xref: /netbsd/sys/net/bpf.c (revision 020c85a1)
1 /*	$NetBSD: bpf.c,v 1.251 2023/02/08 01:37:53 gutteridge Exp $	*/
2 
3 /*
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from the Stanford/CMU enet packet filter,
8  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10  * Berkeley Laboratory.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)bpf.c	8.4 (Berkeley) 1/9/95
37  * static char rcsid[] =
38  * "Header: bpf.c,v 1.67 96/09/26 22:00:52 leres Exp ";
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: bpf.c,v 1.251 2023/02/08 01:37:53 gutteridge Exp $");
43 
44 #if defined(_KERNEL_OPT)
45 #include "opt_bpf.h"
46 #include "sl.h"
47 #include "opt_net_mpsafe.h"
48 #endif
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/mbuf.h>
53 #include <sys/buf.h>
54 #include <sys/time.h>
55 #include <sys/proc.h>
56 #include <sys/ioctl.h>
57 #include <sys/conf.h>
58 #include <sys/vnode.h>
59 #include <sys/queue.h>
60 #include <sys/stat.h>
61 #include <sys/module.h>
62 #include <sys/atomic.h>
63 #include <sys/cpu.h>
64 
65 #include <sys/file.h>
66 #include <sys/filedesc.h>
67 #include <sys/tty.h>
68 #include <sys/uio.h>
69 
70 #include <sys/protosw.h>
71 #include <sys/socket.h>
72 #include <sys/errno.h>
73 #include <sys/kernel.h>
74 #include <sys/poll.h>
75 #include <sys/sysctl.h>
76 #include <sys/kauth.h>
77 #include <sys/syslog.h>
78 #include <sys/percpu.h>
79 #include <sys/pserialize.h>
80 #include <sys/lwp.h>
81 #include <sys/xcall.h>
82 
83 #include <net/if.h>
84 #include <net/slip.h>
85 
86 #include <net/bpf.h>
87 #include <net/bpfdesc.h>
88 #include <net/bpfjit.h>
89 
90 #include <net/if_arc.h>
91 #include <net/if_ether.h>
92 #include <net/if_types.h>
93 
94 #include <netinet/in.h>
95 #include <netinet/if_inarp.h>
96 
97 
98 #include <compat/sys/sockio.h>
99 
100 #ifndef BPF_BUFSIZE
101 /*
102  * 4096 is too small for FDDI frames. 8192 is too small for gigabit Ethernet
103  * jumbos (circa 9k), ATM, or Intel gig/10gig ethernet jumbos (16k).
104  */
105 # define BPF_BUFSIZE 32768
106 #endif
107 
108 #define PRINET  26			/* interruptible */
109 
110 /*
111  * The default read buffer size, and limit for BIOCSBLEN, is sysctl'able.
112  * XXX the default values should be computed dynamically based
113  * on available memory size and available mbuf clusters.
114  */
115 static int bpf_bufsize = BPF_BUFSIZE;
116 static int bpf_maxbufsize = BPF_DFLTBUFSIZE;	/* XXX set dynamically, see above */
117 static bool bpf_jit = false;
118 
119 struct bpfjit_ops bpfjit_module_ops = {
120 	.bj_generate_code = NULL,
121 	.bj_free_code = NULL
122 };
123 
124 /*
125  * Global BPF statistics returned by net.bpf.stats sysctl.
126  */
127 static struct percpu	*bpf_gstats_percpu; /* struct bpf_stat */
128 
129 #define BPF_STATINC(id)					\
130 	{						\
131 		struct bpf_stat *__stats =		\
132 		    percpu_getref(bpf_gstats_percpu);	\
133 		__stats->bs_##id++;			\
134 		percpu_putref(bpf_gstats_percpu);	\
135 	}
136 
137 /*
138  * Locking notes:
139  * - bpf_mtx (adaptive mutex) protects:
140  *   - Gobal lists: bpf_iflist and bpf_dlist
141  *   - struct bpf_if
142  *   - bpf_close
143  *   - bpf_psz (pserialize)
144  * - struct bpf_d has two mutexes:
145  *   - bd_buf_mtx (spin mutex) protects the buffers that can be accessed
146  *     on packet tapping
147  *   - bd_mtx (adaptive mutex) protects member variables other than the buffers
148  * - Locking order: bpf_mtx => bpf_d#bd_mtx => bpf_d#bd_buf_mtx
149  * - struct bpf_d obtained via fp->f_bpf in bpf_read and bpf_write is
150  *   never freed because struct bpf_d is only freed in bpf_close and
151  *   bpf_close never be called while executing bpf_read and bpf_write
152  * - A filter that is assigned to bpf_d can be replaced with another filter
153  *   while tapping packets, so it needs to be done atomically
154  * - struct bpf_d is iterated on bpf_dlist with psz
155  * - struct bpf_if is iterated on bpf_iflist with psz or psref
156  */
157 /*
158  * Use a mutex to avoid a race condition between gathering the stats/peers
159  * and opening/closing the device.
160  */
161 static kmutex_t bpf_mtx;
162 
163 static struct psref_class	*bpf_psref_class __read_mostly;
164 static pserialize_t		bpf_psz;
165 
166 static inline void
bpf_if_acquire(struct bpf_if * bp,struct psref * psref)167 bpf_if_acquire(struct bpf_if *bp, struct psref *psref)
168 {
169 
170 	psref_acquire(psref, &bp->bif_psref, bpf_psref_class);
171 }
172 
173 static inline void
bpf_if_release(struct bpf_if * bp,struct psref * psref)174 bpf_if_release(struct bpf_if *bp, struct psref *psref)
175 {
176 
177 	psref_release(psref, &bp->bif_psref, bpf_psref_class);
178 }
179 
180 /*
181  *  bpf_iflist is the list of interfaces; each corresponds to an ifnet
182  *  bpf_dtab holds the descriptors, indexed by minor device #
183  */
184 static struct pslist_head bpf_iflist;
185 static struct pslist_head bpf_dlist;
186 
187 /* Macros for bpf_d on bpf_dlist */
188 #define BPF_DLIST_WRITER_INSERT_HEAD(__d)				\
189 	PSLIST_WRITER_INSERT_HEAD(&bpf_dlist, (__d), bd_bpf_dlist_entry)
190 #define BPF_DLIST_READER_FOREACH(__d)					\
191 	PSLIST_READER_FOREACH((__d), &bpf_dlist, struct bpf_d,		\
192 	                      bd_bpf_dlist_entry)
193 #define BPF_DLIST_WRITER_FOREACH(__d)					\
194 	PSLIST_WRITER_FOREACH((__d), &bpf_dlist, struct bpf_d,		\
195 	                      bd_bpf_dlist_entry)
196 #define BPF_DLIST_ENTRY_INIT(__d)					\
197 	PSLIST_ENTRY_INIT((__d), bd_bpf_dlist_entry)
198 #define BPF_DLIST_WRITER_REMOVE(__d)					\
199 	PSLIST_WRITER_REMOVE((__d), bd_bpf_dlist_entry)
200 #define BPF_DLIST_ENTRY_DESTROY(__d)					\
201 	PSLIST_ENTRY_DESTROY((__d), bd_bpf_dlist_entry)
202 
203 /* Macros for bpf_if on bpf_iflist */
204 #define BPF_IFLIST_WRITER_INSERT_HEAD(__bp)				\
205 	PSLIST_WRITER_INSERT_HEAD(&bpf_iflist, (__bp), bif_iflist_entry)
206 #define BPF_IFLIST_READER_FOREACH(__bp)					\
207 	PSLIST_READER_FOREACH((__bp), &bpf_iflist, struct bpf_if,	\
208 	                      bif_iflist_entry)
209 #define BPF_IFLIST_WRITER_FOREACH(__bp)					\
210 	PSLIST_WRITER_FOREACH((__bp), &bpf_iflist, struct bpf_if,	\
211 	                      bif_iflist_entry)
212 #define BPF_IFLIST_WRITER_REMOVE(__bp)					\
213 	PSLIST_WRITER_REMOVE((__bp), bif_iflist_entry)
214 #define BPF_IFLIST_ENTRY_INIT(__bp)					\
215 	PSLIST_ENTRY_INIT((__bp), bif_iflist_entry)
216 #define BPF_IFLIST_ENTRY_DESTROY(__bp)					\
217 	PSLIST_ENTRY_DESTROY((__bp), bif_iflist_entry)
218 
219 /* Macros for bpf_d on bpf_if#bif_dlist_pslist */
220 #define BPFIF_DLIST_READER_FOREACH(__d, __bp)				\
221 	PSLIST_READER_FOREACH((__d), &(__bp)->bif_dlist_head, struct bpf_d, \
222 	                      bd_bif_dlist_entry)
223 #define BPFIF_DLIST_WRITER_INSERT_HEAD(__bp, __d)			\
224 	PSLIST_WRITER_INSERT_HEAD(&(__bp)->bif_dlist_head, (__d),	\
225 	                          bd_bif_dlist_entry)
226 #define BPFIF_DLIST_WRITER_REMOVE(__d)					\
227 	PSLIST_WRITER_REMOVE((__d), bd_bif_dlist_entry)
228 #define BPFIF_DLIST_ENTRY_INIT(__d)					\
229 	PSLIST_ENTRY_INIT((__d), bd_bif_dlist_entry)
230 #define	BPFIF_DLIST_READER_EMPTY(__bp)					\
231 	(PSLIST_READER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d,	\
232 	                     bd_bif_dlist_entry) == NULL)
233 #define	BPFIF_DLIST_WRITER_EMPTY(__bp)					\
234 	(PSLIST_WRITER_FIRST(&(__bp)->bif_dlist_head, struct bpf_d,	\
235 	                     bd_bif_dlist_entry) == NULL)
236 #define BPFIF_DLIST_ENTRY_DESTROY(__d)					\
237 	PSLIST_ENTRY_DESTROY((__d), bd_bif_dlist_entry)
238 
239 static int	bpf_allocbufs(struct bpf_d *);
240 static u_int	bpf_xfilter(struct bpf_filter **, void *, u_int, u_int);
241 static void	bpf_deliver(struct bpf_if *,
242 		            void *(*cpfn)(void *, const void *, size_t),
243 		            void *, u_int, u_int, const u_int);
244 static void	bpf_freed(struct bpf_d *);
245 static void	bpf_free_filter(struct bpf_filter *);
246 static void	bpf_ifname(struct ifnet *, struct ifreq *);
247 static void	*bpf_mcpy(void *, const void *, size_t);
248 static int	bpf_movein(struct ifnet *, struct uio *, int, uint64_t,
249 			        struct mbuf **, struct sockaddr *,
250 				struct bpf_filter **);
251 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
252 static void	bpf_detachd(struct bpf_d *);
253 static int	bpf_setif(struct bpf_d *, struct ifreq *);
254 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long);
255 static void	bpf_timed_out(void *);
256 static inline void
257 		bpf_wakeup(struct bpf_d *);
258 static int	bpf_hdrlen(struct bpf_d *);
259 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
260     void *(*)(void *, const void *, size_t), struct timespec *);
261 static void	reset_d(struct bpf_d *);
262 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
263 static int	bpf_setdlt(struct bpf_d *, u_int);
264 
265 static int	bpf_read(struct file *, off_t *, struct uio *, kauth_cred_t,
266     int);
267 static int	bpf_write(struct file *, off_t *, struct uio *, kauth_cred_t,
268     int);
269 static int	bpf_ioctl(struct file *, u_long, void *);
270 static int	bpf_poll(struct file *, int);
271 static int	bpf_stat(struct file *, struct stat *);
272 static int	bpf_close(struct file *);
273 static int	bpf_kqfilter(struct file *, struct knote *);
274 
275 static const struct fileops bpf_fileops = {
276 	.fo_name = "bpf",
277 	.fo_read = bpf_read,
278 	.fo_write = bpf_write,
279 	.fo_ioctl = bpf_ioctl,
280 	.fo_fcntl = fnullop_fcntl,
281 	.fo_poll = bpf_poll,
282 	.fo_stat = bpf_stat,
283 	.fo_close = bpf_close,
284 	.fo_kqfilter = bpf_kqfilter,
285 	.fo_restart = fnullop_restart,
286 };
287 
288 dev_type_open(bpfopen);
289 
290 const struct cdevsw bpf_cdevsw = {
291 	.d_open = bpfopen,
292 	.d_close = noclose,
293 	.d_read = noread,
294 	.d_write = nowrite,
295 	.d_ioctl = noioctl,
296 	.d_stop = nostop,
297 	.d_tty = notty,
298 	.d_poll = nopoll,
299 	.d_mmap = nommap,
300 	.d_kqfilter = nokqfilter,
301 	.d_discard = nodiscard,
302 	.d_flag = D_OTHER | D_MPSAFE
303 };
304 
305 bpfjit_func_t
bpf_jit_generate(bpf_ctx_t * bc,void * code,size_t size)306 bpf_jit_generate(bpf_ctx_t *bc, void *code, size_t size)
307 {
308 	struct bpfjit_ops *ops = &bpfjit_module_ops;
309 	bpfjit_func_t (*generate_code)(const bpf_ctx_t *,
310 	    const struct bpf_insn *, size_t);
311 
312 	generate_code = atomic_load_acquire(&ops->bj_generate_code);
313 	if (generate_code != NULL) {
314 		return generate_code(bc, code, size);
315 	}
316 	return NULL;
317 }
318 
319 void
bpf_jit_freecode(bpfjit_func_t jcode)320 bpf_jit_freecode(bpfjit_func_t jcode)
321 {
322 	KASSERT(bpfjit_module_ops.bj_free_code != NULL);
323 	bpfjit_module_ops.bj_free_code(jcode);
324 }
325 
326 static int
bpf_movein(struct ifnet * ifp,struct uio * uio,int linktype,uint64_t mtu,struct mbuf ** mp,struct sockaddr * sockp,struct bpf_filter ** wfilter)327 bpf_movein(struct ifnet *ifp, struct uio *uio, int linktype, uint64_t mtu, struct mbuf **mp,
328 	   struct sockaddr *sockp, struct bpf_filter **wfilter)
329 {
330 	struct mbuf *m, *m0, *n;
331 	int error;
332 	size_t len;
333 	size_t hlen;
334 	size_t align;
335 	u_int slen;
336 
337 	/*
338 	 * Build a sockaddr based on the data link layer type.
