1 /* Object file "section" support for the BFD library.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 Sections
25
26 The raw data contained within a BFD is maintained through the
27 section abstraction. A single BFD may have any number of
28 sections. It keeps hold of them by pointing to the first;
29 each one points to the next in the list.
30
31 Sections are supported in BFD in <<section.c>>.
32
33 @menu
34 @* Section Input::
35 @* Section Output::
36 @* typedef asection::
37 @* section prototypes::
38 @end menu
39
40 INODE
41 Section Input, Section Output, Sections, Sections
42 SUBSECTION
43 Section input
44
45 When a BFD is opened for reading, the section structures are
46 created and attached to the BFD.
47
48 Each section has a name which describes the section in the
49 outside world---for example, <<a.out>> would contain at least
50 three sections, called <<.text>>, <<.data>> and <<.bss>>.
51
52 Names need not be unique; for example a COFF file may have several
53 sections named <<.data>>.
54
55 Sometimes a BFD will contain more than the ``natural'' number of
56 sections. A back end may attach other sections containing
57 constructor data, or an application may add a section (using
58 <<bfd_make_section>>) to the sections attached to an already open
59 BFD. For example, the linker creates an extra section
60 <<COMMON>> for each input file's BFD to hold information about
61 common storage.
62
63 The raw data is not necessarily read in when
64 the section descriptor is created. Some targets may leave the
65 data in place until a <<bfd_get_section_contents>> call is
66 made. Other back ends may read in all the data at once. For
67 example, an S-record file has to be read once to determine the
68 size of the data. An IEEE-695 file doesn't contain raw data in
69 sections, but data and relocation expressions intermixed, so
70 the data area has to be parsed to get out the data and
71 relocations.
72
73 INODE
74 Section Output, typedef asection, Section Input, Sections
75
76 SUBSECTION
77 Section output
78
79 To write a new object style BFD, the various sections to be
80 written have to be created. They are attached to the BFD in
81 the same way as input sections; data is written to the
82 sections using <<bfd_set_section_contents>>.
83
84 Any program that creates or combines sections (e.g., the assembler
85 and linker) must use the <<asection>> fields <<output_section>> and
86 <<output_offset>> to indicate the file sections to which each
87 section must be written. (If the section is being created from
88 scratch, <<output_section>> should probably point to the section
89 itself and <<output_offset>> should probably be zero.)
90
91 The data to be written comes from input sections attached
92 (via <<output_section>> pointers) to
93 the output sections. The output section structure can be
94 considered a filter for the input section: the output section
95 determines the vma of the output data and the name, but the
96 input section determines the offset into the output section of
97 the data to be written.
98
99 E.g., to create a section "O", starting at 0x100, 0x123 long,
100 containing two subsections, "A" at offset 0x0 (i.e., at vma
101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
102 structures would look like:
103
104 | section name "A"
105 | output_offset 0x00
106 | size 0x20
107 | output_section -----------> section name "O"
108 | | vma 0x100
109 | section name "B" | size 0x123
110 | output_offset 0x20 |
111 | size 0x103 |
112 | output_section --------|
113
114 SUBSECTION
115 Link orders
116
117 The data within a section is stored in a @dfn{link_order}.
118 These are much like the fixups in <<gas>>. The link_order
119 abstraction allows a section to grow and shrink within itself.
120
121 A link_order knows how big it is, and which is the next
122 link_order and where the raw data for it is; it also points to
123 a list of relocations which apply to it.
124
125 The link_order is used by the linker to perform relaxing on
126 final code. The compiler creates code which is as big as
127 necessary to make it work without relaxing, and the user can
128 select whether to relax. Sometimes relaxing takes a lot of
129 time. The linker runs around the relocations to see if any
130 are attached to data which can be shrunk, if so it does it on
131 a link_order by link_order basis.
132
133 */
134
135 #include "sysdep.h"
136 #include "bfd.h"
137 #include "libbfd.h"
138 #include "bfdlink.h"
139
140 /*
141 DOCDD
142 INODE
143 typedef asection, section prototypes, Section Output, Sections
144 SUBSECTION
145 typedef asection
146
147 Here is the section structure:
148
149 CODE_FRAGMENT
150 .
151 .typedef struct bfd_section
152 .{
153 . {* The name of the section; the name isn't a copy, the pointer is
154 . the same as that passed to bfd_make_section. *}
155 . const char *name;
156 .
157 . {* A unique sequence number. *}
158 . unsigned int id;
159 .
160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
161 . unsigned int index;
162 .
163 . {* The next section in the list belonging to the BFD, or NULL. *}
164 . struct bfd_section *next;
165 .
166 . {* The previous section in the list belonging to the BFD, or NULL. *}
167 . struct bfd_section *prev;
168 .
169 . {* The field flags contains attributes of the section. Some
170 . flags are read in from the object file, and some are
171 . synthesized from other information. *}
172 . flagword flags;
173 .
174 .#define SEC_NO_FLAGS 0x000
175 .
176 . {* Tells the OS to allocate space for this section when loading.
177 . This is clear for a section containing debug information only. *}
178 .#define SEC_ALLOC 0x001
179 .
180 . {* Tells the OS to load the section from the file when loading.
181 . This is clear for a .bss section. *}
182 .#define SEC_LOAD 0x002
183 .
184 . {* The section contains data still to be relocated, so there is
185 . some relocation information too. *}
186 .#define SEC_RELOC 0x004
187 .
188 . {* A signal to the OS that the section contains read only data. *}
189 .#define SEC_READONLY 0x008
190 .
191 . {* The section contains code only. *}
192 .#define SEC_CODE 0x010
193 .
194 . {* The section contains data only. *}
195 .#define SEC_DATA 0x020
196 .
197 . {* The section will reside in ROM. *}
198 .#define SEC_ROM 0x040
199 .
200 . {* The section contains constructor information. This section
201 . type is used by the linker to create lists of constructors and
202 . destructors used by <<g++>>. When a back end sees a symbol
203 . which should be used in a constructor list, it creates a new
204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
205 . the symbol to it, and builds a relocation. To build the lists
206 . of constructors, all the linker has to do is catenate all the
207 . sections called <<__CTOR_LIST__>> and relocate the data
208 . contained within - exactly the operations it would peform on
209 . standard data. *}
210 .#define SEC_CONSTRUCTOR 0x080
211 .
212 . {* The section has contents - a data section could be
213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
214 . <<SEC_HAS_CONTENTS>> *}
215 .#define SEC_HAS_CONTENTS 0x100
216 .
217 . {* An instruction to the linker to not output the section
218 . even if it has information which would normally be written. *}
219 .#define SEC_NEVER_LOAD 0x200
220 .
221 . {* The section contains thread local data. *}
222 .#define SEC_THREAD_LOCAL 0x400
223 .
