[5] % BYTEWIDTH)))))
4860                   {
4861                     p[-3] = (unsigned char) pop_failure_jump;
4862                     DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4863                   }
4864 
4865                 else if ((re_opcode_t) p1[3] == charset_not)
4866                   {
4867                     int idx;
4868                     /* We win if the charset_not inside the loop
4869                        lists every character listed in the charset after.  */
4870                     for (idx = 0; idx < (int) p2[1]; idx++)
4871                       if (! (p2[2 + idx] == 0
4872                              || (idx < (int) p1[4]
4873                                  && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4874                         break;
4875 
4876                     if (idx == p2[1])
4877                       {
4878                           p[-3] = (unsigned char) pop_failure_jump;
4879                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4880                       }
4881                   }
4882                 else if ((re_opcode_t) p1[3] == charset)
4883                   {
4884                     int idx;
4885                     /* We win if the charset inside the loop
4886                        has no overlap with the one after the loop.  */
4887                     for (idx = 0;
4888                          idx < (int) p2[1] && idx < (int) p1[4];
4889                          idx++)
4890                       if ((p2[2 + idx] & p1[5 + idx]) != 0)
4891                         break;
4892 
4893                     if (idx == p2[1] || idx == p1[4])
4894                       {
4895                           p[-3] = (unsigned char) pop_failure_jump;
4896                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4897                       }
4898                   }
4899               }
4900           }
4901           p -= 2;                /* Point at relative address again.  */
4902           if ((re_opcode_t) p[-1] != pop_failure_jump)
4903             {
4904               p[-1] = (unsigned char) jump;
4905               DEBUG_PRINT1 ("  Match => jump.\n");
4906               goto unconditional_jump;
4907             }
4908         /* Note fall through.  */
4909 
4910 
4911         /* The end of a simple repeat has a pop_failure_jump back to
4912            its matching on_failure_jump, where the latter will push a
4913            failure point.  The pop_failure_jump takes off failure
4914            points put on by this pop_failure_jump's matching
4915            on_failure_jump; we got through the pattern to here from the
4916            matching on_failure_jump, so didn't fail.  */
4917         case pop_failure_jump:
4918           {
4919             /* We need to pass separate storage for the lowest and
4920                highest registers, even though we don't care about the
4921                actual values.  Otherwise, we will restore only one
4922                register from the stack, since lowest will == highest in
4923                `pop_failure_point'.  */
4924             active_reg_t dummy_low_reg, dummy_high_reg;
4925             unsigned char *pdummy;
4926             const char *sdummy;
4927 
4928             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4929             POP_FAILURE_POINT (sdummy, pdummy,
4930                                dummy_low_reg, dummy_high_reg,
4931                                reg_dummy, reg_dummy, reg_info_dummy);
4932           }
4933           /* Note fall through.  */
4934 
4935         unconditional_jump:
4936 #ifdef _LIBC
4937           DEBUG_PRINT2 ("\n%p: ", p);
4938 #else
4939           DEBUG_PRINT2 ("\n0x%x: ", p);
4940 #endif
4941           /* Note fall through.  */
4942 
4943         /* Unconditionally jump (without popping any failure points).  */
4944         case jump:
4945           EXTRACT_NUMBER_AND_INCR (mcnt, p);        /* Get the amount to jump.  */
4946           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4947           p += mcnt;                                /* Do the jump.  */
4948 #ifdef _LIBC
4949           DEBUG_PRINT2 ("(to %p).\n", p);
4950 #else
4951           DEBUG_PRINT2 ("(to 0x%x).\n", p);
4952 #endif
4953           break;
4954 
4955 
4956         /* We need this opcode so we can detect where alternatives end
4957            in `group_match_null_string_p' et al.  */
4958         case jump_past_alt:
4959           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4960           goto unconditional_jump;
4961 
4962 
4963         /* Normally, the on_failure_jump pushes a failure point, which
4964            then gets popped at pop_failure_jump.  We will end up at
4965            pop_failure_jump, also, and with a pattern of, say, `a+', we
4966            are skipping over the on_failure_jump, so we have to push
4967            something meaningless for pop_failure_jump to pop.  */
4968         case dummy_failure_jump:
4969           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4970           /* It doesn't matter what we push for the string here.  What
4971              the code at `fail' tests is the value for the pattern.  */
4972           PUSH_FAILURE_POINT (NULL, NULL, -2);
4973           goto unconditional_jump;
4974 
4975 
4976         /* At the end of an alternative, we need to push a dummy failure
4977            point in case we are followed by a `pop_failure_jump', because
4978            we don't want the failure point for the alternative to be
4979            popped.  For example, matching `(a|ab)*' against `aab'
4980            requires that we match the `ab' alternative.  */
4981         case push_dummy_failure:
4982           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4983           /* See comments just above at `dummy_failure_jump' about the
4984              two zeroes.  */
4985           PUSH_FAILURE_POINT (NULL, NULL, -2);
4986           break;
4987 
4988         /* Have to succeed matching what follows at least n times.
