1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "flags.h"
35 #include "tree.h"
36 #include "real.h"
37 #include "tm_p.h"
38 #include "function.h"
39 #include "obstack.h"
40 #include "toplev.h"
41 #include "ggc.h"
42 #include "hashtab.h"
43 #include "output.h"
44 #include "target.h"
45 #include "langhooks.h"
46
47 /* obstack.[ch] explicitly declined to prototype this. */
48 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
49
50 #ifdef GATHER_STATISTICS
51 /* Statistics-gathering stuff. */
52 typedef enum
53 {
54 d_kind,
55 t_kind,
56 b_kind,
57 s_kind,
58 r_kind,
59 e_kind,
60 c_kind,
61 id_kind,
62 perm_list_kind,
63 temp_list_kind,
64 vec_kind,
65 x_kind,
66 lang_decl,
67 lang_type,
68 all_kinds
69 } tree_node_kind;
70
71 int tree_node_counts[(int) all_kinds];
72 int tree_node_sizes[(int) all_kinds];
73
74 static const char * const tree_node_kind_names[] = {
75 "decls",
76 "types",
77 "blocks",
78 "stmts",
79 "refs",
80 "exprs",
81 "constants",
82 "identifiers",
83 "perm_tree_lists",
84 "temp_tree_lists",
85 "vecs",
86 "random kinds",
87 "lang_decl kinds",
88 "lang_type kinds"
89 };
90 #endif /* GATHER_STATISTICS */
91
92 /* Unique id for next decl created. */
93 static int next_decl_uid;
94 /* Unique id for next type created. */
95 static int next_type_uid = 1;
96
97 /* Since we cannot rehash a type after it is in the table, we have to
98 keep the hash code. */
99
100 struct type_hash GTY(())
101 {
102 unsigned long hash;
103 tree type;
104 };
105
106 /* Initial size of the hash table (rounded to next prime). */
107 #define TYPE_HASH_INITIAL_SIZE 1000
108
109 /* Now here is the hash table. When recording a type, it is added to
110 the slot whose index is the hash code. Note that the hash table is
111 used for several kinds of types (function types, array types and
112 array index range types, for now). While all these live in the
113 same table, they are completely independent, and the hash code is
114 computed differently for each of these. */
115
116 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
117 htab_t type_hash_table;
118
119 static void set_type_quals PARAMS ((tree, int));
120 static void append_random_chars PARAMS ((char *));
121 static int type_hash_eq PARAMS ((const void *, const void *));
122 static hashval_t type_hash_hash PARAMS ((const void *));
123 static void print_type_hash_statistics PARAMS((void));
124 static void finish_vector_type PARAMS((tree));
125 static tree make_vector PARAMS ((enum machine_mode, tree, int));
126 static int type_hash_marked_p PARAMS ((const void *));
127
128 tree global_trees[TI_MAX];
129 tree integer_types[itk_none];
130
131 /* Init tree.c. */
132
133 void
init_ttree()134 init_ttree ()
135 {
136 /* Initialize the hash table of types. */
137 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
138 type_hash_eq, 0);
139 }
140
141
142 /* The name of the object as the assembler will see it (but before any
143 translations made by ASM_OUTPUT_LABELREF). Often this is the same
144 as DECL_NAME. It is an IDENTIFIER_NODE. */
145 tree
decl_assembler_name(decl)146 decl_assembler_name (decl)
147 tree decl;
148 {
149 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
150 (*lang_hooks.set_decl_assembler_name) (decl);
151 return DECL_CHECK (decl)->decl.assembler_name;
152 }
153
154 /* Compute the number of bytes occupied by 'node'. This routine only
155 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
156 size_t
tree_size(node)157 tree_size (node)
158 tree node;
159 {
160 enum tree_code code = TREE_CODE (node);
161
162 switch (TREE_CODE_CLASS (code))
163 {
164 case 'd': /* A decl node */
165 return sizeof (struct tree_decl);
166
167 case 't': /* a type node */
168 return sizeof (struct tree_type);
169
170 case 'b': /* a lexical block node */
171 return sizeof (struct tree_block);
172
173 case 'r': /* a reference */
174 case 'e': /* an expression */
175 case 's': /* an expression with side effects */
176 case '<': /* a comparison expression */
177 case '1': /* a unary arithmetic expression */
178 case '2': /* a binary arithmetic expression */
179 return (sizeof (struct tree_exp)
180 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
181
182 case 'c': /* a constant */
183 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
184 words is machine-dependent due to varying length of HOST_WIDE_INT,
185 which might be wider than a pointer (e.g., long long). Similarly
186 for REAL_CST, since the number of words is machine-dependent due
187 to varying size and alignment of `double'. */
188 if (code == INTEGER_CST)
189 return sizeof (struct tree_int_cst);
190 else if (code == REAL_CST)
191 return sizeof (struct tree_real_cst);
192 else
193 return (sizeof (struct tree_common)
194 + TREE_CODE_LENGTH (code) * sizeof (char *));
195
196 case 'x': /* something random, like an identifier. */
197 {
198 size_t length;
199 length = (sizeof (struct tree_common)
200 + TREE_CODE_LENGTH (code) * sizeof (char *));
201 if (code == TREE_VEC)
202 length += TREE_VEC_LENGTH (node) * sizeof (char *) - sizeof (char *);
203 return length;
204 }
205
206 default:
207 abort ();
208 }
209 }
210
211 /* Return a newly allocated node of code CODE.
212 For decl and type nodes, some other fields are initialized.
213 The rest of the node is initialized to zero.
214
215 Achoo! I got a code in the node. */
216
217 tree
make_node(code)218 make_node (code)
219 enum tree_code code;
220 {
221 tree t;
222 int type = TREE_CODE_CLASS (code);
223 size_t length;
224 #ifdef GATHER_STATISTICS
225 tree_node_kind kind;
226 #endif
227 struct tree_common ttmp;
228
229 /* We can't allocate a TREE_VEC without knowing how many elements
230 it will have. */
231 if (code == TREE_VEC)
232 abort ();
233
234 TREE_SET_CODE ((tree)&ttmp, code);
235 length = tree_size ((tree)&ttmp);
236
237 #ifdef GATHER_STATISTICS
238 switch (type)
239 {
240 case 'd': /* A decl node */
241 kind = d_kind;
242 break;
243
244 case 't': /* a type node */
245 kind = t_kind;
246 break;
247
248 case 'b': /* a lexical block */
249 kind = b_kind;
250 break;
251
252 case 's': /* an expression with side effects */
253 kind = s_kind;
254 break;
255
256 case 'r': /* a reference */
257 kind = r_kind;
258 break;
259
260 case 'e': /* an expression */
261 case '<': /* a comparison expression */
262 case '1': /* a unary arithmetic expression */
263 case '2': /* a binary arithmetic expression */
264 kind = e_kind;
265 break;
266
267 case 'c': /* a constant */
268 kind = c_kind;
269 break;
270
271 case 'x': /* something random, like an identifier. */
272 if (code == IDENTIFIER_NODE)
273 kind = id_kind;
274 else if (code == TREE_VEC)
275 kind = vec_kind;
276 else
277 kind = x_kind;
278 break;
279
280 default:
281 abort ();
282 }
283
284 tree_node_counts[(int) kind]++;
285 tree_node_sizes[(int) kind] += length;
286 #endif
287
288 t = ggc_alloc_tree (length);
289
290 memset ((PTR) t, 0, length);
291
292 TREE_SET_CODE (t, code);
293
294 switch (type)
295 {
296 case 's':
297 TREE_SIDE_EFFECTS (t) = 1;
298 TREE_TYPE (t) = void_type_node;
299 break;
300
301 case 'd':
302 if (code != FUNCTION_DECL)
303 DECL_ALIGN (t) = 1;
304 DECL_USER_ALIGN (t) = 0;
305 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
306 DECL_SOURCE_LINE (t) = lineno;
307 DECL_SOURCE_FILE (t) =
308 (input_filename) ? input_filename : "<built-in>";
309 DECL_UID (t) = next_decl_uid++;
310
311 /* We have not yet computed the alias set for this declaration. */
312 DECL_POINTER_ALIAS_SET (t) = -1;
313 break;
314
315 case 't':
316 TYPE_UID (t) = next_type_uid++;
317 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
318 TYPE_USER_ALIGN (t) = 0;
319 TYPE_MAIN_VARIANT (t) = t;
320
321 /* Default to no attributes for type, but let target change that. */
322 TYPE_ATTRIBUTES (t) = NULL_TREE;
323 (*targetm.set_default_type_attributes) (t);
324
325 /* We have not yet computed the alias set for this type. */
326 TYPE_ALIAS_SET (t) = -1;
327 break;
328
329 case 'c':
330 TREE_CONSTANT (t) = 1;
331 break;
332
333 case 'e':
334 switch (code)
335 {
336 case INIT_EXPR:
337 case MODIFY_EXPR:
338 case VA_ARG_EXPR:
339 case RTL_EXPR:
340 case PREDECREMENT_EXPR:
341 case PREINCREMENT_EXPR:
342 case POSTDECREMENT_EXPR:
343 case POSTINCREMENT_EXPR:
344 /* All of these have side-effects, no matter what their
345 operands are. */
346 TREE_SIDE_EFFECTS (t) = 1;
347 break;
348
349 default:
350 break;
351 }
352 break;
353 }
354
355 return t;
356 }
357
358 /* Return a new node with the same contents as NODE except that its
359 TREE_CHAIN is zero and it has a fresh uid. */
360
361 tree
copy_node(node)362 copy_node (node)
363 tree node;
364 {
365 tree t;
366 enum tree_code code = TREE_CODE (node);
367 size_t length;
368
369 length = tree_size (node);
370 t = ggc_alloc_tree (length);
371 memcpy (t, node, length);
372
373 TREE_CHAIN (t) = 0;
374 TREE_ASM_WRITTEN (t) = 0;
375
376 if (TREE_CODE_CLASS (code) == 'd')
377 DECL_UID (t) = next_decl_uid++;
378 else if (TREE_CODE_CLASS (code) == 't')
379 {
380 TYPE_UID (t) = next_type_uid++;
381 /* The following is so that the debug code for
382 the copy is different from the original type.
383 The two statements usually duplicate each other
384 (because they clear fields of the same union),
385 but the optimizer should catch that. */
386 TYPE_SYMTAB_POINTER (t) = 0;
387 TYPE_SYMTAB_ADDRESS (t) = 0;
388 }
389
390 return t;
391 }
392
393 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
394 For example, this can copy a list made of TREE_LIST nodes. */
395
396 tree
copy_list(list)397 copy_list (list)
398 tree list;
399 {
400 tree head;
401 tree prev, next;
402
403 if (list == 0)
404 return 0;
405
406 head = prev = copy_node (list);
407 next = TREE_CHAIN (list);
408 while (next)
409 {
410 TREE_CHAIN (prev) = copy_node (next);
411 prev = TREE_CHAIN (prev);
412 next = TREE_CHAIN (next);
413 }
414 return head;
415 }
416
417
418 /* Return a newly constructed INTEGER_CST node whose constant value
419 is specified by the two ints LOW and HI.
420 The TREE_TYPE is set to `int'.
421
422 This function should be used via the `build_int_2' macro. */
423
424 tree
build_int_2_wide(low,hi)425 build_int_2_wide (low, hi)
426 unsigned HOST_WIDE_INT low;
427 HOST_WIDE_INT hi;
428 {
429 tree t = make_node (INTEGER_CST);
430
431 TREE_INT_CST_LOW (t) = low;
432 TREE_INT_CST_HIGH (t) = hi;
433 TREE_TYPE (t) = integer_type_node;
434 return t;
435 }
436
437 /* Return a new VECTOR_CST node whose type is TYPE and whose values
438 are in a list pointed by VALS. */
439
440 tree
build_vector(type,vals)441 build_vector (type, vals)
442 tree type, vals;
443 {
444 tree v = make_node (VECTOR_CST);
445 int over1 = 0, over2 = 0;
446 tree link;
447
448 TREE_VECTOR_CST_ELTS (v) = vals;
449 TREE_TYPE (v) = type;
450
451 /* Iterate through elements and check for overflow. */
452 for (link = vals; link; link = TREE_CHAIN (link))
453 {
454 tree value = TREE_VALUE (link);
455
456 over1 |= TREE_OVERFLOW (value);
457 over2 |= TREE_CONSTANT_OVERFLOW (value);
458 }
459
460 TREE_OVERFLOW (v) = over1;
461 TREE_CONSTANT_OVERFLOW (v) = over2;
462
463 return v;
464 }
465
466 /* Return a new REAL_CST node whose type is TYPE and value is D. */
467
468 tree
build_real(type,d)469 build_real (type, d)
470 tree type;
471 REAL_VALUE_TYPE d;
472 {
473 tree v;
474 REAL_VALUE_TYPE *dp;
475 int overflow = 0;
476
477 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
478 Consider doing it via real_convert now. */
479
480 v = make_node (REAL_CST);
481 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
482 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
483
484 TREE_TYPE (v) = type;
485 TREE_REAL_CST_PTR (v) = dp;
486 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
487 return v;
488 }
489
490 /* Return a new REAL_CST node whose type is TYPE
491 and whose value is the integer value of the INTEGER_CST node I. */
492
493 REAL_VALUE_TYPE
real_value_from_int_cst(type,i)494 real_value_from_int_cst (type, i)
495 tree type ATTRIBUTE_UNUSED, i;
496 {
497 REAL_VALUE_TYPE d;
498
499 /* Clear all bits of the real value type so that we can later do
500 bitwise comparisons to see if two values are the same. */
501 memset ((char *) &d, 0, sizeof d);
502
503 if (! TREE_UNSIGNED (TREE_TYPE (i)))
504 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
505 TYPE_MODE (type));
506 else
507 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
508 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
509 return d;
510 }
511
512 /* Given a tree representing an integer constant I, return a tree
513 representing the same value as a floating-point constant of type TYPE. */
514
515 tree
build_real_from_int_cst(type,i)516 build_real_from_int_cst (type, i)
517 tree type;
518 tree i;
519 {
520 tree v;
521 int overflow = TREE_OVERFLOW (i);
522
523 v = build_real (type, real_value_from_int_cst (type, i));
524
525 TREE_OVERFLOW (v) |= overflow;
526 TREE_CONSTANT_OVERFLOW (v) |= overflow;
527 return v;
528 }
529
530 /* Return a newly constructed STRING_CST node whose value is
531 the LEN characters at STR.
532 The TREE_TYPE is not initialized. */
533
534 tree
build_string(len,str)535 build_string (len, str)
536 int len;
537 const char *str;
538 {
539 tree s = make_node (STRING_CST);
540
541 TREE_STRING_LENGTH (s) = len;
542 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
543
544 return s;
545 }
546
547 /* Return a newly constructed COMPLEX_CST node whose value is
548 specified by the real and imaginary parts REAL and IMAG.