224 . {* The section has GOT references. This flag is only for the
225 . linker, and is currently only used by the elf32-hppa back end.
226 . It will be set if global offset table references were detected
227 . in this section, which indicate to the linker that the section
228 . contains PIC code, and must be handled specially when doing a
229 . static link. *}
230 .#define SEC_HAS_GOT_REF 0x800
231 .
232 . {* The section contains common symbols (symbols may be defined
233 . multiple times, the value of a symbol is the amount of
234 . space it requires, and the largest symbol value is the one
235 . used). Most targets have exactly one of these (which we
236 . translate to bfd_com_section_ptr), but ECOFF has two. *}
237 .#define SEC_IS_COMMON 0x1000
238 .
239 . {* The section contains only debugging information. For
240 . example, this is set for ELF .debug and .stab sections.
241 . strip tests this flag to see if a section can be
242 . discarded. *}
243 .#define SEC_DEBUGGING 0x2000
244 .
245 . {* The contents of this section are held in memory pointed to
246 . by the contents field. This is checked by bfd_get_section_contents,
247 . and the data is retrieved from memory if appropriate. *}
248 .#define SEC_IN_MEMORY 0x4000
249 .
250 . {* The contents of this section are to be excluded by the
251 . linker for executable and shared objects unless those
252 . objects are to be further relocated. *}
253 .#define SEC_EXCLUDE 0x8000
254 .
255 . {* The contents of this section are to be sorted based on the sum of
256 . the symbol and addend values specified by the associated relocation
257 . entries. Entries without associated relocation entries will be
258 . appended to the end of the section in an unspecified order. *}
259 .#define SEC_SORT_ENTRIES 0x10000
260 .
261 . {* When linking, duplicate sections of the same name should be
262 . discarded, rather than being combined into a single section as
263 . is usually done. This is similar to how common symbols are
264 . handled. See SEC_LINK_DUPLICATES below. *}
265 .#define SEC_LINK_ONCE 0x20000
266 .
267 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
268 . should handle duplicate sections. *}
269 .#define SEC_LINK_DUPLICATES 0xc0000
270 .
271 . {* This value for SEC_LINK_DUPLICATES means that duplicate
272 . sections with the same name should simply be discarded. *}
273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
274 .
275 . {* This value for SEC_LINK_DUPLICATES means that the linker
276 . should warn if there are any duplicate sections, although
277 . it should still only link one copy. *}
278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
279 .
280 . {* This value for SEC_LINK_DUPLICATES means that the linker
281 . should warn if any duplicate sections are a different size. *}
282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
283 .
284 . {* This value for SEC_LINK_DUPLICATES means that the linker
285 . should warn if any duplicate sections contain different
286 . contents. *}
287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
288 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
289 .
290 . {* This section was created by the linker as part of dynamic
291 . relocation or other arcane processing. It is skipped when
292 . going through the first-pass output, trusting that someone
293 . else up the line will take care of it later. *}
294 .#define SEC_LINKER_CREATED 0x100000
295 .
296 . {* This section should not be subject to garbage collection.
297 . Also set to inform the linker that this section should not be
298 . listed in the link map as discarded. *}
299 .#define SEC_KEEP 0x200000
300 .
301 . {* This section contains "short" data, and should be placed
302 . "near" the GP. *}
303 .#define SEC_SMALL_DATA 0x400000
304 .
305 . {* Attempt to merge identical entities in the section.
306 . Entity size is given in the entsize field. *}
307 .#define SEC_MERGE 0x800000
308 .
309 . {* If given with SEC_MERGE, entities to merge are zero terminated
310 . strings where entsize specifies character size instead of fixed
311 . size entries. *}
312 .#define SEC_STRINGS 0x1000000
313 .
314 . {* This section contains data about section groups. *}
315 .#define SEC_GROUP 0x2000000
316 .
317 . {* The section is a COFF shared library section. This flag is
318 . only for the linker. If this type of section appears in
319 . the input file, the linker must copy it to the output file
320 . without changing the vma or size. FIXME: Although this
321 . was originally intended to be general, it really is COFF
322 . specific (and the flag was renamed to indicate this). It
323 . might be cleaner to have some more general mechanism to
324 . allow the back end to control what the linker does with
325 . sections. *}
326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000
327 .
328 . {* This input section should be copied to output in reverse order
329 . as an array of pointers. This is for ELF linker internal use
330 . only. *}
331 .#define SEC_ELF_REVERSE_COPY 0x4000000
332 .
333 . {* This section contains data which may be shared with other
334 . executables or shared objects. This is for COFF only. *}
335 .#define SEC_COFF_SHARED 0x8000000
336 .
337 . {* This section should be compressed. This is for ELF linker
338 . internal use only. *}
339 .#define SEC_ELF_COMPRESS 0x8000000
340 .
341 . {* When a section with this flag is being linked, then if the size of
342 . the input section is less than a page, it should not cross a page
343 . boundary. If the size of the input section is one page or more,
344 . it should be aligned on a page boundary. This is for TI
345 . TMS320C54X only. *}
346 .#define SEC_TIC54X_BLOCK 0x10000000
347 .
348 . {* This section should be renamed. This is for ELF linker
349 . internal use only. *}
350 .#define SEC_ELF_RENAME 0x10000000
351 .
352 . {* Conditionally link this section; do not link if there are no
353 . references found to any symbol in the section. This is for TI
354 . TMS320C54X only. *}
355 .#define SEC_TIC54X_CLINK 0x20000000
356 .
357 . {* This section contains vliw code. This is for Toshiba MeP only. *}
358 .#define SEC_MEP_VLIW 0x20000000
359 .
360 . {* Indicate that section has the no read flag set. This happens
361 . when memory read flag isn't set. *}
362 .#define SEC_COFF_NOREAD 0x40000000
363 .
364 . {* Indicate that section has the no read flag set. *}
365 .#define SEC_ELF_NOREAD 0x80000000
366 .
367 . {* End of section flags. *}
368 .
369 . {* Some internal packed boolean fields. *}
370 .
371 . {* See the vma field. *}
372 . unsigned int user_set_vma : 1;
373 .
374 . {* A mark flag used by some of the linker backends. *}
375 . unsigned int linker_mark : 1;
376 .
377 . {* Another mark flag used by some of the linker backends. Set for
378 . output sections that have an input section. *}
379 . unsigned int linker_has_input : 1;
380 .
381 . {* Mark flag used by some linker backends for garbage collection. *}
382 . unsigned int gc_mark : 1;
383 .
384 . {* Section compression status. *}
385 . unsigned int compress_status : 2;
386 .#define COMPRESS_SECTION_NONE 0
387 .#define COMPRESS_SECTION_DONE 1
388 .#define DECOMPRESS_SECTION_SIZED 2
389 .