4989            After that, handle like `on_failure_jump'.  */
4990         case succeed_n:
4991           EXTRACT_NUMBER (mcnt, p + 2);
4992           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4993 
4994           assert (mcnt >= 0);
4995           /* Originally, this is how many times we HAVE to succeed.  */
4996           if (mcnt > 0)
4997             {
4998                mcnt--;
4999                p += 2;
5000                STORE_NUMBER_AND_INCR (p, mcnt);
5001 #ifdef _LIBC
5002                DEBUG_PRINT3 ("  Setting %p to %d.\n", p - 2, mcnt);
5003 #else
5004                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - 2, mcnt);
5005 #endif
5006             }
5007           else if (mcnt == 0)
5008             {
5009 #ifdef _LIBC
5010               DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", p+2);
5011 #else
5012               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
5013 #endif
5014               p[2] = (unsigned char) no_op;
5015               p[3] = (unsigned char) no_op;
5016               goto on_failure;
5017             }
5018           break;
5019 
5020         case jump_n:
5021           EXTRACT_NUMBER (mcnt, p + 2);
5022           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5023 
5024           /* Originally, this is how many times we CAN jump.  */
5025           if (mcnt)
5026             {
5027                mcnt--;
5028                STORE_NUMBER (p + 2, mcnt);
5029 #ifdef _LIBC
5030                DEBUG_PRINT3 ("  Setting %p to %d.\n", p + 2, mcnt);
5031 #else
5032                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + 2, mcnt);
5033 #endif
5034                goto unconditional_jump;
5035             }
5036           /* If don't have to jump any more, skip over the rest of command.  */
5037           else
5038             p += 4;
5039           break;
5040 
5041         case set_number_at:
5042           {
5043             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5044 
5045             EXTRACT_NUMBER_AND_INCR (mcnt, p);
5046             p1 = p + mcnt;
5047             EXTRACT_NUMBER_AND_INCR (mcnt, p);
5048 #ifdef _LIBC
5049             DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
5050 #else
5051             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
5052 #endif
5053             STORE_NUMBER (p1, mcnt);
5054             break;
5055           }
5056 
5057 #if 0
5058         /* The DEC Alpha C compiler 3.x generates incorrect code for the
5059            test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
5060            AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
5061            macro and introducing temporary variables works around the bug.  */
5062 
5063         case wordbound:
5064           DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5065           if (AT_WORD_BOUNDARY (d))
5066             break;
5067           goto fail;
5068 
5069         case notwordbound:
5070           DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5071           if (AT_WORD_BOUNDARY (d))
5072             goto fail;
5073           break;
5074 #else
5075         case wordbound:
5076         {
5077           boolean prevchar, thischar;
5078 
5079           DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5080           if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5081             break;
5082 
5083           prevchar = WORDCHAR_P (d - 1);
5084           thischar = WORDCHAR_P (d);
5085           if (prevchar != thischar)
5086             break;
5087           goto fail;
5088         }
5089 
5090       case notwordbound:
5091         {
5092           boolean prevchar, thischar;
5093 
5094           DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5095           if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5096             goto fail;
5097 
5098           prevchar = WORDCHAR_P (d - 1);
5099           thischar = WORDCHAR_P (d);
5100           if (prevchar != thischar)
5101             goto fail;
5102           break;
5103         }
5104 #endif
5105 
5106         case wordbeg:
5107           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5108           if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5109             break;
5110           goto fail;
5111 
5112         case wordend:
5113           DEBUG_PRINT1 ("EXECUTING wordend.\n");
5114           if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5115               && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5116             break;
5117           goto fail;
5118 
5119 #ifdef emacs
5120           case before_dot:
5121           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5122            if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5123               goto fail;
5124             break;
5125 
5126           case at_dot:
5127           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5128            if (PTR_CHAR_POS ((unsigned char *) d) != point)
5129               goto fail;
5130             break;
5131 
5132           case after_dot:
5133           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5134           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5135               goto fail;
5136             break;
5137 
5138         case syntaxspec:
5139           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5140           mcnt = *p++;
5141           goto matchsyntax;
5142 
5143         case wordchar:
5144           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5145           mcnt = (int) Sword;
5146         matchsyntax:
5147           PREFETCH ();
5148           /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5149           d++;
5150           if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5151             goto fail;
5152           SET_REGS_MATCHED ();
5153           break;
5154 
5155         case notsyntaxspec:
5156           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5157           mcnt = *p++;
5158           goto matchnotsyntax;
5159 
5160         case notwordchar:
5161           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5162           mcnt = (int) Sword;
5163         matchnotsyntax:
5164           PREFETCH ();
