1 /*! \file */
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22    the Altix.  Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel.  Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <limits>
70 #include <type_traits>
71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72    Microsoft library. Some macros provided below to replace these functions  */
73 #ifndef __ABSOFT_WIN
74 #include <sys/types.h>
75 #endif
76 #include <limits.h>
77 #include <time.h>
78 
79 #include <errno.h>
80 
81 #include "kmp_os.h"
82 
83 #include "kmp_safe_c_api.h"
84 
85 #if KMP_STATS_ENABLED
86 class kmp_stats_list;
87 #endif
88 
89 #if KMP_USE_HIER_SCHED
90 // Only include hierarchical scheduling if affinity is supported
91 #undef KMP_USE_HIER_SCHED
92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93 #endif
94 
95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96 #include "hwloc.h"
97 #ifndef HWLOC_OBJ_NUMANODE
98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99 #endif
100 #ifndef HWLOC_OBJ_PACKAGE
101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102 #endif
103 #if HWLOC_API_VERSION >= 0x00020000
104 // hwloc 2.0 changed type of depth of object from unsigned to int
105 typedef int kmp_hwloc_depth_t;
106 #else
107 typedef unsigned int kmp_hwloc_depth_t;
108 #endif
109 #endif
110 
111 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
112 #include <xmmintrin.h>
113 #endif
114 
115 #include "kmp_debug.h"
116 #include "kmp_lock.h"
117 #include "kmp_version.h"
118 #include "kmp_barrier.h"
119 #if USE_DEBUGGER
120 #include "kmp_debugger.h"
121 #endif
122 #include "kmp_i18n.h"
123 
124 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125 
126 #include "kmp_wrapper_malloc.h"
127 #if KMP_OS_UNIX
128 #include <unistd.h>
129 #if !defined NSIG && defined _NSIG
130 #define NSIG _NSIG
131 #endif
132 #endif
133 
134 #if KMP_OS_LINUX
135 #pragma weak clock_gettime
136 #endif
137 
138 #if OMPT_SUPPORT
139 #include "ompt-internal.h"
140 #endif
141 
142 #if OMPD_SUPPORT
143 #include "ompd-specific.h"
144 #endif
145 
146 #ifndef UNLIKELY
147 #define UNLIKELY(x) (x)
148 #endif
149 
150 // Affinity format function
151 #include "kmp_str.h"
152 
153 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
155 // free lists of limited size.
156 #ifndef USE_FAST_MEMORY
157 #define USE_FAST_MEMORY 3
158 #endif
159 
160 #ifndef KMP_NESTED_HOT_TEAMS
161 #define KMP_NESTED_HOT_TEAMS 0
162 #define USE_NESTED_HOT_ARG(x)
163 #else
164 #if KMP_NESTED_HOT_TEAMS
165 #define USE_NESTED_HOT_ARG(x) , x
166 #else
167 #define USE_NESTED_HOT_ARG(x)
168 #endif
169 #endif
170 
171 // Assume using BGET compare_exchange instruction instead of lock by default.
172 #ifndef USE_CMP_XCHG_FOR_BGET
173 #define USE_CMP_XCHG_FOR_BGET 1
174 #endif
175 
176 // Test to see if queuing lock is better than bootstrap lock for bget
177 // #ifndef USE_QUEUING_LOCK_FOR_BGET
178 // #define USE_QUEUING_LOCK_FOR_BGET
179 // #endif
180 
181 #define KMP_NSEC_PER_SEC 1000000000L
182 #define KMP_USEC_PER_SEC 1000000L
183 
184 /*!
185 @ingroup BASIC_TYPES
186 @{
187 */
188 
189 /*!
190 Values for bit flags used in the ident_t to describe the fields.
191 */
192 enum {
193   /*! Use trampoline for internal microtasks */
194   KMP_IDENT_IMB = 0x01,
195   /*! Use c-style ident structure */
196   KMP_IDENT_KMPC = 0x02,
197   /* 0x04 is no longer used */
198   /*! Entry point generated by auto-parallelization */
199   KMP_IDENT_AUTOPAR = 0x08,
200   /*! Compiler generates atomic reduction option for kmpc_reduce* */
201   KMP_IDENT_ATOMIC_REDUCE = 0x10,
202   /*! To mark a 'barrier' directive in user code */
203   KMP_IDENT_BARRIER_EXPL = 0x20,
204   /*! To Mark implicit barriers. */
205   KMP_IDENT_BARRIER_IMPL = 0x0040,
206   KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
207   KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
208   KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
209 
210   KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
211   KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
212 
213   /*! To mark a static loop in OMPT callbacks */
214   KMP_IDENT_WORK_LOOP = 0x200,
215   /*! To mark a sections directive in OMPT callbacks */
216   KMP_IDENT_WORK_SECTIONS = 0x400,
217   /*! To mark a distribute construct in OMPT callbacks */
218   KMP_IDENT_WORK_DISTRIBUTE = 0x800,
219   /*! Atomic hint; bottom four bits as omp_sync_hint_t. Top four reserved and
220       not currently used. If one day we need more bits, then we can use
221       an invalid combination of hints to mean that another, larger field
222       should be used in a different flag. */
223   KMP_IDENT_ATOMIC_HINT_MASK = 0xFF0000,
224   KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
225   KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
226   KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
227   KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
228   KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
229 };
230 
231 /*!
232  * The ident structure that describes a source location.
233  */
234 typedef struct ident {
235   kmp_int32 reserved_1; /**<  might be used in Fortran; see above  */
236   kmp_int32 flags; /**<  also f.flags; KMP_IDENT_xxx flags; KMP_IDENT_KMPC
237                       identifies this union member  */
238   kmp_int32 reserved_2; /**<  not really used in Fortran any more; see above */
239 #if USE_ITT_BUILD
240 /*  but currently used for storing region-specific ITT */
241 /*  contextual information. */
242 #endif /* USE_ITT_BUILD */
243   kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for C++  */
244   char const *psource; /**< String describing the source location.
245                        The string is composed of semi-colon separated fields
246                        which describe the source file, the function and a pair
247                        of line numbers that delimit the construct. */
248   // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
get_openmp_versionident249   kmp_int32 get_openmp_version() {
250     return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
251   }
252 } ident_t;
253 /*!
254 @}
255 */
256 
257 // Some forward declarations.
258 typedef union kmp_team kmp_team_t;
259 typedef struct kmp_taskdata kmp_taskdata_t;
260 typedef union kmp_task_team kmp_task_team_t;
261 typedef union kmp_team kmp_team_p;
262 typedef union kmp_info kmp_info_p;
263 typedef union kmp_root kmp_root_p;
264 
265 template <bool C = false, bool S = true> class kmp_flag_32;
266 template <bool C = false, bool S = true> class kmp_flag_64;
267 template <bool C = false, bool S = true> class kmp_atomic_flag_64;
268 class kmp_flag_oncore;
269 
270 #ifdef __cplusplus
271 extern "C" {
272 #endif
273 
274 /* ------------------------------------------------------------------------ */
275 
276 /* Pack two 32-bit signed integers into a 64-bit signed integer */
277 /* ToDo: Fix word ordering for big-endian machines. */
278 #define KMP_PACK_64(HIGH_32, LOW_32)                                           \
279   ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
280 
281 // Generic string manipulation macros. Assume that _x is of type char *
282 #define SKIP_WS(_x)                                                            \
283   {                                                                            \
284     while (*(_x) == ' ' || *(_x) == '\t')                                      \
285       (_x)++;                                                                  \
286   }
287 #define SKIP_DIGITS(_x)                                                        \
288   {                                                                            \
289     while (*(_x) >= '0' && *(_x) <= '9')                                       \
290       (_x)++;                                                                  \
291   }
292 #define SKIP_TOKEN(_x)                                                         \
293   {                                                                            \
294     while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
295            (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_')                     \
296       (_x)++;                                                                  \
297   }
298 #define SKIP_TO(_x, _c)                                                        \
299   {                                                                            \
300     while (*(_x) != '\0' && *(_x) != (_c))                                     \
301       (_x)++;                                                                  \
302   }
303 
304 /* ------------------------------------------------------------------------ */
305 
306 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
307 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
308 
309 /* ------------------------------------------------------------------------ */
310 /* Enumeration types */
311 
312 enum kmp_state_timer {
313   ts_stop,
314   ts_start,
315   ts_pause,
316 
317   ts_last_state
318 };
319 
320 enum dynamic_mode {
321   dynamic_default,
322 #ifdef USE_LOAD_BALANCE
323   dynamic_load_balance,
324 #endif /* USE_LOAD_BALANCE */
325   dynamic_random,
326   dynamic_thread_limit,
327   dynamic_max
328 };
329 
330 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
331  * not include it here */
332 #ifndef KMP_SCHED_TYPE_DEFINED
333 #define KMP_SCHED_TYPE_DEFINED
334 typedef enum kmp_sched {
335   kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
336   // Note: need to adjust __kmp_sch_map global array in case enum is changed
337   kmp_sched_static = 1, // mapped to kmp_sch_static_chunked           (33)
338   kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked          (35)
339   kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked           (36)
340   kmp_sched_auto = 4, // mapped to kmp_sch_auto                     (38)
341   kmp_sched_upper_std = 5, // upper bound for standard schedules
342   kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
343   kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
344 #if KMP_STATIC_STEAL_ENABLED
345   kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
346 #endif
347   kmp_sched_upper,
348   kmp_sched_default = kmp_sched_static, // default scheduling
349   kmp_sched_monotonic = 0x80000000
350 } kmp_sched_t;
351 #endif
352 
353 /*!
354  @ingroup WORK_SHARING
355  * Describes the loop schedule to be used for a parallel for loop.
356  */
357 enum sched_type : kmp_int32 {
358   kmp_sch_lower = 32, /**< lower bound for unordered values */
359   kmp_sch_static_chunked = 33,
360   kmp_sch_static = 34, /**< static unspecialized */
361   kmp_sch_dynamic_chunked = 35,
362   kmp_sch_guided_chunked = 36, /**< guided unspecialized */
363   kmp_sch_runtime = 37,
364   kmp_sch_auto = 38, /**< auto */
365   kmp_sch_trapezoidal = 39,
366 
367   /* accessible only through KMP_SCHEDULE environment variable */
368   kmp_sch_static_greedy = 40,
369   kmp_sch_static_balanced = 41,
370   /* accessible only through KMP_SCHEDULE environment variable */
371   kmp_sch_guided_iterative_chunked = 42,
372   kmp_sch_guided_analytical_chunked = 43,
373   /* accessible only through KMP_SCHEDULE environment variable */
374   kmp_sch_static_steal = 44,
375 
376   /* static with chunk adjustment (e.g., simd) */
377   kmp_sch_static_balanced_chunked = 45,
378   kmp_sch_guided_simd = 46, /**< guided with chunk adjustment */
379   kmp_sch_runtime_simd = 47, /**< runtime with chunk adjustment */
380 
381   /* accessible only through KMP_SCHEDULE environment variable */
382   kmp_sch_upper, /**< upper bound for unordered values */
383 
384   kmp_ord_lower = 64, /**< lower bound for ordered values, must be power of 2 */
385   kmp_ord_static_chunked = 65,
386   kmp_ord_static = 66, /**< ordered static unspecialized */
387   kmp_ord_dynamic_chunked = 67,
388   kmp_ord_guided_chunked = 68,
389   kmp_ord_runtime = 69,
390   kmp_ord_auto = 70, /**< ordered auto */
391   kmp_ord_trapezoidal = 71,
392   kmp_ord_upper, /**< upper bound for ordered values */
393 
394   /* Schedules for Distribute construct */
395   kmp_distribute_static_chunked = 91, /**< distribute static chunked */
396   kmp_distribute_static = 92, /**< distribute static unspecialized */
397 
398   /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
399      single iteration/chunk, even if the loop is serialized. For the schedule
400      types listed above, the entire iteration vector is returned if the loop is
401      serialized. This doesn't work for gcc/gcomp sections. */
402   kmp_nm_lower = 160, /**< lower bound for nomerge values */
403 
404   kmp_nm_static_chunked =
405       (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
406   kmp_nm_static = 162, /**< static unspecialized */
407   kmp_nm_dynamic_chunked = 163,
408   kmp_nm_guided_chunked = 164, /**< guided unspecialized */
409   kmp_nm_runtime = 165,
410   kmp_nm_auto = 166, /**< auto */
411   kmp_nm_trapezoidal = 167,
412 
413   /* accessible only through KMP_SCHEDULE environment variable */
414   kmp_nm_static_greedy = 168,
415   kmp_nm_static_balanced = 169,
416   /* accessible only through KMP_SCHEDULE environment variable */
417   kmp_nm_guided_iterative_chunked = 170,
418   kmp_nm_guided_analytical_chunked = 171,
419   kmp_nm_static_steal =
420       172, /* accessible only through OMP_SCHEDULE environment variable */
421 
422   kmp_nm_ord_static_chunked = 193,
423   kmp_nm_ord_static = 194, /**< ordered static unspecialized */
424   kmp_nm_ord_dynamic_chunked = 195,
425   kmp_nm_ord_guided_chunked = 196,
426   kmp_nm_ord_runtime = 197,
427   kmp_nm_ord_auto = 198, /**< auto */
428   kmp_nm_ord_trapezoidal = 199,
429   kmp_nm_upper, /**< upper bound for nomerge values */
430 
431   /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
432      we need to distinguish the three possible cases (no modifier, monotonic
433      modifier, nonmonotonic modifier), we need separate bits for each modifier.
434      The absence of monotonic does not imply nonmonotonic, especially since 4.5
435      says that the behaviour of the "no modifier" case is implementation defined
436      in 4.5, but will become "nonmonotonic" in 5.0.
437 
438      Since we're passing a full 32 bit value, we can use a couple of high bits
439      for these flags; out of paranoia we avoid the sign bit.
440 
441      These modifiers can be or-ed into non-static schedules by the compiler to
442      pass the additional information. They will be stripped early in the
443      processing in __kmp_dispatch_init when setting up schedules, so most of the
444      code won't ever see schedules with these bits set.  */
445   kmp_sch_modifier_monotonic =
446       (1 << 29), /**< Set if the monotonic schedule modifier was present */
447   kmp_sch_modifier_nonmonotonic =
448       (1 << 30), /**< Set if the nonmonotonic schedule modifier was present */
449 
450 #define SCHEDULE_WITHOUT_MODIFIERS(s)                                          \
451   (enum sched_type)(                                                           \
452       (s) & ~(kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic))
453 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
454 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
455 #define SCHEDULE_HAS_NO_MODIFIERS(s)                                           \
456   (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
457 #define SCHEDULE_GET_MODIFIERS(s)                                              \
458   ((enum sched_type)(                                                          \
459       (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
460 #define SCHEDULE_SET_MODIFIERS(s, m)                                           \
461   (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
462 #define SCHEDULE_NONMONOTONIC 0
463 #define SCHEDULE_MONOTONIC 1
464 
465   kmp_sch_default = kmp_sch_static /**< default scheduling algorithm */
466 };
467 
468 // Apply modifiers on internal kind to standard kind
469 static inline void
__kmp_sched_apply_mods_stdkind(kmp_sched_t * kind,enum sched_type internal_kind)470 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
471                                enum sched_type internal_kind) {
472   if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
473     *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
474   }
475 }
476 
477 // Apply modifiers on standard kind to internal kind
478 static inline void
__kmp_sched_apply_mods_intkind(kmp_sched_t kind,enum sched_type * internal_kind)479 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
480                                enum sched_type *internal_kind) {
481   if ((int)kind & (int)kmp_sched_monotonic) {
482     *internal_kind = (enum sched_type)((int)*internal_kind |
483                                        (int)kmp_sch_modifier_monotonic);
484   }
485 }
486 
487 // Get standard schedule without modifiers
__kmp_sched_without_mods(kmp_sched_t kind)488 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
489   return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
490 }
491 
492 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
493 typedef union kmp_r_sched {
494   struct {
495     enum sched_type r_sched_type;
496     int chunk;
497   };
498   kmp_int64 sched;
499 } kmp_r_sched_t;
500 
501 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
502 // internal schedule types
503 
504 enum library_type {
505   library_none,
506   library_serial,
507   library_turnaround,
508   library_throughput
509 };
510 
511 #if KMP_OS_LINUX
512 enum clock_function_type {
513   clock_function_gettimeofday,
514   clock_function_clock_gettime
515 };
516 #endif /* KMP_OS_LINUX */
517 
518 #if KMP_MIC_SUPPORTED
519 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
520 #endif
521 
522 /* -- fast reduction stuff ------------------------------------------------ */
523 
524 #undef KMP_FAST_REDUCTION_BARRIER
525 #define KMP_FAST_REDUCTION_BARRIER 1
526 
527 #undef KMP_FAST_REDUCTION_CORE_DUO
528 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
529 #define KMP_FAST_REDUCTION_CORE_DUO 1
530 #endif
531 
532 enum _reduction_method {
533   reduction_method_not_defined = 0,
534   critical_reduce_block = (1 << 8),
535   atomic_reduce_block = (2 << 8),
536   tree_reduce_block = (3 << 8),
537   empty_reduce_block = (4 << 8)
538 };
539 
540 // Description of the packed_reduction_method variable:
541 // The packed_reduction_method variable consists of two enum types variables
542 // that are packed together into 0-th byte and 1-st byte:
543 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
544 // barrier that will be used in fast reduction: bs_plain_barrier or
545 // bs_reduction_barrier
546 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
547 // be used in fast reduction;
548 // Reduction method is of 'enum _reduction_method' type and it's defined the way
549 // so that the bits of 0-th byte are empty, so no need to execute a shift
550 // instruction while packing/unpacking
551 
552 #if KMP_FAST_REDUCTION_BARRIER
553 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
554   ((reduction_method) | (barrier_type))
555 
556 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
557   ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
558 
559 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method)                      \
560   ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
561 #else
562 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type)      \
563   (reduction_method)
564 
565 #define UNPACK_REDUCTION_METHOD(packed_reduction_method)                       \
566   (packed_reduction_method)
567 
568 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
569 #endif
570 
571 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block)  \
572   ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) ==                       \
573    (which_reduction_block))
574 
575 #if KMP_FAST_REDUCTION_BARRIER
576 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER                               \
577   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
578 
579 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER                                   \
580   (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
581 #endif
582 
583 typedef int PACKED_REDUCTION_METHOD_T;
584 
585 /* -- end of fast reduction stuff ----------------------------------------- */
586 
587 #if KMP_OS_WINDOWS
588 #define USE_CBLKDATA
589 #if KMP_MSVC_COMPAT
590 #pragma warning(push)
591 #pragma warning(disable : 271 310)
592 #endif
593 #include <windows.h>
594 #if KMP_MSVC_COMPAT
595 #pragma warning(pop)
596 #endif
597 #endif
598 
599 #if KMP_OS_UNIX
600 #include <dlfcn.h>
601 #include <pthread.h>
602 #endif
603 
604 enum kmp_hw_t : int {
605   KMP_HW_UNKNOWN = -1,
606   KMP_HW_SOCKET = 0,
607   KMP_HW_PROC_GROUP,
608   KMP_HW_NUMA,
609   KMP_HW_DIE,
610   KMP_HW_LLC,
611   KMP_HW_L3,
612   KMP_HW_TILE,
613   KMP_HW_MODULE,
614   KMP_HW_L2,
615   KMP_HW_L1,
616   KMP_HW_CORE,
617   KMP_HW_THREAD,
618   KMP_HW_LAST
619 };
620 
621 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type)                                   \
622   KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
623 #define KMP_ASSERT_VALID_HW_TYPE(type)                                         \
624   KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
625 
626 #define KMP_FOREACH_HW_TYPE(type)                                              \
627   for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST;                        \
628        type = (kmp_hw_t)((int)type + 1))
629 
630 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
631 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
632 
633 /* Only Linux* OS and Windows* OS support thread affinity. */
634 #if KMP_AFFINITY_SUPPORTED
635 
636 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
637 #if KMP_OS_WINDOWS
638 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
639 typedef struct GROUP_AFFINITY {
640   KAFFINITY Mask;
641   WORD Group;
642   WORD Reserved[3];
643 } GROUP_AFFINITY;
644 #endif /* _MSC_VER < 1600 */
645 #if KMP_GROUP_AFFINITY
646 extern int __kmp_num_proc_groups;
647 #else
648 static const int __kmp_num_proc_groups = 1;
649 #endif /* KMP_GROUP_AFFINITY */
650 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
651 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
652 
653 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
654 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
655 
656 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
657 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
658 
659 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
660                                              GROUP_AFFINITY *);
661 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
662 #endif /* KMP_OS_WINDOWS */
663 
664 #if KMP_USE_HWLOC
665 extern hwloc_topology_t __kmp_hwloc_topology;
666 extern int __kmp_hwloc_error;
667 #endif
668 
669 extern size_t __kmp_affin_mask_size;
670 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
671 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
672 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
673 #define KMP_CPU_SET_ITERATE(i, mask)                                           \
674   for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
675 #define KMP_CPU_SET(i, mask) (mask)->set(i)
676 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
677 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
678 #define KMP_CPU_ZERO(mask) (mask)->zero()
679 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
680 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
681 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
682 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
683 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
684 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
685 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
686 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
687 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
688 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
689 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
690 #define KMP_CPU_ALLOC_ARRAY(arr, n)                                            \
691   (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
692 #define KMP_CPU_FREE_ARRAY(arr, n)                                             \
693   __kmp_affinity_dispatch->deallocate_mask_array(arr)
694 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
695 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
696 #define __kmp_get_system_affinity(mask, abort_bool)                            \
697   (mask)->get_system_affinity(abort_bool)
698 #define __kmp_set_system_affinity(mask, abort_bool)                            \
699   (mask)->set_system_affinity(abort_bool)
700 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
701 
702 class KMPAffinity {
703 public:
704   class Mask {
705   public:
706     void *operator new(size_t n);
707     void operator delete(void *p);
708     void *operator new[](size_t n);
709     void operator delete[](void *p);
~Mask()710     virtual ~Mask() {}
711     // Set bit i to 1
set(int i)712     virtual void set(int i) {}
713     // Return bit i
is_set(int i)714     virtual bool is_set(int i) const { return false; }
715     // Set bit i to 0
clear(int i)716     virtual void clear(int i) {}
717     // Zero out entire mask
zero()718     virtual void zero() {}
719     // Copy src into this mask
copy(const Mask * src)720     virtual void copy(const Mask *src) {}
721     // this &= rhs
bitwise_and(const Mask * rhs)722     virtual void bitwise_and(const Mask *rhs) {}
723     // this |= rhs
bitwise_or(const Mask * rhs)724     virtual void bitwise_or(const Mask *rhs) {}
725     // this = ~this
bitwise_not()726     virtual void bitwise_not() {}
727     // API for iterating over an affinity mask
728     // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
begin()729     virtual int begin() const { return 0; }
end()730     virtual int end() const { return 0; }
next(int previous)731     virtual int next(int previous) const { return 0; }
732 #if KMP_OS_WINDOWS
set_process_affinity(bool abort_on_error)733     virtual int set_process_affinity(bool abort_on_error) const { return -1; }
734 #endif
735     // Set the system's affinity to this affinity mask's value
set_system_affinity(bool abort_on_error)736     virtual int set_system_affinity(bool abort_on_error) const { return -1; }
737     // Set this affinity mask to the current system affinity
get_system_affinity(bool abort_on_error)738     virtual int get_system_affinity(bool abort_on_error) { return -1; }
739     // Only 1 DWORD in the mask should have any procs set.
