1 /* Object file "section" support for the BFD library.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004, 2005, 2006
4    Free Software Foundation, Inc.
5    Written by Cygnus Support.
6 
7 This file is part of BFD, the Binary File Descriptor library.
8 
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13 
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
22 
23 /*
24 SECTION
25 	Sections
26 
27 	The raw data contained within a BFD is maintained through the
28 	section abstraction.  A single BFD may have any number of
29 	sections.  It keeps hold of them by pointing to the first;
30 	each one points to the next in the list.
31 
32 	Sections are supported in BFD in <<section.c>>.
33 
34 @menu
35 @* Section Input::
36 @* Section Output::
37 @* typedef asection::
38 @* section prototypes::
39 @end menu
40 
41 INODE
42 Section Input, Section Output, Sections, Sections
43 SUBSECTION
44 	Section input
45 
46 	When a BFD is opened for reading, the section structures are
47 	created and attached to the BFD.
48 
49 	Each section has a name which describes the section in the
50 	outside world---for example, <<a.out>> would contain at least
51 	three sections, called <<.text>>, <<.data>> and <<.bss>>.
52 
53 	Names need not be unique; for example a COFF file may have several
54 	sections named <<.data>>.
55 
56 	Sometimes a BFD will contain more than the ``natural'' number of
57 	sections. A back end may attach other sections containing
58 	constructor data, or an application may add a section (using
59 	<<bfd_make_section>>) to the sections attached to an already open
60 	BFD. For example, the linker creates an extra section
61 	<<COMMON>> for each input file's BFD to hold information about
62 	common storage.
63 
64 	The raw data is not necessarily read in when
65 	the section descriptor is created. Some targets may leave the
66 	data in place until a <<bfd_get_section_contents>> call is
67 	made. Other back ends may read in all the data at once.  For
68 	example, an S-record file has to be read once to determine the
69 	size of the data. An IEEE-695 file doesn't contain raw data in
70 	sections, but data and relocation expressions intermixed, so
71 	the data area has to be parsed to get out the data and
72 	relocations.
73 
74 INODE
75 Section Output, typedef asection, Section Input, Sections
76 
77 SUBSECTION
78 	Section output
79 
80 	To write a new object style BFD, the various sections to be
81 	written have to be created. They are attached to the BFD in
82 	the same way as input sections; data is written to the
83 	sections using <<bfd_set_section_contents>>.
84 
85 	Any program that creates or combines sections (e.g., the assembler
86 	and linker) must use the <<asection>> fields <<output_section>> and
87 	<<output_offset>> to indicate the file sections to which each
88 	section must be written.  (If the section is being created from
89 	scratch, <<output_section>> should probably point to the section
90 	itself and <<output_offset>> should probably be zero.)
91 
92 	The data to be written comes from input sections attached
93 	(via <<output_section>> pointers) to
94 	the output sections.  The output section structure can be
95 	considered a filter for the input section: the output section
96 	determines the vma of the output data and the name, but the
97 	input section determines the offset into the output section of
98 	the data to be written.
99 
100 	E.g., to create a section "O", starting at 0x100, 0x123 long,
101 	containing two subsections, "A" at offset 0x0 (i.e., at vma
102 	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103 	structures would look like:
104 
105 |   section name          "A"
106 |     output_offset   0x00
107 |     size            0x20
108 |     output_section ----------->  section name    "O"
109 |                             |    vma             0x100
110 |   section name          "B" |    size            0x123
111 |     output_offset   0x20    |
112 |     size            0x103   |
113 |     output_section  --------|
114 
115 SUBSECTION
116 	Link orders
117 
118 	The data within a section is stored in a @dfn{link_order}.
119 	These are much like the fixups in <<gas>>.  The link_order
120 	abstraction allows a section to grow and shrink within itself.
121 
122 	A link_order knows how big it is, and which is the next
123 	link_order and where the raw data for it is; it also points to
124 	a list of relocations which apply to it.
125 
126 	The link_order is used by the linker to perform relaxing on
127 	final code.  The compiler creates code which is as big as
128 	necessary to make it work without relaxing, and the user can
129 	select whether to relax.  Sometimes relaxing takes a lot of
130 	time.  The linker runs around the relocations to see if any
131 	are attached to data which can be shrunk, if so it does it on
132 	a link_order by link_order basis.
133 
134 */
135 
136 #include "bfd.h"
137 #include "sysdep.h"
138 #include "libbfd.h"
139 #include "bfdlink.h"
140 
141 /*
142 DOCDD
143 INODE
144 typedef asection, section prototypes, Section Output, Sections
145 SUBSECTION
146 	typedef asection
147 
148 	Here is the section structure:
149 
150 CODE_FRAGMENT
151 .
152 .typedef struct bfd_section
153 .{
154 .  {* The name of the section; the name isn't a copy, the pointer is
155 .     the same as that passed to bfd_make_section.  *}
156 .  const char *name;
157 .
158 .  {* A unique sequence number.  *}
159 .  int id;
160 .
161 .  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
162 .  int index;
163 .
164 .  {* The next section in the list belonging to the BFD, or NULL.  *}
165 .  struct bfd_section *next;
166 .
167 .  {* The previous section in the list belonging to the BFD, or NULL.  *}
168 .  struct bfd_section *prev;
169 .
170 .  {* The field flags contains attributes of the section. Some
171 .     flags are read in from the object file, and some are
172 .     synthesized from other information.  *}
173 .  flagword flags;
174 .
175 .#define SEC_NO_FLAGS   0x000
176 .
177 .  {* Tells the OS to allocate space for this section when loading.
178 .     This is clear for a section containing debug information only.  *}
179 .#define SEC_ALLOC      0x001
180 .
181 .  {* Tells the OS to load the section from the file when loading.
182 .     This is clear for a .bss section.  *}
183 .#define SEC_LOAD       0x002
184 .
185 .  {* The section contains data still to be relocated, so there is
186 .     some relocation information too.  *}
187 .#define SEC_RELOC      0x004
188 .
189 .  {* A signal to the OS that the section contains read only data.  *}
190 .#define SEC_READONLY   0x008
191 .
192 .  {* The section contains code only.  *}
193 .#define SEC_CODE       0x010
194 .
195 .  {* The section contains data only.  *}
196 .#define SEC_DATA       0x020
197 .
198 .  {* The section will reside in ROM.  *}
199 .#define SEC_ROM        0x040
200 .