390 . {* The following flags are used by the ELF linker. *}
391 .
392 . {* Mark sections which have been allocated to segments. *}
393 . unsigned int segment_mark : 1;
394 .
395 . {* Type of sec_info information. *}
396 . unsigned int sec_info_type:3;
397 .#define SEC_INFO_TYPE_NONE 0
398 .#define SEC_INFO_TYPE_STABS 1
399 .#define SEC_INFO_TYPE_MERGE 2
400 .#define SEC_INFO_TYPE_EH_FRAME 3
401 .#define SEC_INFO_TYPE_JUST_SYMS 4
402 .#define SEC_INFO_TYPE_TARGET 5
403 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
404 .
405 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
406 . unsigned int use_rela_p:1;
407 .
408 . {* Bits used by various backends. The generic code doesn't touch
409 . these fields. *}
410 .
411 . unsigned int sec_flg0:1;
412 . unsigned int sec_flg1:1;
413 . unsigned int sec_flg2:1;
414 . unsigned int sec_flg3:1;
415 . unsigned int sec_flg4:1;
416 . unsigned int sec_flg5:1;
417 .
418 . {* End of internal packed boolean fields. *}
419 .
420 . {* The virtual memory address of the section - where it will be
421 . at run time. The symbols are relocated against this. The
422 . user_set_vma flag is maintained by bfd; if it's not set, the
423 . backend can assign addresses (for example, in <<a.out>>, where
424 . the default address for <<.data>> is dependent on the specific
425 . target and various flags). *}
426 . bfd_vma vma;
427 .
428 . {* The load address of the section - where it would be in a
429 . rom image; really only used for writing section header
430 . information. *}
431 . bfd_vma lma;
432 .
433 . {* The size of the section in *octets*, as it will be output.
434 . Contains a value even if the section has no contents (e.g., the
435 . size of <<.bss>>). *}
436 . bfd_size_type size;
437 .
438 . {* For input sections, the original size on disk of the section, in
439 . octets. This field should be set for any section whose size is
440 . changed by linker relaxation. It is required for sections where
441 . the linker relaxation scheme doesn't cache altered section and
442 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
443 . targets), and thus the original size needs to be kept to read the
444 . section multiple times. For output sections, rawsize holds the
445 . section size calculated on a previous linker relaxation pass. *}
446 . bfd_size_type rawsize;
447 .
448 . {* The compressed size of the section in octets. *}
449 . bfd_size_type compressed_size;
450 .
451 . {* Relaxation table. *}
452 . struct relax_table *relax;
453 .
454 . {* Count of used relaxation table entries. *}
455 . int relax_count;
456 .
457 .
458 . {* If this section is going to be output, then this value is the
459 . offset in *bytes* into the output section of the first byte in the
460 . input section (byte ==> smallest addressable unit on the
461 . target). In most cases, if this was going to start at the
462 . 100th octet (8-bit quantity) in the output section, this value
463 . would be 100. However, if the target byte size is 16 bits
464 . (bfd_octets_per_byte is "2"), this value would be 50. *}
465 . bfd_vma output_offset;
466 .
467 . {* The output section through which to map on output. *}
468 . struct bfd_section *output_section;
469 .
470 . {* The alignment requirement of the section, as an exponent of 2 -
471 . e.g., 3 aligns to 2^3 (or 8). *}
472 . unsigned int alignment_power;
473 .
474 . {* If an input section, a pointer to a vector of relocation
475 . records for the data in this section. *}
476 . struct reloc_cache_entry *relocation;
477 .
478 . {* If an output section, a pointer to a vector of pointers to
479 . relocation records for the data in this section. *}
480 . struct reloc_cache_entry **orelocation;
481 .
482 . {* The number of relocation records in one of the above. *}
483 . unsigned reloc_count;
484 .
485 . {* Information below is back end specific - and not always used
486 . or updated. *}
487 .
488 . {* File position of section data. *}
489 . file_ptr filepos;
490 .
491 . {* File position of relocation info. *}
492 . file_ptr rel_filepos;
493 .
494 . {* File position of line data. *}
495 . file_ptr line_filepos;
496 .
497 . {* Pointer to data for applications. *}
498 . void *userdata;
499 .
500 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
501 . contents. *}
502 . unsigned char *contents;
503 .
504 . {* Attached line number information. *}
505 . alent *lineno;
506 .
507 . {* Number of line number records. *}
508 . unsigned int lineno_count;
509 .
510 . {* Entity size for merging purposes. *}
511 . unsigned int entsize;
512 .
513 . {* Points to the kept section if this section is a link-once section,
514 . and is discarded. *}
515 . struct bfd_section *kept_section;
516 .
517 . {* When a section is being output, this value changes as more
518 . linenumbers are written out. *}
519 . file_ptr moving_line_filepos;
520 .
521 . {* What the section number is in the target world. *}
522 . int target_index;
523 .
524 . void *used_by_bfd;
525 .
526 . {* If this is a constructor section then here is a list of the
527 . relocations created to relocate items within it. *}
528 . struct relent_chain *constructor_chain;
529 .
530 . {* The BFD which owns the section. *}
531 . bfd *owner;
532 .
533 . {* A symbol which points at this section only. *}
534 . struct bfd_symbol *symbol;
535 . struct bfd_symbol **symbol_ptr_ptr;
536 .
537 . {* Early in the link process, map_head and map_tail are used to build
538 . a list of input sections attached to an output section. Later,
539 . output sections use these fields for a list of bfd_link_order
540 . structs. *}
541 . union {
542 . struct bfd_link_order *link_order;
543 . struct bfd_section *s;
544 . } map_head, map_tail;
545 .} asection;
546 .
547 .{* Relax table contains information about instructions which can
548 . be removed by relaxation -- replacing a long address with a
549 . short address. *}
550 .struct relax_table {
551 . {* Address where bytes may be deleted. *}
552 . bfd_vma addr;
553 .
554 . {* Number of bytes to be deleted. *}
555 . int size;
556 .};
557 .
558 .{* Note: the following are provided as inline functions rather than macros
559 . because not all callers use the return value. A macro implementation
560 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
561 . compilers will complain about comma expressions that have no effect. *}
562 .static inline bfd_boolean
563 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val)
564 .{
565 . ptr->userdata = val;
566 . return TRUE;
567 .}
568 .
569 .static inline bfd_boolean
570 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val)
571 .{
572 . ptr->vma = ptr->lma = val;
573 . ptr->user_set_vma = TRUE;
574 . return TRUE;
575 .}
576 .
577 .static inline bfd_boolean
578 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val)
579 .{
580 . ptr->alignment_power = val;
581 . return TRUE;
582 .}
583 .