339 	 * We do this at this level because the ethernet header
340 	 * is copied directly into the data field of the sockaddr.
341 	 * In the case of SLIP, there is no header and the packet
342 	 * is forwarded as is.
343 	 * Also, we are careful to leave room at the front of the mbuf
344 	 * for the link level header.
345 	 */
346 	switch (linktype) {
347 
348 	case DLT_SLIP:
349 		sockp->sa_family = AF_INET;
350 		hlen = 0;
351 		align = 0;
352 		break;
353 
354 	case DLT_PPP:
355 		sockp->sa_family = AF_UNSPEC;
356 		hlen = 0;
357 		align = 0;
358 		break;
359 
360 	case DLT_EN10MB:
361 		sockp->sa_family = AF_UNSPEC;
362 		/* XXX Would MAXLINKHDR be better? */
363  		/* 6(dst)+6(src)+2(type) */
364 		hlen = sizeof(struct ether_header);
365 		align = 2;
366 		break;
367 
368 	case DLT_ARCNET:
369 		sockp->sa_family = AF_UNSPEC;
370 		hlen = ARC_HDRLEN;
371 		align = 5;
372 		break;
373 
374 	case DLT_FDDI:
375 		sockp->sa_family = AF_LINK;
376 		/* XXX 4(FORMAC)+6(dst)+6(src) */
377 		hlen = 16;
378 		align = 0;
379 		break;
380 
381 	case DLT_ECONET:
382 		sockp->sa_family = AF_UNSPEC;
383 		hlen = 6;
384 		align = 2;
385 		break;
386 
387 	case DLT_NULL:
388 		sockp->sa_family = AF_UNSPEC;
389 		if (ifp->if_type == IFT_LOOP) {
390 			/* Set here to apply the following validations */
391 			hlen = sizeof(uint32_t);
392 		} else
393 			hlen = 0;
394 		align = 0;
395 		break;
396 
397 	default:
398 		return (EIO);
399 	}
400 
401 	len = uio->uio_resid;
402 	/*
403 	 * If there aren't enough bytes for a link level header or the
404 	 * packet length exceeds the interface mtu, return an error.
405 	 */
406 	if (len - hlen > mtu)
407 		return (EMSGSIZE);
408 
409 	m0 = m = m_gethdr(M_WAIT, MT_DATA);
410 	m_reset_rcvif(m);
411 	m->m_pkthdr.len = (int)(len - hlen);
412 	if (len + align > MHLEN) {
413 		m_clget(m, M_WAIT);
414 		if ((m->m_flags & M_EXT) == 0) {
415 			error = ENOBUFS;
416 			goto bad;
417 		}
418 	}
419 
420 	/* Ensure the data is properly aligned */
421 	if (align > 0)
422 		m->m_data += align;
423 
424 	for (;;) {
425 		len = M_TRAILINGSPACE(m);
426 		if (len > uio->uio_resid)
427 			len = uio->uio_resid;
428 		error = uiomove(mtod(m, void *), len, uio);
429 		if (error)
430 			goto bad;
431 		m->m_len = len;
432 
433 		if (uio->uio_resid == 0)
434 			break;
435 
436 		n = m_get(M_WAIT, MT_DATA);
437 		m_clget(n, M_WAIT);	/* if fails, there is no problem */
438 		m->m_next = n;
439 		m = n;
440 	}
441 
442 	slen = bpf_xfilter(wfilter, mtod(m, u_char *), len, len);
443 	if (slen == 0) {
444 		error = EPERM;
445 		goto bad;
446 	}
447 
448 	if (hlen != 0) {
449 		if (linktype == DLT_NULL && ifp->if_type == IFT_LOOP) {
450 			uint32_t af;
451 			/* the link header indicates the address family */
452 			memcpy(&af, mtod(m0, void *), sizeof(af));
453 			sockp->sa_family = af;
454 		} else {
455 			/* move link level header in the top of mbuf to sa_data */
456 			memcpy(sockp->sa_data, mtod(m0, void *), hlen);
457 		}
458 		m0->m_data += hlen;
459 		m0->m_len -= hlen;
460 	}
461 
462 	*mp = m0;
463 	return (0);
464 
465 bad:
466 	m_freem(m0);
467 	return (error);
468 }
469 
470 /*
471  * Attach file to the bpf interface, i.e. make d listen on bp.
472  */
473 static void
bpf_attachd(struct bpf_d * d,struct bpf_if * bp)474 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
475 {
476 	struct bpf_event_tracker *t;
477 
478 	KASSERT(mutex_owned(&bpf_mtx));
479 	KASSERT(mutex_owned(d->bd_mtx));
480 	/*
481 	 * Point d at bp, and add d to the interface's list of listeners.
482 	 * Finally, point the driver's bpf cookie at the interface so
483 	 * it will divert packets to bpf.
484 	 */
485 	d->bd_bif = bp;
486 	BPFIF_DLIST_WRITER_INSERT_HEAD(bp, d);
487 
488 	*bp->bif_driverp = bp;
489 
490 	SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
491 		t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
492 		    BPF_TRACK_EVENT_ATTACH);
493 	}
494 }
495 
496 /*
497  * Detach a file from its interface.
498  */
499 static void
bpf_detachd(struct bpf_d * d)500 bpf_detachd(struct bpf_d *d)
501 {
502 	struct bpf_if *bp;
503 	struct bpf_event_tracker *t;
504 
505 	KASSERT(mutex_owned(&bpf_mtx));
506 	KASSERT(mutex_owned(d->bd_mtx));
507 
508 	bp = d->bd_bif;
509 	/*
510 	 * Check if this descriptor had requested promiscuous mode.
511 	 * If so, turn it off.
512 	 */
513 	if (d->bd_promisc) {
514 		int error __diagused;
515 
516 		d->bd_promisc = 0;
517 		/*
518 		 * Take device out of promiscuous mode.  Since we were
519 		 * able to enter promiscuous mode, we should be able
520 		 * to turn it off.  But we can get an error if
521 		 * the interface was configured down, so only panic
522 		 * if we don't get an unexpected error.
523 		 */
524 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
525   		error = ifpromisc(bp->bif_ifp, 0);
526 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
527 #ifdef DIAGNOSTIC
528 		if (error)
529 			printf("%s: ifpromisc failed: %d", __func__, error);
530 #endif
531 	}
532 
533 	/* Remove d from the interface's descriptor list. */
534 	BPFIF_DLIST_WRITER_REMOVE(d);
535 
536 	pserialize_perform(bpf_psz);
537 
538 	if (BPFIF_DLIST_WRITER_EMPTY(bp)) {
539 		/*
540 		 * Let the driver know that there are no more listeners.
541 		 */
542 		*d->bd_bif->bif_driverp = NULL;
543 	}
544 
545 	d->bd_bif = NULL;
546 
547 	SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
548 		t->bet_notify(bp, bp->bif_ifp, bp->bif_dlt,
549 		    BPF_TRACK_EVENT_DETACH);
550 	}
551 }
552 
553 static void
bpf_init(void)554 bpf_init(void)
555 {
556 
557 	mutex_init(&bpf_mtx, MUTEX_DEFAULT, IPL_NONE);
558 	bpf_psz = pserialize_create();
559 	bpf_psref_class = psref_class_create("bpf", IPL_SOFTNET);
560 
561 	PSLIST_INIT(&bpf_iflist);
562 	PSLIST_INIT(&bpf_dlist);
563 
564 	bpf_gstats_percpu = percpu_alloc(sizeof(struct bpf_stat));
565 
566 	return;
567 }
568 
569 /*
570  * bpfilterattach() is called at boot time.  We don't need to do anything
571  * here, since any initialization will happen as part of module init code.
572  */
573 /* ARGSUSED */
574 void
bpfilterattach(int n)575 bpfilterattach(int n)
576 {
577 
578 }
579 
580 /*
581  * Open ethernet device. Clones.
582  */
583 /* ARGSUSED */
584 int
bpfopen(dev_t dev,int flag,int mode,struct lwp * l)585 bpfopen(dev_t dev, int flag, int mode, struct lwp *l)
586 {
587 	struct bpf_d *d;
588 	struct file *fp;
589 	int error, fd;
590 
591 	/* falloc() will fill in the descriptor for us. */
592 	if ((error = fd_allocfile(&fp, &fd)) != 0)
593 		return error;
594 
595 	d = kmem_zalloc(sizeof(*d), KM_SLEEP);
596 	d->bd_bufsize = bpf_bufsize;
597 	d->bd_direction = BPF_D_INOUT;
598 	d->bd_feedback = 0;
599 	d->bd_pid = l->l_proc->p_pid;
600 #ifdef _LP64
601 	if (curproc->p_flag & PK_32)
602 		d->bd_compat32 = 1;
603 #endif
604 	getnanotime(&d->bd_btime);
605 	d->bd_atime = d->bd_mtime = d->bd_btime;
606 	callout_init(&d->bd_callout, CALLOUT_MPSAFE);
607 	selinit(&d->bd_sel);
608 	d->bd_jitcode = NULL;
609 	d->bd_rfilter = NULL;
610 	d->bd_wfilter = NULL;
611 	d->bd_locked = 0;
612 	BPF_DLIST_ENTRY_INIT(d);
613 	BPFIF_DLIST_ENTRY_INIT(d);
614 	d->bd_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
615 	d->bd_buf_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
616 	cv_init(&d->bd_cv, "bpf");
617 
618 	mutex_enter(&bpf_mtx);
619 	BPF_DLIST_WRITER_INSERT_HEAD(d);
620 	mutex_exit(&bpf_mtx);
621 
622 	return fd_clone(fp, fd, flag, &bpf_fileops, d);
623 }
624 
625 /*
626  * Close the descriptor by detaching it from its interface,
627  * deallocating its buffers, and marking it free.
628  */
629 /* ARGSUSED */
630 static int
bpf_close(struct file * fp)631 bpf_close(struct file *fp)
632 {
633 	struct bpf_d *d;
634 
635 	mutex_enter(&bpf_mtx);
636 
637 	if ((d = fp->f_bpf) == NULL) {
638 		mutex_exit(&bpf_mtx);
639 		return 0;
640 	}
641 
642 	/*
643 	 * Refresh the PID associated with this bpf file.
644 	 */
645 	d->bd_pid = curproc->p_pid;
646 
647 	mutex_enter(d->bd_mtx);
648 	if (d->bd_state == BPF_WAITING)
649 		callout_halt(&d->bd_callout, d->bd_mtx);
650 	d->bd_state = BPF_IDLE;
651 	if (d->bd_bif)
652 		bpf_detachd(d);
653 	mutex_exit(d->bd_mtx);
654 
655 	BPF_DLIST_WRITER_REMOVE(d);
656 
657 	pserialize_perform(bpf_psz);
658 	mutex_exit(&bpf_mtx);
659 
660 	BPFIF_DLIST_ENTRY_DESTROY(d);
661 	BPF_DLIST_ENTRY_DESTROY(d);
662 	fp->f_bpf = NULL;
663 	bpf_freed(d);
664 	callout_destroy(&d->bd_callout);
665 	seldestroy(&d->bd_sel);
666 	mutex_obj_free(d->bd_mtx);
667 	mutex_obj_free(d->bd_buf_mtx);
668 	cv_destroy(&d->bd_cv);
669 
670 	kmem_free(d, sizeof(*d));
671 
672 	return (0);
673 }
674 
675 /*
676  * Rotate the packet buffers in descriptor d.  Move the store buffer
677  * into the hold slot, and the free buffer into the store slot.