201 .  {* The section contains constructor information. This section
202 .     type is used by the linker to create lists of constructors and
203 .     destructors used by <<g++>>. When a back end sees a symbol
204 .     which should be used in a constructor list, it creates a new
205 .     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 .     the symbol to it, and builds a relocation. To build the lists
207 .     of constructors, all the linker has to do is catenate all the
208 .     sections called <<__CTOR_LIST__>> and relocate the data
209 .     contained within - exactly the operations it would peform on
210 .     standard data.  *}
211 .#define SEC_CONSTRUCTOR 0x080
212 .
213 .  {* The section has contents - a data section could be
214 .     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 .     <<SEC_HAS_CONTENTS>>  *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 .  {* An instruction to the linker to not output the section
219 .     even if it has information which would normally be written.  *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 .  {* The section contains thread local data.  *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 .  {* The section has GOT references.  This flag is only for the
226 .     linker, and is currently only used by the elf32-hppa back end.
227 .     It will be set if global offset table references were detected
228 .     in this section, which indicate to the linker that the section
229 .     contains PIC code, and must be handled specially when doing a
230 .     static link.  *}
231 .#define SEC_HAS_GOT_REF 0x800
232 .
233 .  {* The section contains common symbols (symbols may be defined
234 .     multiple times, the value of a symbol is the amount of
235 .     space it requires, and the largest symbol value is the one
236 .     used).  Most targets have exactly one of these (which we
237 .     translate to bfd_com_section_ptr), but ECOFF has two.  *}
238 .#define SEC_IS_COMMON 0x1000
239 .
240 .  {* The section contains only debugging information.  For
241 .     example, this is set for ELF .debug and .stab sections.
242 .     strip tests this flag to see if a section can be
243 .     discarded.  *}
244 .#define SEC_DEBUGGING 0x2000
245 .
246 .  {* The contents of this section are held in memory pointed to
247 .     by the contents field.  This is checked by bfd_get_section_contents,
248 .     and the data is retrieved from memory if appropriate.  *}
249 .#define SEC_IN_MEMORY 0x4000
250 .
251 .  {* The contents of this section are to be excluded by the
252 .     linker for executable and shared objects unless those
253 .     objects are to be further relocated.  *}
254 .#define SEC_EXCLUDE 0x8000
255 .
256 .  {* The contents of this section are to be sorted based on the sum of
257 .     the symbol and addend values specified by the associated relocation
258 .     entries.  Entries without associated relocation entries will be
259 .     appended to the end of the section in an unspecified order.  *}
260 .#define SEC_SORT_ENTRIES 0x10000
261 .
262 .  {* When linking, duplicate sections of the same name should be
263 .     discarded, rather than being combined into a single section as
264 .     is usually done.  This is similar to how common symbols are
265 .     handled.  See SEC_LINK_DUPLICATES below.  *}
266 .#define SEC_LINK_ONCE 0x20000
267 .
268 .  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
269 .     should handle duplicate sections.  *}
270 .#define SEC_LINK_DUPLICATES 0x40000
271 .
272 .  {* This value for SEC_LINK_DUPLICATES means that duplicate
273 .     sections with the same name should simply be discarded.  *}
274 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
275 .
276 .  {* This value for SEC_LINK_DUPLICATES means that the linker
277 .     should warn if there are any duplicate sections, although
278 .     it should still only link one copy.  *}
279 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
280 .
281 .  {* This value for SEC_LINK_DUPLICATES means that the linker
282 .     should warn if any duplicate sections are a different size.  *}
283 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
284 .
285 .  {* This value for SEC_LINK_DUPLICATES means that the linker
286 .     should warn if any duplicate sections contain different
287 .     contents.  *}
288 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
289 .  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
290 .
291 .  {* This section was created by the linker as part of dynamic
292 .     relocation or other arcane processing.  It is skipped when
293 .     going through the first-pass output, trusting that someone
294 .     else up the line will take care of it later.  *}
295 .#define SEC_LINKER_CREATED 0x200000
296 .
297 .  {* This section should not be subject to garbage collection.  *}
298 .#define SEC_KEEP 0x400000
299 .
300 .  {* This section contains "short" data, and should be placed
301 .     "near" the GP.  *}
302 .#define SEC_SMALL_DATA 0x800000
303 .
304 .  {* Attempt to merge identical entities in the section.
305 .     Entity size is given in the entsize field.  *}
306 .#define SEC_MERGE 0x1000000
307 .
308 .  {* If given with SEC_MERGE, entities to merge are zero terminated
309 .     strings where entsize specifies character size instead of fixed
310 .     size entries.  *}
311 .#define SEC_STRINGS 0x2000000
312 .
313 .  {* This section contains data about section groups.  *}
314 .#define SEC_GROUP 0x4000000
315 .
316 .  {* The section is a COFF shared library section.  This flag is
317 .     only for the linker.  If this type of section appears in
318 .     the input file, the linker must copy it to the output file
319 .     without changing the vma or size.  FIXME: Although this
320 .     was originally intended to be general, it really is COFF
321 .     specific (and the flag was renamed to indicate this).  It
322 .     might be cleaner to have some more general mechanism to
323 .     allow the back end to control what the linker does with
324 .     sections.  *}
325 .#define SEC_COFF_SHARED_LIBRARY 0x10000000
326 .
327 .  {* This section contains data which may be shared with other
328 .     executables or shared objects. This is for COFF only.  *}
329 .#define SEC_COFF_SHARED 0x20000000
330 .
331 .  {* When a section with this flag is being linked, then if the size of
332 .     the input section is less than a page, it should not cross a page
333 .     boundary.  If the size of the input section is one page or more,
334 .     it should be aligned on a page boundary.  This is for TI
335 .     TMS320C54X only.  *}
336 .#define SEC_TIC54X_BLOCK 0x40000000
337 .
338 .  {* Conditionally link this section; do not link if there are no
339 .     references found to any symbol in the section.  This is for TI
340 .     TMS320C54X only.  *}
341 .#define SEC_TIC54X_CLINK 0x80000000
342 .
343 .  {*  End of section flags.  *}
344 .
345 .  {* Some internal packed boolean fields.  *}
346 .
347 .  {* See the vma field.  *}
348 .  unsigned int user_set_vma : 1;
349 .
350 .  {* A mark flag used by some of the linker backends.  *}
351 .  unsigned int linker_mark : 1;
352 .