584 .{* These sections are global, and are managed by BFD. The application
585 . and target back end are not permitted to change the values in
586 . these sections. *}
587 .extern asection _bfd_std_section[4];
588 .
589 .#define BFD_ABS_SECTION_NAME "*ABS*"
590 .#define BFD_UND_SECTION_NAME "*UND*"
591 .#define BFD_COM_SECTION_NAME "*COM*"
592 .#define BFD_IND_SECTION_NAME "*IND*"
593 .
594 .{* Pointer to the common section. *}
595 .#define bfd_com_section_ptr (&_bfd_std_section[0])
596 .{* Pointer to the undefined section. *}
597 .#define bfd_und_section_ptr (&_bfd_std_section[1])
598 .{* Pointer to the absolute section. *}
599 .#define bfd_abs_section_ptr (&_bfd_std_section[2])
600 .{* Pointer to the indirect section. *}
601 .#define bfd_ind_section_ptr (&_bfd_std_section[3])
602 .
603 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
604 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
605 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
606 .
607 .#define bfd_is_const_section(SEC) \
608 . ( ((SEC) == bfd_abs_section_ptr) \
609 . || ((SEC) == bfd_und_section_ptr) \
610 . || ((SEC) == bfd_com_section_ptr) \
611 . || ((SEC) == bfd_ind_section_ptr))
612 .
613 .{* Macros to handle insertion and deletion of a bfd's sections. These
614 . only handle the list pointers, ie. do not adjust section_count,
615 . target_index etc. *}
616 .#define bfd_section_list_remove(ABFD, S) \
617 . do \
618 . { \
619 . asection *_s = S; \
620 . asection *_next = _s->next; \
621 . asection *_prev = _s->prev; \
622 . if (_prev) \
623 . _prev->next = _next; \
624 . else \
625 . (ABFD)->sections = _next; \
626 . if (_next) \
627 . _next->prev = _prev; \
628 . else \
629 . (ABFD)->section_last = _prev; \
630 . } \
631 . while (0)
632 .#define bfd_section_list_append(ABFD, S) \
633 . do \
634 . { \
635 . asection *_s = S; \
636 . bfd *_abfd = ABFD; \
637 . _s->next = NULL; \
638 . if (_abfd->section_last) \
639 . { \
640 . _s->prev = _abfd->section_last; \
641 . _abfd->section_last->next = _s; \
642 . } \
643 . else \
644 . { \
645 . _s->prev = NULL; \
646 . _abfd->sections = _s; \
647 . } \
648 . _abfd->section_last = _s; \
649 . } \
650 . while (0)
651 .#define bfd_section_list_prepend(ABFD, S) \
652 . do \
653 . { \
654 . asection *_s = S; \
655 . bfd *_abfd = ABFD; \
656 . _s->prev = NULL; \
657 . if (_abfd->sections) \
658 . { \
659 . _s->next = _abfd->sections; \
660 . _abfd->sections->prev = _s; \
661 . } \
662 . else \
663 . { \
664 . _s->next = NULL; \
665 . _abfd->section_last = _s; \
666 . } \
667 . _abfd->sections = _s; \
668 . } \
669 . while (0)
670 .#define bfd_section_list_insert_after(ABFD, A, S) \
671 . do \
672 . { \
673 . asection *_a = A; \
674 . asection *_s = S; \
675 . asection *_next = _a->next; \
676 . _s->next = _next; \
677 . _s->prev = _a; \
678 . _a->next = _s; \
679 . if (_next) \
680 . _next->prev = _s; \
681 . else \
682 . (ABFD)->section_last = _s; \
683 . } \
684 . while (0)
685 .#define bfd_section_list_insert_before(ABFD, B, S) \
686 . do \
687 . { \
688 . asection *_b = B; \
689 . asection *_s = S; \
690 . asection *_prev = _b->prev; \
691 . _s->prev = _prev; \
692 . _s->next = _b; \
693 . _b->prev = _s; \
694 . if (_prev) \
695 . _prev->next = _s; \
696 . else \
697 . (ABFD)->sections = _s; \
698 . } \
699 . while (0)
700 .#define bfd_section_removed_from_list(ABFD, S) \
701 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
702 .
703 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
704 . {* name, id, index, next, prev, flags, user_set_vma, *} \
705 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
706 . \
707 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \
708 . 0, 0, 1, 0, \
709 . \
710 . {* segment_mark, sec_info_type, use_rela_p, *} \
711 . 0, 0, 0, \
712 . \
713 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \
714 . 0, 0, 0, 0, 0, 0, \
715 . \
716 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \
717 . 0, 0, 0, 0, 0, 0, 0, \
718 . \
719 . {* output_offset, output_section, alignment_power, *} \
720 . 0, &SEC, 0, \
721 . \
722 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
723 . NULL, NULL, 0, 0, 0, \
724 . \
725 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
726 . 0, NULL, NULL, NULL, 0, \
727 . \
728 . {* entsize, kept_section, moving_line_filepos, *} \
729 . 0, NULL, 0, \
730 . \
731 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
732 . 0, NULL, NULL, NULL, \
733 . \
734 . {* symbol, symbol_ptr_ptr, *} \
735 . (struct bfd_symbol *) SYM, &SEC.symbol, \
736 . \
737 . {* map_head, map_tail *} \
738 . { NULL }, { NULL } \
739 . }
740 .