740     // Return the appropriate index, or -1 for an invalid mask.
get_proc_group()741     virtual int get_proc_group() const { return -1; }
742   };
743   void *operator new(size_t n);
744   void operator delete(void *p);
745   // Need virtual destructor
746   virtual ~KMPAffinity() = default;
747   // Determine if affinity is capable
determine_capable(const char * env_var)748   virtual void determine_capable(const char *env_var) {}
749   // Bind the current thread to os proc
bind_thread(int proc)750   virtual void bind_thread(int proc) {}
751   // Factory functions to allocate/deallocate a mask
allocate_mask()752   virtual Mask *allocate_mask() { return nullptr; }
deallocate_mask(Mask * m)753   virtual void deallocate_mask(Mask *m) {}
allocate_mask_array(int num)754   virtual Mask *allocate_mask_array(int num) { return nullptr; }
deallocate_mask_array(Mask * m)755   virtual void deallocate_mask_array(Mask *m) {}
index_mask_array(Mask * m,int index)756   virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
757   static void pick_api();
758   static void destroy_api();
759   enum api_type {
760     NATIVE_OS
761 #if KMP_USE_HWLOC
762     ,
763     HWLOC
764 #endif
765   };
get_api_type()766   virtual api_type get_api_type() const {
767     KMP_ASSERT(0);
768     return NATIVE_OS;
769   }
770 
771 private:
772   static bool picked_api;
773 };
774 
775 typedef KMPAffinity::Mask kmp_affin_mask_t;
776 extern KMPAffinity *__kmp_affinity_dispatch;
777 
778 // Declare local char buffers with this size for printing debug and info
779 // messages, using __kmp_affinity_print_mask().
780 #define KMP_AFFIN_MASK_PRINT_LEN 1024
781 
782 enum affinity_type {
783   affinity_none = 0,
784   affinity_physical,
785   affinity_logical,
786   affinity_compact,
787   affinity_scatter,
788   affinity_explicit,
789   affinity_balanced,
790   affinity_disabled, // not used outsize the env var parser
791   affinity_default
792 };
793 
794 enum affinity_top_method {
795   affinity_top_method_all = 0, // try all (supported) methods, in order
796 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
797   affinity_top_method_apicid,
798   affinity_top_method_x2apicid,
799   affinity_top_method_x2apicid_1f,
800 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
801   affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
802 #if KMP_GROUP_AFFINITY
803   affinity_top_method_group,
804 #endif /* KMP_GROUP_AFFINITY */
805   affinity_top_method_flat,
806 #if KMP_USE_HWLOC
807   affinity_top_method_hwloc,
808 #endif
809   affinity_top_method_default
810 };
811 
812 #define affinity_respect_mask_default (-1)
813 
814 extern enum affinity_type __kmp_affinity_type; /* Affinity type */
815 extern kmp_hw_t __kmp_affinity_gran; /* Affinity granularity */
816 extern int __kmp_affinity_gran_levels; /* corresponding int value */
817 extern int __kmp_affinity_dups; /* Affinity duplicate masks */
818 extern enum affinity_top_method __kmp_affinity_top_method;
819 extern int __kmp_affinity_compact; /* Affinity 'compact' value */
820 extern int __kmp_affinity_offset; /* Affinity offset value  */
821 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
822 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
823 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
824 extern char *__kmp_affinity_proclist; /* proc ID list */
825 extern kmp_affin_mask_t *__kmp_affinity_masks;
826 extern unsigned __kmp_affinity_num_masks;
827 extern void __kmp_affinity_bind_thread(int which);
828 
829 extern kmp_affin_mask_t *__kmp_affin_fullMask;
830 extern char *__kmp_cpuinfo_file;
831 
832 #endif /* KMP_AFFINITY_SUPPORTED */
833 
834 // This needs to be kept in sync with the values in omp.h !!!
835 typedef enum kmp_proc_bind_t {
836   proc_bind_false = 0,
837   proc_bind_true,
838   proc_bind_primary,
839   proc_bind_close,
840   proc_bind_spread,
841   proc_bind_intel, // use KMP_AFFINITY interface
842   proc_bind_default
843 } kmp_proc_bind_t;
844 
845 typedef struct kmp_nested_proc_bind_t {
846   kmp_proc_bind_t *bind_types;
847   int size;
848   int used;
849 } kmp_nested_proc_bind_t;
850 
851 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
852 
853 extern int __kmp_display_affinity;
854 extern char *__kmp_affinity_format;
855 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
856 #if OMPT_SUPPORT
857 extern int __kmp_tool;
858 extern char *__kmp_tool_libraries;
859 #endif // OMPT_SUPPORT
860 
861 #if KMP_AFFINITY_SUPPORTED
862 #define KMP_PLACE_ALL (-1)
863 #define KMP_PLACE_UNDEFINED (-2)
864 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
865 #define KMP_AFFINITY_NON_PROC_BIND                                             \
866   ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false ||                 \
867     __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) &&                \
868    (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
869 #endif /* KMP_AFFINITY_SUPPORTED */
870 
871 extern int __kmp_affinity_num_places;
872 
873 typedef enum kmp_cancel_kind_t {
874   cancel_noreq = 0,
875   cancel_parallel = 1,
876   cancel_loop = 2,
877   cancel_sections = 3,
878   cancel_taskgroup = 4
879 } kmp_cancel_kind_t;
880 
881 // KMP_HW_SUBSET support:
882 typedef struct kmp_hws_item {
883   int num;
884   int offset;
885 } kmp_hws_item_t;
886 
887 extern kmp_hws_item_t __kmp_hws_socket;
888 extern kmp_hws_item_t __kmp_hws_die;
889 extern kmp_hws_item_t __kmp_hws_node;
890 extern kmp_hws_item_t __kmp_hws_tile;
891 extern kmp_hws_item_t __kmp_hws_core;
892 extern kmp_hws_item_t __kmp_hws_proc;
893 extern int __kmp_hws_requested;
894 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
895 
896 /* ------------------------------------------------------------------------ */
897 
898 #define KMP_PAD(type, sz)                                                      \
899   (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
900 
901 // We need to avoid using -1 as a GTID as +1 is added to the gtid
902 // when storing it in a lock, and the value 0 is reserved.
903 #define KMP_GTID_DNE (-2) /* Does not exist */
904 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
905 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
906 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
907 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
908 
909 /* OpenMP 5.0 Memory Management support */
910 
911 #ifndef __OMP_H
912 // Duplicate type definitions from omp.h
913 typedef uintptr_t omp_uintptr_t;
914 
915 typedef enum {
916   omp_atk_sync_hint = 1,
917   omp_atk_alignment = 2,
918   omp_atk_access = 3,
919   omp_atk_pool_size = 4,
920   omp_atk_fallback = 5,
921   omp_atk_fb_data = 6,
922   omp_atk_pinned = 7,
923   omp_atk_partition = 8
924 } omp_alloctrait_key_t;
925 
926 typedef enum {
927   omp_atv_false = 0,
928   omp_atv_true = 1,
929   omp_atv_contended = 3,
930   omp_atv_uncontended = 4,
931   omp_atv_serialized = 5,
932   omp_atv_sequential = omp_atv_serialized, // (deprecated)
933   omp_atv_private = 6,
934   omp_atv_all = 7,
935   omp_atv_thread = 8,
936   omp_atv_pteam = 9,
937   omp_atv_cgroup = 10,
938   omp_atv_default_mem_fb = 11,
939   omp_atv_null_fb = 12,
940   omp_atv_abort_fb = 13,
941   omp_atv_allocator_fb = 14,
942   omp_atv_environment = 15,
943   omp_atv_nearest = 16,
944   omp_atv_blocked = 17,
945   omp_atv_interleaved = 18
946 } omp_alloctrait_value_t;
947 #define omp_atv_default ((omp_uintptr_t)-1)
948 
949 typedef void *omp_memspace_handle_t;
950 extern omp_memspace_handle_t const omp_default_mem_space;
951 extern omp_memspace_handle_t const omp_large_cap_mem_space;
952 extern omp_memspace_handle_t const omp_const_mem_space;
953 extern omp_memspace_handle_t const omp_high_bw_mem_space;
954 extern omp_memspace_handle_t const omp_low_lat_mem_space;
955 // Preview of target memory support
956 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
957 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
958 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
959 
960 typedef struct {
961   omp_alloctrait_key_t key;
962   omp_uintptr_t value;
963 } omp_alloctrait_t;
964 
965 typedef void *omp_allocator_handle_t;
966 extern omp_allocator_handle_t const omp_null_allocator;
967 extern omp_allocator_handle_t const omp_default_mem_alloc;
968 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
969 extern omp_allocator_handle_t const omp_const_mem_alloc;
970 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
971 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
972 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
973 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
974 extern omp_allocator_handle_t const omp_thread_mem_alloc;
975 // Preview of target memory support
976 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
977 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
978 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
979 extern omp_allocator_handle_t const kmp_max_mem_alloc;
980 extern omp_allocator_handle_t __kmp_def_allocator;
981 
982 // end of duplicate type definitions from omp.h
983 #endif
984 
985 extern int __kmp_memkind_available;
986 
987 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
988 
989 typedef struct kmp_allocator_t {
990   omp_memspace_handle_t memspace;
991   void **memkind; // pointer to memkind
992   size_t alignment;
993   omp_alloctrait_value_t fb;
994   kmp_allocator_t *fb_data;
995   kmp_uint64 pool_size;
996   kmp_uint64 pool_used;
997 } kmp_allocator_t;
998 
999 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1000                                                     omp_memspace_handle_t,
1001                                                     int ntraits,
1002                                                     omp_alloctrait_t traits[]);
1003 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1004 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1005 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1006 // external interfaces, may be used by compiler
1007 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1008 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1009                                   omp_allocator_handle_t al);
1010 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1011                            omp_allocator_handle_t al);
1012 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1013                             omp_allocator_handle_t al,
1014                             omp_allocator_handle_t free_al);
1015 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1016 // internal interfaces, contain real implementation
1017 extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1018                          omp_allocator_handle_t al);
1019 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1020                           omp_allocator_handle_t al);
1021 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1022                            omp_allocator_handle_t al,
1023                            omp_allocator_handle_t free_al);
1024 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1025 
1026 extern void __kmp_init_memkind();
1027 extern void __kmp_fini_memkind();
1028 extern void __kmp_init_target_mem();
1029 
1030 /* ------------------------------------------------------------------------ */
1031 
1032 #define KMP_UINT64_MAX                                                         \
1033   (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1034 
1035 #define KMP_MIN_NTH 1
1036 
1037 #ifndef KMP_MAX_NTH
1038 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1039 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1040 #else
1041 #define KMP_MAX_NTH INT_MAX
1042 #endif
1043 #endif /* KMP_MAX_NTH */
1044 
1045 #ifdef PTHREAD_STACK_MIN
1046 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1047 #else
1048 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1049 #endif
1050 
1051 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1052 
1053 #if KMP_ARCH_X86
1054 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1055 #elif KMP_ARCH_X86_64
1056 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1057 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1058 #else
1059 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1060 #endif
1061 
1062 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1063 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1064 #define KMP_MAX_MALLOC_POOL_INCR                                               \
1065   (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1066 
1067 #define KMP_MIN_STKOFFSET (0)
1068 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1069 #if KMP_OS_DARWIN
1070 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1071 #else
1072 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1073 #endif
1074 
1075 #define KMP_MIN_STKPADDING (0)
1076 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1077 
1078 #define KMP_BLOCKTIME_MULTIPLIER                                               \
1079   (1000) /* number of blocktime units per second */
1080 #define KMP_MIN_BLOCKTIME (0)
1081 #define KMP_MAX_BLOCKTIME                                                      \
1082   (INT_MAX) /* Must be this for "infinite" setting the work */
1083 #define KMP_DEFAULT_BLOCKTIME (200) /*  __kmp_blocktime is in milliseconds  */
1084 
1085 #if KMP_USE_MONITOR
1086 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1087 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1088 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1089 
1090 /* Calculate new number of monitor wakeups for a specific block time based on
1091    previous monitor_wakeups. Only allow increasing number of wakeups */
1092 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups)                 \
1093   (((blocktime) == KMP_MAX_BLOCKTIME)   ? (monitor_wakeups)                    \
1094    : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS              \
1095    : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime)))            \
1096        ? (monitor_wakeups)                                                     \
1097        : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1098 
1099 /* Calculate number of intervals for a specific block time based on
1100    monitor_wakeups */
1101 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups)               \
1102   (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) /        \
1103    (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1104 #else
1105 #define KMP_BLOCKTIME(team, tid)                                               \
1106   (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1107 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1108 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1109 extern kmp_uint64 __kmp_ticks_per_msec;
1110 #if KMP_COMPILER_ICC
1111 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1112 #else
1113 #define KMP_NOW() __kmp_hardware_timestamp()
1114 #endif
1115 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1116 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1117   (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1118 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1119 #else
1120 // System time is retrieved sporadically while blocking.