5165           /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
5166           d++;
5167           if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5168             goto fail;
5169           SET_REGS_MATCHED ();
5170           break;
5171 
5172 #else /* not emacs */
5173         case wordchar:
5174           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5175           PREFETCH ();
5176           if (!WORDCHAR_P (d))
5177             goto fail;
5178           SET_REGS_MATCHED ();
5179           d++;
5180           break;
5181 
5182         case notwordchar:
5183           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5184           PREFETCH ();
5185           if (WORDCHAR_P (d))
5186             goto fail;
5187           SET_REGS_MATCHED ();
5188           d++;
5189           break;
5190 #endif /* not emacs */
5191 
5192         default:
5193           abort ();
5194         }
5195       continue;  /* Successfully executed one pattern command; keep going.  */
5196 
5197 
5198     /* We goto here if a matching operation fails. */
5199     fail:
5200       if (!FAIL_STACK_EMPTY ())
5201         { /* A restart point is known.  Restore to that state.  */
5202           DEBUG_PRINT1 ("\nFAIL:\n");
5203           POP_FAILURE_POINT (d, p,
5204                              lowest_active_reg, highest_active_reg,
5205                              regstart, regend, reg_info);
5206 
5207           /* If this failure point is a dummy, try the next one.  */
5208           if (!p)
5209             goto fail;
5210 
5211           /* If we failed to the end of the pattern, don't examine *p.  */
5212           assert (p <= pend);
5213           if (p < pend)
5214             {
5215               boolean is_a_jump_n = false;
5216 
5217               /* If failed to a backwards jump that's part of a repetition
5218                  loop, need to pop this failure point and use the next one.  */
5219               switch ((re_opcode_t) *p)
5220                 {
5221                 case jump_n:
5222                   is_a_jump_n = true;
5223                 case maybe_pop_jump:
5224                 case pop_failure_jump:
5225                 case jump:
5226                   p1 = p + 1;
5227                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5228                   p1 += mcnt;
5229 
5230                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5231                       || (!is_a_jump_n
5232                           && (re_opcode_t) *p1 == on_failure_jump))
5233                     goto fail;
5234                   break;
5235                 default:
5236                   /* do nothing */ ;
5237                 }
5238             }
5239 
5240           if (d >= string1 && d <= end1)
5241             dend = end_match_1;
5242         }
5243       else
5244         break;   /* Matching at this starting point really fails.  */
5245     } /* for (;;) */
5246 
5247   if (best_regs_set)
5248     goto restore_best_regs;
5249 
5250   FREE_VARIABLES ();
5251 
5252   return -1;                                 /* Failure to match.  */
5253 } /* re_match_2 */
5254 
5255 /* Subroutine definitions for re_match_2.  */
5256 
5257 
5258 /* We are passed P pointing to a register number after a start_memory.
5259 
5260    Return true if the pattern up to the corresponding stop_memory can
5261    match the empty string, and false otherwise.
5262 
5263    If we find the matching stop_memory, sets P to point to one past its number.
5264    Otherwise, sets P to an undefined byte less than or equal to END.
5265 
5266    We don't handle duplicates properly (yet).  */
5267 
5268 static boolean
group_match_null_string_p(p,end,reg_info)5269 group_match_null_string_p (p, end, reg_info)
5270     unsigned char **p, *end;
5271     register_info_type *reg_info;
5272 {
5273   int mcnt;
5274   /* Point to after the args to the start_memory.  */
5275   unsigned char *p1 = *p + 2;
5276 
5277   while (p1 < end)
5278     {
5279       /* Skip over opcodes that can match nothing, and return true or
5280          false, as appropriate, when we get to one that can't, or to the
5281          matching stop_memory.  */
5282 
5283       switch ((re_opcode_t) *p1)
5284         {
5285         /* Could be either a loop or a series of alternatives.  */
5286         case on_failure_jump:
5287           p1++;
5288           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5289 
5290           /* If the next operation is not a jump backwards in the
5291              pattern.  */
5292 
5293           if (mcnt >= 0)
5294             {
5295               /* Go through the on_failure_jumps of the alternatives,
5296                  seeing if any of the alternatives cannot match nothing.
5297                  The last alternative starts with only a jump,
5298                  whereas the rest start with on_failure_jump and end
5299                  with a jump, e.g., here is the pattern for `a|b|c':
5300 
5301                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5302                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5303                  /exactn/1/c
5304 
5305                  So, we have to first go through the first (n-1)
5306                  alternatives and then deal with the last one separately.  */
5307 
5308 
5309               /* Deal with the first (n-1) alternatives, which start
5310                  with an on_failure_jump (see above) that jumps to right
5311                  past a jump_past_alt.  */
5312 
5313               while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5314                 {
5315                   /* `mcnt' holds how many bytes long the alternative
5316                      is, including the ending `jump_past_alt' and
5317                      its number.  */
5318 
5319                   if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5320                                                       reg_info))
5321                     return false;
5322 
5323                   /* Move to right after this alternative, including the
5324                      jump_past_alt.  */
5325                   p1 += mcnt;
5326 
5327                   /* Break if it's the beginning of an n-th alternative