741 */
742
743 /* We use a macro to initialize the static asymbol structures because
744 traditional C does not permit us to initialize a union member while
745 gcc warns if we don't initialize it. */
746 /* the_bfd, name, value, attr, section [, udata] */
747 #ifdef __STDC__
748 #define GLOBAL_SYM_INIT(NAME, SECTION) \
749 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }}
750 #else
751 #define GLOBAL_SYM_INIT(NAME, SECTION) \
752 { 0, NAME, 0, BSF_SECTION_SYM, SECTION }
753 #endif
754
755 /* These symbols are global, not specific to any BFD. Therefore, anything
756 that tries to change them is broken, and should be repaired. */
757
758 static const asymbol global_syms[] =
759 {
760 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr),
761 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr),
762 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr),
763 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr)
764 };
765
766 #define STD_SECTION(NAME, IDX, FLAGS) \
767 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX)
768
769 asection _bfd_std_section[] = {
770 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON),
771 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0),
772 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0),
773 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0)
774 };
775 #undef STD_SECTION
776
777 /* Initialize an entry in the section hash table. */
778
779 struct bfd_hash_entry *
bfd_section_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)780 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
781 struct bfd_hash_table *table,
782 const char *string)
783 {
784 /* Allocate the structure if it has not already been allocated by a
785 subclass. */
786 if (entry == NULL)
787 {
788 entry = (struct bfd_hash_entry *)
789 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
790 if (entry == NULL)
791 return entry;
792 }
793
794 /* Call the allocation method of the superclass. */
795 entry = bfd_hash_newfunc (entry, table, string);
796 if (entry != NULL)
797 memset (&((struct section_hash_entry *) entry)->section, 0,
798 sizeof (asection));
799
800 return entry;
801 }
802
803 #define section_hash_lookup(table, string, create, copy) \
804 ((struct section_hash_entry *) \
805 bfd_hash_lookup ((table), (string), (create), (copy)))
806
807 /* Create a symbol whose only job is to point to this section. This
808 is useful for things like relocs which are relative to the base
809 of a section. */
810
811 bfd_boolean
_bfd_generic_new_section_hook(bfd * abfd,asection * newsect)812 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
813 {
814 newsect->symbol = bfd_make_empty_symbol (abfd);
815 if (newsect->symbol == NULL)
816 return FALSE;
817
818 newsect->symbol->name = newsect->name;
819 newsect->symbol->value = 0;
820 newsect->symbol->section = newsect;
821 newsect->symbol->flags = BSF_SECTION_SYM;
822
823 newsect->symbol_ptr_ptr = &newsect->symbol;
824 return TRUE;
825 }
826
827 static unsigned int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
828
829 /* Initializes a new section. NEWSECT->NAME is already set. */
830
831 static asection *
bfd_section_init(bfd * abfd,asection * newsect)832 bfd_section_init (bfd *abfd, asection *newsect)
833 {
834 newsect->id = section_id;
835 newsect->index = abfd->section_count;
836 newsect->owner = abfd;
837
838 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
839 return NULL;
840
841 section_id++;
842 abfd->section_count++;
843 bfd_section_list_append (abfd, newsect);
844 return newsect;
845 }
846
847 /*
848 DOCDD
849 INODE
850 section prototypes, , typedef asection, Sections
851 SUBSECTION
852 Section prototypes
853
854 These are the functions exported by the section handling part of BFD.
855 */
856
857 /*
858 FUNCTION
859 bfd_section_list_clear
860
861 SYNOPSIS
862 void bfd_section_list_clear (bfd *);
863
864 DESCRIPTION
865 Clears the section list, and also resets the section count and
866 hash table entries.
867 */
868
869 void
bfd_section_list_clear(bfd * abfd)870 bfd_section_list_clear (bfd *abfd)
871 {
872 abfd->sections = NULL;
873 abfd->section_last = NULL;
874 abfd->section_count = 0;
875 memset (abfd->section_htab.table, 0,
876 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
877 abfd->section_htab.count = 0;
878 }
879
880 /*
881 FUNCTION
882 bfd_get_section_by_name
883
884 SYNOPSIS
885 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
886
887 DESCRIPTION
888 Return the most recently created section attached to @var{abfd}
889 named @var{name}. Return NULL if no such section exists.
890 */
891
892 asection *
bfd_get_section_by_name(bfd * abfd,const char * name)893 bfd_get_section_by_name (bfd *abfd, const char *name)
894 {
895 struct section_hash_entry *sh;
896
897 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
898 if (sh != NULL)
899 return &sh->section;
900
901 return NULL;
902 }
903
904 /*
905 FUNCTION
906 bfd_get_next_section_by_name
907
908 SYNOPSIS
909 asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
910
911 DESCRIPTION
912 Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
913 return the next most recently created section attached to the same
914 BFD with the same name, or if no such section exists in the same BFD and
915 IBFD is non-NULL, the next section with the same name in any input
916 BFD following IBFD. Return NULL on finding no section.
917 */
918
919 asection *
bfd_get_next_section_by_name(bfd * ibfd,asection * sec)920 bfd_get_next_section_by_name (bfd *ibfd, asection *sec)
921 {
922 struct section_hash_entry *sh;
923 const char *name;
924 unsigned long hash;
925
926 sh = ((struct section_hash_entry *)
927 ((char *) sec - offsetof (struct section_hash_entry, section)));
928
929 hash = sh->root.hash;
930 name = sec->name;
931 for (sh = (struct section_hash_entry *) sh->root.next;
932 sh != NULL;
933 sh = (struct section_hash_entry *) sh->root.next)
934 if (sh->root.hash == hash
935 && strcmp (sh->root.string, name) == 0)
936 return &sh->section;
937
938 if (ibfd != NULL)
939 {
940 while ((ibfd = ibfd->link.next) != NULL)
941 {
942 asection *s = bfd_get_section_by_name (ibfd, name);
943 if (s != NULL)
944 return s;
945 }
946 }
947
948 return NULL;
949 }
950
951 /*
952 FUNCTION
953 bfd_get_linker_section
954
955 SYNOPSIS
956 asection *bfd_get_linker_section (bfd *abfd, const char *name);
957
958 DESCRIPTION
959 Return the linker created section attached to @var{abfd}
960 named @var{name}. Return NULL if no such section exists.
961 */
962
963 asection *
bfd_get_linker_section(bfd * abfd,const char * name)964 bfd_get_linker_section (bfd *abfd, const char *name)
965 {
966 asection *sec = bfd_get_section_by_name (abfd, name);
967
968 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0)
969 sec = bfd_get_next_section_by_name (NULL, sec);
970 return sec;
971 }
972
973 /*
974 FUNCTION
975 bfd_get_section_by_name_if
976
977 SYNOPSIS
978 asection *bfd_get_section_by_name_if
979 (bfd *abfd,
980 const char *name,
981 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
982 void *obj);
983
984 DESCRIPTION
985 Call the provided function @var{func} for each section
986 attached to the BFD @var{abfd} whose name matches @var{name},
987 passing @var{obj} as an argument. The function will be called
988 as if by
989
990 | func (abfd, the_section, obj);
991
992 It returns the first section for which @var{func} returns true,
993 otherwise <<NULL>>.
994
995 */
996
997 asection *
bfd_get_section_by_name_if(bfd * abfd,const char * name,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)998 bfd_get_section_by_name_if (bfd *abfd, const char *name,
999 bfd_boolean (*operation) (bfd *,
1000 asection *,
1001 void *),
1002 void *user_storage)
1003 {
1004 struct section_hash_entry *sh;
1005 unsigned long hash;
1006
1007 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
1008 if (sh == NULL)
1009 return NULL;
1010
1011 hash = sh->root.hash;
1012 for (; sh != NULL; sh = (struct section_hash_entry *) sh->root.next)
1013 if (sh->root.hash == hash
1014 && strcmp (sh->root.string, name) == 0
1015 && (*operation) (abfd, &sh->section, user_storage))
1016 return &sh->section;
1017
1018 return NULL;
1019 }
1020
1021 /*
1022 FUNCTION
1023 bfd_get_unique_section_name
1024
1025 SYNOPSIS
1026 char *bfd_get_unique_section_name
1027 (bfd *abfd, const char *templat, int *count);
1028
1029 DESCRIPTION
1030 Invent a section name that is unique in @var{abfd} by tacking
1031 a dot and a digit suffix onto the original @var{templat}. If
1032 @var{count} is non-NULL, then it specifies the first number
1033 tried as a suffix to generate a unique name. The value
1034 pointed to by @var{count} will be incremented in this case.