549 Both REAL and IMAG should be constant nodes. TYPE, if specified,
550 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
551
552 tree
build_complex(type,real,imag)553 build_complex (type, real, imag)
554 tree type;
555 tree real, imag;
556 {
557 tree t = make_node (COMPLEX_CST);
558
559 TREE_REALPART (t) = real;
560 TREE_IMAGPART (t) = imag;
561 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
562 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
563 TREE_CONSTANT_OVERFLOW (t)
564 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
565 return t;
566 }
567
568 /* Build a newly constructed TREE_VEC node of length LEN. */
569
570 tree
make_tree_vec(len)571 make_tree_vec (len)
572 int len;
573 {
574 tree t;
575 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
576
577 #ifdef GATHER_STATISTICS
578 tree_node_counts[(int) vec_kind]++;
579 tree_node_sizes[(int) vec_kind] += length;
580 #endif
581
582 t = ggc_alloc_tree (length);
583
584 memset ((PTR) t, 0, length);
585 TREE_SET_CODE (t, TREE_VEC);
586 TREE_VEC_LENGTH (t) = len;
587
588 return t;
589 }
590
591 /* Return 1 if EXPR is the integer constant zero or a complex constant
592 of zero. */
593
594 int
integer_zerop(expr)595 integer_zerop (expr)
596 tree expr;
597 {
598 STRIP_NOPS (expr);
599
600 return ((TREE_CODE (expr) == INTEGER_CST
601 && ! TREE_CONSTANT_OVERFLOW (expr)
602 && TREE_INT_CST_LOW (expr) == 0
603 && TREE_INT_CST_HIGH (expr) == 0)
604 || (TREE_CODE (expr) == COMPLEX_CST
605 && integer_zerop (TREE_REALPART (expr))
606 && integer_zerop (TREE_IMAGPART (expr))));
607 }
608
609 /* Return 1 if EXPR is the integer constant one or the corresponding
610 complex constant. */
611
612 int
integer_onep(expr)613 integer_onep (expr)
614 tree expr;
615 {
616 STRIP_NOPS (expr);
617
618 return ((TREE_CODE (expr) == INTEGER_CST
619 && ! TREE_CONSTANT_OVERFLOW (expr)
620 && TREE_INT_CST_LOW (expr) == 1
621 && TREE_INT_CST_HIGH (expr) == 0)
622 || (TREE_CODE (expr) == COMPLEX_CST
623 && integer_onep (TREE_REALPART (expr))
624 && integer_zerop (TREE_IMAGPART (expr))));
625 }
626
627 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
628 it contains. Likewise for the corresponding complex constant. */
629
630 int
integer_all_onesp(expr)631 integer_all_onesp (expr)
632 tree expr;
633 {
634 int prec;
635 int uns;
636
637 STRIP_NOPS (expr);
638
639 if (TREE_CODE (expr) == COMPLEX_CST
640 && integer_all_onesp (TREE_REALPART (expr))
641 && integer_zerop (TREE_IMAGPART (expr)))
642 return 1;
643
644 else if (TREE_CODE (expr) != INTEGER_CST
645 || TREE_CONSTANT_OVERFLOW (expr))
646 return 0;
647
648 uns = TREE_UNSIGNED (TREE_TYPE (expr));
649 if (!uns)
650 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
651 && TREE_INT_CST_HIGH (expr) == -1);
652
653 /* Note that using TYPE_PRECISION here is wrong. We care about the
654 actual bits, not the (arbitrary) range of the type. */
655 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
656 if (prec >= HOST_BITS_PER_WIDE_INT)
657 {
658 HOST_WIDE_INT high_value;
659 int shift_amount;
660
661 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
662
663 if (shift_amount > HOST_BITS_PER_WIDE_INT)
664 /* Can not handle precisions greater than twice the host int size. */
665 abort ();
666 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
667 /* Shifting by the host word size is undefined according to the ANSI
668 standard, so we must handle this as a special case. */
669 high_value = -1;
670 else
671 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
672
673 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
674 && TREE_INT_CST_HIGH (expr) == high_value);
675 }
676 else
677 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
678 }
679
680 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
681 one bit on). */
682
683 int
integer_pow2p(expr)684 integer_pow2p (expr)
685 tree expr;
686 {
687 int prec;
688 HOST_WIDE_INT high, low;
689
690 STRIP_NOPS (expr);
691
692 if (TREE_CODE (expr) == COMPLEX_CST
693 && integer_pow2p (TREE_REALPART (expr))
694 && integer_zerop (TREE_IMAGPART (expr)))
695 return 1;
696
697 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
698 return 0;
699
700 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
701 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
702 high = TREE_INT_CST_HIGH (expr);
703 low = TREE_INT_CST_LOW (expr);
704
705 /* First clear all bits that are beyond the type's precision in case
706 we've been sign extended. */
707
708 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
709 ;
710 else if (prec > HOST_BITS_PER_WIDE_INT)
711 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
712 else
713 {
714 high = 0;
715 if (prec < HOST_BITS_PER_WIDE_INT)
716 low &= ~((HOST_WIDE_INT) (-1) << prec);
717 }
718
719 if (high == 0 && low == 0)
720 return 0;
721
722 return ((high == 0 && (low & (low - 1)) == 0)
723 || (low == 0 && (high & (high - 1)) == 0));
724 }
725
726 /* Return 1 if EXPR is an integer constant other than zero or a
727 complex constant other than zero. */
728
729 int
integer_nonzerop(expr)730 integer_nonzerop (expr)
731 tree expr;
732 {
733 STRIP_NOPS (expr);
734
735 return ((TREE_CODE (expr) == INTEGER_CST
736 && ! TREE_CONSTANT_OVERFLOW (expr)
737 && (TREE_INT_CST_LOW (expr) != 0
738 || TREE_INT_CST_HIGH (expr) != 0))
739 || (TREE_CODE (expr) == COMPLEX_CST
740 && (integer_nonzerop (TREE_REALPART (expr))
741 || integer_nonzerop (TREE_IMAGPART (expr)))));
742 }
743
744 /* Return the power of two represented by a tree node known to be a
745 power of two. */
746
747 int
tree_log2(expr)748 tree_log2 (expr)
749 tree expr;
750 {
751 int prec;
752 HOST_WIDE_INT high, low;
753
754 STRIP_NOPS (expr);
755
756 if (TREE_CODE (expr) == COMPLEX_CST)
757 return tree_log2 (TREE_REALPART (expr));
758
759 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
760 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
761
762 high = TREE_INT_CST_HIGH (expr);
763 low = TREE_INT_CST_LOW (expr);
764
765 /* First clear all bits that are beyond the type's precision in case
766 we've been sign extended. */
767
768 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
769 ;
770 else if (prec > HOST_BITS_PER_WIDE_INT)
771 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
772 else
773 {
774 high = 0;
775 if (prec < HOST_BITS_PER_WIDE_INT)
776 low &= ~((HOST_WIDE_INT) (-1) << prec);
777 }
778
779 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
780 : exact_log2 (low));
781 }
782
783 /* Similar, but return the largest integer Y such that 2 ** Y is less
784 than or equal to EXPR. */
785
786 int
tree_floor_log2(expr)787 tree_floor_log2 (expr)
788 tree expr;
789 {
790 int prec;
791 HOST_WIDE_INT high, low;
792
793 STRIP_NOPS (expr);
794
795 if (TREE_CODE (expr) == COMPLEX_CST)
796 return tree_log2 (TREE_REALPART (expr));
797
798 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
799 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
800
801 high = TREE_INT_CST_HIGH (expr);
802 low = TREE_INT_CST_LOW (expr);
803
804 /* First clear all bits that are beyond the type's precision in case
805 we've been sign extended. Ignore if type's precision hasn't been set
806 since what we are doing is setting it. */
807
808 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
809 ;
810 else if (prec > HOST_BITS_PER_WIDE_INT)
811 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
812 else
813 {
814 high = 0;
815 if (prec < HOST_BITS_PER_WIDE_INT)
816 low &= ~((HOST_WIDE_INT) (-1) << prec);
817 }
818
819 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
820 : floor_log2 (low));
821 }
822
823 /* Return 1 if EXPR is the real constant zero. */
824
825 int
real_zerop(expr)826 real_zerop (expr)
827 tree expr;
828 {
829 STRIP_NOPS (expr);
830
831 return ((TREE_CODE (expr) == REAL_CST
832 && ! TREE_CONSTANT_OVERFLOW (expr)
833 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
834 || (TREE_CODE (expr) == COMPLEX_CST
835 && real_zerop (TREE_REALPART (expr))
836 && real_zerop (TREE_IMAGPART (expr))));
837 }
838
839 /* Return 1 if EXPR is the real constant one in real or complex form. */
840
841 int
real_onep(expr)842 real_onep (expr)
843 tree expr;
844 {
845 STRIP_NOPS (expr);
846
847 return ((TREE_CODE (expr) == REAL_CST
848 && ! TREE_CONSTANT_OVERFLOW (expr)
849 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
850 || (TREE_CODE (expr) == COMPLEX_CST
851 && real_onep (TREE_REALPART (expr))
852 && real_zerop (TREE_IMAGPART (expr))));
853 }
854
855 /* Return 1 if EXPR is the real constant two. */
856
857 int
real_twop(expr)858 real_twop (expr)
859 tree expr;
860 {
861 STRIP_NOPS (expr);
862
863 return ((TREE_CODE (expr) == REAL_CST
864 && ! TREE_CONSTANT_OVERFLOW (expr)
865 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
866 || (TREE_CODE (expr) == COMPLEX_CST
867 && real_twop (TREE_REALPART (expr))
868 && real_zerop (TREE_IMAGPART (expr))));
869 }
870
871 /* Return 1 if EXPR is the real constant minus one. */
872
873 int
real_minus_onep(expr)874 real_minus_onep (expr)
875 tree expr;
876 {
877 STRIP_NOPS (expr);
878
879 return ((TREE_CODE (expr) == REAL_CST
880 && ! TREE_CONSTANT_OVERFLOW (expr)
881 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
882 || (TREE_CODE (expr) == COMPLEX_CST
883 && real_minus_onep (TREE_REALPART (expr))
884 && real_zerop (TREE_IMAGPART (expr))));
885 }
886
887 /* Nonzero if EXP is a constant or a cast of a constant. */
888
889 int
really_constant_p(exp)890 really_constant_p (exp)
891 tree exp;
892 {
893 /* This is not quite the same as STRIP_NOPS. It does more. */
894 while (TREE_CODE (exp) == NOP_EXPR
895 || TREE_CODE (exp) == CONVERT_EXPR
896 || TREE_CODE (exp) == NON_LVALUE_EXPR)
897 exp = TREE_OPERAND (exp, 0);
898 return TREE_CONSTANT (exp);
899 }
900
901 /* Return first list element whose TREE_VALUE is ELEM.
902 Return 0 if ELEM is not in LIST. */
903
904 tree
value_member(elem,list)905 value_member (elem, list)
906 tree elem, list;
907 {
908 while (list)
909 {
910 if (elem == TREE_VALUE (list))
911 return list;
912 list = TREE_CHAIN (list);
913 }
914 return NULL_TREE;
915 }
916
917 /* Return first list element whose TREE_PURPOSE is ELEM.
918 Return 0 if ELEM is not in LIST. */
919
920 tree
purpose_member(elem,list)921 purpose_member (elem, list)
922 tree elem, list;
923 {
924 while (list)
925 {
926 if (elem == TREE_PURPOSE (list))
927 return list;
928 list = TREE_CHAIN (list);
929 }
930 return NULL_TREE;
931 }
932
933 /* Return first list element whose BINFO_TYPE is ELEM.
934 Return 0 if ELEM is not in LIST. */
935
936 tree
binfo_member(elem,list)937 binfo_member (elem, list)
938 tree elem, list;
939 {
940 while (list)
941 {
942 if (elem == BINFO_TYPE (list))
943 return list;
944 list = TREE_CHAIN (list);
945 }
946 return NULL_TREE;
947 }
948
949 /* Return nonzero if ELEM is part of the chain CHAIN. */
950
951 int
chain_member(elem,chain)952 chain_member (elem, chain)
953 tree elem, chain;
954 {
955 while (chain)
956 {
957 if (elem == chain)
958 return 1;
959 chain = TREE_CHAIN (chain);
960 }
961
962 return 0;
963 }
964
965 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
966 chain CHAIN. This and the next function are currently unused, but
967 are retained for completeness. */
968
969 int
chain_member_value(elem,chain)970 chain_member_value (elem, chain)
971 tree elem, chain;
972 {
973 while (chain)
974 {
975 if (elem == TREE_VALUE (chain))
976 return 1;
977 chain = TREE_CHAIN (chain);
978 }
979
980 return 0;
981 }
982
983 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
984 for any piece of chain CHAIN. */
985
986 int
chain_member_purpose(elem,chain)987 chain_member_purpose (elem, chain)
988 tree elem, chain;
989 {
990 while (chain)
991 {
992 if (elem == TREE_PURPOSE (chain))
993 return 1;
994 chain = TREE_CHAIN (chain);
995 }
996
997 return 0;
998 }
999
1000 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1001 We expect a null pointer to mark the end of the chain.
1002 This is the Lisp primitive `length'. */
1003
1004 int
list_length(t)1005 list_length (t)
1006 tree t;
1007 {
1008 tree tail;
1009 int len = 0;
1010
1011 for (tail = t; tail; tail = TREE_CHAIN (tail))
1012 len++;
1013
1014 return len;
1015 }
1016
1017 /* Returns the number of FIELD_DECLs in TYPE. */
1018
1019 int
fields_length(type)1020 fields_length (type)
1021 tree type;
1022 {
1023 tree t = TYPE_FIELDS (type);
1024 int count = 0;
1025
1026 for (; t; t = TREE_CHAIN (t))
1027 if (TREE_CODE (t) == FIELD_DECL)
1028 ++count;
1029
1030 return count;
1031 }
1032
1033 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1034 by modifying the last node in chain 1 to point to chain 2.
1035 This is the Lisp primitive `nconc'. */
1036
1037 tree
chainon(op1,op2)1038 chainon (op1, op2)
1039 tree op1, op2;
1040 {
1041
1042 if (op1)
1043 {
1044 tree t1;
1045 #ifdef ENABLE_TREE_CHECKING
1046 tree t2;
1047 #endif
1048
1049 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1050 ;
1051 TREE_CHAIN (t1) = op2;
1052 #ifdef ENABLE_TREE_CHECKING
1053 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1054 if (t2 == t1)
1055 abort (); /* Circularity created. */
1056 #endif
1057 return op1;
1058 }
1059 else
1060 return op2;
1061 }
1062
1063 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1064
1065 tree
tree_last(chain)1066 tree_last (chain)
1067 tree chain;
1068 {
1069 tree next;
1070 if (chain)
1071 while ((next = TREE_CHAIN (chain)))
1072 chain = next;
1073 return chain;
1074 }
1075
1076 /* Reverse the order of elements in the chain T,
1077 and return the new head of the chain (old last element). */
1078
1079 tree
nreverse(t)1080 nreverse (t)
1081 tree t;
1082 {
1083 tree prev = 0, decl, next;
1084 for (decl = t; decl; decl = next)
1085 {
1086 next = TREE_CHAIN (decl);
1087 TREE_CHAIN (decl) = prev;
1088 prev = decl;
1089 }
1090 return prev;
1091 }
1092
1093 /* Given a chain CHAIN of tree nodes,
1094 construct and return a list of those nodes. */
1095
1096 tree
listify(chain)1097 listify (chain)
1098 tree chain;
1099 {
1100 tree result = NULL_TREE;
1101 tree in_tail = chain;
1102 tree out_tail = NULL_TREE;
1103
1104 while (in_tail)
1105 {
1106 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1107 if (out_tail)
1108 TREE_CHAIN (out_tail) = next;
1109 else
1110 result = next;
1111 out_tail = next;
1112 in_tail = TREE_CHAIN (in_tail);
1113 }
1114
1115 return result;
1116 }
1117
1118 /* Return a newly created TREE_LIST node whose
1119 purpose and value fields are PARM and VALUE. */
1120
1121 tree
build_tree_list(parm,value)1122 build_tree_list (parm, value)
1123 tree parm, value;
1124 {
1125 tree t = make_node (TREE_LIST);
1126 TREE_PURPOSE (t) = parm;
1127 TREE_VALUE (t) = value;
1128 return t;
1129 }
1130
1131 /* Return a newly created TREE_LIST node whose
1132 purpose and value fields are PARM and VALUE
1133 and whose TREE_CHAIN is CHAIN. */
1134
1135 tree
tree_cons(purpose,value,chain)1136 tree_cons (purpose, value, chain)
1137 tree purpose, value, chain;
1138 {
1139 tree node;
1140
1141 node = ggc_alloc_tree (sizeof (struct tree_list));
1142
1143 memset (node, 0, sizeof (struct tree_common));
1144
1145 #ifdef GATHER_STATISTICS
1146 tree_node_counts[(int) x_kind]++;
1147 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1148 #endif
1149
1150 TREE_SET_CODE (node, TREE_LIST);
1151 TREE_CHAIN (node) = chain;
1152 TREE_PURPOSE (node) = purpose;
1153 TREE_VALUE (node) = value;
1154 return node;
1155 }
1156
1157
1158 /* Return the size nominally occupied by an object of type TYPE
1159 when it resides in memory. The value is measured in units of bytes,
1160 and its data type is that normally used for type sizes
1161 (which is the first type created by make_signed_type or
1162 make_unsigned_type). */
1163
1164 tree
size_in_bytes(type)1165 size_in_bytes (type)
1166 tree type;
1167 {
1168 tree t;
1169
1170 if (type == error_mark_node)
1171 return integer_zero_node;
1172
1173 type = TYPE_MAIN_VARIANT (type);
1174 t = TYPE_SIZE_UNIT (type);
1175
1176 if (t == 0)
1177 {
1178 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1179 return size_zero_node;
1180 }
1181
1182 if (TREE_CODE (t) == INTEGER_CST)
1183 force_fit_type (t, 0);
1184
1185 return t;
1186 }
1187
1188 /* Return the size of TYPE (in bytes) as a wide integer
1189 or return -1 if the size can vary or is larger than an integer. */
1190
1191 HOST_WIDE_INT
int_size_in_bytes(type)1192 int_size_in_bytes (type)
1193 tree type;
1194 {
1195 tree t;
1196
1197 if (type == error_mark_node)
1198 return 0;
1199
1200 type = TYPE_MAIN_VARIANT (type);
1201 t = TYPE_SIZE_UNIT (type);
1202 if (t == 0
1203 || TREE_CODE (t) != INTEGER_CST
1204 || TREE_OVERFLOW (t)
1205 || TREE_INT_CST_HIGH (t) != 0
1206 /* If the result would appear negative, it's too big to represent. */
1207 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1208 return -1;
1209
1210 return TREE_INT_CST_LOW (t);
1211 }
1212
1213 /* Return the bit position of FIELD, in bits from the start of the record.
1214 This is a tree of type bitsizetype. */
1215
1216 tree
bit_position(field)1217 bit_position (field)
1218 tree field;
1219 {
1220
1221 return bit_from_pos (DECL_FIELD_OFFSET (field),
1222 DECL_FIELD_BIT_OFFSET (field));
1223 }
1224
1225 /* Likewise, but return as an integer. Abort if it cannot be represented
1226 in that way (since it could be a signed value, we don't have the option
1227 of returning -1 like int_size_in_byte can. */
1228
1229 HOST_WIDE_INT
int_bit_position(field)1230 int_bit_position (field)
1231 tree field;
1232 {
1233 return tree_low_cst (bit_position (field), 0);
1234 }
1235
1236 /* Return the byte position of FIELD, in bytes from the start of the record.