5328                      that doesn't begin with an on_failure_jump.  */
5329                   if ((re_opcode_t) *p1 != on_failure_jump)
5330                     break;
5331 
5332                   /* Still have to check that it's not an n-th
5333                      alternative that starts with an on_failure_jump.  */
5334                   p1++;
5335                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5336                   if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5337                     {
5338                       /* Get to the beginning of the n-th alternative.  */
5339                       p1 -= 3;
5340                       break;
5341                     }
5342                 }
5343 
5344               /* Deal with the last alternative: go back and get number
5345                  of the `jump_past_alt' just before it.  `mcnt' contains
5346                  the length of the alternative.  */
5347               EXTRACT_NUMBER (mcnt, p1 - 2);
5348 
5349               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5350                 return false;
5351 
5352               p1 += mcnt;        /* Get past the n-th alternative.  */
5353             } /* if mcnt > 0 */
5354           break;
5355 
5356 
5357         case stop_memory:
5358           assert (p1[1] == **p);
5359           *p = p1 + 2;
5360           return true;
5361 
5362 
5363         default:
5364           if (!common_op_match_null_string_p (&p1, end, reg_info))
5365             return false;
5366         }
5367     } /* while p1 < end */
5368 
5369   return false;
5370 } /* group_match_null_string_p */
5371 
5372 
5373 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5374    It expects P to be the first byte of a single alternative and END one
5375    byte past the last. The alternative can contain groups.  */
5376 
5377 static boolean
alt_match_null_string_p(p,end,reg_info)5378 alt_match_null_string_p (p, end, reg_info)
5379     unsigned char *p, *end;
5380     register_info_type *reg_info;
5381 {
5382   int mcnt;
5383   unsigned char *p1 = p;
5384 
5385   while (p1 < end)
5386     {
5387       /* Skip over opcodes that can match nothing, and break when we get
5388          to one that can't.  */
5389 
5390       switch ((re_opcode_t) *p1)
5391         {
5392         /* It's a loop.  */
5393         case on_failure_jump:
5394           p1++;
5395           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5396           p1 += mcnt;
5397           break;
5398 
5399         default:
5400           if (!common_op_match_null_string_p (&p1, end, reg_info))
5401             return false;
5402         }
5403     }  /* while p1 < end */
5404 
5405   return true;
5406 } /* alt_match_null_string_p */
5407 
5408 
5409 /* Deals with the ops common to group_match_null_string_p and
5410    alt_match_null_string_p.
5411 
5412    Sets P to one after the op and its arguments, if any.  */
5413 
5414 static boolean
common_op_match_null_string_p(p,end,reg_info)5415 common_op_match_null_string_p (p, end, reg_info)
5416     unsigned char **p, *end;
5417     register_info_type *reg_info;
5418 {
5419   int mcnt;
5420   boolean ret;
5421   int reg_no;
5422   unsigned char *p1 = *p;
5423 
5424   switch ((re_opcode_t) *p1++)
5425     {
5426     case no_op:
5427     case begline:
5428     case endline:
5429     case begbuf:
5430     case endbuf:
5431     case wordbeg:
5432     case wordend:
5433     case wordbound:
5434     case notwordbound:
5435 #ifdef emacs
5436     case before_dot:
5437     case at_dot:
5438     case after_dot:
5439 #endif
5440       break;
5441 
5442     case start_memory:
5443       reg_no = *p1;
5444       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5445       ret = group_match_null_string_p (&p1, end, reg_info);
5446 
5447       /* Have to set this here in case we're checking a group which
5448          contains a group and a back reference to it.  */
5449 
5450       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5451         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5452 
5453       if (!ret)
5454         return false;
5455       break;
5456 
5457     /* If this is an optimized succeed_n for zero times, make the jump.  */
5458     case jump:
5459       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5460       if (mcnt >= 0)
5461         p1 += mcnt;
5462       else
5463         return false;
5464       break;
5465 
5466     case succeed_n:
5467       /* Get to the number of times to succeed.  */
5468       p1 += 2;
5469       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5470 
5471       if (mcnt == 0)
5472         {
5473           p1 -= 4;
5474           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5475           p1 += mcnt;
5476         }
5477       else
5478         return false;
5479       break;
5480 
5481     case duplicate:
5482       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5483         return false;
5484       break;
5485 
5486     case set_number_at:
5487       p1 += 4;
5488 
5489     default:
5490       /* All other opcodes mean we cannot match the empty string.  */
5491       return false;
5492   }
5493 
5494   *p = p1;
5495   return true;
5496 } /* common_op_match_null_string_p */
5497 
5498 
5499 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5500    bytes; nonzero otherwise.  */
5501 
5502 static int
bcmp_translate(s1,s2,len,translate)5503 bcmp_translate (s1, s2, len, translate)
5504      const char *s1, *s2;
5505      register int len;
5506      RE_TRANSLATE_TYPE translate;
5507 {
5508   register const unsigned char *p1 = (const unsigned char *) s1;
5509   register const unsigned char *p2 = (const unsigned char *) s2;
5510   while (len)
5511     {
5512       if (translate[*p1++] != translate[*p2++]) return 1;
5513       len--;
5514     }
5515   return 0;
5516 }
5517 
5518 /* Entry points for GNU code.  */
5519 
5520 /* re_compile_pattern is the GNU regular expression compiler: it
5521    compiles PATTERN (of length SIZE) and puts the result in BUFP.
5522    Returns 0 if the pattern was valid, otherwise an error string.
5523 
5524    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5525    are set in BUFP on entry.