1121 extern kmp_uint64 __kmp_now_nsec();
1122 #define KMP_NOW() __kmp_now_nsec()
1123 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1124 #define KMP_BLOCKTIME_INTERVAL(team, tid)                                      \
1125   (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1126 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1127 #endif
1128 #endif // KMP_USE_MONITOR
1129 
1130 #define KMP_MIN_STATSCOLS 40
1131 #define KMP_MAX_STATSCOLS 4096
1132 #define KMP_DEFAULT_STATSCOLS 80
1133 
1134 #define KMP_MIN_INTERVAL 0
1135 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1136 #define KMP_DEFAULT_INTERVAL 0
1137 
1138 #define KMP_MIN_CHUNK 1
1139 #define KMP_MAX_CHUNK (INT_MAX - 1)
1140 #define KMP_DEFAULT_CHUNK 1
1141 
1142 #define KMP_MIN_DISP_NUM_BUFF 1
1143 #define KMP_DFLT_DISP_NUM_BUFF 7
1144 #define KMP_MAX_DISP_NUM_BUFF 4096
1145 
1146 #define KMP_MAX_ORDERED 8
1147 
1148 #define KMP_MAX_FIELDS 32
1149 
1150 #define KMP_MAX_BRANCH_BITS 31
1151 
1152 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1153 
1154 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1155 
1156 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1157 
1158 /* Minimum number of threads before switch to TLS gtid (experimentally
1159    determined) */
1160 /* josh TODO: what about OS X* tuning? */
1161 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1162 #define KMP_TLS_GTID_MIN 5
1163 #else
1164 #define KMP_TLS_GTID_MIN INT_MAX
1165 #endif
1166 
1167 #define KMP_MASTER_TID(tid) (0 == (tid))
1168 #define KMP_WORKER_TID(tid) (0 != (tid))
1169 
1170 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1171 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1172 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1173 
1174 #ifndef TRUE
1175 #define FALSE 0
1176 #define TRUE (!FALSE)
1177 #endif
1178 
1179 /* NOTE: all of the following constants must be even */
1180 
1181 #if KMP_OS_WINDOWS
1182 #define KMP_INIT_WAIT 64U /* initial number of spin-tests   */
1183 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1184 #elif KMP_OS_LINUX
1185 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1186 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1187 #elif KMP_OS_DARWIN
1188 /* TODO: tune for KMP_OS_DARWIN */
1189 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1190 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1191 #elif KMP_OS_DRAGONFLY
1192 /* TODO: tune for KMP_OS_DRAGONFLY */
1193 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1194 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1195 #elif KMP_OS_FREEBSD
1196 /* TODO: tune for KMP_OS_FREEBSD */
1197 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1198 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1199 #elif KMP_OS_NETBSD
1200 /* TODO: tune for KMP_OS_NETBSD */
1201 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1202 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1203 #elif KMP_OS_HURD
1204 /* TODO: tune for KMP_OS_HURD */
1205 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1206 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1207 #elif KMP_OS_OPENBSD
1208 /* TODO: tune for KMP_OS_OPENBSD */
1209 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests   */
1210 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1211 #endif
1212 
1213 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1214 typedef struct kmp_cpuid {
1215   kmp_uint32 eax;
1216   kmp_uint32 ebx;
1217   kmp_uint32 ecx;
1218   kmp_uint32 edx;
1219 } kmp_cpuid_t;
1220 
1221 typedef struct kmp_cpuinfo_flags_t {
1222   unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1223   unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1224   unsigned reserved : 30; // Ensure size of 32 bits
1225 } kmp_cpuinfo_flags_t;
1226 
1227 typedef struct kmp_cpuinfo {
1228   int initialized; // If 0, other fields are not initialized.
1229   int signature; // CPUID(1).EAX
1230   int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1231   int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1232   // Model << 4 ) + Model)
1233   int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1234   kmp_cpuinfo_flags_t flags;
1235   int apic_id;
1236   int physical_id;
1237   int logical_id;
1238   kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1239   char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1240 } kmp_cpuinfo_t;
1241 
1242 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1243 
1244 #if KMP_OS_UNIX
1245 // subleaf is only needed for cache and topology discovery and can be set to
1246 // zero in most cases
__kmp_x86_cpuid(int leaf,int subleaf,struct kmp_cpuid * p)1247 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1248   __asm__ __volatile__("cpuid"
1249                        : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1250                        : "a"(leaf), "c"(subleaf));
1251 }
1252 // Load p into FPU control word
__kmp_load_x87_fpu_control_word(const kmp_int16 * p)1253 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1254   __asm__ __volatile__("fldcw %0" : : "m"(*p));
1255 }
1256 // Store FPU control word into p
__kmp_store_x87_fpu_control_word(kmp_int16 * p)1257 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1258   __asm__ __volatile__("fstcw %0" : "=m"(*p));
1259 }
__kmp_clear_x87_fpu_status_word()1260 static inline void __kmp_clear_x87_fpu_status_word() {
1261 #if KMP_MIC
1262   // 32-bit protected mode x87 FPU state
1263   struct x87_fpu_state {
1264     unsigned cw;
1265     unsigned sw;
1266     unsigned tw;
1267     unsigned fip;
1268     unsigned fips;
1269     unsigned fdp;
1270     unsigned fds;
1271   };
1272   struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1273   __asm__ __volatile__("fstenv %0\n\t" // store FP env
1274                        "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1275                        "fldenv %0\n\t" // load FP env back
1276                        : "+m"(fpu_state), "+m"(fpu_state.sw));
1277 #else
1278   __asm__ __volatile__("fnclex");
1279 #endif // KMP_MIC
1280 }
1281 #if __SSE__
__kmp_load_mxcsr(const kmp_uint32 * p)1282 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
__kmp_store_mxcsr(kmp_uint32 * p)1283 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1284 #else
__kmp_load_mxcsr(const kmp_uint32 * p)1285 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
__kmp_store_mxcsr(kmp_uint32 * p)1286 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1287 #endif
1288 #else
1289 // Windows still has these as external functions in assembly file
1290 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1291 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1292 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1293 extern void __kmp_clear_x87_fpu_status_word();
__kmp_load_mxcsr(const kmp_uint32 * p)1294 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
__kmp_store_mxcsr(kmp_uint32 * p)1295 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1296 #endif // KMP_OS_UNIX
1297 
1298 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1299 
1300 #if KMP_ARCH_X86
1301 extern void __kmp_x86_pause(void);
1302 #elif KMP_MIC
1303 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1304 // regression after removal of extra PAUSE from spin loops. Changing
1305 // the delay from 100 to 300 showed even better performance than double PAUSE
1306 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
__kmp_x86_pause(void)1307 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1308 #else
__kmp_x86_pause(void)1309 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1310 #endif
1311 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1312 #elif KMP_ARCH_PPC64
1313 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1314 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1315 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1316 #define KMP_CPU_PAUSE()                                                        \
1317   do {                                                                         \
1318     KMP_PPC64_PRI_LOW();                                                       \
1319     KMP_PPC64_PRI_MED();                                                       \
1320     KMP_PPC64_PRI_LOC_MB();                                                    \
1321   } while (0)
1322 #else
1323 #define KMP_CPU_PAUSE() /* nothing to do */
1324 #endif
1325 
1326 #define KMP_INIT_YIELD(count)                                                  \
1327   { (count) = __kmp_yield_init; }
1328 
1329 #define KMP_OVERSUBSCRIBED                                                     \
1330   (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1331 
1332 #define KMP_TRY_YIELD                                                          \
1333   ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1334 
1335 #define KMP_TRY_YIELD_OVERSUB                                                  \
1336   ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1337 
1338 #define KMP_YIELD(cond)                                                        \
1339   {                                                                            \
1340     KMP_CPU_PAUSE();                                                           \
1341     if ((cond) && (KMP_TRY_YIELD))                                             \
1342       __kmp_yield();                                                           \
1343   }
1344 
1345 #define KMP_YIELD_OVERSUB()                                                    \
1346   {                                                                            \
1347     KMP_CPU_PAUSE();                                                           \
1348     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1349       __kmp_yield();                                                           \
1350   }
1351 
1352 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1353 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1354 #define KMP_YIELD_SPIN(count)                                                  \
1355   {                                                                            \
1356     KMP_CPU_PAUSE();                                                           \
1357     if (KMP_TRY_YIELD) {                                                       \
1358       (count) -= 2;                                                            \
1359       if (!(count)) {                                                          \
1360         __kmp_yield();                                                         \
1361         (count) = __kmp_yield_next;                                            \
1362       }                                                                        \
1363     }                                                                          \
1364   }
1365 
1366 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count)                                     \
1367   {                                                                            \
1368     KMP_CPU_PAUSE();                                                           \
1369     if ((KMP_TRY_YIELD_OVERSUB))                                               \
1370       __kmp_yield();                                                           \
1371     else if (__kmp_use_yield == 1) {                                           \
1372       (count) -= 2;                                                            \
1373       if (!(count)) {                                                          \
1374         __kmp_yield();                                                         \
1375         (count) = __kmp_yield_next;                                            \
1376       }                                                                        \
1377     }                                                                          \
1378   }
1379 
1380 // User-level Monitor/Mwait
1381 #if KMP_HAVE_UMWAIT
1382 // We always try for UMWAIT first
1383 #if KMP_HAVE_WAITPKG_INTRINSICS
1384 #if KMP_HAVE_IMMINTRIN_H
1385 #include <immintrin.h>
1386 #elif KMP_HAVE_INTRIN_H
1387 #include <intrin.h>
1388 #endif
1389 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1390 KMP_ATTRIBUTE_TARGET_WAITPKG
__kmp_tpause(uint32_t hint,uint64_t counter)1391 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1392 #if !KMP_HAVE_WAITPKG_INTRINSICS
1393   uint32_t timeHi = uint32_t(counter >> 32);
1394   uint32_t timeLo = uint32_t(counter & 0xffffffff);
1395   char flag;
1396   __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1397                    "setb   %0"
1398                    : "=r"(flag)
1399                    : "a"(timeLo), "d"(timeHi), "c"(hint)
1400                    :);
1401   return flag;
1402 #else
1403   return _tpause(hint, counter);
1404 #endif
1405 }
1406 KMP_ATTRIBUTE_TARGET_WAITPKG
__kmp_umonitor(void * cacheline)1407 static inline void __kmp_umonitor(void *cacheline) {
1408 #if !KMP_HAVE_WAITPKG_INTRINSICS
1409   __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1410                    :
1411                    : "a"(cacheline)
1412                    :);
1413 #else
1414   _umonitor(cacheline);
1415 #endif
1416 }
1417 KMP_ATTRIBUTE_TARGET_WAITPKG
__kmp_umwait(uint32_t hint,uint64_t counter)1418 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1419 #if !KMP_HAVE_WAITPKG_INTRINSICS
1420   uint32_t timeHi = uint32_t(counter >> 32);
1421   uint32_t timeLo = uint32_t(counter & 0xffffffff);
1422   char flag;
1423   __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1424                    "setb   %0"
1425                    : "=r"(flag)
1426                    : "a"(timeLo), "d"(timeHi), "c"(hint)
1427                    :);
1428   return flag;
1429 #else
1430   return _umwait(hint, counter);
1431 #endif
1432 }
1433 #elif KMP_HAVE_MWAIT
1434 #if KMP_OS_UNIX
1435 #include <pmmintrin.h>
1436 #else
1437 #include <intrin.h>
1438 #endif
1439 #if KMP_OS_UNIX
1440 __attribute__((target("sse3")))
1441 #endif
1442 static inline void
__kmp_mm_monitor(void * cacheline,unsigned extensions,unsigned hints)1443 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1444   _mm_monitor(cacheline, extensions, hints);
1445 }
1446 #if KMP_OS_UNIX
1447 __attribute__((target("sse3")))
1448 #endif
1449 static inline void
__kmp_mm_mwait(unsigned extensions,unsigned hints)1450 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1451   _mm_mwait(extensions, hints);
1452 }
1453 #endif // KMP_HAVE_UMWAIT
1454 
1455 /* ------------------------------------------------------------------------ */
1456 /* Support datatypes for the orphaned construct nesting checks.             */
1457 /* ------------------------------------------------------------------------ */
1458 
1459 /* When adding to this enum, add its corresponding string in cons_text_c[]
1460  * array in kmp_error.cpp */
1461 enum cons_type {
1462   ct_none,
1463   ct_parallel,
1464   ct_pdo,
1465   ct_pdo_ordered,
1466   ct_psections,
1467   ct_psingle,
1468   ct_critical,
1469   ct_ordered_in_parallel,
1470   ct_ordered_in_pdo,
1471   ct_master,
1472   ct_reduce,
1473   ct_barrier,
1474   ct_masked
1475 };
1476 
1477 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1478 
1479 struct cons_data {
1480   ident_t const *ident;
1481   enum cons_type type;
1482   int prev;
1483   kmp_user_lock_p
1484       name; /* address exclusively for critical section name comparison */
1485 };
1486 
1487 struct cons_header {
1488   int p_top, w_top, s_top;
1489   int stack_size, stack_top;
1490   struct cons_data *stack_data;
1491 };
1492 
1493 struct kmp_region_info {
1494   char *text;
1495   int offset[KMP_MAX_FIELDS];
1496   int length[KMP_MAX_FIELDS];
1497 };
1498 
1499 /* ---------------------------------------------------------------------- */
1500 /* ---------------------------------------------------------------------- */
1501 
1502 #if KMP_OS_WINDOWS
1503 typedef HANDLE kmp_thread_t;
1504 typedef DWORD kmp_key_t;
1505 #endif /* KMP_OS_WINDOWS */
1506 
1507 #if KMP_OS_UNIX
1508 typedef pthread_t kmp_thread_t;
1509 typedef pthread_key_t kmp_key_t;
1510 #endif
1511 
1512 extern kmp_key_t __kmp_gtid_threadprivate_key;
1513 
1514 typedef struct kmp_sys_info {
1515   long maxrss; /* the maximum resident set size utilized (in kilobytes)     */
1516   long minflt; /* the number of page faults serviced without any I/O        */
1517   long majflt; /* the number of page faults serviced that required I/O      */
1518   long nswap; /* the number of times a process was "swapped" out of memory */
1519   long inblock; /* the number of times the file system had to perform input  */
1520   long oublock; /* the number of times the file system had to perform output */
1521   long nvcsw; /* the number of times a context switch was voluntarily      */
1522   long nivcsw; /* the number of times a context switch was forced           */
1523 } kmp_sys_info_t;
1524 
1525 #if USE_ITT_BUILD
1526 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1527 // required type here. Later we will check the type meets requirements.
1528 typedef int kmp_itt_mark_t;
1529 #define KMP_ITT_DEBUG 0
1530 #endif /* USE_ITT_BUILD */
1531 
1532 typedef kmp_int32 kmp_critical_name[8];
1533 
1534 /*!
1535 @ingroup PARALLEL
1536 The type for a microtask which gets passed to @ref __kmpc_fork_call().
1537 The arguments to the outlined function are
1538 @param global_tid the global thread identity of the thread executing the
1539 function.
1540 @param bound_tid  the local identity of the thread executing the function
1541 @param ... pointers to shared variables accessed by the function.
1542 */
1543 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1544 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1545                                  ...);
1546 
1547 /*!
1548 @ingroup THREADPRIVATE
1549 @{
1550 */
1551 /* ---------------------------------------------------------------------------
1552  */
1553 /* Threadprivate initialization/finalization function declarations */
1554 
1555 /*  for non-array objects:  __kmpc_threadprivate_register()  */
1556 
1557 /*!
1558  Pointer to the constructor function.
1559  The first argument is the <tt>this</tt> pointer
1560 */
1561 typedef void *(*kmpc_ctor)(void *);
1562 
1563 /*!
1564  Pointer to the destructor function.
1565  The first argument is the <tt>this</tt> pointer
1566 */
1567 typedef void (*kmpc_dtor)(
1568     void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1569                               compiler */
1570 /*!
1571  Pointer to an alternate constructor.
1572  The first argument is the <tt>this</tt> pointer.
1573 */
1574 typedef void *(*kmpc_cctor)(void *, void *);
1575 
1576 /* for array objects: __kmpc_threadprivate_register_vec() */
1577 /* First arg: "this" pointer */
1578 /* Last arg: number of array elements */
1579 /*!
1580  Array constructor.
1581  First argument is the <tt>this</tt> pointer
1582  Second argument the number of array elements.
1583 */
1584 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1585 /*!
1586  Pointer to the array destructor function.
1587  The first argument is the <tt>this</tt> pointer
1588  Second argument the number of array elements.
1589 */
1590 typedef void (*kmpc_dtor_vec)(void *, size_t);
1591 /*!
1592  Array constructor.
1593  First argument is the <tt>this</tt> pointer
1594  Third argument the number of array elements.
1595 */
1596 typedef void *(*kmpc_cctor_vec)(void *, void *,
1597                                 size_t); /* function unused by compiler */
1598 
1599 /*!
1600 @}
1601 */
1602 
1603 /* keeps tracked of threadprivate cache allocations for cleanup later */
1604 typedef struct kmp_cached_addr {
1605   void **addr; /* address of allocated cache */
1606   void ***compiler_cache; /* pointer to compiler's cache */
1607   void *data; /* pointer to global data */
1608   struct kmp_cached_addr *next; /* pointer to next cached address */
1609 } kmp_cached_addr_t;
1610 
1611 struct private_data {
1612   struct private_data *next; /* The next descriptor in the list      */
1613   void *data; /* The data buffer for this descriptor  */
1614   int more; /* The repeat count for this descriptor */
1615   size_t size; /* The data size for this descriptor    */
1616 };
1617 
1618 struct private_common {
1619   struct private_common *next;
1620   struct private_common *link;
1621   void *gbl_addr;
1622   void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1623   size_t cmn_size;
1624 };
1625 
1626 struct shared_common {
1627   struct shared_common *next;
1628   struct private_data *pod_init;
1629   void *obj_init;
1630   void *gbl_addr;
1631   union {
1632     kmpc_ctor ctor;
1633     kmpc_ctor_vec ctorv;
1634   } ct;
1635   union {
1636     kmpc_cctor cctor;
1637     kmpc_cctor_vec cctorv;
1638   } cct;
1639   union {
1640     kmpc_dtor dtor;
1641     kmpc_dtor_vec dtorv;
1642   } dt;
1643   size_t vec_len;
1644   int is_vec;
1645   size_t cmn_size;
1646 };
1647 
1648 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1649 #define KMP_HASH_TABLE_SIZE                                                    \
1650   (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1651 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1652 #define KMP_HASH(x)                                                            \
1653   ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1654 
1655 struct common_table {
1656   struct private_common *data[KMP_HASH_TABLE_SIZE];
1657 };
1658 
1659 struct shared_table {
1660   struct shared_common *data[KMP_HASH_TABLE_SIZE];
1661 };
1662 
1663 /* ------------------------------------------------------------------------ */
1664 
1665 #if KMP_USE_HIER_SCHED
1666 // Shared barrier data that exists inside a single unit of the scheduling
1667 // hierarchy
1668 typedef struct kmp_hier_private_bdata_t {
1669   kmp_int32 num_active;
1670   kmp_uint64 index;
1671   kmp_uint64 wait_val[2];
1672 } kmp_hier_private_bdata_t;
1673 #endif
1674 
1675 typedef struct kmp_sched_flags {
1676   unsigned ordered : 1;
1677   unsigned nomerge : 1;
1678   unsigned contains_last : 1;
1679 #if KMP_USE_HIER_SCHED
1680   unsigned use_hier : 1;
1681   unsigned unused : 28;
1682 #else
1683   unsigned unused : 29;
1684 #endif
1685 } kmp_sched_flags_t;
1686 
1687 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1688 
1689 #if KMP_STATIC_STEAL_ENABLED
1690 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1691   kmp_int32 count;
1692   kmp_int32 ub;
1693   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1694   kmp_int32 lb;
1695   kmp_int32 st;
1696   kmp_int32 tc;
1697   kmp_lock_t *steal_lock; // lock used for chunk stealing
1698   // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1699   //    a) parm3 is properly aligned and
1700   //    b) all parm1-4 are on the same cache line.