1237 This is a tree of type sizetype. */
1238
1239 tree
byte_position(field)1240 byte_position (field)
1241 tree field;
1242 {
1243 return byte_from_pos (DECL_FIELD_OFFSET (field),
1244 DECL_FIELD_BIT_OFFSET (field));
1245 }
1246
1247 /* Likewise, but return as an integer. Abort if it cannot be represented
1248 in that way (since it could be a signed value, we don't have the option
1249 of returning -1 like int_size_in_byte can. */
1250
1251 HOST_WIDE_INT
int_byte_position(field)1252 int_byte_position (field)
1253 tree field;
1254 {
1255 return tree_low_cst (byte_position (field), 0);
1256 }
1257
1258 /* Return the strictest alignment, in bits, that T is known to have. */
1259
1260 unsigned int
expr_align(t)1261 expr_align (t)
1262 tree t;
1263 {
1264 unsigned int align0, align1;
1265
1266 switch (TREE_CODE (t))
1267 {
1268 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1269 /* If we have conversions, we know that the alignment of the
1270 object must meet each of the alignments of the types. */
1271 align0 = expr_align (TREE_OPERAND (t, 0));
1272 align1 = TYPE_ALIGN (TREE_TYPE (t));
1273 return MAX (align0, align1);
1274
1275 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1276 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1277 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1278 /* These don't change the alignment of an object. */
1279 return expr_align (TREE_OPERAND (t, 0));
1280
1281 case COND_EXPR:
1282 /* The best we can do is say that the alignment is the least aligned
1283 of the two arms. */
1284 align0 = expr_align (TREE_OPERAND (t, 1));
1285 align1 = expr_align (TREE_OPERAND (t, 2));
1286 return MIN (align0, align1);
1287
1288 case LABEL_DECL: case CONST_DECL:
1289 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1290 if (DECL_ALIGN (t) != 0)
1291 return DECL_ALIGN (t);
1292 break;
1293
1294 case FUNCTION_DECL:
1295 return FUNCTION_BOUNDARY;
1296
1297 default:
1298 break;
1299 }
1300
1301 /* Otherwise take the alignment from that of the type. */
1302 return TYPE_ALIGN (TREE_TYPE (t));
1303 }
1304
1305 /* Return, as a tree node, the number of elements for TYPE (which is an
1306 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1307
1308 tree
array_type_nelts(type)1309 array_type_nelts (type)
1310 tree type;
1311 {
1312 tree index_type, min, max;
1313
1314 /* If they did it with unspecified bounds, then we should have already
1315 given an error about it before we got here. */
1316 if (! TYPE_DOMAIN (type))
1317 return error_mark_node;
1318
1319 index_type = TYPE_DOMAIN (type);
1320 min = TYPE_MIN_VALUE (index_type);
1321 max = TYPE_MAX_VALUE (index_type);
1322
1323 return (integer_zerop (min)
1324 ? max
1325 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1326 }
1327
1328 /* Return nonzero if arg is static -- a reference to an object in
1329 static storage. This is not the same as the C meaning of `static'. */
1330
1331 int
staticp(arg)1332 staticp (arg)
1333 tree arg;
1334 {
1335 switch (TREE_CODE (arg))
1336 {
1337 case FUNCTION_DECL:
1338 /* Nested functions aren't static, since taking their address
1339 involves a trampoline. */
1340 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1341 && ! DECL_NON_ADDR_CONST_P (arg));
1342
1343 case VAR_DECL:
1344 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1345 && ! DECL_THREAD_LOCAL (arg)
1346 && ! DECL_NON_ADDR_CONST_P (arg));
1347
1348 case CONSTRUCTOR:
1349 return TREE_STATIC (arg);
1350
1351 case LABEL_DECL:
1352 case STRING_CST:
1353 return 1;
1354
1355 /* If we are referencing a bitfield, we can't evaluate an
1356 ADDR_EXPR at compile time and so it isn't a constant. */
1357 case COMPONENT_REF:
1358 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1359 && staticp (TREE_OPERAND (arg, 0)));
1360
1361 case BIT_FIELD_REF:
1362 return 0;
1363
1364 #if 0
1365 /* This case is technically correct, but results in setting
1366 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1367 compile time. */
1368 case INDIRECT_REF:
1369 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1370 #endif
1371
1372 case ARRAY_REF:
1373 case ARRAY_RANGE_REF:
1374 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1375 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1376 return staticp (TREE_OPERAND (arg, 0));
1377
1378 default:
1379 if ((unsigned int) TREE_CODE (arg)
1380 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1381 return (*lang_hooks.staticp) (arg);
1382 else
1383 return 0;
1384 }
1385 }
1386
1387 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1388 Do this to any expression which may be used in more than one place,
1389 but must be evaluated only once.
1390
1391 Normally, expand_expr would reevaluate the expression each time.
1392 Calling save_expr produces something that is evaluated and recorded
1393 the first time expand_expr is called on it. Subsequent calls to
1394 expand_expr just reuse the recorded value.
1395
1396 The call to expand_expr that generates code that actually computes
1397 the value is the first call *at compile time*. Subsequent calls
1398 *at compile time* generate code to use the saved value.
1399 This produces correct result provided that *at run time* control
1400 always flows through the insns made by the first expand_expr
1401 before reaching the other places where the save_expr was evaluated.
1402 You, the caller of save_expr, must make sure this is so.
1403
1404 Constants, and certain read-only nodes, are returned with no
1405 SAVE_EXPR because that is safe. Expressions containing placeholders
1406 are not touched; see tree.def for an explanation of what these
1407 are used for. */
1408
1409 tree
save_expr(expr)1410 save_expr (expr)
1411 tree expr;
1412 {
1413 tree t = fold (expr);
1414 tree inner;
1415
1416 /* We don't care about whether this can be used as an lvalue in this
1417 context. */
1418 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1419 t = TREE_OPERAND (t, 0);
1420
1421 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1422 a constant, it will be more efficient to not make another SAVE_EXPR since
1423 it will allow better simplification and GCSE will be able to merge the
1424 computations if they actualy occur. */
1425 for (inner = t;
1426 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1427 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1428 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1429 inner = TREE_OPERAND (inner, 0))
1430 ;
1431
1432 /* If the tree evaluates to a constant, then we don't want to hide that
1433 fact (i.e. this allows further folding, and direct checks for constants).
1434 However, a read-only object that has side effects cannot be bypassed.
1435 Since it is no problem to reevaluate literals, we just return the
1436 literal node. */
1437 if (TREE_CONSTANT (inner)
1438 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1439 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1440 return t;
1441
1442 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1443 it means that the size or offset of some field of an object depends on
1444 the value within another field.
1445
1446 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1447 and some variable since it would then need to be both evaluated once and
1448 evaluated more than once. Front-ends must assure this case cannot
1449 happen by surrounding any such subexpressions in their own SAVE_EXPR
1450 and forcing evaluation at the proper time. */
1451 if (contains_placeholder_p (t))
1452 return t;
1453
1454 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1455
1456 /* This expression might be placed ahead of a jump to ensure that the
1457 value was computed on both sides of the jump. So make sure it isn't
1458 eliminated as dead. */
1459 TREE_SIDE_EFFECTS (t) = 1;
1460 TREE_READONLY (t) = 1;
1461 return t;
1462 }
1463
1464 /* Arrange for an expression to be expanded multiple independent
1465 times. This is useful for cleanup actions, as the backend can
1466 expand them multiple times in different places. */
1467
1468 tree
unsave_expr(expr)1469 unsave_expr (expr)
1470 tree expr;
1471 {
1472 tree t;
1473
1474 /* If this is already protected, no sense in protecting it again. */
1475 if (TREE_CODE (expr) == UNSAVE_EXPR)
1476 return expr;
1477
1478 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1479 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1480 return t;
1481 }
1482
1483 /* Returns the index of the first non-tree operand for CODE, or the number
1484 of operands if all are trees. */
1485
1486 int
first_rtl_op(code)1487 first_rtl_op (code)
1488 enum tree_code code;
1489 {
1490 switch (code)
1491 {
1492 case SAVE_EXPR:
1493 return 2;
1494 case GOTO_SUBROUTINE_EXPR:
1495 case RTL_EXPR:
1496 return 0;
1497 case WITH_CLEANUP_EXPR:
1498 return 2;
1499 case METHOD_CALL_EXPR:
1500 return 3;
1501 default:
1502 return TREE_CODE_LENGTH (code);
1503 }
1504 }
1505
1506 /* Return which tree structure is used by T. */
1507
1508 enum tree_node_structure_enum
tree_node_structure(t)1509 tree_node_structure (t)
1510 tree t;
1511 {
1512 enum tree_code code = TREE_CODE (t);
1513
1514 switch (TREE_CODE_CLASS (code))
1515 {
1516 case 'd': return TS_DECL;
1517 case 't': return TS_TYPE;
1518 case 'b': return TS_BLOCK;
1519 case 'r': case '<': case '1': case '2': case 'e': case 's':
1520 return TS_EXP;
1521 default: /* 'c' and 'x' */
1522 break;
1523 }
1524 switch (code)
1525 {
1526 /* 'c' cases. */
1527 case INTEGER_CST: return TS_INT_CST;
1528 case REAL_CST: return TS_REAL_CST;
1529 case COMPLEX_CST: return TS_COMPLEX;
1530 case VECTOR_CST: return TS_VECTOR;
1531 case STRING_CST: return TS_STRING;
1532 /* 'x' cases. */
1533 case ERROR_MARK: return TS_COMMON;
1534 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1535 case TREE_LIST: return TS_LIST;
1536 case TREE_VEC: return TS_VEC;
1537 case PLACEHOLDER_EXPR: return TS_COMMON;
1538
1539 default:
1540 abort ();
1541 }
1542 }
1543
1544 /* Perform any modifications to EXPR required when it is unsaved. Does
1545 not recurse into EXPR's subtrees. */
1546
1547 void
unsave_expr_1(expr)1548 unsave_expr_1 (expr)
1549 tree expr;
1550 {
1551 switch (TREE_CODE (expr))
1552 {
1553 case SAVE_EXPR:
1554 if (! SAVE_EXPR_PERSISTENT_P (expr))
1555 SAVE_EXPR_RTL (expr) = 0;
1556 break;
1557
1558 case TARGET_EXPR:
1559 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1560 It's OK for this to happen if it was part of a subtree that
1561 isn't immediately expanded, such as operand 2 of another
1562 TARGET_EXPR. */
1563 if (TREE_OPERAND (expr, 1))
1564 break;
1565
1566 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1567 TREE_OPERAND (expr, 3) = NULL_TREE;
1568 break;
1569
1570 case RTL_EXPR:
1571 /* I don't yet know how to emit a sequence multiple times. */
1572 if (RTL_EXPR_SEQUENCE (expr) != 0)
1573 abort ();
1574 break;
1575
1576 default:
1577 break;
1578 }
1579 }
1580
1581 /* Default lang hook for "unsave_expr_now". */
1582
1583 tree
lhd_unsave_expr_now(expr)1584 lhd_unsave_expr_now (expr)
1585 tree expr;
1586 {
1587 enum tree_code code;
1588
1589 /* There's nothing to do for NULL_TREE. */
1590 if (expr == 0)
1591 return expr;
1592
1593 unsave_expr_1 (expr);
1594
1595 code = TREE_CODE (expr);
1596 switch (TREE_CODE_CLASS (code))
1597 {
1598 case 'c': /* a constant */
1599 case 't': /* a type node */
1600 case 'd': /* A decl node */
1601 case 'b': /* A block node */
1602 break;
1603
1604 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1605 if (code == TREE_LIST)
1606 {
1607 lhd_unsave_expr_now (TREE_VALUE (expr));
1608 lhd_unsave_expr_now (TREE_CHAIN (expr));
1609 }
1610 break;
1611
1612 case 'e': /* an expression */
1613 case 'r': /* a reference */
1614 case 's': /* an expression with side effects */
1615 case '<': /* a comparison expression */
1616 case '2': /* a binary arithmetic expression */
1617 case '1': /* a unary arithmetic expression */
1618 {
1619 int i;
1620
1621 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1622 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1623 }
1624 break;
1625
1626 default:
1627 abort ();
1628 }
1629
1630 return expr;
1631 }
1632
1633 /* Return 0 if it is safe to evaluate EXPR multiple times,
1634 return 1 if it is safe if EXPR is unsaved afterward, or
1635 return 2 if it is completely unsafe.
1636
1637 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1638 an expression tree, so that it safe to unsave them and the surrounding
1639 context will be correct.
1640
1641 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1642 occasionally across the whole of a function. It is therefore only
1643 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1644 below the UNSAVE_EXPR.
1645
1646 RTL_EXPRs consume their rtl during evaluation. It is therefore
1647 never possible to unsave them. */
1648
1649 int
unsafe_for_reeval(expr)1650 unsafe_for_reeval (expr)
1651 tree expr;
1652 {
1653 int unsafeness = 0;
1654 enum tree_code code;
1655 int i, tmp, tmp2;
1656 tree exp;
1657 int first_rtl;
1658
1659 if (expr == NULL_TREE)
1660 return 1;
1661
1662 code = TREE_CODE (expr);
1663 first_rtl = first_rtl_op (code);
1664
1665 switch (code)
1666 {
1667 case SAVE_EXPR:
1668 case RTL_EXPR:
1669 return 2;
1670
1671 case TREE_LIST:
1672 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1673 {
1674 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1675 unsafeness = MAX (tmp, unsafeness);
1676 }
1677
1678 return unsafeness;
1679
1680 case CALL_EXPR:
1681 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1682 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1683 return MAX (MAX (tmp, 1), tmp2);
1684
1685 case TARGET_EXPR:
1686 unsafeness = 1;
1687 break;
1688
1689 case EXIT_BLOCK_EXPR:
1690 /* EXIT_BLOCK_LABELED_BLOCK, a.k.a. TREE_OPERAND (expr, 0), holds
1691 a reference to an ancestor LABELED_BLOCK, so we need to avoid
1692 unbounded recursion in the 'e' traversal code below. */
1693 exp = EXIT_BLOCK_RETURN (expr);
1694 return exp ? unsafe_for_reeval (exp) : 0;
1695
1696 default:
1697 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1698 if (tmp >= 0)
1699 return tmp;
1700 break;
1701 }
1702
1703 switch (TREE_CODE_CLASS (code))
1704 {
1705 case 'c': /* a constant */
1706 case 't': /* a type node */
1707 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1708 case 'd': /* A decl node */
1709 case 'b': /* A block node */
1710 return 0;
1711
1712 case 'e': /* an expression */
1713 case 'r': /* a reference */
1714 case 's': /* an expression with side effects */
1715 case '<': /* a comparison expression */
1716 case '2': /* a binary arithmetic expression */
1717 case '1': /* a unary arithmetic expression */
1718 for (i = first_rtl - 1; i >= 0; i--)
1719 {
1720 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1721 unsafeness = MAX (tmp, unsafeness);
1722 }
1723
1724 return unsafeness;
1725
1726 default:
1727 return 2;
1728 }
1729 }
1730
1731 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1732 or offset that depends on a field within a record. */
1733
1734 int
contains_placeholder_p(exp)1735 contains_placeholder_p (exp)
1736 tree exp;
1737 {
1738 enum tree_code code;
1739 int result;
1740
1741 if (!exp)
1742 return 0;
1743
1744 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1745 in it since it is supplying a value for it. */
1746 code = TREE_CODE (exp);
1747 if (code == WITH_RECORD_EXPR)
1748 return 0;
1749 else if (code == PLACEHOLDER_EXPR)
1750 return 1;
1751
1752 switch (TREE_CODE_CLASS (code))
1753 {
1754 case 'r':
1755 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1756 position computations since they will be converted into a
1757 WITH_RECORD_EXPR involving the reference, which will assume
1758 here will be valid. */
1759 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1760
1761 case 'x':
1762 if (code == TREE_LIST)
1763 return (contains_placeholder_p (TREE_VALUE (exp))
1764 || (TREE_CHAIN (exp) != 0
1765 && contains_placeholder_p (TREE_CHAIN (exp))));
1766 break;
1767
1768 case '1':
1769 case '2': case '<':
1770 case 'e':
1771 switch (code)
1772 {
1773 case COMPOUND_EXPR:
1774 /* Ignoring the first operand isn't quite right, but works best. */
1775 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1776
1777 case RTL_EXPR:
1778 case CONSTRUCTOR:
1779 return 0;
1780
1781 case COND_EXPR:
1782 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1783 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1784 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1785
1786 case SAVE_EXPR:
1787 /* If we already know this doesn't have a placeholder, don't
1788 check again. */
1789 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1790 return 0;
1791
1792 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1793 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1794 if (result)
1795 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1796
1797 return result;
1798
1799 case CALL_EXPR:
1800 return (TREE_OPERAND (exp, 1) != 0
1801 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1802
1803 default:
1804 break;
1805 }
1806
1807 switch (TREE_CODE_LENGTH (code))
1808 {
1809 case 1:
1810 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1811 case 2:
1812 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1813 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1814 default:
1815 return 0;
1816 }
1817
1818 default:
1819 return 0;
1820 }
1821 return 0;
1822 }
1823
1824 /* Return 1 if EXP contains any expressions that produce cleanups for an
1825 outer scope to deal with. Used by fold. */
1826
1827 int
has_cleanups(exp)1828 has_cleanups (exp)
1829 tree exp;
1830 {
1831 int i, nops, cmp;
1832
1833 if (! TREE_SIDE_EFFECTS (exp))
1834 return 0;
1835
1836 switch (TREE_CODE (exp))
1837 {
1838 case TARGET_EXPR:
1839 case GOTO_SUBROUTINE_EXPR:
1840 case WITH_CLEANUP_EXPR:
1841 return 1;
1842
1843 case CLEANUP_POINT_EXPR:
1844 return 0;
1845
1846 case CALL_EXPR:
1847 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1848 {
1849 cmp = has_cleanups (TREE_VALUE (exp));
1850 if (cmp)
1851 return cmp;
1852 }
1853 return 0;
1854
1855 default:
1856 break;
1857 }
1858
1859 /* This general rule works for most tree codes. All exceptions should be
1860 handled above. If this is a language-specific tree code, we can't
1861 trust what might be in the operand, so say we don't know
1862 the situation. */
1863 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1864 return -1;
1865
1866 nops = first_rtl_op (TREE_CODE (exp));
1867 for (i = 0; i < nops; i++)
1868 if (TREE_OPERAND (exp, i) != 0)
1869 {
1870 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1871 if (type == 'e' || type == '<' || type == '1' || type == '2'
1872 || type == 'r' || type == 's')
1873 {
1874 cmp = has_cleanups (TREE_OPERAND (exp, i));
1875 if (cmp)
1876 return cmp;
1877 }
1878 }
1879
1880 return 0;
1881 }
1882
1883 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1884 return a tree with all occurrences of references to F in a
1885 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1886 contains only arithmetic expressions or a CALL_EXPR with a
1887 PLACEHOLDER_EXPR occurring only in its arglist. */
1888
1889 tree
substitute_in_expr(exp,f,r)1890 substitute_in_expr (exp, f, r)
1891 tree exp;
1892 tree f;
1893 tree r;
1894 {
1895 enum tree_code code = TREE_CODE (exp);
1896 tree op0, op1, op2;
1897 tree new;
1898 tree inner;
1899
1900 switch (TREE_CODE_CLASS (code))
1901 {
1902 case 'c':
1903 case 'd':
1904 return exp;
1905
1906 case 'x':
1907 if (code == PLACEHOLDER_EXPR)
1908 return exp;
1909 else if (code == TREE_LIST)
1910 {
1911 op0 = (TREE_CHAIN (exp) == 0
1912 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1913 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1914 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1915 return exp;
1916
1917 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1918 }
1919
1920 abort ();
1921
1922 case '1':
1923 case '2':
1924 case '<':
1925 case 'e':
1926 switch (TREE_CODE_LENGTH (code))
1927 {
1928 case 1:
1929 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1930 if (op0 == TREE_OPERAND (exp, 0))
1931 return exp;
1932
1933 if (code == NON_LVALUE_EXPR)
1934 return op0;
1935
1936 new = fold (build1 (code, TREE_TYPE (exp), op0));
1937 break;
1938
1939 case 2:
1940 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1941 could, but we don't support it. */
1942 if (code == RTL_EXPR)
1943 return exp;
1944 else if (code == CONSTRUCTOR)
1945 abort ();
1946
1947 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1948 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1949 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1950 return exp;
1951
1952 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1953 break;
1954
1955 case 3:
1956 /* It cannot be that anything inside a SAVE_EXPR contains a
1957 PLACEHOLDER_EXPR. */
1958 if (code == SAVE_EXPR)
1959 return exp;
1960
1961 else if (code == CALL_EXPR)
1962 {
1963 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1964 if (op1 == TREE_OPERAND (exp, 1))
1965 return exp;
1966
1967 return build (code, TREE_TYPE (exp),
1968 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1969 }
1970
1971 else if (code != COND_EXPR)
1972 abort ();
1973
1974 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1975 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1976 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1977 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1978 && op2 == TREE_OPERAND (exp, 2))
1979 return exp;
1980
1981 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1982 break;
1983
1984 default:
1985 abort ();
1986 }
1987
1988 break;
1989
1990 case 'r':
1991 switch (code)
1992 {
1993 case COMPONENT_REF:
1994 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1995 and it is the right field, replace it with R. */
1996 for (inner = TREE_OPERAND (exp, 0);
1997 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1998 inner = TREE_OPERAND (inner, 0))
1999 ;
2000 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2001 && TREE_OPERAND (exp, 1) == f)
2002 return r;
2003
2004 /* If this expression hasn't been completed let, leave it
2005 alone. */
2006 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2007 && TREE_TYPE (inner) == 0)
2008 return exp;
2009
2010 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2011 if (op0 == TREE_OPERAND (exp, 0))
2012 return exp;
2013
2014 new = fold (build (code, TREE_TYPE (exp), op0,
2015 TREE_OPERAND (exp, 1)));
2016 break;
2017
2018 case BIT_FIELD_REF:
2019 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2020 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2021 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2022 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2023 && op2 == TREE_OPERAND (exp, 2))
2024 return exp;
2025
2026 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2027 break;
2028
2029 case INDIRECT_REF:
2030 case BUFFER_REF:
2031 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2032 if (op0 == TREE_OPERAND (exp, 0))
2033 return exp;
2034
2035 new = fold (build1 (code, TREE_TYPE (exp), op0));
2036 break;
2037
2038 default:
2039 abort ();
2040 }
2041 break;
2042
2043 default:
2044 abort ();
2045 }
2046
2047 TREE_READONLY (new) = TREE_READONLY (exp);
2048 return new;
2049 }
2050
2051 /* Stabilize a reference so that we can use it any number of times
2052 without causing its operands to be evaluated more than once.