1035 */
1036
1037 char *
bfd_get_unique_section_name(bfd * abfd,const char * templat,int * count)1038 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
1039 {
1040 int num;
1041 unsigned int len;
1042 char *sname;
1043
1044 len = strlen (templat);
1045 sname = (char *) bfd_malloc (len + 8);
1046 if (sname == NULL)
1047 return NULL;
1048 memcpy (sname, templat, len);
1049 num = 1;
1050 if (count != NULL)
1051 num = *count;
1052
1053 do
1054 {
1055 /* If we have a million sections, something is badly wrong. */
1056 if (num > 999999)
1057 abort ();
1058 sprintf (sname + len, ".%d", num++);
1059 }
1060 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
1061
1062 if (count != NULL)
1063 *count = num;
1064 return sname;
1065 }
1066
1067 /*
1068 FUNCTION
1069 bfd_make_section_old_way
1070
1071 SYNOPSIS
1072 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
1073
1074 DESCRIPTION
1075 Create a new empty section called @var{name}
1076 and attach it to the end of the chain of sections for the
1077 BFD @var{abfd}. An attempt to create a section with a name which
1078 is already in use returns its pointer without changing the
1079 section chain.
1080
1081 It has the funny name since this is the way it used to be
1082 before it was rewritten....
1083
1084 Possible errors are:
1085 o <<bfd_error_invalid_operation>> -
1086 If output has already started for this BFD.
1087 o <<bfd_error_no_memory>> -
1088 If memory allocation fails.
1089
1090 */
1091
1092 asection *
bfd_make_section_old_way(bfd * abfd,const char * name)1093 bfd_make_section_old_way (bfd *abfd, const char *name)
1094 {
1095 asection *newsect;
1096
1097 if (abfd->output_has_begun)
1098 {
1099 bfd_set_error (bfd_error_invalid_operation);
1100 return NULL;
1101 }
1102
1103 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
1104 newsect = bfd_abs_section_ptr;
1105 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
1106 newsect = bfd_com_section_ptr;
1107 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
1108 newsect = bfd_und_section_ptr;
1109 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
1110 newsect = bfd_ind_section_ptr;
1111 else
1112 {
1113 struct section_hash_entry *sh;
1114
1115 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1116 if (sh == NULL)
1117 return NULL;
1118
1119 newsect = &sh->section;
1120 if (newsect->name != NULL)
1121 {
1122 /* Section already exists. */
1123 return newsect;
1124 }
1125
1126 newsect->name = name;
1127 return bfd_section_init (abfd, newsect);
1128 }
1129
1130 /* Call new_section_hook when "creating" the standard abs, com, und
1131 and ind sections to tack on format specific section data.
1132 Also, create a proper section symbol. */
1133 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1134 return NULL;
1135 return newsect;
1136 }
1137
1138 /*
1139 FUNCTION
1140 bfd_make_section_anyway_with_flags
1141
1142 SYNOPSIS
1143 asection *bfd_make_section_anyway_with_flags
1144 (bfd *abfd, const char *name, flagword flags);
1145
1146 DESCRIPTION
1147 Create a new empty section called @var{name} and attach it to the end of
1148 the chain of sections for @var{abfd}. Create a new section even if there
1149 is already a section with that name. Also set the attributes of the
1150 new section to the value @var{flags}.
1151
1152 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1153 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1154 o <<bfd_error_no_memory>> - If memory allocation fails.
1155 */
1156
1157 sec_ptr
bfd_make_section_anyway_with_flags(bfd * abfd,const char * name,flagword flags)1158 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1159 flagword flags)
1160 {
1161 struct section_hash_entry *sh;
1162 asection *newsect;
1163
1164 if (abfd->output_has_begun)
1165 {
1166 bfd_set_error (bfd_error_invalid_operation);
1167 return NULL;
1168 }
1169
1170 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1171 if (sh == NULL)
1172 return NULL;
1173
1174 newsect = &sh->section;
1175 if (newsect->name != NULL)
1176 {
1177 /* We are making a section of the same name. Put it in the
1178 section hash table. Even though we can't find it directly by a
1179 hash lookup, we'll be able to find the section by traversing
1180 sh->root.next quicker than looking at all the bfd sections. */
1181 struct section_hash_entry *new_sh;
1182 new_sh = (struct section_hash_entry *)
1183 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1184 if (new_sh == NULL)
1185 return NULL;
1186
1187 new_sh->root = sh->root;
1188 sh->root.next = &new_sh->root;
1189 newsect = &new_sh->section;
1190 }
1191
1192 newsect->flags = flags;
1193 newsect->name = name;
1194 return bfd_section_init (abfd, newsect);
1195 }
1196
1197 /*
1198 FUNCTION
1199 bfd_make_section_anyway
1200
1201 SYNOPSIS
1202 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1203
1204 DESCRIPTION
1205 Create a new empty section called @var{name} and attach it to the end of
1206 the chain of sections for @var{abfd}. Create a new section even if there
1207 is already a section with that name.
1208
1209 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1210 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1211 o <<bfd_error_no_memory>> - If memory allocation fails.
1212 */
1213
1214 sec_ptr
bfd_make_section_anyway(bfd * abfd,const char * name)1215 bfd_make_section_anyway (bfd *abfd, const char *name)
1216 {
1217 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1218 }
1219
1220 /*
1221 FUNCTION
1222 bfd_make_section_with_flags
1223
1224 SYNOPSIS
1225 asection *bfd_make_section_with_flags
1226 (bfd *, const char *name, flagword flags);
1227
1228 DESCRIPTION
1229 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1230 bfd_set_error ()) without changing the section chain if there is already a
1231 section named @var{name}. Also set the attributes of the new section to
1232 the value @var{flags}. If there is an error, return <<NULL>> and set
1233 <<bfd_error>>.
