1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23 /*
24 SECTION
25 Sections
26
27 The raw data contained within a BFD is maintained through the
28 section abstraction. A single BFD may have any number of
29 sections. It keeps hold of them by pointing to the first;
30 each one points to the next in the list.
31
32 Sections are supported in BFD in <<section.c>>.
33
34 @menu
35 @* Section Input::
36 @* Section Output::
37 @* typedef asection::
38 @* section prototypes::
39 @end menu
40
41 INODE
42 Section Input, Section Output, Sections, Sections
43 SUBSECTION
44 Section input
45
46 When a BFD is opened for reading, the section structures are
47 created and attached to the BFD.
48
49 Each section has a name which describes the section in the
50 outside world---for example, <<a.out>> would contain at least
51 three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53 Names need not be unique; for example a COFF file may have several
54 sections named <<.data>>.
55
56 Sometimes a BFD will contain more than the ``natural'' number of
57 sections. A back end may attach other sections containing
58 constructor data, or an application may add a section (using
59 <<bfd_make_section>>) to the sections attached to an already open
60 BFD. For example, the linker creates an extra section
61 <<COMMON>> for each input file's BFD to hold information about
62 common storage.
63
64 The raw data is not necessarily read in when
65 the section descriptor is created. Some targets may leave the
66 data in place until a <<bfd_get_section_contents>> call is
67 made. Other back ends may read in all the data at once. For
68 example, an S-record file has to be read once to determine the
69 size of the data. An IEEE-695 file doesn't contain raw data in
70 sections, but data and relocation expressions intermixed, so
71 the data area has to be parsed to get out the data and
72 relocations.
73
74 INODE
75 Section Output, typedef asection, Section Input, Sections
76
77 SUBSECTION
78 Section output
79
80 To write a new object style BFD, the various sections to be
81 written have to be created. They are attached to the BFD in
82 the same way as input sections; data is written to the
83 sections using <<bfd_set_section_contents>>.
84
85 Any program that creates or combines sections (e.g., the assembler
86 and linker) must use the <<asection>> fields <<output_section>> and
87 <<output_offset>> to indicate the file sections to which each
88 section must be written. (If the section is being created from
89 scratch, <<output_section>> should probably point to the section
90 itself and <<output_offset>> should probably be zero.)
91
92 The data to be written comes from input sections attached
93 (via <<output_section>> pointers) to
94 the output sections. The output section structure can be
95 considered a filter for the input section: the output section
96 determines the vma of the output data and the name, but the
97 input section determines the offset into the output section of
98 the data to be written.
99
100 E.g., to create a section "O", starting at 0x100, 0x123 long,
101 containing two subsections, "A" at offset 0x0 (i.e., at vma
102 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103 structures would look like:
104
105 | section name "A"
106 | output_offset 0x00
107 | size 0x20
108 | output_section -----------> section name "O"
109 | | vma 0x100
110 | section name "B" | size 0x123
111 | output_offset 0x20 |
112 | size 0x103 |
113 | output_section --------|
114
115 SUBSECTION
116 Link orders
117
118 The data within a section is stored in a @dfn{link_order}.
119 These are much like the fixups in <<gas>>. The link_order
120 abstraction allows a section to grow and shrink within itself.
121
122 A link_order knows how big it is, and which is the next
123 link_order and where the raw data for it is; it also points to
124 a list of relocations which apply to it.
125
126 The link_order is used by the linker to perform relaxing on
127 final code. The compiler creates code which is as big as
128 necessary to make it work without relaxing, and the user can
129 select whether to relax. Sometimes relaxing takes a lot of
130 time. The linker runs around the relocations to see if any
131 are attached to data which can be shrunk, if so it does it on
132 a link_order by link_order basis.
133
134 */
135
136 #include "bfd.h"
137 #include "sysdep.h"
138 #include "libbfd.h"
139 #include "bfdlink.h"
140
141 /*
142 DOCDD
143 INODE
144 typedef asection, section prototypes, Section Output, Sections
145 SUBSECTION
146 typedef asection
147
148 Here is the section structure:
149
150 CODE_FRAGMENT
151 .
152 .typedef struct bfd_section
153 .{
154 . {* The name of the section; the name isn't a copy, the pointer is
155 . the same as that passed to bfd_make_section. *}
156 . const char *name;
157 .
158 . {* A unique sequence number. *}
159 . int id;
160 .
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . int index;
163 .
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
166 .
167 . {* The previous section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *prev;
169 .
170 . {* The field flags contains attributes of the section. Some
171 . flags are read in from the object file, and some are
172 . synthesized from other information. *}
173 . flagword flags;
174 .
175 .#define SEC_NO_FLAGS 0x000
176 .
177 . {* Tells the OS to allocate space for this section when loading.
178 . This is clear for a section containing debug information only. *}
179 .#define SEC_ALLOC 0x001
180 .
181 . {* Tells the OS to load the section from the file when loading.
182 . This is clear for a .bss section. *}
183 .#define SEC_LOAD 0x002
184 .
185 . {* The section contains data still to be relocated, so there is
186 . some relocation information too. *}
187 .#define SEC_RELOC 0x004
188 .
189 . {* A signal to the OS that the section contains read only data. *}
190 .#define SEC_READONLY 0x008
191 .
192 . {* The section contains code only. *}
193 .#define SEC_CODE 0x010
194 .
195 . {* The section contains data only. *}
196 .#define SEC_DATA 0x020
197 .
198 . {* The section will reside in ROM. *}
199 .#define SEC_ROM 0x040
200 .
201 . {* The section contains constructor information. This section
202 . type is used by the linker to create lists of constructors and
203 . destructors used by <<g++>>. When a back end sees a symbol
204 . which should be used in a constructor list, it creates a new
205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 . the symbol to it, and builds a relocation. To build the lists
207 . of constructors, all the linker has to do is catenate all the
208 . sections called <<__CTOR_LIST__>> and relocate the data
209 . contained within - exactly the operations it would peform on
210 . standard data. *}
211 .#define SEC_CONSTRUCTOR 0x080
212 .