678  * Zero the length of the new store buffer.
679  */
680 #define ROTATE_BUFFERS(d) \
681 	(d)->bd_hbuf = (d)->bd_sbuf; \
682 	(d)->bd_hlen = (d)->bd_slen; \
683 	(d)->bd_sbuf = (d)->bd_fbuf; \
684 	(d)->bd_slen = 0; \
685 	(d)->bd_fbuf = NULL;
686 /*
687  *  bpfread - read next chunk of packets from buffers
688  */
689 static int
bpf_read(struct file * fp,off_t * offp,struct uio * uio,kauth_cred_t cred,int flags)690 bpf_read(struct file *fp, off_t *offp, struct uio *uio,
691     kauth_cred_t cred, int flags)
692 {
693 	struct bpf_d *d = fp->f_bpf;
694 	int timed_out;
695 	int error;
696 
697 	/*
698 	 * Refresh the PID associated with this bpf file.
699 	 */
700 	d->bd_pid = curproc->p_pid;
701 
702 	getnanotime(&d->bd_atime);
703 	/*
704 	 * Restrict application to use a buffer the same size as
705 	 * the kernel buffers.
706 	 */
707 	if (uio->uio_resid != d->bd_bufsize)
708 		return (EINVAL);
709 
710 	mutex_enter(d->bd_mtx);
711 	if (d->bd_state == BPF_WAITING)
712 		callout_halt(&d->bd_callout, d->bd_mtx);
713 	timed_out = (d->bd_state == BPF_TIMED_OUT);
714 	d->bd_state = BPF_IDLE;
715 	mutex_exit(d->bd_mtx);
716 	/*
717 	 * If the hold buffer is empty, then do a timed sleep, which
718 	 * ends when the timeout expires or when enough packets
719 	 * have arrived to fill the store buffer.
720 	 */
721 	mutex_enter(d->bd_buf_mtx);
722 	while (d->bd_hbuf == NULL) {
723 		if (fp->f_flag & FNONBLOCK) {
724 			if (d->bd_slen == 0) {
725 				error = EWOULDBLOCK;
726 				goto out;
727 			}
728 			ROTATE_BUFFERS(d);
729 			break;
730 		}
731 
732 		if ((d->bd_immediate || timed_out) && d->bd_slen != 0) {
733 			/*
734 			 * A packet(s) either arrived since the previous
735 			 * read or arrived while we were asleep.
736 			 * Rotate the buffers and return what's here.
737 			 */
738 			ROTATE_BUFFERS(d);
739 			break;
740 		}
741 
742 		error = cv_timedwait_sig(&d->bd_cv, d->bd_buf_mtx, d->bd_rtout);
743 
744 		if (error == EINTR || error == ERESTART)
745 			goto out;
746 
747 		if (error == EWOULDBLOCK) {
748 			/*
749 			 * On a timeout, return what's in the buffer,
750 			 * which may be nothing.  If there is something
751 			 * in the store buffer, we can rotate the buffers.
752 			 */
753 			if (d->bd_hbuf)
754 				/*
755 				 * We filled up the buffer in between
756 				 * getting the timeout and arriving
757 				 * here, so we don't need to rotate.
758 				 */
759 				break;
760 
761 			if (d->bd_slen == 0) {
762 				error = 0;
763 				goto out;
764 			}
765 			ROTATE_BUFFERS(d);
766 			break;
767 		}
768 		if (error != 0)
769 			goto out;
770 	}
771 	/*
772 	 * At this point, we know we have something in the hold slot.
773 	 */
774 	mutex_exit(d->bd_buf_mtx);
775 
776 	/*
777 	 * Move data from hold buffer into user space.
778 	 * We know the entire buffer is transferred since
779 	 * we checked above that the read buffer is bpf_bufsize bytes.
780 	 */
781 	error = uiomove(d->bd_hbuf, d->bd_hlen, uio);
782 
783 	mutex_enter(d->bd_buf_mtx);
784 	d->bd_fbuf = d->bd_hbuf;
785 	d->bd_hbuf = NULL;
786 	d->bd_hlen = 0;
787 out:
788 	mutex_exit(d->bd_buf_mtx);
789 	return (error);
790 }
791 
792 
793 /*
794  * If there are processes sleeping on this descriptor, wake them up.
795  */
796 static inline void
bpf_wakeup(struct bpf_d * d)797 bpf_wakeup(struct bpf_d *d)
798 {
799 
800 	mutex_enter(d->bd_buf_mtx);
801 	cv_broadcast(&d->bd_cv);
802 	mutex_exit(d->bd_buf_mtx);
803 
804 	if (d->bd_async)
805 		fownsignal(d->bd_pgid, SIGIO, 0, 0, NULL);
806 	selnotify(&d->bd_sel, 0, 0);
807 }
808 
809 static void
bpf_timed_out(void * arg)810 bpf_timed_out(void *arg)
811 {
812 	struct bpf_d *d = arg;
813 
814 	mutex_enter(d->bd_mtx);
815 	if (d->bd_state == BPF_WAITING) {
816 		d->bd_state = BPF_TIMED_OUT;
817 		if (d->bd_slen != 0)
818 			bpf_wakeup(d);
819 	}
820 	mutex_exit(d->bd_mtx);
821 }
822 
823 
824 static int
bpf_write(struct file * fp,off_t * offp,struct uio * uio,kauth_cred_t cred,int flags)825 bpf_write(struct file *fp, off_t *offp, struct uio *uio,
826     kauth_cred_t cred, int flags)
827 {
828 	struct bpf_d *d = fp->f_bpf;
829 	struct bpf_if *bp;
830 	struct ifnet *ifp;
831 	struct mbuf *m, *mc;
832 	int error;
833 	static struct sockaddr_storage dst;
834 	struct psref psref;
835 	int bound;
836 
837 	/*
838 	 * Refresh the PID associated with this bpf file.
839 	 */
840 	d->bd_pid = curproc->p_pid;
841 
842 	m = NULL;	/* XXX gcc */
843 
844 	bound = curlwp_bind();
845 	mutex_enter(d->bd_mtx);
846 	bp = d->bd_bif;
847 	if (bp == NULL) {
848 		mutex_exit(d->bd_mtx);
849 		error = ENXIO;
850 		goto out_bindx;
851 	}
852 	bpf_if_acquire(bp, &psref);
853 	mutex_exit(d->bd_mtx);
854 
855 	getnanotime(&d->bd_mtime);
856 
857 	ifp = bp->bif_ifp;
858 	if (if_is_deactivated(ifp)) {
859 		error = ENXIO;
860 		goto out;
861 	}
862 
863 	if (uio->uio_resid == 0) {
864 		error = 0;
865 		goto out;
866 	}
867 
868 	error = bpf_movein(ifp, uio, (int)bp->bif_dlt, ifp->if_mtu, &m,
869 		(struct sockaddr *) &dst, &d->bd_wfilter);
870 	if (error)
871 		goto out;
872 
873 	if (m->m_pkthdr.len > ifp->if_mtu) {
874 		m_freem(m);
875 		error = EMSGSIZE;
876 		goto out;
877 	}
878 
879 	/*
880 	 * If writing to a loopback interface, the address family has
881 	 * already been specially computed in bpf_movein(), so don't
882 	 * clobber it, or the loopback will reject it in looutput().
883 	 */
884 	if (d->bd_hdrcmplt && ifp->if_type != IFT_LOOP)
885 		dst.ss_family = pseudo_AF_HDRCMPLT;
886 
887 	if (d->bd_feedback) {
888 		mc = m_dup(m, 0, M_COPYALL, M_NOWAIT);
889 		if (mc != NULL)
890 			m_set_rcvif(mc, ifp);
891 		/* Set M_PROMISC for outgoing packets to be discarded. */
892 		if (1 /*d->bd_direction == BPF_D_INOUT*/)
893 			m->m_flags |= M_PROMISC;
894 	} else
895 		mc = NULL;
896 
897 	error = if_output_lock(ifp, ifp, m, (struct sockaddr *) &dst, NULL);
898 
899 	if (mc != NULL) {
900 		if (error == 0) {
901 			int s = splsoftnet();
902 			KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
903 			ifp->_if_input(ifp, mc);
904 			KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
905 			splx(s);
906 		} else
907 			m_freem(mc);
908 	}
909 	/*
910 	 * The driver frees the mbuf.
911 	 */
912 out:
913 	bpf_if_release(bp, &psref);
914 out_bindx:
915 	curlwp_bindx(bound);
916 	return error;
917 }
918 
919 /*
920  * Reset a descriptor by flushing its packet buffer and clearing the
921  * receive and drop counts.
922  */
923 static void
reset_d(struct bpf_d * d)924 reset_d(struct bpf_d *d)
925 {
926 
927 	KASSERT(mutex_owned(d->bd_mtx));
928 
929 	mutex_enter(d->bd_buf_mtx);
930 	if (d->bd_hbuf) {
931 		/* Free the hold buffer. */
932 		d->bd_fbuf = d->bd_hbuf;
933 		d->bd_hbuf = NULL;
934 	}
935 	d->bd_slen = 0;
936 	d->bd_hlen = 0;
937 	d->bd_rcount = 0;
938 	d->bd_dcount = 0;
939 	d->bd_ccount = 0;
940 	mutex_exit(d->bd_buf_mtx);
941 }
942 
943 /*
944  *  FIONREAD		Check for read packet available.
945  *  BIOCGBLEN		Get buffer len [for read()].
946  *  BIOCSETF		Set ethernet read filter.
947  *  BIOCFLUSH		Flush read packet buffer.
948  *  BIOCPROMISC		Put interface into promiscuous mode.
949  *  BIOCGDLT		Get link layer type.
950  *  BIOCGETIF		Get interface name.
951  *  BIOCSETIF		Set interface.
952  *  BIOCSRTIMEOUT	Set read timeout.
953  *  BIOCGRTIMEOUT	Get read timeout.
954  *  BIOCGSTATS		Get packet stats.
955  *  BIOCIMMEDIATE	Set immediate mode.
956  *  BIOCVERSION		Get filter language version.
957  *  BIOCGHDRCMPLT	Get "header already complete" flag.
958  *  BIOCSHDRCMPLT	Set "header already complete" flag.
959  *  BIOCSFEEDBACK	Set packet feedback mode.
960  *  BIOCGFEEDBACK	Get packet feedback mode.
961  *  BIOCGDIRECTION	Get packet direction flag
962  *  BIOCSDIRECTION	Set packet direction flag
963  */
964 /* ARGSUSED */
965 static int
bpf_ioctl(struct file * fp,u_long cmd,void * addr)966 bpf_ioctl(struct file *fp, u_long cmd, void *addr)
967 {
968 	struct bpf_d *d = fp->f_bpf;
969 	int error = 0;
970 
971 	/*
972 	 * Refresh the PID associated with this bpf file.
973 	 */
974 	d->bd_pid = curproc->p_pid;
975 #ifdef _LP64
976 	if (curproc->p_flag & PK_32)
977 		d->bd_compat32 = 1;
978 	else
979 		d->bd_compat32 = 0;
980 #endif
981 
982 	mutex_enter(d->bd_mtx);
983 	if (d->bd_state == BPF_WAITING)
984 		callout_halt(&d->bd_callout, d->bd_mtx);
985 	d->bd_state = BPF_IDLE;
986 	mutex_exit(d->bd_mtx);
987 
988 	if (d->bd_locked) {
989 		switch (cmd) {
990 		case BIOCGBLEN:		/* FALLTHROUGH */
991 		case BIOCFLUSH:		/* FALLTHROUGH */
992 		case BIOCGDLT:		/* FALLTHROUGH */
993 		case BIOCGDLTLIST:	/* FALLTHROUGH */
994 		case BIOCGETIF:		/* FALLTHROUGH */
995 		case BIOCGRTIMEOUT:	/* FALLTHROUGH */
996 		case BIOCGSTATS:	/* FALLTHROUGH */
997 		case BIOCVERSION:	/* FALLTHROUGH */
998 		case BIOCGHDRCMPLT:	/* FALLTHROUGH */
999 		case FIONREAD:		/* FALLTHROUGH */
1000 		case BIOCLOCK:		/* FALLTHROUGH */
1001 		case BIOCSRTIMEOUT:	/* FALLTHROUGH */
1002 		case BIOCIMMEDIATE:	/* FALLTHROUGH */
1003 		case TIOCGPGRP:
1004 			break;
1005 		default:
1006 			return EPERM;
1007 		}
1008 	}
1009 
1010 	switch (cmd) {
1011 
1012 	default:
1013 		error = EINVAL;
1014 		break;
1015 
1016 	/*
1017 	 * Check for read packet available.