2053 Returns the stabilized reference. This works by means of save_expr,
2054 so see the caveats in the comments about save_expr.
2055
2056 Also allows conversion expressions whose operands are references.
2057 Any other kind of expression is returned unchanged. */
2058
2059 tree
stabilize_reference(ref)2060 stabilize_reference (ref)
2061 tree ref;
2062 {
2063 tree result;
2064 enum tree_code code = TREE_CODE (ref);
2065
2066 switch (code)
2067 {
2068 case VAR_DECL:
2069 case PARM_DECL:
2070 case RESULT_DECL:
2071 /* No action is needed in this case. */
2072 return ref;
2073
2074 case NOP_EXPR:
2075 case CONVERT_EXPR:
2076 case FLOAT_EXPR:
2077 case FIX_TRUNC_EXPR:
2078 case FIX_FLOOR_EXPR:
2079 case FIX_ROUND_EXPR:
2080 case FIX_CEIL_EXPR:
2081 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2082 break;
2083
2084 case INDIRECT_REF:
2085 result = build_nt (INDIRECT_REF,
2086 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2087 break;
2088
2089 case COMPONENT_REF:
2090 result = build_nt (COMPONENT_REF,
2091 stabilize_reference (TREE_OPERAND (ref, 0)),
2092 TREE_OPERAND (ref, 1));
2093 break;
2094
2095 case BIT_FIELD_REF:
2096 result = build_nt (BIT_FIELD_REF,
2097 stabilize_reference (TREE_OPERAND (ref, 0)),
2098 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2099 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2100 break;
2101
2102 case ARRAY_REF:
2103 result = build_nt (ARRAY_REF,
2104 stabilize_reference (TREE_OPERAND (ref, 0)),
2105 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2106 break;
2107
2108 case ARRAY_RANGE_REF:
2109 result = build_nt (ARRAY_RANGE_REF,
2110 stabilize_reference (TREE_OPERAND (ref, 0)),
2111 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2112 break;
2113
2114 case COMPOUND_EXPR:
2115 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2116 it wouldn't be ignored. This matters when dealing with
2117 volatiles. */
2118 return stabilize_reference_1 (ref);
2119
2120 case RTL_EXPR:
2121 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2122 save_expr (build1 (ADDR_EXPR,
2123 build_pointer_type (TREE_TYPE (ref)),
2124 ref)));
2125 break;
2126
2127 /* If arg isn't a kind of lvalue we recognize, make no change.
2128 Caller should recognize the error for an invalid lvalue. */
2129 default:
2130 return ref;
2131
2132 case ERROR_MARK:
2133 return error_mark_node;
2134 }
2135
2136 TREE_TYPE (result) = TREE_TYPE (ref);
2137 TREE_READONLY (result) = TREE_READONLY (ref);
2138 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2139 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2140
2141 return result;
2142 }
2143
2144 /* Subroutine of stabilize_reference; this is called for subtrees of
2145 references. Any expression with side-effects must be put in a SAVE_EXPR
2146 to ensure that it is only evaluated once.
2147
2148 We don't put SAVE_EXPR nodes around everything, because assigning very
2149 simple expressions to temporaries causes us to miss good opportunities
2150 for optimizations. Among other things, the opportunity to fold in the
2151 addition of a constant into an addressing mode often gets lost, e.g.
2152 "y[i+1] += x;". In general, we take the approach that we should not make
2153 an assignment unless we are forced into it - i.e., that any non-side effect
2154 operator should be allowed, and that cse should take care of coalescing
2155 multiple utterances of the same expression should that prove fruitful. */
2156
2157 tree
stabilize_reference_1(e)2158 stabilize_reference_1 (e)
2159 tree e;
2160 {
2161 tree result;
2162 enum tree_code code = TREE_CODE (e);
2163
2164 /* We cannot ignore const expressions because it might be a reference
2165 to a const array but whose index contains side-effects. But we can
2166 ignore things that are actual constant or that already have been
2167 handled by this function. */
2168
2169 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2170 return e;
2171
2172 switch (TREE_CODE_CLASS (code))
2173 {
2174 case 'x':
2175 case 't':
2176 case 'd':
2177 case 'b':
2178 case '<':
2179 case 's':
2180 case 'e':
2181 case 'r':
2182 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2183 so that it will only be evaluated once. */
2184 /* The reference (r) and comparison (<) classes could be handled as
2185 below, but it is generally faster to only evaluate them once. */
2186 if (TREE_SIDE_EFFECTS (e))
2187 return save_expr (e);
2188 return e;
2189
2190 case 'c':
2191 /* Constants need no processing. In fact, we should never reach
2192 here. */
2193 return e;
2194
2195 case '2':
2196 /* Division is slow and tends to be compiled with jumps,
2197 especially the division by powers of 2 that is often
2198 found inside of an array reference. So do it just once. */
2199 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2200 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2201 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2202 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2203 return save_expr (e);
2204 /* Recursively stabilize each operand. */
2205 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2206 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2207 break;
2208
2209 case '1':
2210 /* Recursively stabilize each operand. */
2211 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2212 break;
2213
2214 default:
2215 abort ();
2216 }
2217
2218 TREE_TYPE (result) = TREE_TYPE (e);
2219 TREE_READONLY (result) = TREE_READONLY (e);
2220 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2221 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2222
2223 return result;
2224 }
2225
2226 /* Low-level constructors for expressions. */
2227
2228 /* Build an expression of code CODE, data type TYPE,
2229 and operands as specified by the arguments ARG1 and following arguments.
2230 Expressions and reference nodes can be created this way.
2231 Constants, decls, types and misc nodes cannot be. */
2232
2233 tree
build(enum tree_code code,tree tt,...)2234 build VPARAMS ((enum tree_code code, tree tt, ...))
2235 {
2236 tree t;
2237 int length;
2238 int i;
2239 int fro;
2240 int constant;
2241
2242 VA_OPEN (p, tt);
2243 VA_FIXEDARG (p, enum tree_code, code);
2244 VA_FIXEDARG (p, tree, tt);
2245
2246 t = make_node (code);
2247 length = TREE_CODE_LENGTH (code);
2248 TREE_TYPE (t) = tt;
2249
2250 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2251 result based on those same flags for the arguments. But if the
2252 arguments aren't really even `tree' expressions, we shouldn't be trying
2253 to do this. */
2254 fro = first_rtl_op (code);
2255
2256 /* Expressions without side effects may be constant if their
2257 arguments are as well. */
2258 constant = (TREE_CODE_CLASS (code) == '<'
2259 || TREE_CODE_CLASS (code) == '1'
2260 || TREE_CODE_CLASS (code) == '2'
2261 || TREE_CODE_CLASS (code) == 'c');
2262
2263 if (length == 2)
2264 {
2265 /* This is equivalent to the loop below, but faster. */
2266 tree arg0 = va_arg (p, tree);
2267 tree arg1 = va_arg (p, tree);
2268
2269 TREE_OPERAND (t, 0) = arg0;
2270 TREE_OPERAND (t, 1) = arg1;
2271 TREE_READONLY (t) = 1;
2272 if (arg0 && fro > 0)
2273 {
2274 if (TREE_SIDE_EFFECTS (arg0))
2275 TREE_SIDE_EFFECTS (t) = 1;
2276 if (!TREE_READONLY (arg0))
2277 TREE_READONLY (t) = 0;
2278 if (!TREE_CONSTANT (arg0))
2279 constant = 0;
2280 }
2281
2282 if (arg1 && fro > 1)
2283 {
2284 if (TREE_SIDE_EFFECTS (arg1))
2285 TREE_SIDE_EFFECTS (t) = 1;
2286 if (!TREE_READONLY (arg1))
2287 TREE_READONLY (t) = 0;
2288 if (!TREE_CONSTANT (arg1))
2289 constant = 0;
2290 }
2291 }
2292 else if (length == 1)
2293 {
2294 tree arg0 = va_arg (p, tree);
2295
2296 /* The only one-operand cases we handle here are those with side-effects.
2297 Others are handled with build1. So don't bother checked if the
2298 arg has side-effects since we'll already have set it.
2299
2300 ??? This really should use build1 too. */
2301 if (TREE_CODE_CLASS (code) != 's')
2302 abort ();
2303 TREE_OPERAND (t, 0) = arg0;
2304 }
2305 else
2306 {
2307 for (i = 0; i < length; i++)
2308 {
2309 tree operand = va_arg (p, tree);
2310
2311 TREE_OPERAND (t, i) = operand;
2312 if (operand && fro > i)
2313 {
2314 if (TREE_SIDE_EFFECTS (operand))
2315 TREE_SIDE_EFFECTS (t) = 1;
2316 if (!TREE_CONSTANT (operand))
2317 constant = 0;
2318 }
2319 }
2320 }
2321 VA_CLOSE (p);
2322
2323 TREE_CONSTANT (t) = constant;
2324 return t;
2325 }
2326
2327 /* Same as above, but only builds for unary operators.
2328 Saves lions share of calls to `build'; cuts down use
2329 of varargs, which is expensive for RISC machines. */
2330
2331 tree
build1(code,type,node)2332 build1 (code, type, node)
2333 enum tree_code code;
2334 tree type;
2335 tree node;
2336 {
2337 int length;
2338 #ifdef GATHER_STATISTICS
2339 tree_node_kind kind;
2340 #endif
2341 tree t;
2342
2343 #ifdef GATHER_STATISTICS
2344 if (TREE_CODE_CLASS (code) == 'r')
2345 kind = r_kind;
2346 else
2347 kind = e_kind;
2348 #endif
2349
2350 #ifdef ENABLE_CHECKING
2351 if (TREE_CODE_CLASS (code) == '2'
2352 || TREE_CODE_CLASS (code) == '<'
2353 || TREE_CODE_LENGTH (code) != 1)
2354 abort ();
2355 #endif /* ENABLE_CHECKING */
2356
2357 length = sizeof (struct tree_exp);
2358
2359 t = ggc_alloc_tree (length);
2360
2361 memset ((PTR) t, 0, sizeof (struct tree_common));
2362
2363 #ifdef GATHER_STATISTICS
2364 tree_node_counts[(int) kind]++;
2365 tree_node_sizes[(int) kind] += length;
2366 #endif
2367
2368 TREE_SET_CODE (t, code);
2369
2370 TREE_TYPE (t) = type;
2371 TREE_COMPLEXITY (t) = 0;
2372 TREE_OPERAND (t, 0) = node;
2373 if (node && first_rtl_op (code) != 0)
2374 {
2375 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2376 TREE_READONLY (t) = TREE_READONLY (node);
2377 }
2378
2379 switch (code)
2380 {
2381 case INIT_EXPR:
2382 case MODIFY_EXPR:
2383 case VA_ARG_EXPR:
2384 case RTL_EXPR:
2385 case PREDECREMENT_EXPR:
2386 case PREINCREMENT_EXPR:
2387 case POSTDECREMENT_EXPR:
2388 case POSTINCREMENT_EXPR:
2389 /* All of these have side-effects, no matter what their
2390 operands are. */
2391 TREE_SIDE_EFFECTS (t) = 1;
2392 TREE_READONLY (t) = 0;
2393 break;
2394
2395 case INDIRECT_REF:
2396 /* Whether a dereference is readonly has nothing to do with whether
2397 its operand is readonly. */
2398 TREE_READONLY (t) = 0;
2399 break;
2400
2401 default:
2402 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2403 TREE_CONSTANT (t) = 1;
2404 break;
2405 }
2406
2407 return t;
2408 }
2409
2410 /* Similar except don't specify the TREE_TYPE
2411 and leave the TREE_SIDE_EFFECTS as 0.
2412 It is permissible for arguments to be null,
2413 or even garbage if their values do not matter. */
2414
2415 tree
build_nt(enum tree_code code,...)2416 build_nt VPARAMS ((enum tree_code code, ...))
2417 {
2418 tree t;
2419 int length;
2420 int i;
2421
2422 VA_OPEN (p, code);
2423 VA_FIXEDARG (p, enum tree_code, code);
2424
2425 t = make_node (code);
2426 length = TREE_CODE_LENGTH (code);
2427
2428 for (i = 0; i < length; i++)
2429 TREE_OPERAND (t, i) = va_arg (p, tree);
2430
2431 VA_CLOSE (p);
2432 return t;
2433 }
2434
2435 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2436 We do NOT enter this node in any sort of symbol table.
2437
2438 layout_decl is used to set up the decl's storage layout.