213 . {* The section has contents - a data section could be
214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 . <<SEC_HAS_CONTENTS>> *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 . {* An instruction to the linker to not output the section
219 . even if it has information which would normally be written. *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 . {* The section contains thread local data. *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 . {* The section has GOT references. This flag is only for the
226 . linker, and is currently only used by the elf32-hppa back end.
227 . It will be set if global offset table references were detected
228 . in this section, which indicate to the linker that the section
229 . contains PIC code, and must be handled specially when doing a
230 . static link. *}
231 .#define SEC_HAS_GOT_REF 0x800
232 .
233 . {* The section contains common symbols (symbols may be defined
234 . multiple times, the value of a symbol is the amount of
235 . space it requires, and the largest symbol value is the one
236 . used). Most targets have exactly one of these (which we
237 . translate to bfd_com_section_ptr), but ECOFF has two. *}
238 .#define SEC_IS_COMMON 0x1000
239 .
240 . {* The section contains only debugging information. For
241 . example, this is set for ELF .debug and .stab sections.
242 . strip tests this flag to see if a section can be
243 . discarded. *}
244 .#define SEC_DEBUGGING 0x2000
245 .
246 . {* The contents of this section are held in memory pointed to
247 . by the contents field. This is checked by bfd_get_section_contents,
248 . and the data is retrieved from memory if appropriate. *}
249 .#define SEC_IN_MEMORY 0x4000
250 .
251 . {* The contents of this section are to be excluded by the
252 . linker for executable and shared objects unless those
253 . objects are to be further relocated. *}
254 .#define SEC_EXCLUDE 0x8000
255 .
256 . {* The contents of this section are to be sorted based on the sum of
257 . the symbol and addend values specified by the associated relocation
258 . entries. Entries without associated relocation entries will be
259 . appended to the end of the section in an unspecified order. *}
260 .#define SEC_SORT_ENTRIES 0x10000
261 .
262 . {* When linking, duplicate sections of the same name should be
263 . discarded, rather than being combined into a single section as
264 . is usually done. This is similar to how common symbols are
265 . handled. See SEC_LINK_DUPLICATES below. *}
266 .#define SEC_LINK_ONCE 0x20000
267 .
268 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
269 . should handle duplicate sections. *}
270 .#define SEC_LINK_DUPLICATES 0x40000
271 .
272 . {* This value for SEC_LINK_DUPLICATES means that duplicate
273 . sections with the same name should simply be discarded. *}
274 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
275 .
276 . {* This value for SEC_LINK_DUPLICATES means that the linker
277 . should warn if there are any duplicate sections, although
278 . it should still only link one copy. *}
279 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
280 .
281 . {* This value for SEC_LINK_DUPLICATES means that the linker
282 . should warn if any duplicate sections are a different size. *}
283 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
284 .
285 . {* This value for SEC_LINK_DUPLICATES means that the linker
286 . should warn if any duplicate sections contain different
287 . contents. *}
288 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
289 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
290 .
291 . {* This section was created by the linker as part of dynamic
292 . relocation or other arcane processing. It is skipped when
293 . going through the first-pass output, trusting that someone
294 . else up the line will take care of it later. *}
295 .#define SEC_LINKER_CREATED 0x200000
296 .
297 . {* This section should not be subject to garbage collection. *}
298 .#define SEC_KEEP 0x400000
299 .
300 . {* This section contains "short" data, and should be placed
301 . "near" the GP. *}
302 .#define SEC_SMALL_DATA 0x800000
303 .
304 . {* Attempt to merge identical entities in the section.
305 . Entity size is given in the entsize field. *}
306 .#define SEC_MERGE 0x1000000
307 .
308 . {* If given with SEC_MERGE, entities to merge are zero terminated
309 . strings where entsize specifies character size instead of fixed
310 . size entries. *}
311 .#define SEC_STRINGS 0x2000000
312 .
313 . {* This section contains data about section groups. *}
314 .#define SEC_GROUP 0x4000000
315 .
316 . {* The section is a COFF shared library section. This flag is
317 . only for the linker. If this type of section appears in
318 . the input file, the linker must copy it to the output file
319 . without changing the vma or size. FIXME: Although this
320 . was originally intended to be general, it really is COFF
321 . specific (and the flag was renamed to indicate this). It
322 . might be cleaner to have some more general mechanism to
323 . allow the back end to control what the linker does with
324 . sections. *}
325 .#define SEC_COFF_SHARED_LIBRARY 0x10000000
326 .
327 . {* This section contains data which may be shared with other
328 . executables or shared objects. This is for COFF only. *}
329 .#define SEC_COFF_SHARED 0x20000000
330 .
331 . {* When a section with this flag is being linked, then if the size of
332 . the input section is less than a page, it should not cross a page
333 . boundary. If the size of the input section is one page or more,
334 . it should be aligned on a page boundary. This is for TI
335 . TMS320C54X only. *}
336 .#define SEC_TIC54X_BLOCK 0x40000000
337 .
338 . {* Conditionally link this section; do not link if there are no
339 . references found to any symbol in the section. This is for TI
340 . TMS320C54X only. *}
341 .#define SEC_TIC54X_CLINK 0x80000000
342 .
343 . {* End of section flags. *}
344 .
345 . {* Some internal packed boolean fields. *}
346 .
347 . {* See the vma field. *}
348 . unsigned int user_set_vma : 1;
349 .
350 . {* A mark flag used by some of the linker backends. *}
351 . unsigned int linker_mark : 1;
352 .
353 . {* Another mark flag used by some of the linker backends. Set for
354 . output sections that have an input section. *}
355 . unsigned int linker_has_input : 1;
356 .
357 . {* Mark flags used by some linker backends for garbage collection. *}
358 . unsigned int gc_mark : 1;
359 . unsigned int gc_mark_from_eh : 1;
360 .
361 . {* The following flags are used by the ELF linker. *}
362 .