353 .  {* Another mark flag used by some of the linker backends.  Set for
354 .     output sections that have an input section.  *}
355 .  unsigned int linker_has_input : 1;
356 .
357 .  {* Mark flags used by some linker backends for garbage collection.  *}
358 .  unsigned int gc_mark : 1;
359 .  unsigned int gc_mark_from_eh : 1;
360 .
361 .  {* The following flags are used by the ELF linker. *}
362 .
363 .  {* Mark sections which have been allocated to segments.  *}
364 .  unsigned int segment_mark : 1;
365 .
366 .  {* Type of sec_info information.  *}
367 .  unsigned int sec_info_type:3;
368 .#define ELF_INFO_TYPE_NONE      0
369 .#define ELF_INFO_TYPE_STABS     1
370 .#define ELF_INFO_TYPE_MERGE     2
371 .#define ELF_INFO_TYPE_EH_FRAME  3
372 .#define ELF_INFO_TYPE_JUST_SYMS 4
373 .
374 .  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
375 .  unsigned int use_rela_p:1;
376 .
377 .  {* Bits used by various backends.  The generic code doesn't touch
378 .     these fields.  *}
379 .
380 .  {* Nonzero if this section has TLS related relocations.  *}
381 .  unsigned int has_tls_reloc:1;
382 .
383 .  {* Nonzero if this section has a gp reloc.  *}
384 .  unsigned int has_gp_reloc:1;
385 .
386 .  {* Nonzero if this section needs the relax finalize pass.  *}
387 .  unsigned int need_finalize_relax:1;
388 .
389 .  {* Whether relocations have been processed.  *}
390 .  unsigned int reloc_done : 1;
391 .
392 .  {* End of internal packed boolean fields.  *}
393 .
394 .  {*  The virtual memory address of the section - where it will be
395 .      at run time.  The symbols are relocated against this.  The
396 .      user_set_vma flag is maintained by bfd; if it's not set, the
397 .      backend can assign addresses (for example, in <<a.out>>, where
398 .      the default address for <<.data>> is dependent on the specific
399 .      target and various flags).  *}
400 .  bfd_vma vma;
401 .
402 .  {*  The load address of the section - where it would be in a
403 .      rom image; really only used for writing section header
404 .      information.  *}
405 .  bfd_vma lma;
406 .
407 .  {* The size of the section in octets, as it will be output.
408 .     Contains a value even if the section has no contents (e.g., the
409 .     size of <<.bss>>).  *}
410 .  bfd_size_type size;
411 .
412 .  {* For input sections, the original size on disk of the section, in
413 .     octets.  This field is used by the linker relaxation code.  It is
414 .     currently only set for sections where the linker relaxation scheme
415 .     doesn't cache altered section and reloc contents (stabs, eh_frame,
416 .     SEC_MERGE, some coff relaxing targets), and thus the original size
417 .     needs to be kept to read the section multiple times.
418 .     For output sections, rawsize holds the section size calculated on
419 .     a previous linker relaxation pass.  *}
420 .  bfd_size_type rawsize;
421 .
422 .  {* If this section is going to be output, then this value is the
423 .     offset in *bytes* into the output section of the first byte in the
424 .     input section (byte ==> smallest addressable unit on the
425 .     target).  In most cases, if this was going to start at the
426 .     100th octet (8-bit quantity) in the output section, this value
427 .     would be 100.  However, if the target byte size is 16 bits
428 .     (bfd_octets_per_byte is "2"), this value would be 50.  *}
429 .  bfd_vma output_offset;
430 .
431 .  {* The output section through which to map on output.  *}
432 .  struct bfd_section *output_section;
433 .
434 .  {* The alignment requirement of the section, as an exponent of 2 -
435 .     e.g., 3 aligns to 2^3 (or 8).  *}
436 .  unsigned int alignment_power;
437 .
438 .  {* If an input section, a pointer to a vector of relocation
439 .     records for the data in this section.  *}
440 .  struct reloc_cache_entry *relocation;
441 .
442 .  {* If an output section, a pointer to a vector of pointers to
443 .     relocation records for the data in this section.  *}
444 .  struct reloc_cache_entry **orelocation;
445 .
446 .  {* The number of relocation records in one of the above.  *}
447 .  unsigned reloc_count;
448 .
449 .  {* Information below is back end specific - and not always used
450 .     or updated.  *}
451 .
452 .  {* File position of section data.  *}
453 .  file_ptr filepos;
454 .
455 .  {* File position of relocation info.  *}
456 .  file_ptr rel_filepos;
457 .
458 .  {* File position of line data.  *}
459 .  file_ptr line_filepos;
460 .
461 .  {* Pointer to data for applications.  *}
462 .  void *userdata;
463 .
464 .  {* If the SEC_IN_MEMORY flag is set, this points to the actual
465 .     contents.  *}
466 .  unsigned char *contents;
467 .
468 .  {* Attached line number information.  *}
469 .  alent *lineno;
470 .
471 .  {* Number of line number records.  *}
472 .  unsigned int lineno_count;
473 .
474 .  {* Entity size for merging purposes.  *}
475 .  unsigned int entsize;
476 .
477 .  {* Points to the kept section if this section is a link-once section,
478 .     and is discarded.  *}
479 .  struct bfd_section *kept_section;
480 .
481 .  {* When a section is being output, this value changes as more
482 .     linenumbers are written out.  *}
483 .  file_ptr moving_line_filepos;
484 .
485 .  {* What the section number is in the target world.  *}
486 .  int target_index;
487 .
488 .  void *used_by_bfd;
489 .
490 .  {* If this is a constructor section then here is a list of the
491 .     relocations created to relocate items within it.  *}
492 .  struct relent_chain *constructor_chain;
493 .
494 .  {* The BFD which owns the section.  *}
495 .  bfd *owner;
496 .
497 .  {* A symbol which points at this section only.  *}
498 .  struct bfd_symbol *symbol;
499 .  struct bfd_symbol **symbol_ptr_ptr;
500 .
501 .  {* Early in the link process, map_head and map_tail are used to build
502 .     a list of input sections attached to an output section.  Later,
503 .     output sections use these fields for a list of bfd_link_order
504 .     structs.  *}
505 .  union {
506 .    struct bfd_link_order *link_order;
507 .    struct bfd_section *s;
508 .  } map_head, map_tail;
509 .} asection;
510 .