2439 Other slots are initialized to 0 or null pointers. */
2440
2441 tree
build_decl(code,name,type)2442 build_decl (code, name, type)
2443 enum tree_code code;
2444 tree name, type;
2445 {
2446 tree t;
2447
2448 t = make_node (code);
2449
2450 /* if (type == error_mark_node)
2451 type = integer_type_node; */
2452 /* That is not done, deliberately, so that having error_mark_node
2453 as the type can suppress useless errors in the use of this variable. */
2454
2455 DECL_NAME (t) = name;
2456 TREE_TYPE (t) = type;
2457
2458 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2459 layout_decl (t, 0);
2460 else if (code == FUNCTION_DECL)
2461 DECL_MODE (t) = FUNCTION_MODE;
2462
2463 return t;
2464 }
2465
2466 /* BLOCK nodes are used to represent the structure of binding contours
2467 and declarations, once those contours have been exited and their contents
2468 compiled. This information is used for outputting debugging info. */
2469
2470 tree
build_block(vars,tags,subblocks,supercontext,chain)2471 build_block (vars, tags, subblocks, supercontext, chain)
2472 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2473 {
2474 tree block = make_node (BLOCK);
2475
2476 BLOCK_VARS (block) = vars;
2477 BLOCK_SUBBLOCKS (block) = subblocks;
2478 BLOCK_SUPERCONTEXT (block) = supercontext;
2479 BLOCK_CHAIN (block) = chain;
2480 return block;
2481 }
2482
2483 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2484 location where an expression or an identifier were encountered. It
2485 is necessary for languages where the frontend parser will handle
2486 recursively more than one file (Java is one of them). */
2487
2488 tree
build_expr_wfl(node,file,line,col)2489 build_expr_wfl (node, file, line, col)
2490 tree node;
2491 const char *file;
2492 int line, col;
2493 {
2494 static const char *last_file = 0;
2495 static tree last_filenode = NULL_TREE;
2496 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2497
2498 EXPR_WFL_NODE (wfl) = node;
2499 EXPR_WFL_SET_LINECOL (wfl, line, col);
2500 if (file != last_file)
2501 {
2502 last_file = file;
2503 last_filenode = file ? get_identifier (file) : NULL_TREE;
2504 }
2505
2506 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2507 if (node)
2508 {
2509 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2510 TREE_TYPE (wfl) = TREE_TYPE (node);
2511 }
2512
2513 return wfl;
2514 }
2515
2516 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2517 is ATTRIBUTE. */
2518
2519 tree
build_decl_attribute_variant(ddecl,attribute)2520 build_decl_attribute_variant (ddecl, attribute)
2521 tree ddecl, attribute;
2522 {
2523 DECL_ATTRIBUTES (ddecl) = attribute;
2524 return ddecl;
2525 }
2526
2527 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2528 is ATTRIBUTE.
2529
2530 Record such modified types already made so we don't make duplicates. */
2531
2532 tree
build_type_attribute_variant(ttype,attribute)2533 build_type_attribute_variant (ttype, attribute)
2534 tree ttype, attribute;
2535 {
2536 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2537 {
2538 unsigned int hashcode;
2539 tree ntype;
2540
2541 ntype = copy_node (ttype);
2542
2543 TYPE_POINTER_TO (ntype) = 0;
2544 TYPE_REFERENCE_TO (ntype) = 0;
2545 TYPE_ATTRIBUTES (ntype) = attribute;
2546
2547 /* Create a new main variant of TYPE. */
2548 TYPE_MAIN_VARIANT (ntype) = ntype;
2549 TYPE_NEXT_VARIANT (ntype) = 0;
2550 set_type_quals (ntype, TYPE_UNQUALIFIED);
2551
2552 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2553 + TYPE_HASH (TREE_TYPE (ntype))
2554 + attribute_hash_list (attribute));
2555
2556 switch (TREE_CODE (ntype))
2557 {
2558 case FUNCTION_TYPE:
2559 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2560 break;
2561 case ARRAY_TYPE:
2562 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2563 break;
2564 case INTEGER_TYPE:
2565 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2566 break;
2567 case REAL_TYPE:
2568 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2569 break;
2570 default:
2571 break;
2572 }
2573
2574 ntype = type_hash_canon (hashcode, ntype);
2575 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2576 }
2577
2578 return ttype;
2579 }
2580
2581 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2582 or zero if not.
2583
2584 We try both `text' and `__text__', ATTR may be either one. */
2585 /* ??? It might be a reasonable simplification to require ATTR to be only
2586 `text'. One might then also require attribute lists to be stored in
2587 their canonicalized form. */
2588
2589 int
is_attribute_p(attr,ident)2590 is_attribute_p (attr, ident)
2591 const char *attr;
2592 tree ident;
2593 {
2594 int ident_len, attr_len;
2595 const char *p;
2596
2597 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2598 return 0;
2599
2600 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2601 return 1;
2602
2603 p = IDENTIFIER_POINTER (ident);
2604 ident_len = strlen (p);
2605 attr_len = strlen (attr);
2606
2607 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2608 if (attr[0] == '_')
2609 {
2610 if (attr[1] != '_'
2611 || attr[attr_len - 2] != '_'
2612 || attr[attr_len - 1] != '_')
2613 abort ();
2614 if (ident_len == attr_len - 4
2615 && strncmp (attr + 2, p, attr_len - 4) == 0)
2616 return 1;
2617 }
2618 else
2619 {
2620 if (ident_len == attr_len + 4
2621 && p[0] == '_' && p[1] == '_'
2622 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2623 && strncmp (attr, p + 2, attr_len) == 0)
2624 return 1;
2625 }
2626
2627 return 0;
2628 }
2629
2630 /* Given an attribute name and a list of attributes, return a pointer to the
2631 attribute's list element if the attribute is part of the list, or NULL_TREE
2632 if not found. If the attribute appears more than once, this only
2633 returns the first occurrence; the TREE_CHAIN of the return value should
2634 be passed back in if further occurrences are wanted. */
2635
2636 tree
lookup_attribute(attr_name,list)2637 lookup_attribute (attr_name, list)
2638 const char *attr_name;
2639 tree list;
2640 {
2641 tree l;
2642
2643 for (l = list; l; l = TREE_CHAIN (l))
2644 {
2645 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2646 abort ();
2647 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2648 return l;
2649 }
2650
2651 return NULL_TREE;
2652 }
2653
2654 /* Return an attribute list that is the union of a1 and a2. */
2655
2656 tree
merge_attributes(a1,a2)2657 merge_attributes (a1, a2)
2658 tree a1, a2;
2659 {
2660 tree attributes;
2661
2662 /* Either one unset? Take the set one. */
2663
2664 if ((attributes = a1) == 0)
2665 attributes = a2;
2666
2667 /* One that completely contains the other? Take it. */
2668
2669 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2670 {
2671 if (attribute_list_contained (a2, a1))
2672 attributes = a2;
2673 else
2674 {
2675 /* Pick the longest list, and hang on the other list. */
2676
2677 if (list_length (a1) < list_length (a2))
2678 attributes = a2, a2 = a1;
2679
2680 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2681 {
2682 tree a;
2683 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2684 attributes);
2685 a != NULL_TREE;
2686 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2687 TREE_CHAIN (a)))
2688 {
2689 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2690 break;
2691 }
2692 if (a == NULL_TREE)
2693 {
2694 a1 = copy_node (a2);
2695 TREE_CHAIN (a1) = attributes;
2696 attributes = a1;
2697 }
2698 }
2699 }
2700 }
2701 return attributes;
2702 }
2703
2704 /* Given types T1 and T2, merge their attributes and return
2705 the result. */
2706
2707 tree
merge_type_attributes(t1,t2)2708 merge_type_attributes (t1, t2)
2709 tree t1, t2;
2710 {
2711 return merge_attributes (TYPE_ATTRIBUTES (t1),
2712 TYPE_ATTRIBUTES (t2));
2713 }
2714
2715 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2716 the result. */
2717
2718 tree
merge_decl_attributes(olddecl,newdecl)2719 merge_decl_attributes (olddecl, newdecl)
2720 tree olddecl, newdecl;
2721 {
2722 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2723 DECL_ATTRIBUTES (newdecl));
2724 }
2725
2726 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2727
2728 /* Specialization of merge_decl_attributes for various Windows targets.
2729
2730 This handles the following situation:
2731
2732 __declspec (dllimport) int foo;
2733 int foo;
2734
2735 The second instance of `foo' nullifies the dllimport. */
2736
2737 tree
merge_dllimport_decl_attributes(old,new)2738 merge_dllimport_decl_attributes (old, new)
2739 tree old;
2740 tree new;
2741 {
2742 tree a;
2743 int delete_dllimport_p;
2744
2745 old = DECL_ATTRIBUTES (old);
2746 new = DECL_ATTRIBUTES (new);
2747
2748 /* What we need to do here is remove from `old' dllimport if it doesn't
2749 appear in `new'. dllimport behaves like extern: if a declaration is
2750 marked dllimport and a definition appears later, then the object
2751 is not dllimport'd. */
2752 if (lookup_attribute ("dllimport", old) != NULL_TREE
2753 && lookup_attribute ("dllimport", new) == NULL_TREE)
2754 delete_dllimport_p = 1;
2755 else
2756 delete_dllimport_p = 0;
2757
2758 a = merge_attributes (old, new);
2759
2760 if (delete_dllimport_p)
2761 {
2762 tree prev, t;
2763
2764 /* Scan the list for dllimport and delete it. */
2765 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2766 {
2767 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2768 {
2769 if (prev == NULL_TREE)
2770 a = TREE_CHAIN (a);
2771 else
2772 TREE_CHAIN (prev) = TREE_CHAIN (t);
2773 break;
2774 }
2775 }
2776 }
2777
2778 return a;
2779 }
2780
2781 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2782
2783 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2784 of the various TYPE_QUAL values. */
2785
2786 static void
set_type_quals(type,type_quals)2787 set_type_quals (type, type_quals)
2788 tree type;
2789 int type_quals;
2790 {
2791 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2792 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2793 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2794 }
2795
2796 /* Return a version of the TYPE, qualified as indicated by the
2797 TYPE_QUALS, if one exists. If no qualified version exists yet,
2798 return NULL_TREE. */
2799
2800 tree
get_qualified_type(type,type_quals)2801 get_qualified_type (type, type_quals)
2802 tree type;
2803 int type_quals;
2804 {
2805 tree t;
2806
2807 /* Search the chain of variants to see if there is already one there just
2808 like the one we need to have. If so, use that existing one. We must
2809 preserve the TYPE_NAME, since there is code that depends on this. */
2810 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2811 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2812 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
2813 return t;
2814
2815 return NULL_TREE;
2816 }
2817
2818 /* Like get_qualified_type, but creates the type if it does not
2819 exist. This function never returns NULL_TREE. */
2820
2821 tree
build_qualified_type(type,type_quals)2822 build_qualified_type (type, type_quals)
2823 tree type;
2824 int type_quals;
2825 {
2826 tree t;
2827
2828 /* See if we already have the appropriate qualified variant. */
2829 t = get_qualified_type (type, type_quals);
2830
2831 /* If not, build it. */
2832 if (!t)
2833 {
2834 t = build_type_copy (type);
2835 set_type_quals (t, type_quals);
2836 }
2837
2838 return t;
2839 }
2840
2841 /* Create a new variant of TYPE, equivalent but distinct.
2842 This is so the caller can modify it. */
2843
2844 tree
build_type_copy(type)2845 build_type_copy (type)
2846 tree type;
2847 {
2848 tree t, m = TYPE_MAIN_VARIANT (type);
2849
2850 t = copy_node (type);
2851
2852 TYPE_POINTER_TO (t) = 0;
2853 TYPE_REFERENCE_TO (t) = 0;
2854
2855 /* Add this type to the chain of variants of TYPE. */
2856 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2857 TYPE_NEXT_VARIANT (m) = t;
2858
2859 return t;
2860 }
2861
2862 /* Hashing of types so that we don't make duplicates.
2863 The entry point is `type_hash_canon'. */
2864
2865 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2866 with types in the TREE_VALUE slots), by adding the hash codes
2867 of the individual types. */
2868
2869 unsigned int
type_hash_list(list)2870 type_hash_list (list)
2871 tree list;
2872 {
2873 unsigned int hashcode;
2874 tree tail;
2875
2876 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2877 hashcode += TYPE_HASH (TREE_VALUE (tail));
2878
2879 return hashcode;
2880 }
2881
2882 /* These are the Hashtable callback functions. */
2883
2884 /* Returns true if the types are equal. */
2885
2886 static int
type_hash_eq(va,vb)2887 type_hash_eq (va, vb)
2888 const void *va;
2889 const void *vb;
2890 {
2891 const struct type_hash *a = va, *b = vb;
2892 if (a->hash == b->hash
2893 && TREE_CODE (a->type) == TREE_CODE (b->type)
2894 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2895 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2896 TYPE_ATTRIBUTES (b->type))
2897 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2898 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2899 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2900 TYPE_MAX_VALUE (b->type)))
2901 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2902 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2903 TYPE_MIN_VALUE (b->type)))
2904 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2905 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2906 || (TYPE_DOMAIN (a->type)
2907 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2908 && TYPE_DOMAIN (b->type)
2909 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2910 && type_list_equal (TYPE_DOMAIN (a->type),
2911 TYPE_DOMAIN (b->type)))))
2912 return 1;
2913 return 0;
2914 }
2915
2916 /* Return the cached hash value. */
2917
2918 static hashval_t
type_hash_hash(item)2919 type_hash_hash (item)
2920 const void *item;
2921 {
2922 return ((const struct type_hash *) item)->hash;
2923 }
2924
2925 /* Look in the type hash table for a type isomorphic to TYPE.
2926 If one is found, return it. Otherwise return 0. */
2927
2928 tree
type_hash_lookup(hashcode,type)2929 type_hash_lookup (hashcode, type)
2930 unsigned int hashcode;
2931 tree type;
2932 {
2933 struct type_hash *h, in;
2934
2935 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2936 must call that routine before comparing TYPE_ALIGNs. */
2937 layout_type (type);
2938
2939 in.hash = hashcode;
2940 in.type = type;
2941
2942 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2943 if (h)
2944 return h->type;
2945 return NULL_TREE;
2946 }
2947
2948 /* Add an entry to the type-hash-table
2949 for a type TYPE whose hash code is HASHCODE. */
2950
2951 void
type_hash_add(hashcode,type)2952 type_hash_add (hashcode, type)
2953 unsigned int hashcode;
2954 tree type;
2955 {
2956 struct type_hash *h;
2957 void **loc;
2958
2959 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
2960 h->hash = hashcode;
2961 h->type = type;
2962 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2963 *(struct type_hash **) loc = h;
2964 }
2965
2966 /* Given TYPE, and HASHCODE its hash code, return the canonical
2967 object for an identical type if one already exists.
2968 Otherwise, return TYPE, and record it as the canonical object
2969 if it is a permanent object.
2970
2971 To use this function, first create a type of the sort you want.
2972 Then compute its hash code from the fields of the type that
2973 make it different from other similar types.
2974 Then call this function and use the value.
2975 This function frees the type you pass in if it is a duplicate. */
2976
2977 /* Set to 1 to debug without canonicalization. Never set by program. */
2978 int debug_no_type_hash = 0;
2979
2980 tree
type_hash_canon(hashcode,type)2981 type_hash_canon (hashcode, type)
2982 unsigned int hashcode;
2983 tree type;
2984 {
2985 tree t1;
2986
2987 if (debug_no_type_hash)
2988 return type;
2989
2990 /* See if the type is in the hash table already. If so, return it.
2991 Otherwise, add the type. */
2992 t1 = type_hash_lookup (hashcode, type);
2993 if (t1 != 0)
2994 {
2995 #ifdef GATHER_STATISTICS
2996 tree_node_counts[(int) t_kind]--;
2997 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
2998 #endif
2999 return t1;
3000 }
3001 else
3002 {
3003 type_hash_add (hashcode, type);
3004 return type;
3005 }
3006 }
3007
3008 /* See if the data pointed to by the type hash table is marked. We consider
3009 it marked if the type is marked or if a debug type number or symbol
3010 table entry has been made for the type. This reduces the amount of
3011 debugging output and eliminates that dependency of the debug output on
3012 the number of garbage collections. */
3013
3014 static int
type_hash_marked_p(p)3015 type_hash_marked_p (p)
3016 const void *p;
3017 {
3018 tree type = ((struct type_hash *) p)->type;
3019
3020 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3021 }
3022
3023 static void
print_type_hash_statistics()3024 print_type_hash_statistics ()
3025 {
3026 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3027 (long) htab_size (type_hash_table),
3028 (long) htab_elements (type_hash_table),
3029 htab_collisions (type_hash_table));
3030 }
3031
3032 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3033 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3034 by adding the hash codes of the individual attributes. */
3035
3036 unsigned int
attribute_hash_list(list)3037 attribute_hash_list (list)
3038 tree list;
3039 {
3040 unsigned int hashcode;
3041 tree tail;
3042
3043 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3044 /* ??? Do we want to add in TREE_VALUE too? */
3045 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3046 return hashcode;
3047 }
3048
3049 /* Given two lists of attributes, return true if list l2 is
3050 equivalent to l1. */
3051
3052 int
attribute_list_equal(l1,l2)3053 attribute_list_equal (l1, l2)
3054 tree l1, l2;
3055 {
3056 return attribute_list_contained (l1, l2)
3057 && attribute_list_contained (l2, l1);
3058 }
3059
3060 /* Given two lists of attributes, return true if list L2 is
3061 completely contained within L1. */
3062 /* ??? This would be faster if attribute names were stored in a canonicalized
3063 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3064 must be used to show these elements are equivalent (which they are). */
3065 /* ??? It's not clear that attributes with arguments will always be handled
3066 correctly. */
3067
3068 int
attribute_list_contained(l1,l2)3069 attribute_list_contained (l1, l2)
3070 tree l1, l2;
3071 {
3072 tree t1, t2;
3073
3074 /* First check the obvious, maybe the lists are identical. */
3075 if (l1 == l2)
3076 return 1;
3077
3078 /* Maybe the lists are similar. */
3079 for (t1 = l1, t2 = l2;
3080 t1 != 0 && t2 != 0
3081 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3082 && TREE_VALUE (t1) == TREE_VALUE (t2);
3083 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3084
3085 /* Maybe the lists are equal. */
3086 if (t1 == 0 && t2 == 0)
3087 return 1;
3088
3089 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3090 {
3091 tree attr;
3092 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3093 attr != NULL_TREE;
3094 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3095 TREE_CHAIN (attr)))
3096 {
3097 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3098 break;
3099 }
3100
3101 if (attr == 0)
3102 return 0;
3103
3104 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3105 return 0;
3106 }
3107
3108 return 1;
3109 }
3110
3111 /* Given two lists of types
3112 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3113 return 1 if the lists contain the same types in the same order.