363 . {* Mark sections which have been allocated to segments. *}
364 . unsigned int segment_mark : 1;
365 .
366 . {* Type of sec_info information. *}
367 . unsigned int sec_info_type:3;
368 .#define ELF_INFO_TYPE_NONE 0
369 .#define ELF_INFO_TYPE_STABS 1
370 .#define ELF_INFO_TYPE_MERGE 2
371 .#define ELF_INFO_TYPE_EH_FRAME 3
372 .#define ELF_INFO_TYPE_JUST_SYMS 4
373 .
374 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
375 . unsigned int use_rela_p:1;
376 .
377 . {* Bits used by various backends. The generic code doesn't touch
378 . these fields. *}
379 .
380 . {* Nonzero if this section has TLS related relocations. *}
381 . unsigned int has_tls_reloc:1;
382 .
383 . {* Nonzero if this section has a gp reloc. *}
384 . unsigned int has_gp_reloc:1;
385 .
386 . {* Nonzero if this section needs the relax finalize pass. *}
387 . unsigned int need_finalize_relax:1;
388 .
389 . {* Whether relocations have been processed. *}
390 . unsigned int reloc_done : 1;
391 .
392 . {* End of internal packed boolean fields. *}
393 .
394 . {* The virtual memory address of the section - where it will be
395 . at run time. The symbols are relocated against this. The
396 . user_set_vma flag is maintained by bfd; if it's not set, the
397 . backend can assign addresses (for example, in <<a.out>>, where
398 . the default address for <<.data>> is dependent on the specific
399 . target and various flags). *}
400 . bfd_vma vma;
401 .
402 . {* The load address of the section - where it would be in a
403 . rom image; really only used for writing section header
404 . information. *}
405 . bfd_vma lma;
406 .
407 . {* The size of the section in octets, as it will be output.
408 . Contains a value even if the section has no contents (e.g., the
409 . size of <<.bss>>). *}
410 . bfd_size_type size;
411 .
412 . {* For input sections, the original size on disk of the section, in
413 . octets. This field is used by the linker relaxation code. It is
414 . currently only set for sections where the linker relaxation scheme
415 . doesn't cache altered section and reloc contents (stabs, eh_frame,
416 . SEC_MERGE, some coff relaxing targets), and thus the original size
417 . needs to be kept to read the section multiple times.
418 . For output sections, rawsize holds the section size calculated on
419 . a previous linker relaxation pass. *}
420 . bfd_size_type rawsize;
421 .
422 . {* If this section is going to be output, then this value is the
423 . offset in *bytes* into the output section of the first byte in the
424 . input section (byte ==> smallest addressable unit on the
425 . target). In most cases, if this was going to start at the
426 . 100th octet (8-bit quantity) in the output section, this value
427 . would be 100. However, if the target byte size is 16 bits
428 . (bfd_octets_per_byte is "2"), this value would be 50. *}
429 . bfd_vma output_offset;
430 .
431 . {* The output section through which to map on output. *}
432 . struct bfd_section *output_section;
433 .
434 . {* The alignment requirement of the section, as an exponent of 2 -
435 . e.g., 3 aligns to 2^3 (or 8). *}
436 . unsigned int alignment_power;
437 .
438 . {* If an input section, a pointer to a vector of relocation
439 . records for the data in this section. *}
440 . struct reloc_cache_entry *relocation;
441 .
442 . {* If an output section, a pointer to a vector of pointers to
443 . relocation records for the data in this section. *}
444 . struct reloc_cache_entry **orelocation;
445 .
446 . {* The number of relocation records in one of the above. *}
447 . unsigned reloc_count;
448 .
449 . {* Information below is back end specific - and not always used
450 . or updated. *}
451 .
452 . {* File position of section data. *}
453 . file_ptr filepos;
454 .
455 . {* File position of relocation info. *}
456 . file_ptr rel_filepos;
457 .
458 . {* File position of line data. *}
459 . file_ptr line_filepos;
460 .
461 . {* Pointer to data for applications. *}
462 . void *userdata;
463 .
464 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
465 . contents. *}
466 . unsigned char *contents;
467 .
468 . {* Attached line number information. *}
469 . alent *lineno;
470 .
471 . {* Number of line number records. *}
472 . unsigned int lineno_count;
473 .
474 . {* Entity size for merging purposes. *}
475 . unsigned int entsize;
476 .
477 . {* Points to the kept section if this section is a link-once section,
478 . and is discarded. *}
479 . struct bfd_section *kept_section;
480 .
481 . {* When a section is being output, this value changes as more
482 . linenumbers are written out. *}
483 . file_ptr moving_line_filepos;
484 .
485 . {* What the section number is in the target world. *}
486 . int target_index;
487 .
488 . void *used_by_bfd;
489 .
490 . {* If this is a constructor section then here is a list of the
491 . relocations created to relocate items within it. *}
492 . struct relent_chain *constructor_chain;
493 .
494 . {* The BFD which owns the section. *}
495 . bfd *owner;
496 .
497 . {* A symbol which points at this section only. *}
498 . struct bfd_symbol *symbol;
499 . struct bfd_symbol **symbol_ptr_ptr;
500 .
501 . {* Early in the link process, map_head and map_tail are used to build
502 . a list of input sections attached to an output section. Later,
503 . output sections use these fields for a list of bfd_link_order
504 . structs. *}
505 . union {
506 . struct bfd_link_order *link_order;
507 . struct bfd_section *s;
508 . } map_head, map_tail;
509 .} asection;
510 .
511 .{* These sections are global, and are managed by BFD. The application
512 . and target back end are not permitted to change the values in
513 . these sections. New code should use the section_ptr macros rather
514 . than referring directly to the const sections. The const sections
515 . may eventually vanish. *}
516 .#define BFD_ABS_SECTION_NAME "*ABS*"
517 .#define BFD_UND_SECTION_NAME "*UND*"
518 .#define BFD_COM_SECTION_NAME "*COM*"
519 .#define BFD_IND_SECTION_NAME "*IND*"
520 .