511 .{* These sections are global, and are managed by BFD.  The application
512 .   and target back end are not permitted to change the values in
513 .   these sections.  New code should use the section_ptr macros rather
514 .   than referring directly to the const sections.  The const sections
515 .   may eventually vanish.  *}
516 .#define BFD_ABS_SECTION_NAME "*ABS*"
517 .#define BFD_UND_SECTION_NAME "*UND*"
518 .#define BFD_COM_SECTION_NAME "*COM*"
519 .#define BFD_IND_SECTION_NAME "*IND*"
520 .
521 .{* The absolute section.  *}
522 .extern asection bfd_abs_section;
523 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
524 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
525 .{* Pointer to the undefined section.  *}
526 .extern asection bfd_und_section;
527 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
528 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
529 .{* Pointer to the common section.  *}
530 .extern asection bfd_com_section;
531 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
532 .{* Pointer to the indirect section.  *}
533 .extern asection bfd_ind_section;
534 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
535 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
536 .
537 .#define bfd_is_const_section(SEC)		\
538 . (   ((SEC) == bfd_abs_section_ptr)		\
539 .  || ((SEC) == bfd_und_section_ptr)		\
540 .  || ((SEC) == bfd_com_section_ptr)		\
541 .  || ((SEC) == bfd_ind_section_ptr))
542 .
543 .extern const struct bfd_symbol * const bfd_abs_symbol;
544 .extern const struct bfd_symbol * const bfd_com_symbol;
545 .extern const struct bfd_symbol * const bfd_und_symbol;
546 .extern const struct bfd_symbol * const bfd_ind_symbol;
547 .
548 .{* Macros to handle insertion and deletion of a bfd's sections.  These
549 .   only handle the list pointers, ie. do not adjust section_count,
550 .   target_index etc.  *}
551 .#define bfd_section_list_remove(ABFD, S) \
552 .  do							\
553 .    {							\
554 .      asection *_s = S;				\
555 .      asection *_next = _s->next;			\
556 .      asection *_prev = _s->prev;			\
557 .      if (_prev)					\
558 .        _prev->next = _next;				\
559 .      else						\
560 .        (ABFD)->sections = _next;			\
561 .      if (_next)					\
562 .        _next->prev = _prev;				\
563 .      else						\
564 .        (ABFD)->section_last = _prev;			\
565 .    }							\
566 .  while (0)
567 .#define bfd_section_list_append(ABFD, S) \
568 .  do							\
569 .    {							\
570 .      asection *_s = S;				\
571 .      bfd *_abfd = ABFD;				\
572 .      _s->next = NULL;					\
573 .      if (_abfd->section_last)				\
574 .        {						\
575 .          _s->prev = _abfd->section_last;		\
576 .          _abfd->section_last->next = _s;		\
577 .        }						\
578 .      else						\
579 .        {						\
580 .          _s->prev = NULL;				\
581 .          _abfd->sections = _s;			\
582 .        }						\
583 .      _abfd->section_last = _s;			\
584 .    }							\
585 .  while (0)
586 .#define bfd_section_list_prepend(ABFD, S) \
587 .  do							\
588 .    {							\
589 .      asection *_s = S;				\
590 .      bfd *_abfd = ABFD;				\
591 .      _s->prev = NULL;					\
592 .      if (_abfd->sections)				\
593 .        {						\
594 .          _s->next = _abfd->sections;			\
595 .          _abfd->sections->prev = _s;			\
596 .        }						\
597 .      else						\
598 .        {						\
599 .          _s->next = NULL;				\
600 .          _abfd->section_last = _s;			\
601 .        }						\
602 .      _abfd->sections = _s;				\
603 .    }							\
604 .  while (0)
605 .#define bfd_section_list_insert_after(ABFD, A, S) \
606 .  do							\
607 .    {							\
608 .      asection *_a = A;				\
609 .      asection *_s = S;				\
610 .      asection *_next = _a->next;			\
611 .      _s->next = _next;				\
612 .      _s->prev = _a;					\
613 .      _a->next = _s;					\
614 .      if (_next)					\
615 .        _next->prev = _s;				\
616 .      else						\
617 .        (ABFD)->section_last = _s;			\
618 .    }							\
619 .  while (0)
620 .#define bfd_section_list_insert_before(ABFD, B, S) \
621 .  do							\
622 .    {							\
623 .      asection *_b = B;				\
624 .      asection *_s = S;				\
625 .      asection *_prev = _b->prev;			\
626 .      _s->prev = _prev;				\
627 .      _s->next = _b;					\
628 .      _b->prev = _s;					\
629 .      if (_prev)					\
630 .        _prev->next = _s;				\
631 .      else						\
632 .        (ABFD)->sections = _s;				\
633 .    }							\
634 .  while (0)
635 .#define bfd_section_removed_from_list(ABFD, S) \
636 .  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
637 .
638 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, SYM_PTR, NAME, IDX)		\
639 .  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
640 .  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,				\
641 .									\
642 .  {* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh,      *}	\
643 .     0,           0,                1,       0,			\
644 .									\
645 .  {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc,       *}	\
646 .     0,            0,             0,          0,			\
647 .									\
648 .  {* has_gp_reloc, need_finalize_relax, reloc_done,                *}	\
649 .     0,            0,                   0,				\
650 .									\
651 .  {* vma, lma, size, rawsize                                       *}	\
652 .     0,   0,   0,    0,						\
653 .									\
654 .  {* output_offset, output_section,              alignment_power,  *}	\
655 .     0,             (struct bfd_section *) &SEC, 0,			\
656 .									\
657 .  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
658 .     NULL,       NULL,        0,           0,       0,			\
659 .									\
660 .  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
661 .     0,            NULL,     NULL,     NULL,   0,			\
662 .									\
663 .  {* entsize, kept_section, moving_line_filepos,		     *}	\
664 .     0,       NULL,	      0,					\
665 .									\
666 .  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
667 .     0,            NULL,        NULL,              NULL,		\
668 .									\
669 .  {* symbol,                                                       *}	\
670 .     (struct bfd_symbol *) SYM,					\
671 .									\
672 .  {* symbol_ptr_ptr,                                               *}	\
673 .     (struct bfd_symbol **) SYM_PTR,					\
674 .									\
675 .  {* map_head, map_tail                                            *}	\
676 .     { NULL }, { NULL }						\
677 .    }
678 .