3114 Also, the TREE_PURPOSEs must match. */
3115
3116 int
type_list_equal(l1,l2)3117 type_list_equal (l1, l2)
3118 tree l1, l2;
3119 {
3120 tree t1, t2;
3121
3122 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3123 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3124 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3125 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3126 && (TREE_TYPE (TREE_PURPOSE (t1))
3127 == TREE_TYPE (TREE_PURPOSE (t2))))))
3128 return 0;
3129
3130 return t1 == t2;
3131 }
3132
3133 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3134 given by TYPE. If the argument list accepts variable arguments,
3135 then this function counts only the ordinary arguments. */
3136
3137 int
type_num_arguments(type)3138 type_num_arguments (type)
3139 tree type;
3140 {
3141 int i = 0;
3142 tree t;
3143
3144 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3145 /* If the function does not take a variable number of arguments,
3146 the last element in the list will have type `void'. */
3147 if (VOID_TYPE_P (TREE_VALUE (t)))
3148 break;
3149 else
3150 ++i;
3151
3152 return i;
3153 }
3154
3155 /* Nonzero if integer constants T1 and T2
3156 represent the same constant value. */
3157
3158 int
tree_int_cst_equal(t1,t2)3159 tree_int_cst_equal (t1, t2)
3160 tree t1, t2;
3161 {
3162 if (t1 == t2)
3163 return 1;
3164
3165 if (t1 == 0 || t2 == 0)
3166 return 0;
3167
3168 if (TREE_CODE (t1) == INTEGER_CST
3169 && TREE_CODE (t2) == INTEGER_CST
3170 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3171 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3172 return 1;
3173
3174 return 0;
3175 }
3176
3177 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3178 The precise way of comparison depends on their data type. */
3179
3180 int
tree_int_cst_lt(t1,t2)3181 tree_int_cst_lt (t1, t2)
3182 tree t1, t2;
3183 {
3184 if (t1 == t2)
3185 return 0;
3186
3187 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3188 {
3189 int t1_sgn = tree_int_cst_sgn (t1);
3190 int t2_sgn = tree_int_cst_sgn (t2);
3191
3192 if (t1_sgn < t2_sgn)
3193 return 1;
3194 else if (t1_sgn > t2_sgn)
3195 return 0;
3196 /* Otherwise, both are non-negative, so we compare them as
3197 unsigned just in case one of them would overflow a signed
3198 type. */
3199 }
3200 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3201 return INT_CST_LT (t1, t2);
3202
3203 return INT_CST_LT_UNSIGNED (t1, t2);
3204 }
3205
3206 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3207
3208 int
tree_int_cst_compare(t1,t2)3209 tree_int_cst_compare (t1, t2)
3210 tree t1;
3211 tree t2;
3212 {
3213 if (tree_int_cst_lt (t1, t2))
3214 return -1;
3215 else if (tree_int_cst_lt (t2, t1))
3216 return 1;
3217 else
3218 return 0;
3219 }
3220
3221 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3222 the host. If POS is zero, the value can be represented in a single
3223 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3224 be represented in a single unsigned HOST_WIDE_INT. */
3225
3226 int
host_integerp(t,pos)3227 host_integerp (t, pos)
3228 tree t;
3229 int pos;
3230 {
3231 return (TREE_CODE (t) == INTEGER_CST
3232 && ! TREE_OVERFLOW (t)
3233 && ((TREE_INT_CST_HIGH (t) == 0
3234 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3235 || (! pos && TREE_INT_CST_HIGH (t) == -1
3236 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3237 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3238 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3239 }
3240
3241 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3242 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3243 be positive. Abort if we cannot satisfy the above conditions. */
3244
3245 HOST_WIDE_INT
tree_low_cst(t,pos)3246 tree_low_cst (t, pos)
3247 tree t;
3248 int pos;
3249 {
3250 if (host_integerp (t, pos))
3251 return TREE_INT_CST_LOW (t);
3252 else
3253 abort ();
3254 }
3255
3256 /* Return the most significant bit of the integer constant T. */
3257
3258 int
tree_int_cst_msb(t)3259 tree_int_cst_msb (t)
3260 tree t;
3261 {
3262 int prec;
3263 HOST_WIDE_INT h;
3264 unsigned HOST_WIDE_INT l;
3265
3266 /* Note that using TYPE_PRECISION here is wrong. We care about the
3267 actual bits, not the (arbitrary) range of the type. */
3268 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3269 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3270 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3271 return (l & 1) == 1;
3272 }
3273
3274 /* Return an indication of the sign of the integer constant T.
3275 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3276 Note that -1 will never be returned it T's type is unsigned. */
3277
3278 int
tree_int_cst_sgn(t)3279 tree_int_cst_sgn (t)
3280 tree t;
3281 {
3282 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3283 return 0;
3284 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3285 return 1;
3286 else if (TREE_INT_CST_HIGH (t) < 0)
3287 return -1;
3288 else
3289 return 1;
3290 }
3291
3292 /* Compare two constructor-element-type constants. Return 1 if the lists
3293 are known to be equal; otherwise return 0. */
3294
3295 int
simple_cst_list_equal(l1,l2)3296 simple_cst_list_equal (l1, l2)
3297 tree l1, l2;
3298 {
3299 while (l1 != NULL_TREE && l2 != NULL_TREE)
3300 {
3301 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3302 return 0;
3303
3304 l1 = TREE_CHAIN (l1);
3305 l2 = TREE_CHAIN (l2);
3306 }
3307
3308 return l1 == l2;
3309 }
3310
3311 /* Return truthvalue of whether T1 is the same tree structure as T2.
3312 Return 1 if they are the same.
3313 Return 0 if they are understandably different.
3314 Return -1 if either contains tree structure not understood by
3315 this function. */
3316
3317 int
simple_cst_equal(t1,t2)3318 simple_cst_equal (t1, t2)
3319 tree t1, t2;
3320 {
3321 enum tree_code code1, code2;
3322 int cmp;
3323 int i;
3324
3325 if (t1 == t2)
3326 return 1;
3327 if (t1 == 0 || t2 == 0)
3328 return 0;
3329
3330 code1 = TREE_CODE (t1);
3331 code2 = TREE_CODE (t2);
3332
3333 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3334 {
3335 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3336 || code2 == NON_LVALUE_EXPR)
3337 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3338 else
3339 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3340 }
3341
3342 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3343 || code2 == NON_LVALUE_EXPR)
3344 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3345
3346 if (code1 != code2)
3347 return 0;
3348
3349 switch (code1)
3350 {
3351 case INTEGER_CST:
3352 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3353 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3354
3355 case REAL_CST:
3356 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3357
3358 case STRING_CST:
3359 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3360 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3361 TREE_STRING_LENGTH (t1)));
3362
3363 case CONSTRUCTOR:
3364 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3365 return 1;
3366 else
3367 abort ();
3368
3369 case SAVE_EXPR:
3370 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3371
3372 case CALL_EXPR:
3373 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3374 if (cmp <= 0)
3375 return cmp;
3376 return
3377 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3378
3379 case TARGET_EXPR:
3380 /* Special case: if either target is an unallocated VAR_DECL,
3381 it means that it's going to be unified with whatever the
3382 TARGET_EXPR is really supposed to initialize, so treat it
3383 as being equivalent to anything. */
3384 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3385 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3386 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3387 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3388 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3389 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3390 cmp = 1;
3391 else
3392 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3393
3394 if (cmp <= 0)
3395 return cmp;
3396
3397 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3398
3399 case WITH_CLEANUP_EXPR:
3400 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3401 if (cmp <= 0)
3402 return cmp;
3403
3404 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3405
3406 case COMPONENT_REF:
3407 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3408 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3409
3410 return 0;
3411
3412 case VAR_DECL:
3413 case PARM_DECL:
3414 case CONST_DECL:
3415 case FUNCTION_DECL:
3416 return 0;
3417
3418 default:
3419 break;
3420 }
3421
3422 /* This general rule works for most tree codes. All exceptions should be
3423 handled above. If this is a language-specific tree code, we can't
3424 trust what might be in the operand, so say we don't know
3425 the situation. */
3426 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3427 return -1;
3428
3429 switch (TREE_CODE_CLASS (code1))
3430 {
3431 case '1':
3432 case '2':
3433 case '<':
3434 case 'e':
3435 case 'r':
3436 case 's':
3437 cmp = 1;
3438 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3439 {
3440 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3441 if (cmp <= 0)
3442 return cmp;
3443 }
3444
3445 return cmp;
3446
3447 default:
3448 return -1;
3449 }
3450 }
3451
3452 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3453 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3454 than U, respectively. */
3455
3456 int
compare_tree_int(t,u)3457 compare_tree_int (t, u)
3458 tree t;
3459 unsigned HOST_WIDE_INT u;
3460 {
3461 if (tree_int_cst_sgn (t) < 0)
3462 return -1;
3463 else if (TREE_INT_CST_HIGH (t) != 0)
3464 return 1;
3465 else if (TREE_INT_CST_LOW (t) == u)
3466 return 0;
3467 else if (TREE_INT_CST_LOW (t) < u)
3468 return -1;
3469 else
3470 return 1;
3471 }
3472
3473 /* Constructors for pointer, array and function types.
3474 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3475 constructed by language-dependent code, not here.) */
3476
3477 /* Construct, lay out and return the type of pointers to TO_TYPE.
3478 If such a type has already been constructed, reuse it. */
3479
3480 tree
build_pointer_type(to_type)3481 build_pointer_type (to_type)
3482 tree to_type;
3483 {
3484 tree t = TYPE_POINTER_TO (to_type);
3485
3486 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3487
3488 if (t != 0)
3489 return t;
3490
3491 /* We need a new one. */
3492 t = make_node (POINTER_TYPE);
3493
3494 TREE_TYPE (t) = to_type;
3495
3496 /* Record this type as the pointer to TO_TYPE. */
3497 TYPE_POINTER_TO (to_type) = t;
3498
3499 /* Lay out the type. This function has many callers that are concerned
3500 with expression-construction, and this simplifies them all.
3501 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3502 layout_type (t);
3503
3504 return t;
3505 }
3506
3507 /* Build the node for the type of references-to-TO_TYPE. */
3508
3509 tree
build_reference_type(to_type)3510 build_reference_type (to_type)
3511 tree to_type;
3512 {
3513 tree t = TYPE_REFERENCE_TO (to_type);
3514
3515 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3516
3517 if (t)
3518 return t;
3519
3520 /* We need a new one. */
3521 t = make_node (REFERENCE_TYPE);
3522
3523 TREE_TYPE (t) = to_type;
3524
3525 /* Record this type as the pointer to TO_TYPE. */
3526 TYPE_REFERENCE_TO (to_type) = t;
3527
3528 layout_type (t);
3529
3530 return t;
3531 }
3532
3533 /* Build a type that is compatible with t but has no cv quals anywhere
3534 in its type, thus
3535
3536 const char *const *const * -> char ***. */
3537
3538 tree
build_type_no_quals(t)3539 build_type_no_quals (t)
3540 tree t;
3541 {
3542 switch (TREE_CODE (t))
3543 {
3544 case POINTER_TYPE:
3545 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3546 case REFERENCE_TYPE:
3547 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3548 default:
3549 return TYPE_MAIN_VARIANT (t);
3550 }
3551 }
3552
3553 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3554 MAXVAL should be the maximum value in the domain
3555 (one less than the length of the array).
3556
3557 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3558 We don't enforce this limit, that is up to caller (e.g. language front end).
3559 The limit exists because the result is a signed type and we don't handle
3560 sizes that use more than one HOST_WIDE_INT. */
3561
3562 tree
build_index_type(maxval)3563 build_index_type (maxval)
3564 tree maxval;
3565 {
3566 tree itype = make_node (INTEGER_TYPE);
3567
3568 TREE_TYPE (itype) = sizetype;
3569 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3570 TYPE_MIN_VALUE (itype) = size_zero_node;
3571 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3572 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3573 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3574 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3575 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3576 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3577
3578 if (host_integerp (maxval, 1))
3579 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3580 else
3581 return itype;
3582 }
3583
3584 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3585 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3586 low bound LOWVAL and high bound HIGHVAL.
3587 if TYPE==NULL_TREE, sizetype is used. */
3588
3589 tree
build_range_type(type,lowval,highval)3590 build_range_type (type, lowval, highval)
3591 tree type, lowval, highval;
3592 {
3593 tree itype = make_node (INTEGER_TYPE);
3594
3595 TREE_TYPE (itype) = type;
3596 if (type == NULL_TREE)
3597 type = sizetype;
3598
3599 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3600 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3601
3602 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3603 TYPE_MODE (itype) = TYPE_MODE (type);
3604 TYPE_SIZE (itype) = TYPE_SIZE (type);
3605 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3606 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3607 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3608
3609 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3610 return type_hash_canon (tree_low_cst (highval, 0)
3611 - tree_low_cst (lowval, 0),
3612 itype);
3613 else
3614 return itype;
3615 }
3616
3617 /* Just like build_index_type, but takes lowval and highval instead
3618 of just highval (maxval). */
3619
3620 tree
build_index_2_type(lowval,highval)3621 build_index_2_type (lowval, highval)
3622 tree lowval, highval;
3623 {
3624 return build_range_type (sizetype, lowval, highval);
3625 }
3626
3627 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3628 Needed because when index types are not hashed, equal index types
3629 built at different times appear distinct, even though structurally,
3630 they are not. */
3631
3632 int
index_type_equal(itype1,itype2)3633 index_type_equal (itype1, itype2)
3634 tree itype1, itype2;
3635 {
3636 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3637 return 0;
3638
3639 if (TREE_CODE (itype1) == INTEGER_TYPE)
3640 {
3641 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3642 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3643 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3644 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3645 return 0;
3646
3647 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3648 TYPE_MIN_VALUE (itype2))
3649 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3650 TYPE_MAX_VALUE (itype2)))
3651 return 1;
3652 }
3653
3654 return 0;
3655 }
3656
3657 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3658 and number of elements specified by the range of values of INDEX_TYPE.
3659 If such a type has already been constructed, reuse it. */
3660
3661 tree
build_array_type(elt_type,index_type)3662 build_array_type (elt_type, index_type)
3663 tree elt_type, index_type;
3664 {
3665 tree t;
3666 unsigned int hashcode;
3667
3668 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3669 {
3670 error ("arrays of functions are not meaningful");
3671 elt_type = integer_type_node;
3672 }
3673
3674 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3675 build_pointer_type (elt_type);
3676
3677 /* Allocate the array after the pointer type,
3678 in case we free it in type_hash_canon. */
3679 t = make_node (ARRAY_TYPE);
3680 TREE_TYPE (t) = elt_type;
3681 TYPE_DOMAIN (t) = index_type;
3682
3683 if (index_type == 0)
3684 {
3685 return t;
3686 }
3687
3688 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3689 t = type_hash_canon (hashcode, t);
3690
3691 if (!COMPLETE_TYPE_P (t))
3692 layout_type (t);
3693 return t;
3694 }
3695
3696 /* Return the TYPE of the elements comprising
3697 the innermost dimension of ARRAY. */
3698
3699 tree
get_inner_array_type(array)3700 get_inner_array_type (array)
3701 tree array;
3702 {
3703 tree type = TREE_TYPE (array);
3704
3705 while (TREE_CODE (type) == ARRAY_TYPE)
3706 type = TREE_TYPE (type);
3707
3708 return type;
3709 }
3710
3711 /* Construct, lay out and return
3712 the type of functions returning type VALUE_TYPE
3713 given arguments of types ARG_TYPES.
3714 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3715 are data type nodes for the arguments of the function.
3716 If such a type has already been constructed, reuse it. */
3717
3718 tree
build_function_type(value_type,arg_types)3719 build_function_type (value_type, arg_types)
3720 tree value_type, arg_types;
3721 {
3722 tree t;
3723 unsigned int hashcode;
3724
3725 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3726 {
3727 error ("function return type cannot be function");
3728 value_type = integer_type_node;
3729 }
3730
3731 /* Make a node of the sort we want. */
3732 t = make_node (FUNCTION_TYPE);
3733 TREE_TYPE (t) = value_type;
3734 TYPE_ARG_TYPES (t) = arg_types;
3735
3736 /* If we already have such a type, use the old one and free this one. */
3737 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3738 t = type_hash_canon (hashcode, t);
3739
3740 if (!COMPLETE_TYPE_P (t))
3741 layout_type (t);
3742 return t;
3743 }
3744
3745 /* Build a function type. The RETURN_TYPE is the type retured by the
3746 function. If additional arguments are provided, they are
3747 additional argument types. The list of argument types must always
3748 be terminated by NULL_TREE. */
3749
3750 tree
build_function_type_list(tree return_type,...)3751 build_function_type_list VPARAMS ((tree return_type, ...))