521 .{* The absolute section. *}
522 .extern asection bfd_abs_section;
523 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
524 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
525 .{* Pointer to the undefined section. *}
526 .extern asection bfd_und_section;
527 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
528 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
529 .{* Pointer to the common section. *}
530 .extern asection bfd_com_section;
531 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
532 .{* Pointer to the indirect section. *}
533 .extern asection bfd_ind_section;
534 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
535 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
536 .
537 .#define bfd_is_const_section(SEC) \
538 . ( ((SEC) == bfd_abs_section_ptr) \
539 . || ((SEC) == bfd_und_section_ptr) \
540 . || ((SEC) == bfd_com_section_ptr) \
541 . || ((SEC) == bfd_ind_section_ptr))
542 .
543 .extern const struct bfd_symbol * const bfd_abs_symbol;
544 .extern const struct bfd_symbol * const bfd_com_symbol;
545 .extern const struct bfd_symbol * const bfd_und_symbol;
546 .extern const struct bfd_symbol * const bfd_ind_symbol;
547 .
548 .{* Macros to handle insertion and deletion of a bfd's sections. These
549 . only handle the list pointers, ie. do not adjust section_count,
550 . target_index etc. *}
551 .#define bfd_section_list_remove(ABFD, S) \
552 . do \
553 . { \
554 . asection *_s = S; \
555 . asection *_next = _s->next; \
556 . asection *_prev = _s->prev; \
557 . if (_prev) \
558 . _prev->next = _next; \
559 . else \
560 . (ABFD)->sections = _next; \
561 . if (_next) \
562 . _next->prev = _prev; \
563 . else \
564 . (ABFD)->section_last = _prev; \
565 . } \
566 . while (0)
567 .#define bfd_section_list_append(ABFD, S) \
568 . do \
569 . { \
570 . asection *_s = S; \
571 . bfd *_abfd = ABFD; \
572 . _s->next = NULL; \
573 . if (_abfd->section_last) \
574 . { \
575 . _s->prev = _abfd->section_last; \
576 . _abfd->section_last->next = _s; \
577 . } \
578 . else \
579 . { \
580 . _s->prev = NULL; \
581 . _abfd->sections = _s; \
582 . } \
583 . _abfd->section_last = _s; \
584 . } \
585 . while (0)
586 .#define bfd_section_list_prepend(ABFD, S) \
587 . do \
588 . { \
589 . asection *_s = S; \
590 . bfd *_abfd = ABFD; \
591 . _s->prev = NULL; \
592 . if (_abfd->sections) \
593 . { \
594 . _s->next = _abfd->sections; \
595 . _abfd->sections->prev = _s; \
596 . } \
597 . else \
598 . { \
599 . _s->next = NULL; \
600 . _abfd->section_last = _s; \
601 . } \
602 . _abfd->sections = _s; \
603 . } \
604 . while (0)
605 .#define bfd_section_list_insert_after(ABFD, A, S) \
606 . do \
607 . { \
608 . asection *_a = A; \
609 . asection *_s = S; \
610 . asection *_next = _a->next; \
611 . _s->next = _next; \
612 . _s->prev = _a; \
613 . _a->next = _s; \
614 . if (_next) \
615 . _next->prev = _s; \
616 . else \
617 . (ABFD)->section_last = _s; \
618 . } \
619 . while (0)
620 .#define bfd_section_list_insert_before(ABFD, B, S) \
621 . do \
622 . { \
623 . asection *_b = B; \
624 . asection *_s = S; \
625 . asection *_prev = _b->prev; \
626 . _s->prev = _prev; \
627 . _s->next = _b; \
628 . _b->prev = _s; \
629 . if (_prev) \
630 . _prev->next = _s; \
631 . else \
632 . (ABFD)->sections = _s; \
633 . } \
634 . while (0)
635 .#define bfd_section_removed_from_list(ABFD, S) \
636 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
637 .
638 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, SYM_PTR, NAME, IDX) \
639 . {* name, id, index, next, prev, flags, user_set_vma, *} \
640 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
641 . \
642 . {* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh, *} \
643 . 0, 0, 1, 0, \
644 . \
645 . {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, *} \
646 . 0, 0, 0, 0, \
647 . \
648 . {* has_gp_reloc, need_finalize_relax, reloc_done, *} \
649 . 0, 0, 0, \
650 . \
651 . {* vma, lma, size, rawsize *} \
652 . 0, 0, 0, 0, \
653 . \
654 . {* output_offset, output_section, alignment_power, *} \
655 . 0, (struct bfd_section *) &SEC, 0, \
656 . \
657 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \
658 . NULL, NULL, 0, 0, 0, \
659 . \
660 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \
661 . 0, NULL, NULL, NULL, 0, \
662 . \
663 . {* entsize, kept_section, moving_line_filepos, *} \
664 . 0, NULL, 0, \
665 . \
666 . {* target_index, used_by_bfd, constructor_chain, owner, *} \
667 . 0, NULL, NULL, NULL, \
668 . \
669 . {* symbol, *} \
670 . (struct bfd_symbol *) SYM, \
671 . \
672 . {* symbol_ptr_ptr, *} \
673 . (struct bfd_symbol **) SYM_PTR, \
674 . \
675 . {* map_head, map_tail *} \
676 . { NULL }, { NULL } \
677 . }
678 .