1018 	 */
1019 	case FIONREAD:
1020 		{
1021 			int n;
1022 
1023 			mutex_enter(d->bd_buf_mtx);
1024 			n = d->bd_slen;
1025 			if (d->bd_hbuf)
1026 				n += d->bd_hlen;
1027 			mutex_exit(d->bd_buf_mtx);
1028 
1029 			*(int *)addr = n;
1030 			break;
1031 		}
1032 
1033 	/*
1034 	 * Get buffer len [for read()].
1035 	 */
1036 	case BIOCGBLEN:
1037 		*(u_int *)addr = d->bd_bufsize;
1038 		break;
1039 
1040 	/*
1041 	 * Set buffer length.
1042 	 */
1043 	case BIOCSBLEN:
1044 		/*
1045 		 * Forbid to change the buffer length if buffers are already
1046 		 * allocated.
1047 		 */
1048 		mutex_enter(d->bd_mtx);
1049 		mutex_enter(d->bd_buf_mtx);
1050 		if (d->bd_bif != NULL || d->bd_sbuf != NULL)
1051 			error = EINVAL;
1052 		else {
1053 			u_int size = *(u_int *)addr;
1054 
1055 			if (size > bpf_maxbufsize)
1056 				*(u_int *)addr = size = bpf_maxbufsize;
1057 			else if (size < BPF_MINBUFSIZE)
1058 				*(u_int *)addr = size = BPF_MINBUFSIZE;
1059 			d->bd_bufsize = size;
1060 		}
1061 		mutex_exit(d->bd_buf_mtx);
1062 		mutex_exit(d->bd_mtx);
1063 		break;
1064 
1065 	/*
1066 	 * Set link layer read filter.
1067 	 */
1068 	case BIOCSETF:		/* FALLTHROUGH */
1069 	case BIOCSETWF:
1070 		error = bpf_setf(d, addr, cmd);
1071 		break;
1072 
1073 	case BIOCLOCK:
1074 		d->bd_locked = 1;
1075 		break;
1076 
1077 	/*
1078 	 * Flush read packet buffer.
1079 	 */
1080 	case BIOCFLUSH:
1081 		mutex_enter(d->bd_mtx);
1082 		reset_d(d);
1083 		mutex_exit(d->bd_mtx);
1084 		break;
1085 
1086 	/*
1087 	 * Put interface into promiscuous mode.
1088 	 */
1089 	case BIOCPROMISC:
1090 		mutex_enter(d->bd_mtx);
1091 		if (d->bd_bif == NULL) {
1092 			mutex_exit(d->bd_mtx);
1093 			/*
1094 			 * No interface attached yet.
1095 			 */
1096 			error = EINVAL;
1097 			break;
1098 		}
1099 		if (d->bd_promisc == 0) {
1100 			KERNEL_LOCK_UNLESS_NET_MPSAFE();
1101 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1102 			KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
1103 			if (error == 0)
1104 				d->bd_promisc = 1;
1105 		}
1106 		mutex_exit(d->bd_mtx);
1107 		break;
1108 
1109 	/*
1110 	 * Get device parameters.
1111 	 */
1112 	case BIOCGDLT:
1113 		mutex_enter(d->bd_mtx);
1114 		if (d->bd_bif == NULL)
1115 			error = EINVAL;
1116 		else
1117 			*(u_int *)addr = d->bd_bif->bif_dlt;
1118 		mutex_exit(d->bd_mtx);
1119 		break;
1120 
1121 	/*
1122 	 * Get a list of supported device parameters.
1123 	 */
1124 	case BIOCGDLTLIST:
1125 		mutex_enter(d->bd_mtx);
1126 		if (d->bd_bif == NULL)
1127 			error = EINVAL;
1128 		else
1129 			error = bpf_getdltlist(d, addr);
1130 		mutex_exit(d->bd_mtx);
1131 		break;
1132 
1133 	/*
1134 	 * Set device parameters.
1135 	 */
1136 	case BIOCSDLT:
1137 		mutex_enter(&bpf_mtx);
1138 		mutex_enter(d->bd_mtx);
1139 		if (d->bd_bif == NULL)
1140 			error = EINVAL;
1141 		else
1142 			error = bpf_setdlt(d, *(u_int *)addr);
1143 		mutex_exit(d->bd_mtx);
1144 		mutex_exit(&bpf_mtx);
1145 		break;
1146 
1147 	/*
1148 	 * Set interface name.
1149 	 */
1150 #ifdef OBIOCGETIF
1151 	case OBIOCGETIF:
1152 #endif
1153 	case BIOCGETIF:
1154 		mutex_enter(d->bd_mtx);
1155 		if (d->bd_bif == NULL)
1156 			error = EINVAL;
1157 		else
1158 			bpf_ifname(d->bd_bif->bif_ifp, addr);
1159 		mutex_exit(d->bd_mtx);
1160 		break;
1161 
1162 	/*
1163 	 * Set interface.
1164 	 */
1165 #ifdef OBIOCSETIF
1166 	case OBIOCSETIF:
1167 #endif
1168 	case BIOCSETIF:
1169 		mutex_enter(&bpf_mtx);
1170 		error = bpf_setif(d, addr);
1171 		mutex_exit(&bpf_mtx);
1172 		break;
1173 
1174 	/*
1175 	 * Set read timeout.
1176 	 */
1177 	case BIOCSRTIMEOUT:
1178 		{
1179 			struct timeval *tv = addr;
1180 
1181 			/* Compute number of ticks. */
1182 			if (tv->tv_sec < 0 ||
1183 			    tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1184 				error = EINVAL;
1185 				break;
1186 			} else if (tv->tv_sec > INT_MAX/hz - 1) {
1187 				d->bd_rtout = INT_MAX;
1188 			} else {
1189 				d->bd_rtout = tv->tv_sec * hz
1190 				    + tv->tv_usec / tick;
1191 			}
1192 			if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1193 				d->bd_rtout = 1;
1194 			break;
1195 		}
1196 
1197 #ifdef BIOCGORTIMEOUT
1198 	/*
1199 	 * Get read timeout.
1200 	 */
1201 	case BIOCGORTIMEOUT:
1202 		{
1203 			struct timeval50 *tv = addr;
1204 
1205 			tv->tv_sec = d->bd_rtout / hz;
1206 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1207 			break;
1208 		}
1209 #endif
1210 
1211 #ifdef BIOCSORTIMEOUT
1212 	/*
1213 	 * Set read timeout.
1214 	 */
1215 	case BIOCSORTIMEOUT:
1216 		{
1217 			struct timeval50 *tv = addr;
1218 
1219 			/* Compute number of ticks. */
1220 			if (tv->tv_sec < 0 ||
1221 			    tv->tv_usec < 0 || tv->tv_usec >= 1000000) {
1222 				error = EINVAL;
1223 				break;
1224 			} else if (tv->tv_sec > INT_MAX/hz - 1) {
1225 				d->bd_rtout = INT_MAX;
1226 			} else {
1227 				d->bd_rtout = tv->tv_sec * hz
1228 				    + tv->tv_usec / tick;
1229 			}
1230 			if ((d->bd_rtout == 0) && (tv->tv_usec != 0))
1231 				d->bd_rtout = 1;
1232 			break;
1233 		}
1234 #endif
1235 
1236 	/*
1237 	 * Get read timeout.
1238 	 */
1239 	case BIOCGRTIMEOUT:
1240 		{
1241 			struct timeval *tv = addr;
1242 
1243 			tv->tv_sec = d->bd_rtout / hz;
1244 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1245 			break;
1246 		}
1247 	/*
1248 	 * Get packet stats.
1249 	 */
1250 	case BIOCGSTATS:
1251 		{
1252 			struct bpf_stat *bs = addr;
1253 
1254 			bs->bs_recv = d->bd_rcount;
1255 			bs->bs_drop = d->bd_dcount;
1256 			bs->bs_capt = d->bd_ccount;
1257 			break;
1258 		}
1259 
1260 	case BIOCGSTATSOLD:
1261 		{
1262 			struct bpf_stat_old *bs = addr;
1263 
1264 			bs->bs_recv = d->bd_rcount;
1265 			bs->bs_drop = d->bd_dcount;
1266 			break;
1267 		}
1268 
1269 	/*
1270 	 * Set immediate mode.
1271 	 */
1272 	case BIOCIMMEDIATE:
1273 		d->bd_immediate = *(u_int *)addr;
1274 		break;
1275 
1276 	case BIOCVERSION:
1277 		{
1278 			struct bpf_version *bv = addr;
1279 
1280 			bv->bv_major = BPF_MAJOR_VERSION;
1281 			bv->bv_minor = BPF_MINOR_VERSION;
1282 			break;
1283 		}
1284 
1285 	case BIOCGHDRCMPLT:	/* get "header already complete" flag */
1286 		*(u_int *)addr = d->bd_hdrcmplt;
1287 		break;
1288 
1289 	case BIOCSHDRCMPLT:	/* set "header already complete" flag */
1290 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1291 		break;
1292 
1293 	/*
1294 	 * Get packet direction flag
1295 	 */
1296 	case BIOCGDIRECTION:
1297 		*(u_int *)addr = d->bd_direction;
1298 		break;
1299 
1300 	/*
1301 	 * Set packet direction flag
1302 	 */
1303 	case BIOCSDIRECTION:
1304 		{
1305 			u_int	direction;
1306 
1307 			direction = *(u_int *)addr;
1308 			switch (direction) {
1309 			case BPF_D_IN:
1310 			case BPF_D_INOUT:
1311 			case BPF_D_OUT:
1312 				d->bd_direction = direction;
1313 				break;
1314 			default:
1315 				error = EINVAL;
1316 			}
1317 		}
1318 		break;
1319 
1320 	/*
1321 	 * Set "feed packets from bpf back to input" mode
1322 	 */
1323 	case BIOCSFEEDBACK:
1324 		d->bd_feedback = *(u_int *)addr;
1325 		break;
1326 
1327 	/*
1328 	 * Get "feed packets from bpf back to input" mode
1329 	 */
1330 	case BIOCGFEEDBACK:
1331 		*(u_int *)addr = d->bd_feedback;
1332 		break;
1333 
1334 	case FIONBIO:		/* Non-blocking I/O */
1335 		/*
1336 		 * No need to do anything special as we use IO_NDELAY in
1337 		 * bpfread() as an indication of whether or not to block
1338 		 * the read.
1339 		 */
1340 		break;
1341 
1342 	case FIOASYNC:		/* Send signal on receive packets */
1343 		mutex_enter(d->bd_mtx);
1344 		d->bd_async = *(int *)addr;
1345 		mutex_exit(d->bd_mtx);
1346 		break;
1347 
1348 	case TIOCSPGRP:		/* Process or group to send signals to */
1349 	case FIOSETOWN:
1350 		error = fsetown(&d->bd_pgid, cmd, addr);
1351 		break;
1352 
1353 	case TIOCGPGRP:
1354 	case FIOGETOWN:
1355 		error = fgetown(d->bd_pgid, cmd, addr);
1356 		break;
1357 	}
1358 	return (error);
1359 }
1360 
1361 /*
1362  * Set d's packet filter program to fp.  If this file already has a filter,
1363  * free it and replace it.  Returns EINVAL for bogus requests.
1364  */
1365 static int
bpf_setf(struct bpf_d * d,struct bpf_program * fp,u_long cmd)1366 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1367 {
1368 	struct bpf_insn *fcode;
1369 	bpfjit_func_t jcode;
1370 	size_t flen, size = 0;
1371 	struct bpf_filter *oldf, *newf, **storef;
1372 
1373 	jcode = NULL;
1374 	flen = fp->bf_len;
1375 
1376 	if ((fp->bf_insns == NULL && flen) || flen > BPF_MAXINSNS) {
1377 		return EINVAL;
1378 	}
1379 
1380 	if (flen) {
1381 		/*
1382 		 * Allocate the buffer, copy the byte-code from
1383 		 * userspace and validate it.
1384 		 */
1385 		size = flen * sizeof(*fp->bf_insns);
1386 		fcode = kmem_alloc(size, KM_SLEEP);
1387 		if (copyin(fp->bf_insns, fcode, size) != 0 ||
1388 		    !bpf_validate(fcode, (int)flen)) {
1389 			kmem_free(fcode, size);
1390 			return EINVAL;
1391 		}
1392 		if (bpf_jit)
1393 			jcode = bpf_jit_generate(NULL, fcode, flen);
1394 	} else {
1395 		fcode = NULL;
1396 	}
1397 
1398 	newf = kmem_alloc(sizeof(*newf), KM_SLEEP);
1399 	newf->bf_insn = fcode;
1400 	newf->bf_size = size;
1401 	newf->bf_jitcode = jcode;
1402 	if (cmd == BIOCSETF)
1403 		d->bd_jitcode = jcode; /* XXX just for kvm(3) users */
1404 
1405 	/* Need to hold bpf_mtx for pserialize_perform */
1406 	mutex_enter(&bpf_mtx);
1407 	mutex_enter(d->bd_mtx);
1408 	if (cmd == BIOCSETWF) {
1409 		oldf = d->bd_wfilter;
1410 		storef = &d->bd_wfilter;
1411 	} else {
1412 		oldf = d->bd_rfilter;
1413 		storef = &d->bd_rfilter;
1414 	}
1415 	atomic_store_release(storef, newf);
1416 	reset_d(d);
1417 	pserialize_perform(bpf_psz);
1418 	mutex_exit(d->bd_mtx);
1419 	mutex_exit(&bpf_mtx);
1420 
1421 	if (oldf != NULL)
1422 		bpf_free_filter(oldf);
1423 
1424 	return 0;
1425 }
1426 
1427 /*
1428  * Detach a file from its current interface (if attached at all) and attach
1429  * to the interface indicated by the name stored in ifr.