1234 */
1235
1236 asection *
bfd_make_section_with_flags(bfd * abfd,const char * name,flagword flags)1237 bfd_make_section_with_flags (bfd *abfd, const char *name,
1238 flagword flags)
1239 {
1240 struct section_hash_entry *sh;
1241 asection *newsect;
1242
1243 if (abfd->output_has_begun)
1244 {
1245 bfd_set_error (bfd_error_invalid_operation);
1246 return NULL;
1247 }
1248
1249 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1250 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1251 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1252 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1253 return NULL;
1254
1255 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1256 if (sh == NULL)
1257 return NULL;
1258
1259 newsect = &sh->section;
1260 if (newsect->name != NULL)
1261 {
1262 /* Section already exists. */
1263 return NULL;
1264 }
1265
1266 newsect->name = name;
1267 newsect->flags = flags;
1268 return bfd_section_init (abfd, newsect);
1269 }
1270
1271 /*
1272 FUNCTION
1273 bfd_make_section
1274
1275 SYNOPSIS
1276 asection *bfd_make_section (bfd *, const char *name);
1277
1278 DESCRIPTION
1279 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1280 bfd_set_error ()) without changing the section chain if there is already a
1281 section named @var{name}. If there is an error, return <<NULL>> and set
1282 <<bfd_error>>.
1283 */
1284
1285 asection *
bfd_make_section(bfd * abfd,const char * name)1286 bfd_make_section (bfd *abfd, const char *name)
1287 {
1288 return bfd_make_section_with_flags (abfd, name, 0);
1289 }
1290
1291 /*
1292 FUNCTION
1293 bfd_get_next_section_id
1294
1295 SYNOPSIS
1296 int bfd_get_next_section_id (void);
1297
1298 DESCRIPTION
1299 Returns the id that the next section created will have.
1300 */
1301
1302 int
bfd_get_next_section_id(void)1303 bfd_get_next_section_id (void)
1304 {
1305 return section_id;
1306 }
1307
1308 /*
1309 FUNCTION
1310 bfd_set_section_flags
1311
1312 SYNOPSIS
1313 bfd_boolean bfd_set_section_flags
1314 (bfd *abfd, asection *sec, flagword flags);
1315
1316 DESCRIPTION
1317 Set the attributes of the section @var{sec} in the BFD
1318 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1319 <<FALSE>> on error. Possible error returns are:
1320
1321 o <<bfd_error_invalid_operation>> -
1322 The section cannot have one or more of the attributes
1323 requested. For example, a .bss section in <<a.out>> may not
1324 have the <<SEC_HAS_CONTENTS>> field set.
1325
1326 */
1327
1328 bfd_boolean
bfd_set_section_flags(bfd * abfd ATTRIBUTE_UNUSED,sec_ptr section,flagword flags)1329 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1330 sec_ptr section,
1331 flagword flags)
1332 {
1333 section->flags = flags;
1334 return TRUE;
1335 }
1336
1337 /*
1338 FUNCTION
1339 bfd_rename_section
1340
1341 SYNOPSIS
1342 void bfd_rename_section
1343 (bfd *abfd, asection *sec, const char *newname);
1344
1345 DESCRIPTION
1346 Rename section @var{sec} in @var{abfd} to @var{newname}.
1347 */
1348
1349 void
bfd_rename_section(bfd * abfd,sec_ptr sec,const char * newname)1350 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname)
1351 {
1352 struct section_hash_entry *sh;
1353
1354 sh = (struct section_hash_entry *)
1355 ((char *) sec - offsetof (struct section_hash_entry, section));
1356 sh->section.name = newname;
1357 bfd_hash_rename (&abfd->section_htab, newname, &sh->root);
1358 }
1359
1360 /*
1361 FUNCTION
1362 bfd_map_over_sections
1363
1364 SYNOPSIS
1365 void bfd_map_over_sections
1366 (bfd *abfd,
1367 void (*func) (bfd *abfd, asection *sect, void *obj),
1368 void *obj);
1369
1370 DESCRIPTION
1371 Call the provided function @var{func} for each section
1372 attached to the BFD @var{abfd}, passing @var{obj} as an
1373 argument. The function will be called as if by
1374
1375 | func (abfd, the_section, obj);
1376
1377 This is the preferred method for iterating over sections; an
1378 alternative would be to use a loop:
1379
1380 | asection *p;
1381 | for (p = abfd->sections; p != NULL; p = p->next)
1382 | func (abfd, p, ...)
1383
1384 */
1385
1386 void
bfd_map_over_sections(bfd * abfd,void (* operation)(bfd *,asection *,void *),void * user_storage)1387 bfd_map_over_sections (bfd *abfd,
1388 void (*operation) (bfd *, asection *, void *),
1389 void *user_storage)
1390 {
1391 asection *sect;
1392 unsigned int i = 0;
1393
1394 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1395 (*operation) (abfd, sect, user_storage);
1396
1397 if (i != abfd->section_count) /* Debugging */
1398 abort ();
1399 }
1400
1401 /*
1402 FUNCTION
1403 bfd_sections_find_if
1404
1405 SYNOPSIS
1406 asection *bfd_sections_find_if
1407 (bfd *abfd,
1408 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1409 void *obj);
1410
1411 DESCRIPTION
1412 Call the provided function @var{operation} for each section
1413 attached to the BFD @var{abfd}, passing @var{obj} as an
1414 argument. The function will be called as if by
1415
1416 | operation (abfd, the_section, obj);
1417
1418 It returns the first section for which @var{operation} returns true.
1419
1420 */
1421
1422 asection *
bfd_sections_find_if(bfd * abfd,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)1423 bfd_sections_find_if (bfd *abfd,
1424 bfd_boolean (*operation) (bfd *, asection *, void *),
1425 void *user_storage)
1426 {
1427 asection *sect;
1428
1429 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1430 if ((*operation) (abfd, sect, user_storage))
1431 break;
1432
1433 return sect;
1434 }
1435
1436 /*
1437 FUNCTION
1438 bfd_set_section_size
1439
1440 SYNOPSIS
1441 bfd_boolean bfd_set_section_size
1442 (bfd *abfd, asection *sec, bfd_size_type val);
1443
1444 DESCRIPTION
1445 Set @var{sec} to the size @var{val}. If the operation is
1446 ok, then <<TRUE>> is returned, else <<FALSE>>.
1447
1448 Possible error returns:
1449 o <<bfd_error_invalid_operation>> -
1450 Writing has started to the BFD, so setting the size is invalid.
1451
1452 */
1453
1454 bfd_boolean
bfd_set_section_size(bfd * abfd,sec_ptr ptr,bfd_size_type val)1455 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1456 {
1457 /* Once you've started writing to any section you cannot create or change
1458 the size of any others. */
1459
1460 if (abfd->output_has_begun)
1461 {
1462 bfd_set_error (bfd_error_invalid_operation);
1463 return FALSE;
1464 }
1465
1466 ptr->size = val;
1467 return TRUE;
1468 }
1469
1470 /*
1471 FUNCTION
1472 bfd_set_section_contents
1473
1474 SYNOPSIS
1475 bfd_boolean bfd_set_section_contents
1476 (bfd *abfd, asection *section, const void *data,
1477 file_ptr offset, bfd_size_type count);
1478
1479 DESCRIPTION
1480 Sets the contents of the section @var{section} in BFD
1481 @var{abfd} to the data starting in memory at @var{data}. The
1482 data is written to the output section starting at offset
1483 @var{offset} for @var{count} octets.