679 */
680
681 /* We use a macro to initialize the static asymbol structures because
682 traditional C does not permit us to initialize a union member while
683 gcc warns if we don't initialize it. */
684 /* the_bfd, name, value, attr, section [, udata] */
685 #ifdef __STDC__
686 #define GLOBAL_SYM_INIT(NAME, SECTION) \
687 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
688 #else
689 #define GLOBAL_SYM_INIT(NAME, SECTION) \
690 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
691 #endif
692
693 /* These symbols are global, not specific to any BFD. Therefore, anything
694 that tries to change them is broken, and should be repaired. */
695
696 static const asymbol global_syms[] =
697 {
698 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
699 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
700 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
701 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
702 };
703
704 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
705 const asymbol * const SYM = (asymbol *) &global_syms[IDX]; \
706 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], &SYM, \
707 NAME, IDX)
708
709 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol,
710 BFD_COM_SECTION_NAME, 0);
711 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1);
712 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2);
713 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3);
714 #undef STD_SECTION
715
716 /* Initialize an entry in the section hash table. */
717
718 struct bfd_hash_entry *
bfd_section_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)719 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
720 struct bfd_hash_table *table,
721 const char *string)
722 {
723 /* Allocate the structure if it has not already been allocated by a
724 subclass. */
725 if (entry == NULL)
726 {
727 entry = (struct bfd_hash_entry *)
728 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
729 if (entry == NULL)
730 return entry;
731 }
732
733 /* Call the allocation method of the superclass. */
734 entry = bfd_hash_newfunc (entry, table, string);
735 if (entry != NULL)
736 memset (&((struct section_hash_entry *) entry)->section, 0,
737 sizeof (asection));
738
739 return entry;
740 }
741
742 #define section_hash_lookup(table, string, create, copy) \
743 ((struct section_hash_entry *) \
744 bfd_hash_lookup ((table), (string), (create), (copy)))
745
746 /* Initializes a new section. NEWSECT->NAME is already set. */
747
748 static asection *
bfd_section_init(bfd * abfd,asection * newsect)749 bfd_section_init (bfd *abfd, asection *newsect)
750 {
751 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
752
753 newsect->id = section_id;
754 newsect->index = abfd->section_count;
755 newsect->owner = abfd;
756
757 /* Create a symbol whose only job is to point to this section. This
758 is useful for things like relocs which are relative to the base
759 of a section. */
760 newsect->symbol = bfd_make_empty_symbol (abfd);
761 if (newsect->symbol == NULL)
762 return NULL;
763
764 newsect->symbol->name = newsect->name;
765 newsect->symbol->value = 0;
766 newsect->symbol->section = newsect;
767 newsect->symbol->flags = BSF_SECTION_SYM;
768
769 newsect->symbol_ptr_ptr = &newsect->symbol;
770
771 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
772 return NULL;
773
774 section_id++;
775 abfd->section_count++;
776 bfd_section_list_append (abfd, newsect);
777 return newsect;
778 }
779
780 /*
781 DOCDD
782 INODE
783 section prototypes, , typedef asection, Sections
784 SUBSECTION
785 Section prototypes
786
787 These are the functions exported by the section handling part of BFD.
788 */
789
790 /*
791 FUNCTION
792 bfd_section_list_clear
793
794 SYNOPSIS
795 void bfd_section_list_clear (bfd *);
796
797 DESCRIPTION
798 Clears the section list, and also resets the section count and
799 hash table entries.
800 */
801
802 void
bfd_section_list_clear(bfd * abfd)803 bfd_section_list_clear (bfd *abfd)
804 {
805 abfd->sections = NULL;
806 abfd->section_last = NULL;
807 abfd->section_count = 0;
808 memset (abfd->section_htab.table, 0,
809 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
810 }
811
812 /*
813 FUNCTION
814 bfd_get_section_by_name
815
816 SYNOPSIS
817 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
818
819 DESCRIPTION
820 Run through @var{abfd} and return the one of the
821 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
822 @xref{Sections}, for more information.
823
824 This should only be used in special cases; the normal way to process
825 all sections of a given name is to use <<bfd_map_over_sections>> and
826 <<strcmp>> on the name (or better yet, base it on the section flags
827 or something else) for each section.
828 */
829
830 asection *
bfd_get_section_by_name(bfd * abfd,const char * name)831 bfd_get_section_by_name (bfd *abfd, const char *name)
832 {
833 struct section_hash_entry *sh;
834
835 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
836 if (sh != NULL)
837 return &sh->section;
838
839 return NULL;
840 }
841
842 /*
843 FUNCTION
844 bfd_get_section_by_name_if
845
846 SYNOPSIS
847 asection *bfd_get_section_by_name_if
848 (bfd *abfd,
849 const char *name,
850 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
851 void *obj);
852
853 DESCRIPTION
854 Call the provided function @var{func} for each section
855 attached to the BFD @var{abfd} whose name matches @var{name},
856 passing @var{obj} as an argument. The function will be called
857 as if by
858
859 | func (abfd, the_section, obj);
860
861 It returns the first section for which @var{func} returns true,
862 otherwise <<NULL>>.
863
864 */
865
866 asection *
bfd_get_section_by_name_if(bfd * abfd,const char * name,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)867 bfd_get_section_by_name_if (bfd *abfd, const char *name,
868 bfd_boolean (*operation) (bfd *,
869 asection *,
870 void *),
871 void *user_storage)
872 {
873 struct section_hash_entry *sh;
874 unsigned long hash;
875
876 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
877 if (sh == NULL)
878 return NULL;
879
880 hash = sh->root.hash;
881 do
882 {
883 if ((*operation) (abfd, &sh->section, user_storage))
884 return &sh->section;
885 sh = (struct section_hash_entry *) sh->root.next;
886 }
887 while (sh != NULL && sh->root.hash == hash
888 && strcmp (sh->root.string, name) == 0);
889
890 return NULL;
891 }
892
893 /*
894 FUNCTION
895 bfd_get_unique_section_name
896
897 SYNOPSIS
898 char *bfd_get_unique_section_name
899 (bfd *abfd, const char *templat, int *count);
900
901 DESCRIPTION
902 Invent a section name that is unique in @var{abfd} by tacking
903 a dot and a digit suffix onto the original @var{templat}. If
904 @var{count} is non-NULL, then it specifies the first number
905 tried as a suffix to generate a unique name. The value
906 pointed to by @var{count} will be incremented in this case.