1430  * Return an errno or 0.
1431  */
1432 static int
bpf_setif(struct bpf_d * d,struct ifreq * ifr)1433 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1434 {
1435 	struct bpf_if *bp;
1436 	char *cp;
1437 	int unit_seen, i, error;
1438 
1439 	KASSERT(mutex_owned(&bpf_mtx));
1440 	/*
1441 	 * Make sure the provided name has a unit number, and default
1442 	 * it to '0' if not specified.
1443 	 * XXX This is ugly ... do this differently?
1444 	 */
1445 	unit_seen = 0;
1446 	cp = ifr->ifr_name;
1447 	cp[sizeof(ifr->ifr_name) - 1] = '\0';	/* sanity */
1448 	while (*cp++)
1449 		if (*cp >= '0' && *cp <= '9')
1450 			unit_seen = 1;
1451 	if (!unit_seen) {
1452 		/* Make sure to leave room for the '\0'. */
1453 		for (i = 0; i < (IFNAMSIZ - 1); ++i) {
1454 			if ((ifr->ifr_name[i] >= 'a' &&
1455 			     ifr->ifr_name[i] <= 'z') ||
1456 			    (ifr->ifr_name[i] >= 'A' &&
1457 			     ifr->ifr_name[i] <= 'Z'))
1458 				continue;
1459 			ifr->ifr_name[i] = '0';
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * Look through attached interfaces for the named one.
1465 	 */
1466 	BPF_IFLIST_WRITER_FOREACH(bp) {
1467 		struct ifnet *ifp = bp->bif_ifp;
1468 
1469 		if (ifp == NULL ||
1470 		    strcmp(ifp->if_xname, ifr->ifr_name) != 0)
1471 			continue;
1472 		/* skip additional entry */
1473 		if (bp->bif_driverp != &ifp->if_bpf)
1474 			continue;
1475 		/*
1476 		 * We found the requested interface.
1477 		 * Allocate the packet buffers if we need to.
1478 		 * If we're already attached to requested interface,
1479 		 * just flush the buffer.
1480 		 */
1481 		/*
1482 		 * bpf_allocbufs is called only here. bpf_mtx ensures that
1483 		 * no race condition happen on d->bd_sbuf.
1484 		 */
1485 		if (d->bd_sbuf == NULL) {
1486 			error = bpf_allocbufs(d);
1487 			if (error != 0)
1488 				return (error);
1489 		}
1490 		mutex_enter(d->bd_mtx);
1491 		if (bp != d->bd_bif) {
1492 			if (d->bd_bif) {
1493 				/*
1494 				 * Detach if attached to something else.
1495 				 */
1496 				bpf_detachd(d);
1497 				BPFIF_DLIST_ENTRY_INIT(d);
1498 			}
1499 
1500 			bpf_attachd(d, bp);
1501 		}
1502 		reset_d(d);
1503 		mutex_exit(d->bd_mtx);
1504 		return (0);
1505 	}
1506 	/* Not found. */
1507 	return (ENXIO);
1508 }
1509 
1510 /*
1511  * Copy the interface name to the ifreq.
1512  */
1513 static void
bpf_ifname(struct ifnet * ifp,struct ifreq * ifr)1514 bpf_ifname(struct ifnet *ifp, struct ifreq *ifr)
1515 {
1516 	memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1517 }
1518 
1519 static int
bpf_stat(struct file * fp,struct stat * st)1520 bpf_stat(struct file *fp, struct stat *st)
1521 {
1522 	struct bpf_d *d = fp->f_bpf;
1523 
1524 	(void)memset(st, 0, sizeof(*st));
1525 	mutex_enter(d->bd_mtx);
1526 	st->st_dev = makedev(cdevsw_lookup_major(&bpf_cdevsw), d->bd_pid);
1527 	st->st_atimespec = d->bd_atime;
1528 	st->st_mtimespec = d->bd_mtime;
1529 	st->st_ctimespec = st->st_birthtimespec = d->bd_btime;
1530 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
1531 	st->st_gid = kauth_cred_getegid(fp->f_cred);
1532 	st->st_mode = S_IFCHR;
1533 	mutex_exit(d->bd_mtx);
1534 	return 0;
1535 }
1536 
1537 /*
1538  * Support for poll() system call
1539  *
1540  * Return true iff the specific operation will not block indefinitely - with
1541  * the assumption that it is safe to positively acknowledge a request for the
1542  * ability to write to the BPF device.
1543  * Otherwise, return false but make a note that a selnotify() must be done.
1544  */
1545 static int
bpf_poll(struct file * fp,int events)1546 bpf_poll(struct file *fp, int events)
1547 {
1548 	struct bpf_d *d = fp->f_bpf;
1549 	int revents;
1550 
1551 	/*
1552 	 * Refresh the PID associated with this bpf file.
1553 	 */
1554 	mutex_enter(&bpf_mtx);
1555 	d->bd_pid = curproc->p_pid;
1556 
1557 	revents = events & (POLLOUT | POLLWRNORM);
1558 	if (events & (POLLIN | POLLRDNORM)) {
1559 		/*
1560 		 * An imitation of the FIONREAD ioctl code.
1561 		 */
1562 		mutex_enter(d->bd_mtx);
1563 		if (d->bd_hlen != 0 ||
1564 		    ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1565 		     d->bd_slen != 0)) {
1566 			revents |= events & (POLLIN | POLLRDNORM);
1567 		} else {
1568 			selrecord(curlwp, &d->bd_sel);
1569 			/* Start the read timeout if necessary */
1570 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1571 				callout_reset(&d->bd_callout, d->bd_rtout,
1572 					      bpf_timed_out, d);
1573 				d->bd_state = BPF_WAITING;
1574 			}
1575 		}
1576 		mutex_exit(d->bd_mtx);
1577 	}
1578 
1579 	mutex_exit(&bpf_mtx);
1580 	return (revents);
1581 }
1582 
1583 static void
filt_bpfrdetach(struct knote * kn)1584 filt_bpfrdetach(struct knote *kn)
1585 {
1586 	struct bpf_d *d = kn->kn_hook;
1587 
1588 	mutex_enter(d->bd_buf_mtx);
1589 	selremove_knote(&d->bd_sel, kn);
1590 	mutex_exit(d->bd_buf_mtx);
1591 }
1592 
1593 static int
filt_bpfread(struct knote * kn,long hint)1594 filt_bpfread(struct knote *kn, long hint)
1595 {
1596 	struct bpf_d *d = kn->kn_hook;
1597 	int rv;
1598 
1599 	/*
1600 	 * Refresh the PID associated with this bpf file.
1601 	 */
1602 	d->bd_pid = curproc->p_pid;
1603 
1604 	mutex_enter(d->bd_buf_mtx);
1605 	kn->kn_data = d->bd_hlen;
1606 	if (d->bd_immediate)
1607 		kn->kn_data += d->bd_slen;
1608 	rv = (kn->kn_data > 0);
1609 	mutex_exit(d->bd_buf_mtx);
1610 	return rv;
1611 }
1612 
1613 static const struct filterops bpfread_filtops = {
1614 	.f_flags = FILTEROP_ISFD,
1615 	.f_attach = NULL,
1616 	.f_detach = filt_bpfrdetach,
1617 	.f_event = filt_bpfread,
1618 };
1619 
1620 static int
bpf_kqfilter(struct file * fp,struct knote * kn)1621 bpf_kqfilter(struct file *fp, struct knote *kn)
1622 {
1623 	struct bpf_d *d = fp->f_bpf;
1624 
1625 	switch (kn->kn_filter) {
1626 	case EVFILT_READ:
1627 		kn->kn_fop = &bpfread_filtops;
1628 		break;
1629 
1630 	default:
1631 		return (EINVAL);
1632 	}
1633 
1634 	kn->kn_hook = d;
1635 
1636 	mutex_enter(d->bd_buf_mtx);
1637 	selrecord_knote(&d->bd_sel, kn);
1638 	mutex_exit(d->bd_buf_mtx);
1639 
1640 	return (0);
1641 }
1642 
1643 /*
1644  * Copy data from an mbuf chain into a buffer.  This code is derived
1645  * from m_copydata in sys/uipc_mbuf.c.
1646  */
1647 static void *
bpf_mcpy(void * dst_arg,const void * src_arg,size_t len)1648 bpf_mcpy(void *dst_arg, const void *src_arg, size_t len)
1649 {
1650 	const struct mbuf *m;
1651 	u_int count;
1652 	u_char *dst;
1653 
1654 	m = src_arg;
1655 	dst = dst_arg;
1656 	while (len > 0) {
1657 		if (m == NULL)
1658 			panic("bpf_mcpy");
1659 		count = uimin(m->m_len, len);
1660 		memcpy(dst, mtod(m, const void *), count);
1661 		m = m->m_next;
1662 		dst += count;
1663 		len -= count;
1664 	}
1665 	return dst_arg;
1666 }
1667 
1668 static inline u_int
bpf_xfilter(struct bpf_filter ** filter,void * pkt,u_int pktlen,u_int buflen)1669 bpf_xfilter(struct bpf_filter **filter, void *pkt, u_int pktlen, u_int buflen)
1670 {
1671 	struct bpf_filter *filt;
1672 	uint32_t mem[BPF_MEMWORDS];
1673 	bpf_args_t args = {
1674 		.pkt = (const uint8_t *)pkt,
1675 		.wirelen = pktlen,
1676 		.buflen = buflen,
1677 		.mem = mem,
1678 		.arg = NULL
1679 	};
1680 	u_int slen;
1681 
1682 	filt = atomic_load_consume(filter);
1683 	if (filt == NULL) /* No filter means accept all. */
1684 		return (u_int)-1;
1685 
1686 	if (filt->bf_jitcode != NULL)
1687 		slen = filt->bf_jitcode(NULL, &args);
1688 	else
1689 		slen = bpf_filter_ext(NULL, filt->bf_insn, &args);
1690 	return slen;
1691 }
1692 
1693 /*
1694  * Dispatch a packet to all the listeners on interface bp.
1695  *
1696  * pkt       pointer to the packet, either a data buffer or an mbuf chain
1697  * buflen    buffer length, if pkt is a data buffer
1698  * cpfn      a function that can copy pkt into the listener's buffer
1699  * pktlen    length of the packet
1700  * direction BPF_D_IN or BPF_D_OUT
1701  */
1702 static inline void
bpf_deliver(struct bpf_if * bp,void * (* cpfn)(void *,const void *,size_t),void * pkt,u_int pktlen,u_int buflen,const u_int direction)1703 bpf_deliver(struct bpf_if *bp, void *(*cpfn)(void *, const void *, size_t),
1704     void *pkt, u_int pktlen, u_int buflen, const u_int direction)
1705 {
1706 	bool gottime = false;
1707 	struct timespec ts;
1708 	struct bpf_d *d;
1709 	int s;
1710 	u_int slen;
1711 
1712 	KASSERT(!cpu_intr_p());
1713 
1714 	/*
1715 	 * Note that the IPL does not have to be raised at this point.
1716 	 * The only problem that could arise here is that if two different
1717 	 * interfaces shared any data.  This is not the case.
1718 	 */
1719 	s = pserialize_read_enter();
1720 	BPFIF_DLIST_READER_FOREACH(d, bp) {
1721 		if (direction == BPF_D_IN) {
1722 			if (d->bd_direction == BPF_D_OUT)
1723 				continue;
1724 		} else { /* BPF_D_OUT */
1725 			if (d->bd_direction == BPF_D_IN)
1726 				continue;
1727 		}
1728 
1729 		atomic_inc_ulong(&d->bd_rcount);
1730 		BPF_STATINC(recv);
1731 
1732 		slen = bpf_xfilter(&d->bd_rfilter, pkt, pktlen, buflen);
1733 		if (slen == 0)
1734 			continue;
1735 
1736 		if (!gottime) {
1737 			gottime = true;
1738 			nanotime(&ts);
1739 		}
1740 		/* Assume catchpacket doesn't sleep */
1741 		catchpacket(d, pkt, pktlen, slen, cpfn, &ts);
1742 	}
1743 	pserialize_read_exit(s);
1744 }
1745 
1746 /*
1747  * Incoming linkage from device drivers, when the head of the packet is in
1748  * a buffer, and the tail is in an mbuf chain.