3752 {
3753 tree t, args, last;
3754
3755 VA_OPEN (p, return_type);
3756 VA_FIXEDARG (p, tree, return_type);
3757
3758 t = va_arg (p, tree);
3759 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3760 args = tree_cons (NULL_TREE, t, args);
3761
3762 last = args;
3763 args = nreverse (args);
3764 TREE_CHAIN (last) = void_list_node;
3765 args = build_function_type (return_type, args);
3766
3767 VA_CLOSE (p);
3768 return args;
3769 }
3770
3771 /* Construct, lay out and return the type of methods belonging to class
3772 BASETYPE and whose arguments and values are described by TYPE.
3773 If that type exists already, reuse it.
3774 TYPE must be a FUNCTION_TYPE node. */
3775
3776 tree
build_method_type(basetype,type)3777 build_method_type (basetype, type)
3778 tree basetype, type;
3779 {
3780 tree t;
3781 unsigned int hashcode;
3782
3783 /* Make a node of the sort we want. */
3784 t = make_node (METHOD_TYPE);
3785
3786 if (TREE_CODE (type) != FUNCTION_TYPE)
3787 abort ();
3788
3789 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3790 TREE_TYPE (t) = TREE_TYPE (type);
3791
3792 /* The actual arglist for this function includes a "hidden" argument
3793 which is "this". Put it into the list of argument types. */
3794
3795 TYPE_ARG_TYPES (t)
3796 = tree_cons (NULL_TREE,
3797 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3798
3799 /* If we already have such a type, use the old one and free this one. */
3800 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3801 t = type_hash_canon (hashcode, t);
3802
3803 if (!COMPLETE_TYPE_P (t))
3804 layout_type (t);
3805
3806 return t;
3807 }
3808
3809 /* Construct, lay out and return the type of offsets to a value
3810 of type TYPE, within an object of type BASETYPE.
3811 If a suitable offset type exists already, reuse it. */
3812
3813 tree
build_offset_type(basetype,type)3814 build_offset_type (basetype, type)
3815 tree basetype, type;
3816 {
3817 tree t;
3818 unsigned int hashcode;
3819
3820 /* Make a node of the sort we want. */
3821 t = make_node (OFFSET_TYPE);
3822
3823 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3824 TREE_TYPE (t) = type;
3825
3826 /* If we already have such a type, use the old one and free this one. */
3827 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3828 t = type_hash_canon (hashcode, t);
3829
3830 if (!COMPLETE_TYPE_P (t))
3831 layout_type (t);
3832
3833 return t;
3834 }
3835
3836 /* Create a complex type whose components are COMPONENT_TYPE. */
3837
3838 tree
build_complex_type(component_type)3839 build_complex_type (component_type)
3840 tree component_type;
3841 {
3842 tree t;
3843 unsigned int hashcode;
3844
3845 /* Make a node of the sort we want. */
3846 t = make_node (COMPLEX_TYPE);
3847
3848 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3849 set_type_quals (t, TYPE_QUALS (component_type));
3850
3851 /* If we already have such a type, use the old one and free this one. */
3852 hashcode = TYPE_HASH (component_type);
3853 t = type_hash_canon (hashcode, t);
3854
3855 if (!COMPLETE_TYPE_P (t))
3856 layout_type (t);
3857
3858 /* If we are writing Dwarf2 output we need to create a name,
3859 since complex is a fundamental type. */
3860 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3861 && ! TYPE_NAME (t))
3862 {
3863 const char *name;
3864 if (component_type == char_type_node)
3865 name = "complex char";
3866 else if (component_type == signed_char_type_node)
3867 name = "complex signed char";
3868 else if (component_type == unsigned_char_type_node)
3869 name = "complex unsigned char";
3870 else if (component_type == short_integer_type_node)
3871 name = "complex short int";
3872 else if (component_type == short_unsigned_type_node)
3873 name = "complex short unsigned int";
3874 else if (component_type == integer_type_node)
3875 name = "complex int";
3876 else if (component_type == unsigned_type_node)
3877 name = "complex unsigned int";
3878 else if (component_type == long_integer_type_node)
3879 name = "complex long int";
3880 else if (component_type == long_unsigned_type_node)
3881 name = "complex long unsigned int";
3882 else if (component_type == long_long_integer_type_node)
3883 name = "complex long long int";
3884 else if (component_type == long_long_unsigned_type_node)
3885 name = "complex long long unsigned int";
3886 else
3887 name = 0;
3888
3889 if (name != 0)
3890 TYPE_NAME (t) = get_identifier (name);
3891 }
3892
3893 return t;
3894 }
3895
3896 /* Return OP, stripped of any conversions to wider types as much as is safe.
3897 Converting the value back to OP's type makes a value equivalent to OP.
3898
3899 If FOR_TYPE is nonzero, we return a value which, if converted to
3900 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3901
3902 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3903 narrowest type that can hold the value, even if they don't exactly fit.
3904 Otherwise, bit-field references are changed to a narrower type
3905 only if they can be fetched directly from memory in that type.
3906
3907 OP must have integer, real or enumeral type. Pointers are not allowed!
3908
3909 There are some cases where the obvious value we could return
3910 would regenerate to OP if converted to OP's type,
3911 but would not extend like OP to wider types.
3912 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3913 For example, if OP is (unsigned short)(signed char)-1,
3914 we avoid returning (signed char)-1 if FOR_TYPE is int,
3915 even though extending that to an unsigned short would regenerate OP,
3916 since the result of extending (signed char)-1 to (int)
3917 is different from (int) OP. */
3918
3919 tree
get_unwidened(op,for_type)3920 get_unwidened (op, for_type)
3921 tree op;
3922 tree for_type;
3923 {
3924 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3925 tree type = TREE_TYPE (op);
3926 unsigned final_prec
3927 = TYPE_PRECISION (for_type != 0 ? for_type : type);
3928 int uns
3929 = (for_type != 0 && for_type != type
3930 && final_prec > TYPE_PRECISION (type)
3931 && TREE_UNSIGNED (type));
3932 tree win = op;
3933
3934 while (TREE_CODE (op) == NOP_EXPR)
3935 {
3936 int bitschange
3937 = TYPE_PRECISION (TREE_TYPE (op))
3938 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3939
3940 /* Truncations are many-one so cannot be removed.
3941 Unless we are later going to truncate down even farther. */
3942 if (bitschange < 0
3943 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
3944 break;
3945
3946 /* See what's inside this conversion. If we decide to strip it,
3947 we will set WIN. */
3948 op = TREE_OPERAND (op, 0);
3949
3950 /* If we have not stripped any zero-extensions (uns is 0),
3951 we can strip any kind of extension.
3952 If we have previously stripped a zero-extension,
3953 only zero-extensions can safely be stripped.
3954 Any extension can be stripped if the bits it would produce
3955 are all going to be discarded later by truncating to FOR_TYPE. */
3956
3957 if (bitschange > 0)
3958 {
3959 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
3960 win = op;
3961 /* TREE_UNSIGNED says whether this is a zero-extension.
3962 Let's avoid computing it if it does not affect WIN
3963 and if UNS will not be needed again. */
3964 if ((uns || TREE_CODE (op) == NOP_EXPR)
3965 && TREE_UNSIGNED (TREE_TYPE (op)))
3966 {
3967 uns = 1;
3968 win = op;
3969 }
3970 }
3971 }
3972
3973 if (TREE_CODE (op) == COMPONENT_REF
3974 /* Since type_for_size always gives an integer type. */
3975 && TREE_CODE (type) != REAL_TYPE
3976 /* Don't crash if field not laid out yet. */
3977 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
3978 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
3979 {
3980 unsigned int innerprec
3981 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
3982 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
3983 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
3984
3985 /* We can get this structure field in the narrowest type it fits in.
3986 If FOR_TYPE is 0, do this only for a field that matches the
3987 narrower type exactly and is aligned for it
3988 The resulting extension to its nominal type (a fullword type)
3989 must fit the same conditions as for other extensions. */
3990
3991 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
3992 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
3993 && (! uns || final_prec <= innerprec || unsignedp)
3994 && type != 0)
3995 {
3996 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
3997 TREE_OPERAND (op, 1));
3998 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
3999 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4000 }
4001 }
4002
4003 return win;
4004 }
4005
4006 /* Return OP or a simpler expression for a narrower value
4007 which can be sign-extended or zero-extended to give back OP.
4008 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4009 or 0 if the value should be sign-extended. */
4010
4011 tree
get_narrower(op,unsignedp_ptr)4012 get_narrower (op, unsignedp_ptr)
4013 tree op;
4014 int *unsignedp_ptr;
4015 {
4016 int uns = 0;
4017 int first = 1;
4018 tree win = op;
4019
4020 while (TREE_CODE (op) == NOP_EXPR)
4021 {
4022 int bitschange
4023 = (TYPE_PRECISION (TREE_TYPE (op))
4024 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4025
4026 /* Truncations are many-one so cannot be removed. */
4027 if (bitschange < 0)
4028 break;
4029
4030 /* See what's inside this conversion. If we decide to strip it,
4031 we will set WIN. */
4032
4033 if (bitschange > 0)
4034 {
4035 op = TREE_OPERAND (op, 0);
4036 /* An extension: the outermost one can be stripped,
4037 but remember whether it is zero or sign extension. */
4038 if (first)
4039 uns = TREE_UNSIGNED (TREE_TYPE (op));
4040 /* Otherwise, if a sign extension has been stripped,
4041 only sign extensions can now be stripped;
4042 if a zero extension has been stripped, only zero-extensions. */
4043 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4044 break;
4045 first = 0;
4046 }
4047 else /* bitschange == 0 */
4048 {
4049 /* A change in nominal type can always be stripped, but we must
4050 preserve the unsignedness. */
4051 if (first)
4052 uns = TREE_UNSIGNED (TREE_TYPE (op));
4053 first = 0;
4054 op = TREE_OPERAND (op, 0);
4055 }
4056
4057 win = op;
4058 }
4059
4060 if (TREE_CODE (op) == COMPONENT_REF
4061 /* Since type_for_size always gives an integer type. */
4062 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4063 /* Ensure field is laid out already. */
4064 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4065 {
4066 unsigned HOST_WIDE_INT innerprec
4067 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4068 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4069 TREE_UNSIGNED (op));
4070
4071 /* We can get this structure field in a narrower type that fits it,
4072 but the resulting extension to its nominal type (a fullword type)
4073 must satisfy the same conditions as for other extensions.
4074
4075 Do this only for fields that are aligned (not bit-fields),
4076 because when bit-field insns will be used there is no
4077 advantage in doing this. */
4078
4079 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4080 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4081 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4082 && type != 0)
4083 {
4084 if (first)
4085 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4086 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4087 TREE_OPERAND (op, 1));
4088 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4089 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4090 }
4091 }
4092 *unsignedp_ptr = uns;
4093 return win;
4094 }
4095
4096 /* Nonzero if integer constant C has a value that is permissible
4097 for type TYPE (an INTEGER_TYPE). */
4098
4099 int
int_fits_type_p(c,type)4100 int_fits_type_p (c, type)
4101 tree c, type;
4102 {
4103 /* If the bounds of the type are integers, we can check ourselves.
4104 If not, but this type is a subtype, try checking against that.
4105 Otherwise, use force_fit_type, which checks against the precision. */
4106 if (TYPE_MAX_VALUE (type) != NULL_TREE
4107 && TYPE_MIN_VALUE (type) != NULL_TREE
4108 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4109 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4110 {
4111 if (TREE_UNSIGNED (type))
4112 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4113 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4114 /* Negative ints never fit unsigned types. */
4115 && ! (TREE_INT_CST_HIGH (c) < 0
4116 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4117 else
4118 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4119 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4120 /* Unsigned ints with top bit set never fit signed types. */
4121 && ! (TREE_INT_CST_HIGH (c) < 0
4122 && TREE_UNSIGNED (TREE_TYPE (c))));
4123 }
4124 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4125 return int_fits_type_p (c, TREE_TYPE (type));
4126 else
4127 {
4128 c = copy_node (c);
4129 TREE_TYPE (c) = type;
4130 return !force_fit_type (c, 0);
4131 }
4132 }
4133
4134 /* Returns true if T is, contains, or refers to a type with variable
4135 size. This concept is more general than that of C99 'variably
4136 modified types': in C99, a struct type is never variably modified
4137 because a VLA may not appear as a structure member. However, in
4138 GNU C code like:
4139
4140 struct S { int i[f()]; };
4141
4142 is valid, and other languages may define similar constructs. */
4143
4144 bool
variably_modified_type_p(type)4145 variably_modified_type_p (type)
4146 tree type;
4147 {
4148 if (type == error_mark_node)
4149 return false;
4150
4151 /* If TYPE itself has variable size, it is variably modified.
4152
4153 We do not yet have a representation of the C99 '[*]' syntax.
4154 When a representation is chosen, this function should be modified
4155 to test for that case as well. */
4156 if (TYPE_SIZE (type)
4157 && TYPE_SIZE (type) != error_mark_node
4158 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4159 return true;
4160
4161 /* If TYPE is a pointer or reference, it is variably modified if
4162 the type pointed to is variably modified. */
4163 if ((TREE_CODE (type) == POINTER_TYPE
4164 || TREE_CODE (type) == REFERENCE_TYPE)
4165 && variably_modified_type_p (TREE_TYPE (type)))
4166 return true;
4167
4168 /* If TYPE is an array, it is variably modified if the array
4169 elements are. (Note that the VLA case has already been checked
4170 above.) */
4171 if (TREE_CODE (type) == ARRAY_TYPE
4172 && variably_modified_type_p (TREE_TYPE (type)))
4173 return true;
4174
4175 /* If TYPE is a function type, it is variably modified if any of the
4176 parameters or the return type are variably modified. */
4177 if (TREE_CODE (type) == FUNCTION_TYPE
4178 || TREE_CODE (type) == METHOD_TYPE)
4179 {
4180 tree parm;
4181
4182 if (variably_modified_type_p (TREE_TYPE (type)))
4183 return true;
4184 for (parm = TYPE_ARG_TYPES (type);
4185 parm && parm != void_list_node;
4186 parm = TREE_CHAIN (parm))
4187 if (variably_modified_type_p (TREE_VALUE (parm)))
4188 return true;
4189 }
4190
4191 /* The current language may have other cases to check, but in general,
4192 all other types are not variably modified. */
4193 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4194 }
4195
4196 /* Given a DECL or TYPE, return the scope in which it was declared, or
4197 NULL_TREE if there is no containing scope. */
4198
4199 tree
get_containing_scope(t)4200 get_containing_scope (t)
4201 tree t;
4202 {
4203 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4204 }
4205
4206 /* Return the innermost context enclosing DECL that is
4207 a FUNCTION_DECL, or zero if none. */
4208
4209 tree
decl_function_context(decl)4210 decl_function_context (decl)
4211 tree decl;
4212 {
4213 tree context;
4214
4215 if (TREE_CODE (decl) == ERROR_MARK)
4216 return 0;
4217
4218 if (TREE_CODE (decl) == SAVE_EXPR)
4219 context = SAVE_EXPR_CONTEXT (decl);
4220
4221 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4222 where we look up the function at runtime. Such functions always take
4223 a first argument of type 'pointer to real context'.