5526 
5527    We call regex_compile to do the actual compilation.  */
5528 
5529 const char *
re_compile_pattern(pattern,length,buffer)5530 re_compile_pattern (pattern, length, buffer)
5531      const char *pattern;
5532      size_t length;
5533      struct re_pattern_buffer *buffer;
5534 {
5535   reg_errcode_t ret;
5536   awka_regexp *bufp;
5537 
5538   bufp = (awka_regexp *) malloc(sizeof(awka_regexp));
5539 
5540   /* regex_compile will allocate the space for the compiled pattern.  */
5541   bufp->strlen = strlen(pattern);
5542   bufp->origstr = (char *) malloc(bufp->strlen+1);
5543   strcpy(bufp->origstr, pattern);
5544   bufp->buffer = 0;
5545   bufp->allocated = 0;
5546   bufp->translate = 0;
5547   bufp->used = bufp->isexact = 0;
5548   bufp->reganch = reganch = 0;
5549   bufp->fastmap = NULL;
5550 
5551   /* GNU code is written to assume at least RE_NREGS registers will be set
5552      (and at least one extra will be -1).  */
5553   bufp->regs_allocated = REGS_UNALLOCATED;
5554 
5555   /* And GNU code determines whether or not to get register information
5556      by passing null for the REGS argument to re_match, etc., not by
5557      setting no_sub.  */
5558   bufp->no_sub = 0;
5559 
5560   /* Match anchors at newline.  */
5561   bufp->newline_anchor = 1;
5562 
5563   ret = regex_compile (pattern, bufp->strlen, re_syntax_options, bufp);
5564 
5565   bufp->reganch = reganch;
5566 
5567   if (!ret)
5568     return NULL;
5569   return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5570 }
5571 #ifdef _LIBC
5572 weak_alias (__re_compile_pattern, re_compile_pattern)
5573 #endif
5574 
5575 /* Entry points compatible with 4.2 BSD regex library.  We don't define
5576    them unless specifically requested.  */
5577 
5578 #if defined _REGEX_RE_COMP || defined _LIBC
5579 
5580 /* BSD has one and only one pattern buffer.  */
5581 static struct re_pattern_buffer re_comp_buf;
5582 
5583 char *
5584 #ifdef _LIBC
5585 /* Make these definitions weak in libc, so POSIX programs can redefine
5586    these names if they don't use our functions, and still use
5587    regcomp/regexec below without link errors.  */
5588 weak_function
5589 #endif
re_comp(s)5590 re_comp (s)
5591     const char *s;
5592 {
5593   reg_errcode_t ret;
5594 
5595   if (!s)
5596     {
5597       if (!re_comp_buf.buffer)
5598         return gettext ("No previous regular expression");
5599       return 0;
5600     }
5601 
5602   if (!re_comp_buf.buffer)
5603     {
5604       re_comp_buf.buffer = (unsigned char *) malloc (200);
5605       if (re_comp_buf.buffer == NULL)
5606         return (char *) gettext (re_error_msgid
5607                                  + re_error_msgid_idx[(int) REG_ESPACE]);
5608       re_comp_buf.allocated = 200;
5609 
5610       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5611       if (re_comp_buf.fastmap == NULL)
5612         return (char *) gettext (re_error_msgid
5613                                  + re_error_msgid_idx[(int) REG_ESPACE]);
5614     }
5615 
5616   /* Since `re_exec' always passes NULL for the `regs' argument, we
5617      don't need to initialize the pattern buffer fields which affect it.  */
5618 
5619   /* Match anchors at newlines.  */
5620   re_comp_buf.newline_anchor = 1;
5621 
5622   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5623 
5624   if (!ret)
5625     return NULL;
5626 
5627   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
5628   return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5629 }
5630 
5631 
5632 int
5633 #ifdef _LIBC
5634 weak_function
5635 #endif
re_exec(s)5636 re_exec (s)
5637     const char *s;
5638 {
5639   const int len = strlen (s);
5640   return
5641     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5642 }
5643 
5644 #endif /* _REGEX_RE_COMP */
5645 
5646 /* POSIX.2 functions.  Don't define these for Emacs.  */
5647 
5648 #ifndef emacs
5649 
5650 void
_re_fixescapes(char * pattern,size_t len)5651 _re_fixescapes(char *pattern, size_t len)
5652 {
5653   register char *p, *q, *r;
5654   int i;
5655 
5656   p = pattern;
5657 
5658   do {
5659     if (*p == '\\')
5660     {
5661       q = p+1;
5662       switch (*q)
5663       {
5664         case '0':
5665         case '1':
5666         case '2':
5667         case '3':
5668         case '4':
5669         case '5':
5670         case '6':
5671         case '7':
5672           /* octal */
5673           for (i = *q - '0', r = q + 1;
5674                r < q + 3 && *r;
5675                r++)
5676           {
5677             if (*r >= '0' && *r <= '7')
5678             {
5679               i *= 8;
5680               i += *r - '0';
5681             }
5682             else
5683               break;
5684           }
5685           *p = (char) i;
5686 
5687           /* swallow octal characters */
5688           if (q < r)
5689           {
5690             do {
5691               *(q++) = *r;
5692             } while (*(r++));
5693           }
5694           p++;
5695           break;
5696 
5697           /* escape characters */
5698         case 'a':
5699           *p = '\a'; goto rollup_string;
5700         case 'b':
5701         case 'y':
5702           *p = '\b'; goto rollup_string;
5703         case 'f':
5704           *p = '\f'; goto rollup_string;
5705         case 'r':
5706           *p = '\r'; goto rollup_string;
5707         case 'v':
5708           *p = '\v'; goto rollup_string;
5709         case 't':
5710           *p = '\t'; goto rollup_string;
5711         case 'n':
5712           *p = '\n'; goto rollup_string;
5713         case 'x':
5714           *p = 'x'; goto rollup_string;
5715         case '8':
5716           *p = '8'; goto rollup_string;
5717         case '9':
5718           *p = '9';
5719           rollup_string:
5720           if ((q+1) - pattern < len)
5721             memmove(q, q+1, len - (q - pattern));
5722           else
5723             *q = '\0';
5724           break;
5725       }
5726     }
5727     p++;
5728   } while (*p);
5729 }
5730 
5731 void
_re_gsub_fixslashes(char * pattern)5732 _re_gsub_fixslashes(char *pattern)
5733 {
5734   char *p, *dest;
5735 
5736   p = dest = pattern;
5737 
5738   do {
5739     *(dest++) = *p;
5740     if (*p == '\\' && *(p+1) == '\\')
5741       p++;
5742   } while (*(++p));
5743   *dest = '\0';
5744 }
5745 
5746 /* regcomp takes a regular expression as a string and compiles it.