907 */
908
909 char *
bfd_get_unique_section_name(bfd * abfd,const char * templat,int * count)910 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
911 {
912 int num;
913 unsigned int len;
914 char *sname;
915
916 len = strlen (templat);
917 sname = bfd_malloc (len + 8);
918 if (sname == NULL)
919 return NULL;
920 memcpy (sname, templat, len);
921 num = 1;
922 if (count != NULL)
923 num = *count;
924
925 do
926 {
927 /* If we have a million sections, something is badly wrong. */
928 if (num > 999999)
929 abort ();
930 sprintf (sname + len, ".%d", num++);
931 }
932 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
933
934 if (count != NULL)
935 *count = num;
936 return sname;
937 }
938
939 /*
940 FUNCTION
941 bfd_make_section_old_way
942
943 SYNOPSIS
944 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
945
946 DESCRIPTION
947 Create a new empty section called @var{name}
948 and attach it to the end of the chain of sections for the
949 BFD @var{abfd}. An attempt to create a section with a name which
950 is already in use returns its pointer without changing the
951 section chain.
952
953 It has the funny name since this is the way it used to be
954 before it was rewritten....
955
956 Possible errors are:
957 o <<bfd_error_invalid_operation>> -
958 If output has already started for this BFD.
959 o <<bfd_error_no_memory>> -
960 If memory allocation fails.
961
962 */
963
964 asection *
bfd_make_section_old_way(bfd * abfd,const char * name)965 bfd_make_section_old_way (bfd *abfd, const char *name)
966 {
967 struct section_hash_entry *sh;
968 asection *newsect;
969
970 if (abfd->output_has_begun)
971 {
972 bfd_set_error (bfd_error_invalid_operation);
973 return NULL;
974 }
975
976 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
977 return bfd_abs_section_ptr;
978
979 if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
980 return bfd_com_section_ptr;
981
982 if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
983 return bfd_und_section_ptr;
984
985 if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
986 return bfd_ind_section_ptr;
987
988 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
989 if (sh == NULL)
990 return NULL;
991
992 newsect = &sh->section;
993 if (newsect->name != NULL)
994 {
995 /* Section already exists. */
996 return newsect;
997 }
998
999 newsect->name = name;
1000 return bfd_section_init (abfd, newsect);
1001 }
1002
1003 /*
1004 FUNCTION
1005 bfd_make_section_anyway_with_flags
1006
1007 SYNOPSIS
1008 asection *bfd_make_section_anyway_with_flags
1009 (bfd *abfd, const char *name, flagword flags);
1010
1011 DESCRIPTION
1012 Create a new empty section called @var{name} and attach it to the end of
1013 the chain of sections for @var{abfd}. Create a new section even if there
1014 is already a section with that name. Also set the attributes of the
1015 new section to the value @var{flags}.
1016
1017 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1018 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1019 o <<bfd_error_no_memory>> - If memory allocation fails.
1020 */
1021
1022 sec_ptr
bfd_make_section_anyway_with_flags(bfd * abfd,const char * name,flagword flags)1023 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1024 flagword flags)
1025 {
1026 struct section_hash_entry *sh;
1027 asection *newsect;
1028
1029 if (abfd->output_has_begun)
1030 {
1031 bfd_set_error (bfd_error_invalid_operation);
1032 return NULL;
1033 }
1034
1035 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1036 if (sh == NULL)
1037 return NULL;
1038
1039 newsect = &sh->section;
1040 if (newsect->name != NULL)
1041 {
1042 /* We are making a section of the same name. Put it in the
1043 section hash table. Even though we can't find it directly by a
1044 hash lookup, we'll be able to find the section by traversing
1045 sh->root.next quicker than looking at all the bfd sections. */
1046 struct section_hash_entry *new_sh;
1047 new_sh = (struct section_hash_entry *)
1048 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1049 if (new_sh == NULL)
1050 return NULL;
1051
1052 new_sh->root = sh->root;
1053 sh->root.next = &new_sh->root;
1054 newsect = &new_sh->section;
1055 }
1056
1057 newsect->flags = flags;
1058 newsect->name = name;
1059 return bfd_section_init (abfd, newsect);
1060 }
1061
1062 /*
1063 FUNCTION
1064 bfd_make_section_anyway
1065
1066 SYNOPSIS
1067 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1068
1069 DESCRIPTION
1070 Create a new empty section called @var{name} and attach it to the end of
1071 the chain of sections for @var{abfd}. Create a new section even if there
1072 is already a section with that name.
1073
1074 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1075 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1076 o <<bfd_error_no_memory>> - If memory allocation fails.
1077 */
1078
1079 sec_ptr
bfd_make_section_anyway(bfd * abfd,const char * name)1080 bfd_make_section_anyway (bfd *abfd, const char *name)
1081 {
1082 return bfd_make_section_anyway_with_flags (abfd, name, 0);
1083 }
1084
1085 /*
1086 FUNCTION
1087 bfd_make_section_with_flags
1088
1089 SYNOPSIS
1090 asection *bfd_make_section_with_flags
1091 (bfd *, const char *name, flagword flags);
1092
1093 DESCRIPTION
1094 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1095 bfd_set_error ()) without changing the section chain if there is already a
1096 section named @var{name}. Also set the attributes of the new section to
1097 the value @var{flags}. If there is an error, return <<NULL>> and set
1098 <<bfd_error>>.
1099 */
1100
1101 asection *
bfd_make_section_with_flags(bfd * abfd,const char * name,flagword flags)1102 bfd_make_section_with_flags (bfd *abfd, const char *name,
1103 flagword flags)
1104 {
1105 struct section_hash_entry *sh;
1106 asection *newsect;
1107
1108 if (abfd->output_has_begun)
1109 {
1110 bfd_set_error (bfd_error_invalid_operation);
1111 return NULL;
1112 }
1113
1114 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1115 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1116 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1117 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1118 return NULL;
1119
1120 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1121 if (sh == NULL)
1122 return NULL;
1123
1124 newsect = &sh->section;
1125 if (newsect->name != NULL)
1126 {
1127 /* Section already exists. */
1128 return NULL;
1129 }
1130
1131 newsect->name = name;
1132 newsect->flags = flags;
1133 return bfd_section_init (abfd, newsect);
1134 }
1135
1136 /*
1137 FUNCTION
1138 bfd_make_section
1139
1140 SYNOPSIS
1141 asection *bfd_make_section (bfd *, const char *name);
1142
1143 DESCRIPTION
1144 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1145 bfd_set_error ()) without changing the section chain if there is already a
1146 section named @var{name}. If there is an error, return <<NULL>> and set
1147 <<bfd_error>>.