679 */
680 
681 /* We use a macro to initialize the static asymbol structures because
682    traditional C does not permit us to initialize a union member while
683    gcc warns if we don't initialize it.  */
684  /* the_bfd, name, value, attr, section [, udata] */
685 #ifdef __STDC__
686 #define GLOBAL_SYM_INIT(NAME, SECTION) \
687   { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
688 #else
689 #define GLOBAL_SYM_INIT(NAME, SECTION) \
690   { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
691 #endif
692 
693 /* These symbols are global, not specific to any BFD.  Therefore, anything
694    that tries to change them is broken, and should be repaired.  */
695 
696 static const asymbol global_syms[] =
697 {
698   GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
699   GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
700   GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
701   GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
702 };
703 
704 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX)				\
705   const asymbol * const SYM = (asymbol *) &global_syms[IDX]; 		\
706   asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], &SYM,	\
707 				  NAME, IDX)
708 
709 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol,
710 	     BFD_COM_SECTION_NAME, 0);
711 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1);
712 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2);
713 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3);
714 #undef STD_SECTION
715 
716 /* Initialize an entry in the section hash table.  */
717 
718 struct bfd_hash_entry *
bfd_section_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)719 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
720 			  struct bfd_hash_table *table,
721 			  const char *string)
722 {
723   /* Allocate the structure if it has not already been allocated by a
724      subclass.  */
725   if (entry == NULL)
726     {
727       entry = (struct bfd_hash_entry *)
728 	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
729       if (entry == NULL)
730 	return entry;
731     }
732 
733   /* Call the allocation method of the superclass.  */
734   entry = bfd_hash_newfunc (entry, table, string);
735   if (entry != NULL)
736     memset (&((struct section_hash_entry *) entry)->section, 0,
737 	    sizeof (asection));
738 
739   return entry;
740 }
741 
742 #define section_hash_lookup(table, string, create, copy) \
743   ((struct section_hash_entry *) \
744    bfd_hash_lookup ((table), (string), (create), (copy)))
745 
746 /* Initializes a new section.  NEWSECT->NAME is already set.  */
747 
748 static asection *
bfd_section_init(bfd * abfd,asection * newsect)749 bfd_section_init (bfd *abfd, asection *newsect)
750 {
751   static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
752 
753   newsect->id = section_id;
754   newsect->index = abfd->section_count;
755   newsect->owner = abfd;
756 
757   /* Create a symbol whose only job is to point to this section.  This
758      is useful for things like relocs which are relative to the base
759      of a section.  */
760   newsect->symbol = bfd_make_empty_symbol (abfd);
761   if (newsect->symbol == NULL)
762     return NULL;
763 
764   newsect->symbol->name = newsect->name;
765   newsect->symbol->value = 0;
766   newsect->symbol->section = newsect;
767   newsect->symbol->flags = BSF_SECTION_SYM;
768 
769   newsect->symbol_ptr_ptr = &newsect->symbol;
770 
771   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
772     return NULL;
773 
774   section_id++;
775   abfd->section_count++;
776   bfd_section_list_append (abfd, newsect);
777   return newsect;
778 }
779 
780 /*
781 DOCDD
782 INODE
783 section prototypes,  , typedef asection, Sections
784 SUBSECTION
785 	Section prototypes
786 
787 These are the functions exported by the section handling part of BFD.
788 */
789 
790 /*
791 FUNCTION
792 	bfd_section_list_clear
793 
794 SYNOPSIS
795 	void bfd_section_list_clear (bfd *);
796 
797 DESCRIPTION
798 	Clears the section list, and also resets the section count and
799 	hash table entries.
800 */
801 
802 void
bfd_section_list_clear(bfd * abfd)803 bfd_section_list_clear (bfd *abfd)
804 {
805   abfd->sections = NULL;
806   abfd->section_last = NULL;
807   abfd->section_count = 0;
808   memset (abfd->section_htab.table, 0,
809 	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
810 }
811 
812 /*
813 FUNCTION
814 	bfd_get_section_by_name
815 
816 SYNOPSIS
817 	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
818 
819 DESCRIPTION
820 	Run through @var{abfd} and return the one of the
821 	<<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
822 	@xref{Sections}, for more information.
823 
824 	This should only be used in special cases; the normal way to process
825 	all sections of a given name is to use <<bfd_map_over_sections>> and
826 	<<strcmp>> on the name (or better yet, base it on the section flags
827 	or something else) for each section.
828 */
829 
830 asection *
bfd_get_section_by_name(bfd * abfd,const char * name)831 bfd_get_section_by_name (bfd *abfd, const char *name)
832 {
833   struct section_hash_entry *sh;
834 
835   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
836   if (sh != NULL)
837     return &sh->section;
838 
839   return NULL;
840 }
841 
842 /*
843 FUNCTION
844 	bfd_get_section_by_name_if
845 
846 SYNOPSIS
847 	asection *bfd_get_section_by_name_if
848 	  (bfd *abfd,
849 	   const char *name,
850 	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
851 	   void *obj);
852 
853 DESCRIPTION
854 	Call the provided function @var{func} for each section
855 	attached to the BFD @var{abfd} whose name matches @var{name},
856 	passing @var{obj} as an argument. The function will be called
857 	as if by
858 
859 |	func (abfd, the_section, obj);
860 
861 	It returns the first section for which @var{func} returns true,
862 	otherwise <<NULL>>.
863 
864 */
865 
866 asection *
bfd_get_section_by_name_if(bfd * abfd,const char * name,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)867 bfd_get_section_by_name_if (bfd *abfd, const char *name,
868 			    bfd_boolean (*operation) (bfd *,
869 						      asection *,
870 						      void *),
871 			    void *user_storage)
872 {
873   struct section_hash_entry *sh;
874   unsigned long hash;
875 
876   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
877   if (sh == NULL)
878     return NULL;
879 
880   hash = sh->root.hash;
881   do
882     {
883       if ((*operation) (abfd, &sh->section, user_storage))
884 	return &sh->section;
885       sh = (struct section_hash_entry *) sh->root.next;
886     }
887   while (sh != NULL && sh->root.hash == hash
888 	 && strcmp (sh->root.string, name) == 0);
889 
890   return NULL;
891 }
892 
893 /*
894 FUNCTION
895 	bfd_get_unique_section_name
896 
897 SYNOPSIS
898 	char *bfd_get_unique_section_name
899 	  (bfd *abfd, const char *templat, int *count);
900 
901 DESCRIPTION
902 	Invent a section name that is unique in @var{abfd} by tacking
903 	a dot and a digit suffix onto the original @var{templat}.  If
904 	@var{count} is non-NULL, then it specifies the first number
905 	tried as a suffix to generate a unique name.  The value
906 	pointed to by @var{count} will be incremented in this case.