1749  */
1750 static void
_bpf_mtap2(struct bpf_if * bp,void * data,u_int dlen,struct mbuf * m,u_int direction)1751 _bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m,
1752 	u_int direction)
1753 {
1754 	u_int pktlen;
1755 	struct mbuf mb;
1756 
1757 	/* Skip outgoing duplicate packets. */
1758 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1759 		m->m_flags &= ~M_PROMISC;
1760 		return;
1761 	}
1762 
1763 	pktlen = m_length(m) + dlen;
1764 
1765 	/*
1766 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
1767 	 * Note that we cut corners here; we only set up what's
1768 	 * absolutely needed--this mbuf should never go anywhere else.
1769 	 */
1770 	(void)memset(&mb, 0, sizeof(mb));
1771 	mb.m_type = MT_DATA;
1772 	mb.m_next = m;
1773 	mb.m_data = data;
1774 	mb.m_len = dlen;
1775 
1776 	bpf_deliver(bp, bpf_mcpy, &mb, pktlen, 0, direction);
1777 }
1778 
1779 /*
1780  * Incoming linkage from device drivers, when packet is in an mbuf chain.
1781  */
1782 static void
_bpf_mtap(struct bpf_if * bp,struct mbuf * m,u_int direction)1783 _bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
1784 {
1785 	void *(*cpfn)(void *, const void *, size_t);
1786 	u_int pktlen, buflen;
1787 	void *marg;
1788 
1789 	/* Skip outgoing duplicate packets. */
1790 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif_index == 0) {
1791 		m->m_flags &= ~M_PROMISC;
1792 		return;
1793 	}
1794 
1795 	pktlen = m_length(m);
1796 
1797 	/* Skip zero-sized packets. */
1798 	if (__predict_false(pktlen == 0)) {
1799 		return;
1800 	}
1801 
1802 	if (pktlen == m->m_len) {
1803 		cpfn = (void *)memcpy;
1804 		marg = mtod(m, void *);
1805 		buflen = pktlen;
1806 		KASSERT(buflen != 0);
1807 	} else {
1808 		cpfn = bpf_mcpy;
1809 		marg = m;
1810 		buflen = 0;
1811 	}
1812 
1813 	bpf_deliver(bp, cpfn, marg, pktlen, buflen, direction);
1814 }
1815 
1816 /*
1817  * We need to prepend the address family as
1818  * a four byte field.  Cons up a dummy header
1819  * to pacify bpf.  This is safe because bpf
1820  * will only read from the mbuf (i.e., it won't
1821  * try to free it or keep a pointer a to it).
1822  */
1823 static void
_bpf_mtap_af(struct bpf_if * bp,uint32_t af,struct mbuf * m,u_int direction)1824 _bpf_mtap_af(struct bpf_if *bp, uint32_t af, struct mbuf *m, u_int direction)
1825 {
1826 	struct mbuf m0;
1827 
1828 	m0.m_type = MT_DATA;
1829 	m0.m_flags = 0;
1830 	m0.m_next = m;
1831 	m0.m_nextpkt = NULL;
1832 	m0.m_owner = NULL;
1833 	m0.m_len = 4;
1834 	m0.m_data = (char *)&af;
1835 
1836 	_bpf_mtap(bp, &m0, direction);
1837 }
1838 
1839 /*
1840  * Put the SLIP pseudo-"link header" in place.
1841  * Note this M_PREPEND() should never fail,
1842  * since we know we always have enough space
1843  * in the input buffer.
1844  */
1845 static void
_bpf_mtap_sl_in(struct bpf_if * bp,u_char * chdr,struct mbuf ** m)1846 _bpf_mtap_sl_in(struct bpf_if *bp, u_char *chdr, struct mbuf **m)
1847 {
1848 	u_char *hp;
1849 
1850 	M_PREPEND(*m, SLIP_HDRLEN, M_DONTWAIT);
1851 	if (*m == NULL)
1852 		return;
1853 
1854 	hp = mtod(*m, u_char *);
1855 	hp[SLX_DIR] = SLIPDIR_IN;
1856 	(void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1857 
1858 	_bpf_mtap(bp, *m, BPF_D_IN);
1859 
1860 	m_adj(*m, SLIP_HDRLEN);
1861 }
1862 
1863 /*
1864  * Put the SLIP pseudo-"link header" in
1865  * place.  The compressed header is now
1866  * at the beginning of the mbuf.
1867  */
1868 static void
_bpf_mtap_sl_out(struct bpf_if * bp,u_char * chdr,struct mbuf * m)1869 _bpf_mtap_sl_out(struct bpf_if *bp, u_char *chdr, struct mbuf *m)
1870 {
1871 	struct mbuf m0;
1872 	u_char *hp;
1873 
1874 	m0.m_type = MT_DATA;
1875 	m0.m_flags = 0;
1876 	m0.m_next = m;
1877 	m0.m_nextpkt = NULL;
1878 	m0.m_owner = NULL;
1879 	m0.m_data = m0.m_dat;
1880 	m0.m_len = SLIP_HDRLEN;
1881 
1882 	hp = mtod(&m0, u_char *);
1883 
1884 	hp[SLX_DIR] = SLIPDIR_OUT;
1885 	(void)memcpy(&hp[SLX_CHDR], chdr, CHDR_LEN);
1886 
1887 	_bpf_mtap(bp, &m0, BPF_D_OUT);
1888 	m_freem(m);
1889 }
1890 
1891 static struct mbuf *
bpf_mbuf_enqueue(struct bpf_if * bp,struct mbuf * m)1892 bpf_mbuf_enqueue(struct bpf_if *bp, struct mbuf *m)
1893 {
1894 	struct mbuf *dup;
1895 
1896 	dup = m_dup(m, 0, M_COPYALL, M_NOWAIT);
1897 	if (dup == NULL)
1898 		return NULL;
1899 
1900 	if (bp->bif_mbuf_tail != NULL) {
1901 		bp->bif_mbuf_tail->m_nextpkt = dup;
1902 	} else {
1903 		bp->bif_mbuf_head = dup;
1904 	}
1905 	bp->bif_mbuf_tail = dup;
1906 #ifdef BPF_MTAP_SOFTINT_DEBUG
1907 	log(LOG_DEBUG, "%s: enqueued mbuf=%p to %s\n",
1908 	    __func__, dup, bp->bif_ifp->if_xname);
1909 #endif
1910 
1911 	return dup;
1912 }
1913 
1914 static struct mbuf *
bpf_mbuf_dequeue(struct bpf_if * bp)1915 bpf_mbuf_dequeue(struct bpf_if *bp)
1916 {
1917 	struct mbuf *m;
1918 	int s;
1919 
1920 	/* XXX NOMPSAFE: assumed running on one CPU */
1921 	s = splnet();
1922 	m = bp->bif_mbuf_head;
1923 	if (m != NULL) {
1924 		bp->bif_mbuf_head = m->m_nextpkt;
1925 		m->m_nextpkt = NULL;
1926 
1927 		if (bp->bif_mbuf_head == NULL)
1928 			bp->bif_mbuf_tail = NULL;
1929 #ifdef BPF_MTAP_SOFTINT_DEBUG
1930 		log(LOG_DEBUG, "%s: dequeued mbuf=%p from %s\n",
1931 		    __func__, m, bp->bif_ifp->if_xname);
1932 #endif
1933 	}
1934 	splx(s);
1935 
1936 	return m;
1937 }
1938 
1939 static void
bpf_mtap_si(void * arg)1940 bpf_mtap_si(void *arg)
1941 {
1942 	struct bpf_if *bp = arg;
1943 	struct mbuf *m;
1944 
1945 	while ((m = bpf_mbuf_dequeue(bp)) != NULL) {
1946 #ifdef BPF_MTAP_SOFTINT_DEBUG
1947 		log(LOG_DEBUG, "%s: tapping mbuf=%p on %s\n",
1948 		    __func__, m, bp->bif_ifp->if_xname);
1949 #endif
1950 		bpf_ops->bpf_mtap(bp, m, BPF_D_IN);
1951 		m_freem(m);
1952 	}
1953 }
1954 
1955 static void
_bpf_mtap_softint(struct ifnet * ifp,struct mbuf * m)1956 _bpf_mtap_softint(struct ifnet *ifp, struct mbuf *m)
1957 {
1958 	struct bpf_if *bp = ifp->if_bpf;
1959 	struct mbuf *dup;
1960 
1961 	KASSERT(cpu_intr_p());
1962 
1963 	/* To avoid extra invocations of the softint */
1964 	if (BPFIF_DLIST_READER_EMPTY(bp))
1965 		return;
1966 	KASSERT(bp->bif_si != NULL);
1967 
1968 	dup = bpf_mbuf_enqueue(bp, m);
1969 	if (dup != NULL)
1970 		softint_schedule(bp->bif_si);
1971 }
1972 
1973 static int
bpf_hdrlen(struct bpf_d * d)1974 bpf_hdrlen(struct bpf_d *d)
1975 {
1976 	int hdrlen = d->bd_bif->bif_hdrlen;
1977 	/*
1978 	 * Compute the length of the bpf header.  This is not necessarily
1979 	 * equal to SIZEOF_BPF_HDR because we want to insert spacing such
1980 	 * that the network layer header begins on a longword boundary (for
1981 	 * performance reasons and to alleviate alignment restrictions).
1982 	 */
1983 #ifdef _LP64
1984 	if (d->bd_compat32)
1985 		return (BPF_WORDALIGN32(hdrlen + SIZEOF_BPF_HDR32) - hdrlen);
1986 	else
1987 #endif
1988 		return (BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen);
1989 }
1990 
1991 /*
1992  * Move the packet data from interface memory (pkt) into the
1993  * store buffer. Call the wakeup functions if it's time to wake up
1994  * a listener (buffer full), "cpfn" is the routine called to do the
1995  * actual data transfer. memcpy is passed in to copy contiguous chunks,
1996  * while bpf_mcpy is passed in to copy mbuf chains.  In the latter case,
1997  * pkt is really an mbuf.
1998  */
1999 static void
catchpacket(struct bpf_d * d,u_char * pkt,u_int pktlen,u_int snaplen,void * (* cpfn)(void *,const void *,size_t),struct timespec * ts)2000 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2001     void *(*cpfn)(void *, const void *, size_t), struct timespec *ts)
2002 {
2003 	char *h;
2004 	int totlen, curlen, caplen;
2005 	int hdrlen = bpf_hdrlen(d);
2006 	int do_wakeup = 0;
2007 
2008 	atomic_inc_ulong(&d->bd_ccount);
2009 	BPF_STATINC(capt);
2010 	/*
2011 	 * Figure out how many bytes to move.  If the packet is
2012 	 * greater or equal to the snapshot length, transfer that
2013 	 * much.  Otherwise, transfer the whole packet (unless
2014 	 * we hit the buffer size limit).
2015 	 */
2016 	totlen = hdrlen + uimin(snaplen, pktlen);
2017 	if (totlen > d->bd_bufsize)
2018 		totlen = d->bd_bufsize;
2019 	/*
2020 	 * If we adjusted totlen to fit the bufsize, it could be that
2021 	 * totlen is smaller than hdrlen because of the link layer header.
2022 	 */
2023 	caplen = totlen - hdrlen;
2024 	if (caplen < 0)
2025 		caplen = 0;
2026 
2027 	mutex_enter(d->bd_buf_mtx);
2028 	/*
2029 	 * Round up the end of the previous packet to the next longword.
2030 	 */
2031 #ifdef _LP64
2032 	if (d->bd_compat32)
2033 		curlen = BPF_WORDALIGN32(d->bd_slen);
2034 	else
2035 #endif
2036 		curlen = BPF_WORDALIGN(d->bd_slen);
2037 	if (curlen + totlen > d->bd_bufsize) {
2038 		/*
2039 		 * This packet will overflow the storage buffer.
2040 		 * Rotate the buffers if we can, then wakeup any
2041 		 * pending reads.
2042 		 */
2043 		if (d->bd_fbuf == NULL) {
2044 			mutex_exit(d->bd_buf_mtx);
2045 			/*
2046 			 * We haven't completed the previous read yet,
2047 			 * so drop the packet.
2048 			 */
2049 			atomic_inc_ulong(&d->bd_dcount);
2050 			BPF_STATINC(drop);
2051 			return;
2052 		}
2053 		ROTATE_BUFFERS(d);
2054 		do_wakeup = 1;
2055 		curlen = 0;
2056 	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2057 		/*
2058 		 * Immediate mode is set, or the read timeout has
2059 		 * already expired during a select call.  A packet
2060 		 * arrived, so the reader should be woken up.
2061 		 */
2062 		do_wakeup = 1;
2063 	}
2064 
2065 	/*
2066 	 * Append the bpf header.