1148 */
1149
1150 asection *
bfd_make_section(bfd * abfd,const char * name)1151 bfd_make_section (bfd *abfd, const char *name)
1152 {
1153 return bfd_make_section_with_flags (abfd, name, 0);
1154 }
1155
1156 /*
1157 FUNCTION
1158 bfd_set_section_flags
1159
1160 SYNOPSIS
1161 bfd_boolean bfd_set_section_flags
1162 (bfd *abfd, asection *sec, flagword flags);
1163
1164 DESCRIPTION
1165 Set the attributes of the section @var{sec} in the BFD
1166 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1167 <<FALSE>> on error. Possible error returns are:
1168
1169 o <<bfd_error_invalid_operation>> -
1170 The section cannot have one or more of the attributes
1171 requested. For example, a .bss section in <<a.out>> may not
1172 have the <<SEC_HAS_CONTENTS>> field set.
1173
1174 */
1175
1176 bfd_boolean
bfd_set_section_flags(bfd * abfd ATTRIBUTE_UNUSED,sec_ptr section,flagword flags)1177 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1178 sec_ptr section,
1179 flagword flags)
1180 {
1181 section->flags = flags;
1182 return TRUE;
1183 }
1184
1185 /*
1186 FUNCTION
1187 bfd_map_over_sections
1188
1189 SYNOPSIS
1190 void bfd_map_over_sections
1191 (bfd *abfd,
1192 void (*func) (bfd *abfd, asection *sect, void *obj),
1193 void *obj);
1194
1195 DESCRIPTION
1196 Call the provided function @var{func} for each section
1197 attached to the BFD @var{abfd}, passing @var{obj} as an
1198 argument. The function will be called as if by
1199
1200 | func (abfd, the_section, obj);
1201
1202 This is the preferred method for iterating over sections; an
1203 alternative would be to use a loop:
1204
1205 | section *p;
1206 | for (p = abfd->sections; p != NULL; p = p->next)
1207 | func (abfd, p, ...)
1208
1209 */
1210
1211 void
bfd_map_over_sections(bfd * abfd,void (* operation)(bfd *,asection *,void *),void * user_storage)1212 bfd_map_over_sections (bfd *abfd,
1213 void (*operation) (bfd *, asection *, void *),
1214 void *user_storage)
1215 {
1216 asection *sect;
1217 unsigned int i = 0;
1218
1219 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1220 (*operation) (abfd, sect, user_storage);
1221
1222 if (i != abfd->section_count) /* Debugging */
1223 abort ();
1224 }
1225
1226 /*
1227 FUNCTION
1228 bfd_sections_find_if
1229
1230 SYNOPSIS
1231 asection *bfd_sections_find_if
1232 (bfd *abfd,
1233 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1234 void *obj);
1235
1236 DESCRIPTION
1237 Call the provided function @var{operation} for each section
1238 attached to the BFD @var{abfd}, passing @var{obj} as an
1239 argument. The function will be called as if by
1240
1241 | operation (abfd, the_section, obj);
1242
1243 It returns the first section for which @var{operation} returns true.
1244
1245 */
1246
1247 asection *
bfd_sections_find_if(bfd * abfd,bfd_boolean (* operation)(bfd *,asection *,void *),void * user_storage)1248 bfd_sections_find_if (bfd *abfd,
1249 bfd_boolean (*operation) (bfd *, asection *, void *),
1250 void *user_storage)
1251 {
1252 asection *sect;
1253
1254 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1255 if ((*operation) (abfd, sect, user_storage))
1256 break;
1257
1258 return sect;
1259 }
1260
1261 /*
1262 FUNCTION
1263 bfd_set_section_size
1264
1265 SYNOPSIS
1266 bfd_boolean bfd_set_section_size
1267 (bfd *abfd, asection *sec, bfd_size_type val);
1268
1269 DESCRIPTION
1270 Set @var{sec} to the size @var{val}. If the operation is
1271 ok, then <<TRUE>> is returned, else <<FALSE>>.
1272
1273 Possible error returns:
1274 o <<bfd_error_invalid_operation>> -
1275 Writing has started to the BFD, so setting the size is invalid.
1276
1277 */
1278
1279 bfd_boolean
bfd_set_section_size(bfd * abfd,sec_ptr ptr,bfd_size_type val)1280 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1281 {
1282 /* Once you've started writing to any section you cannot create or change
1283 the size of any others. */
1284
1285 if (abfd->output_has_begun)
1286 {
1287 bfd_set_error (bfd_error_invalid_operation);
1288 return FALSE;
1289 }
1290
1291 ptr->size = val;
1292 return TRUE;
1293 }
1294
1295 /*
1296 FUNCTION
1297 bfd_set_section_contents
1298
1299 SYNOPSIS
1300 bfd_boolean bfd_set_section_contents
1301 (bfd *abfd, asection *section, const void *data,
1302 file_ptr offset, bfd_size_type count);
1303
1304 DESCRIPTION
1305 Sets the contents of the section @var{section} in BFD
1306 @var{abfd} to the data starting in memory at @var{data}. The
1307 data is written to the output section starting at offset
1308 @var{offset} for @var{count} octets.
1309
1310 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1311 returns are:
1312 o <<bfd_error_no_contents>> -
1313 The output section does not have the <<SEC_HAS_CONTENTS>>
1314 attribute, so nothing can be written to it.
1315 o and some more too
1316
1317 This routine is front end to the back end function
1318 <<_bfd_set_section_contents>>.