1701   // Because of parm1-4 are used together, performance seems to be better
1702   // if they are on the same cache line (not measured though).
1703 
1704   struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1705     kmp_int32 parm1; //     structures in kmp_dispatch.cpp. This should
1706     kmp_int32 parm2; //     make no real change at least while padding is off.
1707     kmp_int32 parm3;
1708     kmp_int32 parm4;
1709   };
1710 
1711   kmp_uint32 ordered_lower;
1712   kmp_uint32 ordered_upper;
1713 #if KMP_OS_WINDOWS
1714   kmp_int32 last_upper;
1715 #endif /* KMP_OS_WINDOWS */
1716 } dispatch_private_info32_t;
1717 
1718 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1719   kmp_int64 count; // current chunk number for static & static-steal scheduling
1720   kmp_int64 ub; /* upper-bound */
1721   /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1722   kmp_int64 lb; /* lower-bound */
1723   kmp_int64 st; /* stride */
1724   kmp_int64 tc; /* trip count (number of iterations) */
1725   kmp_lock_t *steal_lock; // lock used for chunk stealing
1726   /* parm[1-4] are used in different ways by different scheduling algorithms */
1727 
1728   // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1729   //    a) parm3 is properly aligned and
1730   //    b) all parm1-4 are in the same cache line.
1731   // Because of parm1-4 are used together, performance seems to be better
1732   // if they are in the same line (not measured though).
1733 
1734   struct KMP_ALIGN(32) {
1735     kmp_int64 parm1;
1736     kmp_int64 parm2;
1737     kmp_int64 parm3;
1738     kmp_int64 parm4;
1739   };
1740 
1741   kmp_uint64 ordered_lower;
1742   kmp_uint64 ordered_upper;
1743 #if KMP_OS_WINDOWS
1744   kmp_int64 last_upper;
1745 #endif /* KMP_OS_WINDOWS */
1746 } dispatch_private_info64_t;
1747 #else /* KMP_STATIC_STEAL_ENABLED */
1748 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1749   kmp_int32 lb;
1750   kmp_int32 ub;
1751   kmp_int32 st;
1752   kmp_int32 tc;
1753 
1754   kmp_int32 parm1;
1755   kmp_int32 parm2;
1756   kmp_int32 parm3;
1757   kmp_int32 parm4;
1758 
1759   kmp_int32 count;
1760 
1761   kmp_uint32 ordered_lower;
1762   kmp_uint32 ordered_upper;
1763 #if KMP_OS_WINDOWS
1764   kmp_int32 last_upper;
1765 #endif /* KMP_OS_WINDOWS */
1766 } dispatch_private_info32_t;
1767 
1768 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1769   kmp_int64 lb; /* lower-bound */
1770   kmp_int64 ub; /* upper-bound */
1771   kmp_int64 st; /* stride */
1772   kmp_int64 tc; /* trip count (number of iterations) */
1773 
1774   /* parm[1-4] are used in different ways by different scheduling algorithms */
1775   kmp_int64 parm1;
1776   kmp_int64 parm2;
1777   kmp_int64 parm3;
1778   kmp_int64 parm4;
1779 
1780   kmp_int64 count; /* current chunk number for static scheduling */
1781 
1782   kmp_uint64 ordered_lower;
1783   kmp_uint64 ordered_upper;
1784 #if KMP_OS_WINDOWS
1785   kmp_int64 last_upper;
1786 #endif /* KMP_OS_WINDOWS */
1787 } dispatch_private_info64_t;
1788 #endif /* KMP_STATIC_STEAL_ENABLED */
1789 
1790 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1791   union private_info {
1792     dispatch_private_info32_t p32;
1793     dispatch_private_info64_t p64;
1794   } u;
1795   enum sched_type schedule; /* scheduling algorithm */
1796   kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1797   std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1798   kmp_int32 ordered_bumped;
1799   // Stack of buffers for nest of serial regions
1800   struct dispatch_private_info *next;
1801   kmp_int32 type_size; /* the size of types in private_info */
1802 #if KMP_USE_HIER_SCHED
1803   kmp_int32 hier_id;
1804   void *parent; /* hierarchical scheduling parent pointer */
1805 #endif
1806   enum cons_type pushed_ws;
1807 } dispatch_private_info_t;
1808 
1809 typedef struct dispatch_shared_info32 {
1810   /* chunk index under dynamic, number of idle threads under static-steal;
1811      iteration index otherwise */
1812   volatile kmp_uint32 iteration;
1813   volatile kmp_int32 num_done;
1814   volatile kmp_uint32 ordered_iteration;
1815   // Dummy to retain the structure size after making ordered_iteration scalar
1816   kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1817 } dispatch_shared_info32_t;
1818 
1819 typedef struct dispatch_shared_info64 {
1820   /* chunk index under dynamic, number of idle threads under static-steal;
1821      iteration index otherwise */
1822   volatile kmp_uint64 iteration;
1823   volatile kmp_int64 num_done;
1824   volatile kmp_uint64 ordered_iteration;
1825   // Dummy to retain the structure size after making ordered_iteration scalar
1826   kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1827 } dispatch_shared_info64_t;
1828 
1829 typedef struct dispatch_shared_info {
1830   union shared_info {
1831     dispatch_shared_info32_t s32;
1832     dispatch_shared_info64_t s64;
1833   } u;
1834   volatile kmp_uint32 buffer_index;
1835   volatile kmp_int32 doacross_buf_idx; // teamwise index
1836   volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1837   kmp_int32 doacross_num_done; // count finished threads
1838 #if KMP_USE_HIER_SCHED
1839   void *hier;
1840 #endif
1841 #if KMP_USE_HWLOC
1842   // When linking with libhwloc, the ORDERED EPCC test slows down on big
1843   // machines (> 48 cores). Performance analysis showed that a cache thrash
1844   // was occurring and this padding helps alleviate the problem.
1845   char padding[64];
1846 #endif
1847 } dispatch_shared_info_t;
1848 
1849 typedef struct kmp_disp {
1850   /* Vector for ORDERED SECTION */
1851   void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1852   /* Vector for END ORDERED SECTION */
1853   void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1854 
1855   dispatch_shared_info_t *th_dispatch_sh_current;
1856   dispatch_private_info_t *th_dispatch_pr_current;
1857 
1858   dispatch_private_info_t *th_disp_buffer;
1859   kmp_uint32 th_disp_index;
1860   kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1861   volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1862   kmp_int64 *th_doacross_info; // info on loop bounds
1863 #if KMP_USE_INTERNODE_ALIGNMENT
1864   char more_padding[INTERNODE_CACHE_LINE];
1865 #endif
1866 } kmp_disp_t;
1867 
1868 /* ------------------------------------------------------------------------ */
1869 /* Barrier stuff */
1870 
1871 /* constants for barrier state update */
1872 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1873 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1874 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1875 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1876 
1877 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1878 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1879 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1880 
1881 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1882 #error "Barrier sleep bit must be smaller than barrier bump bit"
1883 #endif
1884 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1885 #error "Barrier unused bit must be smaller than barrier bump bit"
1886 #endif
1887 
1888 // Constants for release barrier wait state: currently, hierarchical only
1889 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1890 #define KMP_BARRIER_OWN_FLAG                                                   \
1891   1 // Normal state; worker waiting on own b_go flag in release
1892 #define KMP_BARRIER_PARENT_FLAG                                                \
1893   2 // Special state; worker waiting on parent's b_go flag in release
1894 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG                                         \
1895   3 // Special state; tells worker to shift from parent to own b_go
1896 #define KMP_BARRIER_SWITCHING                                                  \
1897   4 // Special state; worker resets appropriate flag on wake-up
1898 
1899 #define KMP_NOT_SAFE_TO_REAP                                                   \
1900   0 // Thread th_reap_state: not safe to reap (tasking)
1901 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1902 
1903 // The flag_type describes the storage used for the flag.
1904 enum flag_type {
1905   flag32, /**< atomic 32 bit flags */
1906   flag64, /**< 64 bit flags */
1907   atomic_flag64, /**< atomic 64 bit flags */
1908   flag_oncore, /**< special 64-bit flag for on-core barrier (hierarchical) */
1909   flag_unset
1910 };
1911 
1912 enum barrier_type {
1913   bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1914                            barriers if enabled) */
1915   bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1916 #if KMP_FAST_REDUCTION_BARRIER
1917   bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1918 #endif // KMP_FAST_REDUCTION_BARRIER
1919   bs_last_barrier /* Just a placeholder to mark the end */
1920 };
1921 
1922 // to work with reduction barriers just like with plain barriers
1923 #if !KMP_FAST_REDUCTION_BARRIER
1924 #define bs_reduction_barrier bs_plain_barrier
1925 #endif // KMP_FAST_REDUCTION_BARRIER
1926 
1927 typedef enum kmp_bar_pat { /* Barrier communication patterns */
1928                            bp_linear_bar =
1929                                0, /* Single level (degenerate) tree */
1930                            bp_tree_bar =
1931                                1, /* Balanced tree with branching factor 2^n */
1932                            bp_hyper_bar = 2, /* Hypercube-embedded tree with min
1933                                                 branching factor 2^n */
1934                            bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1935                            bp_dist_bar = 4, /* Distributed barrier */
1936                            bp_last_bar /* Placeholder to mark the end */
1937 } kmp_bar_pat_e;
1938 
1939 #define KMP_BARRIER_ICV_PUSH 1
1940 
1941 /* Record for holding the values of the internal controls stack records */
1942 typedef struct kmp_internal_control {
1943   int serial_nesting_level; /* corresponds to the value of the
1944                                th_team_serialized field */
1945   kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1946                        thread) */
1947   kmp_int8
1948       bt_set; /* internal control for whether blocktime is explicitly set */
1949   int blocktime; /* internal control for blocktime */
1950 #if KMP_USE_MONITOR
1951   int bt_intervals; /* internal control for blocktime intervals */
1952 #endif
1953   int nproc; /* internal control for #threads for next parallel region (per
1954                 thread) */
1955   int thread_limit; /* internal control for thread-limit-var */
1956   int max_active_levels; /* internal control for max_active_levels */
1957   kmp_r_sched_t
1958       sched; /* internal control for runtime schedule {sched,chunk} pair */
1959   kmp_proc_bind_t proc_bind; /* internal control for affinity  */
1960   kmp_int32 default_device; /* internal control for default device */
1961   struct kmp_internal_control *next;
1962 } kmp_internal_control_t;
1963 
copy_icvs(kmp_internal_control_t * dst,kmp_internal_control_t * src)1964 static inline void copy_icvs(kmp_internal_control_t *dst,
1965                              kmp_internal_control_t *src) {
1966   *dst = *src;
1967 }
1968 
1969 /* Thread barrier needs volatile barrier fields */
1970 typedef struct KMP_ALIGN_CACHE kmp_bstate {
1971   // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1972   // uses of it). It is not explicitly aligned below, because we *don't* want
1973   // it to be padded -- instead, we fit b_go into the same cache line with
1974   // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1975   kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1976   // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1977   // same NGO store
1978   volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1979   KMP_ALIGN_CACHE volatile kmp_uint64
1980       b_arrived; // STATE => task reached synch point.
1981   kmp_uint32 *skip_per_level;
1982   kmp_uint32 my_level;
1983   kmp_int32 parent_tid;
1984   kmp_int32 old_tid;
1985   kmp_uint32 depth;
1986   struct kmp_bstate *parent_bar;
1987   kmp_team_t *team;
1988   kmp_uint64 leaf_state;
1989   kmp_uint32 nproc;
1990   kmp_uint8 base_leaf_kids;
1991   kmp_uint8 leaf_kids;
1992   kmp_uint8 offset;
1993   kmp_uint8 wait_flag;
1994   kmp_uint8 use_oncore_barrier;
1995 #if USE_DEBUGGER
1996   // The following field is intended for the debugger solely. Only the worker
1997   // thread itself accesses this field: the worker increases it by 1 when it
1998   // arrives to a barrier.
1999   KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2000 #endif /* USE_DEBUGGER */
2001 } kmp_bstate_t;
2002 
2003 union KMP_ALIGN_CACHE kmp_barrier_union {
2004   double b_align; /* use worst case alignment */
2005   char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2006   kmp_bstate_t bb;
2007 };
2008 
2009 typedef union kmp_barrier_union kmp_balign_t;
2010 
2011 /* Team barrier needs only non-volatile arrived counter */
2012 union KMP_ALIGN_CACHE kmp_barrier_team_union {
2013   double b_align; /* use worst case alignment */
2014   char b_pad[CACHE_LINE];
2015   struct {
2016     kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2017 #if USE_DEBUGGER
2018     // The following two fields are indended for the debugger solely. Only
2019     // primary thread of the team accesses these fields: the first one is
2020     // increased by 1 when the primary thread arrives to a barrier, the second
2021     // one is increased by one when all the threads arrived.
2022     kmp_uint b_master_arrived;
2023     kmp_uint b_team_arrived;
2024 #endif
2025   };
2026 };
2027 
2028 typedef union kmp_barrier_team_union kmp_balign_team_t;
2029 
2030 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2031    threads when a condition changes.  This is to workaround an NPTL bug where
2032    padding was added to pthread_cond_t which caused the initialization routine
2033    to write outside of the structure if compiled on pre-NPTL threads.  */
2034 #if KMP_OS_WINDOWS
2035 typedef struct kmp_win32_mutex {
2036   /* The Lock */
2037   CRITICAL_SECTION cs;
2038 } kmp_win32_mutex_t;
2039 
2040 typedef struct kmp_win32_cond {
2041   /* Count of the number of waiters. */
2042   int waiters_count_;
2043 
2044   /* Serialize access to <waiters_count_> */
2045   kmp_win32_mutex_t waiters_count_lock_;
2046 
2047   /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2048   int release_count_;
2049 
2050   /* Keeps track of the current "generation" so that we don't allow */
2051   /* one thread to steal all the "releases" from the broadcast. */
2052   int wait_generation_count_;
2053 
2054   /* A manual-reset event that's used to block and release waiting threads. */
2055   HANDLE event_;
2056 } kmp_win32_cond_t;
2057 #endif
2058 
2059 #if KMP_OS_UNIX
2060 
2061 union KMP_ALIGN_CACHE kmp_cond_union {
2062   double c_align;
2063   char c_pad[CACHE_LINE];
2064   pthread_cond_t c_cond;
2065 };
2066 
2067 typedef union kmp_cond_union kmp_cond_align_t;
2068 
2069 union KMP_ALIGN_CACHE kmp_mutex_union {
2070   double m_align;
2071   char m_pad[CACHE_LINE];
2072   pthread_mutex_t m_mutex;
2073 };
2074 
2075 typedef union kmp_mutex_union kmp_mutex_align_t;
2076 
2077 #endif /* KMP_OS_UNIX */
2078 
2079 typedef struct kmp_desc_base {
2080   void *ds_stackbase;
2081   size_t ds_stacksize;
2082   int ds_stackgrow;
2083   kmp_thread_t ds_thread;
2084   volatile int ds_tid;
2085   int ds_gtid;
2086 #if KMP_OS_WINDOWS
2087   volatile int ds_alive;
2088   DWORD ds_thread_id;
2089 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2090    However, debugger support (libomp_db) cannot work with handles, because they
2091    uncomparable. For example, debugger requests info about thread with handle h.
2092    h is valid within debugger process, and meaningless within debugee process.
2093    Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2094    within debugee process, but it is a *new* handle which does *not* equal to
2095    any other handle in debugee... The only way to compare handles is convert
2096    them to system-wide ids. GetThreadId() function is available only in
2097    Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2098    on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2099    thread id by call to GetCurrentThreadId() from within the thread and save it
2100    to let libomp_db identify threads.  */
2101 #endif /* KMP_OS_WINDOWS */
2102 } kmp_desc_base_t;
2103 
2104 typedef union KMP_ALIGN_CACHE kmp_desc {
2105   double ds_align; /* use worst case alignment */
2106   char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2107   kmp_desc_base_t ds;
2108 } kmp_desc_t;
2109 
2110 typedef struct kmp_local {
2111   volatile int this_construct; /* count of single's encountered by thread */
2112   void *reduce_data;
2113 #if KMP_USE_BGET
2114   void *bget_data;
2115   void *bget_list;
2116 #if !USE_CMP_XCHG_FOR_BGET
2117 #ifdef USE_QUEUING_LOCK_FOR_BGET
2118   kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2119 #else
2120   kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2121 // bootstrap lock so we can use it at library
2122 // shutdown.
2123 #endif /* USE_LOCK_FOR_BGET */
2124 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2125 #endif /* KMP_USE_BGET */
2126 
2127   PACKED_REDUCTION_METHOD_T
2128   packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2129                               __kmpc_end_reduce*() */
2130 
2131 } kmp_local_t;
2132 
2133 #define KMP_CHECK_UPDATE(a, b)                                                 \
2134   if ((a) != (b))                                                              \
2135   (a) = (b)
2136 #define KMP_CHECK_UPDATE_SYNC(a, b)                                            \
2137   if ((a) != (b))                                                              \
2138   TCW_SYNC_PTR((a), (b))
2139 
2140 #define get__blocktime(xteam, xtid)                                            \
2141   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2142 #define get__bt_set(xteam, xtid)                                               \
2143   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2144 #if KMP_USE_MONITOR
2145 #define get__bt_intervals(xteam, xtid)                                         \
2146   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2147 #endif
2148 
2149 #define get__dynamic_2(xteam, xtid)                                            \
2150   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2151 #define get__nproc_2(xteam, xtid)                                              \
2152   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2153 #define get__sched_2(xteam, xtid)                                              \
2154   ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2155 
2156 #define set__blocktime_team(xteam, xtid, xval)                                 \
2157   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) =     \
2158        (xval))
2159 
2160 #if KMP_USE_MONITOR
2161 #define set__bt_intervals_team(xteam, xtid, xval)                              \
2162   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) =  \
2163        (xval))
2164 #endif
2165 
2166 #define set__bt_set_team(xteam, xtid, xval)                                    \
2167   (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2168 
2169 #define set__dynamic(xthread, xval)                                            \
2170   (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2171 #define get__dynamic(xthread)                                                  \
2172   (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2173 
2174 #define set__nproc(xthread, xval)                                              \
2175   (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2176 
2177 #define set__thread_limit(xthread, xval)                                       \
2178   (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2179 
2180 #define set__max_active_levels(xthread, xval)                                  \
2181   (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2182 
2183 #define get__max_active_levels(xthread)                                        \
2184   ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2185 
2186 #define set__sched(xthread, xval)                                              \
2187   (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2188 
2189 #define set__proc_bind(xthread, xval)                                          \
2190   (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2191 #define get__proc_bind(xthread)                                                \
2192   ((xthread)->th.th_current_task->td_icvs.proc_bind)
2193 
2194 // OpenMP tasking data structures
2195 
2196 typedef enum kmp_tasking_mode {
2197   tskm_immediate_exec = 0,
2198   tskm_extra_barrier = 1,
2199   tskm_task_teams = 2,
2200   tskm_max = 2
2201 } kmp_tasking_mode_t;
2202 
2203 extern kmp_tasking_mode_t
2204     __kmp_tasking_mode; /* determines how/when to execute tasks */
2205 extern int __kmp_task_stealing_constraint;
2206 extern int __kmp_enable_task_throttling;
2207 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2208 // specified, defaults to 0 otherwise
2209 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2210 extern kmp_int32 __kmp_max_task_priority;
2211 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2212 extern kmp_uint64 __kmp_taskloop_min_tasks;
2213 
2214 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2215    taskdata first */
2216 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2217 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2218 
2219 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2220 // were spawned and queued since the previous barrier release.