907 */
908 
909 char *
bfd_get_unique_section_name(bfd * abfd,const char * templat,int * count)910 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
911 {
912   int num;
913   unsigned int len;
914   char *sname;
915 
916   len = strlen (templat);
917   sname = bfd_malloc (len + 8);
918   if (sname == NULL)
919     return NULL;
920   memcpy (sname, templat, len);
921   num = 1;
922   if (count != NULL)
923     num = *count;
924 
925   do
926     {
927       /* If we have a million sections, something is badly wrong.  */
928       if (num > 999999)
929 	abort ();
930       sprintf (sname + len, ".%d", num++);
931     }
932   while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
933 
934   if (count != NULL)
935     *count = num;
936   return sname;
937 }
938 
939 /*
940 FUNCTION
941 	bfd_make_section_old_way
942 
943 SYNOPSIS
944 	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
945 
946 DESCRIPTION
947 	Create a new empty section called @var{name}
948 	and attach it to the end of the chain of sections for the
949 	BFD @var{abfd}. An attempt to create a section with a name which
950 	is already in use returns its pointer without changing the
951 	section chain.
952 
953 	It has the funny name since this is the way it used to be
954 	before it was rewritten....
955 
956 	Possible errors are:
957 	o <<bfd_error_invalid_operation>> -
958 	If output has already started for this BFD.
959 	o <<bfd_error_no_memory>> -
960 	If memory allocation fails.
961 
962 */
963 
964 asection *
bfd_make_section_old_way(bfd * abfd,const char * name)965 bfd_make_section_old_way (bfd *abfd, const char *name)
966 {
967   struct section_hash_entry *sh;
968   asection *newsect;
969 
970   if (abfd->output_has_begun)
971     {
972       bfd_set_error (bfd_error_invalid_operation);
973       return NULL;
974     }
975 
976   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
977     return bfd_abs_section_ptr;
978 
979   if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
980     return bfd_com_section_ptr;
981 
982   if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
983     return bfd_und_section_ptr;
984 
985   if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
986     return bfd_ind_section_ptr;
987 
988   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
989   if (sh == NULL)
990     return NULL;
991 
992   newsect = &sh->section;
993   if (newsect->name != NULL)
994     {
995       /* Section already exists.  */
996       return newsect;
997     }
998 
999   newsect->name = name;
1000   return bfd_section_init (abfd, newsect);
1001 }
1002 
1003 /*
1004 FUNCTION
1005 	bfd_make_section_anyway_with_flags
1006 
1007 SYNOPSIS
1008 	asection *bfd_make_section_anyway_with_flags
1009 	  (bfd *abfd, const char *name, flagword flags);
1010 
1011 DESCRIPTION
1012    Create a new empty section called @var{name} and attach it to the end of
1013    the chain of sections for @var{abfd}.  Create a new section even if there
1014    is already a section with that name.  Also set the attributes of the
1015    new section to the value @var{flags}.
1016 
1017    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1018    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1019    o <<bfd_error_no_memory>> - If memory allocation fails.
1020 */
1021 
1022 sec_ptr
bfd_make_section_anyway_with_flags(bfd * abfd,const char * name,flagword flags)1023 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1024 				    flagword flags)
1025 {
1026   struct section_hash_entry *sh;
1027   asection *newsect;
1028 
1029   if (abfd->output_has_begun)
1030     {
1031       bfd_set_error (bfd_error_invalid_operation);
1032       return NULL;
1033     }
1034 
1035   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1036   if (sh == NULL)
1037     return NULL;
1038 
1039   newsect = &sh->section;
1040   if (newsect->name != NULL)
1041     {
1042       /* We are making a section of the same name.  Put it in the
1043 	 section hash table.  Even though we can't find it directly by a
1044 	 hash lookup, we'll be able to find the section by traversing
1045 	 sh->root.next quicker than looking at all the bfd sections.  */
1046       struct section_hash_entry *new_sh;
1047       new_sh = (struct section_hash_entry *)
1048 	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1049       if (new_sh == NULL)
1050 	return NULL;
1051 
1052       new_sh->root = sh->root;
1053       sh->root.next = &new_sh->root;
1054       newsect = &new_sh->section;
1055     }
1056 
1057   newsect->flags = flags;
1058   newsect->name = name;
1059   return bfd_section_init (abfd, newsect);
1060 }
1061 
1062 /*
1063 FUNCTION
1064 	bfd_make_section_anyway
1065 
1066 SYNOPSIS
1067 	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1068 
1069 DESCRIPTION
1070    Create a new empty section called @var{name} and attach it to the end of
1071    the chain of sections for @var{abfd}.  Create a new section even if there
1072    is already a section with that name.
1073 
1074    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1075    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1076    o <<bfd_error_no_memory>> - If memory allocation fails.
1077 */
1078 
1079 sec_ptr
bfd_make_section_anyway(bfd * abfd,const char * name)1080 bfd_make_section_anyway (bfd *abfd, const char *name)
1081 {
1082   return bfd_make_section_anyway_with_flags (abfd, name, 0);
1083 }
1084 
1085 /*
1086 FUNCTION
1087 	bfd_make_section_with_flags
1088 
1089 SYNOPSIS
1090 	asection *bfd_make_section_with_flags
1091 	  (bfd *, const char *name, flagword flags);
1092 
1093 DESCRIPTION
1094    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1095    bfd_set_error ()) without changing the section chain if there is already a
1096    section named @var{name}.  Also set the attributes of the new section to
1097    the value @var{flags}.  If there is an error, return <<NULL>> and set
1098    <<bfd_error>>.