1319
1320 */
1321
1322 bfd_boolean
bfd_set_section_contents(bfd * abfd,sec_ptr section,const void * location,file_ptr offset,bfd_size_type count)1323 bfd_set_section_contents (bfd *abfd,
1324 sec_ptr section,
1325 const void *location,
1326 file_ptr offset,
1327 bfd_size_type count)
1328 {
1329 bfd_size_type sz;
1330
1331 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1332 {
1333 bfd_set_error (bfd_error_no_contents);
1334 return FALSE;
1335 }
1336
1337 sz = section->size;
1338 if ((bfd_size_type) offset > sz
1339 || count > sz
1340 || offset + count > sz
1341 || count != (size_t) count)
1342 {
1343 bfd_set_error (bfd_error_bad_value);
1344 return FALSE;
1345 }
1346
1347 if (!bfd_write_p (abfd))
1348 {
1349 bfd_set_error (bfd_error_invalid_operation);
1350 return FALSE;
1351 }
1352
1353 /* Record a copy of the data in memory if desired. */
1354 if (section->contents
1355 && location != section->contents + offset)
1356 memcpy (section->contents + offset, location, (size_t) count);
1357
1358 if (BFD_SEND (abfd, _bfd_set_section_contents,
1359 (abfd, section, location, offset, count)))
1360 {
1361 abfd->output_has_begun = TRUE;
1362 return TRUE;
1363 }
1364
1365 return FALSE;
1366 }
1367
1368 /*
1369 FUNCTION
1370 bfd_get_section_contents
1371
1372 SYNOPSIS
1373 bfd_boolean bfd_get_section_contents
1374 (bfd *abfd, asection *section, void *location, file_ptr offset,
1375 bfd_size_type count);
1376
1377 DESCRIPTION
1378 Read data from @var{section} in BFD @var{abfd}
1379 into memory starting at @var{location}. The data is read at an
1380 offset of @var{offset} from the start of the input section,
1381 and is read for @var{count} bytes.
1382
1383 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1384 flag set are requested or if the section does not have the
1385 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1386 with zeroes. If no errors occur, <<TRUE>> is returned, else
1387 <<FALSE>>.
1388
1389 */
1390 bfd_boolean
bfd_get_section_contents(bfd * abfd,sec_ptr section,void * location,file_ptr offset,bfd_size_type count)1391 bfd_get_section_contents (bfd *abfd,
1392 sec_ptr section,
1393 void *location,
1394 file_ptr offset,
1395 bfd_size_type count)
1396 {
1397 bfd_size_type sz;
1398
1399 if (section->flags & SEC_CONSTRUCTOR)
1400 {
1401 memset (location, 0, (size_t) count);
1402 return TRUE;
1403 }
1404
1405 sz = section->rawsize ? section->rawsize : section->size;
1406 if ((bfd_size_type) offset > sz
1407 || count > sz
1408 || offset + count > sz
1409 || count != (size_t) count)
1410 {
1411 bfd_set_error (bfd_error_bad_value);
1412 return FALSE;
1413 }
1414
1415 if (count == 0)
1416 /* Don't bother. */
1417 return TRUE;
1418
1419 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1420 {
1421 memset (location, 0, (size_t) count);
1422 return TRUE;
1423 }
1424
1425 if ((section->flags & SEC_IN_MEMORY) != 0)
1426 {
1427 memcpy (location, section->contents + offset, (size_t) count);
1428 return TRUE;
1429 }
1430
1431 return BFD_SEND (abfd, _bfd_get_section_contents,
1432 (abfd, section, location, offset, count));
1433 }
1434
1435 /*
1436 FUNCTION
1437 bfd_malloc_and_get_section
1438
1439 SYNOPSIS
1440 bfd_boolean bfd_malloc_and_get_section
1441 (bfd *abfd, asection *section, bfd_byte **buf);
1442
1443 DESCRIPTION
1444 Read all data from @var{section} in BFD @var{abfd}
1445 into a buffer, *@var{buf}, malloc'd by this function.
1446 */
1447
1448 bfd_boolean
bfd_malloc_and_get_section(bfd * abfd,sec_ptr sec,bfd_byte ** buf)1449 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1450 {
1451 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1452 bfd_byte *p = NULL;
1453
1454 *buf = p;
1455 if (sz == 0)
1456 return TRUE;
1457
1458 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1459 if (p == NULL)
1460 return FALSE;
1461 *buf = p;
1462
1463 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1464 }
1465 /*
1466 FUNCTION
1467 bfd_copy_private_section_data
1468
1469 SYNOPSIS
1470 bfd_boolean bfd_copy_private_section_data
1471 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1472
1473 DESCRIPTION
1474 Copy private section information from @var{isec} in the BFD
1475 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1476 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1477 returns are:
1478
1479 o <<bfd_error_no_memory>> -
1480 Not enough memory exists to create private data for @var{osec}.
1481
1482 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1483 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1484 . (ibfd, isection, obfd, osection))
1485 */
1486
1487 /*
1488 FUNCTION
1489 bfd_generic_is_group_section
1490
1491 SYNOPSIS
1492 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1493
1494 DESCRIPTION
1495 Returns TRUE if @var{sec} is a member of a group.
1496 */
1497
1498 bfd_boolean
bfd_generic_is_group_section(bfd * abfd ATTRIBUTE_UNUSED,const asection * sec ATTRIBUTE_UNUSED)1499 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1500 const asection *sec ATTRIBUTE_UNUSED)
1501 {
1502 return FALSE;
1503 }
1504
1505 /*
1506 FUNCTION
1507 bfd_generic_discard_group
1508
1509 SYNOPSIS
1510 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1511
1512 DESCRIPTION
1513 Remove all members of @var{group} from the output.
1514 */
1515
1516 bfd_boolean
bfd_generic_discard_group(bfd * abfd ATTRIBUTE_UNUSED,asection * group ATTRIBUTE_UNUSED)1517 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1518 asection *group ATTRIBUTE_UNUSED)
1519 {
1520 return TRUE;
1521 }
1522