2221 #define KMP_TASKING_ENABLED(task_team)                                         \
2222   (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2223 /*!
2224 @ingroup BASIC_TYPES
2225 @{
2226 */
2227 
2228 /*!
2229  */
2230 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2231 
2232 typedef union kmp_cmplrdata {
2233   kmp_int32 priority; /**< priority specified by user for the task */
2234   kmp_routine_entry_t
2235       destructors; /* pointer to function to invoke deconstructors of
2236                       firstprivate C++ objects */
2237   /* future data */
2238 } kmp_cmplrdata_t;
2239 
2240 /*  sizeof_kmp_task_t passed as arg to kmpc_omp_task call  */
2241 /*!
2242  */
2243 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2244   void *shareds; /**< pointer to block of pointers to shared vars   */
2245   kmp_routine_entry_t
2246       routine; /**< pointer to routine to call for executing task */
2247   kmp_int32 part_id; /**< part id for the task                          */
2248   kmp_cmplrdata_t
2249       data1; /* Two known optional additions: destructors and priority */
2250   kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2251   /* future data */
2252   /*  private vars  */
2253 } kmp_task_t;
2254 
2255 /*!
2256 @}
2257 */
2258 
2259 typedef struct kmp_taskgroup {
2260   std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2261   std::atomic<kmp_int32>
2262       cancel_request; // request for cancellation of this taskgroup
2263   struct kmp_taskgroup *parent; // parent taskgroup
2264   // Block of data to perform task reduction
2265   void *reduce_data; // reduction related info
2266   kmp_int32 reduce_num_data; // number of data items to reduce
2267   uintptr_t *gomp_data; // gomp reduction data
2268 } kmp_taskgroup_t;
2269 
2270 // forward declarations
2271 typedef union kmp_depnode kmp_depnode_t;
2272 typedef struct kmp_depnode_list kmp_depnode_list_t;
2273 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2274 
2275 // macros for checking dep flag as an integer
2276 #define KMP_DEP_IN 0x1
2277 #define KMP_DEP_OUT 0x2
2278 #define KMP_DEP_INOUT 0x3
2279 #define KMP_DEP_MTX 0x4
2280 #define KMP_DEP_SET 0x8
2281 #define KMP_DEP_ALL 0x80
2282 // Compiler sends us this info:
2283 typedef struct kmp_depend_info {
2284   kmp_intptr_t base_addr;
2285   size_t len;
2286   union {
2287     kmp_uint8 flag; // flag as an unsigned char
2288     struct { // flag as a set of 8 bits
2289       unsigned in : 1;
2290       unsigned out : 1;
2291       unsigned mtx : 1;
2292       unsigned set : 1;
2293       unsigned unused : 3;
2294       unsigned all : 1;
2295     } flags;
2296   };
2297 } kmp_depend_info_t;
2298 
2299 // Internal structures to work with task dependencies:
2300 struct kmp_depnode_list {
2301   kmp_depnode_t *node;
2302   kmp_depnode_list_t *next;
2303 };
2304 
2305 // Max number of mutexinoutset dependencies per node
2306 #define MAX_MTX_DEPS 4
2307 
2308 typedef struct kmp_base_depnode {
2309   kmp_depnode_list_t *successors; /* used under lock */
2310   kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2311   kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2312   kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2313   kmp_lock_t lock; /* guards shared fields: task, successors */
2314 #if KMP_SUPPORT_GRAPH_OUTPUT
2315   kmp_uint32 id;
2316 #endif
2317   std::atomic<kmp_int32> npredecessors;
2318   std::atomic<kmp_int32> nrefs;
2319 } kmp_base_depnode_t;
2320 
2321 union KMP_ALIGN_CACHE kmp_depnode {
2322   double dn_align; /* use worst case alignment */
2323   char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2324   kmp_base_depnode_t dn;
2325 };
2326 
2327 struct kmp_dephash_entry {
2328   kmp_intptr_t addr;
2329   kmp_depnode_t *last_out;
2330   kmp_depnode_list_t *last_set;
2331   kmp_depnode_list_t *prev_set;
2332   kmp_uint8 last_flag;
2333   kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2334   kmp_dephash_entry_t *next_in_bucket;
2335 };
2336 
2337 typedef struct kmp_dephash {
2338   kmp_dephash_entry_t **buckets;
2339   size_t size;
2340   kmp_depnode_t *last_all;
2341   size_t generation;
2342   kmp_uint32 nelements;
2343   kmp_uint32 nconflicts;
2344 } kmp_dephash_t;
2345 
2346 typedef struct kmp_task_affinity_info {
2347   kmp_intptr_t base_addr;
2348   size_t len;
2349   struct {
2350     bool flag1 : 1;
2351     bool flag2 : 1;
2352     kmp_int32 reserved : 30;
2353   } flags;
2354 } kmp_task_affinity_info_t;
2355 
2356 typedef enum kmp_event_type_t {
2357   KMP_EVENT_UNINITIALIZED = 0,
2358   KMP_EVENT_ALLOW_COMPLETION = 1
2359 } kmp_event_type_t;
2360 
2361 typedef struct {
2362   kmp_event_type_t type;
2363   kmp_tas_lock_t lock;
2364   union {
2365     kmp_task_t *task;
2366   } ed;
2367 } kmp_event_t;
2368 
2369 #ifdef BUILD_TIED_TASK_STACK
2370 
2371 /* Tied Task stack definitions */
2372 typedef struct kmp_stack_block {
2373   kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2374   struct kmp_stack_block *sb_next;
2375   struct kmp_stack_block *sb_prev;
2376 } kmp_stack_block_t;
2377 
2378 typedef struct kmp_task_stack {
2379   kmp_stack_block_t ts_first_block; // first block of stack entries
2380   kmp_taskdata_t **ts_top; // pointer to the top of stack
2381   kmp_int32 ts_entries; // number of entries on the stack
2382 } kmp_task_stack_t;
2383 
2384 #endif // BUILD_TIED_TASK_STACK
2385 
2386 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2387   /* Compiler flags */ /* Total compiler flags must be 16 bits */
2388   unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2389   unsigned final : 1; /* task is final(1) so execute immediately */
2390   unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2391                               code path */
2392   unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2393                                      invoke destructors from the runtime */
2394   unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2395                          context of the RTL) */
2396   unsigned priority_specified : 1; /* set if the compiler provides priority
2397                                       setting for the task */
2398   unsigned detachable : 1; /* 1 == can detach */
2399   unsigned hidden_helper : 1; /* 1 == hidden helper task */
2400   unsigned reserved : 8; /* reserved for compiler use */
2401 
2402   /* Library flags */ /* Total library flags must be 16 bits */
2403   unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2404   unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2405   unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2406   // (1) or may be deferred (0)
2407   unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2408   // (0) [>= 2 threads]
2409   /* If either team_serial or tasking_ser is set, task team may be NULL */
2410   /* Task State Flags: */
2411   unsigned started : 1; /* 1==started, 0==not started     */
2412   unsigned executing : 1; /* 1==executing, 0==not executing */
2413   unsigned complete : 1; /* 1==complete, 0==not complete   */
2414   unsigned freed : 1; /* 1==freed, 0==allocated        */
2415   unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2416   unsigned reserved31 : 7; /* reserved for library use */
2417 
2418 } kmp_tasking_flags_t;
2419 
2420 struct kmp_taskdata { /* aligned during dynamic allocation       */
2421   kmp_int32 td_task_id; /* id, assigned by debugger                */
2422   kmp_tasking_flags_t td_flags; /* task flags                              */
2423   kmp_team_t *td_team; /* team for this task                      */
2424   kmp_info_p *td_alloc_thread; /* thread that allocated data structures   */
2425   /* Currently not used except for perhaps IDB */
2426   kmp_taskdata_t *td_parent; /* parent task                             */
2427   kmp_int32 td_level; /* task nesting level                      */
2428   std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2429   ident_t *td_ident; /* task identifier                         */
2430   // Taskwait data.
2431   ident_t *td_taskwait_ident;
2432   kmp_uint32 td_taskwait_counter;
2433   kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2434   KMP_ALIGN_CACHE kmp_internal_control_t
2435       td_icvs; /* Internal control variables for the task */
2436   KMP_ALIGN_CACHE std::atomic<kmp_int32>
2437       td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2438                                    deallocated */
2439   std::atomic<kmp_int32>
2440       td_incomplete_child_tasks; /* Child tasks not yet complete */
2441   kmp_taskgroup_t
2442       *td_taskgroup; // Each task keeps pointer to its current taskgroup
2443   kmp_dephash_t
2444       *td_dephash; // Dependencies for children tasks are tracked from here
2445   kmp_depnode_t
2446       *td_depnode; // Pointer to graph node if this task has dependencies
2447   kmp_task_team_t *td_task_team;
2448   size_t td_size_alloc; // Size of task structure, including shareds etc.
2449 #if defined(KMP_GOMP_COMPAT)
2450   // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2451   kmp_int32 td_size_loop_bounds;
2452 #endif
2453   kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2454 #if defined(KMP_GOMP_COMPAT)
2455   // GOMP sends in a copy function for copy constructors
2456   void (*td_copy_func)(void *, void *);
2457 #endif
2458   kmp_event_t td_allow_completion_event;
2459 #if OMPT_SUPPORT
2460   ompt_task_info_t ompt_task_info;
2461 #endif
2462 }; // struct kmp_taskdata
2463 
2464 // Make sure padding above worked
2465 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2466 
2467 // Data for task team but per thread
2468 typedef struct kmp_base_thread_data {
2469   kmp_info_p *td_thr; // Pointer back to thread info
2470   // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2471   // queued?
2472   kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2473   kmp_taskdata_t *
2474       *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2475   kmp_int32 td_deque_size; // Size of deck
2476   kmp_uint32 td_deque_head; // Head of deque (will wrap)
2477   kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2478   kmp_int32 td_deque_ntasks; // Number of tasks in deque
2479   // GEH: shouldn't this be volatile since used in while-spin?
2480   kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2481 #ifdef BUILD_TIED_TASK_STACK
2482   kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2483 // scheduling constraint
2484 #endif // BUILD_TIED_TASK_STACK
2485 } kmp_base_thread_data_t;
2486 
2487 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2488 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2489 
2490 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2491 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2492 
2493 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2494   kmp_base_thread_data_t td;
2495   double td_align; /* use worst case alignment */
2496   char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2497 } kmp_thread_data_t;
2498 
2499 // Data for task teams which are used when tasking is enabled for the team
2500 typedef struct kmp_base_task_team {
2501   kmp_bootstrap_lock_t
2502       tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2503   /* must be bootstrap lock since used at library shutdown*/
2504   kmp_task_team_t *tt_next; /* For linking the task team free list */
2505   kmp_thread_data_t
2506       *tt_threads_data; /* Array of per-thread structures for task team */
2507   /* Data survives task team deallocation */
2508   kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2509                                executing this team? */
2510   /* TRUE means tt_threads_data is set up and initialized */
2511   kmp_int32 tt_nproc; /* #threads in team           */
2512   kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2513   kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2514   kmp_int32 tt_untied_task_encountered;
2515   // There is hidden helper thread encountered in this task team so that we must
2516   // wait when waiting on task team
2517   kmp_int32 tt_hidden_helper_task_encountered;
2518 
2519   KMP_ALIGN_CACHE
2520   std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2521 
2522   KMP_ALIGN_CACHE
2523   volatile kmp_uint32
2524       tt_active; /* is the team still actively executing tasks */
2525 } kmp_base_task_team_t;
2526 
2527 union KMP_ALIGN_CACHE kmp_task_team {
2528   kmp_base_task_team_t tt;
2529   double tt_align; /* use worst case alignment */
2530   char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2531 };
2532 
2533 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2534 // Free lists keep same-size free memory slots for fast memory allocation
2535 // routines
2536 typedef struct kmp_free_list {
2537   void *th_free_list_self; // Self-allocated tasks free list
2538   void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2539   // threads
2540   void *th_free_list_other; // Non-self free list (to be returned to owner's
2541   // sync list)
2542 } kmp_free_list_t;
2543 #endif
2544 #if KMP_NESTED_HOT_TEAMS
2545 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2546 // are not put in teams pool, and they don't put threads in threads pool.
2547 typedef struct kmp_hot_team_ptr {
2548   kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2549   kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2550 } kmp_hot_team_ptr_t;
2551 #endif
2552 typedef struct kmp_teams_size {
2553   kmp_int32 nteams; // number of teams in a league
2554   kmp_int32 nth; // number of threads in each team of the league
2555 } kmp_teams_size_t;
2556 
2557 // This struct stores a thread that acts as a "root" for a contention
2558 // group. Contention groups are rooted at kmp_root threads, but also at
2559 // each primary thread of each team created in the teams construct.
2560 // This struct therefore also stores a thread_limit associated with
2561 // that contention group, and a counter to track the number of threads
2562 // active in that contention group. Each thread has a list of these: CG
2563 // root threads have an entry in their list in which cg_root refers to
2564 // the thread itself, whereas other workers in the CG will have a
2565 // single entry where cg_root is same as the entry containing their CG
2566 // root. When a thread encounters a teams construct, it will add a new
2567 // entry to the front of its list, because it now roots a new CG.
2568 typedef struct kmp_cg_root {
2569   kmp_info_p *cg_root; // "root" thread for a contention group
2570   // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2571   // thread_limit clause for teams primary threads
2572   kmp_int32 cg_thread_limit;
2573   kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2574   struct kmp_cg_root *up; // pointer to higher level CG root in list
2575 } kmp_cg_root_t;
2576 
2577 // OpenMP thread data structures
2578 
2579 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2580   /* Start with the readonly data which is cache aligned and padded. This is
2581      written before the thread starts working by the primary thread. Uber
2582      masters may update themselves later. Usage does not consider serialized
2583      regions.  */
2584   kmp_desc_t th_info;
2585   kmp_team_p *th_team; /* team we belong to */
2586   kmp_root_p *th_root; /* pointer to root of task hierarchy */
2587   kmp_info_p *th_next_pool; /* next available thread in the pool */
2588   kmp_disp_t *th_dispatch; /* thread's dispatch data */
2589   int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2590 
2591   /* The following are cached from the team info structure */
2592   /* TODO use these in more places as determined to be needed via profiling */
2593   int th_team_nproc; /* number of threads in a team */
2594   kmp_info_p *th_team_master; /* the team's primary thread */
2595   int th_team_serialized; /* team is serialized */
2596   microtask_t th_teams_microtask; /* save entry address for teams construct */
2597   int th_teams_level; /* save initial level of teams construct */
2598 /* it is 0 on device but may be any on host */
2599 
2600 /* The blocktime info is copied from the team struct to the thread struct */
2601 /* at the start of a barrier, and the values stored in the team are used  */
2602 /* at points in the code where the team struct is no longer guaranteed    */
2603 /* to exist (from the POV of worker threads).                             */
2604 #if KMP_USE_MONITOR
2605   int th_team_bt_intervals;
2606   int th_team_bt_set;
2607 #else
2608   kmp_uint64 th_team_bt_intervals;
2609 #endif
2610 
2611 #if KMP_AFFINITY_SUPPORTED
2612   kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2613 #endif
2614   omp_allocator_handle_t th_def_allocator; /* default allocator */
2615   /* The data set by the primary thread at reinit, then R/W by the worker */
2616   KMP_ALIGN_CACHE int
2617       th_set_nproc; /* if > 0, then only use this request for the next fork */
2618 #if KMP_NESTED_HOT_TEAMS
2619   kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2620 #endif
2621   kmp_proc_bind_t
2622       th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2623   kmp_teams_size_t
2624       th_teams_size; /* number of teams/threads in teams construct */
2625 #if KMP_AFFINITY_SUPPORTED
2626   int th_current_place; /* place currently bound to */
2627   int th_new_place; /* place to bind to in par reg */
2628   int th_first_place; /* first place in partition */
2629   int th_last_place; /* last place in partition */
2630 #endif
2631   int th_prev_level; /* previous level for affinity format */
2632   int th_prev_num_threads; /* previous num_threads for affinity format */
2633 #if USE_ITT_BUILD
2634   kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2635   kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2636   kmp_uint64 th_frame_time; /* frame timestamp */
2637 #endif /* USE_ITT_BUILD */
2638   kmp_local_t th_local;
2639   struct private_common *th_pri_head;
2640 
2641   /* Now the data only used by the worker (after initial allocation) */
2642   /* TODO the first serial team should actually be stored in the info_t
2643      structure.  this will help reduce initial allocation overhead */
2644   KMP_ALIGN_CACHE kmp_team_p
2645       *th_serial_team; /*serialized team held in reserve*/
2646 
2647 #if OMPT_SUPPORT
2648   ompt_thread_info_t ompt_thread_info;
2649 #endif
2650 
2651   /* The following are also read by the primary thread during reinit */
2652   struct common_table *th_pri_common;
2653 
2654   volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2655   /* while awaiting queuing lock acquire */
2656 
2657   volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2658   flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2659 
2660   ident_t *th_ident;
2661   unsigned th_x; // Random number generator data
2662   unsigned th_a; // Random number generator data
2663 
2664   /* Tasking-related data for the thread */
2665   kmp_task_team_t *th_task_team; // Task team struct
2666   kmp_taskdata_t *th_current_task; // Innermost Task being executed
2667   kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2668   kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2669   // at nested levels
2670   kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2671   kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2672   kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2673   // tasking, thus safe to reap
2674 
2675   /* More stuff for keeping track of active/sleeping threads (this part is
2676      written by the worker thread) */
2677   kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2678   int th_active; // ! sleeping; 32 bits for TCR/TCW
2679   std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2680   // 0 = not used in team; 1 = used in team;
2681   // 2 = transitioning to not used in team; 3 = transitioning to used in team
2682   struct cons_header *th_cons; // used for consistency check
2683 #if KMP_USE_HIER_SCHED
2684   // used for hierarchical scheduling
2685   kmp_hier_private_bdata_t *th_hier_bar_data;
2686 #endif
2687 
2688   /* Add the syncronizing data which is cache aligned and padded. */
2689   KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2690 
2691   KMP_ALIGN_CACHE volatile kmp_int32
2692       th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2693 
2694 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2695 #define NUM_LISTS 4
2696   kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2697 // allocation routines
2698 #endif
2699 
2700 #if KMP_OS_WINDOWS
2701   kmp_win32_cond_t th_suspend_cv;
2702   kmp_win32_mutex_t th_suspend_mx;
2703   std::atomic<int> th_suspend_init;
2704 #endif
2705 #if KMP_OS_UNIX
2706   kmp_cond_align_t th_suspend_cv;
2707   kmp_mutex_align_t th_suspend_mx;
2708   std::atomic<int> th_suspend_init_count;
2709 #endif
2710 
2711 #if USE_ITT_BUILD
2712   kmp_itt_mark_t th_itt_mark_single;
2713 // alignment ???