1099 */
1100 
1101 asection *
bfd_make_section_with_flags(bfd * abfd,const char * name,flagword flags)1102 bfd_make_section_with_flags (bfd *abfd, const char *name,
1103 			     flagword flags)
1104 {
1105   struct section_hash_entry *sh;
1106   asection *newsect;
1107 
1108   if (abfd->output_has_begun)
1109     {
1110       bfd_set_error (bfd_error_invalid_operation);
1111       return NULL;
1112     }
1113 
1114   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1115       || strcmp (name, BFD_COM_SECTION_NAME) == 0
1116       || strcmp (name, BFD_UND_SECTION_NAME) == 0
1117       || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1118     return NULL;
1119 
1120   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1121   if (sh == NULL)
1122     return NULL;
1123 
1124   newsect = &sh->section;
1125   if (newsect->name != NULL)
1126     {
1127       /* Section already exists.  */
1128       return NULL;
1129     }
1130 
1131   newsect->name = name;
1132   newsect->flags = flags;
1133   return bfd_section_init (abfd, newsect);
1134 }
1135 
1136 /*
1137 FUNCTION
1138 	bfd_make_section
1139 
1140 SYNOPSIS
1141 	asection *bfd_make_section (bfd *, const char *name);
1142 
1143 DESCRIPTION
1144    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1145    bfd_set_error ()) without changing the section chain if there is already a
1146    section named @var{name}.  If there is an error, return <<NULL>> and set
1147    <<bfd_error>>.
1148 */
1149 
1150 asection *
bfd_make_section(bfd * abfd,const char * name)1151 bfd_make_section (bfd *abfd, const char *name)
1152 {
1153   return bfd_make_section_with_flags (abfd, name, 0);
1154 }
1155 
1156 /*
1157 FUNCTION
1158 	bfd_set_section_flags
1159 
1160 SYNOPSIS
1161 	bfd_boolean bfd_set_section_flags
1162 	  (bfd *abfd, asection *sec, flagword flags);
1163 
1164 DESCRIPTION
1165 	Set the attributes of the section @var{sec} in the BFD
1166 	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1167 	<<FALSE>> on error. Possible error returns are:
1168 
1169 	o <<bfd_error_invalid_operation>> -
1170 	The section cannot have one or more of the attributes
1171 	requested. For example, a .bss section in <<a.out>> may not
1172 	have the <<SEC_HAS_CONTENTS>> field set.
1173 
1174 */
1175 
1176 bfd_boolean
bfd_set_section_flags(bfd * abfd ATTRIBUTE_UNUSED,sec_ptr section,flagword flags)1177 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1178 		       sec_ptr section,
1179 		       flagword flags)
1180 {
1181   section->flags = flags;
1182   return TRUE;
1183 }
1184 
1185 /*
1186 FUNCTION
1187 	bfd_map_over_sections
1188 
1189 SYNOPSIS
1190 	void bfd_map_over_sections
1191 	  (bfd *abfd,
1192 	   void (*func) (bfd *abfd, asection *sect, void *obj),
1193 	   void *obj);
1194 
1195 DESCRIPTION
1196 	Call the provided function @var{func} for each section
1197 	attached to the BFD @var{abfd}, passing @var{obj} as an
1198 	argument. The function will be called as if by
1199 
1200 |	func (abfd, the_section, obj);
1201 
1202 	This is the preferred method for iterating over sections; an
1203 	alternative would be to use a loop:
1204 
1205 |	   section *p;
1206 |	   for (p = abfd->sections; p != NULL; p = p->next)
1207 |	      func (abfd, p, ...)
1208 
1209 */
1210 
1211 void
bfd_map_over_sections(bfd * abfd,void (* operation)(bfd *,asection *,void *),void * user_storage)1212 bfd_map_over_sections (bfd *abfd,
1213 		       void (*operation) (bfd *, asection *, void *),
1214 		       void *user_storage)
1215 {
1216   asection *sect;
1217   unsigned int i = 0;
1218 
1219   for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1220     (*operation) (abfd, sect, user_storage);
1221 
1222   if (i != abfd->section_count)	/* Debugging */
1223     abort ();
1224 }
1225 
1226 /*
1227 FUNCTION
1228 	bfd_sections_find_if
1229 
1230 SYNOPSIS
1231 	asection *bfd_sections_find_if
1232 	  (bfd *abfd,
1233 	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1234 	   void *obj);
1235 
1236 DESCRIPTION
1237 	Call the provided function @var{operation} for each section
1238 	attached to the BFD @var{abfd}, passing @var{obj} as an
1239 	argument. The function will be called as if by
1240 
1241 |	operation (abfd, the_section, obj);
1242 
1243 	It returns the first section for which @var{operation} returns true.
1244 
1245 */
1246 
1247 asection *
bfd_sections_find_if(bfd * abfd,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)1248 bfd_sections_find_if (bfd *abfd,
1249 		      bfd_boolean (*operation) (bfd *, asection *, void *),
1250 		      void *user_storage)
1251 {
1252   asection *sect;
1253 
1254   for (sect = abfd->sections; sect != NULL; sect = sect->next)
1255     if ((*operation) (abfd, sect, user_storage))
1256       break;
1257 
1258   return sect;
1259 }
1260 
1261 /*
1262 FUNCTION
1263 	bfd_set_section_size
1264 
1265 SYNOPSIS
1266 	bfd_boolean bfd_set_section_size
1267 	  (bfd *abfd, asection *sec, bfd_size_type val);
1268 
1269 DESCRIPTION
1270 	Set @var{sec} to the size @var{val}. If the operation is
1271 	ok, then <<TRUE>> is returned, else <<FALSE>>.
1272 
1273 	Possible error returns:
1274 	o <<bfd_error_invalid_operation>> -
1275 	Writing has started to the BFD, so setting the size is invalid.
1276 
1277 */
1278 
1279 bfd_boolean
bfd_set_section_size(bfd * abfd,sec_ptr ptr,bfd_size_type val)1280 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1281 {
1282   /* Once you've started writing to any section you cannot create or change
1283      the size of any others.  */
1284 
1285   if (abfd->output_has_begun)
1286     {
1287       bfd_set_error (bfd_error_invalid_operation);
1288       return FALSE;
1289     }
1290 
1291   ptr->size = val;
1292   return TRUE;
1293 }
1294 
1295 /*
1296 FUNCTION
1297 	bfd_set_section_contents
1298 
1299 SYNOPSIS
1300 	bfd_boolean bfd_set_section_contents
1301 	  (bfd *abfd, asection *section, const void *data,
1302 	   file_ptr offset, bfd_size_type count);
1303 
1304 DESCRIPTION
1305 	Sets the contents of the section @var{section} in BFD
1306 	@var{abfd} to the data starting in memory at @var{data}. The
1307 	data is written to the output section starting at offset
1308 	@var{offset} for @var{count} octets.
1309 
1310 	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1311 	returns are:
1312 	o <<bfd_error_no_contents>> -
1313 	The output section does not have the <<SEC_HAS_CONTENTS>>
1314 	attribute, so nothing can be written to it.