5747 
5748    PREG is a awka_regexp *.  We do not expect any fields to be initialized,
5749    since POSIX says we shouldn't.  Thus, we set
5750 
5751      `buffer' to the compiled pattern;
5752      `used' to the length of the compiled pattern;
5753      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5754        REG_EXTENDED bit in CFLAGS is set; otherwise, to
5755        RE_SYNTAX_POSIX_BASIC;
5756      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5757      `fastmap' to an allocated space for the fastmap;
5758      `fastmap_accurate' to zero;
5759      `re_nsub' to the number of subexpressions in PATTERN.
5760 
5761    PATTERN is the address of the pattern string.
5762 
5763    CFLAGS is a series of bits which affect compilation.
5764 
5765      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5766      use POSIX basic syntax.
5767 
5768      If REG_NEWLINE is set, then . and [^...] don't match newline.
5769      Also, regexec will try a match beginning after every newline.
5770 
5771      If REG_ICASE is set, then we considers upper- and lowercase
5772      versions of letters to be equivalent when matching.
5773 
5774      If REG_NOSUB is set, then when PREG is passed to regexec, that
5775      routine will report only success or failure, and nothing about the
5776      registers.
5777 
5778    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
5779    the return codes and their meanings.)  */
5780 
5781 awka_regexp *
awka_regcomp(patt,gsub)5782 awka_regcomp (patt, gsub)
5783     char *patt;
5784     char gsub;
5785 {
5786   awka_regexp *preg;
5787   reg_errcode_t ret;
5788   int cflags = REG_EXTENDED;
5789   static char *pattern = NULL;
5790   static int palloc = 0;
5791   reg_syntax_t syntax = RE_SYNTAX_GNU_AWK;
5792 
5793   preg = (awka_regexp *) malloc(sizeof(awka_regexp));
5794   memset(preg, 0, sizeof(awka_regexp));
5795   preg->strlen = strlen(patt);
5796   preg->dfa = NULL;
5797   preg->regs_allocated = REGS_UNALLOCATED;
5798   reganch = 0;
5799 
5800   if (!palloc)
5801   {
5802     palloc = preg->strlen * 2;
5803     pattern = (char *) malloc(palloc);
5804     re_set_syntax(syntax);
5805   }
5806   else if (palloc <= preg->strlen)
5807   {
5808     palloc = preg->strlen * 2;
5809     pattern = (char *) realloc(pattern, palloc);
5810   }
5811   strcpy(pattern, patt);
5812 
5813   /* regex_compile will allocate the space for the compiled pattern.  */
5814   preg->origstr = (char *) malloc(preg->strlen+1);
5815   strcpy(preg->origstr, pattern);
5816   if (preg->strlen > 1 && *pattern == '/' && pattern[preg->strlen-1] == '/')
5817   {
5818     memmove(pattern, pattern+1, preg->strlen-2);
5819     pattern[preg->strlen-2] = '\0';
5820   }
5821   _re_fixescapes(pattern, strlen(pattern));
5822   /*
5823   if (gsub)
5824     _re_gsub_fixslashes(pattern);
5825     */
5826   preg->gsub = gsub;
5827   preg->fastmap = (char *) malloc (256);
5828 
5829 #ifdef dont_do_this
5830   /* Try to allocate space for the fastmap.  */
5831   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5832 
5833   if (cflags & REG_ICASE)
5834     {
5835       unsigned i;
5836 
5837       preg->translate
5838         = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5839                                       * sizeof (*(RE_TRANSLATE_TYPE)0));
5840       if (preg->translate == NULL)
5841         regerror(REG_ESPACE, preg, NULL, 0);
5842 
5843       /* Map uppercase characters to corresponding lowercase ones.  */
5844       for (i = 0; i < CHAR_SET_SIZE; i++)
5845         preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
5846     }
5847   else
5848     preg->translate = NULL;
5849 
5850   /* If REG_NEWLINE is set, newlines are treated differently.  */
5851   if (cflags & REG_NEWLINE)
5852     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
5853       syntax &= ~RE_DOT_NEWLINE;
5854       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5855       /* It also changes the matching behavior.  */
5856       preg->newline_anchor = 1;
5857     }
5858   else
5859     preg->newline_anchor = 0;