2067 	 */
2068 	h = (char *)d->bd_sbuf + curlen;
2069 #ifdef _LP64
2070 	if (d->bd_compat32) {
2071 		struct bpf_hdr32 *hp32;
2072 
2073 		hp32 = (struct bpf_hdr32 *)h;
2074 		hp32->bh_tstamp.tv_sec = ts->tv_sec;
2075 		hp32->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2076 		hp32->bh_datalen = pktlen;
2077 		hp32->bh_hdrlen = hdrlen;
2078 		hp32->bh_caplen = caplen;
2079 	} else
2080 #endif
2081 	{
2082 		struct bpf_hdr *hp;
2083 
2084 		hp = (struct bpf_hdr *)h;
2085 		hp->bh_tstamp.tv_sec = ts->tv_sec;
2086 		hp->bh_tstamp.tv_usec = ts->tv_nsec / 1000;
2087 		hp->bh_datalen = pktlen;
2088 		hp->bh_hdrlen = hdrlen;
2089 		hp->bh_caplen = caplen;
2090 	}
2091 
2092 	/*
2093 	 * Copy the packet data into the store buffer and update its length.
2094 	 */
2095 	(*cpfn)(h + hdrlen, pkt, caplen);
2096 	d->bd_slen = curlen + totlen;
2097 	mutex_exit(d->bd_buf_mtx);
2098 
2099 	/*
2100 	 * Call bpf_wakeup after bd_slen has been updated so that kevent(2)
2101 	 * will cause filt_bpfread() to be called with it adjusted.
2102 	 */
2103 	if (do_wakeup)
2104 		bpf_wakeup(d);
2105 }
2106 
2107 /*
2108  * Initialize all nonzero fields of a descriptor.
2109  */
2110 static int
bpf_allocbufs(struct bpf_d * d)2111 bpf_allocbufs(struct bpf_d *d)
2112 {
2113 
2114 	d->bd_fbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2115 	if (!d->bd_fbuf)
2116 		return (ENOBUFS);
2117 	d->bd_sbuf = kmem_zalloc(d->bd_bufsize, KM_NOSLEEP);
2118 	if (!d->bd_sbuf) {
2119 		kmem_free(d->bd_fbuf, d->bd_bufsize);
2120 		return (ENOBUFS);
2121 	}
2122 	d->bd_slen = 0;
2123 	d->bd_hlen = 0;
2124 	return (0);
2125 }
2126 
2127 static void
bpf_free_filter(struct bpf_filter * filter)2128 bpf_free_filter(struct bpf_filter *filter)
2129 {
2130 
2131 	KASSERT(filter != NULL);
2132 
2133 	if (filter->bf_insn != NULL)
2134 		kmem_free(filter->bf_insn, filter->bf_size);
2135 	if (filter->bf_jitcode != NULL)
2136 		bpf_jit_freecode(filter->bf_jitcode);
2137 	kmem_free(filter, sizeof(*filter));
2138 }
2139 
2140 /*
2141  * Free buffers currently in use by a descriptor.
2142  * Called on close.
2143  */
2144 static void
bpf_freed(struct bpf_d * d)2145 bpf_freed(struct bpf_d *d)
2146 {
2147 	/*
2148 	 * We don't need to lock out interrupts since this descriptor has
2149 	 * been detached from its interface and it yet hasn't been marked
2150 	 * free.
2151 	 */
2152 	if (d->bd_sbuf != NULL) {
2153 		kmem_free(d->bd_sbuf, d->bd_bufsize);
2154 		if (d->bd_hbuf != NULL)
2155 			kmem_free(d->bd_hbuf, d->bd_bufsize);
2156 		if (d->bd_fbuf != NULL)
2157 			kmem_free(d->bd_fbuf, d->bd_bufsize);
2158 	}
2159 	if (d->bd_rfilter != NULL) {
2160 		bpf_free_filter(d->bd_rfilter);
2161 		d->bd_rfilter = NULL;
2162 	}
2163 	if (d->bd_wfilter != NULL) {
2164 		bpf_free_filter(d->bd_wfilter);
2165 		d->bd_wfilter = NULL;
2166 	}
2167 	d->bd_jitcode = NULL;
2168 }
2169 
2170 /*
2171  * Attach an interface to bpf.  dlt is the link layer type;
2172  * hdrlen is the fixed size of the link header for the specified dlt
2173  * (variable length headers not yet supported).
2174  */
2175 static void
_bpfattach(struct ifnet * ifp,u_int dlt,u_int hdrlen,struct bpf_if ** driverp)2176 _bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2177 {
2178 	struct bpf_if *bp;
2179 
2180 	bp = kmem_alloc(sizeof(*bp), KM_SLEEP);
2181 
2182 	mutex_enter(&bpf_mtx);
2183 	bp->bif_driverp = driverp;
2184 	bp->bif_ifp = ifp;
2185 	bp->bif_dlt = dlt;
2186 	bp->bif_si = NULL;
2187 	BPF_IFLIST_ENTRY_INIT(bp);
2188 	PSLIST_INIT(&bp->bif_dlist_head);
2189 	psref_target_init(&bp->bif_psref, bpf_psref_class);
2190 	SLIST_INIT(&bp->bif_trackers);
2191 
2192 	BPF_IFLIST_WRITER_INSERT_HEAD(bp);
2193 
2194 	*bp->bif_driverp = NULL;
2195 
2196 	bp->bif_hdrlen = hdrlen;
2197 	mutex_exit(&bpf_mtx);
2198 #if 0
2199 	printf("bpf: %s attached with dlt %x\n", ifp->if_xname, dlt);
2200 #endif
2201 }
2202 
2203 static void
_bpf_mtap_softint_init(struct ifnet * ifp)2204 _bpf_mtap_softint_init(struct ifnet *ifp)
2205 {
2206 	struct bpf_if *bp;
2207 
2208 	mutex_enter(&bpf_mtx);
2209 	BPF_IFLIST_WRITER_FOREACH(bp) {
2210 		if (bp->bif_ifp != ifp)
2211 			continue;
2212 
2213 		bp->bif_mbuf_head = NULL;
2214 		bp->bif_mbuf_tail = NULL;
2215 		bp->bif_si = softint_establish(SOFTINT_NET, bpf_mtap_si, bp);
2216 		if (bp->bif_si == NULL)
2217 			panic("%s: softint_establish() failed", __func__);
2218 		break;
2219 	}
2220 	mutex_exit(&bpf_mtx);
2221 
2222 	if (bp == NULL)
2223 		panic("%s: no bpf_if found for %s", __func__, ifp->if_xname);
2224 }
2225 
2226 /*
2227  * Remove an interface from bpf.
2228  */
2229 static void
_bpfdetach(struct ifnet * ifp)2230 _bpfdetach(struct ifnet *ifp)
2231 {
2232 	struct bpf_if *bp;
2233 	struct bpf_d *d;
2234 	int s;
2235 
2236 	mutex_enter(&bpf_mtx);
2237 	/* Nuke the vnodes for any open instances */
2238   again_d:
2239 	BPF_DLIST_WRITER_FOREACH(d) {
2240 		mutex_enter(d->bd_mtx);
2241 		if (d->bd_bif != NULL && d->bd_bif->bif_ifp == ifp) {
2242 			/*
2243 			 * Detach the descriptor from an interface now.
2244 			 * It will be free'ed later by close routine.
2245 			 */
2246 			bpf_detachd(d);
2247 			mutex_exit(d->bd_mtx);
2248 			goto again_d;
2249 		}
2250 		mutex_exit(d->bd_mtx);
2251 	}
2252 
2253   again:
2254 	BPF_IFLIST_WRITER_FOREACH(bp) {
2255 		if (bp->bif_ifp == ifp) {
2256 			BPF_IFLIST_WRITER_REMOVE(bp);
2257 
2258 			pserialize_perform(bpf_psz);
2259 			psref_target_destroy(&bp->bif_psref, bpf_psref_class);
2260 
2261 			while (!SLIST_EMPTY(&bp->bif_trackers)) {
2262 				struct bpf_event_tracker *t =
2263 				    SLIST_FIRST(&bp->bif_trackers);
2264 				SLIST_REMOVE_HEAD(&bp->bif_trackers,
2265 				    bet_entries);
2266 				kmem_free(t, sizeof(*t));
2267 			}
2268 
2269 			BPF_IFLIST_ENTRY_DESTROY(bp);
2270 			if (bp->bif_si != NULL) {
2271 				/* XXX NOMPSAFE: assumed running on one CPU */
2272 				s = splnet();
2273 				while (bp->bif_mbuf_head != NULL) {
2274 					struct mbuf *m = bp->bif_mbuf_head;
2275 					bp->bif_mbuf_head = m->m_nextpkt;
2276 					m_freem(m);
2277 				}
2278 				splx(s);
2279 				softint_disestablish(bp->bif_si);
2280 			}
2281 			kmem_free(bp, sizeof(*bp));
2282 			goto again;
2283 		}
2284 	}
2285 	mutex_exit(&bpf_mtx);
2286 }
2287 
2288 /*
2289  * Change the data link type of a interface.
2290  */
2291 static void
_bpf_change_type(struct ifnet * ifp,u_int dlt,u_int hdrlen)2292 _bpf_change_type(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2293 {
2294 	struct bpf_if *bp;
2295 
2296 	mutex_enter(&bpf_mtx);
2297 	BPF_IFLIST_WRITER_FOREACH(bp) {
2298 		if (bp->bif_driverp == &ifp->if_bpf)
2299 			break;
2300 	}
2301 	if (bp == NULL)
2302 		panic("bpf_change_type");
2303 
2304 	bp->bif_dlt = dlt;
2305 
2306 	bp->bif_hdrlen = hdrlen;
2307 	mutex_exit(&bpf_mtx);
2308 }
2309 
2310 /*
2311  * Get a list of available data link type of the interface.
2312  */
2313 static int
bpf_getdltlist(struct bpf_d * d,struct bpf_dltlist * bfl)2314 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2315 {
2316 	int n, error;
2317 	struct ifnet *ifp;
2318 	struct bpf_if *bp;
2319 	int s, bound;
2320 
2321 	KASSERT(mutex_owned(d->bd_mtx));
2322 
2323 	ifp = d->bd_bif->bif_ifp;
2324 	n = 0;
2325 	error = 0;
2326 
2327 	bound = curlwp_bind();
2328 	s = pserialize_read_enter();
2329 	BPF_IFLIST_READER_FOREACH(bp) {
2330 		if (bp->bif_ifp != ifp)
2331 			continue;
2332 		if (bfl->bfl_list != NULL) {
2333 			struct psref psref;
2334 
2335 			if (n >= bfl->bfl_len) {
2336 				pserialize_read_exit(s);
2337 				return ENOMEM;
2338 			}
2339 
2340 			bpf_if_acquire(bp, &psref);
2341 			pserialize_read_exit(s);
2342 
2343 			error = copyout(&bp->bif_dlt,
2344 			    bfl->bfl_list + n, sizeof(u_int));
2345 
2346 			s = pserialize_read_enter();
2347 			bpf_if_release(bp, &psref);
2348 		}
2349 		n++;
2350 	}
2351 	pserialize_read_exit(s);
2352 	curlwp_bindx(bound);
2353 
2354 	bfl->bfl_len = n;
2355 	return error;
2356 }
2357 
2358 /*
2359  * Set the data link type of a BPF instance.