1315 	o and some more too
1316 
1317 	This routine is front end to the back end function
1318 	<<_bfd_set_section_contents>>.
1319 
1320 */
1321 
1322 bfd_boolean
bfd_set_section_contents(bfd * abfd,sec_ptr section,const void * location,file_ptr offset,bfd_size_type count)1323 bfd_set_section_contents (bfd *abfd,
1324 			  sec_ptr section,
1325 			  const void *location,
1326 			  file_ptr offset,
1327 			  bfd_size_type count)
1328 {
1329   bfd_size_type sz;
1330 
1331   if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1332     {
1333       bfd_set_error (bfd_error_no_contents);
1334       return FALSE;
1335     }
1336 
1337   sz = section->size;
1338   if ((bfd_size_type) offset > sz
1339       || count > sz
1340       || offset + count > sz
1341       || count != (size_t) count)
1342     {
1343       bfd_set_error (bfd_error_bad_value);
1344       return FALSE;
1345     }
1346 
1347   if (!bfd_write_p (abfd))
1348     {
1349       bfd_set_error (bfd_error_invalid_operation);
1350       return FALSE;
1351     }
1352 
1353   /* Record a copy of the data in memory if desired.  */
1354   if (section->contents
1355       && location != section->contents + offset)
1356     memcpy (section->contents + offset, location, (size_t) count);
1357 
1358   if (BFD_SEND (abfd, _bfd_set_section_contents,
1359 		(abfd, section, location, offset, count)))
1360     {
1361       abfd->output_has_begun = TRUE;
1362       return TRUE;
1363     }
1364 
1365   return FALSE;
1366 }
1367 
1368 /*
1369 FUNCTION
1370 	bfd_get_section_contents
1371 
1372 SYNOPSIS
1373 	bfd_boolean bfd_get_section_contents
1374 	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1375 	   bfd_size_type count);
1376 
1377 DESCRIPTION
1378 	Read data from @var{section} in BFD @var{abfd}
1379 	into memory starting at @var{location}. The data is read at an
1380 	offset of @var{offset} from the start of the input section,
1381 	and is read for @var{count} bytes.
1382 
1383 	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1384 	flag set are requested or if the section does not have the
1385 	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1386 	with zeroes. If no errors occur, <<TRUE>> is returned, else
1387 	<<FALSE>>.
1388 
1389 */
1390 bfd_boolean
bfd_get_section_contents(bfd * abfd,sec_ptr section,void * location,file_ptr offset,bfd_size_type count)1391 bfd_get_section_contents (bfd *abfd,
1392 			  sec_ptr section,
1393 			  void *location,
1394 			  file_ptr offset,
1395 			  bfd_size_type count)
1396 {
1397   bfd_size_type sz;
1398 
1399   if (section->flags & SEC_CONSTRUCTOR)
1400     {
1401       memset (location, 0, (size_t) count);
1402       return TRUE;
1403     }
1404 
1405   sz = section->rawsize ? section->rawsize : section->size;
1406   if ((bfd_size_type) offset > sz
1407       || count > sz
1408       || offset + count > sz
1409       || count != (size_t) count)
1410     {
1411       bfd_set_error (bfd_error_bad_value);
1412       return FALSE;
1413     }
1414 
1415   if (count == 0)
1416     /* Don't bother.  */
1417     return TRUE;
1418 
1419   if ((section->flags & SEC_HAS_CONTENTS) == 0)
1420     {
1421       memset (location, 0, (size_t) count);
1422       return TRUE;
1423     }
1424 
1425   if ((section->flags & SEC_IN_MEMORY) != 0)
1426     {
1427       memcpy (location, section->contents + offset, (size_t) count);
1428       return TRUE;
1429     }
1430 
1431   return BFD_SEND (abfd, _bfd_get_section_contents,
1432 		   (abfd, section, location, offset, count));
1433 }
1434 
1435 /*
1436 FUNCTION
1437 	bfd_malloc_and_get_section
1438 
1439 SYNOPSIS
1440 	bfd_boolean bfd_malloc_and_get_section
1441 	  (bfd *abfd, asection *section, bfd_byte **buf);
1442 
1443 DESCRIPTION
1444 	Read all data from @var{section} in BFD @var{abfd}
1445 	into a buffer, *@var{buf}, malloc'd by this function.
1446 */
1447 
1448 bfd_boolean
bfd_malloc_and_get_section(bfd * abfd,sec_ptr sec,bfd_byte ** buf)1449 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1450 {
1451   bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1452   bfd_byte *p = NULL;
1453 
1454   *buf = p;
1455   if (sz == 0)
1456     return TRUE;
1457 
1458   p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1459   if (p == NULL)
1460     return FALSE;
1461   *buf = p;
1462 
1463   return bfd_get_section_contents (abfd, sec, p, 0, sz);
1464 }
1465 /*
1466 FUNCTION
1467 	bfd_copy_private_section_data
1468 
1469 SYNOPSIS
1470 	bfd_boolean bfd_copy_private_section_data
1471 	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1472 
1473 DESCRIPTION
1474 	Copy private section information from @var{isec} in the BFD
1475 	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1476 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1477 	returns are:
1478 
1479 	o <<bfd_error_no_memory>> -
1480 	Not enough memory exists to create private data for @var{osec}.
1481 
1482 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1483 .     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1484 .		(ibfd, isection, obfd, osection))
1485 */
1486 
1487 /*
1488 FUNCTION
1489 	bfd_generic_is_group_section
1490 
1491 SYNOPSIS
1492 	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1493 
1494 DESCRIPTION
1495 	Returns TRUE if @var{sec} is a member of a group.
1496 */
1497 
1498 bfd_boolean
bfd_generic_is_group_section(bfd * abfd ATTRIBUTE_UNUSED,const asection * sec ATTRIBUTE_UNUSED)1499 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1500 			      const asection *sec ATTRIBUTE_UNUSED)
1501 {
1502   return FALSE;
1503 }
1504 
1505 /*
1506 FUNCTION
1507 	bfd_generic_discard_group
1508 
1509 SYNOPSIS
1510 	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1511 
1512 DESCRIPTION
1513 	Remove all members of @var{group} from the output.
1514 */
1515 
1516 bfd_boolean
bfd_generic_discard_group(bfd * abfd ATTRIBUTE_UNUSED,asection * group ATTRIBUTE_UNUSED)1517 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1518 			   asection *group ATTRIBUTE_UNUSED)
1519 {
1520   return TRUE;
1521 }
1522