2714 #endif /* USE_ITT_BUILD */
2715 #if KMP_STATS_ENABLED
2716   kmp_stats_list *th_stats;
2717 #endif
2718 #if KMP_OS_UNIX
2719   std::atomic<bool> th_blocking;
2720 #endif
2721   kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2722 } kmp_base_info_t;
2723 
2724 typedef union KMP_ALIGN_CACHE kmp_info {
2725   double th_align; /* use worst case alignment */
2726   char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2727   kmp_base_info_t th;
2728 } kmp_info_t;
2729 
2730 // OpenMP thread team data structures
2731 
2732 typedef struct kmp_base_data {
2733   volatile kmp_uint32 t_value;
2734 } kmp_base_data_t;
2735 
2736 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2737   double dt_align; /* use worst case alignment */
2738   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2739   kmp_base_data_t dt;
2740 } kmp_sleep_team_t;
2741 
2742 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2743   double dt_align; /* use worst case alignment */
2744   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2745   kmp_base_data_t dt;
2746 } kmp_ordered_team_t;
2747 
2748 typedef int (*launch_t)(int gtid);
2749 
2750 /* Minimum number of ARGV entries to malloc if necessary */
2751 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2752 
2753 // Set up how many argv pointers will fit in cache lines containing
2754 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2755 // larger value for more space between the primary write/worker read section and
2756 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2757 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2758 #define KMP_INLINE_ARGV_BYTES                                                  \
2759   (4 * CACHE_LINE -                                                            \
2760    ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) +               \
2761      sizeof(kmp_int16) + sizeof(kmp_uint32)) %                                 \
2762     CACHE_LINE))
2763 #else
2764 #define KMP_INLINE_ARGV_BYTES                                                  \
2765   (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2766 #endif
2767 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2768 
2769 typedef struct KMP_ALIGN_CACHE kmp_base_team {
2770   // Synchronization Data
2771   // ---------------------------------------------------------------------------
2772   KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2773   kmp_balign_team_t t_bar[bs_last_barrier];
2774   std::atomic<int> t_construct; // count of single directive encountered by team
2775   char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2776 
2777   // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2778   std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2779   std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2780 
2781   // Primary thread only
2782   // ---------------------------------------------------------------------------
2783   KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
2784   int t_master_this_cons; // "this_construct" single counter of primary thread
2785   // in parent team
2786   ident_t *t_ident; // if volatile, have to change too much other crud to
2787   // volatile too
2788   kmp_team_p *t_parent; // parent team
2789   kmp_team_p *t_next_pool; // next free team in the team pool
2790   kmp_disp_t *t_dispatch; // thread's dispatch data
2791   kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2792   kmp_proc_bind_t t_proc_bind; // bind type for par region
2793 #if USE_ITT_BUILD
2794   kmp_uint64 t_region_time; // region begin timestamp
2795 #endif /* USE_ITT_BUILD */
2796 
2797   // Primary thread write, workers read
2798   // --------------------------------------------------------------------------
2799   KMP_ALIGN_CACHE void **t_argv;
2800   int t_argc;
2801   int t_nproc; // number of threads in team
2802   microtask_t t_pkfn;
2803   launch_t t_invoke; // procedure to launch the microtask
2804 
2805 #if OMPT_SUPPORT
2806   ompt_team_info_t ompt_team_info;
2807   ompt_lw_taskteam_t *ompt_serialized_team_info;
2808 #endif
2809 
2810 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2811   kmp_int8 t_fp_control_saved;
2812   kmp_int8 t_pad2b;
2813   kmp_int16 t_x87_fpu_control_word; // FP control regs
2814   kmp_uint32 t_mxcsr;
2815 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2816 
2817   void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2818 
2819   KMP_ALIGN_CACHE kmp_info_t **t_threads;
2820   kmp_taskdata_t
2821       *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2822   int t_level; // nested parallel level
2823 
2824   KMP_ALIGN_CACHE int t_max_argc;
2825   int t_max_nproc; // max threads this team can handle (dynamically expandable)
2826   int t_serialized; // levels deep of serialized teams
2827   dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2828   int t_id; // team's id, assigned by debugger.
2829   int t_active_level; // nested active parallel level
2830   kmp_r_sched_t t_sched; // run-time schedule for the team
2831 #if KMP_AFFINITY_SUPPORTED
2832   int t_first_place; // first & last place in parent thread's partition.
2833   int t_last_place; // Restore these values to primary thread after par region.
2834 #endif // KMP_AFFINITY_SUPPORTED
2835   int t_display_affinity;
2836   int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2837   // omp_set_num_threads() call
2838   omp_allocator_handle_t t_def_allocator; /* default allocator */
2839 
2840 // Read/write by workers as well
2841 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2842   // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2843   // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2844   // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2845   // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2846   char dummy_padding[1024];
2847 #endif
2848   // Internal control stack for additional nested teams.
2849   KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2850   // for SERIALIZED teams nested 2 or more levels deep
2851   // typed flag to store request state of cancellation
2852   std::atomic<kmp_int32> t_cancel_request;
2853   int t_master_active; // save on fork, restore on join
2854   void *t_copypriv_data; // team specific pointer to copyprivate data array
2855 #if KMP_OS_WINDOWS
2856   std::atomic<kmp_uint32> t_copyin_counter;
2857 #endif
2858 #if USE_ITT_BUILD
2859   void *t_stack_id; // team specific stack stitching id (for ittnotify)
2860 #endif /* USE_ITT_BUILD */
2861   distributedBarrier *b; // Distributed barrier data associated with team
2862 } kmp_base_team_t;
2863 
2864 union KMP_ALIGN_CACHE kmp_team {
2865   kmp_base_team_t t;
2866   double t_align; /* use worst case alignment */
2867   char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2868 };
2869 
2870 typedef union KMP_ALIGN_CACHE kmp_time_global {
2871   double dt_align; /* use worst case alignment */
2872   char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2873   kmp_base_data_t dt;
2874 } kmp_time_global_t;
2875 
2876 typedef struct kmp_base_global {
2877   /* cache-aligned */
2878   kmp_time_global_t g_time;
2879 
2880   /* non cache-aligned */
2881   volatile int g_abort;
2882   volatile int g_done;
2883 
2884   int g_dynamic;
2885   enum dynamic_mode g_dynamic_mode;
2886 } kmp_base_global_t;
2887 
2888 typedef union KMP_ALIGN_CACHE kmp_global {
2889   kmp_base_global_t g;
2890   double g_align; /* use worst case alignment */
2891   char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2892 } kmp_global_t;
2893 
2894 typedef struct kmp_base_root {
2895   // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2896   // (r_in_parallel>= 0)
2897   // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2898   // the synch overhead or keeping r_active
2899   volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2900   // keeps a count of active parallel regions per root
2901   std::atomic<int> r_in_parallel;
2902   // GEH: This is misnamed, should be r_active_levels
2903   kmp_team_t *r_root_team;
2904   kmp_team_t *r_hot_team;
2905   kmp_info_t *r_uber_thread;
2906   kmp_lock_t r_begin_lock;
2907   volatile int r_begin;
2908   int r_blocktime; /* blocktime for this root and descendants */
2909 #if KMP_AFFINITY_SUPPORTED
2910   int r_affinity_assigned;
2911 #endif // KMP_AFFINITY_SUPPORTED
2912 } kmp_base_root_t;
2913 
2914 typedef union KMP_ALIGN_CACHE kmp_root {
2915   kmp_base_root_t r;
2916   double r_align; /* use worst case alignment */
2917   char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2918 } kmp_root_t;
2919 
2920 struct fortran_inx_info {
2921   kmp_int32 data;
2922 };
2923 
2924 /* ------------------------------------------------------------------------ */
2925 
2926 extern int __kmp_settings;
2927 extern int __kmp_duplicate_library_ok;
2928 #if USE_ITT_BUILD
2929 extern int __kmp_forkjoin_frames;
2930 extern int __kmp_forkjoin_frames_mode;
2931 #endif
2932 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2933 extern int __kmp_determ_red;
2934 
2935 #ifdef KMP_DEBUG
2936 extern int kmp_a_debug;
2937 extern int kmp_b_debug;
2938 extern int kmp_c_debug;
2939 extern int kmp_d_debug;
2940 extern int kmp_e_debug;
2941 extern int kmp_f_debug;
2942 #endif /* KMP_DEBUG */
2943 
2944 /* For debug information logging using rotating buffer */
2945 #define KMP_DEBUG_BUF_LINES_INIT 512
2946 #define KMP_DEBUG_BUF_LINES_MIN 1
2947 
2948 #define KMP_DEBUG_BUF_CHARS_INIT 128
2949 #define KMP_DEBUG_BUF_CHARS_MIN 2
2950 
2951 extern int
2952     __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2953 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2954 extern int
2955     __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2956 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2957                                       entry pointer */
2958 
2959 extern char *__kmp_debug_buffer; /* Debug buffer itself */
2960 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2961                                               printed in buffer so far */
2962 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2963                                           recommended in warnings */
2964 /* end rotating debug buffer */
2965 
2966 #ifdef KMP_DEBUG
2967 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2968 
2969 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
2970 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2971 #define KMP_PAR_RANGE_FILENAME_LEN 1024
2972 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2973 extern int __kmp_par_range_lb;
2974 extern int __kmp_par_range_ub;
2975 #endif
2976 
2977 /* For printing out dynamic storage map for threads and teams */
2978 extern int
2979     __kmp_storage_map; /* True means print storage map for threads and teams */
2980 extern int __kmp_storage_map_verbose; /* True means storage map includes
2981                                          placement info */
2982 extern int __kmp_storage_map_verbose_specified;
2983 
2984 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2985 extern kmp_cpuinfo_t __kmp_cpuinfo;
2986 #endif
2987 
2988 extern volatile int __kmp_init_serial;
2989 extern volatile int __kmp_init_gtid;
2990 extern volatile int __kmp_init_common;
2991 extern volatile int __kmp_init_middle;
2992 extern volatile int __kmp_init_parallel;
2993 #if KMP_USE_MONITOR
2994 extern volatile int __kmp_init_monitor;
2995 #endif
2996 extern volatile int __kmp_init_user_locks;
2997 extern volatile int __kmp_init_hidden_helper_threads;
2998 extern int __kmp_init_counter;
2999 extern int __kmp_root_counter;
3000 extern int __kmp_version;
3001 
3002 /* list of address of allocated caches for commons */
3003 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3004 
3005 /* Barrier algorithm types and options */
3006 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3007 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3008 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3009 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3010 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3011 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3012 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3013 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3014 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3015 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3016 extern char const *__kmp_barrier_type_name[bs_last_barrier];
3017 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3018 
3019 /* Global Locks */
3020 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3021 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3022 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3023 extern kmp_bootstrap_lock_t
3024     __kmp_exit_lock; /* exit() is not always thread-safe */
3025 #if KMP_USE_MONITOR
3026 extern kmp_bootstrap_lock_t
3027     __kmp_monitor_lock; /* control monitor thread creation */
3028 #endif
3029 extern kmp_bootstrap_lock_t
3030     __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3031                              __kmp_threads expansion to co-exist */
3032 
3033 extern kmp_lock_t __kmp_global_lock; /* control OS/global access  */
3034 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access  */
3035 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3036 
3037 extern enum library_type __kmp_library;
3038 
3039 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3040 extern enum sched_type __kmp_static; /* default static scheduling method */
3041 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3042 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3043 extern int __kmp_chunk; /* default runtime chunk size */
3044 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3045 
3046 extern size_t __kmp_stksize; /* stack size per thread         */
3047 #if KMP_USE_MONITOR
3048 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3049 #endif
3050 extern size_t __kmp_stkoffset; /* stack offset per thread       */
3051 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3052 
3053 extern size_t
3054     __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3055 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3056 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3057 extern int __kmp_env_checks; /* was KMP_CHECKS specified?    */
3058 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3059 extern int __kmp_generate_warnings; /* should we issue warnings? */
3060 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3061 
3062 #ifdef DEBUG_SUSPEND
3063 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3064 #endif
3065 
3066 extern kmp_int32 __kmp_use_yield;
3067 extern kmp_int32 __kmp_use_yield_exp_set;
3068 extern kmp_uint32 __kmp_yield_init;
3069 extern kmp_uint32 __kmp_yield_next;
3070 
3071 /* ------------------------------------------------------------------------- */
3072 extern int __kmp_allThreadsSpecified;
3073 
3074 extern size_t __kmp_align_alloc;
3075 /* following data protected by initialization routines */
3076 extern int __kmp_xproc; /* number of processors in the system */
3077 extern int __kmp_avail_proc; /* number of processors available to the process */
3078 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3079 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3080 // maximum total number of concurrently-existing threads on device
3081 extern int __kmp_max_nth;
3082 // maximum total number of concurrently-existing threads in a contention group
3083 extern int __kmp_cg_max_nth;
3084 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3085 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3086                                       __kmp_root */
3087 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3088                                    region a la OMP_NUM_THREADS */
3089 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3090                                       initialization */
3091 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3092                                  used (fixed) */
3093 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3094                                (__kmpc_threadprivate_cached()) */
3095 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3096                                     blocking (env setting) */
3097 #if KMP_USE_MONITOR
3098 extern int
3099     __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3100 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3101                                   blocking */
3102 #endif
3103 #ifdef KMP_ADJUST_BLOCKTIME
3104 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3105 #endif /* KMP_ADJUST_BLOCKTIME */
3106 #ifdef KMP_DFLT_NTH_CORES
3107 extern int __kmp_ncores; /* Total number of cores for threads placement */
3108 #endif
3109 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3110 extern int __kmp_abort_delay;
3111 
3112 extern int __kmp_need_register_atfork_specified;
3113 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3114                                           to install fork handler */
3115 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3116                                0 - not set, will be set at runtime
3117                                1 - using stack search
3118                                2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3119                                    X*) or TlsGetValue(Windows* OS))
3120                                3 - static TLS (__declspec(thread) __kmp_gtid),
3121                                    Linux* OS .so only.  */
3122 extern int
3123     __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3124 #ifdef KMP_TDATA_GTID
3125 extern KMP_THREAD_LOCAL int __kmp_gtid;
3126 #endif
3127 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3128 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3129 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3130 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3131 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3132 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3133 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3134 
3135 // max_active_levels for nested parallelism enabled by default via
3136 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3137 extern int __kmp_dflt_max_active_levels;
3138 // Indicates whether value of __kmp_dflt_max_active_levels was already
3139 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3140 extern bool __kmp_dflt_max_active_levels_set;
3141 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3142                                           concurrent execution per team */
3143 #if KMP_NESTED_HOT_TEAMS
3144 extern int __kmp_hot_teams_mode;
3145 extern int __kmp_hot_teams_max_level;
3146 #endif
3147 
3148 #if KMP_OS_LINUX
3149 extern enum clock_function_type __kmp_clock_function;
3150 extern int __kmp_clock_function_param;
3151 #endif /* KMP_OS_LINUX */
3152 
3153 #if KMP_MIC_SUPPORTED
3154 extern enum mic_type __kmp_mic_type;
3155 #endif
3156 
3157 #ifdef USE_LOAD_BALANCE
3158 extern double __kmp_load_balance_interval; // load balance algorithm interval
3159 #endif /* USE_LOAD_BALANCE */
3160 
3161 // OpenMP 3.1 - Nested num threads array
3162 typedef struct kmp_nested_nthreads_t {
3163   int *nth;
3164   int size;
3165   int used;
3166 } kmp_nested_nthreads_t;
3167 
3168 extern kmp_nested_nthreads_t __kmp_nested_nth;
3169 
3170 #if KMP_USE_ADAPTIVE_LOCKS
3171 
3172 // Parameters for the speculative lock backoff system.
3173 struct kmp_adaptive_backoff_params_t {
3174   // Number of soft retries before it counts as a hard retry.
3175   kmp_uint32 max_soft_retries;
3176   // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3177   // the right
3178   kmp_uint32 max_badness;
3179 };
3180 
3181 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3182 
3183 #if KMP_DEBUG_ADAPTIVE_LOCKS
3184 extern const char *__kmp_speculative_statsfile;
3185 #endif
3186 
3187 #endif // KMP_USE_ADAPTIVE_LOCKS
3188 
3189 extern int __kmp_display_env; /* TRUE or FALSE */
3190 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3191 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3192 extern int __kmp_nteams;
3193 extern int __kmp_teams_thread_limit;
3194 
3195 /* ------------------------------------------------------------------------- */
3196 
3197 /* the following are protected by the fork/join lock */
3198 /* write: lock  read: anytime */
3199 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3200 /* read/write: lock */
3201 extern volatile kmp_team_t *__kmp_team_pool;
3202 extern volatile kmp_info_t *__kmp_thread_pool;
3203 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3204 
3205 // total num threads reachable from some root thread including all root threads
3206 extern volatile int __kmp_nth;
3207 /* total number of threads reachable from some root thread including all root
3208    threads, and those in the thread pool */
3209 extern volatile int __kmp_all_nth;
3210 extern std::atomic<int> __kmp_thread_pool_active_nth;
3211 
3212 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3213 /* end data protected by fork/join lock */
3214 /* ------------------------------------------------------------------------- */
3215 
3216 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3217 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3218 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3219 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3220 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3221 
3222 // AT: Which way is correct?