2360  */
2361 static int
bpf_setdlt(struct bpf_d * d,u_int dlt)2362 bpf_setdlt(struct bpf_d *d, u_int dlt)
2363 {
2364 	int error, opromisc;
2365 	struct ifnet *ifp;
2366 	struct bpf_if *bp;
2367 
2368 	KASSERT(mutex_owned(&bpf_mtx));
2369 	KASSERT(mutex_owned(d->bd_mtx));
2370 
2371 	if (d->bd_bif->bif_dlt == dlt)
2372 		return 0;
2373 	ifp = d->bd_bif->bif_ifp;
2374 	BPF_IFLIST_WRITER_FOREACH(bp) {
2375 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2376 			break;
2377 	}
2378 	if (bp == NULL)
2379 		return EINVAL;
2380 	opromisc = d->bd_promisc;
2381 	bpf_detachd(d);
2382 	BPFIF_DLIST_ENTRY_INIT(d);
2383 	bpf_attachd(d, bp);
2384 	reset_d(d);
2385 	if (opromisc) {
2386 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
2387 		error = ifpromisc(bp->bif_ifp, 1);
2388 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2389 		if (error)
2390 			printf("%s: bpf_setdlt: ifpromisc failed (%d)\n",
2391 			    bp->bif_ifp->if_xname, error);
2392 		else
2393 			d->bd_promisc = 1;
2394 	}
2395 	return 0;
2396 }
2397 
2398 static int
sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)2399 sysctl_net_bpf_maxbufsize(SYSCTLFN_ARGS)
2400 {
2401 	int newsize, error;
2402 	struct sysctlnode node;
2403 
2404 	node = *rnode;
2405 	node.sysctl_data = &newsize;
2406 	newsize = bpf_maxbufsize;
2407 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2408 	if (error || newp == NULL)
2409 		return (error);
2410 
2411 	if (newsize < BPF_MINBUFSIZE || newsize > BPF_MAXBUFSIZE)
2412 		return (EINVAL);
2413 
2414 	bpf_maxbufsize = newsize;
2415 
2416 	return (0);
2417 }
2418 
2419 #if defined(MODULAR) || defined(BPFJIT)
2420 static int
sysctl_net_bpf_jit(SYSCTLFN_ARGS)2421 sysctl_net_bpf_jit(SYSCTLFN_ARGS)
2422 {
2423 	bool newval;
2424 	int error;
2425 	struct sysctlnode node;
2426 
2427 	node = *rnode;
2428 	node.sysctl_data = &newval;
2429 	newval = bpf_jit;
2430 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2431 	if (error != 0 || newp == NULL)
2432 		return error;
2433 
2434 	bpf_jit = newval;
2435 	if (newval && bpfjit_module_ops.bj_generate_code == NULL) {
2436 		printf("JIT compilation is postponed "
2437 		    "until after bpfjit module is loaded\n");
2438 	}
2439 
2440 	return 0;
2441 }
2442 #endif
2443 
2444 static int
sysctl_net_bpf_peers(SYSCTLFN_ARGS)2445 sysctl_net_bpf_peers(SYSCTLFN_ARGS)
2446 {
2447 	int    error, elem_count;
2448 	struct bpf_d	 *dp;
2449 	struct bpf_d_ext  dpe;
2450 	size_t len, needed, elem_size, out_size;
2451 	char   *sp;
2452 
2453 	if (namelen == 1 && name[0] == CTL_QUERY)
2454 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
2455 
2456 	if (namelen != 2)
2457 		return (EINVAL);
2458 
2459 	/* BPF peers is privileged information. */
2460 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE,
2461 	    KAUTH_REQ_NETWORK_INTERFACE_GETPRIV, NULL, NULL, NULL);
2462 	if (error)
2463 		return (EPERM);
2464 
2465 	len = (oldp != NULL) ? *oldlenp : 0;
2466 	sp = oldp;
2467 	elem_size = name[0];
2468 	elem_count = name[1];
2469 	out_size = MIN(sizeof(dpe), elem_size);
2470 	needed = 0;
2471 
2472 	if (elem_size < 1 || elem_count < 0)
2473 		return (EINVAL);
2474 
2475 	mutex_enter(&bpf_mtx);
2476 	BPF_DLIST_WRITER_FOREACH(dp) {
2477 		if (len >= elem_size && elem_count > 0) {
2478 #define BPF_EXT(field)	dpe.bde_ ## field = dp->bd_ ## field
2479 			BPF_EXT(bufsize);
2480 			BPF_EXT(promisc);
2481 			BPF_EXT(state);
2482 			BPF_EXT(immediate);
2483 			BPF_EXT(hdrcmplt);
2484 			BPF_EXT(direction);
2485 			BPF_EXT(pid);
2486 			BPF_EXT(rcount);
2487 			BPF_EXT(dcount);
2488 			BPF_EXT(ccount);
2489 #undef BPF_EXT
2490 			mutex_enter(dp->bd_mtx);
2491 			if (dp->bd_bif)
2492 				(void)strlcpy(dpe.bde_ifname,
2493 				    dp->bd_bif->bif_ifp->if_xname,
2494 				    IFNAMSIZ - 1);
2495 			else
2496 				dpe.bde_ifname[0] = '\0';
2497 			dpe.bde_locked = dp->bd_locked;
2498 			mutex_exit(dp->bd_mtx);
2499 
2500 			error = copyout(&dpe, sp, out_size);
2501 			if (error)
2502 				break;
2503 			sp += elem_size;
2504 			len -= elem_size;
2505 		}
2506 		needed += elem_size;
2507 		if (elem_count > 0 && elem_count != INT_MAX)
2508 			elem_count--;
2509 	}
2510 	mutex_exit(&bpf_mtx);
2511 
2512 	*oldlenp = needed;
2513 
2514 	return (error);
2515 }
2516 
2517 static void
bpf_stats(void * p,void * arg,struct cpu_info * ci __unused)2518 bpf_stats(void *p, void *arg, struct cpu_info *ci __unused)
2519 {
2520 	struct bpf_stat *const stats = p;
2521 	struct bpf_stat *sum = arg;
2522 
2523 	int s = splnet();
2524 
2525 	sum->bs_recv += stats->bs_recv;
2526 	sum->bs_drop += stats->bs_drop;
2527 	sum->bs_capt += stats->bs_capt;
2528 
2529 	splx(s);
2530 }
2531 
2532 static int
bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)2533 bpf_sysctl_gstats_handler(SYSCTLFN_ARGS)
2534 {
2535 	struct sysctlnode node;
2536 	int error;
2537 	struct bpf_stat sum;
2538 
2539 	memset(&sum, 0, sizeof(sum));
2540 	node = *rnode;
2541 
2542 	percpu_foreach_xcall(bpf_gstats_percpu, XC_HIGHPRI_IPL(IPL_SOFTNET),
2543 	    bpf_stats, &sum);
2544 
2545 	node.sysctl_data = &sum;
2546 	node.sysctl_size = sizeof(sum);
2547 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2548 	if (error != 0 || newp == NULL)
2549 		return error;
2550 
2551 	return 0;
2552 }
2553 
2554 SYSCTL_SETUP(sysctl_net_bpf_setup, "bpf sysctls")
2555 {
2556 	const struct sysctlnode *node;
2557 
2558 	node = NULL;
2559 	sysctl_createv(clog, 0, NULL, &node,
2560 		       CTLFLAG_PERMANENT,
2561 		       CTLTYPE_NODE, "bpf",
2562 		       SYSCTL_DESCR("BPF options"),
2563 		       NULL, 0, NULL, 0,
2564 		       CTL_NET, CTL_CREATE, CTL_EOL);
2565 	if (node != NULL) {
2566 #if defined(MODULAR) || defined(BPFJIT)
2567 		sysctl_createv(clog, 0, NULL, NULL,
2568 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2569 			CTLTYPE_BOOL, "jit",
2570 			SYSCTL_DESCR("Toggle Just-In-Time compilation"),
2571 			sysctl_net_bpf_jit, 0, &bpf_jit, 0,
2572 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2573 #endif
2574 		sysctl_createv(clog, 0, NULL, NULL,
2575 			CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2576 			CTLTYPE_INT, "maxbufsize",
2577 			SYSCTL_DESCR("Maximum size for data capture buffer"),
2578 			sysctl_net_bpf_maxbufsize, 0, &bpf_maxbufsize, 0,
2579 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2580 		sysctl_createv(clog, 0, NULL, NULL,
2581 			CTLFLAG_PERMANENT,
2582 			CTLTYPE_STRUCT, "stats",
2583 			SYSCTL_DESCR("BPF stats"),
2584 			bpf_sysctl_gstats_handler, 0, NULL, 0,
2585 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2586 		sysctl_createv(clog, 0, NULL, NULL,
2587 			CTLFLAG_PERMANENT,
2588 			CTLTYPE_STRUCT, "peers",
2589 			SYSCTL_DESCR("BPF peers"),
2590 			sysctl_net_bpf_peers, 0, NULL, 0,
2591 			CTL_NET, node->sysctl_num, CTL_CREATE, CTL_EOL);
2592 	}
2593 
2594 }
2595 
2596 static int
_bpf_register_track_event(struct bpf_if ** driverp,void (* _fun)(struct bpf_if *,struct ifnet *,int,int))2597 _bpf_register_track_event(struct bpf_if **driverp,
2598 	    void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2599 {
2600 	struct bpf_if *bp;
2601 	struct bpf_event_tracker *t;
2602 	int ret = ENOENT;
2603 
2604 	t = kmem_zalloc(sizeof(*t), KM_SLEEP);
2605 	if (!t)
2606 		return ENOMEM;
2607 	t->bet_notify = _fun;
2608 
2609 	mutex_enter(&bpf_mtx);
2610 	BPF_IFLIST_WRITER_FOREACH(bp) {
2611 		if (bp->bif_driverp != driverp)
2612 			continue;
2613 		SLIST_INSERT_HEAD(&bp->bif_trackers, t, bet_entries);
2614 		ret = 0;
2615 		break;
2616 	}
2617 	mutex_exit(&bpf_mtx);
2618 
2619 	return ret;
2620 }
2621 
2622 static int
_bpf_deregister_track_event(struct bpf_if ** driverp,void (* _fun)(struct bpf_if *,struct ifnet *,int,int))2623 _bpf_deregister_track_event(struct bpf_if **driverp,
2624 	    void (*_fun)(struct bpf_if *, struct ifnet *, int, int))
2625 {
2626 	struct bpf_if *bp;
2627 	struct bpf_event_tracker *t = NULL;
2628 	int ret = ENOENT;
2629 
2630 	mutex_enter(&bpf_mtx);
2631 	BPF_IFLIST_WRITER_FOREACH(bp) {
2632 		if (bp->bif_driverp != driverp)
2633 			continue;
2634 		SLIST_FOREACH(t, &bp->bif_trackers, bet_entries) {
2635 			if (t->bet_notify == _fun) {
2636 				ret = 0;
2637 				break;
2638 			}
2639 		}
2640 		if (ret == 0)
2641 			break;
2642 	}
2643 	if (ret == 0 && t && t->bet_notify == _fun) {
2644 		SLIST_REMOVE(&bp->bif_trackers, t, bpf_event_tracker,
2645 		    bet_entries);
2646 	}
2647 	mutex_exit(&bpf_mtx);
2648 	if (ret == 0)
2649 		kmem_free(t, sizeof(*t));
2650 	return ret;
2651 }
2652 
2653 struct bpf_ops bpf_ops_kernel = {
2654 	.bpf_attach =		_bpfattach,
2655 	.bpf_detach =		_bpfdetach,
2656 	.bpf_change_type =	_bpf_change_type,
2657 	.bpf_register_track_event = _bpf_register_track_event,
2658 	.bpf_deregister_track_event = _bpf_deregister_track_event,
2659 
2660 	.bpf_mtap =		_bpf_mtap,
2661 	.bpf_mtap2 =		_bpf_mtap2,
2662 	.bpf_mtap_af =		_bpf_mtap_af,
2663 	.bpf_mtap_sl_in =	_bpf_mtap_sl_in,
2664 	.bpf_mtap_sl_out =	_bpf_mtap_sl_out,
2665 
2666 	.bpf_mtap_softint =		_bpf_mtap_softint,
2667 	.bpf_mtap_softint_init =	_bpf_mtap_softint_init,
2668 };
2669 
2670 MODULE(MODULE_CLASS_DRIVER, bpf, "bpf_filter");
2671 
2672 static int
bpf_modcmd(modcmd_t cmd,void * arg)2673 bpf_modcmd(modcmd_t cmd, void *arg)
2674 {
2675 #ifdef _MODULE
2676 	devmajor_t bmajor, cmajor;
2677 #endif
2678 	int error = 0;
2679 
2680 	switch (cmd) {
2681 	case MODULE_CMD_INIT:
2682 		bpf_init();
2683 #ifdef _MODULE
2684 		bmajor = cmajor = NODEVMAJOR;
2685 		error = devsw_attach("bpf", NULL, &bmajor,
2686 		    &bpf_cdevsw, &cmajor);
2687 		if (error)
2688 			break;
2689 #endif
2690 
2691 		bpf_ops_handover_enter(&bpf_ops_kernel);
2692 		atomic_swap_ptr(&bpf_ops, &bpf_ops_kernel);
2693 		bpf_ops_handover_exit();
2694 		break;
2695 
2696 	case MODULE_CMD_FINI:
2697 		/*
2698 		 * While there is no reference counting for bpf callers,
2699 		 * unload could at least in theory be done similarly to
2700 		 * system call disestablishment.  This should even be
2701 		 * a little simpler:
2702 		 *
2703 		 * 1) replace op vector with stubs
2704 		 * 2) post update to all cpus with xc
2705 		 * 3) check that nobody is in bpf anymore
2706 		 *    (it's doubtful we'd want something like l_sysent,
2707 		 *     but we could do something like *signed* percpu
2708 		 *     counters.  if the sum is 0, we're good).
2709 		 * 4) if fail, unroll changes
2710 		 *
2711 		 * NOTE: change won't be atomic to the outside.  some
2712 		 * packets may be not captured even if unload is
2713 		 * not successful.  I think packet capture not working
2714 		 * is a perfectly logical consequence of trying to
2715 		 * disable packet capture.
2716 		 */
2717 		error = EOPNOTSUPP;
2718 		break;
2719 
2720 	default:
2721 		error = ENOTTY;
2722 		break;
2723 	}
2724 
2725 	return error;
2726 }
2727