5860 
5861   preg->no_sub = !!(cflags & REG_NOSUB);
5862 #endif
5863 
5864   /* POSIX says a null character in the pattern terminates it, so we
5865      can use strlen here in compiling the pattern.  */
5866   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5867   preg->newline_anchor = 0;
5868 
5869   /* POSIX doesn't distinguish between an unmatched open-group and an
5870      unmatched close-group: both are REG_EPAREN.  */
5871 #ifdef dont_do_this
5872   if (ret == REG_ERPAREN) ret = REG_EPAREN;
5873 
5874   if (ret == REG_NOERROR && preg->fastmap)
5875     {
5876       /* Compute the fastmap now, since regexec cannot modify the pattern
5877          buffer.  */
5878       if (re_compile_fastmap (preg) == -2)
5879         {
5880           /* Some error occurred while computing the fastmap, just forget
5881              about it.  */
5882           free (preg->fastmap);
5883           preg->fastmap = NULL;
5884         }
5885     }
5886 
5887 #endif
5888   preg->reganch = reganch;
5889 
5890   return preg;
5891 }
5892 #ifdef _LIBC
weak_alias(__regcomp,regcomp)5893 weak_alias (__regcomp, regcomp)
5894 #endif
5895 
5896 int
5897 awka_re_doexact( awka_regexp *preg,
5898                  char *string,
5899                  int len,
5900                  regmatch_t pmatch[] )
5901 {
5902   char *c;
5903   int relen = strlen(preg->buffer);
5904 
5905   pmatch[0].rm_so = pmatch[0].rm_eo = 0;
5906 
5907   if ((!len || preg->buffer[0] == '\0') && !preg->can_be_null)
5908     return (int) REG_NOMATCH;
5909 
5910   if (preg->reganch == (REG_ISBOL | REG_ISEOL))
5911   {
5912     if (relen != len)
5913       return (int) REG_NOMATCH;
5914   }
5915 
5916   if (preg->reganch & REG_ISBOL)
5917   {
5918     if (relen == 1)
5919     {
5920       if (string[0] != preg->buffer[0])
5921         return (int) REG_NOMATCH;
5922       else
5923       {
5924         pmatch[0].rm_so = 0;
5925         pmatch[0].rm_eo = 1;
5926         return (int) REG_NOERROR;
5927       }
5928     }
5929 
5930     if (strncmp(string, preg->buffer, relen))
5931       return (int) REG_NOMATCH;
5932     else
5933     {
5934       pmatch[0].rm_so = 0;
5935       pmatch[0].rm_eo = relen;
5936       return (int) REG_NOERROR;
5937     }
5938   }
5939 
5940   if (preg->reganch & REG_ISEOL)
5941   {
5942     if (len < relen)
5943       return (int) REG_NOMATCH;
5944 
5945     if (relen == 1)
5946     {
5947       if (string[len-1] != preg->buffer[0])
5948         return (int) REG_NOMATCH;
5949       else
5950       {
5951         pmatch[0].rm_so = len-1;
5952         pmatch[0].rm_eo = len;
5953         return (int) REG_NOERROR;
5954       }
5955     }
5956 
5957     if (strcmp(string + (len - relen), preg->buffer))
5958       return (int) REG_NOMATCH;
5959     else
5960     {
5961       pmatch[0].rm_so = len - relen;
5962       pmatch[0].rm_eo = len;
5963       return (int) REG_NOERROR;
5964     }
5965   }
5966 
5967   if (relen == 1)
5968   {
5969     if (NULL == (c = strchr(string, preg->buffer[0])))
5970       return (int) REG_NOMATCH;
5971     else
5972     {
5973       pmatch[0].rm_so = c - string;
5974       pmatch[0].rm_eo = pmatch[0].rm_so + 1;
5975       return (int) REG_NOERROR;
5976     }
5977   }
5978 
5979   if (NULL == (c = strstr(string, preg->buffer)))
5980     return (int) REG_NOMATCH;
5981   else
5982   {
5983     pmatch[0].rm_so = c - string;
5984     pmatch[0].rm_eo = pmatch[0].rm_so + relen;
5985     return (int) REG_NOERROR;
5986   }
5987 }
5988 
5989 
5990 /* regexec searches for a given pattern, specified by PREG, in the
5991    string STRING.
5992 
5993    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5994    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
5995    least NMATCH elements, and we set them to the offsets of the
5996    corresponding matched substrings.
5997 
5998    EFLAGS specifies `execution flags' which affect matching: if
5999    REG_NOTBOL is set, then ^ does not match at the beginning of the
6000    string; if REG_NOTEOL is set, then $ does not match at the end.