3223 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3224 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3225 #define __kmp_get_team_num_threads(gtid)                                       \
3226   (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3227 
KMP_UBER_GTID(int gtid)3228 static inline bool KMP_UBER_GTID(int gtid) {
3229   KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3230   KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3231   return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3232           __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3233 }
3234 
__kmp_tid_from_gtid(int gtid)3235 static inline int __kmp_tid_from_gtid(int gtid) {
3236   KMP_DEBUG_ASSERT(gtid >= 0);
3237   return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3238 }
3239 
__kmp_gtid_from_tid(int tid,const kmp_team_t * team)3240 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3241   KMP_DEBUG_ASSERT(tid >= 0 && team);
3242   return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3243 }
3244 
__kmp_gtid_from_thread(const kmp_info_t * thr)3245 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3246   KMP_DEBUG_ASSERT(thr);
3247   return thr->th.th_info.ds.ds_gtid;
3248 }
3249 
__kmp_thread_from_gtid(int gtid)3250 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3251   KMP_DEBUG_ASSERT(gtid >= 0);
3252   return __kmp_threads[gtid];
3253 }
3254 
__kmp_team_from_gtid(int gtid)3255 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3256   KMP_DEBUG_ASSERT(gtid >= 0);
3257   return __kmp_threads[gtid]->th.th_team;
3258 }
3259 
__kmp_assert_valid_gtid(kmp_int32 gtid)3260 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3261   if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3262     KMP_FATAL(ThreadIdentInvalid);
3263 }
3264 
3265 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3266 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3267 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3268 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3269 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3270 #endif
3271 
3272 /* ------------------------------------------------------------------------- */
3273 
3274 extern kmp_global_t __kmp_global; /* global status */
3275 
3276 extern kmp_info_t __kmp_monitor;
3277 // For Debugging Support Library
3278 extern std::atomic<kmp_int32> __kmp_team_counter;
3279 // For Debugging Support Library
3280 extern std::atomic<kmp_int32> __kmp_task_counter;
3281 
3282 #if USE_DEBUGGER
3283 #define _KMP_GEN_ID(counter)                                                   \
3284   (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3285 #else
3286 #define _KMP_GEN_ID(counter) (~0)
3287 #endif /* USE_DEBUGGER */
3288 
3289 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3290 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3291 
3292 /* ------------------------------------------------------------------------ */
3293 
3294 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3295                                          size_t size, char const *format, ...);
3296 
3297 extern void __kmp_serial_initialize(void);
3298 extern void __kmp_middle_initialize(void);
3299 extern void __kmp_parallel_initialize(void);
3300 
3301 extern void __kmp_internal_begin(void);
3302 extern void __kmp_internal_end_library(int gtid);
3303 extern void __kmp_internal_end_thread(int gtid);
3304 extern void __kmp_internal_end_atexit(void);
3305 extern void __kmp_internal_end_dtor(void);
3306 extern void __kmp_internal_end_dest(void *);
3307 
3308 extern int __kmp_register_root(int initial_thread);
3309 extern void __kmp_unregister_root(int gtid);
3310 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3311 
3312 extern int __kmp_ignore_mppbeg(void);
3313 extern int __kmp_ignore_mppend(void);
3314 
3315 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3316 extern void __kmp_exit_single(int gtid);
3317 
3318 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3319 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3320 
3321 #ifdef USE_LOAD_BALANCE
3322 extern int __kmp_get_load_balance(int);
3323 #endif
3324 
3325 extern int __kmp_get_global_thread_id(void);
3326 extern int __kmp_get_global_thread_id_reg(void);
3327 extern void __kmp_exit_thread(int exit_status);
3328 extern void __kmp_abort(char const *format, ...);
3329 extern void __kmp_abort_thread(void);
3330 KMP_NORETURN extern void __kmp_abort_process(void);
3331 extern void __kmp_warn(char const *format, ...);
3332 
3333 extern void __kmp_set_num_threads(int new_nth, int gtid);
3334 
3335 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3336 // registered.
__kmp_entry_thread()3337 static inline kmp_info_t *__kmp_entry_thread() {
3338   int gtid = __kmp_entry_gtid();
3339 
3340   return __kmp_threads[gtid];
3341 }
3342 
3343 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3344 extern int __kmp_get_max_active_levels(int gtid);
3345 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3346 extern int __kmp_get_team_size(int gtid, int level);
3347 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3348 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3349 
3350 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3351 extern void __kmp_init_random(kmp_info_t *thread);
3352 
3353 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3354 extern void __kmp_adjust_num_threads(int new_nproc);
3355 extern void __kmp_check_stksize(size_t *val);
3356 
3357 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3358 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3359 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3360 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3361 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3362 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3363 
3364 #if USE_FAST_MEMORY
3365 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3366                                   size_t size KMP_SRC_LOC_DECL);
3367 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3368 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3369 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3370 #define __kmp_fast_allocate(this_thr, size)                                    \
3371   ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3372 #define __kmp_fast_free(this_thr, ptr)                                         \
3373   ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3374 #endif
3375 
3376 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3377 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3378                                   size_t elsize KMP_SRC_LOC_DECL);
3379 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3380                                    size_t size KMP_SRC_LOC_DECL);
3381 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3382 #define __kmp_thread_malloc(th, size)                                          \
3383   ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3384 #define __kmp_thread_calloc(th, nelem, elsize)                                 \
3385   ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3386 #define __kmp_thread_realloc(th, ptr, size)                                    \
3387   ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3388 #define __kmp_thread_free(th, ptr)                                             \
3389   ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3390 
3391 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3392 #define KMP_INTERNAL_FREE(p) free(p)
3393 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3394 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3395 
3396 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3397 
3398 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3399                                  kmp_proc_bind_t proc_bind);
3400 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3401                                  int num_threads);
3402 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3403                                     int num_teams_ub, int num_threads);
3404 
3405 extern void __kmp_yield();
3406 
3407 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3408                                    enum sched_type schedule, kmp_int32 lb,
3409                                    kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3410 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3411                                     enum sched_type schedule, kmp_uint32 lb,
3412                                     kmp_uint32 ub, kmp_int32 st,
3413                                     kmp_int32 chunk);
3414 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3415                                    enum sched_type schedule, kmp_int64 lb,
3416                                    kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3417 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3418                                     enum sched_type schedule, kmp_uint64 lb,
3419                                     kmp_uint64 ub, kmp_int64 st,
3420                                     kmp_int64 chunk);
3421 
3422 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3423                                   kmp_int32 *p_last, kmp_int32 *p_lb,
3424                                   kmp_int32 *p_ub, kmp_int32 *p_st);
3425 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3426                                    kmp_int32 *p_last, kmp_uint32 *p_lb,
3427                                    kmp_uint32 *p_ub, kmp_int32 *p_st);
3428 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3429                                   kmp_int32 *p_last, kmp_int64 *p_lb,
3430                                   kmp_int64 *p_ub, kmp_int64 *p_st);
3431 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3432                                    kmp_int32 *p_last, kmp_uint64 *p_lb,
3433                                    kmp_uint64 *p_ub, kmp_int64 *p_st);
3434 
3435 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3436 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3437 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3438 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3439 
3440 #ifdef KMP_GOMP_COMPAT
3441 
3442 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3443                                       enum sched_type schedule, kmp_int32 lb,
3444                                       kmp_int32 ub, kmp_int32 st,
3445                                       kmp_int32 chunk, int push_ws);
3446 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3447                                        enum sched_type schedule, kmp_uint32 lb,
3448                                        kmp_uint32 ub, kmp_int32 st,
3449                                        kmp_int32 chunk, int push_ws);
3450 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3451                                       enum sched_type schedule, kmp_int64 lb,
3452                                       kmp_int64 ub, kmp_int64 st,
3453                                       kmp_int64 chunk, int push_ws);
3454 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3455                                        enum sched_type schedule, kmp_uint64 lb,
3456                                        kmp_uint64 ub, kmp_int64 st,
3457                                        kmp_int64 chunk, int push_ws);
3458 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3459 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3460 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3461 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3462 
3463 #endif /* KMP_GOMP_COMPAT */
3464 
3465 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3466 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3467 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3468 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3469 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3470 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3471                                kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3472                                void *obj);
3473 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3474                              kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3475 
3476 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3477                           int final_spin
3478 #if USE_ITT_BUILD
3479                           ,
3480                           void *itt_sync_obj
3481 #endif
3482 );
3483 extern void __kmp_release_64(kmp_flag_64<> *flag);
3484 
3485 extern void __kmp_infinite_loop(void);
3486 
3487 extern void __kmp_cleanup(void);
3488 
3489 #if KMP_HANDLE_SIGNALS
3490 extern int __kmp_handle_signals;
3491 extern void __kmp_install_signals(int parallel_init);
3492 extern void __kmp_remove_signals(void);
3493 #endif
3494 
3495 extern void __kmp_clear_system_time(void);
3496 extern void __kmp_read_system_time(double *delta);
3497 
3498 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3499 
3500 extern void __kmp_expand_host_name(char *buffer, size_t size);
3501 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3502 
3503 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && KMP_ARCH_AARCH64)
3504 extern void
3505 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3506 #endif
3507 
3508 extern void
3509 __kmp_runtime_initialize(void); /* machine specific initialization */
3510 extern void __kmp_runtime_destroy(void);
3511 
3512 #if KMP_AFFINITY_SUPPORTED
3513 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3514                                        kmp_affin_mask_t *mask);
3515 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3516                                                   kmp_affin_mask_t *mask);
3517 extern void __kmp_affinity_initialize(void);
3518 extern void __kmp_affinity_uninitialize(void);
3519 extern void __kmp_affinity_set_init_mask(
3520     int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3521 extern void __kmp_affinity_set_place(int gtid);
3522 extern void __kmp_affinity_determine_capable(const char *env_var);
3523 extern int __kmp_aux_set_affinity(void **mask);
3524 extern int __kmp_aux_get_affinity(void **mask);
3525 extern int __kmp_aux_get_affinity_max_proc();
3526 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3527 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3528 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3529 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3530 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3531 extern int kmp_set_thread_affinity_mask_initial(void);
3532 #endif
__kmp_assign_root_init_mask()3533 static inline void __kmp_assign_root_init_mask() {
3534   int gtid = __kmp_entry_gtid();
3535   kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3536   if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3537     __kmp_affinity_set_init_mask(gtid, TRUE);
3538     r->r.r_affinity_assigned = TRUE;
3539   }
3540 }
3541 #else /* KMP_AFFINITY_SUPPORTED */
3542 #define __kmp_assign_root_init_mask() /* Nothing */
3543 #endif /* KMP_AFFINITY_SUPPORTED */
3544 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3545 // format string is for affinity, so platforms that do not support
3546 // affinity can still use the other fields, e.g., %n for num_threads
3547 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3548                                          kmp_str_buf_t *buffer);
3549 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3550 
3551 extern void __kmp_cleanup_hierarchy();
3552 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3553 
3554 #if KMP_USE_FUTEX
3555 
3556 extern int __kmp_futex_determine_capable(void);
3557 
3558 #endif // KMP_USE_FUTEX
3559 
3560 extern void __kmp_gtid_set_specific(int gtid);
3561 extern int __kmp_gtid_get_specific(void);
3562 
3563 extern double __kmp_read_cpu_time(void);
3564 
3565 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3566 
3567 #if KMP_USE_MONITOR
3568 extern void __kmp_create_monitor(kmp_info_t *th);
3569 #endif
3570 
3571 extern void *__kmp_launch_thread(kmp_info_t *thr);
3572 
3573 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3574 
3575 #if KMP_OS_WINDOWS
3576 extern int __kmp_still_running(kmp_info_t *th);
3577 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3578 extern void __kmp_free_handle(kmp_thread_t tHandle);
3579 #endif
3580 
3581 #if KMP_USE_MONITOR
3582 extern void __kmp_reap_monitor(kmp_info_t *th);
3583 #endif
3584 extern void __kmp_reap_worker(kmp_info_t *th);
3585 extern void __kmp_terminate_thread(int gtid);
3586 
3587 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3588 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3589 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3590 
3591 extern void __kmp_elapsed(double *);
3592 extern void __kmp_elapsed_tick(double *);
3593 
3594 extern void __kmp_enable(int old_state);
3595 extern void __kmp_disable(int *old_state);
3596 
3597 extern void __kmp_thread_sleep(int millis);
3598 
3599 extern void __kmp_common_initialize(void);
3600 extern void __kmp_common_destroy(void);
3601 extern void __kmp_common_destroy_gtid(int gtid);
3602 
3603 #if KMP_OS_UNIX
3604 extern void __kmp_register_atfork(void);
3605 #endif
3606 extern void __kmp_suspend_initialize(void);
3607 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3608 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3609 
3610 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3611                                          int tid);
3612 extern kmp_team_t *
3613 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3614 #if OMPT_SUPPORT
3615                     ompt_data_t ompt_parallel_data,
3616 #endif
3617                     kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3618                     int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3619 extern void __kmp_free_thread(kmp_info_t *);
3620 extern void __kmp_free_team(kmp_root_t *,
3621                             kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3622 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3623 
3624 /* ------------------------------------------------------------------------ */
3625 
3626 extern void __kmp_initialize_bget(kmp_info_t *th);
3627 extern void __kmp_finalize_bget(kmp_info_t *th);
3628 
3629 KMP_EXPORT void *kmpc_malloc(size_t size);
3630 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3631 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3632 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3633 KMP_EXPORT void kmpc_free(void *ptr);
3634 
3635 /* declarations for internal use */
3636 
3637 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3638                          size_t reduce_size, void *reduce_data,
3639                          void (*reduce)(void *, void *));
3640 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3641 extern int __kmp_barrier_gomp_cancel(int gtid);
3642 
3643 /*!
3644  * Tell the fork call which compiler generated the fork call, and therefore how
3645  * to deal with the call.