1484
1485 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1486 returns are:
1487 o <<bfd_error_no_contents>> -
1488 The output section does not have the <<SEC_HAS_CONTENTS>>
1489 attribute, so nothing can be written to it.
1490 o and some more too
1491
1492 This routine is front end to the back end function
1493 <<_bfd_set_section_contents>>.
1494
1495 */
1496
1497 bfd_boolean
bfd_set_section_contents(bfd * abfd,sec_ptr section,const void * location,file_ptr offset,bfd_size_type count)1498 bfd_set_section_contents (bfd *abfd,
1499 sec_ptr section,
1500 const void *location,
1501 file_ptr offset,
1502 bfd_size_type count)
1503 {
1504 bfd_size_type sz;
1505
1506 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1507 {
1508 bfd_set_error (bfd_error_no_contents);
1509 return FALSE;
1510 }
1511
1512 sz = section->size;
1513 if ((bfd_size_type) offset > sz
1514 || count > sz
1515 || offset + count > sz
1516 || count != (size_t) count)
1517 {
1518 bfd_set_error (bfd_error_bad_value);
1519 return FALSE;
1520 }
1521
1522 if (!bfd_write_p (abfd))
1523 {
1524 bfd_set_error (bfd_error_invalid_operation);
1525 return FALSE;
1526 }
1527
1528 /* Record a copy of the data in memory if desired. */
1529 if (section->contents
1530 && location != section->contents + offset)
1531 memcpy (section->contents + offset, location, (size_t) count);
1532
1533 if (BFD_SEND (abfd, _bfd_set_section_contents,
1534 (abfd, section, location, offset, count)))
1535 {
1536 abfd->output_has_begun = TRUE;
1537 return TRUE;
1538 }
1539
1540 return FALSE;
1541 }
1542
1543 /*
1544 FUNCTION
1545 bfd_get_section_contents
1546
1547 SYNOPSIS
1548 bfd_boolean bfd_get_section_contents
1549 (bfd *abfd, asection *section, void *location, file_ptr offset,
1550 bfd_size_type count);
1551
1552 DESCRIPTION
1553 Read data from @var{section} in BFD @var{abfd}
1554 into memory starting at @var{location}. The data is read at an
1555 offset of @var{offset} from the start of the input section,
1556 and is read for @var{count} bytes.
1557
1558 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1559 flag set are requested or if the section does not have the
1560 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1561 with zeroes. If no errors occur, <<TRUE>> is returned, else
1562 <<FALSE>>.
1563
1564 */
1565 bfd_boolean
bfd_get_section_contents(bfd * abfd,sec_ptr section,void * location,file_ptr offset,bfd_size_type count)1566 bfd_get_section_contents (bfd *abfd,
1567 sec_ptr section,
1568 void *location,
1569 file_ptr offset,
1570 bfd_size_type count)
1571 {
1572 bfd_size_type sz;
1573
1574 if (section->flags & SEC_CONSTRUCTOR)
1575 {
1576 memset (location, 0, (size_t) count);
1577 return TRUE;
1578 }
1579
1580 if (abfd->direction != write_direction && section->rawsize != 0)
1581 sz = section->rawsize;
1582 else
1583 sz = section->size;
1584 if ((bfd_size_type) offset > sz
1585 || count > sz
1586 || offset + count > sz
1587 || count != (size_t) count)
1588 {
1589 bfd_set_error (bfd_error_bad_value);
1590 return FALSE;
1591 }
1592
1593 if (count == 0)
1594 /* Don't bother. */
1595 return TRUE;
1596
1597 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1598 {
1599 memset (location, 0, (size_t) count);
1600 return TRUE;
1601 }
1602
1603 if ((section->flags & SEC_IN_MEMORY) != 0)
1604 {
1605 if (section->contents == NULL)
1606 {
1607 /* This can happen because of errors earlier on in the linking process.
1608 We do not want to seg-fault here, so clear the flag and return an
1609 error code. */
1610 section->flags &= ~ SEC_IN_MEMORY;
1611 bfd_set_error (bfd_error_invalid_operation);
1612 return FALSE;
1613 }
1614
1615 memmove (location, section->contents + offset, (size_t) count);
1616 return TRUE;
1617 }
1618
1619 return BFD_SEND (abfd, _bfd_get_section_contents,
1620 (abfd, section, location, offset, count));
1621 }
1622
1623 /*
1624 FUNCTION
1625 bfd_malloc_and_get_section
1626
1627 SYNOPSIS
1628 bfd_boolean bfd_malloc_and_get_section
1629 (bfd *abfd, asection *section, bfd_byte **buf);
1630
1631 DESCRIPTION
1632 Read all data from @var{section} in BFD @var{abfd}
1633 into a buffer, *@var{buf}, malloc'd by this function.
1634 */
1635
1636 bfd_boolean
bfd_malloc_and_get_section(bfd * abfd,sec_ptr sec,bfd_byte ** buf)1637 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1638 {
1639 *buf = NULL;
1640 return bfd_get_full_section_contents (abfd, sec, buf);
1641 }
1642 /*
1643 FUNCTION
1644 bfd_copy_private_section_data
1645
1646 SYNOPSIS
1647 bfd_boolean bfd_copy_private_section_data
1648 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1649
1650 DESCRIPTION
1651 Copy private section information from @var{isec} in the BFD
1652 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1653 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1654 returns are:
1655
1656 o <<bfd_error_no_memory>> -
1657 Not enough memory exists to create private data for @var{osec}.
1658
1659 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1660 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1661 . (ibfd, isection, obfd, osection))
1662 */
1663
1664 /*
1665 FUNCTION
1666 bfd_generic_is_group_section
1667
1668 SYNOPSIS
1669 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1670
1671 DESCRIPTION
1672 Returns TRUE if @var{sec} is a member of a group.
1673 */
1674
1675 bfd_boolean
bfd_generic_is_group_section(bfd * abfd ATTRIBUTE_UNUSED,const asection * sec ATTRIBUTE_UNUSED)1676 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1677 const asection *sec ATTRIBUTE_UNUSED)
1678 {
1679 return FALSE;
1680 }
1681
1682 /*
1683 FUNCTION
1684 bfd_generic_discard_group
1685
1686 SYNOPSIS
1687 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1688
1689 DESCRIPTION
1690 Remove all members of @var{group} from the output.
1691 */
1692
1693 bfd_boolean
bfd_generic_discard_group(bfd * abfd ATTRIBUTE_UNUSED,asection * group ATTRIBUTE_UNUSED)1694 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1695 asection *group ATTRIBUTE_UNUSED)
1696 {
1697 return TRUE;
1698 }
1699