6001 
6002    We return 0 if we find a match and REG_NOMATCH if not.  */
6003 
6004 int
awka_regexec(preg,string,nmatch,pmatch,eflags)6005 awka_regexec (preg, string, nmatch, pmatch, eflags)
6006     awka_regexp *preg;
6007     char *string;
6008     size_t nmatch;
6009     regmatch_t pmatch[];
6010     int eflags;
6011 {
6012   int ret;
6013   struct re_registers regs;
6014   static awka_regexp private_preg;
6015   int len = strlen (string);
6016   boolean want_reg_info = !preg->no_sub && nmatch > 0;
6017   int can_be_null = preg->can_be_null;
6018 
6019   private_preg = *preg;
6020 
6021   private_preg.not_bol = !!(eflags & REG_NOTBOL);
6022   private_preg.not_eol = !!(eflags & REG_NOTEOL);
6023   want_reg_info = ((eflags & REG_NEEDSTART) ? 1 : want_reg_info);
6024 
6025   /* The user has told us exactly how many registers to return
6026      information about, via `nmatch'.  We have to pass that on to the
6027      matching routines.  */
6028   private_preg.regs_allocated = REGS_FIXED;
6029 
6030   if (preg->isexact)
6031     return awka_re_doexact( preg, string, len, pmatch );
6032 
6033   if (preg->dfa && !want_reg_info)
6034   {
6035     char save;
6036     int count=0, try_backref=0;
6037 
6038     save = string[len];
6039     ret = dfaexec((struct dfa *) preg->dfa, string, string+len, 1, &count, &try_backref);
6040     string[len] = save;
6041 
6042     if (ret && !try_backref && !(eflags & REG_NEEDSTART))
6043     {
6044       preg->max_sub = 1;
6045       return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6046     }
6047     else if (!ret)
6048       return REG_NOMATCH;
6049   }
6050 
6051   if (want_reg_info)
6052   {
6053     regs.num_regs = nmatch;
6054     regs.start = TALLOC (nmatch * 2, regoff_t);
6055     if (regs.start == NULL)
6056       return (int) REG_NOMATCH;
6057     regs.end = regs.start + nmatch;
6058   }
6059 
6060   /* Perform the search using regex */
6061   ret = re_search (&private_preg, string, len,
6062                    /* start: */ 0, /* range: */ len,
6063                    want_reg_info ? &regs : (struct re_registers *) 0);
6064 
6065   /* Copy the register information to the POSIX structure.  */
6066 jumphere:
6067   if (want_reg_info)
6068     {
6069       if (ret >= 0)
6070         {
6071           unsigned r;
6072 
6073           for (r = 0; r < nmatch; r++)
6074             {
6075               pmatch[r].rm_so = regs.start[r];
6076               pmatch[r].rm_eo = regs.end[r];
6077             }
6078           preg->max_sub = r;
6079         }
6080 
6081       /* If we needed the temporary register info, free the space now.  */
6082       free (regs.start);
6083     }
6084 
6085   /* We want zero return to mean success, unlike `re_search'.  */
6086   private_preg.can_be_null = can_be_null;
6087   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6088 }
6089 #ifdef _LIBC
6090 weak_alias (__regexec, regexec)
6091 #endif
6092 
6093 
6094 /* Returns a message corresponding to an error code, ERRCODE, returned
6095    from either regcomp or regexec.   We don't use PREG here.  */
6096 
6097 size_t
6098 regerror (errcode, preg, errbuf, errbuf_size)
6099     int errcode;
6100     const awka_regexp *preg;
6101     char *errbuf;
6102     size_t errbuf_size;
6103 {
6104   const char *msg;
6105   size_t msg_size;
6106 
6107   if (errcode < 0
6108       || errcode >= (int) (sizeof (re_error_msgid_idx)
6109                            / sizeof (re_error_msgid_idx[0])))
6110     /* Only error codes returned by the rest of the code should be passed
6111        to this routine.  If we are given anything else, or if other regex
6112        code generates an invalid error code, then the program has a bug.
6113        Dump core so we can fix it.  */
6114     abort ();
6115 
6116   msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
6117 
6118   msg_size = strlen (msg) + 1; /* Includes the null.  */
6119 
6120   if (errbuf_size != 0)
6121     {
6122       if (msg_size > errbuf_size)
6123         {
6124 #if defined HAVE_MEMPCPY || defined _LIBC
6125           *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
6126 #else
6127           memcpy (errbuf, msg, errbuf_size - 1);
6128           errbuf[errbuf_size - 1] = 0;
6129 #endif
6130         }
6131       else
6132         memcpy (errbuf, msg, msg_size);
6133     }
6134 
6135   return msg_size;
6136 }
6137 #ifdef _LIBC
6138 weak_alias (__regerror, regerror)
6139 #endif
6140 
6141 
6142 /* Free dynamically allocated space used by PREG.  */
6143 
6144 void
6145 regfree (preg)
6146     awka_regexp *preg;
6147 {
6148   if (preg->buffer != NULL)
6149     free (preg->buffer);
6150   preg->buffer = NULL;
6151 
6152   preg->allocated = 0;
6153   preg->used = 0;
6154 
6155   if (preg->fastmap != NULL)
6156     free (preg->fastmap);
6157   preg->fastmap = NULL;
6158   preg->fastmap_accurate = 0;
6159 
6160   if (preg->translate != NULL)
6161     free (preg->translate);
6162   preg->translate = NULL;
6163 }
6164 #ifdef _LIBC
6165 weak_alias (__regfree, regfree)
6166 #endif
6167 
6168 #endif /* not emacs  */
6169