3646  */
3647 enum fork_context_e {
3648   fork_context_gnu, /**< Called from GNU generated code, so must not invoke the
3649                        microtask internally. */
3650   fork_context_intel, /**< Called from Intel generated code.  */
3651   fork_context_last
3652 };
3653 extern int __kmp_fork_call(ident_t *loc, int gtid,
3654                            enum fork_context_e fork_context, kmp_int32 argc,
3655                            microtask_t microtask, launch_t invoker,
3656                            kmp_va_list ap);
3657 
3658 extern void __kmp_join_call(ident_t *loc, int gtid
3659 #if OMPT_SUPPORT
3660                             ,
3661                             enum fork_context_e fork_context
3662 #endif
3663                             ,
3664                             int exit_teams = 0);
3665 
3666 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3667 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3668 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3669 extern int __kmp_invoke_task_func(int gtid);
3670 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3671                                           kmp_info_t *this_thr,
3672                                           kmp_team_t *team);
3673 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3674                                          kmp_info_t *this_thr,
3675                                          kmp_team_t *team);
3676 
3677 // should never have been exported
3678 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3679 extern int __kmp_invoke_teams_master(int gtid);
3680 extern void __kmp_teams_master(int gtid);
3681 extern int __kmp_aux_get_team_num();
3682 extern int __kmp_aux_get_num_teams();
3683 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3684 extern void __kmp_user_set_library(enum library_type arg);
3685 extern void __kmp_aux_set_library(enum library_type arg);
3686 extern void __kmp_aux_set_stacksize(size_t arg);
3687 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3688 extern void __kmp_aux_set_defaults(char const *str, size_t len);
3689 
3690 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3691 void kmpc_set_blocktime(int arg);
3692 void ompc_set_nested(int flag);
3693 void ompc_set_dynamic(int flag);
3694 void ompc_set_num_threads(int arg);
3695 
3696 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3697                                               kmp_team_t *team, int tid);
3698 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3699 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3700                                     kmp_tasking_flags_t *flags,
3701                                     size_t sizeof_kmp_task_t,
3702                                     size_t sizeof_shareds,
3703                                     kmp_routine_entry_t task_entry);
3704 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3705                                      kmp_team_t *team, int tid,
3706                                      int set_curr_task);
3707 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3708 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3709 
3710 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3711                                                        int gtid,
3712                                                        kmp_task_t *task);
3713 extern void __kmp_fulfill_event(kmp_event_t *event);
3714 
3715 extern void __kmp_free_task_team(kmp_info_t *thread,
3716                                  kmp_task_team_t *task_team);
3717 extern void __kmp_reap_task_teams(void);
3718 extern void __kmp_wait_to_unref_task_teams(void);
3719 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3720                                   int always);
3721 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3722 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3723 #if USE_ITT_BUILD
3724                                  ,
3725                                  void *itt_sync_obj
3726 #endif /* USE_ITT_BUILD */
3727                                  ,
3728                                  int wait = 1);
3729 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3730                                   int gtid);
3731 
3732 extern int __kmp_is_address_mapped(void *addr);
3733 extern kmp_uint64 __kmp_hardware_timestamp(void);
3734 
3735 #if KMP_OS_UNIX
3736 extern int __kmp_read_from_file(char const *path, char const *format, ...);
3737 #endif
3738 
3739 /* ------------------------------------------------------------------------ */
3740 //
3741 // Assembly routines that have no compiler intrinsic replacement
3742 //
3743 
3744 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3745                                   void *argv[]
3746 #if OMPT_SUPPORT
3747                                   ,
3748                                   void **exit_frame_ptr
3749 #endif
3750 );
3751 
3752 /* ------------------------------------------------------------------------ */
3753 
3754 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3755 KMP_EXPORT void __kmpc_end(ident_t *);
3756 
3757 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3758                                                   kmpc_ctor_vec ctor,
3759                                                   kmpc_cctor_vec cctor,
3760                                                   kmpc_dtor_vec dtor,
3761                                                   size_t vector_length);
3762 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3763                                               kmpc_ctor ctor, kmpc_cctor cctor,
3764                                               kmpc_dtor dtor);
3765 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3766                                       void *data, size_t size);
3767 
3768 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3769 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3770 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3771 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3772 
3773 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3774 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3775                                  kmpc_micro microtask, ...);
3776 
3777 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3778 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3779 
3780 KMP_EXPORT void __kmpc_flush(ident_t *);
3781 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3782 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3783 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3784 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
3785                                    kmp_int32 filter);
3786 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
3787 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3788 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3789 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3790                                 kmp_critical_name *);
3791 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3792                                     kmp_critical_name *);
3793 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3794                                           kmp_critical_name *, uint32_t hint);
3795 
3796 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3797 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3798 
3799 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3800                                                   kmp_int32 global_tid);
3801 
3802 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3803 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3804 
3805 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3806                                      kmp_int32 schedtype, kmp_int32 *plastiter,
3807                                      kmp_int *plower, kmp_int *pupper,
3808                                      kmp_int *pstride, kmp_int incr,
3809                                      kmp_int chunk);
3810 
3811 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3812 
3813 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3814                                    size_t cpy_size, void *cpy_data,
3815                                    void (*cpy_func)(void *, void *),
3816                                    kmp_int32 didit);
3817 
3818 extern void KMPC_SET_NUM_THREADS(int arg);
3819 extern void KMPC_SET_DYNAMIC(int flag);
3820 extern void KMPC_SET_NESTED(int flag);
3821 
3822 /* OMP 3.0 tasking interface routines */
3823 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3824                                      kmp_task_t *new_task);
3825 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3826                                              kmp_int32 flags,
3827                                              size_t sizeof_kmp_task_t,
3828                                              size_t sizeof_shareds,
3829                                              kmp_routine_entry_t task_entry);
3830 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
3831     ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
3832     size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
3833 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3834                                           kmp_task_t *task);
3835 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3836                                              kmp_task_t *task);
3837 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3838                                            kmp_task_t *new_task);
3839 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3840 
3841 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3842                                           int end_part);
3843 
3844 #if TASK_UNUSED
3845 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3846 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3847                               kmp_task_t *task);
3848 #endif // TASK_UNUSED
3849 
3850 /* ------------------------------------------------------------------------ */
3851 
3852 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3853 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3854 
3855 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3856     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3857     kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3858     kmp_depend_info_t *noalias_dep_list);
3859 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3860                                      kmp_int32 ndeps,
3861                                      kmp_depend_info_t *dep_list,
3862                                      kmp_int32 ndeps_noalias,
3863                                      kmp_depend_info_t *noalias_dep_list);
3864 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3865                                 bool serialize_immediate);
3866 
3867 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3868                                    kmp_int32 cncl_kind);
3869 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3870                                               kmp_int32 cncl_kind);
3871 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3872 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3873 
3874 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3875 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3876 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3877                                 kmp_int32 if_val, kmp_uint64 *lb,
3878                                 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3879                                 kmp_int32 sched, kmp_uint64 grainsize,
3880                                 void *task_dup);
3881 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
3882                                   kmp_task_t *task, kmp_int32 if_val,
3883                                   kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
3884                                   kmp_int32 nogroup, kmp_int32 sched,
3885                                   kmp_uint64 grainsize, kmp_int32 modifier,
3886                                   void *task_dup);
3887 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3888 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3889 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3890 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3891                                                      int is_ws, int num,
3892                                                      void *data);
3893 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3894                                               int num, void *data);
3895 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3896                                                     int is_ws);
3897 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3898     ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3899     kmp_task_affinity_info_t *affin_list);
3900 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
3901 KMP_EXPORT int __kmp_get_max_teams(void);
3902 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
3903 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
3904 
3905 /* Lock interface routines (fast versions with gtid passed in) */
3906 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3907                                  void **user_lock);
3908 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3909                                       void **user_lock);
3910 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3911                                     void **user_lock);
3912 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3913                                          void **user_lock);
3914 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3915 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3916                                      void **user_lock);
3917 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3918                                   void **user_lock);
3919 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3920                                        void **user_lock);
3921 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3922 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3923                                      void **user_lock);
3924 
3925 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3926                                            void **user_lock, uintptr_t hint);
3927 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3928                                                 void **user_lock,
3929                                                 uintptr_t hint);
3930 
3931 /* Interface to fast scalable reduce methods routines */
3932 
3933 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3934     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3935     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3936     kmp_critical_name *lck);
3937 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3938                                          kmp_critical_name *lck);
3939 KMP_EXPORT kmp_int32 __kmpc_reduce(
3940     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3941     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3942     kmp_critical_name *lck);
3943 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3944                                   kmp_critical_name *lck);
3945 
3946 /* Internal fast reduction routines */
3947 
3948 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3949     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3950     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3951     kmp_critical_name *lck);
3952 
3953 // this function is for testing set/get/determine reduce method
3954 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3955 
3956 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3957 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3958 
3959 // C++ port
3960 // missing 'extern "C"' declarations
3961 
3962 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3963 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3964 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3965                                         kmp_int32 num_threads);
3966 
3967 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3968                                       int proc_bind);
3969 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3970                                       kmp_int32 num_teams,
3971                                       kmp_int32 num_threads);
3972 /* Function for OpenMP 5.1 num_teams clause */
3973 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
3974                                          kmp_int32 num_teams_lb,
3975                                          kmp_int32 num_teams_ub,
3976                                          kmp_int32 num_threads);
3977 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3978                                   kmpc_micro microtask, ...);
3979 struct kmp_dim { // loop bounds info casted to kmp_int64
3980   kmp_int64 lo; // lower
3981   kmp_int64 up; // upper
3982   kmp_int64 st; // stride
3983 };
3984 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3985                                      kmp_int32 num_dims,
3986                                      const struct kmp_dim *dims);
3987 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3988                                      const kmp_int64 *vec);
3989 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3990                                      const kmp_int64 *vec);
3991 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3992 
3993 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
3994                                              void *data, size_t size,
3995                                              void ***cache);
3996 
3997 // Symbols for MS mutual detection.
3998 extern int _You_must_link_with_exactly_one_OpenMP_library;
3999 extern int _You_must_link_with_Intel_OpenMP_library;
4000 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
4001 extern int _You_must_link_with_Microsoft_OpenMP_library;
4002 #endif
4003 
4004 // The routines below are not exported.
4005 // Consider making them 'static' in corresponding source files.
4006 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4007                                            void *data_addr, size_t pc_size);
4008 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4009                                                 void *data_addr,
4010                                                 size_t pc_size);
4011 void __kmp_threadprivate_resize_cache(int newCapacity);
4012 void __kmp_cleanup_threadprivate_caches();
4013 
4014 // ompc_, kmpc_ entries moved from omp.h.
4015 #if KMP_OS_WINDOWS
4016 #define KMPC_CONVENTION __cdecl
4017 #else
4018 #define KMPC_CONVENTION
4019 #endif
4020 
4021 #ifndef __OMP_H
4022 typedef enum omp_sched_t {
4023   omp_sched_static = 1,
4024   omp_sched_dynamic = 2,
4025   omp_sched_guided = 3,
4026   omp_sched_auto = 4
4027 } omp_sched_t;
4028 typedef void *kmp_affinity_mask_t;
4029 #endif
4030 
4031 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4032 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4033 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4034 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4035 KMP_EXPORT int KMPC_CONVENTION
4036 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4037 KMP_EXPORT int KMPC_CONVENTION
4038 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4039 KMP_EXPORT int KMPC_CONVENTION
4040 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4041 
4042 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4043 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4044 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4045 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4046 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4047 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4048 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4049 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4050 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4051                                               char const *format);
4052 
4053 enum kmp_target_offload_kind {
4054   tgt_disabled = 0,
4055   tgt_default = 1,
4056   tgt_mandatory = 2
4057 };
4058 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4059 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4060 extern kmp_target_offload_kind_t __kmp_target_offload;
4061 extern int __kmpc_get_target_offload();
4062 
4063 // Constants used in libomptarget
4064 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4065 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4066 
4067 // OMP Pause Resource
4068 
4069 // The following enum is used both to set the status in __kmp_pause_status, and
4070 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4071 typedef enum kmp_pause_status_t {
4072   kmp_not_paused = 0, // status is not paused, or, requesting resume
4073   kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4074   kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4075 } kmp_pause_status_t;
4076 
4077 // This stores the pause state of the runtime
4078 extern kmp_pause_status_t __kmp_pause_status;
4079 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4080 extern int __kmp_pause_resource(kmp_pause_status_t level);
4081 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4082 extern void __kmp_resume_if_soft_paused();
4083 // Hard resume simply resets the status to not paused. Library will appear to
4084 // be uninitialized after hard pause. Let OMP constructs trigger required
4085 // initializations.
__kmp_resume_if_hard_paused()4086 static inline void __kmp_resume_if_hard_paused() {
4087   if (__kmp_pause_status == kmp_hard_paused) {
4088     __kmp_pause_status = kmp_not_paused;
4089   }
4090 }
4091 
4092 extern void __kmp_omp_display_env(int verbose);
4093 
4094 // 1: it is initializing hidden helper team
4095 extern volatile int __kmp_init_hidden_helper;
4096 // 1: the hidden helper team is done
4097 extern volatile int __kmp_hidden_helper_team_done;
4098 // 1: enable hidden helper task
4099 extern kmp_int32 __kmp_enable_hidden_helper;
4100 // Main thread of hidden helper team
4101 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4102 // Descriptors for the hidden helper threads
4103 extern kmp_info_t **__kmp_hidden_helper_threads;
4104 // Number of hidden helper threads
4105 extern kmp_int32 __kmp_hidden_helper_threads_num;
4106 // Number of hidden helper tasks that have not been executed yet
4107 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4108 
4109 extern void __kmp_hidden_helper_initialize();
4110 extern void __kmp_hidden_helper_threads_initz_routine();
4111 extern void __kmp_do_initialize_hidden_helper_threads();
4112 extern void __kmp_hidden_helper_threads_initz_wait();
4113 extern void __kmp_hidden_helper_initz_release();
4114 extern void __kmp_hidden_helper_threads_deinitz_wait();
4115 extern void __kmp_hidden_helper_threads_deinitz_release();
4116 extern void __kmp_hidden_helper_main_thread_wait();
4117 extern void __kmp_hidden_helper_worker_thread_wait();
4118 extern void __kmp_hidden_helper_worker_thread_signal();
4119 extern void __kmp_hidden_helper_main_thread_release();
4120 
4121 // Check whether a given thread is a hidden helper thread
4122 #define KMP_HIDDEN_HELPER_THREAD(gtid)                                         \
4123   ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4124 
4125 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid)                                  \
4126   ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4127 
4128 #define KMP_HIDDEN_HELPER_TEAM(team)                                           \
4129   (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4130 
4131 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4132 // main thread, is skipped.
4133 #define KMP_GTID_TO_SHADOW_GTID(gtid)                                          \
4134   ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4135 
4136 // Return the adjusted gtid value by subtracting from gtid the number
4137 // of hidden helper threads. This adjusted value is the gtid the thread would
4138 // have received if there were no hidden helper threads.
__kmp_adjust_gtid_for_hidden_helpers(int gtid)4139 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4140   int adjusted_gtid = gtid;
4141   if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4142       gtid - __kmp_hidden_helper_threads_num >= 0) {
4143     adjusted_gtid -= __kmp_hidden_helper_threads_num;
4144   }
4145   return adjusted_gtid;
4146 }
4147 
4148 // Support for error directive
4149 typedef enum kmp_severity_t {
4150   severity_warning = 1,
4151   severity_fatal = 2
4152 } kmp_severity_t;
4153 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4154 
4155 // Support for scope directive
4156 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4157 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4158 
4159 #ifdef __cplusplus
4160 }
4161 #endif
4162 
4163 template <bool C, bool S>
4164 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4165 template <bool C, bool S>
4166 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4167 template <bool C, bool S>
4168 extern void __kmp_atomic_suspend_64(int th_gtid,
4169                                     kmp_atomic_flag_64<C, S> *flag);
4170 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4171 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4172 template <bool C, bool S>
4173 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4174 template <bool C, bool S>
4175 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4176 template <bool C, bool S>
4177 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4178 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4179 #endif
4180 template <bool C, bool S>
4181 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4182 template <bool C, bool S>
4183 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4184 template <bool C, bool S>
4185 extern void __kmp_atomic_resume_64(int target_gtid,
4186                                    kmp_atomic_flag_64<C, S> *flag);
4187 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4188 
4189 template <bool C, bool S>
4190 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4191                            kmp_flag_32<C, S> *flag, int final_spin,
4192                            int *thread_finished,
4193 #if USE_ITT_BUILD
4194                            void *itt_sync_obj,
4195 #endif /* USE_ITT_BUILD */
4196                            kmp_int32 is_constrained);
4197 template <bool C, bool S>
4198 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4199                            kmp_flag_64<C, S> *flag, int final_spin,
4200                            int *thread_finished,
4201 #if USE_ITT_BUILD
4202                            void *itt_sync_obj,
4203 #endif /* USE_ITT_BUILD */
4204                            kmp_int32 is_constrained);
4205 template <bool C, bool S>
4206 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4207                                   kmp_atomic_flag_64<C, S> *flag,
4208                                   int final_spin, int *thread_finished,
4209 #if USE_ITT_BUILD
4210                                   void *itt_sync_obj,
4211 #endif /* USE_ITT_BUILD */
4212                                   kmp_int32 is_constrained);
4213 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4214                                kmp_flag_oncore *flag, int final_spin,
4215                                int *thread_finished,
4216 #if USE_ITT_BUILD
4217                                void *itt_sync_obj,
4218 #endif /* USE_ITT_BUILD */
4219                                kmp_int32 is_constrained);
4220 
4221 extern int __kmp_nesting_mode;
4222 extern int __kmp_nesting_mode_nlevels;
4223 extern int *__kmp_nesting_nth_level;
4224 extern void __kmp_init_nesting_mode();
4225 extern void __kmp_set_nesting_mode_threads();
4226 
4227 /// This class safely opens and closes a C-style FILE* object using RAII
4228 /// semantics. There are also methods which allow using stdout or stderr as
4229 /// the underlying FILE* object. With the implicit conversion operator to
4230 /// FILE*, an object with this type can be used in any function which takes
4231 /// a FILE* object e.g., fprintf().
4232 /// No close method is needed at use sites.
4233 class kmp_safe_raii_file_t {
4234   FILE *f;
4235 
close()4236   void close() {
4237     if (f && f != stdout && f != stderr) {
4238       fclose(f);
4239       f = nullptr;
4240     }
4241   }
4242 
4243 public:
kmp_safe_raii_file_t()4244   kmp_safe_raii_file_t() : f(nullptr) {}
4245   kmp_safe_raii_file_t(const char *filename, const char *mode,
4246                        const char *env_var = nullptr)
f(nullptr)4247       : f(nullptr) {
4248     open(filename, mode, env_var);
4249   }
~kmp_safe_raii_file_t()4250   ~kmp_safe_raii_file_t() { close(); }
4251 
4252   /// Open filename using mode. This is automatically closed in the destructor.
4253   /// The env_var parameter indicates the environment variable the filename
4254   /// came from if != nullptr.
4255   void open(const char *filename, const char *mode,
4256             const char *env_var = nullptr) {
4257     KMP_ASSERT(!f);
4258     f = fopen(filename, mode);
4259     if (!f) {
4260       int code = errno;
4261       if (env_var) {
4262         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4263                     KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4264       } else {
4265         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4266                     __kmp_msg_null);
4267       }
4268     }
4269   }
4270   /// Set the FILE* object to stdout and output there
4271   /// No open call should happen before this call.
set_stdout()4272   void set_stdout() {
4273     KMP_ASSERT(!f);
4274     f = stdout;
4275   }
4276   /// Set the FILE* object to stderr and output there
4277   /// No open call should happen before this call.
set_stderr()4278   void set_stderr() {
4279     KMP_ASSERT(!f);
4280     f = stderr;
4281   }
4282   operator bool() { return bool(f); }
4283   operator FILE *() { return f; }
4284 };
4285 
4286 template <typename SourceType, typename TargetType,
4287           bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4288           bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4289           bool isSourceSigned = std::is_signed<SourceType>::value,
4290           bool isTargetSigned = std::is_signed<TargetType>::value>
4291 struct kmp_convert {};
4292 
4293 // Both types are signed; Source smaller
4294 template <typename SourceType, typename TargetType>
4295 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4296   static TargetType to(SourceType src) { return (TargetType)src; }
4297 };
4298 // Source equal
4299 template <typename SourceType, typename TargetType>
4300 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4301   static TargetType to(SourceType src) { return src; }
4302 };
4303 // Source bigger
4304 template <typename SourceType, typename TargetType>
4305 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4306   static TargetType to(SourceType src) {
4307     KMP_ASSERT(src <= static_cast<SourceType>(
4308                           (std::numeric_limits<TargetType>::max)()));
4309     KMP_ASSERT(src >= static_cast<SourceType>(
4310                           (std::numeric_limits<TargetType>::min)()));
4311     return (TargetType)src;
4312   }
4313 };
4314 
4315 // Source signed, Target unsigned
4316 // Source smaller
4317 template <typename SourceType, typename TargetType>
4318 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4319   static TargetType to(SourceType src) {
4320     KMP_ASSERT(src >= 0);
4321     return (TargetType)src;
4322   }
4323 };
4324 // Source equal
4325 template <typename SourceType, typename TargetType>
4326 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4327   static TargetType to(SourceType src) {
4328     KMP_ASSERT(src >= 0);
4329     return (TargetType)src;
4330   }
4331 };
4332 // Source bigger
4333 template <typename SourceType, typename TargetType>
4334 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4335   static TargetType to(SourceType src) {
4336     KMP_ASSERT(src >= 0);
4337     KMP_ASSERT(src <= static_cast<SourceType>(
4338                           (std::numeric_limits<TargetType>::max)()));
4339     return (TargetType)src;
4340   }
4341 };
4342 
4343 // Source unsigned, Target signed
4344 // Source smaller
4345 template <typename SourceType, typename TargetType>
4346 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4347   static TargetType to(SourceType src) { return (TargetType)src; }
4348 };
4349 // Source equal
4350 template <typename SourceType, typename TargetType>
4351 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4352   static TargetType to(SourceType src) {
4353     KMP_ASSERT(src <= static_cast<SourceType>(
4354                           (std::numeric_limits<TargetType>::max)()));
4355     return (TargetType)src;
4356   }
4357 };
4358 // Source bigger
4359 template <typename SourceType, typename TargetType>
4360 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4361   static TargetType to(SourceType src) {
4362     KMP_ASSERT(src <= static_cast<SourceType>(
4363                           (std::numeric_limits<TargetType>::max)()));
4364     return (TargetType)src;
4365   }
4366 };
4367 
4368 // Source unsigned, Target unsigned
4369 // Source smaller
4370 template <typename SourceType, typename TargetType>
4371 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4372   static TargetType to(SourceType src) { return (TargetType)src; }
4373 };
4374 // Source equal
4375 template <typename SourceType, typename TargetType>
4376 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4377   static TargetType to(SourceType src) { return src; }
4378 };
4379 // Source bigger
4380 template <typename SourceType, typename TargetType>
4381 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4382   static TargetType to(SourceType src) {
4383     KMP_ASSERT(src <= static_cast<SourceType>(
4384                           (std::numeric_limits<TargetType>::max)()));
4385     return (TargetType)src;
4386   }
4387 };
4388 
4389 template <typename T1, typename T2>
4390 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4391   *dest = kmp_convert<T1, T2>::to(src);
4392 }
4393 
4394 #endif /* KMP_H */
4395