4224
4225 C++ should really be fixed to use DECL_CONTEXT for the real context,
4226 and use something else for the "virtual context". */
4227 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4228 context
4229 = TYPE_MAIN_VARIANT
4230 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4231 else
4232 context = DECL_CONTEXT (decl);
4233
4234 while (context && TREE_CODE (context) != FUNCTION_DECL)
4235 {
4236 if (TREE_CODE (context) == BLOCK)
4237 context = BLOCK_SUPERCONTEXT (context);
4238 else
4239 context = get_containing_scope (context);
4240 }
4241
4242 return context;
4243 }
4244
4245 /* Return the innermost context enclosing DECL that is
4246 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4247 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4248
4249 tree
decl_type_context(decl)4250 decl_type_context (decl)
4251 tree decl;
4252 {
4253 tree context = DECL_CONTEXT (decl);
4254
4255 while (context)
4256 {
4257 if (TREE_CODE (context) == NAMESPACE_DECL)
4258 return NULL_TREE;
4259
4260 if (TREE_CODE (context) == RECORD_TYPE
4261 || TREE_CODE (context) == UNION_TYPE
4262 || TREE_CODE (context) == QUAL_UNION_TYPE)
4263 return context;
4264
4265 if (TREE_CODE (context) == TYPE_DECL
4266 || TREE_CODE (context) == FUNCTION_DECL)
4267 context = DECL_CONTEXT (context);
4268
4269 else if (TREE_CODE (context) == BLOCK)
4270 context = BLOCK_SUPERCONTEXT (context);
4271
4272 else
4273 /* Unhandled CONTEXT!? */
4274 abort ();
4275 }
4276 return NULL_TREE;
4277 }
4278
4279 /* CALL is a CALL_EXPR. Return the declaration for the function
4280 called, or NULL_TREE if the called function cannot be
4281 determined. */
4282
4283 tree
get_callee_fndecl(call)4284 get_callee_fndecl (call)
4285 tree call;
4286 {
4287 tree addr;
4288
4289 /* It's invalid to call this function with anything but a
4290 CALL_EXPR. */
4291 if (TREE_CODE (call) != CALL_EXPR)
4292 abort ();
4293
4294 /* The first operand to the CALL is the address of the function
4295 called. */
4296 addr = TREE_OPERAND (call, 0);
4297
4298 STRIP_NOPS (addr);
4299
4300 /* If this is a readonly function pointer, extract its initial value. */
4301 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4302 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4303 && DECL_INITIAL (addr))
4304 addr = DECL_INITIAL (addr);
4305
4306 /* If the address is just `&f' for some function `f', then we know
4307 that `f' is being called. */
4308 if (TREE_CODE (addr) == ADDR_EXPR
4309 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4310 return TREE_OPERAND (addr, 0);
4311
4312 /* We couldn't figure out what was being called. */
4313 return NULL_TREE;
4314 }
4315
4316 /* Print debugging information about the obstack O, named STR. */
4317
4318 void
print_obstack_statistics(str,o)4319 print_obstack_statistics (str, o)
4320 const char *str;
4321 struct obstack *o;
4322 {
4323 struct _obstack_chunk *chunk = o->chunk;
4324 int n_chunks = 1;
4325 int n_alloc = 0;
4326
4327 n_alloc += o->next_free - chunk->contents;
4328 chunk = chunk->prev;
4329 while (chunk)
4330 {
4331 n_chunks += 1;
4332 n_alloc += chunk->limit - &chunk->contents[0];
4333 chunk = chunk->prev;
4334 }
4335 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4336 str, n_alloc, n_chunks);
4337 }
4338
4339 /* Print debugging information about tree nodes generated during the compile,
4340 and any language-specific information. */
4341
4342 void
dump_tree_statistics()4343 dump_tree_statistics ()
4344 {
4345 #ifdef GATHER_STATISTICS
4346 int i;
4347 int total_nodes, total_bytes;
4348 #endif
4349
4350 fprintf (stderr, "\n??? tree nodes created\n\n");
4351 #ifdef GATHER_STATISTICS
4352 fprintf (stderr, "Kind Nodes Bytes\n");
4353 fprintf (stderr, "-------------------------------------\n");
4354 total_nodes = total_bytes = 0;
4355 for (i = 0; i < (int) all_kinds; i++)
4356 {
4357 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4358 tree_node_counts[i], tree_node_sizes[i]);
4359 total_nodes += tree_node_counts[i];
4360 total_bytes += tree_node_sizes[i];
4361 }
4362 fprintf (stderr, "-------------------------------------\n");
4363 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4364 fprintf (stderr, "-------------------------------------\n");
4365 #else
4366 fprintf (stderr, "(No per-node statistics)\n");
4367 #endif
4368 print_type_hash_statistics ();
4369 (*lang_hooks.print_statistics) ();
4370 }
4371
4372 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4373
4374 const char *flag_random_seed;
4375
4376 /* Set up a default flag_random_seed value, if there wasn't one already. */
4377
4378 void
default_flag_random_seed()4379 default_flag_random_seed ()
4380 {
4381 unsigned HOST_WIDE_INT value;
4382 char *new_random_seed;
4383
4384 if (flag_random_seed != NULL)
4385 return;
4386
4387 /* Get some more or less random data. */
4388 #ifdef HAVE_GETTIMEOFDAY
4389 {
4390 struct timeval tv;
4391
4392 gettimeofday (&tv, NULL);
4393 value = (((unsigned HOST_WIDE_INT) tv.tv_usec << 16)
4394 ^ tv.tv_sec ^ getpid ());
4395 }
4396 #else
4397 value = getpid ();
4398 #endif
4399
4400 /* This slightly overestimates the space required. */
4401 new_random_seed = xmalloc (HOST_BITS_PER_WIDE_INT / 3 + 2);
4402 sprintf (new_random_seed, HOST_WIDE_INT_PRINT_UNSIGNED, value);
4403 flag_random_seed = new_random_seed;
4404 }
4405
4406 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4407 clashes in cases where we can't reliably choose a unique name.
4408
4409 Derived from mkstemp.c in libiberty. */
4410
4411 static void
append_random_chars(template)4412 append_random_chars (template)
4413 char *template;
4414 {
4415 static const char letters[]
4416 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4417 unsigned HOST_WIDE_INT v;
4418 size_t i;
4419
4420 default_flag_random_seed ();
4421
4422 /* This isn't a very good hash, but it does guarantee no collisions
4423 when the random string is generated by the code above and the time
4424 delta is small. */
4425 v = 0;
4426 for (i = 0; i < strlen (flag_random_seed); i++)
4427 v = (v << 4) ^ (v >> (HOST_BITS_PER_WIDE_INT - 4)) ^ flag_random_seed[i];
4428
4429 template += strlen (template);
4430
4431 /* Fill in the random bits. */
4432 template[0] = letters[v % 62];
4433 v /= 62;
4434 template[1] = letters[v % 62];
4435 v /= 62;
4436 template[2] = letters[v % 62];
4437 v /= 62;
4438 template[3] = letters[v % 62];
4439 v /= 62;
4440 template[4] = letters[v % 62];
4441 v /= 62;
4442 template[5] = letters[v % 62];
4443
4444 template[6] = '\0';
4445 }
4446
4447 /* P is a string that will be used in a symbol. Mask out any characters
4448 that are not valid in that context. */
4449
4450 void
clean_symbol_name(p)4451 clean_symbol_name (p)
4452 char *p;
4453 {
4454 for (; *p; p++)
4455 if (! (ISALNUM (*p)
4456 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4457 || *p == '$'
4458 #endif
4459 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4460 || *p == '.'
4461 #endif
4462 ))
4463 *p = '_';
4464 }
4465
4466 /* Generate a name for a function unique to this translation unit.
4467 TYPE is some string to identify the purpose of this function to the
4468 linker or collect2. */
4469
4470 tree
get_file_function_name_long(type)4471 get_file_function_name_long (type)
4472 const char *type;
4473 {
4474 char *buf;
4475 const char *p;
4476 char *q;
4477
4478 if (first_global_object_name)
4479 p = first_global_object_name;
4480 else
4481 {
4482 /* We don't have anything that we know to be unique to this translation
4483 unit, so use what we do have and throw in some randomness. */
4484
4485 const char *name = weak_global_object_name;
4486 const char *file = main_input_filename;
4487
4488 if (! name)
4489 name = "";
4490 if (! file)
4491 file = input_filename;
4492
4493 q = (char *) alloca (7 + strlen (name) + strlen (file));
4494
4495 sprintf (q, "%s%s", name, file);
4496 append_random_chars (q);
4497 p = q;
4498 }
4499
4500 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4501 + strlen (type));
4502
4503 /* Set up the name of the file-level functions we may need.
4504 Use a global object (which is already required to be unique over
4505 the program) rather than the file name (which imposes extra
4506 constraints). */
4507 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4508
4509 /* Don't need to pull weird characters out of global names. */
4510 if (p != first_global_object_name)
4511 clean_symbol_name (buf + 11);
4512
4513 return get_identifier (buf);
4514 }
4515
4516 /* If KIND=='I', return a suitable global initializer (constructor) name.
4517 If KIND=='D', return a suitable global clean-up (destructor) name. */
4518
4519 tree
get_file_function_name(kind)4520 get_file_function_name (kind)
4521 int kind;
4522 {
4523 char p[2];
4524
4525 p[0] = kind;
4526 p[1] = 0;
4527
4528 return get_file_function_name_long (p);
4529 }
4530
4531 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4532 The result is placed in BUFFER (which has length BIT_SIZE),
4533 with one bit in each char ('\000' or '\001').
4534
4535 If the constructor is constant, NULL_TREE is returned.
4536 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4537
4538 tree
get_set_constructor_bits(init,buffer,bit_size)4539 get_set_constructor_bits (init, buffer, bit_size)
4540 tree init;
4541 char *buffer;
4542 int bit_size;
4543 {
4544 int i;
4545 tree vals;
4546 HOST_WIDE_INT domain_min
4547 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4548 tree non_const_bits = NULL_TREE;
4549
4550 for (i = 0; i < bit_size; i++)
4551 buffer[i] = 0;
4552
4553 for (vals = TREE_OPERAND (init, 1);
4554 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4555 {
4556 if (!host_integerp (TREE_VALUE (vals), 0)
4557 || (TREE_PURPOSE (vals) != NULL_TREE
4558 && !host_integerp (TREE_PURPOSE (vals), 0)))
4559 non_const_bits
4560 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4561 else if (TREE_PURPOSE (vals) != NULL_TREE)
4562 {
4563 /* Set a range of bits to ones. */
4564 HOST_WIDE_INT lo_index
4565 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4566 HOST_WIDE_INT hi_index
4567 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4568
4569 if (lo_index < 0 || lo_index >= bit_size
4570 || hi_index < 0 || hi_index >= bit_size)
4571 abort ();
4572 for (; lo_index <= hi_index; lo_index++)
4573 buffer[lo_index] = 1;
4574 }
4575 else
4576 {
4577 /* Set a single bit to one. */
4578 HOST_WIDE_INT index
4579 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4580 if (index < 0 || index >= bit_size)
4581 {
4582 error ("invalid initializer for bit string");
4583 return NULL_TREE;
4584 }
4585 buffer[index] = 1;
4586 }
4587 }
4588 return non_const_bits;
4589 }
4590
4591 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4592 The result is placed in BUFFER (which is an array of bytes).
4593 If the constructor is constant, NULL_TREE is returned.
4594 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4595
4596 tree
get_set_constructor_bytes(init,buffer,wd_size)4597 get_set_constructor_bytes (init, buffer, wd_size)
4598 tree init;
4599 unsigned char *buffer;
4600 int wd_size;
4601 {
4602 int i;
4603 int set_word_size = BITS_PER_UNIT;
4604 int bit_size = wd_size * set_word_size;
4605 int bit_pos = 0;
4606 unsigned char *bytep = buffer;
4607 char *bit_buffer = (char *) alloca (bit_size);
4608 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4609
4610 for (i = 0; i < wd_size; i++)
4611 buffer[i] = 0;
4612
4613 for (i = 0; i < bit_size; i++)
4614 {
4615 if (bit_buffer[i])
4616 {
4617 if (BYTES_BIG_ENDIAN)
4618 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4619 else
4620 *bytep |= 1 << bit_pos;
4621 }
4622 bit_pos++;
4623 if (bit_pos >= set_word_size)
4624 bit_pos = 0, bytep++;
4625 }
4626 return non_const_bits;
4627 }
4628
4629 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4630 /* Complain that the tree code of NODE does not match the expected CODE.
4631 FILE, LINE, and FUNCTION are of the caller. */
4632
4633 void
tree_check_failed(node,code,file,line,function)4634 tree_check_failed (node, code, file, line, function)
4635 const tree node;
4636 enum tree_code code;
4637 const char *file;
4638 int line;
4639 const char *function;
4640 {
4641 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4642 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4643 function, trim_filename (file), line);
4644 }
4645
4646 /* Similar to above, except that we check for a class of tree
4647 code, given in CL. */
4648
4649 void
tree_class_check_failed(node,cl,file,line,function)4650 tree_class_check_failed (node, cl, file, line, function)
4651 const tree node;
4652 int cl;
4653 const char *file;
4654 int line;
4655 const char *function;
4656 {
4657 internal_error
4658 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4659 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4660 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4661 }
4662
4663 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4664 (dynamically sized) vector. */
4665
4666 void
tree_vec_elt_check_failed(idx,len,file,line,function)4667 tree_vec_elt_check_failed (idx, len, file, line, function)
4668 int idx;
4669 int len;
4670 const char *file;
4671 int line;
4672 const char *function;
4673 {
4674 internal_error
4675 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4676 idx + 1, len, function, trim_filename (file), line);
4677 }
4678
4679 #endif /* ENABLE_TREE_CHECKING */
4680
4681 /* For a new vector type node T, build the information necessary for
4682 debugging output. */
4683
4684 static void
finish_vector_type(t)4685 finish_vector_type (t)
4686 tree t;
4687 {
4688 layout_type (t);
4689
4690 {
4691 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4692 tree array = build_array_type (TREE_TYPE (t),
4693 build_index_type (index));
4694 tree rt = make_node (RECORD_TYPE);
4695
4696 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4697 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4698 layout_type (rt);
4699 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4700 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4701 the representation type, and we want to find that die when looking up
4702 the vector type. This is most easily achieved by making the TYPE_UID
4703 numbers equal. */
4704 TYPE_UID (rt) = TYPE_UID (t);
4705 }
4706 }
4707
4708 /* Create nodes for all integer types (and error_mark_node) using the sizes
4709 of C datatypes. The caller should call set_sizetype soon after calling
4710 this function to select one of the types as sizetype. */
4711
4712 void
build_common_tree_nodes(signed_char)4713 build_common_tree_nodes (signed_char)
4714 int signed_char;
4715 {
4716 error_mark_node = make_node (ERROR_MARK);
4717 TREE_TYPE (error_mark_node) = error_mark_node;
4718
4719 initialize_sizetypes ();
4720
4721 /* Define both `signed char' and `unsigned char'. */
4722 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4723 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4724
4725 /* Define `char', which is like either `signed char' or `unsigned char'
4726 but not the same as either. */
4727 char_type_node
4728 = (signed_char
4729 ? make_signed_type (CHAR_TYPE_SIZE)
4730 : make_unsigned_type (CHAR_TYPE_SIZE));
4731
4732 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4733 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4734 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4735 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4736 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4737 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4738 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4739 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4740
4741 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4742 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4743 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4744 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4745 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4746
4747 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4748 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4749 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4750 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4751 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4752 }
4753
4754 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4755 It will create several other common tree nodes. */
4756
4757 void
build_common_tree_nodes_2(short_double)4758 build_common_tree_nodes_2 (short_double)
4759 int short_double;
4760 {
4761 /* Define these next since types below may used them. */
4762 integer_zero_node = build_int_2 (0, 0);
4763 integer_one_node = build_int_2 (1, 0);
4764 integer_minus_one_node = build_int_2 (-1, -1);
4765
4766 size_zero_node = size_int (0);
4767 size_one_node = size_int (1);
4768 bitsize_zero_node = bitsize_int (0);
4769 bitsize_one_node = bitsize_int (1);
4770 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4771
4772 void_type_node = make_node (VOID_TYPE);
4773 layout_type (void_type_node);
4774
4775 /* We are not going to have real types in C with less than byte alignment,
4776 so we might as well not have any types that claim to have it. */
4777 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4778 TYPE_USER_ALIGN (void_type_node) = 0;
4779
4780 null_pointer_node = build_int_2 (0, 0);
4781 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4782 layout_type (TREE_TYPE (null_pointer_node));
4783
4784 ptr_type_node = build_pointer_type (void_type_node);
4785 const_ptr_type_node
4786 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4787
4788 float_type_node = make_node (REAL_TYPE);
4789 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4790 layout_type (float_type_node);
4791
4792 double_type_node = make_node (REAL_TYPE);
4793 if (short_double)
4794 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4795 else
4796 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4797 layout_type (double_type_node);
4798
4799 long_double_type_node = make_node (REAL_TYPE);
4800 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4801 layout_type (long_double_type_node);
4802
4803 complex_integer_type_node = make_node (COMPLEX_TYPE);
4804 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4805 layout_type (complex_integer_type_node);
4806
4807 complex_float_type_node = make_node (COMPLEX_TYPE);
4808 TREE_TYPE (complex_float_type_node) = float_type_node;
4809 layout_type (complex_float_type_node);
4810
4811 complex_double_type_node = make_node (COMPLEX_TYPE);
4812 TREE_TYPE (complex_double_type_node) = double_type_node;
4813 layout_type (complex_double_type_node);
4814
4815 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4816 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4817 layout_type (complex_long_double_type_node);
4818
4819 {
4820 tree t;
4821 BUILD_VA_LIST_TYPE (t);
4822
4823 /* Many back-ends define record types without seting TYPE_NAME.
4824 If we copied the record type here, we'd keep the original
4825 record type without a name. This breaks name mangling. So,
4826 don't copy record types and let c_common_nodes_and_builtins()
4827 declare the type to be __builtin_va_list. */
4828 if (TREE_CODE (t) != RECORD_TYPE)
4829 t = build_type_copy (t);
4830
4831 va_list_type_node = t;
4832 }
4833
4834 unsigned_V4SI_type_node
4835 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4836 unsigned_V2HI_type_node
4837 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4838 unsigned_V2SI_type_node
4839 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4840 unsigned_V2DI_type_node
4841 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4842 unsigned_V4HI_type_node
4843 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4844 unsigned_V8QI_type_node
4845 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4846 unsigned_V8HI_type_node
4847 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4848 unsigned_V16QI_type_node
4849 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4850 unsigned_V1DI_type_node
4851 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4852
4853 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4854 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4855 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4856 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4857 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4858 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4859 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4860 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4861 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4862 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4863 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4864 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4865 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4866 }
4867
4868 /* Returns a vector tree node given a vector mode, the inner type, and
4869 the signness. */
4870
4871 static tree
make_vector(mode,innertype,unsignedp)4872 make_vector (mode, innertype, unsignedp)
4873 enum machine_mode mode;
4874 tree innertype;
4875 int unsignedp;
4876 {
4877 tree t;
4878
4879 t = make_node (VECTOR_TYPE);
4880 TREE_TYPE (t) = innertype;
4881 TYPE_MODE (t) = mode;
4882 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4883 finish_vector_type (t);
4884
4885 return t;
4886 }
4887
4888 /* Given an initializer INIT, return TRUE if INIT is zero or some
4889 aggregate of zeros. Otherwise return FALSE. */
4890
4891 bool
initializer_zerop(init)4892 initializer_zerop (init)
4893 tree init;
4894 {
4895 STRIP_NOPS (init);
4896
4897 switch (TREE_CODE (init))
4898 {
4899 case INTEGER_CST:
4900 return integer_zerop (init);
4901 case REAL_CST:
4902 return real_zerop (init)
4903 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4904 case COMPLEX_CST:
4905 return integer_zerop (init)
4906 || (real_zerop (init)
4907 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4908 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4909 case CONSTRUCTOR:
4910 {
4911 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4912 {
4913 tree aggr_init = TREE_OPERAND (init, 1);
4914
4915 while (aggr_init)
4916 {
4917 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4918 return false;
4919 aggr_init = TREE_CHAIN (aggr_init);
4920 }
4921 return true;
4922 }
4923 return false;
4924 }
4925 default:
4926 return false;
4927 }
4928 }
4929
4930 #include "gt-tree.h"
4931